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ABSTRACT This paper proposes an Energy Management System (EMS) for domestic PV-battery applica-
tions with the aim of reducing the absolute net energy exchange with the utility grid by utilizing the two
days-ahead energy forecasts in the optimization process. A Mixed-Integer Linear Programming (MILP)
exploits two days-ahead energy demand and PV generation forecasts to schedule the day-ahead battery
energy exchange with both the utility grid and the PV generator. The proposed scheme is tested using the
real data of the Active Office Building (AOB) located in Swansea University, UK. Performance comparisons
with state-of-the-art and the commercial EMS currently running at the AOB reveal that the proposed EMS
increases the self-consumption of PV energy and at the same time reduces the total energy cost. The absolute
net energy exchange with the grid and the total operating costs are reduced by 121% and 54% compared
to the state-of-the-art and 194% and 8% when compared to the commercial EMS over a six-month period.
Furthermore, the results show that the proposed method can reduce the energy bill by up to 46% for the same
period compared to the state-of-the-art. The paper also investigates the effect of using different objective
functions on the performance of the EMS and shows that the proposed EMS operate more efficiently when
it is compared with another cost function that directly promotes reducing the absolute net energy exchange.

INDEX TERMS Battery storage, energy management system, energy tariffs, forecast, mixed-integer linear
programming, PV.

NOMENCLATURE
PB(t) Battery discharge/charge power (kW).
PB-rating Maximum battery discharge/charge power

(kW).
PBdisch(t) Battery discharge power (kW).
PBcharg(t) Battery charge power (kW).
PPV−1(t) Forecasted PV generation for day1 (kW).
PL−1(t) Forecasted load demand for day1 (kW).
PPV−2(t) Forecasted PV generation for day2 (kW).
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PL−2(t) Forecasted load demand for day2 (kW).
SOC(t) Battery state of charge (%).
EDay-f Day-2 peak time energy forecast (kWh).
SOCmax Maximum limit of the state of charge (%).
SOCmin Minimum limit of the state of charge (%).
E(t) Energy stored in the battery at time t

(kWh).
E(t − 1) Energy stored in the battery at time

t− 1 (kWh).
PG(t) Power exchange with the utility grid (kW).
PGmax-export Maximum limit exported power to the

utility grid (kW).
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PGmax-import Maximum limit imported power from the
utility grid (kW).

PGexport (t) Exported power to the utility grid (kW).
PGimport (t) Imported power from the utility grid (kW).
8export (t) Binary variable to indicate the building is

exporting power to the utility grid.
8import (t) Binary variable to indicate the building is

importing power from the utility grid.
8B-disch(t) Binary variable to indicate battery is

discharging.
8B-charg(t) Binary variable to indicate battery is

charging.
Bcapacity(t) Battery capacity (kWh).
Ncycle Battery cycle life.
CCB Capital cost of the battery (£).
CBSS Battery degradation cost (£).
Cbuy Price of imported energy from the utility

grid (£/kWh).
Csell Price of exported energy to the utility

grid (£/kWh).
fsell(t) Tariff for selling energy to the utility

grid (£/kWh).
fbuy(t) Tariff for buying energy from the utility

grid (£/kWh).
Cbill Bill cost (£).
CF Optimization cost function (£).
1T Sample time (hr).
t0 The time of the day starts at 12 AM.
T The time of the day ends after 24 hours.
t Current time (hr).
ηconv Battery DC/DC converter efficiency (%).
ηc Battery charging efficiency (%).
ηd Battery discharging efficiency (%).
Eimport Imported energy from the utility grid

(kWh).
Eexport Exported energy to the utility grid (kWh).

I. INTRODUCTION
Decarbonization and limited resources of fossil fuels (used
in conventional power generation plants) have increased the
demand for integrating Renewable Energy Sources (RESs)
such as PV systems, especially for domestic applications [1].
Historically, Feed-in-Tariff (FIT) initiatives were introduced
in several regions for small-scale-based RESs connected to
the utility grid. However, high penetration of RESs, espe-
cially at the distribution level (where conventionally only
consumption occurred), has created numerous challenges for
the network operators [2]. As a result, in several countries
like the UK, incentives are already reduced, encouraging
a self-consumption approach. For example, the generation
tariff (part of the FIT) in the UK has reduced from more
than 54 p/kWh in 2010 to 3.79 p/kWh in 2019 [3], when the
FIT has been replaced by the Smart Export Guarantee (SEG)
scheme. The SEG requires some electricity suppliers to pay
small-scale generators between 2 p/kWh and 5.6 p/kWh for

their low-carbon electricity which they export to the grid [4].
It is noted that the SEG rates in the UK are currently less than
the electricity purchasing prices. In addition, many countries
such as the UK and Germany have already enforced some
other measures to limit the surplus PV energy injection to the
utility grid to encourage the self-consumption approach [5].
The main characteristic of this new trend is the minimiza-
tion of the net energy exchange between the prosumer (pro-
ducer + consumer) and the grid [6].

An effective self-consumption approach benefits from
some sort of Battery Storage Systems (BSSs) and an intel-
ligent Energy Management System (EMS). Based on pre-
vious literature, decision-making at the energy management
level can be achieved either heuristically, such as rule-based-
EMS [7], [8] or non-heuristically using optimization meth-
ods [1]. In terms of implementation, EMSs can be either
online [7] or offline [1]. Also, different objectives can be
defined as the main priority for EMSs, e.g., several works
focused on reducing the energy bill using the BSS schedul-
ing [9], while some other works proposed EMSs that schedule
domestic appliances based on their priority and time of the
day [8], [10], [11]. Authors in [12] proposed EMS based on
a user priority list that can achieve savings of up to 87%.
Similarly, authors in [13], [14] proposed an optimal load
scheduling to reduce energy costs and peak loads. However,
controlling the local loads approach is not preferable for some
clients as it may affect their comfort.

There are various control algorithms in the literature pro-
posed for EMSs. For example, the authors in [15] proposed
a rule-based controller for real-time price-based EMS. Their
work considered emergency load curtailment and vehicle-
to-home support during interruption events. Authors in [16]
and [17] proposed a rule-based EMS to maintain the power
balance in theMicro-grid (MG) and reduce the bill. Similarly,
authors in [7], [18], [19] proposed a Fuzzy Logic (FL)-based-
EMS to minimize the energy cost. Although FL controllers
and rule-based approaches can successfully deal with theMG
components’ nonlinearities and avoid complex mathematical
modeling, they rely on the designer’s justified rules, which
may not be comprehensive in all aspects.

Authors in [20] proposed domestic EMS based on genetic
harmony search algorithm to reduce the operating costs.
However, their proposed system did not include the BSS.
In [21] the proposed domestic EMS was applied to reduce
the operating costs, while their system limited the BSS to
store 30% of RES energy during the daytime. This limit dete-
riorates the PV local utilization and increases the imported
energy from the grid.

In previous works, little consideration is given to the
impact of the battery State of Health (SOH) during its opera-
tional lifetime as an effective factor in the EMSs. To over-
come this shortage, authors in [22] and [23] limited the
battery State of Charge (SOC) to 50% at the cost of increased
capital costs and undermining PV self-consumption. More-
over, this simple approach while beneficial for battery health,
it underutilizes the battery capacity. An alternative solution
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is to include battery degradation cost as an indication of the
SOH of the battery [1], [24], [25].

Authors in [26] proposed an EMS for islanded MGs. The
main target of their proposed method was to reduce the BSS
degradation and improve the utilization of RESs. Authors
in [27] proposed a centralized MG controller to reduce the
conversion losses and the energy cost in the residential dis-
tribution system. In [28], Linear Programming (LP) was used
for BSS scheduling, where themethod is reported to achieve a
high reduction in energy cost and greenhouse gases emission
compared to the case where loads were only supplied by the
grid. Authors in [29] considered the operational and mainte-
nance cost of the solar units and the BSS in the objective func-
tion. Authors in [26]–[29] considered one day-ahead energy
forecast in the optimization to achieve optimal day-ahead
battery operation. However, their methods do not utilize the
knowledge of the following day (day-2) energy forecasts
which may cause unnecessary energy exchange with the grid.
For example, the lack of knowledge of day-2 will result in
exporting the available RES surplus energy to the utility grid
rather than storing that energy in the BSS. Therefore, if on the
next day (i.e. day-2), the PV generation is less than the load,
the exchange energy with the utility grid and the energy bill
will unnecessarily increase.

Several studies have been conducted using computational
intelligence methods to solve the EMS optimization prob-
lems, such as Ant Colony optimization [30], Grey Wolf opti-
mization [10], and Particle Swarm Optimization (PSO) [31].

While many studies focused on proposing different fore-
casting algorithms [5], there are significantly fewer pub-
lished works identifying how best to utilize and integrate
the forecasted data into an EMS. This study does not utilize
a specific forecast method but approximates the forecasted
data by imposing normally distributed random numbers on
the historical data [32]. The main objective of this paper is
to minimize the energy bill while the net exchanged energy
with the utility grid is reduced through exploiting the two
days-ahead energy forecasts in the adaptive optimization pro-
cess. This reduces the distribution and transmission losses
and grid voltage rise by enhancing the self-consumption
of PV energy. The Active Office Building (AOB) located
in Swansea University, is used as a case study to demon-
strate the developed EMS. The proposed model equations are
solved using the Mixed-Integer Linear Programming (MILP)
optimization method and Gurobir optimizer in MATLAB.
The key contributions of this work can be summarised as
follows:

a) Making better use of the BSS by including the two
days-ahead forecasts in the EMS.

b) Proposing an EMS using the MILP optimization
method such that:

i. it reduces the absolute net energy exchange with the
grid, which in turn reduces the burdens on the utility
grid and the losses;

ii. it reduces the overall electricity bill;

iii. it reduces the overall operating costs of the system by
considering the capital and the degradation costs of the
BSS in the EMS.

The rest of the paper is organized as follows. Section II
describes the system configuration, section III introduces the
proposed EMS. Section IV presents the problem formulation,
and section V presents the simulation results and discus-
sion. Finally, the conclusions of this work are presented in
section VI.

II. SYSTEM CONFIGURATION
Fig.1 illustrates the AOB system configuration, which con-
sists of a 22.3 kWp PV system and a 110.4 kWh lithium-ion
BSS linked to the 48 V-DC bus. The PV DC-DC converter
rating is 23.2 kW. Three single-phase inverters of 230 V-AC,
48 V-DC, and 15 kVA each are employed. The maximum
load demand is 32.5 kW, and the rated charge/discharge
power (PB-rating) of the BSS is 102.4 kW [33]. Moreover, the
maximum SOC (SOCmax) and the minimum SOC (SOCmin)
limits are set to 98% and 20%, respectively [7].

FIGURE 1. Schematic diagram of the Active Office Building.

III. PROPOSED ENERGY MANAGEMENT SYSTEM
The proposed EMS aims to minimize the absolute net
energy exchanged with the utility grid to enhance PV
self-consumption while reducing the overall operational
costs.

The proposed EMS method follows the procedures shown
in Fig. 2, and detailed in the below steps:
• first, the EMS asks for the initial SOC of the BSS.
• then the two days-ahead forecasted data are requested:
day-1 PV generation (PPV−1), day-2 PV generation
(PPV−2), day-1 load demand (PL−1), and day-2 load
demand (PL−2).

• then the EMS calculates the peak time energy forecast
(EDay-f ) from day-2 forecasted data as shown in (1):

EDay-f =
∫ t=8 PM

t=8AM
(PPV−2(t)− PL−2(t)) dt (1)

• the MILP optimization is then performed for one day-
ahead (i.e., day-1) to obtain the BSS scheduling.

VOLUME 10, 2022 29359



A. Sorour et al.: MILP Optimized Management of Domestic PV-Battery Using Two Days-Ahead Forecasts

FIGURE 2. Flowchart of the proposed EMS based on two days-ahead
forecasts.

• finally, the EMS gets the decision variables, i.e., the
utility grid power (PG) and battery power (PB), and send
the signal to the BSS.

IV. PROBLEM FORMULATION
The objective function focuses on minimizing the absolute
net energy exchange with the utility grid while considering
the energy cost. The problem is formulated using MILP opti-
mization. The algorithm aims to minimize the cost function
(CF ), which includes the price of energy imported from the
utility grid (Cbuy), price of energy exported to the utility grid
(Csell) and the BSS degradation cost (CBSS ).

CF = |Cbuy| + |Csell | + CBSS (2)

It is worth noting that the CF considers the Cbuy and Csell
as absolute values to reduce the net exchanged energy with
the utility grid (i.e. reducing the total energy transactions).
In addition, the CBSS is included in the cost function to
consider the battery lifetime. The bill cost (Cbill) is calculated
by subtracting theCsell fromCbuy (note thatCsell is a negative
value):

Cbill = Cbuy + Csell (3)

The surplus PV energy is exported to the utility grid after
supplying the load and charging the BSS. The selling and

purchasing energy costs are calculated as [1]:

Cbuy =
∑T

t0
1T × fbuy (t)× PG (t) , PG (t) > 0 (4)

Csell =
∑T

t0
1T × fsell (t)× PG (t) , PG (t) < 0 (5)

where the t0 is the start time of the day, 12 AM, T is 24 hours,
1T (hr) is the sampling period of ten minutes, fbuy(t) is the
purchasing tariff from the utility grid (£/kWh), fsell(t) is the
feed-in tariff (£/kWh) to the utility grid.

Equation (6) represents the power balance equation of the
system:

PL−1 (t)− PPV−1 (t) = PG (t)+ PB (t) (6)

A. BATTERY MODEL
The BSS model is established as follows. The degradation
cost of each charging/discharging cycle is represented as
in (7) [1]:

CBSS =
∑T

t0

CCB × ηConv × ηc ×1T × PBcharg (t)
2× Ncycle

+
CCB ×1T × PBdisch (t)
ηConv × ηd × 2× Ncycle

(7)

where the CCB represents the capital cost of the battery (£)
(not including the power converters), Ncycle is the number of
life cycles of the battery, ηconv is the battery DC/DC converter
efficiency (%), PBdisch is the battery discharge power (kW),
PBcharg is the battery charge power (kW), ηd and ηc are the
battery discharging and charging efficiencies (%). Note that
PBcharg is a negative value and PBdisch is a positive value.
The stored energy in the BSS and the SOC of the battery

can be estimated as [1]:

E (t) = E (t − 1)−
1T × PBdisch (t)

ηd
−1T × ηc

×PBcharg (t) (8)

SOC (t) =
E (t)

Bcapacity(t)
× 100 (9)

where E(t) and E(t − 1) are the energy stored in the battery
at time t and t − 1, respectively, and Bcapacity is the battery
capacity.

The BSS settings of the day-ahead depend on whether it is
peak or off-peak time. During the peak times, the battery is
allowed to be discharged to its minimum limits (i.e., SOCmin)
to avoid purchasing unnecessary energy at a high price tariff
from the utility grid. The SOC is limited to its allowable limits
during peak times as given by (10):

SOCmin ≤ SOC (t) ≤ SOCmax (10)

During the off-peak times, the proposed algorithm consid-
ers day-2 forecast needs (i.e., EDay-f ), therefore (11) is used
to ensure that the predicted required energy needed for day-2
peak time is stored in the BSS during the off-peak times:

SOCmin + (100×
EDay-f
Bcapacity

) ≤ SOC (t) ≤ SOCmax (11)
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Equation (12) is used to calculate the instantaneous power
exchange with the battery for analysis purposes [1]:

PB (t) = PBdisch (t)× ηConv +
PBcharg (t)
ηConv

(12)

The instantaneous battery power is limited to the maxi-
mum allowable charge/discharge rating of the battery as
follows [1]:

0 ≤ PBdisch (t) ≤ PB-rating (13)

−PB-rating ≤ PBcharg (t) ≤ 0 (14)

B. SYSTEM CONSTRAINT
In this part, four binary variables are created as state flags
transition indications for the battery and utility grid. The four
binary variables are 8B-disch, 8B-charg, 8import and 8export .
The 8B-disch, 8B-charg are binary variables for battery dis-
charge and charge modes, respectively. The 8import and
8export are binary variables for import from the utility grid
and export to the utility grid, respectively.

The binary variables 8B-disch and 8B-charg are used to
ensure that the battery is either charging or discharging at any
time instant by using constraints (15) to (17) [1]:

8B-disch (t)+8B-charg (t) ≤ 1 (15)

8B-disch (t) =

{
1, PB (t) > 0
0, PB (t) < 0

(16)

8B-charg (t) =

{
1, PB (t) < 0
0, PB (t) > 0

(17)

where 8B-disch(t) equals 1 indicate that the battery is dis-
charging, 8B-charg(t) equals 1 indicate that the battery is
charging.

Constraints (18) and (19) are used to link between the
battery power and the binary variables [1]:

PBdisch (t) ≤ 8B-disch (t)× (PB-rating) (18)

PBcharg (t) ≤ 8B-charg (t)× (−PB-rating) (19)

The binary variables of 8import (t) and 8export (t) ensure the
building is only either importing or exporting power at any
time instant using the constraints (20) - (23) are [1]:

8import (t)+8export (t) ≤ 1 (20)

PGimport (t) ≤ 8import (t)× PGmax-import (21)

PGexport (t) ≤ 8export (t)× PGmax-export (22)

PG (t) = PGimport (t)− PGexport (t) (23)

8import (t) equals 1 if the building is importing power from
the utility grid and equals 0 otherwise, and8export (t) equals 1
if the building is exporting power to the utility grid and
equals 0 otherwise. PGimport (t) is the imported power from
the utility grid, PGexport (t) is the exported power to the utility
grid, while PGmax-import / PGmax-export are the limits for the
imported/exported powers from /to the utility grid.

To avoid discharging from the battery at the same time
when the building is exporting its excess PV power to the
utility grid, (24) is used [1]:

8B-disch (t)+8export (t) ≤ 1 (24)

where 8B-disch(t) equals 1 if the battery is discharging and
equals 0 otherwise,8export (t) equals 1 if the building exports
power to the utility grid and equals 0 otherwise.

C. MIXED-INTEGER LINEAR PROGRAMMING
In this work, the MILP optimization technique and Gurobir

Optimizer tool are used to solve the optimization problem
in the MATLAB environment. The MILP is a mathematical
optimization technique used to find the best solution for the
objective function based on a set of constraints and vari-
ables [34], [35]. MILP problem can be solved by three dif-
ferent approaches, namely, Branch and Bound, Cutting Plane
and Feasibility Pump. This study uses the Branch and Bound
algorithm (also known as Tree search) [36]. The algorithm
starts with the originalMILP problemwithout the limitations,
which is called the relaxation of the original LP problem.
The Tree search algorithm is divided into three main steps:
(1) branching stage, where a variable is picked and the
problem is divided into two sub problems at this variable,
(2) bounding stage, which solves the relaxed LP to find the
best possible objective value for the node, (3) pruning stage,
where if the subproblem is infeasible, the tree will not develop
any further [37]. The flowchart in Fig. 3 illustrates how the
optimization process is performed and how the constraints
are met. As shown in Fig. 3, in order to find the optimal
day-ahead setting for the BSS based on EDay-f , the cost
function in (2) is optimized by these three steps. Firstly, the
solution of the problem is obtained without any constraints
(i.e., the relaxed LP). Secondly, the constraints are applied
over the obtained results and the infeasible ones are removed.
Finally, the variables which generate a feasible solution are
used to generate more variables and then another iteration
will be taken to solve the problem with those variables until
the optimal solution is obtained. The feasible solution is a
solution that meets all constraints, and the optimal solution is
obtained when the best objective function value is achieved.

V. RESULTS AND DISCUSSION
In this section, the performance of the proposed EMS is com-
pared with a recently published work [1] and the EMS that
is currently used in the AOB. Especially, the operating costs
and absolute net energy exchanged with the utility grid are
compared to highlight the benefits of the proposed method.
The algorithm in Fig. 2 is run for each day of the six months
(from May to October 2019) with a sample time (1T ) of ten
minutes.

There are several approaches to predict PV generation and
load consumption, such as Artificial Neural Network [38],
Differential Evolution [39] and PSO [40]. For the sake of
generality, this study does not use a specific forecast method.
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FIGURE 3. Flowchart of the MILP optimization process.

Instead, the forecast error is accounted for by imposing nor-
mally distributed random numbers on the historical data [32].
The Mean Absolute Percentage Error (MAPE) of forecasted
energy is assumed to be 30% over the six months.

In this study, two different tariff rates are considered
according to the electricity utility company in the UK [41].
The peak rate applies from 8:00 AM to 8:00 PM, while
the off-peak tariff rate is applied for the rest of the day.
The tariff prices for the peak and off-peak are £0.1666/kWh
and £0.1104/kWh, respectively. The PV export price is
£0.055/kWh [4].

Recently, lithium-ion battery price has been reduced sig-
nificantly [42], [43]. In this study, the CCB is 273£/kWh and
the Ncycle is 6000 [44].

A. PERFORMANCE COMPARISON
Figs. 4 and 5 show the battery performance for the EMS in [1]
and the proposed EMS, respectively, for two test days (23rd

and 24th ofMay 2019). The red and black lines represent SOC
and PPV - PL , respectively. Note that in day-1, the genera-
tion is higher than demand most of the time and in day-2,
the demand is higher than the generation most of the time.
Fig. 4 shows that the battery is not charged with the available
PV surplus power. Instead, the surplus power is exported
to the utility grid to reduce the operating cost as energy is
not required during day-1. This is because [1] does not use

FIGURE 4. Two test days (23rd and 24th of May 2019) for the EMS in [1].
The red and black colors represent SOC and PPV - PL, respectively.

FIGURE 5. Two test days (23rd and 24th of May 2019) for the proposed
EMS. The red and black colors represent SOC and PPV - PL, respectively.

day-2 forecast in the EMS. On day-2, the battery is charged
during off-peak from the utility grid to supply the load during
peak time. The main objective of the EMS in [1] is reducing
the energy bill while considering CBSS . The main drawback
of this method is that the optimization algorithm does not
consider the day-2 generation and consumption forecast. This
will result in higher operating costs and an increase in the
energy exchange with the utility grid. In addition, this method
is feeding the PV surplus power into the utility grid rather than
charging the battery to supply load on the next day.

Unlike the EMS in [1], in the proposed system the battery
is charged by the PV surplus power to increase the PV local
consumption since it has prior knowledge about day-2 fore-
cast energy, as illustrated in Fig. 5. In addition, the battery
discharges energy stored from PV to avoid purchasing energy
from the utility grid during peak times. This process reduces
the absolute net energy exchanged and avoids purchasing
unnecessary energy from the utility grid, which maximizes
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the use of PV power while considering the battery degrada-
tion costs.

B. COMPARING ABSOLUTE NET ENERGY EXCHANGED
AND OPERATIONAL COSTS
Fig. 6 shows the exported energy during peak time, for the six
months. The blue, orange and yellow bars represent the pro-
posed EMS in this work, the EMS adopted in [1] and the EMS
currently in use in the AOB, respectively. As illustrated in
Fig. 6, the proposed EMS enhances the PV self-consumption
utilization by reducing the exported energy during peak time
to the utility grid.

FIGURE 6. Exported energy during peak time. The blue, orange and
yellow bars represent proposed EMS, EMS in [1] and EMS in AOB.

Figs. 7 and 8 show imported energies during peak and off-
peak times, respectively. The blue, orange and yellow bars
represent the proposed EMS in this work, the EMS adopted
in [1] and the EMS currently in use in the AOB, respectively.
As shown in Figs. 7 and 8, the proposed EMS reduces the
imported energies compared to the proposed method in [1]
and the EMS in the AOB.

Fig. 9 shows the total energy imported/exported from/to
the utility grid for six months. The blue, orange and yellow
bars represent the proposed EMS in this work, the EMS
adopted in [1] and the EMS currently in use in the AOB,
respectively, for six months. As shown in Fig. 9, the proposed
EMS reduces the net energy exchanged with the utility grid as
the absolute net energy exchanged is reduced by 121 % and
194%, compared to the EMS adopted in [1] and the EMS in
the AOB, respectively.

Table 1 compares the total operating costs of the proposed
EMS with the EMS adopted in [1] and the EMS currently
in use in the AOB for the six months. The proposed method
reduces the energy bill by 46% and 37 % compared to EMS
adopted in [1] and the EMS in the AOB. The proposed EMS
uses the battery more than the EMS of [1], which reflects
in higher degradation cost as illustrated in Table 1. This is
simply because the proposed algorithm aimed to enhance the

FIGURE 7. Imported energy during peak time. The blue, orange and
yellow bars represent proposed EMS, EMS in [1] and EMS in AOB.

FIGURE 8. Imported energy during off-peak time. The blue, orange and
yellow bars represent proposed EMS, EMS in [1] and EMS in AOB.

TABLE 1. Operating costs for six months.

self-consumption of PV power. In contrast, the energy bill in
the proposed EMS is considerably less than that in [1], there-
fore, the battery degradation cost is covered from the energy
bill saving. The proposed EMS reduces the total operating
costs by 8% and 54% over six months compared to the EMS
of [1] and the EMS of the AOB, respectively.
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FIGURE 9. Total imported and exported energies for six-month period.
The blue, orange and yellow bars represent proposed EMS, EMS in [1] and
EMS in AOB.

C. COMPARING DIFFERENT COST FUNCTIONS
The main objective of the proposed cost function of (2) is
to minimize the absolute net energy exchanged with the
utility grid while reducing the energy bill by considering
the tariff prices. From a network operator viewpoint, a min-
imized net energy exchange might be more favorable since
it reduces (1) the transmission losses, (2) the required cen-
tral generation/storage systems. In other words, a minimized
energy exchange can be used as a measure of energy indepen-
dence of a prosumer, which in future networks, with a very
high penetration of distributed generations, might be a defini-
tive factor. With this motivation in mind, this sub-section
investigates the impacts of using the objective function of (25)
on the performance of the proposed EMS:

CF = |E import | + |Eexport | (25)

where the Eimport and Eexport are the imported and exported
energies from/to utility grid, respectively. Using the sum
absolute values of the imported and exported energy as
the cost function directly promotes reducing the net energy
exchange, which is reflected in maximizing local consump-
tion of the available RES. The results are compared in Table 2.

The results show that the cost function of (25) increases
the energy bill by 7% compared to the cost function of (2).
However, there is no difference in the absolute net energy

TABLE 2. Bill cost for six months.

exchanged when the cost function of (2) is compared with
the cost function of (25). This demonstrates that the cost
function of (2) can be considered as an optimal cost function
that satisfies targets of minimizing the absolute net energy
exchanged with the utility grid and the energy bill.

VI. CONCLUSION
The proposed EMS controls the battery effectively to
(1) reduce the operating costs, (2) reduce the unnecessary
energy exchange with the utility grid, (3) reduce the trans-
mission losses, and the requirements for central generation
systems. The proposed EMS can meet the demand dur-
ing the peak tariff period by discharging the battery rather
than importing from the utility grid through exploiting the
next day-ahead forecast (i.e., day-2). The proposed algo-
rithm reduces the daily energy costs and improves PV self-
consumption by reducing energy exchange with the utility
grid.
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