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Abstract

Bird flocks under predation demonstrate complex patterns of collective escape. These pat-

terns may emerge by self-organization from local interactions among group-members.

Computational models have been shown to be valuable for identifying what behavioral rules

may govern such interactions among individuals during collective motion. However, our

knowledge of such rules for collective escape is limited by the lack of quantitative data on

bird flocks under predation in the field. In the present study, we analyze the first GPS trajec-

tories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-

specific model of collective escape. We use our model to examine a recently identified dis-

tance-dependent pattern of collective behavior: the closer the prey is to the predator, the

higher the frequency with which flock members turn away from it. We first extract from the

empirical data of pigeon flocks the characteristics of their shape and internal structure (bear-

ing angle and distance to nearest neighbors). Combining these with information on their

coordination from the literature, we build an agent-based model adjusted to pigeons’ collec-

tive escape. We show that the pattern of turning away from the predator with increased fre-

quency when the predator is closer arises without prey prioritizing escape when the

predator is near. Instead, it emerges through self-organization from a behavioral rule to

avoid the predator independently of their distance to it. During this self-organization process,

we show how flock members increase their consensus over which direction to escape and

turn collectively as the predator gets closer. Our results suggest that coordination among

flock members, combined with simple escape rules, reduces the cognitive costs of tracking

the predator while flocking. Such escape rules that are independent of the distance to the

predator can now be investigated in other species. Our study showcases the important role

of computational models in the interpretation of empirical findings of collective behavior.

Author summary

Bird flocks show fascinating patterns of collective motion, particularly when escaping a

predator. Little is known, however, about the underlying mechanisms of these patterns.
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We fill this gap by firstly analyzing GPS data of pigeon flocks under attack by a robotic-

predator and secondly studying their collective escape in a computer simulation. Previous

research on pigeons has revealed that flock members turn away from the predator more

the closer the predator gets. Using computer simulations that are based on pigeon-specific

characteristics of motion and coordination among individuals, we study what escape rules

at the individual level may underlie this distance-dependent pattern. We show that, even

if individuals do not intend to escape more when the predator is closer, their escape fre-

quency still increases the closer they get to the predator. This happens by self-organization

from the coordination among individuals and despite their tendency to turn away from

the predator being distance-independent. A key aspect of this process is the increasing

consensus among flock members over the escape direction when the predator gets closer.

Introduction

Computational models based on self-organization are a valuable tool to disentangle the pro-

cesses underlying complex patterns of biological systems. Such models show that many collec-

tive patterns that are seen in nature may be emergent, i.e. not represented in the behavioral rules

of the group members [1]. We present several examples of such emergent phenomena in collec-

tive motion below. In simulated fish schools, the oblong shape of the group (common in real

schools) emerges from individuals avoiding their nearest neighbor by slowing down or turning

away while coordinating [2, 3]. Milling (collective circular motion) emerges in a minimal model

of collective motion when individuals are limited in their field of view and angular velocity [4].

In more complex models, changes between milling and schooling behavior at the group level

(phase transitions) spontaneously arise from a single set of behavioral rules at the individual

level [5, 6]. Realistic group shapes emerge in flocks and schools from the specifics of individuals’

locomotion, i.e. flying versus swimming [3]. Swarm shapes also depend on the preceding shape

of the group, a phenomenon called hysteresis [5]. In sum, these models help us to determine

what behavioral rules at the individual level are necessary for a collective pattern to arise.

Models of collective motion have also been used to study collective patterns of escape from a

predator. Inada and Kawachi (2002) developed a two-dimensional model of fish schools under

attack. Despite including only one rule of escape at the individual level, several patterns of collec-

tive escape emerged while the group was turning, splitting, or surrounding the predator [7]. In

airborne flocks of birds, the only pattern of collective escape that has been studied in detail is the

agitation wave: a dark band that moves from one side of the group to the other [8–10]. A wave

was initially assumed to relate to increased density among individuals when they flee away

(accelerating forwards) from the predator and thus come closer to each other [11]. The individ-

ual-level rules of this process were studied in a three-dimensional model of European starlings

(Sturnus vulgaris) [12], where a few initiators were performing an escape motion (either through

forward acceleration or turning) that was subsequently copied by their neighbors [13]. In the

simulated flocks, a dark band was visible only during the turning escape maneuver because

while banking (a motion necessary for birds to turn during flight) the larger surface of the wings

becomes visible to an observer. This lead to the conclusion that this band can reflect a wave of

orientation instead of density [13]. This study highlighted the importance of such theoretical

experiments in the understanding of which behavior underlie complex collective patterns.

Given differences in collective behavior across species [14–16], a computational model

should be adjusted to empirical data in order to study in detail specific patterns of groups in

nature [12, 17–19]. Collecting quantitative empirical data, however, can be challenging. For
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bird flocks, results of field experiments using stereo photography have been extremely valuable

for validating model conclusions and formulating hypotheses [12, 14, 16, 20]. Due to the spe-

cifics of 3D-imaging techniques, the positions of flock members can be reconstructed only for

a few seconds of flight while the flock is passing through a stationary set of cameras. This poses

a limitation for studying their collective escape: capturing a full escape sequence within the

narrow frame of the cameras is unlikely. Furthermore, the challenge of controlling and track-

ing an avian predator in the field during a pursuit limits techniques used to collect full trajecto-

ries of airborne flocks, such as GPS devices [15, 21]. Due to these constrains, until recently the

collective escape of airborne flocks has been empirically studied only through video footage,

focusing on qualitative descriptions of the observed collective patterns [8, 10, 22]. This lack of

quantitative data has limited our potential to study the underlying processes of collective

escape [13, 23].

GPS data of a flock under predation have recently been collected with a robotic falcon

attacking flocks of homing pigeons (Columba livia) [24]. Based on the tracks of escaping indi-

viduals during a pursuit, Sankey et al. (2021) [24] identified a new distance-dependent pattern

of collective escape: when the predator is close, pigeons are turning away from its heading with

higher likelihood than they align with their flockmates. It is however not clear whether this

reflects a distance-dependent behavioral rule of individual pigeons or an emergent property.

The aim of the present paper is to study this empirical finding that pigeons in a flock turn

away from the predator more frequently when the predator is closer [24]. We do so in a

computational model inspired by empirical data [15, 21, 24]. We first analyze the GPS trajecto-

ries of individual pigeons and use them to infer their flock shape and internal structure (bear-

ing angle and distance to nearest neighbor) [24]. We combine these data with information on

the specifics of flocking in homing pigeons [15, 21, 24] and build a realistic computational

model of pigeons’ collective escape [17]. We use our model to investigate whether flock mem-

bers need an individual rule to escape more at closer distances to the predator for their escape

frequency to scale with predator-prey distance. We model a predator-avoidance mechanism

that reflects our null hypothesis: pigeons turn to escape without taking into account their dis-

tance to the predator. We analyze the effect of predator-avoidance and coordination among

flock members during an attack. We confirm that our model reproduces the empirical pattern

and conclude that the frequency of escape turns increases with decreasing distance to the pred-

ator as an emergent property during collective escape.

Materials and methods

Flocks of pigeons under attack

Empirical data. We used pre-proccessed trajectories of flocks of homing pigeons

(Columba livia) collected by Sankey et al. (2021) [24]. All flock members were trained to fly

back to their home after being released at a site approximately 5 km away. A robotic falcon

[24, 25], similar to a peregrine falcon (Falco peregrinus) in appearance and locomotion, was

remotely controlled to attack the flocks after their release and to chase them until they leave

the site. Both prey and predator were mounted with GPS devices sampling with a frequency of

0.2 seconds (see [24] for full details).

A data-inspired computational model

We developed an agent-based model, named HoPE (Homing Pigeons Escape), that simulates

airborne flocks of pigeons under attack by a predator. We present our models based on ele-

ments of the ODD (Overview, Design concepts, Detail) protocol [26].
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Principles, entities, and process overview. Our model is based on self-organization [1]. It

consists of pigeon- and predator-like agents. Each simulation includes several pigeon-agents

(also referred to as ‘prey’) that form a flock, and one predator-agent that pursues and attacks the

flock. We adjusted the coordination rules of alignment, avoidance and attraction among nearby

pigeons-agents [5, 27, 28] to known behavior of pigeons [15, 21, 24]. Parameters not found in

the literature were determined through calibration with empirical measurements of several

flock’s characteristics, namely the distributions of individuals’ speed, nearest-neighbor distance,

and relative position of nearest neighbor (bearing angle and distance). All parameters in our

model are presented in Table 1 and their values remain constant throughout a simulation.

Motion and sensing. Our agents move in a large two-dimensional open space. They are

defined by a position vector (~ri ) in the global space, and a velocity (~vi) and a heading vector

(ĥi) in their own coordinate system. We assume that agents always have their heading in the

direction of their velocity (non-slip assumption). Each agent senses the position and heading

of other agents in its field of view (controlled by the angle θFoV). The field of view of pigeon-

Table 1. The parameters of the HoPE model. The majority of parameter values are taken from previous empirical work on pigeons flocks [15, 21, 24]. We decide the

value of parameters that could not be inferred from the literature by calibration [17] through comparisons with the empirical data of Sankey et al. (2021) [24] and visual

testing to ensure realistic flock formations.

Parameter Name-Description Value Unit Reference

Collective motion

uc Mean cruise speed 16 m/s [21]

usd
c Standard deviation of cruise speed 2 m/s [21]

m Pigeons’ body mass 0.45 kg [21]

θFoV Angle of field of view 215 degrees [15]

y
f
FoV

Angle of frontal part of field of view 180 degrees [15]

ntopo Number of interacting neighbors for coordination 7 individuals [24]

ds
min Minimum distance for separation force 1 m [15]

dZmin Minimum mean distance to neighbors for acceleration 2 m [15]

dZmax Maximum mean distance to neighbors for acceleration 10 m [15]

κ Strength of deceleration 0.5 - [15]

wa Weighting factor of alignment force 10 - -

ws Weighting factor of separation force 5 - -

wct Weighting factor of turning cohesion force 2.5 - -

wca Weighting factor of acceleration-based cohesion force 5 - -

wf Weighting factor of flight-control force 0.2 -

βw Range of uniform distribution for the weighting factor of the random-error force 2 - -

Collective escape

wp Weighting factor of pigeons’ predator avoidance 2 - -

de
max Minimum distance for pigeons’ predator avoidance 50 m [24]

zp Predator’s pursuit speed relative to the flock’s 1.0 - -

ξp Predator’s attack speed relative to the flock’s 1.5 - -

dh Distance of predator’s pursuit 30–40 m [24]

θp Bearing angle of predator’s pursuit 130–225 degrees -

Th Predator’s pursuit duration 30 s -

Ta Predator’s attack duration 20 s -

Simulation

dt Integration time 0.005 s -

Δt Update frequency 0.02 s -

Sampling frequency 0.2 s [24]

https://doi.org/10.1371/journal.pcbi.1009772.t001
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agents is set to 215o and is divided into a front (±90o around their heading, y
f
FoV) and a side

area [15].

From all sensed individuals, each agent only interacts with a fixed number of closest neigh-

bors (referred to as ‘topological neighbors’, ntopo) [12, 29]. Sankey et al. (2021) [24] estimated

that the topological range of interaction may differ between small and large flocks, and

between alignment and centroid-attraction. Their method is, however, not well established

and was unable to reveal the (true) topological range used in our model (S1 Fig). Because

of this, and aiming to reduce the complexity of our model [17], we chose a constant number

of 7 topological neighbors for both alignment and attraction across different flock sizes

[16, 29].

The motion of pigeon-agents in our model is dictated by the sum (~c i) of some external

pseudo-forces, namely a coordination force (~ccoord
i ), an escape force (~c

p
i ), and an internal flight

control system (~c
f
i ). The components of each of these pseudo-forces are shown in Fig 1. Since

birds cannot perfectly collect and respond to information about their surroundings (e.g. aver-

age position and direction of neighbors), we included a random error in their motion. Specifi-

cally, a noise scalar (�i) is randomly sampled by a uniform distribution (with a range βw) and

Fig 1. Collective motion schematic in the computational model HoPE. The colored areas represent the field of view

of a focal individual i with heading ĥi, split into a ‘front’ (light blue, y
f
FoV) and ‘side’ area (blue). Based on its total field

of view (θFoV), i interacts with its topological neighbors n, j, m, and k. Agents g and q are in the blind angle of i and are

thus ignored. All pseudo-forces (ψ) acting on i are represented by colored arrows. Alignment (ψa) is the average vector

of topological neighbors’ headings (indicated by blue doted arrows). Centroid attraction (ψct) is the vector from i’s
position to the center of the topological neighborhood (c). Accelerating attraction (ψca) is a vector in the direction of

motion (aligned with heading ĥ i), depending on the distances of i to the neighbors in its front field of view, namely j, m
and k (with distances dij, dim and dik respectively). If there are no agents in the front field of view, then ψca is negative.

Separation (ψs) is the vector away from the position of the nearest neighbor n. Avoidance of the predator (ψp) is a

vector perpendicular to the heading of the pigeon-agents, in the direction away from the predator’s heading (ĥp). In

other words, forcing a turn away from the predator’s heading clockwise or anticlockwise (left or right) relative to the

agent’s heading. Vector ψf represents the flight-control force that drags i towards its preferred speed. The ψw vector is

the force to create random-error in the orientation of the agents.

https://doi.org/10.1371/journal.pcbi.1009772.g001
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multiplied with a unit vector perpendicular to the agents’ headings, forming a pseudo-force

that affects the agents’ turning motion (~cw
i ¼ �iĥ?i ).

Individual variation and speed control. Several models of collective behavior assume

constant and often identical speed of all group members [4–6, 19]. Homing pigeons, however,

have a preferred ‘solo’ speed of flight, from which they deviate by up to 2 m/s when flying in a

flock [21]. When flying in pairs, they accelerate to catch up with their frontal neighbor (the fur-

ther away the neighbor the higher the acceleration) and slow down if they are in front [15].

According to these findings, agents in our model have different preferred speeds from which

they can deviate to stay with their flockmates.

At initialization, the model randomly samples a preferred speed for each agent from a uni-

form distribution with interval length of 4 m/s (usd
c around the mean uc, Table 1). To reflect the

inability of individuals to deviate from their preferred speed for a prolonged period [21], we

modeled a drag force (
~
c

f
) that pulls agents back to it (Eq 1). This force increases with increas-

ing deviation from the preferred flight speed, according to:

~c
f
i ðt þ dtÞ ¼ ðucs

i � uiðtÞÞ m ĥiðtÞ Flight-control force ð1Þ

where ucs
i is the personalized speed of agent i with mass m, and ui(t) is its speed on timestep t.

Coordination. Flock formation emerges from simple rules of among-individuals coordi-

nation: attraction, avoidance and alignment [5, 12, 27, 28]. In our model, we parameterized

alignment to be the strongest among our steering forces, as found in homing pigeons [24]. The

alignment force (ĉ
a
) has the direction of the average heading of all topological neighbors. Cen-

troid-attraction in our model is relatively weak, given that coherence in flocks of pigeons is

mediated mostly by speed adjustment [15, 24]. We thus introduced an ‘acceleration-attraction’

force (ĉ
ca

): individuals accelerate if they have neighbors within their front field of view and

decelerate if they do not sense any individuals nearby (their field of view is empty). The

strength of this acceleration force increases with increasing average distance to all frontal

neighbors, according to a smootherstep function [30] from 2 to 10 m (dZmin and dZmaxÞ based on

[15]. Deceleration is constant to the half of acceleration’s maximum (based on the scaling fac-

tor κ) [15]. The centroid-attraction force (ĉct) is the unit vector with direction from the posi-

tion of the focal individual to the average position of its topological neighbors.

Lastly, separation among pigeons is mediated by turning when neighbors are within a

1-meter distance from each other [15]. Similarly in our model, an avoidance force (ĉ
s
) pushes

agents to turn away from the position of their closest neighbor (instead of all topological neigh-

bors) if they are too close (according to the minimum-separation distance, ds
min). We parame-

terize this switch from 7 to 1 topological range for separation to increase the resemblance of

our model to empirical data (following previous theoretical work of [20]), and since there is

no, to our knowledge, previous research on the real topological range for separation in pigeon

flocks.

To balance these forces according to real pigeons [15, 24], we implemented a weighted sum

(Eq 2) aiming for a strong influence of alignment (wa), medium influence of avoidance (ws)

and acceleration-attraction (wca), and weak influence of centroid-attraction (wct). The exact

values of these weights are established during calibration (Table 1). The total coordination

force is calculated by:

~ccoord
i ¼ wsĉ

s
i þ waĉ

a
i þ wctĉ

ct
i þ wcaĉ

ca
i þ

~cw
i Coordination force ð2Þ
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Escape motion. According to the empirical findings, the heading of the robotic falcon

had a larger effect on the turn-away motion of pigeons than its position [24]. Hence, our

pigeon-agents avoid the predator based on an escape pseudo-force (~c
p
i ) that turns them away

from the predator’s heading. The magnitude of this force (wp) is constant and independent

from each agent’s distance to the predator:

~c
p
i ¼ wp ðsgnðĥi � ĥpÞ ĥ?i Þ Predator avoidance ð3Þ

where ĥp is the heading of the predator-agent, and ĥi � ĥp its dot product with a pigeon-agent’s

heading. Pigeon-agents do not sense the predator’s position and thus have no information

about their distance to it.

The predator. We model our predator-agents to resemble the motion of the robotic fal-

con [24] in order for our results to be comparable with the empirical data. Thus, hunting in

our model is based on direct pursuit [24, 31], a common strategy of attack by peregrine falcons

(Falco peregrinus) on flocks [32]. Each simulation includes only one predator. A few seconds

after the flock is formed, the predator is positioned at a given distance behind it (dh). The pred-

ator-agent follows the position of the pigeon-agent closest to it, with the same speed as the

prey (based on the scaling factor zp) from a bearing angle θp relative to the flock’s heading.

After some time (Th), the predator-agent will speed up attacking its target (with a speed scaling

from the target’s speed, ξp) with a random error added to its motion. The predator’s target is

selected based on two alternative strategies: the target is the pigeon-agent that is closer to the

predator at every time step during the attack (‘chase’ strategy) or the closest pigeon-agent at

the beginning of the attack (‘lock-on’ strategy). After an attack (Tα), the predator is automati-

cally re-positioned far away from the flock.

Update and integration. We use two different timescales for update and integration in

our model, following previous biologically-relevant computational models of collective motion

[12, 33]. During update steps (t + Δt), agents collect information from their environment and

the pseudo-forces acting on them are recalculated. Since flock members in nature are asyn-

chronous in their reactions, our pigeon-agents update their information asynchronously with

the same frequency (Δt). This asynchronous update adds noise to the system and it is known

to improve the resemblance of collective motion in agent-based simulations to real groups [3,

12, 33]. At each integration step (dt), the total force for each agent is composed from:

~c iðtÞ ¼ ~ccoord
i þ ~c

p
i þ wf

~c
f
i ðtÞ Total force ð4Þ

where wf is the calibrated weight for cruise speed control, and ~ccoord
i and ~c

p
i are the pseudo-

forces for coordination (Eq 2) and predator-avoidance (Eq 3) calculated at the last update step.

Based on this force, the acceleration, velocity, and position of all agents is updated at each inte-

gration step according to Newton’s laws of motion and using Euler’s integration (specifically

the midpoint method [34]). The new heading of each agent is then the normalized form of its

new velocity:

ĥi ¼
~vi

jj~vi jj
Agent’s heading ð5Þ

Experiments

For our main analysis, to test the effect of predator-prey distance on the pigeons’ escape fre-

quency, we performed two types of experiments. In both experiments, the predator is using

the ‘chase’ strategy. First, we run simulations in which prey is not reacting to the predator.
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These simulated data were used as control. In the second experiment, pigeon-agents avoid the

predator-agent without accounting for its distance to them (as described in Eq 3). We ran

1000 simulations (hunting cycles) for each experiment. Across simulations, we varied only the

direction of the predator’s attack (from the left, the middle, and the right side behind the flock

relative to the flight direction, θp) and the flock size (8, 10, 27, and 34 individuals, as in the field

experiment of homing pigeons [24]). Note that since we do not model ‘catches’ of prey by the

predator, flock size is constant during each simulation. For our analysis, we combined the

results of all simulations into one dataset per experiment.

To test the effect of the predator’s strategy, we repeated our main experiments using (1) the

‘lock-on’ strategy and (2) reverted versions of the two strategies. Specifically, the predator was

placed automatically in close proximity to the flock (5 m) and given a speed lower than its tar-

gets’ speed; this resulted in the predator performing approximately the opposite motion of a

real attack. We performed this ‘reverted’ experiments to test effects of hysteresis [5] during a

collective escape.

Analysis

The first seconds of each simulated flight are discarded to avoid effects of initial conditions.

Similarly, the taking-off part of the real trajectories was excluded from our analysis. For

the analysis on the predator-prey distance, data of individuals that are more than 60 meters

away from the predator are also discarded, as in the empirical study with the RobotFalcon

[24].

Defining a flock of pigeons. For both empirical and simulated data, we extracted the

time-series of individual speed and nearest neighbor distance. We further estimated the bear-

ing angle between every focal individual and each one of its neighbors based on its heading

and the line connecting their positions. The shape of each flock was calculated based on the

minimum volume bounding-box method [12, 35]. Specifically, we drew a bounding box of

minimum area that included all flock members’ positions, with axes aligned to the output of a

principal component analysis of their coordinates (method used in [12]). To use as a proxy of

flock shape, we estimated the angle between the shortest side (dimension) of this box and the

heading vector of the flock (average of all flock members) [12]. The closer this angle is to 0

degrees, the more perfectly ‘wide’ the flock is. Values close to 90 degrees show an ‘oblong’

flock shape.

Turning direction. Members of both real and simulated flocks were categorized based on

their turning motion relative to the headings of the flock and the predator (Fig 2A). Following

the definitions of Sankey et al. (2021) [24], when the direction away from the predator’s head-

ing is also the direction away from the average heading of the flock, we will refer to the individ-

ual as being ‘in-conflict’ (between turning to either escape or align with the flock). In a non-

conflict scenario, an individual needs to turn towards the flock’s heading in order to escape.

According to these categories, an individual may actually turn as follows:

1. in a ‘conflict’ scenario:

a. towards the flock and the predator (potentially staying in the flock and risking getting

caught),

b. away from the flock and the predator (potentially splitting-off and escaping);

2. in a non-conflict scenario:

a. towards the flock and away from the predator (potentially staying in the flock and

escaping),
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b. away from the flock and towards the predator (potentially splitting-off and risking get-

ting caught).

We identified the turning direction of each flock member in respect to the predator by

comparing the signs of a series of angles relative to the heading of the focal individual (Fig 2A).

We let the sign of an angle between two vectors a and b be represented by the sign of their per-

pendicular dot product (PerpDotða; bÞ ¼~a? �~b). When the PerpDot is positive, vector a is on

the right of b (anticlockwise rotation of a is needed to overlap with b) and thus the angle θab

between them falls in the range [0˚, 180˚). When their PerpDot is negative, a is on the left of b
(clockwise rotation is needed to overlap) and θab 2 [−180˚, 0˚). Thus, the sign of an angle

between two vectors takes a value according to:

sgnðyabÞ ¼

(
1; if ~a? � ~b � 0;

� 1; if ~a? � ~b < 0:

ð6Þ

Firstly, the direction ‘towards the flock’ is indicated by the sign of the angle θa, the one

between the focal individual’s heading and the average heading of the flock (ρα). Secondly, the

direction away from the predator (θp) is shown by the sign of the angle between the prey’s

heading and the vector (� ĥp) opposite to the predator’s heading. Lastly, the direction of an

individual’s motion is estimated as the sign of the angle between its heading at consecutive

integration time-steps (Δθ(t + dt), Fig 2B). After comparing these three directions, we catego-

rized each individual’s motion in the above mentioned categories (1a, 1b, 2a, 2b).

Fig 2. Definition of turning direction. (A) Prey individuals i and j are members of a flock with average heading ρα and

face different conditions to escape the predator p. The headings (unit vectors) of the individuals are represented by ĥ. The

red angles θp are the turns away from the heading of the predator and the blue angles θa, the turns towards the heading of

the flock. Based on the relative heading of individuals i and j to the headings of the flock and the predator, j needs to escape

while aligning with its flockmates, while i is in-conflict, since it needs to turn away from the flock in order to escape. (B)

The change of heading of an individual between consecutive time steps (dt) is represented by Δθ. Its sign shows whether

the individual turned towards the flock (same sign with θa), away from the predator (same sign with θp), towards neither or

both (depending on its escape conditions).

https://doi.org/10.1371/journal.pcbi.1009772.g002
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As in the analysis of Sankey et al. (2021) [24], we split our data into 10-meter clusters of

predator-prey distance (from 0 to 60 m). We calculated the frequency of each turning category

at each cluster across all real and simulated trajectories. We refer to the frequency of turns

away from the predator (1b, 2a) as ‘escape frequency’. Since we are interested in the emergence

of a collective pattern, please note the distinction between escape frequency (the actual behav-

ior of an individual, emerging from its interactions with its neighbors and the predator) and

the underlying rule for predator-avoidance (the individual tendency to escape).

Distance dependency. We analyzed the simulated data focusing on how several variables

scale with decreasing distance to the predator. Specifically, we calculated for each predator-

prey distance cluster:

1. the angle (αpi) between the headings of the predator-agent (ĥp) and each prey-agent (ĥi) at

each time step.

2. the frequency that pigeon-agents change their escape direction across all simulations:

nc ¼
1

N Tsim

X

i2N
ns

i ð7Þ

where N is the total number of pigeon-agents in all simulations, Tsim the total simulation

time, and ns
i the number of occurrences that the escape direction of agent i changed

between time steps (ypi
ðtÞ 6¼ ypi

ðt þ 1Þ).

3. the consensus in escape direction in each flock at every time step:

Cesc
f ðtÞ ¼ j

1

Nf

X

i2Nf

sgnðapiðtÞÞj ð8Þ

where Nf is the number of individuals in the flock f and sgn(αpi(t)) the sign of the angle

between the headings of the predator and individual i at time t. Values close to 1 show that

most flock members have the same escape direction, whereas 0 indicates that half of the

flock needs to turn to the right to escape and the other half to the left.

Self-organized dynamics. To inspect the interplay of coordination and predator-avoid-

ance during collective escape in our model, we examined the effect of alignment and centroid-

attraction on the motion of each individual. Specifically, we collected the weighted steering

forces (ĉa
i ; ĉ

ct
i , Eq 2) of each flock-member in its own coordinate system:

Fcf ðtÞ ¼ fwaĉ
a
1
; wctĉ

ct
1
; ::: ;waĉ

a
Nf
; wctĉ

ct
Nf
g ð9Þ

where Fc

f ðtÞ is the set of the coordination forces acting on all Nf focal individuals of flock f. We

used these sets to create density maps of coordination effect during a predator’s attack on a

flock.

Software

Our computational model was built in C++ 17. Graphics rendering was implemented in

OpenGL [36]. The calculations of bearing angle, flock shape, and predator-prey distance, and

the determination of conflict scenarios for the simulated data were performed in C++. All

other analyses of empirical and simulated data were performed in R (version 3.6) [37]. All

result plots were made in ‘ggplot2’ [38].
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Results

Characteristics of a flock of homing pigeons

We analyzed tracks of homing pigeons in flocks, initiating their homing flight or being

attacked by a robotic falcon (N = 43). To characterize what comprises a flock of pigeons, we

constructed for each flock the distribution of individual speed, nearest neighbor distance,

and calculated for each focal individual the relative position of all its neighbors (distance and

bearing angle) (Fig 3A1, 3B1 and 3C1). We found large differences in these distributions

among flocks (S2 Fig). The bearing angle to each nearest neighbor (S3 Fig) is uniform

distributed (Kolmogorov-Smirnov test, comparison with a uniform distribution, D = 0.08,

Fig 3. Comparison of real (top row) and simulated (bottom row) flocks of 8 pigeons. The shown data are representative of the majority of

distributions; for a detailed comparison across more flocks see S1 Table. (A-B) The vertical dotted lines show the mean of each distribution. (A) The

distributions of individual speed throughout a flight of real pigeons (A1) and a simulation (A2). (B) The distributions of nearest-neighbor distance

throughout a flight (B1) and a simulation (B2). (C) Density of the nearest-neighbor positions in the coordinate system of each focal individual, based on

the bearing angle and distance to the nearest neighbor (m), estimated for a real flight (C1) and a simulation (C2). The area of highest density is expected

to be around the mode of the distribution of nearest neighbor distance. The triangle represents the position of the focal individual heading to the north

direction.

https://doi.org/10.1371/journal.pcbi.1009772.g003

PLOS COMPUTATIONAL BIOLOGY Self-organized collective escape

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009772 January 10, 2022 11 / 25

https://doi.org/10.1371/journal.pcbi.1009772.g003
https://doi.org/10.1371/journal.pcbi.1009772


p-value = 0.58). The shape of each flock varies from oblong to elongated, according to our cal-

culation of the angle between the flock’s heading and the shortest axis of the minimum-area

bounding box surrounding all members (with an average angle of 41 ± 23.5 degrees). In total,

in a flock of homing pigeons, an individual flies with an average speed of 18 m/s and has its

nearest neighbor positioned anywhere around it (bearing angle from -180 to 180 degrees) at a

distance of 1.3 ± 1.8 meters (mean and standard deviation).

Simulated flocks of pigeons

Before inspecting our hypothesis, we established whether the behavioral rules of our model

result in pigeon-like flocks [17]. To develop our model, we adjusted the relative importance of

the coordination rules (alignment, attraction, avoidance) among individuals according to

empirical data of pigeons. For each pigeon-agent, we modeled strong alignment with the aver-

age heading of its 7 closest neighbors, and weak attraction to their center of mass. As to attrac-

tion, we also included an accelerating mechanism, as found by Pettit et al. (2013) [15]. While

individuals accelerate to stay close to their flockmates, an additional force drags them back to

their personalized cruise speed [21].

We measured the flock characteristics described above (distribution of speed, nearest

neighbor distance and relative position of neighbors) in our simulated tracks. Due to the large

variability in measurements among real flocks, the cumulative distribution across flights is not

representative of individual flocks (S2 Fig). Hence, we compared the simulated data with

tracks of a single flock and validated that our computational model closely resembles flocks of

pigeons (Fig 3 and S1 Table).

Turning-direction frequency under attack

We model pigeon-agents to avoid the heading of the predator rather than its position, accord-

ing to the findings of Sankey et al. (2021) [24]. Specifically, we added a force perpendicular (in

±90 deg angle) to the heading of each agent, pushing them to turn away from the predator

(while also coordinating with their neighbors). The strength of this force is constant and inde-

pendent of the predator-prey distance. Only its direction (the forces’ sign) changes during an

attack, based on the relative direction of the prey’s and predator’s headings. Our simulations

show a pattern very similar to the one of the empirical data: the closer the predator, the higher

the frequency of escape is (Chi-Square for Trend test, X-squared = 10.3, p-value = 0.001, Fig

4B), independent of our predator-agent’s strategy (‘lock-on’ and ‘chase’, S4 Fig).

This shows that in our model, the pattern of collective escape that scales with predator-prey

distance emerges from an individual behavior that does not take their distance to the predator

into account (distance-independent avoidance). In simulations where pigeon-agents do not

react to the predator (control), the frequency of escape remains constant (Chi-Square for

Trend test, x2 = 0.03, p-value = .87, Fig 4C), as expected.

Parameters scaling with predator-prey distance

We examined several aspects of our system to identify why pigeons turn more frequently away

from the predator when they are closer to it (Fig 4). We focused on measurements that differ

between simulations with and without predator-avoidance, to eliminate effects of mechanisms

that are irrelevant to predation. When pigeon-agents do not react to the predator, the values of

the chosen measurements show little or no variation with predator-prey distance (Fig 5A1,

5B1 and 5C1).

Fig 5A2 visualizes the progression of a collective turn: the closer the predator, the larger the

angle between its heading and the preys’ headings. By turning away from the heading of the
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predator, agents reinforce the predator-avoidance force to be towards the same direction (rela-

tive to their headings) across consecutive time steps. In detail, a few individuals start turning

first, influencing through alignment and attraction their neighbors to turn as well. Through

this turning motion, the angle between flock and predator increases. This makes the escape

direction to be more robust, since small deviations in heading of pigeon-agents do not alter

their escape direction (in other words, their heading is still on the right or the left relative to

the predator’s heading). As a result, the frequency with which the predator-avoidance force

changes direction decreases as the predator gets closer (Fig 5B2).

When the predator is very close, aiming to intersect the flock’s trajectory (for an example

see Fig 6A5), the escape direction across the flock is almost constant, since the flock is already

Fig 4. Turning direction frequencies of flock members. The percentage of turns towards the four turning directions at consecutive time-steps (for

individuals under ‘conflict’ and ‘non-conflict’ scenarios) as a function of distance between them and the predator, across the empirical data and two

simulation experiments. (A) Empirical data of Sankey et al. (2021) [24]. (B) Simulated data with predator avoidance that is independent of the distance

between the predator and the prey individuals (modeled as in Fig 1). (C) Data from control simulations where the prey does not react to the predator.

https://doi.org/10.1371/journal.pcbi.1009772.g004
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performing a collective turn and the angle between the headings of the flock members and the

predator is large. Thus, the escape direction has the same sign (to the left or to the right) for all

individuals. Through this mechanism, we see the consensus in escape direction across the

group increasing with decreasing distance to the predator (Fig 5C2). Based on these compo-

nents, in the next section we aim to explain how the escape frequency of group members

increases through self-organization when the predator gets closer.

Fig 5. Distance-dependency in simulated flocks with and without predator avoidance. (A) The angle of the flock members’ headings relative to the

predator’s at each distance-cluster. The boxes include the 50% of the distribution and the horizontal line shows its median. When pigeon-agents react to

the predator, the measurement increases showing that the flock is turning away from the predator. (B) The frequency that the escape-direction of each

flock-member is changing direction (Eq 7). The height of each bar shows the mean value of all individuals per distance cluster and the error bar shows

one standard deviation above this mean. The escape direction remains more stable when the flock is turning away from the predator. (C) Consensus in

escape direction across a flock at each sampling point (Eq 8). More flock members have the same escape direction closer to the predator in simulations

with predator-avoidance.

https://doi.org/10.1371/journal.pcbi.1009772.g005
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Fig 6. Progression of a collective escape. (A) The tracks of a simulated flock of 10 pigeons under attack. For simplicity, we present the part of the track

when the predator is within 40 meters distance from the flock (excluding larger distances shown in previous plots). The points represent the position of

single pigeons per time step of 0.2 seconds. The filled black rhombi show the position of the predator at 7 discrete time points. The numbers represent

the link between the position of the predator and prey in time. (B) Positions of the pigeon-agents at time points 1 to 6 (0 to 9.8 seconds). Their color

shows the distance to the predator of each individual (according to the clusters of Fig 4). Arrows represent the heading of each agent. The shadow of the

arrows shows the escape direction of each agent at that time point. (C) The effect of centroid-attraction and alignment forces across the flock during the

respective time points (density map of Fcf ðtÞ, Eq 9). The point represents the position of all individuals in their local reference frame and the dotted line

shows the average heading of the flock at that time point.

https://doi.org/10.1371/journal.pcbi.1009772.g006
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The role of self-organization

By combining our results, we form a theory that this pattern emerges by self-organization

from the coordination among individuals during collective turning.

From the measurements that scale with predator-prey distance (Fig 5), we concluded that

the progression of the collective turn is necessary for this pattern to emerge. Hysteresis [5]

may play a role in the identified pattern on turning direction; the state of the flock at a specific

distance to the predator has an effect on the pattern of the next state (at a closer distance). This

was supported by our additional experiment where we positioned the predator close to the

flock at initialization with a speed lower than the flock’s. As the predator is drifting backwards

(in an almost opposite motion to the one of its normal attack), the distance-dependent pattern

does not arise (S4 Fig). Specifically, the turning-direction frequency does not differ among the

clusters (<10 to 50 meters) of predator-prey distance (p-value = 0.171, X2 = 1.875), in contrast

to the effect we see in our main simulations (p-value< 0.005, X2 = 10.321). In this scenario,

the group doesn’t have enough time to reach consensus over its escape direction.

To take a closer look at coordination among flock members during a predator attack, we

inspected the effect of the coordination forces of centroid-attraction and alignment on the

turning motion of our pigeon-agents throughout the simulations. In Fig 6, we show the details

of coordination and the resulted collective motion during an attack: two consecutive collective

turns of a flock as a reaction to the predator (Fig 6A). Note that the consecutive turns emerge

in the majority of pursuits in our simulations. They probably relate to the predator overshoot-

ing when initially approaching the flock (a behavior that is theoretically expected when prey

avoids a predator’s heading [24, 39]). At intermediate distances (20–30 meters) to the predator,

increased consensus in escape direction (Fig 5C2) is causing the alignment and cohesion force

to both pull individuals away from the predator into a turn. We describe the process below,

referring to the simulated data of the single attack shown in Fig 6. We classify the agents that

are at the side edges of the flock, based on their relative position to the flock’s direction of turn-

ing, into ‘inner-edge’ (e.g. on the left side of the flock in a left escape-turn) and ‘outer-edge’

(on the opposite side).

Predator’s behavior. As the predator is approaching, the flock is continuously turning

away from its heading. We observe the predator getting closer to the flock after a change in the

direction of its attack (as seen in Fig 6A1 and 6A2), by crossing the flock’s path from the side

(Fig 6A5–6A7).

Flock shape. The shape of the flock has an important effect on the dynamics of a collective

turn. In the beginning of a turn, the flock has a relatively wide shape (Fig 6B1 and 6B4). Exiting

a turn, the flock becomes oblong (Fig 6B2). In this shape, the centroid-attraction is in the

direction of the flock’s heading (Fig 6C2). Simultaneously, the alignment-force acts also closely

around the flock’s heading (Fig 6C2); the flock is very polarized. When the predator catches up

and approaches from the opposite direction, the inner-edge individuals switch their escape

direction first (Fig 6B3). By starting to turn, they change the shape of the flock to wide (Fig

6B3 and 6B4) and move the effect of coordination forces (center of the flock and average head-

ing) towards the escape direction (Fig 6C3). With the coordination forces acting in the same

direction as escape, the whole flock enters the turn (Fig 6B4 and 6B5). When this happens, the

center of the flock re-positions to the opposite direction of escape (Fig 6C5). The individuals

that have started the turn (inner-edge) are now more attracted to the non-escape direction

(Fig 6C5). Outer-edge individuals (on the opposite side of the flock’s center) are still moving

inwards (Fig 6B5). The flock is becoming more oblong and approaches the exit of the turn (Fig

6B6), where alignment and coherence will again have a subtle effect on the individuals’ turning

(by acting around the flock’s heading, Fig 6A7, as in Fig 6B2 and 6C2).
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Progression of turn. At one time-point, flock members may be in different distance-clus-

ters to the predator (Fig 6B3–6B6). The individuals that are closer to it, at the inner-edge of the

group, will establish the common escape direction first (Fig 6B3, red shaded arrows). These

individuals (‘inner edge’) make the flock shape wider and move the center of the flock and the

average alignment towards the escape direction, initiating the turn (Fig 6A3). Since the turn

propagates from the inner-edge individuals, the outer-edge individuals (on the outside of the

flock) have a delay in starting the escape turn (Fig 6A4 and 6B4). At this point, outer-edge indi-

viduals are not in conflict, since their escape direction matches the average alignment of the

flock. Further in the progression of the turn, with more individuals turning to escape, the

shape of the flock becomes more oblong. For the initiators of the turn (inner-edge), the center

of the flock re-positions towards the non-escape direction (Fig 6B5 and 6C5). For the outer-

edge individuals, the center of the flock is in the direction of escape (Fig 6B5 and 6C5). By

sharply turning towards the escape direction to catch up with the flock that started turning ear-

lier (Fig 6A4 and 6A5), they are in-conflict, since for them alignment acts in the opposite direc-

tion (Fig 6B5, 6B6, 6C5 and 6C6). Reaching the exit of the turn, alignment acts close to

individuals’ headings and attraction switches back, in accordance with the escape direction for

most flock members (Fig 6C6). This makes the flock to continue the turn until the elongated

shape where attraction and alignment are around the agents’ headings (Fig 6A7, as in Fig 6A2,

6B2 and 6C2).

The role of ‘in-conflict’ individuals. During an escape turn of the flock, different individ-

uals are ‘in-conflict’ between keeping up with the flock’s heading or avoiding the predator. At

the beginning, inner-edge individuals are in-conflict, resulting in them initiating the turn (Fig

6B3). When the predator gets closer, and further in the progression of the turn, the outer-edge

individuals (the last to start turning) are in-conflict. This results in cohesion acting in accor-

dance to escape. The observed increase in escape with predator-prey distance may be caused

by alignment and attraction acting in opposite directions for individuals in-conflict close to

the predator (Fig 7). By the direction change of the coordination forces and the change in the

conditions that each individual is under (depending on their relative positions in the flock)

during the turn, the flock manages to stay together, while different parts are ‘in-conflict’.

Mechanism’s summary. In total, at the beginning of the turn, in-conflict individuals are

the ones initiating the turn due to the predator avoidance force. With the turn progressing, the

flock shape becomes wide and by the in-conflict individuals having the center of the flock on

their escape direction, cohesion acts in favor of escape. Towards the end of the turn, the initia-

tors are moving more inwards, while the outer-edge individuals are the ones in-conflict, catch-

ing up with the escape turn.

In other words, when in-conflict at large distances (the beginning of the turn), only the

predator-avoidance force acts in accordance with the escape direction, while the flock is

oblong and polarized (thus coordination forces have small effect on turning). When the preda-

tor is closer (in the progression of the turn), attraction and alignment are in opposition.

Attraction to the center of the flock is in accordance with the escape direction. Since the flock

has reached consensus concerning the escape direction, individuals turn more towards the

escape and attraction direction instead of towards the alignment direction (their neighbors’

heading).

Discussion

Computational models based on self-organization have helped to unravel what behavioral

rules underlie collective phenomena in group living organisms [1, 5, 12, 19]. Specifically, these

models show that many collective patterns emerge from the interactions among group
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members, rather than being predefined in behavioral rules at the individual level [7, 40]. In the

present study, we use such a computational model to explain how pigeons in flocks increase

their frequency of turning away from the predator, the closer they get to it. This distance-

dependent collective pattern was initially hypothesized to reflect that, when prey were closer to

the predator, they increasingly prioritized to turn away from the predator rather than align

with their flock’s heading [24]. In our model, this pattern of collective escape emerges without

individuals having a distance-dependent rule for avoiding the predator. Specifically, it is a

side-effect of interactions among individuals as the predator is getting closer, because the

direction towards which they should turn to avoid the predator is being reinforced among

flock members. Thus, our results show that prioritizing escape over coordination, as suggested

empirically, is not necessary for group members to increase their frequency of turning away

from the predator when the predator gets closer.

An important difference in our conclusion from that of the empirical study is that flock

members do not need to consider their distance to the predator in order to escape collectively.

In reality, this mechanism may spare prey the cognitive effort [41, 42] of continuously keeping

track of the predator’s position during coordinated motion. Which individuals start turning

away from the predator first, happens spontaneously, similarly to the initiation of collective

turns measured in flocks in nature [43, 44]. They thus affect the escape motion of the rest of

the group via other group members: the neighbors of an initiator turn towards its position and

heading, resulting in the neighbors of its neighbors also following, until all group members

(that are not direct neighbors of an initiator) are turning away from the predator. In other

words, information concerning the change of heading propagates through the group [45]. Our

Fig 7. Effect of coordination forces on ‘in-conflict’ flock members within 30 meters to the predator in HoPE. The

density of turning-attraction (low center) and alignment (high center) forces (Eq 9) acting on the coordinate system of

pigeon-agents that are in-conflict during the pursuit sequence shown in Fig 6. The triangle represents the position of

each focal individual and the dotted line and arrow its heading. The predator sign represents the turning direction of

predator avoidance. Alignment and centroid-attraction have opposite effects on turning direction relative to the

agents’ headings and predator-avoidance is mostly in accordance with the centroid-attraction direction.

https://doi.org/10.1371/journal.pcbi.1009772.g007
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model shows that this reinforcement increases the growing consensus over the direction of

escape the closer the predator gets, through a quorum-like response [46]. This information

transfer of changes in heading in our flocks seems central to collective escape, as it is also

found across different species [47, 48].

In more detail, the distance-dependent pattern emerged through self-organization from a

combination of processes. First, a distance-independent tendency to turn away from the pred-

ator, leading the group into a collective turn. Secondly, the fact that centroid attraction acts in

the direction of escape that is opposite to that of alignment when the flock is closer to the pred-

ator. Thirdly, through short-term hysteresis [5]: during the progression of a collective turn, as

the predator approaches, the past state of the flock (shape and relative positions of flock mem-

bers) affects its next state. Both flock shape and internal structure relate to what each individual

experiences in terms of predator threat (angle of attack and escape direction) and social coor-

dination (deviation from the flock’s heading and relative position to the centroid), and affect

the propagation of information concerning changes in heading through the group [31]. To our

knowledge, the effect of hysteresis is new in the context of collective escape.

The switch by the majority of the group in our study between turning away from the preda-

tor and aligning with the group (Fig 4) differs from studies on phase transitions in collective

decision-making [49–52] in a number of ways. First, in our model there is neither a proportion

of individuals that is ‘informed’ to a pre-designed preferred direction of escape (like ‘goal-

directed’ leaders) nor that is more prone to escape than their flockmates [49, 52]. Secondly, the

alternative directions in our study (“towards the flock’s heading” and “away from the preda-

tor”) are not global or fixed in space, they depend for each individual on its specific local envi-

ronment. Thus, initiators of collective turns emerge based on their position and heading

relative to the group and the predator and individuals can instantaneously change their turn-

ing direction at any time. For instance, the individuals that started turning away from the

predator first, may turn towards it further in the progression of the collective turn, while the

rest of the flock is turning towards the initial escape direction. Moreover, our two directions

are mutually exclusive (individuals cannot move towards the average of the two [52]) and the

group always collectively increases their predator avoidance rather than their alignment when

closer to the predator (i.e. the direction towards the group heading is never collectively

selected). To understand the mechanisms underlying collective decision-making across con-

texts, future research should investigate these dissimilarities and the differences between the

role of leaders, goal-directed individuals and initiators [53].

Predation is known to affect the coordination within groups of prey [31, 54, 55]. An exam-

ple is a decrease in the minimum separation distance [54] and an increase in the number of

interacting neighbors [55] in the presence of a predator. Such changes lead to increased group

density in fish [54], a pattern not seen in pigeons under attack by a predator [24]. Since colli-

sions are a large threat for birds in flight, a decrease in nearest neighbor distance or an increase

in centroid-attraction may enhance the danger of colliding with each other. According to our

results, a stronger tendency to align with flock members than to turn towards the flock’s center

increases the prey’s escape frequency at shorter distance to the predator while retaining flock

cohesion during collective turns. We thus hypothesize that for small flocks that turn away

from their predator, increased alignment rather than decreased group density enhances their

chances of survival.

Whether prey escape by considering the predator’s position or its heading is unclear. In fish

schools and insect swarms, individuals are supposed to avoid the position of the predator [48,

56]. Homing pigeons instead were observed to turn away from its heading [24]. This heading-

avoidance seems to indicate avoidance of where the predator will be in the future. Such antici-

pation-based strategies are known to be used by predators to catch prey [57]. In our
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simulations, we observed that with heading-avoidance a common escape direction is enforced

among group-members supporting group cohesion during collective escape. In a previous

model of fish schools, we see that when individuals turn away from the position of the preda-

tor, the group splits more frequently when the predator gets closer [7]. The adaptivity of these

avoidance strategies may depend on the species and ecological context. For instance, if prey is

very maneuverable (i.e. fish and insects rather than birds [54, 58–61]) or subject to surprise

attacks by their predator [62, 63], avoidance of the position of the predator may be more

favorable.

In our model, the pattern of increasing escape frequency when the predator gets closer is

robust across variations of our experiments, where pigeon-agents avoid the position of the

predator (S5 Fig, even though this is not a behavior of pigeons as identified by [24]). This sug-

gests that the collective pattern reflects a consensus in escape direction, and the collective deci-

sion to turn, irrelevant of some specifics of the underlying avoidance rule. For ease of

explaining the emerging mechanism, we focus on a representative track from our simulations

in Figs 6 and 7 that shows changes in the attack direction of the predator (possibly due to over-

shooting [24, 39]) and consecutive collective turns of a flock. Alternative predator-avoidance

rules (e.g. avoiding both the heading and position of a predator) or other elements affecting

the pursuit pattern (e.g. speed difference between prey and predator) may be interesting points

for future theoretical research.

The strategy of attack by a predator may also affect the pattern of collective escape. We

tested two attack strategies in the model, both based on direct pursuit: the predator follows

and attacks the flock from behind [24, 31, 32, 64] by either locking-on the closest prey at the

beginning of the attack or by chasing the closest prey at each time point. We showed that our

results for the two strategies are similar (S4 Fig). These strategies have been previously used in

computational models of collective escape [7, 40] and are similar to the pursuit performed by

the RobotFalcon [24] and peregrine falcons (Falco peregrinus) in nature [32]. Since real preda-

tors also have alternative attack strategies (based, for instance, on anticipation [57, 65]), future

research may focus on the effect of the predator’s strategy and the specifics of its motion on the

prey’s escape behavior [61, 66, 67]. Given the evidence that flocks recognize the RobotFalcon

as a real predator [24, 25], remotely-controlled predators can be a valuable tool to progress in

this direction.

Our findings are relevant for collective escape by homing pigeons, given that flocks in our

model resemble those of real pigeons not only in their behavioral rules [15, 21, 24], but also in

their emergent properties (e.g. distributions of speed and nearest neighbor distance) [17].

Note however that our model is a caricature of reality and does not aim to capture all the vari-

ability found in the empirical data (see [17] for details on balancing data complexity and

model simplicity in pattern-oriented modeling). Furthermore, we built our model in two

dimensions given that: (a) the analysis of the empirical data by Sankey et al. (2021) [24] was

done only using the x and y coordinates of the GPS trajectories [24], (b) pigeon flocks are gen-

erally flat (with little expansion in altitude) [68], and (c) collective turns are often on a plane,

even in 3-dimensional flocks of starlings [45]. Recent work on the collective escape of fish

schools further supports the robustness of conclusions made by analyzing only 2 out of the

3-dimensions of groups under attack [69].

Similarly to previous species-specific models of collective behavior of different species [3,

12, 20], our model can be further used to study other aspects of flocking in pigeons, be

extended to investigate evolutionary dynamics of collective escape [70], or be adjusted to other

bird species. The increasing availability of quantitative data of collective behavior can, and

should, further support the development of models around specific species to help interpret

empirical findings.
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Supporting information

S1 Table. Comparison of summary statistics of speed and nearest neighbor distance

between 20 real and 20 simulated flocks. Outliers (above the top 99% of the distributions)

have been removed. Since in the real flocks individuals are still taking off at the beginning of

the pursuit, we further removed the bottom 1% of the speed distributions of the empirical

data. Our simulated data fall within the range of real flocks.

(PDF)

S1 Fig. Testing the accuracy of the topological-range estimation method of Sankey et al.
(2021) [24]. Their method is based on simple linear models between, on one hand, the turn

that each individual performs during consecutive sampling points and, on the other hand, the

turning angles for centroid-attraction and alignment. Angles based on all possible topological

ranges for each flock size were tested. The linear model with the most explanatory power was

thought to include the ‘real’ topological range. For the exact method description see [24].

Given that this method is not well established, we tested its performance on our simulated

datasets. Specifically, we applied this method on data from simulations in which we vary sepa-

rately the topological range for alignment and centroid-attraction (from 1 to all neighbors) for

three flock sizes. We run 5 repetitions of each simulation with all unique combinations of

topological range for alignment and centroid-attraction per flock size. The deviation index

shows the deviation of the topological estimate of the linear-models method from the real

value of topological range as parameterized in the model (shown on the x-axis), divided by the

maximum possible deviation for each topological range and flock size (n-2, e.g. the maximum

deviation for a flock of 8 individuals is 6 neighbors, when the true value is 7 and the estimate is

1 or vice-versa, giving a deviation index of 1). Values close to 0 show a good performance of

the linear-model method. The method seems to lose accuracy when agents align with many

topological neighbors and when they are attracted to the centroid of a few. Each point shows

the mean deviation index of all simulations with the respective topological range and the error

bars the standard error.

(TIF)

S2 Fig. Distributions of speed, nearest neighbor distance, and shape of flocks of homing

pigeons. Each histogram shows the distribution of one flock during a control flight (based on

the data of Sankey et al. (2021) [24]). The bottom row shows the overall distribution across

flights.

(TIF)

S3 Fig. Distributions of bearing angle to nearest neighbor in flocks of homing pigeons. The

overlapping histograms show the distribution of one flock during a control flight (based on the

data of Sankey et al. (2021) [24]). The bottom row shows the overall distribution across flights.

(TIF)

S4 Fig. Turning direction from all alternative simulation experiments with different pred-

ator strategy. The default strategy is the ‘chase closest prey’.

(TIF)

S5 Fig. Turning direction from the two alternative escape strategies of pigeon-agents. The

default strategy, supported by the empirical data [24], is avoidance of the predator’s heading

(A). The pattern of increased escape frequency of pigeon-agents at closer distance to the preda-

tor-agent holds for both strategies.

(TIF)
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