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Summary

Movement is apparent across all spatio-temporal scales in biology and can have a
significant effect on the survival of the individual. For this reason, it has been the object
of study in a wide range of research fields, i.e. in molecular biology, pharmaceutics,
medical research but also in behavioural biology and ecology. The aim of the thesis
was to provide methodologies and insight on the movement patterns seen at different
spatio-temporal scales in biology; the intra-cellular, the cellular and the organism level.
At the intra-cellular level, current thesis studied the compartmental inheritance in Human
Osteosarcoma (U2-OS) cells. The inheritance pattern of the endosomal quantum dot
fluorescence across two consecutive generations was for first time empirically revealed.
In addition, a in silico model was developed to predict the inheritance across multiple
generations. At the cellular level, a semi-automated routine was developed that can
realize long-term nuclei tracking in U2-OS cell populations labeled with a cell cycle
marker in their cytoplasm. A method to extract cell cycle information without the need
to explicitly segment the cells was proposed. The movement behaviour of the cellular
population and their possible inter-individual differences was also studied. Lastly, at the
organism level, the focus of the thesis was to study the emergence of coordination in
unfamiliar free-swimming stickleback fish shoals. It was demonstrated that there exist
two different phases, the uncoordinated and the coordinated. In addition, the significance
of uncoordinated phase to the establishment of the group’s social network was for
first time evinced. The adaptation of the stickleback collectives was also studied over
time, i.e. the effect of group’s repeated interactions on the emergence of coordination.
Findings at the intra-cellular and cellular level can have significant implications on
medical and pharmaceutical research. Findings at the organism level can also contribute
to the understanding of how social interactions are formed and maintained in animal
collectives.
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Chapter 1

Introduction

Movement is defined as the change in the spatial location of an individual in time
(Nathan et al., 2008) and can be active or passive, or a combination of both (Demšar
et al., 2015). Active movement, is apparent in all species of the animal kingdom. If not
constantly, all organisms have to move at some time in their lifespan and this process
is so fundamental for the functioning and survival of the individuals. Depending on
the characteristics and timing of movement, it can affect each individual’s fitness in
a positive or negative way; by moving, individuals can locate food, avoid predators,
react to an environmental disaster and even transfer information (Jones, 1977; Russell
et al., 2015, 2017). Movement can consequently have an effect on groups, populations
and whole species. Therefore, seeking for proximate and ultimate explanations of the
existance of animal movement is an active field of research (Tinbergen, 1963; Nathan
et al., 2008; Pyke, 2015).

Movement is apparent across different spatio-temporal scales in biology. Intra-
cellular compartments and organelles are constantly moving, either actively or passively,
and transfer important elements for the survival to the inner and the outer part of the cell.
Intra-cellular movement and the successful distribution of the cellular material is also
vital for the survival of the cells and the organisms (Trybus, 2013). At a higher spatio-
temporal level, cells have developed a wide variety of mechanisms to actively translocate
themselves (Petrie et al., 2009) in order to find appropriate optimal environmental
conditions, receive nutrients, avoid predators and also cooperate with neighbouring
cells (Bodor et al., 2020). At the organism level, multicellular organisms, and more
specifically animals, would not be able to survive if they were not able to move at some
stage in their lifespan. Foraging, habitat selection, reproduction and predation avoidance
are all vital needs that require movement to be accomplished. A group of individuals, at
any of the above scales, could show synchronization in movement resulting in collective
movement (Méhes & Vicsek, 2014; Nagy et al., 2013; Ostner et al., 2013; Tunstrøm
et al., 2013; Herbert-Read, 2016). This can emerge from the local interactions between
the individual entities and can serve to more effectively cope with the previously reported
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2 CHAPTER 1. INTRODUCTION

challenges.

After decades of studying animal movement it is now appreciated that in many
cases animal movement must be considered and quantified within a social context
(Westley et al., 2018). Even in non social groups, individuals are influenced by the
movement decisions of others and often social cues are as important as environmental
cues. Collective movement has long been the subject of studies in animal behaviour
and questions of its ultimate explanations are under active investigation. They attempt
to establish whether specific collective groups are favoured under different ecological
conditions, or if specific collective movement types increase members’ survival fitness
(Westley et al., 2018).

Complex systems science, can study patterns across multiple scales as well as the
unpredictable relationship between the actions of individuals and the behaviour of the
collective (Torney et al., 2018a). In some cases, interactions at the individual level
give rise to properties at the group level, e.g. a collective phenomenon that has not
been predicted from observations of individuals in isolation (Parrish & Edelstein-Keshet,
1999a). For example, the spatial structure and the properties of grazing wave fronts of
wildebeest far exceed the perception range of an individual. The structure is therefore
an emergent phenomenon and the product of both the individual-level behaviour and
the inter-individual interactions (Gueron & Levin, 1993). These concepts suggest
that observations of individual movement only provide a partial picture of the global
movement (Torney et al., 2018a).

Regardless of whether the focus of study is the individual or the group, extracting
individual movement paths (a.k.a movement trajectories) is the first step to study the
individual or collective motion. The pattern of an individual’s movement trajectory is
determined by multiple factors. For example, it is determined by the intrinsic properties
of the individual, the environmental conditions it experiences (such as climatic or
landscape) and the social intercations it is involved in. Figure 1.1 summarizes the
important factors (intrinsic, environmental and methodological) that contribute to the
final extracted movement trajectory. In the following paragraphs I categorize them into
five groups.

The first group refers to the intrinsic attributes of the focal individual, i.e. its
internal characteristics (figure 1.1, Individual branch). The size of the individual, its
morphological characteristics, its energy state, it’s ability to move actively or passively
or its genetic profile, are factors that can affect the individual’s movement pattern. As
an example, individuals of high energy states can explore larger areas and have higher
speeds than individuals of low energy state (Krause et al., 2000).

The second group of factors that can affect the movement pattern of an individual is
related to the existence of inter-individual interactions (figure 1.1, Interactions branch).
The number of individuals the focal individual is interacting with and the type of the
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Figure 1.1: Cause and effect diagram (Ishikawa) for variability seen in the extracted
movement trajectory.

interaction it forms (i.e. positive or negative) are factors that can shape its motion.
Theoretical and experimental works (Czirók & Vicsek, 2000; Tunstrøm et al., 2013) have
showed how simple rules of attraction or repulsion can shape an individuals’ movement
trajectory.

The third group of factors that have a causal effect on the final trajectory referes
to the environmental conditions that hold during the realization of motion (figure 1.1,
Environment branch). These include the temperature, oxygen levels and illumination
conditions, but also the resource availabity, the complexity of the environment and the
medium the individual is travelling through (e.g. air or water).

Tthe extend to which a researcher can understand an individual’s movement be-
haviour is constrained by the tools used for the aquisition of the data. For this reason,
the fourth group of factors is related to the system that is used for the data collection
(figure 1.1, Data collection branch). It includes the equipment and the scientific approach
used (if it is a field work or an experiment in the laboratory) but also the methodological
protocol that is followed for the data acquisition.

The different devices used for monitoring movement, but also the protocols followed
can be error prone under different conditions. For this reason, the initially acquired
data need to be filtered out and smoothed to extract the final trajectory. Therefore,
the last group of factors is related to the methodology used for the extraction of the
trajectories. This includes the algorithms used for extraction of the positions and the
pre- and post-processing steps, i.e. the functions used for extracting the position, the
denoising techniques that were chosen etc.

It is of great importance to study the extracted movement trajectories and the proxi-
mate and ultimate reasons that are responsible for their realization. The inter-individual
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heterogeinity in the movement behaviour can serve as a pool where selective forces
can act and affect the survival of the individual and subsequently that of the whole
population.

The aim of the thesis was to provide methodologies and insight on acquiring and
understanding movement data at different biological scales; from the intracellular move-
ment of endosomes to the movement of cells, fish and humans. Movement trajectories,
i.e. the collection of the positions an individual had for a time period, are extracted from
various sources and are the subject of further analysis. For the extraction of the paths
and other data, time-lapse and video recordings were acquired. Subsequently, automated
algorithms were developed to extract data. For the analysis, statistical methods and in
silico models were the tools to understand and answer questions on the subjects of study.

1.1 Intracellular motion

Movement of the intracellular material could be considered as passive due to the inability
of the organelles to produce and consume their own energy. Despite that diffusion plays
an important role in the distribution of intracellular material, it has been demonstrated that
cells have developed mechanisms for the direct transport of materials. Material motion
is most of the times the result of the energetic transportation of the organelles from the
cytoskeletal system (actins, dyneins and myosins) of the cells. It can, thus, have different
forms (diffusion or directed motion) that could be selected for the fitness benefits they
provide to the cells. For this reason, the analysis of movement of intracellular material is
necessary and can be studied using to some extent analogous analysis with that used in
movement ecology (Trybus, 2013).

For almost two decades researchers have worked to understand and elucidate on
intracellular dynamics, organelle motion and the distribution to daughter cells and
their ultimate functions. For example, Bergeland et al. (2001) showed that endosomal
segregation into daughter cells takes place by coordinated movements, and during
cytokinesis, these organelles accumulate in the vicinity of the microtubule organization
center. Dinh et al. (2006) approximated organelle movement as stochastic trajectories
of independent discrete particles that transit from one transport state to another. They
defined four possible movement/transport states; free diffusion in cytosol, kinesin-driven
transport toward Microtubule (MT) plus-ends, dynein-driven transport toward MT minus-
end and myosin-driven transport on actin filaments. They believed that each organelle
can transition from one state to the other within a movement event.

Trybus (2013) observed long pauses of the early endosomes that dominated their
movements and were interspersed by short bursts of directed motion. They further
demonstrated different types of endosomal movement, diffusive and directed (motor-
driven) and used mean square displacement analysis to recognize and distinguish the
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different movement patterns. This analysis is commonly used in the field of movement
ecology too (Demšar et al., 2015; Reynolds & Ouellette, 2016). A different perspective
was brought from Aoyama et al. (2017), where they showed that the intracellular
trajectories and motilities of endosomes were influenced by the particle size of the cargo
(in this case, nanoparticle) they were carrying.

During the last decade, a significant amount of research has focused on intracellular
inheritance, i.e. its distribution to daughter cells after mitosis (Errington et al., 2010;
Summers et al., 2011; Brown et al., 2010). The understanding of the distribution of
the intracellular material can have important medical and pharmaceutical implications.
Initially, it was assumed that the cellular material was equally distributed in to daughter
cells (Bergeland et al., 2001). However, recent studies linked stem cell differentiation
to the asymmetric inheritance of endosome function in daughter cells. Finally, it has
been showed that the components partition asymmetrically at mitosis and, consequently,
interest on its biological relevance and its ultimate functions has arisen (Rees et al.,
2011).

1.2 Cellular movement

Cells display a very sophisticated and complex locomotory activity. The different types
of intracellular motility that were mentioned in the section 1.1 are also responsible
for the movement at the cellular level. The cellular movement is the result of the
coordinated movement that is taking place inside the cell. Movement at the cellular
level is widespread in living organisms and plays a fundamental role in physiological
phenomena including neural development, wound healing, and immune function, as well
as in disorders such as neurological diseases, fibrosis, and cancer metastasis (Lackie,
1986; Ferguson et al., 2017).

Cells can move either freely in unicellular organisms, or in accordance to the move-
ment of other cells, in multicellular organisms, such as when leucocytes move during
inflammation, epithelial sheets in wound healing, embryonic cells in morphogenesis and
tumour cells in metastatic phase and malignant invasion. In most of the cases they require
a substratum upon which they move, such as protein-coated coverslips (Lackie, 1986).
The drivers of cell movements can also be external, for example the cells are adjusting
their motion according to the gradients in the concentration of certain chemicals in
their environment (a.k.a process of chemotaxis) (Majumdar et al., 2014; Ferguson et al.,
2017).

Unlike molecules that move passively due to collisions, cells produce kinetic energy.
They have finite speed due to the limitation on the motor functionality and thus, to
move longer distances they must limit the number of turns they go through (Lackie,
1986). A lot of studies have characterized the movement patterns different cells show.
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Depending on the cell type and the conditions, random walk, correlated random walk,
persitent random walk, Levy walk were attributed to the patterns that cell movements
show (Svensson et al., 2018).

Initially, the most simplified movement type was attributed to the cell motion was
the brownian walk. However, soon it was realized that most cells have directional
persistence leading to the Persistent Random Walk (PRW) or Correlated Random Walk
(CRW) model (Selmeczi et al., 2008). A popular approach for modeling optimal search
patterns of both animals and microbes is the scale free Levy walk. Levy walks are
characterized by a stop-start pattern where the cells are more or less stationary for some
time followed by a directed walk of length L (Svensson et al., 2018).

1.2.1 Cellular movement in tumour and metastasis

Cell movement and consequently cell migration is a pivotal step in the metastatic process
of cancer cell populations (Paul et al., 2016). The cancer cells in a tumour are very
heterogeneous and can differ in size and in the genomic content and thus can include bulk
cells, stem cells and polyploid cells (Li et al., 2015; Bayani et al., 2003). In the majority
of tumors, the bulk of cancer cells are aneuploid, i.e. they have fewer chromosomes than
the normal diploid cells (that have two copies of their genes, a.k.a 2n). On the other
hand, polyploid cells have a higher than the diploid cells chromosomal number. They
are also bigger in size than the bulk of cancer cells and stem cells. Stem cells are also
known to show higher motility than the other cells (Griesdoorn, 2014; Mirzayans et al.,
2018; Brown et al., 2017; Abarrategi et al., 2016).

Most solid tumours contain few polyploid giant cells. The proportion of these
cells increases in response to genotoxic stress, that can also be caused by radiation, or
chemotherapy. This was first reported by Puck et al. (1956) for the human HeLa cervical
carcinoma cell line that was exposed to ionizing radiation. One of the characteristics of
these cells is that they cease to proliferate. However, a proportion of these cells remains
metabolically active post-treatment (Mirzayans et al., 2017). They are increasingly
associated with metastasis and resistance to therapeutic methods. During this state
of dormacy they can undergo nuclear budding and produce stem cell-like progeny.
Furthermore, they can also promote stemness of the neighbouring cells. Also, it has been
demonstrated that these giant cells are more metastatic than their parental cells (Zhang
et al., 2015b). Therefore, the proliferation arrest and dormancy of cancer cells should be
carefully considered as a therapy-resistance mechanism Mirzayans et al. (2018).

It is therefore very important to link stem cell-like progenies with specific movement
patterns, and collect the motility footprints of these cells so that predictions and diagnosis
of the tumour phase can be achieved. This thesis aims to see if there is any emergence
of different movement pattern in Human Osteosarcoma (U2OS) cells that could predict
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differentiating behaviour in cancer cells and subsequently the onset of a metastatic
behaviour. Targeting cancer cell motility may also be an important therapeutic option
(Paul et al., 2016).

Microscopy images and especially time lapse image sequences contain information
on the dynamics of cells, the distribution of subcellular components, and the activity of
molecules that is inaccessible from other techniques (Danuser, 2011) and they contain
all spatial information. Therefore, they are a very useful tool for the study of cellular
movement behaviour.

1.3 Collective movement

Collective phenomena in nature result from the local interactions between individual
constituents and can be of any form, chemical, physical, social or biological (Wood &
Galton, 2009). They include systems consisting of units ranging from macromolecules
through metallic rods and robots to groups of animals and humans. They are emergent,
i.e. their characteristics differ from the characteristics of the individual constituents
and cannot be predicted from the study at the individual level (Tummolini et al., 2006;
Bittner et al., 2004). For this reason, they should be approached as a whole, as a
multi-component entity.

Phase transitions, i.e. a process in which changes in the state of the collective due
to the effect of external parameters on it, are commonly observed in collective systems.
They are perceived as a significant modification of the qualitative behaviour of the whole
system (Lee & Wurtz, 2019). The units simultaneously change their global behavior to a
differentiating behavioural pattern. For example, a group of feeding pigeons randomly
oriented on the ground will order themselves into an orderly flying flock when leaving
the scene after a big disturbance (Vicsek & Zafeiris, 2012).

Collective phenomena can be observed in different contexts and fields. One example
in the social context, is the emergent response that results from individual attitudes and
choices that are aggregated in the process of discussions and deliberations (Galam &
Moscovlclt, 1991). The emergence of polarization in a ferromagnetic material that results
from local interactions, is a typical example in physics. Such phenomena can be seen in
every aspect and scale in biological systems. The emergence of multicellularity from the
local interactions of cells, the emergence of an intracellular structure are examples where
the emergent entity (e.g. an intracellular organelle, an organ or organism, or population)
functions differently from its constituent parts (e.g. molecules, cells or individuals).
Animal collective movement is another class of collective phenomena that has attracted
a lot the interest of scientific community due to its proximate and ultimate consequences
(Westley et al., 2018).

The emergence of coordination has an immediate effect on the survival of the indi-
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viduals. They can often coordinate to reduce predation risk, to improve foraging success
(Bazazi et al., 2011) or to pool information about the direction of new feeding, breeding
or nest sites, thereby improving migration efficiency (Codling et al., 2008; Seeley &
Buhrman, 1999; GrÜnbaum, 1998). Antagonistic interactions between individuals can
also lead to the emergence of coordinated movement. For example, when Mormon crick-
ets or juvenile desert locusts chase and avoid conspecifics in cannibalistic interactions
(Simpson et al., 2006; Bazazi et al., 2008; Hansen et al., 2011).

There is a huge number of examples from the living world for the rich patterns the
collectives exhibit (Vicsek & Zafeiris, 2012). Flocks of hundreds of starlings can fly
forming a uniformly moving group, but can produce turbulent, puzzling aerial displays
when they are at their roosting sites. Schools of fish can move in a rather orderly fashion
or change direction amazingly abruptly. Under the pressure from a nearby predator the
same fish can swirl like a vehemently stirred fluid (Vicsek & Zafeiris, 2012).

Fish have attracted most of the attention in the study of coordinated motion, because
of the variable complex patterns they display (i.e. Hemelrijk and Hildenbrandt, 2012;
Herbert-Read et al., 2011; Katz, Tunstrøm, Ioannou, Huepe, and Couzin, 2011; Marras
et al., 2015; Viscido, Parrish and Grünbaum, 2004). They can macroscopically exhibit
three different phases (Tunstrøm et al., 2013) and they can transition from one to another
depending on the conditions. At the scale of the individual interactions, it has been
theoretically and empirically shown that fish follow some simple interaction rules when
they are part of the collective. They are attracted by their close neighbours if they have a
higher distance than expected, they are repulsed by their neighbours if they approach
closer than a threshold distance and they try to align with them (Couzin et al., 2002;
Czirók & Vicsek, 2000; Parr, 1927).

Studies have suggested that variation in individual traits (such as metabolic, person-
ality, information knowledge, etc) also influences the characteristics of the macroscopic
collective formation and their temporal dynamics (Bazazi et al., 2011; Gelblum et al.,
2015; Jolles et al., 2015; Lord et al., 2016; Nakayama et al., 2016; Watts et al., 2016).
More specifically, empirical studies have demonstrated that certain individuals can act
as leaders due to inter-individual differences in morphology, state (Briard et al., 2015;
Krause et al., 2000), experience (Eskridge & Schlupp, 2014), information (Andrieu et al.,
2016; Watts et al., 2016), and/or personality (Jiang et al., 2017; Johnstone & Manica,
2011; Krause et al., 2000).

To have a possibility to deeper understand the proximate and ultimate causes leading
to the collective movement in biology a wide range of expertises is needed, from
collective animal behaviour researchers to physicists, computer scientists and engineers
(Westley et al., 2018).
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1.4 Methods for data extraction and analysis

1.4.1 Data acquisition

Cells

Extracting cell migration paths is not an easy task and requires a lot of expertise and a lot
of resources to be able to get useful data. Experiments usually try to reproduce the tissue
environment, resulting to sophisticated 2D in vitro assays (Kramer et al., 2013) and 3D
approaches Doyle et al. (2013) which better represent the tissue environment. In 2D cell
cultures, cells grow on flat plastic or glass dishes in which they adhere and propagate
forming a monolayer. 3D cell cultures, on the other hand, display physiologically
relevant phenotypes, such as cell growth and interactions with its surroundings in a
multidimensional structure (Souza et al., 2018). In vivo experiments are also useful
but are difficult and costly. For this reason, mainly in vitro and ex vivo setups are used
Masuzzo et al. (2016).

For in vitro experiments, the instrumentation used has been crucial for the progress in
cell movement research. The advent of high-throuput and high-content imaging systems
has improved massively the quality and quantity of cell movement data. Specifically,
the use of long term live cell microscopy provides a powerful tool for the acquisition of
useful data and for the characterization of cancer invasion and metastasis. Masuzzo et al.

(2016).

In vitro live cell microscopy can be conducted using either phase-contrast or fluores-
cent microscopy. Phase contrast imaging gives the opportunity for long term imaging
without any effect on the cell viability due to labeling and pre-treatment. However,
images acquired from phase contrast imaging may contain artifacts (such as halos) and
could discommode the detection and extraction of cell paths. They cannot provide any
other information on the cell state, like the position at the cell cycle the expression of a
specific molecule of interest etc.

In contrast, fluorescent microscopy can provide good quality of images, that can
highlight specific important parts of the cells and can make the extraction of cell tra-
jectories easier. In addition they can provide very useful information about the state
of a cell at each time point. The potential to visualize, track and quantify different
molecules and cells has led to the development of a vast collection of fluorophores
and fluorescent proteins. Fluorescent dyes exhibit favourable optical properties such as
brightness, photostability and narrow band width (Specht et al., 2016). Nanoparticles
and more specifically Quantum dots can also be used in fluorescent imaging. A thorough
review and analysis of these probes can be found in the reviews of Specht et al. (2016);
Horan, Paul Karl et al. (1990) and Resch-genger et al. (2008).

According to Masuzzo et al. (2016), typically a study on cell movement includes



10 CHAPTER 1. INTRODUCTION

live-cell microscopy with image-processing algorithms. Cell populations usually are
maintained in culture media and they are prepared and transfered to multi-well plates.
They can be labeled with some dye or fluorophores. Then, automated image acquisition
is carried out with a digital camera microscope with a motorized xyz-stage an acclimati-
zation chamber. Different imaging can be used, for example phase contrast or fluorescent.
The experimental procedure involves time-lapse imaging for several hours to be able to
retrieve spatio-temporal information. Image processing then summarizes the acquired
image sequences into numerical features.

Animals

The study of animal movement requires different technologies to extract motility in-
formation and depend on the size and the mode of motion. Radiotelemetry is used to
track land or aerial movement; radiotransmitters, developed since the late 1950s to track
animal movements and determine their home ranges. They are based on electronic tags
which emit a high frequency (VHF) radio signal that can be used to locate the position
of an animal, without the need of being in close contact with the targeted individual
(Börger, 2016). There are tags of many different sizes that allow even the successful
monitoring of small-sized animals, like bees. Acoustic and ultrasonic telemetry on the
other hand is more appropriate for marine animals.

Global Positioning System (GPS) is another widely used tool for animal and human
tracking. This is a different telemetric system, in which the antennas are a network of
satellites in orbit around the Earth. GPS is only usable if there are no obstacles between
the animal and the sky, which excludes indoor use, or use inside a dense forest. One
limitation of GPS is that communication with the satellites requires a lot of energy,
which imposes a trade-off between the size of the battery, the frequency of readings
and the duration of the tracking (Duteil, 2018). Another example that is also used for
bird movement analysis is radar; The reader is refered to Krause et al. (2013); Demšar
et al. (2015) for an in-depth comparison of the methods. Finally, there are non-visual
methods, such as acoustic waveguide propagation Makris et al. (2006) for studying
animal movement. This last is a promising tool to use for underwater movement studies.

Video recordings and the subsequent analysis of them is also a widespread way to
track motion, that was mainly used, initially, in confined environments, such as artificial
environments in the lab, i.e. fish in tanks and insects in appropriate boxes (Dyson et al.,
2015; Tunstrøm et al., 2013; Herbert-Read et al., 2011). Three dimensional imaging has
recently been used to track animal behaviour within large indoor enclosures (Barnard
et al., 2016), but imaging of animals in natural landscapes is also a developing area of
research (Robie et al., 2017; Weinstein, 2018). However, with the technological advances
and the opportunity to get aerial recordings, with unmanned aerial vehicles (UAVs),
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bigger animals could be tracked in the field using video captures (Raoult et al., 2018;
Torney et al., 2018b). These methodologies currently provide the most affordable and
flexible imaging platforms for obtaining an aerial perspective in the field. UAVs provide
the ability to adjust camera positioning on the fly and at distances up to several kilometres
from the operator. This capability facilitates truly non-invasive filming of individual or
collective animal behaviour when combined with computer vision techniques (Hughey
et al., 2018). Finally, biologists can also employ other imaging methods when the
previous are not suitable (Dell et al., 2014). These include near infrared, thermal infrared
and sonar recordings.

Movement ecology was a field of study that had to base its conclusion more on
assumptions, theories and observations rather than real data. The advancement in
positional technology and the widespread use of global positioning monitoring has
tremendiously eased the acquisition of movement data (Demšar et al., 2015). As time
progresses, tracking devices will be even more accessible for almost every case, because
they are becoming cheaper, of variable sizes, with a variety of sensor characteristics and
with stonger batteries. In addition, data access from these devices is becoming more
efficient. Thus, movement ecology is transitioned from a data-poor scientific area into
a data-rich discipline, allowing to find new answers to research questions in animal
ecology (Demšar et al., 2015).

Challenges someone needs to consider when aims to retrieve animal movement
trajectories are the following (see also figure 1.1); First, the spatial scale of the motinoring
is important. This is influenced by the size of the individual and the level of detail the
study will focus. The temporal scale is also important. The time of the observation
is very crucial, because dark and light conditions require different tools for optimized
results. Apart from this, the speed of movement of the targeted animals can challenge
the correct data acquisition, because it can lead to false sampling rates; The number
of individuals to be studied is another aspect that needs to be considered; If many
animals are to be studied, then appropriate resolution is required to be able to extract
clear paths and interactions between them and the environment of study; Finally, the
question of interest regarding animal movement can help to choose the right tool for
monitoring movement. Some scientific questions regarding movement would focus on
global behavioural patterns without asking details on finer spatial and temporal scales.

1.4.2 Data extraction and analysis

Cells

Once cell images are retrieved and restored, computer vision techniques are performed
for cell tracking and quantitative motion estimation. These techniques are ad hoc
procedures that depend on the system of study, i.e the motility mode and the microscopy
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type that is used. While some cells migrate individually in a single-cell migration mode,
cells can also retain cell-cell contacts and move as a single multicellular unit (Trepat
et al., 2009) in a collective cell migration mode (Masuzzo et al., 2015).

Previously, manual tracking was used to extract the migration paths. It is still widely
used and is also used for the acquisition of groundtruth data but can raise reliability
concerns due to the mistakes that can happen because of the bias of the user. In addition,
the manual tracking is time and resource consuming (since a person has to spend full
time to be able to extract individual cell paths) (Masuzzo et al., 2015).

Automated cell tracking systems that can provide objective and robust migration
rates are therefore highly desired (Masuzzo et al., 2015). Many new methodologies have
been developed and presented in the last decade. Regarding tracking algorithms, they
usually belong to one of the three categories; ‘tracking by detection’, ‘tracking by model
evolution’, and ‘tracking by filtering’ (Nketia et al., 2017).

In detection-based approaches, cells must first be separated from the background and
from each other in a process termed segmentation. Segmentation refers to the division of
an image into different segments that belong either to the objects of interest (groups of
cells or single cells) or to the background. More precisely, image segmentation assigns
a label to each pixel of an image such that pixels with the same label share particular
characteristics (Masuzzo et al., 2015; Nketia et al., 2017). This can be achieved by using
simple thresholding techniques, where one intensity value is chosen to be the threshold
and the pixels over this value are labeled as foreground and those less are labeled as
the background. Edge detection methods, make the use of gradient, horizontally and
vertically, to find possible sudden changes in pixel intensities. The detected changes are
perceived as the boundaries of the wanted objects (in this case cells).

The drawback of these methodologies is their inability to separate adjecent or over-
lapping cells. This limitation is overcome by the performance of a widely used method,
the watershed algorithm. This methodology considers the image as a topographic relief
in which the gray level of a pixel is interpreted as its altitude. ‘Flooding’ this landscape,
starting from the local intensity minima separates the image into regions. This approach
can lead to over-segmentation and, thus, it requires pre- and post- processing techniques.
It is worth noting that many of the segmentation algorithms currently available rely on
a priori knowledge of the typical diameter of the cells to be detected (Masuzzo et al.,
2015).

Once cell positions have been identified, the targeted cells need to be associated
with the cells in the consecutive frames, and thus, their positions to be connected in
order to retrieve the whole trajectory. One way to make the association is to connect
each segmented cell with the one closest to it. This is working well if cells are moving
with a low speed and are not densely packed. Other ways to associate cells between
frames is to find the cells that are more similar with ones in the previous frame. The
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similarity can be calculated using feature matching techniques. These methods locate
similar cells using an extended list of features such as morphology, volume, surface, size
and total curvature that expand the concept of distance beyond spatial location. Typically,
these techniques require the user to specify the maximal distance that cells can travel
between two consecutive timeframes. Furthermore, feature matching algorithms rely
on good segmentation to keep the match as accurate as possible. Moreover, if a cell
changes morphology between subsequent timeframes, it can be seen as two different
cells, yielding broken trajectories (Masuzzo et al., 2015).

Tracking by model evolution uses a deformable model to describe each tracked
object, and segmentation and tracking are performed simultaneously by fitting this model
to the image data (Masuzzo et al., 2015; Nketia et al., 2017). Deformable models
are given different names (snakes, active contours or surfaces) and come in two types:
parametric (Ray & Acton, 2002) and geometric (Li et al., 2008). They involve a contour
evolution approach to obtain the boundary of an object in the current frame by evolving
the contour from the previous frame. The result of one frame is then used as an initial
condition for the analysis of the next frame (Masuzzo et al., 2015; Nketia et al., 2017).

Particle-filtering techniques (also known as sequential Monte Carlo techniques (Liu,
2008)) are widely used in multiple-object tracking systems. The problem to solve is
to estimate the state of a system given a set of observations. Particle-filtering methods
try therefore to estimate an object’s state posterior density function by a set of random
particles with associated weights. The algorithm has three major steps, namely selection,
prediction, and measurement, which are performed iteratively (Masuzzo et al., 2015).

Once the algorithm is developed, it is very useful to test its performance to understand
its strengths and its limitations. Ulman et al. (2017) introduced some measure to evaluate
the efficiency of the algorithm. They include measures on the paths, the mitotic events
and on the cell cycle information that is retrieved from the algorithm. For exanple,
complete tracks (CT) is a measure that calculates the fraction of ground truth cell tracks
that a given method is able to reconstruct in their entirety, from the frame they appear in
to the frame they disappear from. Another measure is the track fractions (TF).This can
be interpreted as the fraction of an average cell’s trajectory that an algorithm reconstructs
correctly once the cell has been detected. Branching correctness (BC) measures how
efficient a method is at detecting division events. Finally, the cell cycle accuracy (CCA)
measures how accurate an algorithm is at correctly reconstructing the length of cell
cycles (that is, the time between two consecutive divisions).

Animals

Animal trajectories and related questions were previously analyzed using manual ob-
servations (Elliott et al., 1977). But this way is effort intensive and often leads to poor



14 CHAPTER 1. INTRODUCTION

spatial and temporal resolution and it can be probe to human bias. Nowadays, advances
in technology and image processing have enabled video recordings for experimental
and field purposes. Once the videos are retrieved, animal movement trajectories can be
extracted using different automated tracking methodologies. The number of individuals
and the environmental conditions, i.e. illumination conditions, are important parameters
for the appropriate choice of tracking routines applied (Dell et al., 2014).

Automated image-based tracking is a difficult computer vision problem that raises
some challenges. First, the captured image of an individual can be distorted or vary
widely due to the movement speed of the animal and the complexity and variability of
the environment the animal is living (Branson & Belongie, 2005), for example variable
illumination conditions (figure 1.1). Second, the increase in the number of individuals
studied can worsen the efficiency of the automated tracking, due to the individuals’
physical contact, similarity and occlusions. In addition, the speed movement is also an
important parameter and together with the time resolution of the camera used, it can
produce some deformed objects in the image.

To extract movement trajectories two different subroutines must be applied. In the
first, the individuals in the image have to be separated from the background and between
each others, i.e they have to be segmented and labeled. In case the number of individuals
is small, animals are equipped with individual tags, usually coloured (Webster & Laland,
2009), so that the position of each individual is detected using thresholding techniques (in
the colour space) or template matching techniques (to detect the individual tags). If the
number of individuals increases (equal or more than hundreds), for example in collective
behavioural studies, then animals need to be identified and detected using a combination
of thresholding techniques and pre-/post- processing analysis to evercome problems that
arise from occlusions and overlapping. More sophisticated methods include artificial
intelligence methods where each fish individual is detected using classification methods
(Dell et al., 2014).

The next step, after detection, is the association of individual animals between the
consecutive frames. In case the individuals are tagged, then this is straightforward,
since the coordinates of each individual are the central coordinates of the individual tag.
However, constructing trajectories for multiple individuals is much more challenging.
It often involves parameterization of a motion model which includes information from
previous frames, such as the acceleration of each individual or their preferred direction
of motion. In addition to this, methods discussed in previous section (section 1.4.2) can
be used for the successful association of individuals across frames (Dell et al., 2014).

Animal movement is linked to behavioural responses, and usually a specific move-
ment can be associated with a specific behavioural response. Foraging, escaping preda-
tors, sitting in the nest, soaring in search of prey, all intuitively correspond to different
movement patterns. First, the ever increasing availability of movement data provides
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the opportunity to infer behaviour from movement types. Behaviour types are often ex-
tracted from trajectories with various forms of statistical modelling, including state-space
models, various types of random walk models and behavioural change point analysis
(Demšar et al., 2015). Network analysis is also used to incorporate interaction between
the different moving individuals (Demšar et al., 2015).
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Chapter 2

Quantum dot fluorescence inheritance
in U2OS cells

The aim of the current study was to experimentally reveal the inheritance of the Quantum
Dot (QD) endosomal fluorescence in Human Osteosarcoma (U2OS) cell populations, by
using fluorescent time-lapse imaging techniques. In addition, the aim was to develop a
in silico model to predict the inheritance across multiple generations.

2.1 Introduction

2.1.1 Quantum dot nanoparticles and their applications

According to the European Commission, nanomaterials are natural, incidental or engi-
neered structures made of all kinds of solid materials and at least one of their dimensions
is in the nanoscale. At this scale, the surface-to-volume ratios of materials become
large and their electronic energy states become discrete, leading to unique electronic,
optical, magnetic, and mechanical properties of the nanomaterials (Biju et al., 2008); In
addition, they have size-tunable optical properties, which renders them a very useful tool
for physicists, chemists, biologists, medical researchers and technologists.

One of the most intriguing features of QDs is that the particle size determines
many of the QD properties, most importantly the wavelength of fluorescence emission.
By altering the QD size and its chemical composition, fluorescence emission may be
tuned from the near ultraviolet, throughout the visible and into the near-infrared (NIR)
spectrum, spanning a broad wavelength range of 400-2000 nm (Smith et al., 2004). In
comparison with organic dyes and fluorescent proteins, QDs are emerging as a new class
of fluorescent labels with improved brightness, resistance against photobleaching (Smith
et al., 2004). QDs have been shown to remain brightly emissive after long periods of
excitation, whereas organic dyes are photobleached quickly (Wu et al., 2003). For these
reasons, QD provide the possibility of continuous, real-time imaging of single molecules

17
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and single cells over an extended period of time.

More specifically, Quantum dots (QDs) that are mainly used in research (in the
current as well), are nanometer-sized semiconductors, clusters of 10 - 20 nm, comprising
a core, shell and surface coating. The core is made up of a few hundred to a few thousand
atoms of a semiconductor material (cadmium selenide (CdSe) or cadmium telluride
(CdTe)). A semiconductor shell (typically zinc sulfide (ZnS)) surrounds and stabilizes
the core, improving both the optical and physical properties of the material.

The core–shell assembly is extremely hydrophobic (Peng et al., 1997). An am-
phiphilic polymer coating is applied to first confer water solubility essential for bioan-
alytical applications and secondly to provide a platform for covalent functionalization
of the DQ nanocrystal with antibodies, oligonucleotides and other affinity reagents that
confer targeting specificity for biomolecular detection. Due to their core/shell struc-
ture, they absorb more photons than the others due to their higher optical densities at
longer wavelengths. This attribute results in an enhanced photostability of the core/shell
nanocrystals as compared to other fluoorophores (Peng et al., 1997).

QDs can have several applications in different areas. For example, current research
in food industry investigates the use of nanoparticles for food packaging (Bajpai et al.,
2018) and their use for food-preservation (Kaphle et al., 2018). In agriculture, they
can be used as delivery systems for agrochemicals like fertilizers/pesticides and for
pathogen detection and plant-disease management (Kaphle et al., 2018). Nanoparticles
have also been used for oil extraction due to the rheological properties they exhibit
(Krishnamoorti, 2006). In biological research they can be a valuable tool and have been
used as biomarkers and to target specific structures and molecules (Biju et al., 2008).
In medicine and pharmacology they have great potential to be used for more efficient
drug delivery and disease detection and control (Zhang et al., 2017a; Aranda et al., 2018;
Gurunathan et al., 2018).

In biological research, nanoparticles are increasingly used for various purposes. QDs
can be utilised to target specific molecules, genes and organelles and for cell and tissue
engineering (Renukaiah et al., 2018). They can also be used as antimicrobial agents,
disrupting different vital microbial functions. As shown above, their fluorescent stability
(figure 2.1), their low toxicity and size are ideal attributes required to utilise them as
powerful biomarkers (Biju et al., 2008). Because of their properties they can serve as
a very useful tool for studies on the intracellular (molecular interactions) or cellular
(cell-to-protein or cell-to-cell interactions) scale. Therefore, they can be used in imaging
experiments.

In bioimaging, QDs can be used for molecule targeting and for in vivo imaging,
tumor imaging, vasculature imaging, lymph node imaging and cell and tissue imaging
(Yao et al., 2018). In addition, QDs can be used to trace the cell lineage in embryogenesis
(Dubertret et al., 2002). They also have some important advantages compared to other
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Figure 2.1: Schematic representation of the QD fluorescence redistribution in dividing
cells. Due to the property of photostability of QDs the sum of the fluorescence of the
two daughter cells should equal to the fluorescence of the parental cell, i.e. the signal
should be conserved.

fluorescent dyes and proteins, for example, they represent broad luminescence excitation
spectra and narrow symmetrical emission spectra with large Stokes shifts (Bilan et al.,
2016). Furthermore, QDs with emission spectra in the near-infrared (NIR) region are
especially promising for deep tissue imaging both in vitro and in vivo (Aswathy et al.,
2010).

QDs have several applications in medical research and pharmaceutics, such as, in
imaging (Jaiswal et al., 2003; Chu et al., 2006), drug delivery (Lin et al., 2011; Adeli
et al., 2011), pharmaceutical analysis (Wang et al., 2008), photothermal therapy (Zhang
et al., 2017b), biochips (Cui et al., 2007), and targeted surgery (Yao et al., 2018; Mchugh
et al., 2018). They are used in pharmacology for drug screening, drug delivery, drug
target identification and drug analysis (Xu et al., 2003; Han et al., 2010; Yao et al.,
2018). QDs have shown great potential in drug discovery and diagnosis due to their
photophysical properties. QDs can be cross-linked to biomolecules such as peptides,
antibodies, or small-molecule ligands to make them target specific biological sites or
systems and therefore be used for diagnosis and targeted drug delivery. Some pivotal
parts are involved in such novel architectures that are fluorescent superparamagnetic
NPs, tumor-specific antibodies, and anticancer drugs, and they are used for multimodal
imaging and hyperthermia, cell targeting, and local therapy purposes, respectively (Zhang
& Feng, 2006).

In cancer research, there is continuing emergence of innovative approaches that
use nanotechnology to enable not only the detection and diagnosis of cancer at its
earliest stages but also the delivery of anticancer drugs directly to the malignant cells
(Gurunathan et al., 2018). The nanomaterials can be conjugated with different kinds of
ligands (e.g., proteins, antibodies, small molecules), producing the so-called “actively-
targeted material” that favors drug-targeting to specific cell-surfaces and thus to specific
cell-populations, leading to a selective reduced toxicity (Jia et al., 2016). Other nano-
materials can be multifunctional materials, such as “theranostics”, which allow the
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codelivery of a therapeutic and a diagnostic agent in the same nanostructure (Biju et al.,
2010; Jia et al., 2016). These nanostructures may improve several technological issues
presented by marketed anticancer formulations such as solubility, pharmacokinetic pro-
files, cellular uptake, biodistribution patterns. Finally, the characterization of the QD load
and dynamics per cell, in a proliferative population, can provide valuable information
pertaining to cytoplasmic material, pharmacodynamics and efficacy of a delivered drug
dose, such as, anti-cancer therapeutics Errington et al. (2010); Brown et al. (2010).

2.1.2 Human Osteosarcoma Cells as model system

Osteosarcoma is the most widespread bone cancer in children and young adults (Abarrategi
et al., 2016). Many different osteosarcoma cell lines have been derived through the years,
such as the MG63, U2OS and SAOS-2 (Laitinen et al., 1997). One of the first generated
cell lines, the human osteosarcoma U2OS, was established by Ponten & Saksela (1967).
The original cells were taken from a differentiated sarcoma of the tibia of a 15-year-old
Caucasian female. Chromosomal instability, structural rearrangements and alterations
and high incidence of aneuploidy characterizes these cells, as karyotype and cytogenetic
analysis has revealed (Bayani et al., 2003). Because of their properties the U2OS cells
are widely used in biomedical research, for example see Raile et al. (1994); Zhao et al.

(2015); Chou et al. (2018). This cell line is widely used as a model in cancer research
for understanding the biology of cancer but also drug delivery in pharmaceutics.

In order to follow their progression through the cell cycle, the U2OS cells can be
tagged with a green fluorescent protein (GFP), a stealth reporter (Thomas & Goodyer,
2003) whose expression is driven by the promoter of the cyclin B1 protein and allows
for continuous cell cycle readout. This cell cycle marker was developed by Amersham
Biosciences. U2OS cells were transfected with the reporter and they were maintained via
antibiotic selection. It is commercially available as the ‘G2M Cell Cycle Phase Marker’
product. Cells labeled with this reporter gradually increase their GFP fluorescence during
G1 phase and reach their maximal intensity in G2 phase, just prior to mitosis (figure
2.2).

The U2OS cells can also be loaded with QDs and together with the GFP marker they
can be used to study, in high detail, the fluorescent inheritance properties and dynamics
of the cells (current study).

2.1.3 Previous studies

In previous work, Errington et al. (2010) and Brown et al. (2010) investigated the pro-
liferative features associated with QD fluorescence inheritance in human osteosarcoma
cancer cell (U-2OS; ATCC HTB-96) populations. In these studies, contiguous long-term
flow cytometry (1-8 days) measurements were utilized in conjunction with a stochastic
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Figure 2.2: Progression of GFP fluorescence intensity along the U2OS cell cycle. Upper
row shows the increase of the GFP fluorescent intensity values as cells approach to
mitosis. Second row shows the histogam of the intensity values of the GFP signal. The
histogram immediately after mitosis is very narrow and peaked around the very low
intensity values. It progressively flattens and is translocated towards higher values.

cell cycle model to resolve global proliferation rates and quantify QD fluorescence
dilution in control and pharmacologically perturbed systems. More specifically, the
U2OS cells were loaded with fluorescent QDs in their cytoplasm, via the endocytotic
route (Delehanty et al., 2009), and a sample of cells was acquired every 24 hours and
the quantum dot fluorescence for each cell of the sample was calculated by the use of
flow cytometry. U2OS cells divide every approximately 22 hours (Ponten & Saksela,
1967), and thus 24 hours-interval sampling provided the QD fluorescence distribution
for subsequent generations.

The experiments showed that the QD fluorescence was not redistributed equally
(50:50 ratio) to the daughters but instead there was an asymmetric redistribution of
Quantum Dot fluorescence. The numerical simulations predicted that the parental QD
fluorescence is partitioned following an 80:20 split ratio to the daughters. This finding
ultimately suggested that there must be a mechanistic explanation for this apparent
preference towards a specific ratio.

However, other studies at the same time (Summers et al., 2011) revealed that there is a
random uptake and amalgamation of QDs within the U2OS cellular system. This finding
cannot provide a biological rationale for the perceived asymmetry of the QD fluorescence
partitioning ratio. Despite the fact that flow cytometry data could give an insight on the
dominant generations at each sample, they could not provide clear detailed parent to
daughter genealogical information to extract the actual QD fluorescence partitioning
ratio.
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2.2 Current study

Understanding endosomal QD fluorescence inheritance is a crucial requirement for all
nanotherapeutics. This includes the ability to predict the effect of an applied nano-
material dose and to further quantify how this evolves on a cellular level over time
(i.e. how the nanomaterial is diluted and which is the threshold generation after which
the nanomaterial does not have any effect on the population). Here, I investigate the
fluorescence inheritance pattern of QD loaded endosomes in cells, using image cytome-
try and I compare the results with the respective experiments previously done in flow
cytometry. More specifically, I investigated how the Quantum Dot fluorescence per
cell is inherited across U2OS cell generations. To achieve this, time lapse high content
microscopy was used to measure the QD fluorescence of cells and an image processing
routine was developed to identify genealogical relationships between cells. Next, the
QD fluorescence partitioning ratio between parent and daughters and between daughters
and granddaughters was quantified (i.e for 2 generations). Finally, using the empirically
driven information, a in silico model was developed. The model was built to reproduce
the results of both, the microscopy and the flow cytometry experiment. It can also be
used to predict the QD fluorescence dilution for more than two generations.

2.3 Methods

2.3.1 Cell culture preparation

U2OS (ATCC HTB-96) cells were maintained in 10 % McCoy’s 5a full medium and
cells were loaded for 1 hour with commercially available targeted quantum dots (QDs)
using the Qtracker 705 Cell Labeling Kit (4 nM). Using Qtracker R© Cell Labeling
Kits, you can observe labeled cells using extensive continuous illumination, without the
photobleaching and degradation problems often associated with organic dyes. Qtracker R©
labels are distributed in vesicles in the cytoplasm, and are inherited by daughter cells
for at least six generations. Fluorescence from the Qtracker R© labels can be seen up to a
week after delivery in some cell lines. Long-term cellular retention makes Qtracker R©
Cell Labeling Kits ideal for studying cell motility, migration, differentiation, morphology,
and many other cellular function studies. Qtracker R© labels do not leak out of intact cells
to be taken up by adjacent cells in the population. During the loading process the QDs
were attached to the surface and were internalized into the cells via the endocytotic route.
After one hour the cells were trypsinized and transfered to a 24-well plate (see figure
2.3). After 24 hours fluorescent time-lapse images, using IN Cell Analyser 2000 (GE
Healthcare), were acquired with a 30-minute interval between frames for a period of 67
hours. Two fluorescent channels were used (one for the GFP stealth reporter and one for



2.3. METHODS 23

the QDs). The experiment was designed and run by Rachel Errington’s group at Cardiff
University.
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Figure 2.3: Schematic representation of the experimental protocol followed. Initially,
U2OS cells are loaded with QDs and they are transferred to well plates. After 24 hours
cells are transferred to the microscope and time-lapse images are acquired using two
channels, the GFP and QD channel. Finally, the images are processed using Computer
Vision techniques to extract the redistribution of QDs and the lineages.

2.3.2 Data extraction and analysis

Time-lapse images consisted of two-channels, the GFP-channel, showing the cytoplasm
outline, and the QD-channel, showing the QD fluorescence in the cell population.

First step for the data extraction and analysis was to eliminate existing noise. Figure
2.4 on the left shows the histograms of a background region before the denoising. The
histogram indicates that there is Gaussian noise (µ = 34, σ = 4.190 intensity). The
nonlocal denoising approach is used to get rid of the gaussian noise (Buades et al., 2005).
The parameter σ was calculated from the intensity histogram of background region,
assuming that any variability in the background region is due to noise, since the growing
medium is well mixed.

Second step was to check if the conservation of the fluorescent signal during our
experiment holds. As previously stated in section 2.1 the QDs are characterized by
photostability and thus, the QD signal should be preserved across time (see figure
2.1). However, because the cell images that were acquired from microscopy provide
a 2-D representation of a 3-D system, some loss of information is expected, when 2D
representations are acquired. Also, the Signal to Noise Ratio (SNR) of the GFP channel
is low for cells being in the G1 phase, immediately after mitosis. Under-/over-estimation
of the actual QD signal can also be caused from the inaccurate detection of the cell
outline. Comparing the calculated fluorescence of the parental cells with the sum of the
fluorescence of the daughter cells would show if the conservation of signal holds in our
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Figure 2.4: Histogram of the intensity values of the background region before (left) and
after (right) denoising. The noise is gaussian with µ = 34 and σ = 4.190 .

data.

Figure 2.1 shows the conservation of the signal for different image segmentation
techniques (i.e. QD thresholding techniques) applied on the QD image channel. The
signal is preserved for all different techniques between parental and generation 1 cells.
But is best preserved using Otsu’s threshold for the generation 1 to generation two. This
is possible because the QDs after 2 generations have been diluted significantly and the
noise is more prevalent. Thus, Otsu’s threshold can eliminate noise and clear signal in
contrast with the other to methods. Another reason why the preservation of QD signal
does not strongly hold for generation 2 is that the density of the cells has increased
exponentially, rendering the cell outline segmentation process difficult.

Fluorescence inheritance extraction - algorithm

From the images, 500 cell lineages were extracted and analyzed. To extract the data all
the images were processed using a bespoke algorithm built in OPENCV/C++ (Itseez,
2015). The algorithm was developed to manually extract lineage information, i.e. the
user had to follow the cell from frame to frame until division was realized.

The routine for the data extraction was the following (see also figures 2.6 and 2.7):
First, the mouse was activated for the user. The user had to draw the cytoplasm outline
of the targeted cell on the GFP channel. Then, the image was denoised using the non-
local means denoising technique (Buades et al., 2005) 2.4, and the binary mask of
the cell was extracted from the outline, using contour detection algorithm. Once the
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Figure 2.5: The conservation of signal using three different image thresholding tech-
niques: no threshold applied into quantum dot channel and the fluorescence is just the
sum of the values of the pixels of the denoised image (a, d), adaptive threshold (b, e) is
used and the fluorescence is the sum of the white pixels of the binary QD image and
Otsu’s (c, f) threshold is used and the fluorescence is the sum of the white pixels of the
binary QD image. The scatter plots show the sum of the fluorescence intensity of the
daughter cells against that of the parental, for generation 1 (a,b,c) and 2 (d,e,f).
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mask was retrieved, intersection (which is a binary operation) between the mask and
the QD channel image was applied to extract the area in the QD channel that will be
used for the quantification of the QD fluorescence of the targeted cell. A Region of
interest (ROI) to include the area of interest in the QD channel and was thresholded
using Otsu’s threshold to create a binary image with the quantum dots as the foreground.
The Otsu’s threshold best works in images where distribution of the intensity values is
bimodal, like in this case where there are very dark and very bright values and not so
many in between. The routine then calculated the optimum threshold intensity value that
is located between the two peaks of the distribution. Using the ROI instead of the whole
image the white-to-dark ratio increases and the algorithm segments the QDs efficiently.
The total QD fluoresence of the cell was the sum of all the white pixels in the segmented
QD image. As a final step, the position of the cell, its intermitotic time (i.e. the time
interval between two consecutive mitotic events), the total GFP of the cell and the QD
fluorescence values were stored into a file. In addition to the above parameters, the cell
ID, its parental ID and its generation ID (i.e. if it is a parental cell, a cell of generation 1
or a cell of generation 2) was stored as well.

a)

b) c)

Cell Mask QD Channel

Figure 2.6: Schematic representation of the steps followed for extraction of Quantum dot
fluorescence after processing the two images. a)Top image shows the segmented cells.
b) Cell mask that is extracted from the channel with the cells. c) The QD fluorescence
that has been extracted from the cell mask.

The extraction of the inter-mitotic times (IMT) distribution of the U2OS cells was
useful for two reasons: first, because I could check for unexpected cell behaviour
during the experiment that would deviate the inter-mitotic times far from the expected
( 22 hours). In addition, by extracting the actual inter-mitotic times and by fitting
a theoretical distribution on them, I could validate the in silico simulations of the
microscopy experiment and randomly extract relevant IMT, and increase my model’s
predictive power. The IMT of each cell was defined as the time interval between the two
consecutive mitotic events.
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Cell image acquisition

Image analysis and tracking

Extract measures

User input activation - mouse activation

Draw the cell outline

Denoise Non-local means denoising

X and Y coordinates

Cell ID information 

Extract cell mask, from cell outline

Apply mask to extract:

Total GFP
intensity

Total QD 
intensity

Cell generation Cell's parental ID

If divided, cell ID is increased by one.

Figure 2.7: Manual lineage extraction software workflow. After acquiring the GFP
channel image, the user draws the outline of the targeted cell as indicated by the image
on the top-right. Consequently the image is denoised using non-local means denoising
technique to get rid of gaussian noise. The next step is to extract the mask of the cell
outline and apply it to count the total GFP intensity of the cells from the GFP channel and
the total QD intensity of the cell from the QD channel. Finally, all important information
is extracted and is stored to a file, including the x and y coordinates of the centre of the
cell, its genealogical information (i.e. cell id, its generation and the id of its progeny),
intermitotic times and the calculated intensities from the GFP and QD channels.

To acquire the experimental QD fluorescence distributions of each generation I
categorized each cell according to the generation it belongs to and according to its ge-
nealogical relations, i.e. its parents and daughters. Then, I extracted its QD fluorescence
intensity, and categorized the daughters into high and low QD fluorescence loaded.

In silico model

A stochastic model of the redistribution of the QDs was produced, based on the empirical
image cytometry data (figure 2.8). The initial population was Nin = 10000 cells. Each
cell was characterized by four parameters, its QD fluorescence ( f ) and its maximum
age before mitosis (amx), its generation (gen) and its parent id (idp). The parent id of
the initial population was set to the value −1. To get the initial QD load I sampled
from the experimental QD fluorescence distribution, and to assign the age in each cell I
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sampled from the experimental IMT distribution I discussed earlier. The time step of
the simulation was 24hours. At each time step, all cells were tested to see if they had
undergone mitosis. For those who would divide a QD splitting ratio value was drawn
from a uniform distribution (see section 2.4) to decide how the parental QD fluorescence
load would be distributed into the daughters. For each cell that divided, two daughter
cells were created and the four parameters ( f , amx, gen and idp) were assigned a value
accordingly. In the end of the simulation, the daughters of each generation were grouped
as high loaded if they had more than 50% of the parental QD fluorescence load or low
loaded if they had less than or equal to 50% of the parental QD fluorescence load. Next,
I constructed the QD fluorescence distribution of the high and low loaded daughters of
each generation (i.e. I age-sorted the cells).

As a next step, to be able to compare the QD fluorescence data from the simulation
with that from flow cytometry experiments I convolved the high and low loaded daughter
subpopulations into one population and I removed the genealogical relationships between
parent and daughter cells and divided the QD fluorescence data into 24 hours groups.

Initialize N numbers of cells:

Create Nx4 vector allparams to store the following data:
for each cell:
    Cell's age before mitosis drawn from distribution (αmx)
    Cell's QD fluorescence drawn from distribution (f)
    Cell's generation = 0 (gen)
    Cell's parental id = -1 (idp)
for time = 24, 48 hours:
    while the age of cells is smaller than time:
         find how many cells are dividded
         for each dividing cell
              kill dividing cell
              create 2 new cells 
              draw a splitting ratio drawn from a uniform distribution
              for each cell
                    assign its age before mitosis, drawn from distribution
                    assign its QD fluorescence value from distribution
             update vector allparams 

Figure 2.8: In silico model algorithm for the redistribution of Qd fluorescence, shown in
pseudocode.

Statistical Analysis

Kolmogorov-Smirnoff test was used to compare the empirical distribution from the
microscopy experiment and that of the in silico experiment (see table 2.1).
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2.4 Results

The distribution of the IMT was extracted and is shown in figure 2.9 a. The best
fitted distribution was a Generalized Extreme Value probability density function (GEV,
equation 2.1), with shape parameter k = 0.1851, scale parameter σ = 4.2044 and location
parameter µ = 20.691 (The fit was realised using custom made routine in MATLAB).

f (x) =


1
σ
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)(
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(
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σ

))
k = 0

2.1

The generalized extreme value model combines three simpler distributions into one,
and depending on the three parameter values it can allow a continuous range of possible
shapes. The empirical distribution is fat tailed on the right and the tail does not decrease
exponentially but rather as a polynomial and thus, the GEV distribution of Type II (a.k.a
Frechet) distribution was the one to best explain the IMT data. Figure 2.9 b, in addition,
reveals that the QD fluorescence partitioning ratio values from parent to daughters are
distributed uniformly, irrespective of generation.

Experimental distribution

Generalized extreme value 
probability density function
k = 0.185, sigma = 4.204,
mu = 20.691

0.1

0.12

0.08

0.06

0.04

0.02

0
0 10 20 30 40 50

180

160

140

120

100

80

60

40

20

0
0.5 0.6 0.7 0.8 0.9 1

a) b)

C
o
u

n
ts

P
ro

b
a
b

il
it

y

Intermitotic time (hours) Qd partitioning ratio

Generation 1

Generation 2

Figure 2.9: Empirical distributions for a) the Intermitotic Times (IMT) and b) the QD
fluorescence partitioning ratio. The IMT distribution is fitted with a Generalized Extreme
Value (GEV) probability density function with parameters k = 0.1851, σ = 4.2044 and
µ = 20.691.

The empirical distribution of the QD fluorescence intensity for the daughters at
each generation is shown in Figure 2.10 a,b and c. The distributions of the daughters
do not coincide and, thus, the QD fluorescence is distributed asymmetrically into the
daughters, where some daughters appear to have higher QD fluorescence intensity values
(i.e. distributions where the mode is closer to the parental).
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Figure 2.10: The empirical (a, b, c) and in silico (d, e, f) distributions of the QD
fluorescence intensity of the cells of 3 consecutive generations; The daughters are sorted
into high and low fluorescence load. (a) and (d) show the redistribution from parental to
generation 1, (b) and (e) the redistribution from generation 1 (high loaded) to generation
2 and (c), (f) the redistribution from generation 1 (low loaded) to generation 2.
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Figure 2.10 d, e and f shows the in silico distribution of the QD fluorescence of each
daughter of each generation. Kolmogorov-Smirnov statistical test indicated no difference
between the empirical (figure 2.10 a,b,c) and in silico distribution (figure 2.10 d,e,f) as
can be seen in table 2.1. This assures that the in silico model is working well and can
successfully represent the experimentally driven distribution. Therefore, it can be used
for further analysis and prediction.

Figure 2.11 a, shows the initial empirical distribution of QD fluorescence from flow
cytometry experiment and the 24-hour snap-shot distribution of the QD fluorescence
intensity of the in silico model presented here. 1000 realizations of the in silico distribu-
tion of the QD fluorescence are shown, together with the empirical distributions from
flow cytometry experiments. The empirical and in silico distributions match and thus,
my model can be used to understand the content of the QD fluorescence distributions
derived from the flow cytometry data. Figure 2.11 b shows the contribution of each
generation that is involved in one empirical flow cytometry distribution. In this example,
a 24 hour QD fluorescence distribution (thick orange line in figure 2.11 a) is consisted of
actually 2 generations, the parental and generation 1. Therefore, the figure demonstrates
that snap-shot flow cytometry samples are consisted of more than one genaration of
cells and, thus, data from flow cytometry empirical distributions have to be interpreted
carefully when genealogical relationships are the subject of the study.

Experimental curve of 
the fluorescent 

intensity of 24 hrs 
sample

1000 
realizations

Experimental curve of the 
fluorescent intensity of 

parental sample

Generation 0
Generation 1

P
ro

b
a
b

il
it

y

QD fluorescence per cell

a) b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

100 101 102 103 104
100 101 102 103 104

P
ro

b
a
b

il
it

y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

QD fluorescence per cell

Figure 2.11: Distributions derived from the in silico flow cytometry model. a) 1000
realizations of the QD fluorescence per cell distribution of a 24 hour sample, overlayed
with the actual empirical distribution. b) Distributions of the generations that are involved
in the 24 hour in silico sample.

2.5 Summary

The current chapter strongly demonstrated that the partitioning of the QD fluorescent
load in proliferative Human Osteosarcoma cells is asymmetric and is governed by pure
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stochasticity and there is no underlying biological process that creates a preference
for a particular asymmetric partitioning value. It also derived empirical inter-mitotic
(IMT)splitting ratio distributions. And developed a in silico model that can be used to
predict the dilution of the signal for longer times (more than two generations). Lastly,
the insilico model can be used to reproduce also flow cytometry experiments and re-
veal/predict the underlying contribution of generations in each flow cytometry sample.

The current chapter strongly demonstrated that the partitioning of the QD load
in proliferative Human Osteosarcoma cells is asymmetric and is governed by pure
stochasticity and there is no underlying biological process that creates a preference
for a particular asymmetric partitioning value. It also derived empirical IMT splitting
ratiodistributions and developed a in silico model that can be used to predict the dilution
of the signal for longer times (more than two generations). Lastly, the in silico model can
be used to reproduce also flow cytometry experiments and give insight on the underlying
contribution of generations in each flow cytometry sample.

The methodological approach I followed (i.e. microscopy) intrinsically age-sorts the
QD fluorescence data into generations and the daughter cells are further sorted into a
high and low loaded QD fluorescence categories. By simulating the redistribution of the
QD fluorescence in an age-sorted in-silico model I can recreate the perceived asymmetry
found in flow-cytometry experiments as is shown in figure 2.11 a. By convolving
the highand low loaded daughter subpopulations into one population I remove the
genealogical relationships between parent and daughter cells and by randomly sampling
the measured intermitotic time distribution I remove the age-structured or generational
relationship. Under these conditions, the QD partitioning ratios match contiguous flow
cytometry measurements.

Overall, the analysis identified two contributing factors that obscure correct interpre-
tation of snap-shot, QD fluorescence flow cytometry experiments; these experiments
are incapable of i) identifying genealogical relationships and ii) robustly identifying an
age-structured population, i.e. clearly assign the cells to generations. These criteria are
essential to quantify and predict how a known QD fluorescent dose evolves over time.
For a more in-depth discussion please refer to section 6.1.
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Table 2.1: Kolmogorov-smirnov re-
sults for the comparison between the
empirical and in silico Quantum dot
fluorescence distributions.

Generation K-Statistic P-value
G1-high 0.073 0.999
G1-low 0.049 1
G2D1-high 0.15 0.738
G2D1-low 0.12 0.901
G2D2-high 0.098 0.985
G2D2-low 0.07 0.999
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Chapter 3

Long term tracking and analysis of
Human Osteosarcoma fluorescent
Cells.

The purpose of this work was twofold, firstly to develop a routine that automatically
tracks the nuclei of Human Osteosarcoma (U2OS) fluorescent cells and extracts cell
cycle and Quantum Dot (QD) load information. Secondly, the aim was to demonstrate
some collective statistical properties of the U2OS cell population, i.e. their mobility
patterns (e.g. the distance traveled) and their cell cycle attributes (e.g. intermitotic
times).

3.1 Introduction

The advent of high throughput time-lapse microscopy has provided data at relevant
length-scales to answer many pertinent biological questions. For example, the dynamical
behaviour and, specifically, the mobility patterns in cell populations require the acquisi-
tion of long term time-lapse data. Previously, these questions were difficult to study, but
now it is possible to extract thousands of images in only few hours.

However, the ability to collect such a big amount of images raised questions on
how to effectively extract the information that is contained into the images. Until very
recently, the only way to extract the data was to manually segment and/or track the cells
(Meijering, 2012). This is a hard task that requires many hours of repetitive work and is
prone to human bias. The use of algorithms that can automatically segment and/or track
cells could solve the problems that emerge from manual tracking.

However, developing such tools is also challenging for a couple of reasons (Kan et al.,
2011; Sbalzarini, 2016; Nketia et al., 2017). First, this task requires a lot of expertise
on the field of computer vision and signal processing. In addition to that, because of

35
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the particularities of each cell imaging technique, but also the intrinsic cell variability
in the sample within a specific experiment, the aquired images can vary widely in their
characteristics (i.e. in their intensity, features and signal-to-noise ratio). This makes
it difficult to develop a routine that can successfully detect all cells or cell features in
all theses images. For this reason, the tracking methodologies are highly specific and,
usually, not widely applicable, i.e. a routine that is used to track one particular cell type
cannot be easily applied to track other cell types. For example, phase-contrast imaging
techniques are very different from fluorescent images (Meijering, 2012; Sbalzarini, 2016)
(where specific parts of cells are labeled by some fluorophores) and produce images of
very different attributes (figure 3.1).

Tracking cells from phase contrast images appears to be challenging because of the
artifacts that are produced during image acquisition. Cells appear to have halos around
the cells, the nucleus is not visible and there are dark areas inside the cells due to the
refractive properties of some cell structures (figure 3.1). In addition, there are difficulties
in detecting and separating correctly cells that are very close to each other (Debeir et al.,
2005; Thirusittampalam et al., 2013; Dewan et al., 2014).

In fluorescent images, depending on the part of the cell that is labeled and the
selection of the fluorescent marker, it can be possible that the cell outlines are not
detectable, the intensity values can have a high dynamic range and some cells can be
invisible because of the absence of fluorescence. In addition, studies have shown that
the chemical agents that are used to produce fluorescent images can cause unwanted
damages to the cell (Horan, Paul Karl et al., 1990; Resch-genger et al., 2008; Specht
et al., 2016; Laissue et al., 2017). This is very common, when the fluorescent marker
targets the cell nucleus (Dobrucki et al., 2007). This results in cells that have a limited
viability and sometimes modified functionality due to the toxicity caused by the dye
(Horan, Paul Karl et al., 1990; Resch-genger et al., 2008; Specht et al., 2016). For these
reasons, the researchers compromise, and either track the cells for short time periods,
or minimize the fluorescent dose as much as possible to increase cell’s life expectancy.
This method usually results in a very low signal to noise ratio as long as in the dilution
of the signal after some generations.

In addition to the previous, differences in cell images also can appear from the
differences in the intrinsic characteristics of the cell types. For example, neural cells
have different morphology, shape and behaviour from stem cells. Therefore, to develop
an efficient tracking algorithm, it is useful to consider the artifacts that can be caused
from each imaging technique, as well as the behavioural particularities of each cell type.

The methodologies that are developed for cell image analysis are also question-
oriented, and therefore vary, depending on the topic of interest. For example, questions
regarding the quantification of some cell attributes irrespective of time demand algorithms
that can accurately segment specific or whole cell areas (Zimmer, 2012). On the other
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i)

Figure 3.1: Examples of two different imaging systems, i) phase contrast imaging and
ii) fluorescent imaging. Halos and dark areas due to the refractive properties of the
intra-cellular structures are visible in phace contrast images. Cells show highly variable
intensities depending on the concentration of the fluorophore in fluorescent images.

hand, questions on the dynamical behaviour of the cellular population require routines
that can successfully associate cells between frames (Li et al., 2008; Kostelec et al.,
2015). For example, questions on the characteristics of the cell cycle of a population
require a routine that successfully detect two consecutive mitotic events (Li et al., 2010b),
but do not require the accurate segmentation of the whole cell outline. The same holds
for cases where the extraction of cell lineages is the target of the study (Li et al., 2008).

Despite the challenges and difficulties in the field, there are many studies proposing
a wide range of methodologies for cell segmentation and tracking. Masuzzo et al. (2016)
and Nketia et al. (2017) have categorized the existing tracking algorithms in three main
groups: independent segmentation of individual frames followed by data association
(or tracking by detection as proposed by reference), tracking by model evolution and
tracking by filtering.

In the first category, that is the one followed in the current work, each frame is
segmented separately and the cells from consecutive time frames are associated by
applying different rules and approaches. Wang et al. (2010) in their work use fluorescent
images and a neighborhood score to associate the cells in different time frames. Youssef
et al. (2011) use multiple parameter tracking, i.e. they use cost matrices from multiple
cell parameters such as object size, position or texture to assign the nuclei in consecutive
frames. A more complicated and effective approach is the work of Chatterjee et al. (2013),
where they use the bipartite networks and cost function minimization approaches to
make the linking between timeframes, in fluorescent images. Finally, Thirusittampalam
et al. (2013) use Delaunay mesh to track the cells, in phase contrast images.
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In the second category, model evolution tracking algorithms are used to follow
cell positions. The cells are associated between each frame by the use of deformable
models. These are curves or surfaces defined within an image domain that can move
under the influence of internal forces coming within the model itself and external forces
computed from the image data. In case of cell tracking, contours of cells are evolved
along time to follow the changes and movements of each cell. Examples of works using
model evolution are those applying explicit or implicit active contours such as Chan &
Vese (2001); Zimmer et al. (2002); Li et al. (2010a); Dzyubachyk et al. (2010); Yeo
et al. (2011); Zou & Tomasi (2016); Boukari & Makrogiannis (2016); Sazonov et al.

(2016). Tracking methodologies that use the mean-shift approach also belong to this
category according to the recent paper of Masuzzo et al. (2016). Some examples of
works applying meanshift for tracking are the works of Debeir et al. (2005); Zhang et al.

(2015b).

As already discussed, labeling the nucleus with fluorescent markers can seriously
affect the viability of the cells. This is a limiting factor that can prevent scientists from
running long-term microscopy experiments. Labeling other parts of the cell can be more
promising for long term tracking. U-2 OS cells can be tagged with a green fluorescent
protein (GFP) in the cytoplasm, a stealth reporter (Thomas and Goodyer, 2003) whose
expression is driven by the promoter of the cyclin B1 protein and allows for continuous
cell cycle readout. This particular marker oscillates according to the cell cycle (figure
2.2) and, thus, works as a cell cycle marker too. However, due to the non-linear nature of
the GFP signal identification tracking is non-trivial and is not achievable by recognised
cell tracking softwares, such as, Cellprofiler (Jones et al., 2008) and NIST Tracking
(Chalfoun et al., 2016). This system is more challenging than tracking nuclei, but is
more promising as well for long term tracking and can provide a deeper understanding
of the system, as it can provide cell cycle information too. Some of its advantages are
that i) the labeling is not invasive and threatening for the life of the cells, ii) the labeling
is stable for very long periods and iii) the cell cycle information provided by the marker
could shed light on intrinsic attributes of the cells.

Current work

In this work, I developed a semi-automated method for tracking cells, in a system of
U2OS cells labeled with a fluorescent marker in their cytoplasm that is activated and
deactivated in a nonlinear way according to the cell cycle. The algorithm in principle
takes advantage of the intensity from the GFP marker in the cytoplasm to track the nuclei
of the cells. It is easier to segment the nuclei (figure 2.2 ) because of the similar shape
and intensity they have along time and because of the low probability of finding two
nuclei so close to each other, thus it’s easier to separate them. The algorithm can also
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detect mitotic events and extract cell cycle properties using the GFP signal. Because it is
nucleus label free it has the capability of tracking cells for very long times and extract
lineages. The algorithm is implemented in C++ using OPENCV 3.0.0.

3.2 Cell culture and microscopy

3.2.1 U2OS cell lines and the GFP marker

Chapter 2 and section 2.1.2 presents information on the Human Osteosarcoma cell line
and the Green fluorescent reporter (GFP) used for labeling the cytoplasm of the cell.
Therefore the reader is refered to that chapter for retrieving relevant information.

3.2.2 Microscopy setup and experimental procedure

Cell culture preparation

U-2 OS (ATCC HTB-96) cells were maintained in 10% McCoy’s 5a full medium, in
culture flasks. Then, commercially available targeted quantum dots (QDs) were added
to the medium, using the Qtracker R©705 Cell Labeling Kit (4 nM). They were then left
for an hour for the particles to land on the cell membrane and to be attached to the cell
surface. After that, the cells were trypsinized and consequently transfered and seeded
to a 24-well plate (see figure 2.3). 24 hours later the Qdots were internalised into the
endosomes via the endocytotic route.

Image acquisition

After 24 hours, fluorescent time-lapse images using IN Cell Analyser 2000 (GE Health-
care) and ×40 magnification, were acquired with a 30-minute interval between frames
for a period of 67 hours. Two fluorescent channels were used (one for the GFP stealth
reporter, see figure 3.2, and one for the QDs). The images were stored in Tagged Image
File Format (TIFF) and 1 pixel = 0,16 µm.

3.3 Segmentation and particle tracking

3.3.1 Ground truth data acquisition

From the images 500 cell lineages were extracted manually (figure 2.7). To extract the
data all the images were processed using OPENCV/C++ (Itseez, 2015). To track the
lineages an algorithm was developed to manually extract the lineages, to collect ground
truth data. First, all the images were denoised using the non-local means denoising
technique (Buades et al., 2005).
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Figure 3.2: An example of a 4 f ieldo f view × 4 f ieldo f view image of the fluorescent
cells in a well plate. Most cells are part of colonies and can be either inside of it or at the
periphery. Cell density can vary depending on the field of view studied, rendering the
effectiveness of the algorithm variable.

The routine for the manual data extraction was the following:

First, read and denoise each channel of each frame (see figure 2.4). Activate mouse
for user (figure 2.7). With the mouse, draw the cytoplasm outline of the targeted cell on
the GFP channel. Then create a binary cell mask. Store x− y coordinates and lineage
information. Use OTSU’s threshold to segment the QDs of the QD channel. Finally,
count the total QD and GFP intensity.

3.3.2 General outline of the automated tracking algorithm

To choose the appropriate steps for the cell segmentation and tracking the following
particularities of the system were taken into account: The foreground objects (i.e. the
cells) have a high intensity variation. The signal to noise ratio is relatively small resulting
in low contrast images. U2OS cells are densely packed, i.e. one is next to the other
and, thus, the outlines of the cells are not very clear. In addition, the cells’ speed is low
meaning that the searching window of a targeted cells will be relatively small between
frames. Finally, the dynamic range across timeframes varies too.
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Figure 3.3: Overview flowchart of the proposed algorithm. It is categorized in five
subroutines. a) The user is selecting the targeted cells by clicking on the trageted
nucleus and a Region Of Interest (ROI) is created centred at the nucleus. b) Then, the
processing of the image is followed. The ROI is the new window where all analysis will
take place in the following steps. c) Next is the Segmentation subroutine, where the
image is first denoised and the Iterative simple and adaptive Threshold techniques are
applied to segment the image and extract the nuclei. These techniques are followed by
postprocessing step, where the image is filtered to remove noise and irrelevant objects
and to seperate touching nuclei. d) Consequently the cell association subroutine is called,
where the most probable cell is associated with the trageted cell of the previous time
frame. This is the result of the comparison of the probability each segmented object has
to be the targeted nucleus. The probability consists of the weighted sum of different
similarity metrics. e) After assigning the nucleus, all important measures are extracted
(such as the nucleus position, the GFP and QD intensity, the cell cycle information and
the genealogical information.
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The main objective of the currect work was to retrieve cell paths. Extracting the
whole outline of the cell was not necessary, especially if there was another way to get
the cell position. Cell nuclei have more distinct outlines and thus is easier to segment
them. For this reason, first step was to extract the positions of the nuclei.

The basic steps of the algorithm are, therefore, the following. At the beginning,
the user indicates the targeted cell, by pointing to the centre of the nucleus. A Region
of Interest (ROI) of specific size (width = 250 pixels, height = 250 pixels) is created
centered at the targeted cell in order to decrease the complexity and time needed to track
the cells (see figure 3.3). All the analysis will be restricted inside the ROI. The next step
is to de-noise the image. Figure 2.4 on the left shows the histograms of a background
region before the denoising. The histogram indicates that there is Gaussian noise (µ = 34,
σ = 4.190 intensity). The nonlocal denoising approach is used to get rid of the gaussian
noise (Buades et al., 2005). The parameter σ was calculated from the intensity histogram
of background region, assuming that any variability in the background region is due to
noise, since the growing medium is well mixed. The dynamic range between frames
changes. For this reason, to be able to extract meaningful Cell cycle information, I
normalized the intensity values, so that the GFP changes in intensity reflect mainly the
intrinsic changes during the cell cycle.

After denoising, the image is segmented into the nuclei and postprocessing takes
place to eliminate noise. Specific rules are followed to associate previous nucleus at time
t with nucleus at time t+1 (figure 3.3). Once the nuclei are extracted, a circle mask of
specific radius centred at the nucleus is created to extract cytoplasm and other measures
(such as GFP and QD intensities etc).

3.3.3 Cell segmentation (still image)

Overview of segmentation techniques

The simplest way to segment the nuclei is by using Simple thresholding, where pixels
of an intensity value higher than a chosen threshold are labeled as foreground. Despite
its high performing speed this method does not account for the intensity variations of
the signal and thus it is not efficient in cases the foreground’s intensity varies, since
one threshold value is not sufficient to segment all the cells of interest. In Adaptive
threshold, each pixel has its own threshold value calculated by the intensity values at the
neighborhood of the focal pixel. The function transforms a grayscale image to a binary
image according to the following function

dst(x,y) =

maxVal if src(x,y)> T (x,y)

0 otherwise
where src(x,y) is the intensity value at x and y pixel position of the source image and

the threshold value T (x,y) is the weighted sum of neighbourhood values where weights
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are a gaussian window of size blockSize×blockSize.

Adaptive threshold is still a fast and easy to implement methodology and it also
considers the variation in the cell intensity. However, in cases cells differ in size and
have a low contrast and/or the density of the cells is very high the method could miss
some cells (figure 3.4). However, in the current case, the target is to segment the nuclei
and thus, adaptive threshold can give a high percentage of the nuclei even in a densely
packed population, except in the case the outline of the nucleus is not so clear, i.e there
is low contrast between nucleus and cytoplasm.

Adaptive Threshold Iterative simple threshold

Original

Thresholded

a)

b) c)

Figure 3.4: Comparison of the resulted segmentation between the Iterative Simple
and Adaptive threshold. a) Original GFP channel image shows the low intensity/low
contrasted cell (centered at the with rectanle). b) Segmented nuclei using adaptive
threshold technique. c) Segmented nuclei using the iterative threshold technique. Red
arrows point to the false segmented objects, a.k.a noise.

To increase the percentage of segmented nuclei an Adaptive threshold with further
processing could be used. Such post-processing could include morphological operations,
isolation of the targeted object (in our case nucleus) by applying some filtering (according
to size, shape, area etc) and use of morphological properties of the nuclei (convexity
defects, size etc). The advantages of the previous method are that it remains simple and
fast to implement, and increases the percentage of correct segmented nuclei considerably.
However, it requires adjustment of many parameters and steps for different system, and
thus, it cannot be applied immediately to different systems.

Another approach for nuclei segmentation would be to use simple threshold in an
iterative mode: If we threshold the image for consecutive threshold values and then apply
some morphological filters (such as filtering according to size) to eliminate some of the
noise, then we can eventually get an image where most of the nuclei will be represented
by a forground object. This method is particularly useful for segmenting the dimmer
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cells (figure 3.4). It is also easy to understand and implement. However, this method
also segments some wrong objects that need to be removed. However, it can extract part
of the nulceus and not all object.

Combination of the above methodologies could result in better segmented images
and less false segmented objects. For example, by using the iterative approach only for
segmenting the dimmer cells (and determining the threshold values at each time frame
from the respective image histogram), and using the adaptive threshold for segmenting
the rest of the cells, then we can further minimize the error and maximize the successfully
segmented cells.

Some more elaborated methodologies widely used to segment cells include the
H-maxima, where the local maxima of the cells/nuclei can be detected and isolated
creating the seeds to be used in the following steps (Dewan et al., 2011). H-maxima
transformation suppresses any of the regional maxima whose height is less than h. Graph
cut algorithms represent the image as a weighted graph where pixels are linked to either
a source or a sink node with some weights. There is also a cost function associated
with the weights. The final segmented image will be the one that minimizes this cost
function (Rother & Blake, 2004; Min & Wan, 2013). Another way to segment nuclei
would be to use model evolution and more specifically, implicit active contours. Using a
roughly segmented image as initial we can segment the cells and the nuclei. The method
is not affected by the noise and by the case of open boundaries of objects. Also, it is not
affected by the different intensity values. Thus, it is a very robust method and creates
closed curves even if objects of interest do not have distinct boundaries. However, it is
more difficult to understand and implement due to its strong mathematical concepts and
formulation. It is also slower than the previous methods.

Machine learning techniques that can also be use to segment the nuclei. The simplest
one is the K-means clustering, but it requires the a priori knowledge of the number of
cluster you need. Other techniques such as artificial neural networks and deep learning,
demand a strong computational power and also a good amound of data to train the
algorithm.

Current segmentation steps

The steps to segment the nuclei in the current algorithm are the following: First, I create
a Region-of-Interest (ROI) centered at the segmented nucleus of 72×72 µm size, so
that all segmentation steps are applied on the sub-set area (figure 3.3). Because the
ROI is centered at the previously segmented nucleus and ROI is much bigger than the
average steplength of the cells, the incorrect segmentation of the objects in the corners
is not limiting the successful detection of the nucleus. However, in rare cases that the
targeted cell is close to the edges of the initial image the ROI will be truncated and the
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segmentation will be affected if the nucleus is not apparent.
Before proceeding to the actual segmentation some image pre-processing steps take

place. These include, image denoising (figure 2.4), image normalization(3.5) and image
smoothing (i.e. Gaussian Blur).

In more detail, I first denoise the image using Non-local means denoising (Buades
et al., 2005). In contrast with previous denoising filters that consider local areas to
denoise the image, i.e. take the mean value of a group of pixels surrounding a target pixel
to smooth the image, non-local means filtering takes a mean of all pixels in the image,
weighted by how similar these pixels are to the target pixel. This results in images with
greater clarity, and less loss of detail in the image compared with local mean algorithms
(figure 2.4).

After denoising, I apply Mean Shift segmentation, a local homogenization technique
that is very useful for damping shading or tonality differences in localized objects
(Yizong Cheng, 1995). The output of the function is the filtered “posterized” image
with color gradients and fine-grain texture flattened. This creates a locally homogenized
image that is easier to segment. The number of parameters I need to adjust is two;
the radius of the neigbourhood to be considered and the intensity range in which the
averaging is allowed.

Before subtraction After subtraction

Value selection from histogram

Figure 3.5: Histogram of the intensity values of the GFP fluorescent channel (top row)
and the comparison between the original and filtered image after the subtraction of the
value from the original image (bottom row, left and right respectively). Red line indicates
the value up to which 15 % of the total counts of the histogram are laid.

In addition, I had to take into account that the background value of the image in
different frames is not constant, due to the illumination variation in different times.
For this, I had to set a minimum intensity value of the background to be the same for
all images, i.e. from each image frame to subract a value so that all images have a
background value equal to 0. This would limit the intensity variation due to illumination
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artifacts and will make consecutive frames more comparable. This step is important for
the extraction of cell cycle information, as the progression of cell cycle is represented
by the cell intensity variation across time frames in the GFP channel. To achieve this, I
get the intensity histogram of each image frame and find where the background values
begin. After investigating and comparing the histograms from different frames I decided
that the value to be subtracted by the original is the intensity value up to which 15 % of
the total counts of the histogram are laid (see figure 3.5). These include the values of the
background region too. I then subtract this value from the image.

After pre-processing the image, the next step is to segment the images. I use two
complementary methodologies to extract nuclei. First, I apply the Iterative Simple

threshold to extract the nuclei. The iterative mode is applied by using the simple
threshold for a range of threshold values between 0−255. For each iteration, I use a
function to filter the detected objects and keep only those that have a relevant size (i.e.
that of a nucleus). As figure 3.4 shows, this methodology extracts most of the nuclei,
but also falsely detects as nuclei some objects that belong to the background regions
(cytoplasm and medium). Second, I apply Iterative Adaptive threshold to extract the
nuclei. Again, I use adaptive threshold in an iterative way, where the searching window
is the changing parameter. Because a frame is always consisted of cells that largely vary
in their intensities, it is very helpful to locally enhance the contrast of the image so that
it is easier to segment the nuclei of most of the cells. The parameters to be adjusted are
three: the sigma of the Gaussian, the intensity difference to be enhanced and the amount
of enhancement to be done.

After applying the main segmentation functions, I post-process the images to elimi-
nate some noise. To do this, I create a subroutine that iterates over the detected objects
and discards them, if the objects are not within a specified size range, and show irregular
structure. The irregular structure is calculated as the ratio of the area of the object over
the area of the elliple and rectangle that bounds the object (ratioell = areaob j/areaell

and ratiorec = areaob j/arearec).

Original Defect Contour Separation

Figure 3.6: Representation of the effect of the contour defect analysis on the cells. The
green spot indicates the defect depth and the yellow line indicates the width of the defect.
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In addition, I use geometric characteristics of the segmented objects to separate
nuclei that were segmented as one object (figure 3.6). To remove false positive objects
of small size I apply morphological operations, such as dilation and erosion. To seperate
connected contours I developed a custom made routine in C++/OPENCV that realizes
contour defect analysis (figure 3.6). Usually contours of more than one nucleus tend to
have bigger size and also defects of specific depth and width. This, allows me to find the
relevant defects of specific depth and width, as well as their direction and draw a black
line perpendicular to the main axis of the defect, to seperate the contour into two.

Dividing cells have different morphology than other cells and thus, a different
segmentation method is required for them. Dividing cells appear bright and round or
oval (figure 3.8). Simple adaptive threshold followed by feature-specific contour filtering
is used to segment the dividing cells. More specifically, segmented objects are kept only
if the ratio of the area of the object over the area of the bounding circle is close to 1
(ratiodiv = areaob j/areacircle).

The final segmented image is the union of the three images segmented in previous
steps; i) from the iterative simple threshold, ii) from the iterative adaptive threshold and
iii) from the segmentation of the dividing cells.

3.3.4 Cell association (track cells for consecutive timeframes)

To associate the nuclei of two consecutive time frames I needed to find minimum distance
measures between the nuclei of two consecutive time frames. The measures can look
for local proximity (i.e Euclidian distance) or other types of proximity (e.g. intensity,
orientation, shape and size similarity).

To follow one cell of interest that has been successfully segmented, each segmented
object was assigned a probability that was extracted from three different metrics: the
simple minimum Euclidian distance rule (in time t+1, the object that has the minimum
distance from the targeted cell at time t, will be possibly be the targeted cell at time t+1),
the minimum shape distance (i.e. the match of shapes), the minimum intensity distance
(the match of the Intensity profile around a segmented object).

First, due to the restricted movement of the cells between time frames, the strongest
rule to contribute to the final object selection is the spatial distance rule. The em-
pirically calculated distance between two consecutive time frames usually does not
exceed the 20 pxl or 3.2 µm. Each pixel in the segmented image is assigned a prob-
ability value, which is drawn by a 2-D Gaussian distribution with mean value µ =

thecentreo f the previousnucleus and σ = 3.2 µm. Each object’s spatial probability Psp

is then the probability of the pixel where the centre of the nucleus is located. In addition,
each segmented object’s shape is compared with the shape of the previously detected
nucleus and a shape probability (Psh) is assigned at each object. This is calculated
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from the following formula: Psh = max1...7
|mA

i −mB
i |

|mA
i |
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i ) · loghA
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i and hB
i are the Hu moments (Ming-Kuei Hu, 1962) of A

shape and B shape, rspectively. Finally, a template of the previous nucleus from the
GFP channel is compared with the corresponding areas around the segmented objects to
see which of the object has more similar intensity values with the previously detected
nucleus in the GFP channel. Each cell is then assigned a template matching probability
(Ptm) that is calculated after finding the squared difference between the template of the
previously detected nucleus with the window of each of the newly segmented objects.

To find the next most probable nucleus, I first check if there is any segmented nucleus
inside a window of 16×16µm size (and centered at the previously detected nucleus).
If there are detected objects within the window, then the object with the higher spatial
probability Psp will be selected.

If there are no detected objects within the window, then the algorithm searches for
the existence of segmented objects within a window of 19.2×19.2 µm size. If there are
objects segmented then the routine will select the object of which the weighted sum of
the above probabilities is maximized. The weights can be adjusted but Psp is contributing
the most.

There are cases where the segmentation of the nuclei has failed. If this happens, the
closest contour detected will be farther than the expected. From observation I know
that the studied cells make small steps. Thus, I can use this information to prevent
wrong associations. For this reason, a condition that has to be met for the contour to be
chosen is that the distance with the previous detected contour cannot exceed a threshold
value. If it exceeds, then a random point within a small radius from the previous is set
as the new targeted nucleus. Therefore, if there are not segmented objects within the
previous searching windows, or the dinstance between the previous nucleus with the
most probable one is > 9.6 µm, then a random point around the previously assigned
nucleus will be the new centered point. This is the way the algorithm treats unsuccessful
segmentation and association events.

Division events are the most challenging to associate because: i) during division big
jumps can take place (misuse of the minimum rule distance), ii) the targeted cell should
be linked with 2 instead of one cell after division.

The tracking steps are the following: 1) associate the cells by finding the nearest
neighbour (in distance, in intensity values, the difference in intensity between the frames,
orientation, in shape, in size etc). If distance is smaller than a threshold calculate the
probability of each object to be the targeted nucleus is the weighted sum of the the
probabilities discussed above, i.e. the matching shapes Psh, the matching template Ptm

and the spatial probability Psp. Else, draw random coordinates within a specific radius
from the previous nucleus.
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3.3.5 Data extraction

From the algorithm I can extract x and y coordinates of each nucleus for all time steps
between mitotic events. The positions can give meaningful information regarding the
movement behaviour of the cell population, (total distance traveled, velocity etc). Be-
cause the cells are very densely packed and the cell outlines are not easily distinguished,
the algorithm does not extract the outlines of the cells. However, it is possible to extract
cell cycle characteristics and Qd information by applying a circle mask centred at the
detected nucleus and use only the area within the circle to calculate the GFP signal and
the QD load. I can apply this for the QD load because from observations I can see that
QDs that are internalized in the endosomes and these are located mainly around the
nucleus and not at the periphery of the cell.

All the analysis that follows has taken place at R environment (R Core Team, 2017).

3.4 Performance of proposed algorithm and limitations

Nuclei segmentation

The combination of the two iterative methods for segmenting cells discussed previously
increases the percentage of correctly segmented nuclei (figure 3.4). Iterative adaptive
threshold can successfully detect high contrasted nuclei despite the possible illumination
variation within and around nucleus. In contrast, simple Iterative threshold, cannot
successfully segment the whole nucleus area due to the illumination variability but is
more sensitive to segment parts of nuclei that belong to low contrasted cells.

However, extracting and selecting objects that are only segments of the whole nucleus
of low contrasted cells results in the unavoidable selection of false segmented background
objects too. Post-processing the segmented image by filtering out irrelevant objects
eliminate most but not all noise. Some of the noise cannot be filtered out because some
segmented objects resemble the nuclei. Also, filtering methods have to be relaxed to
include these the objects segmented from the dimmer cells, with a cost of keeping some
noise.

Noise can decrease the successful nuclei association between frames. This usually
happens with background areas that are surrounded by cells (figure 3.7). These areas
can be of a size similar to the nucleus, and because they are surrounded by the cells they
can also have similar shapes with that of the focal nucleus. Especially, the noisy objects
that persist for multiple time frames and can be tracked consecutively, i.e. can behave
like an "attractor", can limit the performance of the algorithm in the association step.
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Figure 3.7: The background areas that are surrounded by cells (red outline) can appear
to have similar size and shape with the real nuclei and thus be labeled as nuclei. They
can also persist for multiple time frames and thus can hinder correct nucleus association.

Mitosis detections

The detection of mitotic cells has been a simple and straightforward task, due to the
properties of the dividing cells. They appear to have a round/oval shape and a maximum
pixel intensity in comparison with the neighbourhood (figure 3.8).

Mitosis detection failure is observed in the following cases: First, when the cell
division is not captured because of the sampling rate of image acquisition. U2OS cells
divide around every 20− 22 hours. The sampling rate in the current experiment was
2 f rames/hour. Mitosis usually lasts more than 30 minutes, and thus the capture rate
is appropriate for capturing mitosis in most of the cells. Second, the mitosis is not
detectable when cell is overlapped with other neighbouring cells. This type of error is
minimized after applying some contour post-processing and after detecting and after
separating touching cells. Last, but not least, error in mitosis detection can result in the
cell association step, not only during segmentation. This mainly takes place when cell’s
displacement is big, usually more than the length of the nucleus (figure 3.8 c).

Mitosis Mitotic jump30 mins before mitosis

Figure 3.8: Phenomenological behaviour of the cell around mitosis. Left figure shows
the cells 30 mins before its division. In the middle figure cell is undergoing mitosis. Its
characteristic shape and increased intensity value helps to develop an algorithm that can
easily detect mitotic events. However, the third image shows the jump the cell makes in
order to get this characteristic morphology. The jump d can be big enough to incommode
the correct cell association between the frames.
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Cell association

To be able to quantify the performance of the algorithm regarding cell association and
the extraction of cell migration routes I had to quantify the error of the routine’s detected
position relative to the position from groundtruth data. The error ε was calculated as
the euclidean distance between the routine’s detected position (xexp,yexp) and that of the

groundtruth data (x,y):
√

(xexp− x)2 +(yexp− y)2.
A total number of 85 out of the 203 cells was included in the analysis, since

groundtruth data were available only for this number of cells. From those 85, I discarded
the cells that were followed for less than 6 time steps. Because groundtruth data are
prone to human bias and nucleus segmentation does not always segment the actual
outline of the nucleus, ε is approaching but is not reaching 0 in correctly detected cells
(figure 3.9). For this reason, a false detection is considered only when error exceeds a
threshold value.
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Figure 3.9: The error in the nuclei centre detection across time for all the different
cells. The error ε was calculated as the distance between the detected position from the
algorithm (xexp,yexp) and that of the groundtruth data (x,y). The red line is pointing to
the error value under which the algorithm is assumed to correctly detect the positions.

After calculating the error two performance metrics were computed. The first was
the normalized duration of the successfully detected positions before the first error took
place (rlngt). If the routine could successfuly identify all positions then the duration
would be the total length of the cell’s route. Because each cell had different intermitotic
times, I normalized it, i.e. took the ratio of the length of the consecutive successfull

position detections, lemp over the total time length of the cell’s path, ltot , i.e. rlngt =
lemp

ltot
.

The metric can thus take values between 0 and 1, i.e. 0 < rlngt < 1. The second metric
was the ratio of the number of successfully detected positions, Nsuccess, over the total

number of occurences, Ntot , i.e. rs =
Nsuccess

Ntot
.

Figure 3.10 a shows that the algorithm can on average detect consecutively only 50%
of the whole path, mean = 0.51. The median is 0.45, meaning that half of the times
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the algorithm was tested it could not track the cell correctly for more than the 46% of
the whole path. However, figure 3.3.4 b also shows that the algorithm can on average
detect successfuly 69% total number positions, mean = 0.69. Also, half of the times the
algorithm was tested, it could successfully detect the 83% of the total positional points.
This means, that the algorithm can miss the correct position of the cell along the path,
but in case this happen, the error is corrected after some timeframes.
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Figure 3.10: a) The distribution of the ratio of the duration of consecutively correctly
detection over the total duration of cell displacement. b) The distribution of the ratio
of the number of successfully detected positions, Nsuccess, over the total number of
occurences, Ntot . Perpendicular red lines correspond to the median values, median =
0.45 and median = 0.83.

The algorithm presented here can successfully track cells between two mitotic events.
The success on the association from a mitotic event to the daughter cells is limited due
to the large displacements that take place during this process, something that renders the
tracking across generations difficult.

In addition, the algorithm cannot easily distinguish polyploid cells with more than
one nuclei. This can be changed and improved if the direction of the detected nuclei is
considered.

3.4.1 Cell cycle attributes

Figure 3.11 is presenting the progression of GFP intensity that is calculated by using a
circle mask around the nucleus. Manual extraction of the GFP intensity of the whole cell
across time (figure 2.2) indicated that the intensity should increase whith the progression
of cell cycle and drops immediately after the mitosis. The figure demonstrates similar
pattern, where intensity increases up to division and drops after it. Therefore, the
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extraction of cell cycle information can be satisfactorily achieved without proper cell
segmentation. These curves can be used to predict the cell cycle phase of the cell, for
comparison with the same curves under drug treatment, where the cell cycle dynamics
can be significantly changed.
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Figure 3.11: Normalized GFP intensity. Due to differences in the life duration of cells,
time is also normalized to take values between 0 and 1. It is apparent that the GFP signal
could be modeled as a function that increased monotonically and can has a maximum at
mitosis.

3.5 Applications

3.5.1 Movement analysis

Figure 3.12 shows the migration routes, between two consecutive division events, of the
detected cells. The paths show some different characteristics suggesting two different
types of motion; one that is more persistent (red circles) and one that is less (green circles).
Regarding first type, cells appear to depart far from their initial position. Regarding the
second, cells remain around this initial position throughout the whole time.

The cell paths differ in their length due to the differences in the division times.
However, pathlengths should be comparable because for most of them division is taking
place after 20±5 hours, as can be seen from the distribution of figure 3.13 a. The cells’
total distance traveled is strongly correlated with their intermitotic times (IMT), i.e. their
lifespans (figure 3.13 b). This result suggests that the cells with longer lifespans tend to
travel longer distances. However, this does not explain the differences in the persistence.

The total distance traveled is shown in figure 3.14. The histogram appears to have
a right fat tail. The vast majority of cells travel a distance of ∼ 300pixels, while some
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Figure 3.12: Migration routes of the cells. Red cicle indicated cells that show some
persistence in their walk while green circles show cells that appear to have difussive −
like movement behaviour.
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Figure 3.13: a) Histogram of the Intermitotic times. The histogram is peaked around
the expected intermitotic time of 21-22 hours and is right-fat tailed. The shape of
the distribution is in accordance with the shape of the respective distriburion from the
groundtruth data (see chapter 2). b) Scatterplot of the Intermitotic times against the
total distance traveled and the fitted linear model showing a positive correlation with
slope = 23.481.

travel longer distances. To be able to completely understand the reason for this different
movement behaviour it is useful to plot also the step length of the whole population (3.14



3.5. APPLICATIONS 55

Total distance traveled

0

5

10

15

20

25

500 1000100

1000

500

0 50

Steplength (pixels)

C
o
u
n
ts

0

a) b)

Figure 3.14: Empirical histogram of the steplengths of the cells is shown on the left
and the empirical histogram of the total distance traveled is shown on the right. Both
distributions appear to be asymmetric with the distribution of the total distance traveled
to have a right-fat tail.

left) and the steplength distribution of each cell (figure 3.15). The steplengths of the
whole population (figure 3.14 left) are distributed mainly around a value of 10−15pixels.
However, the distribution has a heavy tail, suggesting that cells can also take some larger
steplengths. The question is if these steplength are randomly distributed across the cells
or if there are specific cells that siginificantly differ from others and move on average
taking larger steps. Figure 3.15 can provide the answer to this question. From the
boxplots of the steplengths of each cell it is obvious that there are differences between
different cells and therefore the steplength must be closely linked to the cell ID and
could be related also to the different types of motion shown in figure 3.12.

Effect of cell density on movement

U2OS cells form colonies and the cell densities can be high. Therefore, understanding
how density and cell position in the colony affects the cell trajectory is necessary in order
to understand if there are inter-individual differences in cells’ movement behaviour.

For this reason, the relative position of each cell to the area of the colony it belongs
to should be quantified. Then it should be tested for the existence of any correlation with
movement characteristics, such as the steplength and the total distance traveled. If there
is some correlation between the position in the colony and the movement characteristics,
this would suggest that cell movement is affected by colony properties and is determined
by the spatial arrangement. For example, could be that cells in the periphery have more
freedom to move towards a direction than cells inside the colony that have a restricted
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Figure 3.15: Boxplots of the steplength for the different cells.

movement because of their neighbouring cells.

Two colony metrics were calculated for each cell: the closest distance of the cell to
the edge of the colony it belongs to (dce) and the local density of the cell in the colony
(d). The last was identified as the ratio of the number of black pixels over the number of
the white pixels d =

Nd p
Nwp

. The area used for calculating the relative coverage is chosen to
be the circural area of radius r = 100 pixels centred at the centre of targeted cell. Finally,
the area of the colony the cell belongs to was also measured.

The colony metrics were tested against the total distance traveled (figure 3.16 b).
Because, as I showed above, the total distance traveled is correlated with the cell’s
lifespan I also plotted the colony metrics against the distance each cell had from its initial
position (figure 3.16 a), because this metric is not correlated with the cell’s lifespan.

None of the colony metrics was correlated with the total distance traveled and the
distance a cell had from its initial point. This means, that at least locally the cell
movement does not differ because of the position it has on the colony.

To test if the Human Osteosarcoma cells show on average a diffusive or non-diffusive
motion, the Mean squared displacement for each time step was calculated. To get relevant
values for the mean squared displacement I had to take into account the difference in
paths’ timelengths. Therefore, time was normalized between the values 0 and 1, 0< t < 1.
To take squared displacement averages, the normalized time was sub-divided into 20
intervals. For each interval I calculated the mean squared displacement.

Mean squared displacement was plotted (figure 3.17), together with the respective
error bars, against the time intervals and a power function was fitted on the data. The
exponent was found to be 0.9406 with a 95% confidence interval CI = (0.7955,1.086).
The value of the exponent indicates that there is an anomalous sub-diffusion, i.e. cells
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Figure 3.16: Scatterplot of the closest distance of focal cell from the colony edge against
a) the final distance of the cell from initial position and b) against the total distance
traveled. Both axes are in logarithmic scale.

move slightly slower than how they would have moved if they would follow normal
diffusion. This finding suggests that there is a cell crowding effect (Weiss et al., 2004).
The value however is close to 1, so normal diffusion processes must hold at least for the
initial periods. This is enhanced by the behaviour of the MSD line (figure 3.17), as it
appears to be a straight line for the first three to four time points.
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Figure 3.17: Normalized time against Squared displacement for different cells and Mean
Squared Displacement (MSD).

In addition to the cell cycle information from the GFP intensity progression, I can
extract the intermitotic times of the cell population, as it is shown in figure 3.13. The
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histogram is similar with the histogram of Intermitotic times that was extracted manually,
suggesting, that the algorithm is working quite well, despite errors on mitosis detection
and thus can be used to also extract this type of information.

3.6 Summary

This Chapter presented the first attempt to build an automated long term nucleus tracking
routine. In addition, it demonstrated some applications of it for the better understand-
ing of the movement and cell cycle behaviour of Human Osteosarcoma cells in the
population.

The advantages of this routine is that it can track cells by following very simple rules,
a routine that does not require strong computational power. It is a much preferable way
to extrat cell routes from the alternative manual cell tracking. More elaborated tracking
methodologies that incorporate Machine Learning and Artificial Inteligence techniques
would probably increase the success of the tracking, however they will require a lot of
computational resources and expertise.

The capabilities of the routine is to track the nuclei from one mitotic event to the
other and to extract meaningful information of the Cell cycle phase without having to
totally segment the cell outline. They can also extract lineages, but the success rate of
this is lower.

Regarding movement analysis, the current study has for the first time demonstrated
at least two different kinds of movement of Human Osteosarcoma cells. From figure
3.12 at least two different movement patterns are apparent, one more diffusive and one
more directed. Therefore, the distribution seen in figure 3.14 must be a combination of
two different distributions, one Gaussian and one Levy-like.

There is a crowding effect, which means that cells restrict their motion due to the
high densities. However, when cell’s colony position was tested as a predictor for the
distance traveled and the steplength, no correlation was found. This suggests that all
cells irrespective of their position in the colony are affected by the high densities, and
there is no distinction between cells in different position. The high densities globally
affect the cells’ movement behaviour.

For a more in-depth discussiosn please refer to section 6.2.



Chapter 4

From disorder to order: Emergence
and repeatability of coordinated
motion in stickleback fish

The current work studied the emergence of coordination in a group of unfamiliar free-
swimming stickleback fish (Gasterosteus aculeatus) in the laboratory and aimed to
demonstrate the existence of two different phases, the uncoordinated and the coordi-
nated. It also studied the effect of the repeated interactions on the characteristics of the
emergence. Finally, it investigated if the initial configuration of the experiment, but also
some individual traits such as sex and cortisol levels could predict the attributes of the
coordinated state.

4.1 Introduction

How and why complex and coherent behaviours emerge and self organize in systems with
large numbers of interacting units has attracted much interest from scientists (Camazine
et al., 2003; Nicolis & Prigogine, 1977; Sumpter & Sumpter, 2006). The observation that
collective behaviours can arise from simple, local interactions of the constituent parts
(Camazine et al., 2003; Clark & Evans, 1954; Herbert-Read et al., 2011; Deneubourg &
Goss, 1989; Katz et al., 2011; Parrish & Edelstein-Keshet, 1999b) led scientists to look
for universal rules and/or meaningful analogies across different systems; and none more
so than studies of animal groups, which typically examine the collective motion and
behaviour of bird flocks, fish shoals and insect aggregations (Buhl et al., 2006; Gelblum
et al., 2015; Herbert-Read et al., 2011; Nagy et al., 2010; Watts et al., 2016; Viscido
et al., 2004).

Fish have attracted most of the attention in the study of coordinated motion, be-
cause of the variable complex patterns they display (Hemelrijk & Hildenbrandt, 2012;

59
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Herbert-Read et al., 2011; Katz et al., 2011; Marras et al., 2015; Viscido et al., 2004).
Both global and individual-level behavioural observations are necessary for the deeper
understanding of the phenomenon (King et al., 2018). Macroscopically, Tunstrøm et al.

(2013) experimentally showed that coordinated fish motion can go through transitions
and can exhibit each of the three states: swarming, milling and polarized. Microscopi-
cally, using experimental and theoretical approaches to understand the mechanisms of
collective behaviour, it has been suggested that coordination in fish (and other taxa) can
be explained by three simple local interaction rules: attraction, repulsion and alignment
(Couzin et al., 2002; Czirók & Vicsek, 2000; Parr, 1927). Nevertheless, more simplified
models have shown that the same group-level properties can be explained with fewer
rules (for example only local attraction) (Strömbom, 2011).

Some of the proposed rules have been experimentally confirmed (Herbert-Read
et al., 2011; Katz et al., 2011; Schaerf et al., 2016) but at the same time, empirical
work demonstrates asymmetries in the interactions and how these scale to macroscopic
behaviour. For example, experiments in the lab have demonstrated that individual fish
are attracted more to neighbours in front than those behind them (Herbert-Read et al.,
2011; Katz et al., 2011) and suggest that differences in speed and acceleration can also
play a role in the group level dynamics, leading to the emergence of leadership, i.e. the
initiation of new directions of locomotion by one or more individuals which are then
followed by other group members (Krause et al., 2000).

Other studies have shown/suggested that variation in individual traits (such as
metabolic, personality and information knowledge) also influence the macroscopic
behaviours (Bazazi et al., 2011; Gelblum et al., 2015; Jolles et al., 2015; Lord et al.,
2016; Nakayama et al., 2016; Watts et al., 2016). More specifically, empirical studies
have demonstrated that certain individuals can act as leaders due to inter-individual
differences in morphology, state (Briard et al., 2015; Krause et al., 2000), experience
(Eskridge & Schlupp, 2014), information (Andrieu et al., 2016; Watts et al., 2016),
and/or personality (Jiang et al., 2017; Johnstone & Manica, 2011; Krause et al., 2000).
For example, according to Krause et al. (2000), well fed individuals (i.e. an indicator of
high energy status), do not need immediate food to survive and thus prefer to remain
close to the shoal in order to seek protection and increase their survival probability. Fish
with low energy status, in contrast,take greater risks in order to access energy sources
(Krause et al., 2000). Thus, low energy fish can act as initiators of movement in a new
direction and, if followed by conspecifics, they would then lead the motion at least
temporally (Krause et al., 2000; Rands, 2011). Metabolic rate variation, in the context
of refuge use and body lengths, is another possible trigger of leader/follower dynamics
(Krause et al., 2000). For example, larger fish were found to have higher swimming
speeds than smaller conspecifics which is likely to explain their leading position in
moving shoals (Krause et al., 1998).
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Also, bolder fish are more likely to initiate a movement event than shy fish and poten-
tially become leaders according to Nakayama et al. (2016) and Wang et al. (2017). The
coexistence of different personality types has been associated with better performance
for specific ratios of bold and shy individuals (Eskridge et al., 2015) indicating that
bold fish would act as leaders. Decision making in fish shoals during directed motion
is often attributed to the different behaviour of bold individuals that act as leaders, as
many studies show (Conradt, 2012; Ioannou et al., 2015; Rosenthal et al., 2015). These
inter-individual differences and resultant leader-follower dynamics are also predicted by
game-theoretical models of collective action (Johnstone & Manica, 2011).

Finally, leadership can also emerge in homogeneous populations, i.e. in populations
that individuals do not differ in personality initially, if knowledge on some useful
information related to the target of the motion (i.e. information on food or predator,
migration route etc) is acquired (Buhl et al., 2006; Eskridge et al., 2015; Ioannou et al.,
2015; Krause et al., 2000).

Previous studies attempted to understand coordination in fish shoals have omitted two
important aspects. Firstly, the majority investigate the underlying mechanisms that are
responsible for the coordination but for a short-term period. In other words, studies on
the underlying rules of fish coordination take into account only a snapshot of the process
(Biro & Sasaki, 2016). They study which interactions take place during coordinated
motion under specific environmental conditions, such as predation (Herbert-Read et al.,
2017; Croft et al., 2003), but do not test if these interactions change over the course of
repeated similar tasks (Herbert-Read et al., 2011; Katz et al., 2011). Few theoretical
works, such as the agent based model of Quera et al. (2016), have accounted for a
memory attribute of their agents to incorporate social biases due to previous repetitive
interactions. But in experimental works, the interaction properties extracted from a
single experiment are assumed to remain constant over repeated coordination events
(Herbert-Read, 2016). In the work of Jolles et al. (2018) there was a focus on repeatable
inter-indivitual differences across different environmental setups, but did not focus on
how repeated interactions affect the emergence of coordination and the dynamics of
collective movement. In real environments, fish tend to form groups with the same
individuals more than once in their lifetime (Biro & Sasaki, 2016) and they have to
forage or protect themselves repeatedly (Herbert-Read et al., 2017; Ioannou et al., 2017).
Recent works highlight the importance and usefulness of focusing on the time-depth
perspective to understand the stability and or adaptation of the hierarchical dynamics in
time (Biro & Sasaki, 2016).

Secondly, previous studies trying to find mechanistic and evolutionary explanations
that can explain the phenomenon of coordinated motion, typically investigate systems
in which coordination has already been established (Tunstrøm et al., 2013). They also
try to describe and understand mechanistically the transitions seen between different
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collective states, such as between milling and polarized states(Tunstrøm et al., 2013).
However, previous studies neglect to study the transitions seen before any coordination
is established, i.e. when the system is in a disordered state and establishes for the first
time the interactions that will determine later dynamics (Buhl et al., 2006; Dyson et al.,
2015; Murakami et al., 2017). Many realistic scenarios can lead individuals within an
established group to a disordered state, where the network of interactions and hierarchies
is reset (Kelley et al., 2011; Merkle et al., 2015). For example, a sudden predator attack
can spread individuals to new locations or environments with unfamiliar conspecifics,
resulting in a global disorder in terms of the interactions and collective formations
(Herbert-Read et al., 2017). Information conflict can divide groups and interrupt the
network of interactions (Merkle et al., 2015). Also, human activities such as fishing can
disrupt the stability of shoals and remove members of them. Where individuals start (or
re-start) from a random and disordered configuration, where they cannot choose their
neighbour or their environment, and have to re-establish their social interactions is thus
a common scenario for gregarious fish species (Borner et al., 2015; Nadler et al., 2016).
Less extreme, but equally relevant is the behaviour of individuals in fission-fusion animal
systems which, in some cases, results in individuals joining and leaving groups and
interacting with unknown or rarely encountered individuals at high frequency (Kelley
et al., 2011).

The study of this initial and first transition to a coordinated state can therefore
provide valuable information on the innate mechanisms by which individuals establish
their network of interactions. For example, the position of the fish at the disordered
state and the personality differences could determine which individuals will take the
front positions and influence others in later dynamics, or if the individuals will show
preferential attachment to the fish that were their neighbours at the beginning. An
alternative scenario would be that the dynamics during the ordered state (the coordination)
would be unaffected by the initial conditions, and that the dynamics of the coordinated
motion would be determined by individual personalities and/or environmental cues only.

4.1.1 Current Study

Preliminary observations of stickleback fish (Gasterosteus aculeatus) shoals in be-
havioural experiments indicated that fish ‘take a finite time’ to become coordinated
and start shoaling (Fürtbauer and King, personal communication). I therefore aimed
to investigate the existence of distinct phases with respect to coordinated motion and
indicative shoaling behaviour – the disordered and the ordered – and to determine the
time at which transitions between the two phases take place. I also investigated if leader-
follower relations are formed, and if so, if they are consistent across the uncoordinated
and coordinated states. Furthermore, I tested if other factors including, i) the initial
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configuration at the disordered state (i.e. at the start of an open field test), ii) personality
types (activity level), or iii) individual attributes (like sex and cortisol levels prior to
experiments) shape the later dynamics of coordinated motion in groups of stickleback
fish (Gasterosteus aculeatus). Finally, to bring a time-depth perspective, I tested whether
the patterns I uncovered were repeatable across two trials.

More specifically, the questions to be targeted in the current study are the following:
1) Are the initial detected activity levels of the fish affected by their physiological
characteristics (i.e. the cortisol levels, the weight and the sex of the fish)? Is the initial
fish activity level affected by the repeatability of the experiment? Is it affected by the
neighbours of each fish? 2) Is there any effect of the repeatability of the experiment
on the frequency a fish acts as a leader to others? 3) Is the time at which coordination
establishes predicted by the different trials? 4) Do fish that tend to be close to the same
fish start coordinating faster than other fish?

The work is divided into the following sections. First, I discuss the methodological
pipeline followed, i.e. the experimental setup, the tracking algorithm and the statistical
tools used for the analyses. Second, I present the results that are split into three subsec-
tions, the initial configuration, the link between initial and post behavioural transition
and the time-depth perspective results. Third, I discuss the results and provide relevant
questions that could be targeted in future studies.

4.2 Methodology

The experiments were designed and run by dr. Ines Fürtbauer at Swansea University.

4.2.1 Study Subjects

N = 30 stickleback fish randomly grouped into six shoals of n= 5 individuals were tested
twice (trial 1 and 2). In the morning fish were tagged individually using disc-shaped
tags (Yellow, Red, Blue, Black and White, see figure 4.1), mounted upon the dorsal
spines of the fish (Jolles et al., 2018; Webster & Laland, 2009) and were returned to
their individual tanks to habituate to the tags. In the afternoon, social experiments were
conducted as follows: five fish were placed in a transparent “starting box” (consisting of
five individual compartments) inside the rectangular test arena (42.5x73cm; lined with
white silica sand) to acclimatise for five minutes. The starting box was then removed
and the fish were videotaped for 20minutes. On the following day, social experiments
were conducted at the same time but in reverse order.
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4.2.2 Video recordings

Groups of fish were placed in a rectangular tank (730mm×425mm) filled with water
(5 cm depth) in “starting boxes" which consisted of a row of separated transparent
divides (figures 4.1 and 4.3). Fish were filmed by a Panasonic HDC-SD60 HD video
camera (Panasonic Corporation of North America, Secaucus, NJ, USA) positioned 2
meters above the tank. The tank was surrounded by an aluminum frame and white
screen (PhotoSEL BK13CW White Screen) enabling optimum conditions for video
recording. The depth of the water was such so that the fish were constrained to move in
two dimensions. The camera captured with a rate of 50 f ps. During the first minutes the
camera was recording the fish in their boxes. After the boxes were removed, the camera
recorded fish behaviour for further minutes (' 20 mins).

Neighbours

Non-neighbours

Figure 4.1: Actual (top) and schematic (bottom) representation of the initial setup of
the positions of the fish.They are located inside adjacent semi-transparent boxes. Red
arrows indicate the neighbouring relationships. Fish in the middle have two neighbours
one at each side. Fish at the edges have only one neighbour. The red rectangles show an
example of the outline of the box that is used to calculate the fish activity in that box.

4.2.3 Video analysis and Tracking

Individual activity in the box

Fish activity in the starting boxes was measured prior to being released to free-swimming
states. To quantify the box activity levels I developed an algorithm using the OPENCV
library in C++ (Itseez, 2015). The algorithm works as follows: First, I draw the outline
of the region each fish is located (see figures 4.1 and 4.3) and automatically create a grid
of points that covers all the area of the box (figure 4.3 right). Second, I apply optical
flow algorithm to detect motion/activity at each of the points.

Optical flow is the algorithm that tracks specific features (points) in an image across
multiple frames (the documentation follows, from opencv website) (Burton & Radford,
1978). It works on several assumptions: that the pixel intensities of an object do not
change between consecutive frames and that the neighbouring pixels have similar motion.
Consider a pixel I(x,y, t) in the first frame. It moves by distance (dx,dy) in the next
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frame taken after dt time. So since those pixels are the same and intensity does not
change, I can say, I(x,y, t) = I(x+dx,y+dy, t+dt). If I take taylor series approximation
of right-hand side, remove common terms and divide by dt I get the following equation:

fxu+ fyv+ ft = 0, 4.1

where fx =
∂ f
∂x

, fy =
∂ f
∂y

and u =
dx
dt

, v =
dy
dt

The above equation is called Optical Flow equation (Lucas & Kanade, 1981). I seek
to find image gradients in the x and y directions, fx and fy , respectively. Similarly, ft is
the gradient along time. But (u,v) is unknown. I cannot solve this one equation with
two unknown variables. So several methods are provided to solve this problem and one
of them is Lucas-Kanade.

Figure 4.2: A schematic representation of the 3x3 patch of an image. The blocks indicate
the pixels of the image. The grey and red blocks indicate the 3x3 patch. The red
block is the focal pixel and the grey blocks are the neighbouring pixels (accounting for
8-neighbours).

Lucas-Kanade method takes a 3x3 image patch around the point (figure 4.2). Because
of the initial assumptions I can treat the 9 points as following the same motion. I can find
( fx, fy, ft) for these 9 points. So now our problem becomes solving 9 equations with two
unknown variables which is an over-determined problem. A better solution is obtained
with least square fit method. Below is the final solution which is two equations-two
unknown problem and solve to get the solution.

[
u

v

]
=

[
∑i f 2

xi ∑i fxi fyi

∑i fxi fyi ∑i f 2
yi

]−1[
−∑i fxi fti
−∑i fyi fti

]
4.2

Therefore, using optical flow for the grid points, I count the times each grid point in
each box has been moved by the motion of the fish. For the final step, I sum the activated
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times of all points to have a total activity index. To reduce redundancy, I also record
activity if at least one point is activated. In addition to the two metrics of activity level I
create a matrix of the grid points in the box, where each matrix element, corresponding
to each point, is filled with 0s (no activity) and 1s (activity) for each time frame.

To compare activities between groups, each fish activity value was divided by the
sum of the activity level of all the fish of its group (normalized box activity, α i

tr )

α
i
trnorm =

α i
tr

1
N ∑

N
i α i

tr
4.3

where α i
tr is the box activity of fish i in trial tr .

425 mm

730 mm

Grid

Figure 4.3: The experimental setup (left) where the initial positions of the fish and the
size of the tank (730mm, 425mm)are provided. On the right, a schematic representation
of the grid points that were used to detect fish activity levels. The fish with the green
disk seems to be the least active and in contrast, the fish with the blue disk appears to
have activated the grid point more times than its conspecifics.

Tracking algorithm

Segmentation

To extract the trajectories of each fish, I developed a tracking algorithm based on
OPENCV in C++. Each fish was tagged with a specific colour. The segmentation of each
fish was based on their colour differences. The colours used were black, yellow, green,
blue and white. Because the background was white and the illumination conditions were
constant, segmenting the black, yellow, green and blue colours was efficient. However,
the white tag could not be segmented, but a different methodology used to detect that fish
and will be presented in the following paragraph. I worked on the HSV (hue, saturation,
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value) color space (an alternative representation of the Red Blue Green colour space) to
determine the range each color tag has in the video. HSV color space, like RGB, also
consists of 3 matrices, HUE, SATURATION and VALUE. HUE represents the color,
SATURATION represents the amount to which that respective color is mixed with white
and VALUE represents the amount to which that respective color is mixed with black. In
OPENCV, value range for HUE, SATURATION and VALUE are respectively 0−179,
0− 255 and 0− 255. I decided to use HSV colour space, because I know the colour
values for each tag (i.e. Hue values) should not vary much, but the Saturation and Value
would change more because of changes in water due to the movement of fish or the exact
position of the fish in the tank.

After testing for different value ranges of the HSV channels I concluded that the
ranges that best segment the colourtags are the following:

Table 4.1: Range of the HSV values used to segment
the coloured discs. H stands for Hue values, i.e. the
values that characterize the chroma/colour of each
tag. Except for the black colour, the range value for
this parameter is less variable for the other colours
(around 10,30 or 90 units). S stands for saturation
and V stand for Value. These two parameter values
vary a lot (around 200 units).

Fish tags H S V
min max min max min max

Yellow 19 33 40 255 92 255
Green 43 74 50 255 72 255
Blue 76 179 43 252 30 162
Black 0 179 0 255 0 49
All fish 0 179 0 255 0 120

To segment the fish with the white tag I applied the following:

I created a mask of all the five fish by segmenting the image using Otsu’s threshold
(left figure 4.4). I applied a bitwiseand operation (a.k.a intersection) between the seg-
mented image of each of the colour tags (middle left figure 4.4) and the segmented image
of the five fish to extract the mask of the four fish (middle right figure 4.4). Finally, I
used the last image as a mask to get only the objects that correspond to the white fish
(right figure 4.4). I grouped the remaining contours to get a solid object that corresponds
to the white targeted fish.

Association- Coordinates

Following the above procedure, an image with 5 segmented objects is obtained, where
each object corresponds to one of the fish. The fish tracks are the collection of the
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i) ii) iii) iv)

Figure 4.4: Image processing steps using OPENCV to extract the fish with white tag. i)
Initial segmentation using Otsu’s threshold. ii) The segmented coloured tags, after using
simple threshold on the HSV space. iii) The result of the intersection of the two previous
thresholded images. iv) Final result of the segmentation of the fish with the white tag.

positions of the segmented object that corresponds to a specific tag. In case of overlapping
fish at a time frame t the position of the fish is left empty. Because of the high time
resolution of the camera (50 fps) the fish do not show big or unexpected displacements
and thus, it is possible to estimate the missing values. For this reaon, once the routine
terminates I interpolate the missing values (figure 4.5).
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Figure 4.5: The missing entries are calculated by interpolating the missing value, i.e. the
missing point will be the average value between the position at time t−1 and time t +1.

To convert the pixel coordinates to physical quantities I drew two lines that indicated
the tank height and width in pixels (see figure 4.3). Due to the 2 meter distance of
the camera to the tank and the small size of the tank I assume there is no significant
distortion of the coordinate system. The dimensions of the tank are 730 × 425mm. The
origin of our new coordinate system is the bottom left corner of the tank. For each pixel
coordinate (xp, yp) the physical coordinates are

(x, y) =
(

xp×
730

width
, yp×

425
height

)
4.4
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4.2.4 General Analysis

Global Group Characteristics - Wavelet analysis

The Continuous Wavelet Transform (CWT) is used to decompose a signal into wavelets
(Daubechies, 1990). Wavelets are small oscillations that are highly localized in time.
While the Fourier Transform decomposes a signal into infinite length sines and cosines,
effectively losing all time-localization information, the CWT’s basis functions are scaled
and shifted versions of the time-localized mother wavelet (Ding et al., 2007). The CWT
is used to construct a time-frequency representation of a signal that offers very good
time and frequency localization.

The CWT is an excellent tool for mapping the changing properties of non-stationary
signals. The CWT is also an ideal tool for determining whether or not a signal is
stationary in a global sense. When a signal is judged non-stationary, the CWT can be
used to identify stationary sections of the data stream.

In all the experiments the oscillatory movement of the fish was apparent. The matlab
function cwt was used to decompose the x- or y- coordinate signal into frequencies. The
mother wavelet used for the current analysis was the analytic Morlet (Gabor) wavelet.
The wavelet is defined as a constant κσ subtracted from a plane wave and then localised
by a Gaussian window and its expression is 4.2.4

Ψσ (t) = cσ π
− 1

4 e−
1
2 t2 (

eiσt−κσ

)
4.5

where κσ = e−
1
2 σ2

and cσ =
(

1+ e−σ2−2e−
3
4 σ2
)− 1

2

The wavelet analysis was chosen to confirm the oscillatory behaviour and also to
provide the spectral characteristics of the coordinated motion.

Directional Correlation (CV)

To test if a fish is copying another fish, I calculated the directional correlation (CV)
between each pair (Nagy et al., 2010):

Ci j (τ) =
〈
~v i (t) ·~v j (t + τ)

〉
4.6

where~v i (t) is the normalized velocity of fish i,~v j (t) is the normalized velocity of
fish j, and τ is the time delay. For a specific time point and delay time, the dot product
calculates how much their directions are correlated after the time delay τ . If it is 1,
fish’ directions are exactly the same after a delay time τ , if it is 0, their directions are
perpendicular after time τ . This value is averaged over a specific time window (tw). For
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this experiment, the selection of the value depended on the question, but it was between
3 < tw < 5 secs. Thus, I got CV values for different τ and for all the time period of
the experiment. The maximum CV value ( CV ∗) was selected to represent each time
point. The detected CV ∗ corresponds to a specific value τ . When τ > 0 , the focal fish
i‘s direction is copied by fish j and, thus, the focal fish i leads fish j. Otherwise, when
τ < 0, the focal fish i copies j’s direction, i.e. follows fish j. Therefore, the CV ∗ time
series were used to study the phase transitions.

Frequency of leadership

To detect frequency of leadership of each fish or dyad, I calculated the number of
times each focal fish i was leading over fish j , i.e. how many times the delay time
τ corresponding to the maximum CV ∗ (τ∗) is positive. This frequency of leadership
was calculated over the whole experimental phase of interest using non overlapping
time windows (tw) for the CV ∗ estimation. In case I wanted to check the frequency of
leadership of each fish, then the average of the dyadic frequencies was calculated.

CV* threshold sensitivity analysis

The CV ∗ values can range from 0 to 1, where 0 shows no directional correlation at all
and 1 shows absolute correlation of the direction. For example, to find the frequency
of leadership in the experiment I have to find how many times one fish was copied
against its pair (how many times the delay time τ∗ at the maximum CV ∗ of focal fish was
positive). But to find meaningful correlations, I should consider taking the frequency of
leadership only at the times CV ∗ was over a threshold value. I assume, that for values of
CV ∗ smaller than 0.4 the correlation is very small and thus there is no real leadership.
To choose the appropriate CV ∗ threshold I run a sensitivity analysis. More specifically,
I counted the number of available detected leadership events of each fish for different
CV ∗ threshold values to see how these decrease as the threshold increases. In addition, I
calculated each group’s variance in the numbers leadership events for different threshold
values.

Figure 4.6 shows how the number of available points of leadership events varies for
different CV ∗ threshold values. It also shows the variance of points for the different
CV ∗ thresholds for all fish. The CV ∗ threshold was chosen to be the value at which the
number of available points is high enough, but also and the variance is maximum so that
the resolution is not lost. This happened at a threshold around 0.5.

Change point detection

I was interested in detecting the time point of the transition and divide the experiment
into two phases, the disordered and the ordered. To do this, I used the ‘changepoint’
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Figure 4.6: The available leadership points of each fish (indicated by different colours)
when taking threshold values of the CV ∗ (a) for trial 1 and (b) trial 2. (c) the variance of
the available points for the group for both trials (trial 1 in blue and trial 2 in red).

package in R/ or Matlab (R Core Team, 2013; Matlab team, 2017). This function detects
change points in inputted time series (in this case the CV ∗ time series). It finds the
optimal position of the change point according to a specified method. In this case, the
selected method detected changes in the mean value of the signal, i.e. significant changes
of the CV ∗ value. It returned the optimal time point at which the signal is divided into
two segments of significantly different mean CV ∗ values.

To extract the CV ∗ time series I need to decide which is the appropriate tw that can
be used. Thus, I detected the change points for a range of tw and checked how they are
affected by the different tw.

I could choose the mean change point for each group or the meadian change point to
plot against the different tw values. I chose the median instead of mean because I am
interested in the detection of the emergence of group coordination. If most of the fish
tend to have strong coordination but one remains distant for a long time, then the mean
CV ∗ will be much affected by the low levels of coordination seen by one fish compared
with the others. And thus it can obscure the existence of coordination.

Change point detection

From figure 4.7 below we can see that the different time windows do not significantly
affect the changepoint estimation. I thus decided to use the time window of 4 secs, a
good interval to detect correlations and also small enough to gain some computational
time. The first step before analyzing them is to smooth the data without losing significant
information.

In case the time series show a clear change in CV ∗ values the estimated change point
is easily detectable. However, for some cases that the fish are coordinated from the early
beginning and the CV ∗ values do not show a sharp change, or for some cases there is a
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Figure 4.7: The detection of the changepoint of the CV ∗ for different time windows used
to calculate the CV. The changepoint package in R was used to calculate the changepoints
of the CV* values.

change at the very beginning of the time series and thus the method is unable to correctly
find changepoints. In the second case, this can be improved by changing the length of the
inputted signal, so that the detection of the change point is more accurate. The decision
of the time series length in this case was decided by checking the sensitivity of the
change point estimation for different signal lengths (figure 4.7). The signal length, was
decided to be the one at which the median value didn’t change significantly by changing
the length, and at the same time the variance of the change point was small. I applied this
method only in cases where the change point in the signal was locating very early in the
signal. This was the case for Group 5 and 6 in trial 2. From the following figures (4.8)
we can see that a signal length smaller than 150sec will give a more accurate change
point.

Filtering

Despite the intrinsic noise of the data due to biological variability, there was also noise
in the data, due to limitations on video acquisition (e.g. camera resolution) and tracking
methodology. Therefore, some filtering methods were applied.

For the positional data, a Gaussian filter over 10 frames was used. For the CV* I used
Stavinsky-Golay smoothing technique, which in fact is a low-pass filter. The parameters
needed for this technique is the degree of the polynomial and the time window over
which the polynomial will be fitted. By testing for different values of the degree I
obtained figure 4.9. From there I decided to use a degree of polynomial that would
smooth the data but would not give a very high distance between the smoothed data and
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Figure 4.8: Top figure shows the influence of the signal length on the detection of
changepoint. The boxplots indicate the different ranges of the changepoints. Bottom
figures show the corresponding variance (left) and median difference (right) of the first
figure. Changepoint detection is not varied significantly for small lengths.

the original. Thus, I decided to use a degree around 4 - 5. Also, I used a time window
for the filter of 41 frames (i.e. 0.8secs).

4.2.5 Statistical Analysis

Permutation – Box Activity

Figures 4.1 and 4.3 show the initial set-up of the experiment where the fish are located in
adjacent semi-transparent boxes. Each fish dyad was characterized as neighbours or non-
neighbours if the fish were located in adjacent boxes or not, respectively. The maximum
number of neighbours a fish can have is two. Thus, when extracting neighbour and non-
neighbouring data, a fish can be part of two dyads, resulting in lack of independence in the
data (i.e. neighbours may influence each other’s’ activity). To test this, I used permutation
test (custom made code in Matlab, Thompson & Shure (1995)) for differences in activity
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Figure 4.9: The cost of filtering the original CV ∗ data (i.e. the distance/difference
between the original and filtered data) for different values of the polynomial degree
parameter.

among neighbours and randomly chosen dyads.

Linear mixed effect models – Metrics

A General Linear Model is a statistical linear model of the form:

yi = β1χ1i +β2χ2i + ...+βpχpi + εi

εi ∼ NID(0,σ2)

where β1,β2, ...,βp are the regression coefficients, and εi is the error term, with error
variance σ2. This model includes only one random variable to account for noise, i.e. the
variation seen in y values that is not explained by the x values. In addition, it cannot
account for variation between group observations.

The Mixed Effect models (or just mixed models) include additional random-effect
terms, i.e. they can incorporate variation between groups of the sample data and can be
expressed in matrix form as (Laird & Ware, 1982):

yi = Xiβ +Zibi + εi 4.7

bi ∼ Nq(0,Ψ) 4.8

εi ∼ Nni(0,σ2
Λi) 4.9

where yi is the ni×1 response vector for observations in the ith group. Xi is the ni× p

model matrix for the fixed effects for observations in group i. β is the p× 1 vector
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of fixed-effect coefficients. Zi is the ni× q model matrix for the random effects for
observations in group i. bi is the q×1 vector of random-effect coefficients for group i. εi

is the ni×1 vector of errors for observations in group i. Ψ is the q×q covariance matrix
for the random effects. σ2Λi is the ni×ni covariance matrix for the errors in group i.

The parameters of the mixed model can be estimated using Maximum Likelihood
Estimation (MLE) or Restricted Maximum Likelihood Estimation (RMLE).

Mixed Effects Models are seen as especially robust in the analysis of unbalanced data
when compared to similar analyses done under the General Linear Model framework
(with a restricted covariance structure). They are often appropriate for representing
clustered, and therefore dependent data arising, for example, when data are collected
hierarchically, when observations are taken on related individuals (such as siblings), or
when data are gathered over time on the same individuals.

Here, I used linear mixed models (LMMs) in R (R Core Team, 2013; Kuznetsova
et al., 2017) to analyse behavioural patterns across the two different phases and across
different trials. The data I am using (e.g. CV*, activity and hormonal) are correlated
and show hierarchical structure because each fish can belong into different subgroups
(according to trial or to the group it belongs to). Linear mixed models can take into
account hierarchical structure of the data and they can also account for random effects,
i.e. variation seen between groups or individuals. To allow for individual- and dyad-
specific differences, random intercepts were fitted for the “Individual” or the “Dyad”
and for the “Group”. In all models, the normality of the model residuals was tested and
where necessary, transformations were applied, using boxcox() function to determine
the most appropriate transformation to meet the model assumptions and to normalize
model residuals.

More specifically, to test if box activity is consistent between trials, I included the
box activity at trial 1 as the predictor variable and the box activity at trial 2 as the
response variable (Table 4.3, model 2). In addition to test if box activity at the start of
the experiment is affected by the experimental trial and/or the intrinsic physiological
characteristics of the fish (i.e. the cortisol levels, the weight and the sex of the fish),
the normalized box activity was included as the response variable and trial and cortisol
levels as the covariates (Table 4.3, model 3).

To test if the changepoint is significantly predicted by the different trials, a squared
root transformation was applied on the changepoint values because they were skewed.
The changepoint was the response variable (Table 4.3, model 4), and trial was chosen to
be the independent variable. The group was chosen as a random effect.

I tested if the frequency of leadership was consistent between trials, for both, phase
1 and phase 2 (Table 4.3, model 5 and 6 respectively). In addition, to test the effect of
the experimental trial on the frequency of leadership, the frequency of leadership was
included as the response variable and the trial was the explanatory (Table 4.3, model 7).
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Sex and cortisol levels were chosen to be the covariates, i.e. additional fixed effects.

4.3 Results

Qualitative behaviour

Once start boxes were removed, three distinct motion patterns were detected (figure 4.10):
i) minimal ‘no motion’ period, where fish remain almost still for about few seconds
(see cumulative distance plot, figure 5 and x- / y- coordinate plots in figure 4.10). ii)
“random” motion where fish change their directions randomly and they travel very small
distances compared to the distances they travel later in the experiment. iii) Directed
motion i.e. the fish move together, change their direction according to other fish and thus
they follow synchronized motion. During phase (iii) fish travel around the edges of the
tank, and avoid the centre, i.e. they tend to stay close to the tank wall while moving (see
figure 4.10, where the positions of either x- or y- coordinates are close to the high and
low end of each coordinate).
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Figure 4.10: X- (a) and Y- (b) coordinates (in mm) of each fish (different lines) of group
A in trial 1 across time (in secs). Both x- and y- values alternate between minimum and
maximum values across the whole length of the experiment. From the videos and the
positional data in the figure, one can distinguish three different motion patterns after the
boxes are removed (from the beginning of the experiment).

Figure 4.11 shows each fish’s cumulative distance travelled from the initial starting
location. This provides a measure of the time period each fish stays “inactive” before
starting moving. This period may be related to other individual-based traits, like stress
or testosterone levels.

Start box activity

Permutation analysis of mean activity between neighbours and non-neighbours revealed
that the fishes’activity in the start box was not influenced by that of its neighbours
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Figure 4.11: The cumulative distance each fish travelled (different fish are indicated with
different colours) of group A in trial 2 for the first 150 secs after the boxes were removed.
The arrows indicate the different times each fish initializes movement (initiation time
lag).

(figure 4.12) (permutest : STAT = 1098.2, P= 0.442, seetable 4.2). I found a significant
positive relationship between normalized box activity (α i

trnorm) in trial 1 and trial 2
(Spearman’s rho = 0.399, p = 0.029, n = 30, figure 4.12 Table 4.2). The same was
confirmed with a LMM, where ’individual’ and ’group’ were included as random effects
(LMM : E f f ect = 0.3245, StandardError = 0.1343, p = 0.022; Table 4.3).
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Figure 4.12: a) Normalized box activity levels for each fish across two trials. Each
dot indicates a fish, which are grouped by colour (in 6 groups). The figure illustrates a
moderate correlation between fish box activity across trials (Spearman’s rho = 0.399,
p = 0.029, n = 30 ). b) Boxplots of the difference of the box activity between neigh-
bouring fish (left) and non neighbouring fish (right). The whiskers show the range of
values, the boxes represent the interquartile range box, i.e. the middle 50% of the data.
The notches overlap widely, indicating non-detectable differences between neighbours
and non-neighbours.
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Onset of coordination

Maximum directional correlation (CV ∗) of each fish dyad overtime (figure 4.14) showed
that fish transitioned between uncoordinated motion to coordinated motion. Initially,
the values are below 0.4 (i.e. fish do not strongly copy each other’s direction) but then
the correlation increases, and the dyads’ approach 0.9 (see figure 4.14). Change Point
detection identified the timing of this change from non-coordinated to coordinated (figure
4.14); min = 1.16, max = 114.76, mean = 38.16secs). Continuous wavelet transform of
fish positional data confirmed that the coordinated motion was related to the fish shoals’
oscillatory motion around the rectangular tank (i.e. they swim together around edges of
the tank) which is around 0.035 Hz (figure 4.13). Mean box activity level of the five fish
did not predict the time leader-follower dynamics stabilize (LMM: E f f ect = 0.0083,
Standard Error = 0.0083, p = 0.33, see table 4.3 ), suggesting more active shoals don’t
coordinate quicker.
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Figure 4.13: Continuous wavelet transform scalograms represents the correlation of the
Morlet wavelet of a specific frequency and our signal (the positional data). Yellow colour
indicates higher correlation. The yellow pattern shows the dominant frequency of this
oscillatory motion which is around 0.035 Hz and indicates the emergence of oscillatory
behaviour with period of 25-30 seconds confirming video observations.

Leadership establishment

In the disordered phase, there was no consistent leader-follower dynamics observed
between trials (figure 14; LMM: E f f ect±SE =−0.16±0.24, p = 0.521), indicating
copying dynamics appear random. In contrast, for the coordinated phase, leadership was
observed, and these leader roles were maintained across trials (LMM: E f f ect±SE =

0.42±0.11, p < 0.001) (figure 4.15).
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and gradually approach value 0.9.
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Figure 4.15: Correlation of frequency of leadership of each fish between two trials for
the two distinguished detected phases (left: disordered phase, right: ordered phase).
Each point represents the frequency a fish i leads over the others in the group, for specific
time interval tw = 2secs. Each leadership event is calculated using CV formula [4], with
CVthr∗= 0.5.

Time depth perspective - Repeatability

Changepoint analysis revealed that coordinated motion appears significantly faster (figure
4.16) in the second trial than in the first trial (LMM: E f f ect =−16.29, Standarderror =

3.74, p = 3.43e−05; figure 4.16), suggesting that fish coordinate faster under repeated
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coordination events.
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Figure 4.16: Difference in the onset of coordination (change point) in two trials. The
whiskers indicate the range of values and the horizontal line inside the box is the median
value.

4.4 Summary

This work demonstrated the existence of two different phases, the uncoordinated and the
coordinated, and the transition time from one to the other, for shoals of free-swimming
stickleback fish in the laboratory. The appearance of coordination came together with
the onset of leadership and the establishment of it, since the leadership structure was
maintained after the repetition of the experiment. I also demonstrated, for first time,
the existence of the process of adaptation of the collective formation over time. I
also investigated if some individual traits and the initial configuration determined the
characteristics of the coordinated state.

Initially, a new methodology on quantifying fish activity in confined environments
was proposed and was used to test for consistency between repeated experiments. The
analysis on the fish activity in the box showed that the fish that are more active in the first
trial were also active in the second. The activity of the fish was not predicted by their
cortisol level and sex type. In this study the high or low activity was not an indication of
the stress the fish experience. Other hormones and factors, such as testosterone levels or
metabolic states (Ward et al., 2018), could be linked to the activity levels of the fish, and
could be tested in future experiments.

The study has evinced the significance the uncoordinated phase to the establishment
of the group’s network of interaction and suggests that the existence of the uncoordinated
phase is a prerequisite for the collective formation to appear in unfamiliar individuals.

For a more in-depth discussion please refer to section 6.3.
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Table 4.2: Permutation analysis results for the effect of neigh-
bouring individuals on the box activity.

Box activity Permutation Statistic Observed P-value
Trial 1 1098 1179 0.44

630 454 0.77
2607 2528 0.59
1431 1229 0.69
2361 1963 0.76
2156 2699 0.14

Trial 2 3236 4384 0.11
2114 2523 0.29
1384 1199 0.71
1573 1351 0.692
1722 1361 0.892
1523 943 0.892

Spearman’s 0.399 0.029∗

Table 4.3: Summary of linear mixed effect models investigating predictors for the box
activity, leadership and coordination of fish shoals.

Model Response Predictor Estimate ± se t value p-value
1− (RV : group) group_changepoint log(BoxActivity) 0.01 ± 0.01 1.03 0.33
2− (RV : group) Boxactivityt2 Boxactivityt1 0.32 ± 0.13 2.42 0.02∗

3− (RV : group) Boxactivity Trial 0.01 ± 0.046 0.269 0.789
4− (RV : group) changepoint Trial -24.64± 5.02 -4.91 <0.01∗∗∗

5− (RV : group) f reqleadert2 f reqleadert1 -0.16 ± 0.24 -0.65 0.52
(phase1)
6− (RV : group) f reqleadert2 f reqleadert1 0.42 ± 0.11 3.85 <0.01∗∗∗

(phase2)
7− (RV : ID) f leadership Trial -0.03 ± 0.03 -0.98 0.34

Sex -0.02 ± 0.06 -0.44 0.67
log(Cortisol) 0.04 ± 0.05 0.74 0.46
Sex 0.06 ± 0.05 1.23 0.23
log(Cortisol) -0.04 ± 0.07 -0.74 0.46
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Chapter 5

Visualisation of movement and public
engagement

This chapter is a brief report on how scientific methods that are in principle developed for
answering scientific questions can be used and applied for other purposes, for example
to engage the public with science.

5.1 Introduction

Public engagement, according to the National coordinating centre for public engagement
in UK, "describes the myriad of ways in which the activity and benefits of higher
education and research can be shared with the public. It is by definition a two-way
process, involving interaction and listening, with the goal of generating mutual benefits".

The above definition clearly demonstrates that the field has shifted its interest from
simply contributing to the public understanding of science to focusing on engaging
the public actively with Science and Technology. It, therefore, finds importance in
maintaining a dialogue and an increasingly more egalitarian communication about
science (Schäfer, 2009b,a).

Despite criticisms, public engagement is a necessary part of the process to democra-
tize science (Srinivas, 2017). This is also recognized by organizations such as the US
National Academy of Sciences (NAS) and the Organization for Economic Cooperation
and Development (OECD). The view of public engagement as a two-way process where,
both, the public and the scientists benefit from it is of great importance. Scientists are
able to test their ideas and their methodologies, they can face challenges and can boost
their creativity by taking part in public engagement projects and events.

This shift in the focus of public engagement has been supported financially for alter-
native types of science communication, such as consensus or stakeholder conferences,
public discussions, or science shops (Dietrich & Schibeci, 2003; Schibeci et al., 2006).
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5.2 The project

During the course of my Phd I had the opportunity to get involved in a science commu-
nication project called "Animal Collectives". Animal Collectives was a collaboration
between the artist Heather Barnett and my supervisors Dr Andrew King and Dr Ines
Fürtbauer and their groups and was funded by a Leverhulme Trust Artist in Residence
grant and was ran between March – November 2017. My contribution to the project was
the devise of an outdoor interactive/collaborative activity regarding ecological concepts,
the creation and video projection of the motion from different systems and the imple-
mentation of an interactive installation, where participants’ motion would be reflected
and presented as an abstract motion field on the wall of a dark room. The interactive
installation was run at Arebyte gallery in Hackney Wick, East London during the event
"Crowd Control" that took place between 1-20 July 2017. The video representations
were exposed in both the "Crowd control" event but also for two months in Berlin, i.e.
from 30.09.2017 to 26.12.2017, at the Art Laboratory Berlin during the "Nonhuman
Networks" exhibition.

5.3 Methodology

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer (an eye or a
camera) and the scene. The method that is introduced in Chapter 4 on the quantification
of the fish activity in confined environments is based on the measurement of optical flow.
Detailed information on how optical flow algorithms work is presented in section 4.2.3.
Briefly, a routine that tracks specific features (points) in an image across multiple frames
is developed. This routine can extract the magnitude and direction of the perceived
motion of the feature in image sequences.

Based on the build-in function on optical flow of the OPENCV library (Itseez, 2015),
I developed a routine that calculates the flow of multiple points in the image frame.
More specifically, a grid of points is created and applied on the captured image, covering
all the image area. The optical flow algorithm is, then, sequentially applied at each
point location, and for each consecutive time frame. If a motion is taking place at a
location of the predetermined grid points, i.e. if a change in the intensity values of a
predetermined point in the image is detected, the algorithm will calculate and return the
flow properties of that point. Assuming that the objects in the image are moving in a
smooth and predictable way, the position of the point at the next frame will be updated
to the new location.

The above algorithm constitutes the base of a series of routines that have been
developed for a particular visualisation purpose. The parameters are tuned and modified,
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depending on the type of moving objects, i.e. if they are fish, or humans, or monocellular
organisms. They are also modified depending on the video characteristics (e.g. capturing
rate, illumination conditions and noise) but also on the desired outcome.

5.4 Results

An example of how videos of human collective motion can be converted to a motion
field can be seen in figure 5.1. In this case, participants were asked to experience the
rules a slime mould follows in order to explore food. A grid of points is created and
applied on the image of the first frame. At each time step the optical flow algorithm was
applied and the grid points where updated with their new position in the image. Tracks
of the previous positions where used to draw the points trajectories.

time

Figure 5.1: Left and right image show the result of applying optical flow on videos of
human collective movement

Video representations of movement

Figure 5.2 shows the final set-up of the exhibition at the gallery. The screens were
positioned on the floor and were showing different aspects of crowd behaviour and
collective movement, from different living and non-living systems. One of the screens
was reproducing a video of an abstract motion field of collective human movement. The
source videos, were referring to the collective movement of human participants in a
previously organized workshop by Heather Barnett. During that workshop participants
were asked to become part of a being slime mold scheme, for this they were asked to
follow some movement and interaction rules to experience how a slime mould would
explore its environment in order to encounter food.

Videos would show the points in the screen to move according to the direction and
velocity of the underlying movement. Interesting moving patters emerged as a result
of applying the methodology to these videos. For example, points were moving as
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following a spiral. All these interesting patterns were not easy to be perveived from the
source videos due to the higher level of detail that could easily distract the observer from
focusing on these details.

Figure 5.2: The set-up of the gallery during the exhibition period. Motion fields from
collective human movements have been displayed on screens placed over the floor.

Interactive

The interactive installation was realized at the Testing Station at Arebyte gallery (figure
5.3). Visitors were the targeted subjects. Their movement inside the gallery was captured
by a fixed camera, on the ceiling, and was converted and projected into the wall as an
abstract motion field, i.e. as a collection of moving dots.

Figure 5.3: The environment where the interactive installation was realized.

The participants were able to perceive how fast they were moving, how their move-
ment modifications would be reflected in the screen. If more than one participants were
moving at the same time, then more interesting patterns would emerge, like points that
were moving in opposite directions and entounter each others.
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5.5 Discussion

In this brief chapter I demonstrated some of the endless possibilities one can choose to
visualise motion. In this case, movement was represented as an abstract representation
of a vector field. This representation helped participants to realise that motion can be
described by very few parameters, the direction and the speed.

The participants benefited from this experience because they could have the chance
to get familiar with the notion and the representation of a vector field. The could also
be able to perceive that motion can be described by very simple parameter. They could
also have a sense of how the area is explored during motion depending on the system,
i.e. how much of the total area covered. They finally could be able to see the effect the
change in the movement pattern had on the form of motion field.

The reasearchers that participated in the event also benefited. They realized that
public engagement projects could potentially provide data for answering questions re-
garding human movement. The involvement on the public engagement project enhanced
the perception that the motion can show similar characteristics across a variety of study
systems. In additions, researchers were able to get a feedback from the participants on
the impact this methodology can have on other applications. Finally, this experience
helped scientists to come up with new ideas and new scientific questions.
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Chapter 6

Discussion

The thesis developed tools to track movement (i.e. extract positions and other useful
attributes) at three different spatio-temporal scales in biology; the intracellular, the
cellular and the organism level (i.e. fish). It also targeted and shed light on relevant
questions regarding each scale. Regarding intra-cellular movement, it for first time
empirically extracted the inheritance of the endosomal QD fluorescence across two
consecutive generations. It demonstrated that QD endosomal inheritance in Human
Osteosarcoma (U2OS) cells is random and there is no selection towards a specific
splitting ratio but the QD loaded endosomes are distributed uniformly into the daughter
cells. This is a finding with significant pharamceutical implications. In addition, it
developed in silico models that could be used to predict more accurately QD endosomal
inheritance from flow cytometry experiments. Regarding cell movement, the thesis
developed a semi-automatic algorithm to track cell positions from long-term microscopy
experiments, using a GFP cell cycle marker. It showed, that the global movement
resembles brownian walk initially, but is, at later steps, becoming sub-diffusive due
to the increase in cell density. In addition, empirical data showed that there must be
two different movement patterns within the U2OS populations, one more diffusive
and one more directed. The different movement patterns could be related to different
behavioural/genetic profiles. Regarding fish movement, it was demonstrated that the
emergence of coordination of fish follows after a phenomenically random/disordered
state. To my knowledge, it was for first time showed that this disordered phase is of
great value and necessary for the establishment of the network of social interactions in a
group of unknown fish. The time that is spent in that phase is decreasing after repeated
experimental trials, and thus, they seem to habituate to constant environments.
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6.1 Intracellular motion

Chapter 2 studied the partitioning of the fluorescence of the loaded QDs in proliferative
human osteosarcoma cells (U2OS). The cells were labeled with a GFP marker at their
cytoplasm and long-term microscopy experiments took place to extract genealogical
information. The use of QDs was decided for their properties (i.e. high photostability,
limited photobleaching, narrow fluorescence emission spectra) and for their potential
to function as carrier systems for efficient drug and gene delivery. The particles can
be provided with multiple functionalities, and their specific characteristics allow the
combined application to imaging, therapy and their use as carrier systems for the targeted
delivery through one nanoparticle type.

In the current work, it was shown that the QD endosomal fluorescence intensity is not
distributed equally into daughter cells. The whole process is purely stochastic and does
not select for a specific QD splitting ratio value. Almost two decades ago, Bergeland
et al. (2001) and Dunster et al. (2002) were suggesting that endosomes must be equally
distributed to the daughter cells, since no endosomal fusion or fragmentation is observed.
But no evidence for a strict mechanism guaranteeing their equal distribution was found.
On the other hand, Dunster et al. (2002) suggested that specific types of endosomes are
distributed equally to daughter cells under an active partitioning process. Therefore, the
calculated asymmetry seen in this work must be due to the random uptake of QDs into
the vesicles. Indeed, Summers et al. (2011) demonstrated that the chance of success or
failure of nanoparticle uptake and inheritance is random and thus there is asymmetric
nanoparticle segregation in the endosomal compartment.

Previous work of Brown et al. (2010) predicted, using in silico models tuned by
flow cytometry data, that the QD fluorescence of a cell would be distributed to the
daughter cells following a 80:20 splitting ratio value, a conclusion that raised questions
on the ultimate causes that lead to the selection for a particular splitting ratio value. The
demonstrated heterogeneity in the nanoparticle uptake in cells can work as a pool where
selective forces can act and select cells that distribute endosomal material following
specific splitting ratio values.

Current work has clearly demonstraded that there is no selection towards a particular
splitting ratio value, because QD fluorescence intensity splitting ratio is distributed
uniformly and thus there must not be a fitness benefit for the selection of cells towards
a particular splitting ratio. Therefore, there is no biological process that creates a
preference for a particular asymmetric partitioning value.

The demonstrated heterogeinity of the splitting ratio values, however, is still a very
interesting finding and could have significant pharmaceutical implications. The existence
of a wide range of QD numbers in the cells and in the endosomes could work in favour
of the survival of the cell. A wide variety of drugs that target cancer cells are internalized
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into the cells via the endocytotic route (Kirtane et al., 2013). The effectiveness of
the administered dose is, therefore, tightly linked with the distribution of the acquired
dose into the cells and more specifically into the endosomes. The heterogeinity in
the endosomal QD load can, therefore, help the U2OS cellular population, to bypass
the effect of the administered drug, by accumulating higher amounts of it in only a
percentage of the cells. Future experiments that use drugs that target tumour cells, and
subsequent studies on the effect of the administered dose on the population of Human
Osteosarcoma cells is required to confirm or reject this hypothesis.

To my knowledge, this was the first study to extract detailed genealogical information
from microscopy for the study of the QD fluorescence iheritance, as previous studies
attempted to give answers using in silico models and flow cytometry experiments.

The majority of previous works have been based solely on flow cytometry snap-shot,
i.e. contiguous time-series, data. These data do not contain detailed spatial and genealog-
ical information. A question of interest, therefore, is to investigate and understand the
relationship between the equivalent data from flow cytometry and that extracted from
high throughput microscopy. For example, it would be interesting to find ways image
microscopy data could contribute to flow cytometry data interpretation and vice-versa
(figure 6.1). We need to develop methodologies that can theoretically, but accurately,
reveal genealogical information and predict the redistribution of the intracellular QD
dose from flow cytometry data, based on the image microscopy experiments.

The methodological approach followed (i.e. microscopy) intrinsically age-sorts the
QD fluorescence data into generations and the daughter cells are further sorted into high
and low loaded QD fluorescent categories. In contrast with microscopy, it is almost
impossible to extract clear genealogical information with flow cytometry, because of
the unavoidable variations on the division times in cells. Thus the distributions from
flow cytometry include multiple generations. Current work evinced the limitations and
concerns someone should have in order to study compartmental inheritance on flow
cytometry.

By simulating the redistribution of the QD fluorescence in an age-sorted in-silico
model I recreated the perceived asymmetry found in flow-cytometry experiments as is
shown in figure 2.11 a. By convolving the high and low loaded daughter sub-populations
into one population I remove the genealogical relationships between parent and daughter
cells and by randomly sampling the measured intermitotic time distribution I remove the
age-structured or generational relationship. Under these conditions, the QD partitioning
ratios are asymmetric and match contiguous flow cytometry measurements.

Therefore, current work established a link between flow and image cytometry, with
the development of an in silico model for the prediction of the QD fluorescence in-
heritance from flow cytometric data. The contribution of each generation from flow
cytometry samples can now be uncovered. The use of this information can help to more
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accurately predict compartmental inheritance from flow cytometry experiments, taking
into account the actual percentage of each generation in the sample.

Recent work of Thomas (2017) introduced a theoretical way to study and predict
snapshot data, for example data that derived from flow cytometry experiments. In
addition to that, he incorporated into his theoretical approach the evolution of chemical
reactions of specific molecules in proliferative cells and proposed an analytical way to
predict the amount of molecules in time. Based on his work, the next step would be to
analytically describe and predict the redistribution of the QDs in proliferative cells from
experimental data that are not age sorted.

Figure 6.1: Schematic representation of the interplay between flow and image cytometry
methodologies. Information is transferred from one methodology to the other and both
help to better understand and interpret data on cellular and drug dynamics.

6.2 Cellular movement

Chapter 3 aimed to unravel the movement behaviour and characteristics of the Human
Osteosarcoma cellular population and to provide information on the cell cycle profile of
the cells.

During the initial stages of the cell cycle cells move following on average normal
diffusion process. This is demonstrared from the study of the slope of the MSD curve
for the initial time points. However, as the cell cycle time progresses, the average
movement behaviour is best described as being sub-diffusive, i.e. the increase in the
average discplacement does not increase linearly with time. In other words, cells move
slower than they would if were realising normal diffusion. This change in movement
behaviour seems to happen due to the crowding effect (Weiss et al., 2004), i.e. the
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increase of the cell density in the well plate as time progresses.

The current work has also demonstrated the existence of different movement strate-
gies in human osteosarcoma (U2OS) cell populations. The heterogeinity in tumour cells
has been widely studied, mainly at the molecular, biochemical and intracellular level
(Zhang et al., 2015a; Ekdawi et al., 2016; Brown et al., 2018; Yan et al., 2016). The
current study demonstrated that the heterogeinity can also be expressed as a difference in
the movement strategies of the cells. Further studies that will link movement trajectories
with the genetic profile and persistence individual differences of the cells are required to
enhance this observation.

Mean squared displacement analysis has been thoroughly used across multiple
fields in biology, from molecular biology to movement ecology (Singh et al., 2016;
Chenouard et al., 2014; Fagan & Calabrese, 2014; Differential et al., 2008). It can
serve as a tool to measure the mode of displacement of individuals followed over time.
Because it is an averaging method, it is unable to unravel the existence of different
movement classifications within the population. For example, in the current case, the
MSD plot does not reveal the heterogeneity seen in the movement trajectories within
the population (figure 3.12). Net squared displacement (NSD) plots are usually used
to classify differences in movement trajectories (Singh et al., 2016; Bastille-Rousseau
et al., 2016). NSD measures the Euclidean distance between the starting location of a
movement path and each subsequent location (Singh et al., 2016). Time-series of NSD
values are characteristic of individual movement trajectories. In contrast, Mean squared
displacement is used to quantify the diffusive spread of particles, or animals, over time
and space. Future analysis and the use of NSD would be prefered in order to study the
inter-individual mobility patterns of the U2OS cells.

Osteosarcoma is a bone tumour of mesenchymal origin displaying significant het-
erogeneity. Although evidence suggests the presence of cancer stem cells (CSCs) in
osteosarcoma a consensus on their genetic and phenotypic characterization is still miss-
ing. Identify cancer stem-like cell populations in osteosarcoma cell lines, Characterize
osteosarcoma CSCs at the genetic and phenotypic levels.

Nowadays, there is a lot of concern on the effectiveness of some therapeutic methods
used to attack tumours. An increasing amount of studies focuses on the existence
and the behavioural response of stem-like cancer cell types under therapeutic pressure.
Detecting, predicting and understanding the cellular heterogeneity is a crucial step to
achieve efficient cancer treatment protocols. This heterogeneity can be demonstrated also
in the movement pattern of cells. Being able to, therefore, classify different movement
types and assign them to specific cell behaviours would be a very useful diagnostic tool
for the early detection and prevention of the emergence of metastatic events.

The extracted distribution of the distance traveled of the cells is not bell shaped, but it
has rather a fat right tail. Taking into account figure 3.12 and the distribution of the total
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distance traveled, it is anavoidable to suspect that the cells, if not all, follow a different
than the brownian walk. From figure 3.12 at least two different movement patterns are
apparent, one more diffusive and one more directed. Therefore, the distribution seen in
figure 3.14 must be a combination of two different distributions, one Gaussian and one
Levy-like.

The future aim would be to be able to distinguish stem like cells from their change in
movement and thus calculate the percentage of those in a U2OS population of specific
density. This could have implications on the time and type of therapeutic method used to
attack tumours. We could also study the movement characteristics of the cells and try
understand their interactions with other cell types. Targeting the interaction network of
the cancer cells and their heterogeinity we could find means of controling tumors more
effectively.

In future work, I will classify cells within a population according to their cell
movement patterns. Detection and prediction of emergence of metastatic behaviours
by the movement patters and cell cycle characteristics of cells. In addition, I will aim
to answer if the percentage of motile cells found from image cytometry is correlated
to the percentage of stem-like cells from flow cytometry. The above analysis would be
repeated in population where real drug has been administered.

6.3 Collective movement

In this work, I demonstrated that the initial detected activity levels of the fish are neither
affected by their physiological characteristics (i.e. the cortisol levels, the weight and
the sex of the fish) nor by the activity of their neighbours. However, I found that the
activity levels were consistent across repeated experiments. I also demonstrated the
existence of a transition from a disordered to an ordered phase. The time at which the
emergence of coordination takes place was significanlty decreased in the second trial.
Finally, I quantified the frequency of leadership of each fish and I demonstrated that the
frequency of leadership was maintained across trials for the ordered phase, but not for
the disordered.

In more detail, I initially proposed a new methodology on quantifying fish activity
(i.e. fish box activity) in confined environments and I used it to test the activity of each
fish and if the activity was consistent between repeated experiments. The analysis on
the fish activity in the box showed that the fish that are more active in the first trial
were also active in the second. The fact that the activity prior to start of the experiment
showed consistent inter-individual differences indicates that box activity may represent
personality trait (Sih et al., 2015; Mazzamuto et al., 2018) and can be used to test if it
determines the behavioural rules established during the coordinated state (Ward et al.,
2018). The activity of the fish was not predicted by their cortisol level and sex type.
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Cortisol levels indicate the stress state of the fish (Baker et al., 2013). In this study
the high or low activity was not an indication of the stress the fish experience. Other
hormones and factors, such as testosterone levels or metabolic states (Ward et al., 2018),
could be linked to the activity levels of the fish, and could be tested in future experiments.

The basic metric used for understanding the onset of coordination was the directional
correlation delay time (CV ∗), a metric that has been previously introduced for the
detection of coordination and leadership hierarchy in pigeon flocks (Nagy et al., 2010)
and recently used for detecting influential neighbours in U-turns (Jiang et al., 2017). In
the current study, this metric was used in order to show the existence of the transition to
coordination and also to quantify leadership events. The existence of a transition between
low and high coordination was perceived as the transition from low to high directional
correlation CV ∗ values (figure 4.14). The initial observation/hypothesis that the fish do
not start coordination immediately when they first meet each other is confirmed by the
CV ∗ values. The detected time this change takes place varies depending on the group
and the trial, but is apparent in all the cases. The variation on the times of the onset of
coordination needs itself investigation, as it can be affected by different factors, such as
group composition, initial positioning in the tank, the time and day of the experiment,
but also the relationship status (such as familiarity) between the members of the groups.
The latter has been investigated in this study.

Once the emergence of coordination was confirmed and demonstrated, questions
regarding the importance of the existence of a disordered phase for the determination
of the later dynamics were investigated. CV ∗ was used to quantify leadership for the
different phases. The frequency of leadership between trials was consistent in the
coordinated state, but not in the uncoordinated. There must be some underlying rule
that keeps the hierarchies unchanged in the ordered state. In the current study the
fish that participated did not have any prior interaction, and thus they were unfamiliar.
These observations lead to the hypothesis that the initial disordered phase is driven by
stochasticity, while fish try to react to the new environment and the perceived leadership
is of no real meaning. Previous work of Jiménez-morales et al. (2018) studied the
formation and maintenance of hierarchical organization in unfamiliar crayfish triads
under agonistic interactions and demonstrated that the first encounter is necessary for
the hierarchy to be established and, after this the hierarchy is maintained. This finding
enhances the hypothesis that fish need some time to establish their network of interactions
and if conditions remain unchanged so do their hierachical structure. Hobson & DeDeo
(2015) studied how does dominance emerges in groups of unfamiliar monk parakeets and
demonstrated the existence of a transition from a disordered structure to an ordered one.
They found that during the first quarter of the study period the dominance structure of
the groups was consistent with the null model, i.e the structure that would be expected if
interactions were random and not established yet. However, they found that a transition
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towards more structured aggression occurred rapidly, about a week after initial group
formation. Therefore, the current and previous studies suggest that the existence of an
uncoordinated phase must be a prerequisite to the achievement of collective motion as it
could be the period where the group establishes the hierarchical network of interactions.

None of the personality traits. i.e. cortisol levels and sex, available for the study
could predict leadership or the time of coordination. These traits have been previously
showed to play an important role on the form of the interaction in collective behaviours.
However, the results here indicate that other individual traits may be more important
for the establishment of coordination and the hierarchies, for example testosterone or
other hormonal level, acceleration profile etc. It is also possible that hierarchy does
not emerge primarily from differences in intrinsic qualities of individuals but rather as
a self-organizing process in which a hierarchy arises as a result of many interactions
between the members of the society (Hickey & Davidsen, 2019). In the latter case, the
shape of the onset of coordination could also be affected by initial conditions, such as
relative positions of the fish at the beginning, the number of participants, the level of
intensity of interactions and others. Future studies could work on them.

One of the components of our experiment was the repeatability, i.e. the time-depth
perspective. The demonstration of the emergence of coordination and the respected
underlying properties that were stated above is an important first step to understand how
the phenomenon of fish coordination is established. However, most real situations can
be repeated multiple times and the same group of individuals needs to coordinate more
than one time (Biro & Sasaki, 2016).

Changepoint analysis showed that coordinated motion appears significantly faster
(figure 4.16) in the second trial. This is an interesting result and raises questions regarding
the reasons that this is happening. Figure 4.15 shows that during the disordered phase
the leader-follower relationships are random, due to the lack of consistency between
trials. In contrast, during the ordered phase leader-follower dynamics between trials are
strongly correlated. Therefore, a reason that could explain the differences in the time of
coordination would be that fish in first trial have to construct their social network from the
beginning, and this would require some time (see figure 4.16). Once they have established
their network then they can start coordinating faster, thus the duration of the disordered
phase would decrease. This suggests that the initial phase can be a fundamental period,
very important and necessary that shapes the form of later coordinated phase.

It is important to note that even in the simplest experimental setup, where environ-
mental conditions are stable and there are no external stimuli (like predation), there is
a significant change of behaviour of the fish in the time-depth (such as faster coordi-
nation). It would be possible that in stable environments like the one studied here, the
dynamics on the collective behaviour would stabilize sooner than in more complicated
environments, where the external forces could probably act constantly. There are few
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studies that targeted the adaptation of collective formations and the links between altered
environmental conditions and social organization (Jiménez-morales et al., 2018; Hobson
& DeDeo, 2015; Flood & Wong, 2017). However, future studies are needed to under-
stand the changes in the social structure and the collective dynamics under a dynamic
environment. The results lead to the conclusion that the time of coordination is not a
random event and is related to the interactions that take place during the disordered phase.
A reason why frequency of leadership in the ordered phase strongly predicts the fish pair
coordination times would be that fish pairs that follow each other more often probably
share some attributes (physiological, visual or others) that trigger the establishment of
their interactions and hierarchies faster than other dyads. It seems that analysis at the
dyadic level can unravel some important information to better understanding the complex
process of emergence of coordination.

Regarding fish, it is worth noting that these experiments performed on small group
sizes. But most collective actions consist of a much higher number of individuals
(Croft et al., 2003) and this can change significantly the relevant times of the onset
of coordination and the leadership dynamics in one, and more trials. Therefore, it is
important to test the emergence of coordination and the adaptation in larger groups,
where the group composition may play a very important role.

The results of the study bring insights on two main components. First, they demon-
strate the existence and importance of the uncoordinated state after a disturbance event
(after box removal). They suggest that this phase is crucial for the establishment of the
coordination. Second, it proves that even in the simplest, and most stable environment,
there is an adaptation in time, suggesting that this would be much stronger and of higher
importance, in more variable and dynamic environments.

In conclusion, this work demonstrated the existence of two different phases, the unco-
ordinated and the coordinated, and the transition time from one to the other, for shoals of
free-swimming stickleback fish in the laboratory. The appearance of coordination came
together with the onset of leadership and the establishment of it, since the leadership
structure was maintained after the repetition of the experiment. In addition, it was for
first time demonstrated that the fish shoal formation and its dynamics are adapting over
time, indicating and enhancing previous statements that collective formations act as
super-organisms that are shaped by environmental conditions that drive them to evolve
and adapt over time (Biro & Sasaki, 2016).

6.4 Methods for data extraction and analysis

This work also developed three routines to track and extract data from the three different
study systems. These routines ranged from fully automatic (fish), semi-automatic (cells),
and manual tracking (intracellular movement).



98 CHAPTER 6. DISCUSSION

For manual tracking (Chapter 2), the input that is needed from the user is the cell
outlines and the cell generation status. Then the routine’s task is to store the cell mask,
the location and the total count of intensity of the area that is under the cell mask in
the QD channel. The algorithm uses simple image analysis tools to extract and store
the required information. The usefulness of the algorithm developed here is not its
automation but the specificity for the particular task, since there is no other pre-existing
routine that could be used unchanged to target this question.

For the semi-automatic tracking, the user’s responsibility is to only point to the centre
of the targeted cell. The routine then will track and extract the positions of the cells
between mitotic events, count the QD intensity for each cell at each point in time, detect
the mitotic events and, finally, extract and store the genealogical relations between cells.

The algorithm proposes a simplified but quite effective way to extract migration
routes for cells that are not labeled in their nucleus. In fact, it introduces two simple ways
to improve nuclei segmentation: the simple threshold and the adaptive threshold in an
iterative way. Each image was thresholed for a range of threshold values (for the simple
threshold) and window size parameter (for the adaptive threshold). Each thresholded
image was then filtered to keep objects of nucleus-specific characteristics. This iterative
mode of nucleus thresholding increased the effectiveness of the segmentation.

This routine also introduced an index that assigns a value of probability at each
segmented object in the image. This index is the weighted sum of three similarity
indices, the spatial, the shape and the feature similarity. The contribution of each terms
was decided depending on the question.

Lastly, the routine introduces a way to extract the QD intensity of each cell, without
having to segment the whole outline of the cell. This was due to the observation that
most of the QDs are distributed around the nuclei. Therefore the calculation of the
total QD fluorescence within a circle that is centered at the centre of the nuclues, could
provide a good estimate of the total fluorescence per cell.

This routine enabled us to run live cell analysis and get cell cycle information
without labelling the nucleus, keeping the spatial information and relationships of cells,
in contrast with imaging flow cytometry (paul rees 2016). Future work, would require to
improve and achieve a complete automated algorithm to track cell movement and extract
also lineages of cells treated with non-nucleus label.

This routine needs to be improved in the following; First, it needs to increase the
successful detection of mitotic events. This can be achieved by incorporating the Cell
cycle phase of the cell, that will predict how possible is the targeted cell to go to mitosis.
In addition, it can be achieved by relaxing the distance rule when a cell is really possible
to undergo mitosis. With this, the algorithm will be able to look for mitotic cell taking
into account the big jumps that usually take place. Second, the lineage extraction can be
improved. After mitosis cells become very dim and small and due to limited space, one
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of the daughter cells could have a larger distance to their parental cell than other cells, in
a densely packed colony. Therefore, to be able to correctly segment both cells, would
be important to introduce a size measure. This means that the algorithm should look
for cells that are of much smaller size than other cells. In addition to that, we should
incorporate the cell cycle information and ask the algorithm to look for cells of very low
intensity.

Finally, for the automated tracking routine, the user has to only specify the range
of the HSV values in order to correctly segment the coloured disks of the fish. It then,
uses the minimum distance rule to associate each fish between frames. The simplicity of
this routine renders it as a generalized tool for tracking any collective of individuals that
are tagged with coloured rings. Its efficiency will decrease rapidly in cases where the
number of individuals is large, i.e.> 10.

6.5 Concluding remarks

In conclusion, the current thesis studied movement at different spatio-temporal scales
in biology. Movement has been the focus of study in many research fields, because it
is a vital process and can have an important effect on the survival of the individuals
and consequently populations. Evolutionary processes act constantly on individuals
and can select for those that have developed more successful movement strategies.
Previously, movement processes were treated as being the subject of study of each
particular research field and the inter-disciplinary communication was very limited.
In recent years, due the increase in inter-disciplinary collaboration and the use of
statistical physics methodologies in biology, it is becoming clearer that movement can be
approached and studied using similar tools irrespective of the scale and the object of the
study. Therefore, there is an increasing attempt to adopt a unifying framework regarding
movement in biology and bridge the gap between the studies across different scales.
Works of Hansson et al. (2014), Schick et al. (2008), Hansson et al. (2014), Börger
(2016), Jacoby & Freeman (2016), Torney et al. (2018a) and (Pyke, 2015) are few of
the attempts researchers make to bridge the gap between different scales on movement
in biology. For the above reasons, this study attempted to use similar methodologies to
study movement at different spatio-temporal scales. The empirically extracted movement
trajectory is the basic form of information a researcher has to study movement. The
current study discussed and categorized the factors a researcher should consider and that
could have an effect on the pattern of the extracted trajectory irrespectively of the scale
of interest.
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