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Abstract

The method of supergrading is introduced for deriving a ranking of items
from scores or grades awarded by several people. Individual inputs may
come in different languages of grades. Diversity in grading standards is an
advantage, enabling rankings derived by this method to separate more items
from one another. A framework is introduced for studying grading on the
basis of observations. Measures of accuracy, reliability and discrimination
are developed within this framework. Ability in grading is characterized for
individuals and groups as the capacity to grade reliably, accurately and at
a high level of discrimination. It is shown that the collective ability of a
supergrading group with diverse standards can be greater than that of a less
diverse group whose members have greater ability.

Keywords: Scoring and Grading, Social Choice, Cognitive Diversity,
Collective Intelligence

Many decisions call for items of one kind or another to be ranked along some
relevant dimension. Project proposals are ranked in order of funding priority,
possible outcomes by their probability, hotels and restaurants by how good
they are, and so on. One way to rank items is by grading them. The grades
could be numerical scores, qualitative probability terms such as likely, tossup
and unlikely, numbers of stars or any other expressions ordered from top to
bottom. Items are ranked by the top-bottom order of their grades; those
with the same grade are tied.

There is good reason to rank things by grading them. People often find
it difficult to arrive at precise judgments. Information sometimes is missing,
and always time is short. In many instances they can even so assign scores or
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grades, though, because these are coarse grained; you don’t need to pinpoint
the probability of an outcome to be satisfied that it is likely, for instance,
because this term covers a range of precise probabilities. Grading helps
people to contribute judgments that, however imprecise, are more-or-less
accurate. The assigned grades are the right ones, or close.

The accuracy does not come for free. The less precise the grading scale,
the more ties there are; there is a cost in discrimination, the separation of dif-
ferent items by different grades. How much that matters depends on the case:
a finer ranking might be needed to pick out the very best project proposal or
job candidate, perhaps, than for funding or shortlisting some of the better
ones. One basic question is therefore how to manage the accuracy-precision
trade-off. How can we have graded judgments that are both sufficiently ac-
curate and sufficiently precise for whatever task is at hand?

Commonly decisions are made by committees, panels and other groups.
In a funding decision, for instance, it is typical for several reviewers to score
the proposals individually; priorities are then based on the scores they assign.
Now, putting together the judgments of several people can improve the terms
of the accuracy-precision trade-off. Francis Galton in a classic study of a
competition at a county fair found that the median of many precise estimates
of the weight of an ox was more accurate than, on average, the individual
estimates [9]. Judgments expressed as scores and grades can be aggregated
in the same way. For each item, you line up all assigned grades in the top-
bottom order of the grades, and then choose from the middle. This might
be expected to promote accuracy just as it does with precise estimates.

There is a catch. The judgment that an ox weighs 1, 234.5 kilos means the
same coming from one person as another, but people have different standards
for awarding scores and grades. A score of 4 from one reviewer on a funding
panel might be equivalent not to a 4 but rather a 3 from another reviewer—or
else a 5 or even a 6. What order should everybody’s inputs be lined up in
when there are such differences to reckon with? Differences in their standards
might seem to make nonsense of the idea of aggregating scores and grades
awarded by different people.

The matter is not academic. Large differences in the interpretation of
probability grades have been documented even among people who are cul-
turally and linguistically quite similar. These include students [21], doctors
and their patients [18], and members of science panels and boards [22, 16, 17].

There are ways to cope. Sometimes it is possible to specify thresholds in
completely precise terms, as the Intergovernmental Panel on Climate Change
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has done for qualitative probabilities in its publications [15].1 Grading pro-
tocols constrain understandings to some extent through guidance in proper
use [3]. Individual judgments can be corrected for interpersonal differences
using techniques from polling such as anchoring vignettes [14]. Where com-
mon understandings are found or manufactured, median grading will under
favourable circumstances boost accuracy. So will majority judgment, a re-
finement of median grading with an innovative method for breaking ties [1, 2].

Be this as it may, diverse understandings of scores and grades don’t only
make trouble. They also create opportunities. This article introduces su-
pergrading, a new method for aggregating individually assigned grades. The
resulting supergrades are no more accurate than the individual inputs. But in
general they are more precise and informative, resulting in rankings that sep-
arate more items from one another. Diverse grading standards are an asset
with this method because they are what boost discrimination. An example
illustrates.

1. An ox-ranking task

With a nod to Galton, imagine another competition at a fair. There is a
herd of oxen and whoever picks out the heaviest wins. Now, you and I are
not farmers. We are not butchers or livestock auctioneers, and cannot hope
to pinpoint the weights of the different ones. The best we can do is to say
imprecise things such as “this one looks heavy to me”, and “that other one
I’d say is light, for an ox”. Do people like us even stand a chance?

Suppose your judgments, however imprecise, are accurate by your stan-
dards : when you say an ox is heavy its weight always falls within the range
that, as you understand it, is covered by this expression; and if you say light
its weight is always compatible with your understanding of that. My own
understanding of these expressions is different. You and I draw the line be-
tween heavy and light at different places. But, suppose, my judgments too
are accurate, taken on their own terms.

Then you and I together can divide the oxen into three categories by
weight, though each of us uses just the two expressions to describe them.
Say for concreteness that you draw the line between heavy and light at 1000
kilos, and I at just 500 kilos. When both of us call an ox heavy it must weigh

1Specifying precise thresholds cannot be counted on entirely to remove interpersonal
differences ([5], [6]).
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at least 1000 kilos. If on the other hand we disagree then the weight must be
at least 500 but under 1000 kilos, and if we agree that an ox is light then it
weighs under 500 kilos. More of us can do even better: three binary graders
with pairwise differing standards can discriminate four categories, and so on.

So it is that people with little expertise do indeed stand a chance. We
can rank the oxen in the correct order and pick the heaviest one—provided
there are enough of us, and our interpretations of language are diverse.

Think of us as expressing ourselves, collectively, in a richer language than
either of us uses separately. When you say an ox is light and I say heavy, you
and I together, by that fact, count it light-heavy. We assign a supergrade,
the concatenation of individually assigned grades. Our other supergrades are
heavy-heavy, at the top, and the lowest grade light-light.

This article develops the method of supergrading and explores some of
its consequences for collective decision making. Some noteworthy features
are already visible. First, supergrades are more precise than the individually
assigned grades that make them up. Our supergrades distinguish for example
among your light oxen (up to 1000 kilos) the heavier ones that are light-heavy
(from 500 up to 1000 kilos) and lighter ones that are light-light (up to 500
kilos).

Second, there’s no need for a common language of grades. You and I used
the same terms heavy and light but we needn’t have done. Any scores or
grades whatsoever make up supergrades, no matter how diverse they are in
number or interpretation, provided only that they measure the same dimen-
sion, here weight. You could just as well have scored the oxen from 1 to 10,
say, or I could have graded them as large, medium or small. This tolerance
with respect to the form of inputs is conducive to tapping diverse sources of
information and collective intelligence [20, 19].

Third, in order to find out the group’s ranking there’s no need to know just
which grades people might use, or just where they draw the lines between
them. What matters is each grader’s top-bottom order among the grades
they do in fact use: whether, say, you take that 3 you assigned to be the
higher score, or the 5. The top-bottom order of the assigned supergrades is
determined by this.

Finally, supergrading is not a competitor to accuracy-enhancing aggrega-
tion methods such as median grading. It is a precision-enhancing comple-
ment to them. You and I might as well be two halves of a group: everyone
in one half has your understanding of the grades, and everyone in the other
shares mine. Now each half aggregates its own members’ inputs by taking
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medians; under favorable circumstances, each half grades accurately, by its
own standards—even if most members do not. The halves then contribute
accurate grades that make up supergrades of the group as a whole, with
differences of understanding between them boosting precision.

Thus, with judicious use of both kinds of method, sufficiently large and
diverse groups can reach judgments that are both accurate and precise enough
for whatever task is at hand. The accuracy-precision trade-off for individuals
is circumvented.

Picking the heaviest ox out of a herd by grading them all is of course just
a toy example, chosen to honor Galton. In a real problem of this sort we’d
put each ox on a livestock scale and be done with it. There are many real
classification problems though in which the use of grades cannot be avoided,
whether that is because precise cardinal information is difficult to obtain or
because ordinal information is all that can be had, even in principle.

Take the measurement of severity of illness in clinical trials, held to as-
sess the efficacy of medical interventions such as drugs. For instance, human
“readers” of endoscopy videos score patients’ ulcerative colitis disease activ-
ity on the endoscopy component (normal-mild-moderate-severe) of the Mayo
Clinic Scale. Accuracy is critical because the more accurate the scores are,
the better researchers can tell effective interventions from ineffective ones.

One way to increase reading accuracy that has recently been proposed is
to aggregate scores assigned by several independent readers [10]. The authors
propose a “2+1” collective scoring procedure that outputs the common score
of two initial readers whenever they agree, and the median of their different
scores together with the score of a third reader whenever they do not. Super-
grading binary severity judgments is another way of achieving accuracy that
could be explored. Instead of expecting individual readers to provide inputs
using all four endoscopy scores of the Mayo Scale, the collective reading task
could be set up so that different readers specialize on different parts of the
scale. Let’s say that one of three readers is responsible for determining just
whether the score for a given video is above normal, another whether it is
above mild, and the third whether the score is above moderate. Individual
readers might be expected very often to achieve accuracy in this relatively
undemanding task, and when their binary judgments are combined by su-
pergrading, accurate scores on the endoscopy component of the Mayo Scale
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will be the result.2

Besides the measurement of severity of illness there are many other mat-
ters that could be approached using the method of supergrading. These
include college admissions, hiring decisions, stock evaluations, the evaluation
of potential markets by venture capitalists, qualitative risk assessments by
engineers, ranking sports teams, classification of loans by loan officers, and
more.3 Here, the ox-grading problem serves as a running example through-
out. It stands in as a model for them all.

The article develops as follows. Section 2 introduces grading languages.
Section 3 characterizes grading problems and their solutions. Section 4 shows
how to combine grading languages into more-precise superlanguages, and so-
lutions into supersolutions. Section 5 states conditions under which grading
problems have solutions that are both reliable and accurate. Section 6 char-
acterizes ability in grading as reliability and accuracy together with discrim-
ination. Section 7 shows that some groups with lower individual ability but
more diversity have greater collective ability than other groups with greater
individual ability but less diversity. Finally, section 8 briefly remarks on some
consequences for the design of committees and expert panels, and mentions
directions for future research.

2. Languages of grades

A first step is to distinguish between the signs we use for grading and our
interpretations of these. These signs, or grade terms, come with an ordering
from “top” to “bottom”. Technically, a grade vocabulary is a pair 〈T,�〉,
where T is a finite, non-empty set, the grade terms, and � is a linear ordering
of T : antisymmetric4, transitive5 and total.6

Grade terms become meaningful expressions, grades, when interpreted
as intervals of some dimension of interest. Let V be a non-empty set, the
values, with its own linear ordering ≥. The values can be precise weights,
probabilities, degrees of merit or what have you. Let a function I determine

2Whether this approach results in a greater probability of accurate results than alter-
natives is an empirical matter that will not be addressed here.

3For a wealth of other practical examples, see [8].
4∀e, f ∈ T , if e � f and f � e, then e = f .
5∀e, f, g ∈ T , if e � f and f � g, then e � g.
6∀e, f ∈ T , either e � f or f � e.
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for each e ∈ T some I(e) ⊆ V . I is an interpretation of 〈T,�〉 in 〈V,≥〉
if, first, for each e ∈ T , I(e) is a convex set;7 second, I partitions V ;8 and,
finally, I is orderly in the sense that higher grades go with higher values.9

Consider any interpretation I of 〈T,�〉 in 〈V,≥〉. Because I partitions V
there is, for any given v ∈ V , some unique corresponding term e ∈ T such
that v ∈ I(e). We write it I−1(v), so I−1(v) = e is equivalent to v ∈ I(e).
Observe that for any v ∈ V , v ∈ I(I−1(v)).

A grade language L = 〈T,�, I〉 for 〈V,≥〉 is a vocabulary 〈T,�〉 together
with an interpretation I of this vocabulary in 〈V,≥〉. A language measures
the dimension that it is for.

Let L = 〈T,�, I〉 measure 〈V,≥〉. A value s ∈ V is a standard for e in L
if e ∈ T , s ∈ I(e), I−1(v) � e for any v ∈ V such that v ≥ s, and I−1(v) ≺ e
if v < s. Intuitively, anything that meets the standard for a grade gets that
grade or higher, and anything falling short gets a lower grade. Notice that
for any given e there is at most a single standard in L. S is a set of standards
for L if for each s ∈ S there is some e such that s is the standard for e in L.

Example: Our common vocabulary in the competition has as
its terms T = {(h)eavy, (l)ight}, with h the top grade and l
the bottom one: h � l. We interpret h and l as intervals of
the positive real numbers including 0. Your interpretation is:
Iyou(h) = [1000,∞) (the numbers at least 1000) and Iyou(l) =
[0, 1000) (at least 0 and less than 1000). Mine is: Ime(h) =
[500,∞) and Ime(l) = [0, 500). We grade in distinct languages
Lyou = 〈T,�, Iyou〉 and Lme = 〈T,�, Ime〉. The standard for h in
Lyou is 1000 kilos. The standard for h in Lme is 500 kilos.

Notice that not all grading languages have standards, in the special sense
of this article. For instance, languages whose labels are interpreted as in-
tervals with upper bounds, but no lower bounds, do not have standards.
Those languages that do have standards in this special sense are a focus of

7I(e) is convex if ∀u, v, w ∈ V , if u,w ∈ I(e) and u ≥ v ≥ w, then v ∈ I(e).
8I partitions V if ∀e ∈ T, I(e) 6= ∅; ∀e, f ∈ T , if I(e) ∩ I(f) 6= ∅ then e = f ; and⋃
{I(e) : e ∈ T} = V.
9Technically, I is orderly if ∀e, f ∈ T such that e � f , I(e) > I(f). Here, � is the

asymmetric component of �. That is, e � f if e � f and f � e. The asymmetric
component > of ≥ has been extended from individual elements of V to sets S, T ⊆ V :
S > T if ∀s ∈ S and ∀t ∈ T, s > t.
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attention here just because it is easy to illustrate using them a main point
of this article: that interpersonal differences in the interpretation of grades
can contribute to collective wisdom, by giving groups a greater capacity to
discriminate among items than their individual members have. Once the
reason for this has been understood, it is not difficult to see that it holds also
for interpretations that do not provide languages with standards.

3. Grading problems and their solutions

Some attributes of things are gradable. They take values in a structure 〈V,≥〉
of which, as before, V is a non-empty set, the values, and ≥ is an ordering
of V . For instance, the attribute weight of oxen takes values in 〈R+,≥〉, the
positive real numbers, ordered in the usual way. Notice that this definition
accommodates not only attributes that are cardinally measurable, such as
weight, but also those that are merely ordinally measurable, such as creativity
in scientific project proposals and the friendliness of candidates for a job.

Let X be any non-empty set, the items. They are oxen, project proposals,
job candidates or what have you. A grading problem 〈X,α〉 pairs X with
some gradable attribute α such that, where the values of α are in 〈V,≥〉,
∀x ∈ X, α(x) ∈ V . Intuitively, α is an attribute of each of the items in X.

A grade assignment G from P = 〈X,α〉 into 〈T,� I〉 assigns to each
x ∈ X a term G(x) ∈ T . A language measuring 〈V,≥〉 is suitable for P if
∀x ∈ X, α(x) ∈ V .

A solution to P is a pair 〈G,L〉, of which G is a grade assignment from
P into L, and L is suitable for P . It determines a weak ordering (or ranking)
of X in respect of α: x ranks higher than y if G(x) � G(y); x and y are tied
in the implicit ranking if G(x) = G(y).

Example: Let H be the herd of oxen in the competition. The
weight of any x ∈ H in kilos, weight(x), is a positive real number.
We face the problem P = 〈H,weight〉. Say you award each x ∈ H
either the grade h or an l. This fixes a grade assignment Gyou

from P into Lyou. Lyou interprets the grades in the positive reals
and is suitable for P . So 〈Gyou, Lyou〉 is a solution to the ox-
grading problem. Ox x ranks higher than ox y if Gyou(x) = h
and Gyou(y) = l.

Let 〈G, 〈T,�, I〉〉 be a solution to P = 〈X,α〉. It is an accurate solution
to P by its own standards if for any x ∈ X, α(x) ∈ I(G(x)). Intuitively,
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x’s grade is correct, given the truth about x and the meaning of the grade.
Accurate solutions are desirable because their rankings tell the truth: if
G(x) � G(y) then α(x) > α(y).10 This follows from the orderliness of inter-
pretations.

Example: Your solution 〈Gyou, Lyou〉 to 〈H,weight〉 is accurate,
by its own standards, if Gyou(x) = h for each x ∈ H such that
weight(x) ≥ 1000, and Gyou(x) = l if weight(x) < 1000. Each
ox gets whichever grade is correct, on your understanding of the
grades.

4. Superlanguages and supersolutions

Grade languages make up languages of more-precise supergrades, and solu-
tions to grading problems make up supersolutions in these superlanguages.

Suppose Li = 〈Ti,�i, Ii〉 and Lj = 〈Tj,�j, Ij〉 are languages for 〈V,≥〉.
Let Tij be {〈e, f〉 : e ∈ Ti, f ∈ Tj and Ii(e) ∩ Ij(f) 6= ∅}, and set 〈e, f〉 �ij
〈g, h〉 if both e �i g and f �j h. For each 〈e, f〉 ∈ Tij let furthermore Iij〈e, f〉
be Ii(e) ∩ Ij(f). Define finally Li ◦ Lj = 〈Tij,�ij, Iij〉.

Lemma 1: Li ◦ Lj is a grade language for 〈V,≥〉.
There is a proof in the Appendix. Li ◦ Lj is called the superlanguage of

Li and Lj.

Example: Just by grading separately in Lyou and Lme, the group
〈you,me〉 of us grades the oxen in Lyou ◦ Lme. Its vocabulary
is {〈h, h〉, 〈l, h〉, 〈l, l〉}, with 〈h, h〉 �you,me 〈l, h〉 �you,me 〈l, l〉.11
The interpretation Iyou,me(〈l, h〉) of 〈l, h〉, for instance, is Iyou(l)∩
Ime(h) = [500, 1000).12

10They do not in general tell the whole truth: sometimes G(x) = G(y) though α(x) >
α(y).

11The sequence 〈h, l〉 is not a term in this collective vocabulary because Iyou(h)∩ Ime(l)
= [1000,∞) ∩ [0, 500) = ∅. This won’t limit our ability to express ourselves coherently as
a pair because it’s logically impossible for an ox to be h by your standards and l by mine.

12Note that the order of the group is just a device for keeping track of who contributes
which grade of the common vocabulary. The pair 〈me, you〉 supergrades in the different
but equivalent language Lme ◦Lyou, its term 〈h, l〉 denoting the same range [500, 1000) of
weights.
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Superlanguages are grade languages in their own right. They too can be
combined by supergrading. Define recursively ◦(〈L1〉) = L1 and:

◦(〈L1, . . . , Lm+1〉) = ◦(〈L1 . . . Lm〉) ◦ Lm+1.

Now, where L1, . . . Ln are any grade languages for 〈V,≥〉,

Theorem 2 (Existence of Superlanguages): ◦(〈L1, . . . Ln〉) is a grade language
for 〈V,≥〉.

The proof is a simple induction on n, with lemma 1 as induction step.
Notice that the composing languages L1, . . . Ln need not have anything in
common, apart from measuring 〈V,≥〉. They may have the same vocabularies
or different ones. They may have few grade terms or many, independently of
one another and under any interpretations at all.

Example: You and I are joined in the ox-ranking competition
by a newcomer who shares our binary vocabulary but gives it yet
another interpretation: Inew(h) = [750,∞) and Inew(l) = [0, 750).
The group 〈you,me, new〉 uses superlanguage ◦(〈Lyou, Lme, Lnew〉)
with vocabulary:

〈h, h, h〉 �you,me,new 〈l, h, h〉 �you,me,new 〈l, h, l〉 �you,me,new 〈l, l, l〉.

The interpretations of these terms are, from the top down, [1000,∞),
[750, 1000), [500, 750) and [0, 500).13

One language 〈T1,�1, I1〉 is said to be as precise as another, 〈T2,�2, I2〉,
if for each e ∈ T2 there is Te ⊆ T1 such that I2(e) =

⋃
{I1(t) : t ∈ Te}.

Fact 3: ◦(〈L1, . . . , Ln〉) is as precise as each of L1, . . . , Ln.d

There is a proof in the Appendix.

L1 is (strictly) more precise than L2 if L1 is as precise as L2 but L2 is not
as precise as L1. If one language is as precise as another, and has a greater
number of grades, it is more precise. This follows easily from the properties

13All but the outermost brackets of supergrade terms are to avoid clutter left out in this
and coming examples. Really the top supergrade is 〈〈h, h〉, h〉, and so on.
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of interpretations. Superlanguages in particular are more precise than the
composing languages when these have diverse standards.

Fact 4: Let S1, . . . , Sn be sets of standards for several grade languages
L1, . . . , Ln that measure some common dimension. Then

⋃
{S1, . . . , Sn} is

a set of standards for ◦(〈L1, . . . , Ln〉).
There is a proof in the Appendix.

Example: Lyou, Lme and Lnew have different standards for h.
They are respectively 1000, 500 and 750. There is a common
standard for l ; it is 0. By fact 4, ◦(〈Lyou, Lme, Lnew〉) has super-
grades with these four standards; they are respectively 〈h,h,h〉,
〈l,h,l〉, 〈l,h,h〉 and 〈l,l,l〉. By fact 3, ◦(〈Lyou, Lme, Lnew〉) is more
precise than each of Lyou, Lme and Lnew, with just two grades.

Solutions to grading problems compose along with their languages. Con-
sider two solutions 〈Gi, Li〉 and 〈Gj, Lj〉 to P = 〈X,α〉, each accurate by its
own standards, of which the languages Li and Lj measure the same dimen-
sion. Let Gi ◦Gj map each x ∈ X to the pair 〈Gi(x), Gj(x)〉. Then

Lemma 5: 〈Gi◦Gj, Li◦Lj〉 is an accurate solution to P by its own standards.

There is a proof in the Appendix.

These supersolutions are solutions in their own right, and can be combined
with other solutions. Let 〈G1, L1〉, . . . 〈Gn, Ln〉 be solutions to some P , each
accurate by its own standards, with L1, . . . , Ln measuring some common
dimension. Now define recursively a collective grade assignment, putting
◦(〈G1〉) = G1 and:

◦(〈G1, . . . , Gm+1〉) = ◦(〈G1, . . . , Gm〉) ◦ Gm+1.

Then,

Theorem 6 (Existence of Accurate Supersolutions):

〈◦(〈G1, . . . , Gn〉), ◦(〈L1, . . . , Ln〉)〉

is an accurate solution to P by its own standards.

The proof of theorem 6 is a simple induction on n, of which lemma 5 is the
induction step.
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Example: Let 〈Gyou, Lyou〉, 〈Gme, Lme〉 and 〈Gnew, Lnew〉 be accu-
rate solutions to 〈H,weight〉 by their own standards. By theorem
6 they make up a solution

〈◦(〈Gyou, Gme, Gnew〉), ◦(〈Lyou, Lme, Lnew〉)〉

that is accurate by its own standards. Any given x ∈ H receives
the supergrade 〈Gyou(x), Gme(x), Gnew(x)〉.

5. From observations to grades

Hitting the bull’s eye doesn’t by itself make you a good shot. Anyone can
be lucky. Similarly, there’s more to ability in classification than somehow
identifying the right classes for things: ability means reliably getting this
right. This section characterizes reliability in grading as accuracy despite
distortion of the signals on which grade decisions are based.

Consider some problem P = 〈X,α〉. An individual i receives from each
x ∈ X a signal carrying information about α(x).14 The collection ϕ of signals
from all the X specifies, for each x ∈ X, some information ϕ(x) about x.
Here, for simplicity, each ϕ(x) is a single value of the same sort that α takes.
These are generated signals in the sense of Hong and Page [12], the “noisy
glimpses or distortions of an outcome value” (p. 2177).15

An individual scope Φ for 〈X,α〉 is the set of all such collections ϕ that
some individual could receive from the X, depending on this individual’s
perspective or other circumstances under which the X are observed. An
example gives intuitive content to the notion of an individual scope.

Example: One fine day you observe the herd H and on one page
of your notebook you write down a precise weight for each ox.
This page of your notebook amounts to a collection of signals ϕ
from H where, for any x ∈ H, ϕ(x) is the weight you wrote down

14The term signal is used here to cover both conventional signals such as the level of
applause at a public address and non-conventional cues such as the size of the visual image
of an ox. What matters about them here is that they carry noisy information that is a
basis for assigning grades.

15In a natural generalization, each ϕ(x) is a collection of such values, such as the scat-
tering of measurements read off an instrument or an imprecise interval.
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on this page for x. Under different circumstances – with different
light, with the cattle arranged differently, observing from another
distance or angle – you write down on another page somewhat
different weights for each of the oxen in H. This second page is a
different collection of signals, ψ. Your scope Φyou for 〈H,weight〉
includes ϕ, ψ and all other collections of signals you might receive,
on all of the different occasions on which you might possibly ob-
serve the herd of oxen. With a different page for each one, your
scope is the whole notebook.

Consider more generally a group of people 1, . . . n that is out to solve
problem P . On some given occasion, each member i observes each x ∈ X
and thus receives some ϕi ∈ Φi from X; on this occasion the group 〈1, . . . n〉
receives signals ~ϕ = 〈ϕ1, . . . ϕn〉. The group’s collective scope for P is some
Φ ⊆ Φ1 × . . .× Φn. Just which such ~ϕ are in Φ depends on any connections
between observations of different members of the group, on different possible
occasions. The group is independent if Φ = Φ1 × . . .× Φn.

The problem P at hand is solved by observing the items X and assigning
to each one a grade from some suitable language L = 〈T,�, I〉. A mapping
G : Φ×X → T is an signaled-grade assignment from Φ and P into L if for
all ~ϕ ∈ Φ and all x, y ∈ X, G(~ϕ, x) = G(~ϕ, y) whenever, for every component
ϕi of ~ϕ, ϕi(x) = ϕi(y). Intuitively, the grade for any x ∈ X is fixed by
everybody’s signals just from x. Pairing such G with L we have a signaled
solution 〈G, L〉 to P with scope Φ.

Take any signaled solution 〈G, L〉 to P . Holding fixed some ~ϕ ∈ Φ, its
scope, we obtain a grade assignment G ~ϕ from P into L, defined by G ~ϕ(x) =
G(~ϕ, x). 〈G, L〉 is a reliably accurate solution to P with scope Φ if for every
~ϕ in Φ, 〈G ~ϕ, L〉 is an accurate solution to P , by its own standards. Where Φ
is an individual scope we have, replacing ~ϕ by ϕ throughout, notions of an
individual signaled solution and a reliably accurate individual solution.

Reliably accurate solutions are reliable: they invariably assign the same
grades–correct ones, by their standards–despite variability in signals due to
noise and distortion. This is easily seen. Let 〈G, L〉 be any reliably accurate

solution to P . Consider any ~ϕ, ~ψ ∈ Φ, its scope. We have for any given
x ∈ X, α(x) ∈ I(G ~ϕ(x)), and that is equivalent to G ~ϕ(x) = I−1(α(x)).

Similarly, I−1(α(x)) = G ~ψ(x). So G(~ϕ, x) = G(~ψ, x).
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Reliable accuracy can be achieved by using grades that are sufficiently
coarse-grained. They have to mask variability in signals.

Consider first an individual scope Φ for the problem P = 〈X,α〉 at hand.
For any x ∈ X, let Φ(x) be {ϕ(x) : ϕ ∈ Φ}, the possible signals from x.
A language 〈T,� I〉 masks Φ in P if for all x ∈ X and all e, f ∈ T , if
Φ(x) ∩ I(e) 6= ∅ and Φ(x) ∩ I(f) 6= ∅, then e = f . Intuitively, all possible
signals from any given item are covered by a single grade. Say also that Φ is
truth compatible for P if for each x ∈ X, α(x) ∈ Φ(x). This just means that
it is possible to observe the truth about the items.16

Now take some L that is suitable for Φ in P . That is, where 〈V,≥〉 is
the dimension that L measures, for every ϕ ∈ Φ and x ∈ X, let ϕ(x) ∈ V .
Then no matter which signal is received from any given x in X, L has an
applicable grade. Putting GL(ϕ, x) = I−1(ϕ(x)), there is a signaled solution
〈GL, L〉 to P with scope Φ, and:

Fact 7: If individual scope Φ is truth compatible for P , then 〈GL, L〉 is
a reliably accurate individual solution to P with scope Φ if and only if L
masks Φ in P .

There is a proof in the Appendix.

Supergrading delivers reliably accurate groups. Given n reliably accu-
rate individual solutions 〈Gi, Li〉 to P with scopes Φi, all Li measuring some
common dimension, we can define by recursion a signaled grade assignment
◦(〈G1, . . . ,Gn〉) from Φ1×. . .×Φn and P into ◦(〈L1, . . . , Ln〉). For any ϕi ∈ Φi

and x ∈ X, put ◦(〈G1〉)(〈ϕ1〉, x) = G1(ϕ1, x) and:

◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, x) =
〈◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x), Gm+1(ϕm+1, x)〉.

Then,

Theorem 8 (Existence of Reliably Accurate Supersolutions):

〈◦(〈G1, . . . ,Gn〉), ◦(〈L1, . . . , Ln〉)〉

is a reliably accurate solution to P with scope Φ1 × . . .× Φn.

There is a proof in the Appendix.

16It could for example happen that you put an ox on a livestock scale and read off its
true weight.
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Figure 1: Individual scope Φyou is truth compatible and masked by Lyou. Similarly for
Φme and Lme, and for Φnew and Lnew. The individual ability in 〈H,weight〉 of three
graders with these scopes is just 2

4 . The collective ability is a perfect 4
4 .
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Example: Assume now that H includes just four oxen w, x, y and
z, with weight(w) = 1125, weight(x) = 875, weight(y) = 625
and weight(z) = 375. Let Φyou, Φme and Φnew be as in Fig. 1. By
inspection, these scopes are truth compatible; also, Lyou, Lme and
Lnew mask them. There are by fact 7 reliably accurate individ-
ual solutions 〈Gyou, Lyou〉, 〈Gme, Lme〉 and 〈Gnew, Lnew〉 with these
scopes, and by theorem 8 there is a reliably accurate collective
solution 〈◦(〈Gyou,Gme,Gnew, 〉), ◦(〈Lyou, Lme, Lnew〉)〉 with scope
Φyou × Φme × Φnew.

6. Ability = accuracy+reliability+discrimination

Even reliably hitting the bulls eye doesn’t make you a good shot. It might
be very big. Similarly, ability in solving a grading problem means more than
reliably assigning correct grades, which might depending on the language be
very imprecise. The grades have to tell different items apart.

Consider an accurate solution 〈G,L〉 to P = 〈X,α〉. Its discrimination
in P is |{e : ∃x ∈ X,G(x) = e}|. This is the number of equivalence classes
into which G divides X. The discrimination of a reliably accurate solution
〈G, L〉 with scope Φ is that of 〈G ~ϕ, L〉 for any (and all) ~ϕ in Φ.

Example: Let 〈Gyou, Lyou〉 be a reliably accurate solution to 〈H,weight〉
with scope Φyou, from Fig. 1. For each ϕ ∈ Φyou, Gϕyou(w) = h
and Gϕyou(x) = Gϕyou(y) = Gϕyou(z) = l. The discrimination of
〈Gyou, Lyou〉 in 〈H,weight〉 is 2. Reliably accurate 〈Gme, Lme〉 and
〈Gnew, Lnew〉 have the same discrimination.

When one and the same signal could be received from either of two items
it is not possible to tell them apart by reliably and accurately assigning them
different grades. Let us say that x and y are compatible in individual scope
Φ if for any ϕ, ψ ∈ Φ there is some χ ∈ Φ such that χ(x) = ϕ(x) and
χ(y) = ψ(y). Intuitively, if some given signals can at all be received from the
two items, perhaps on different occasions, then these two signals can also be
received from them together, on the same occasion. We have:

Theorem 9 (Limits to Discrimination): Let 〈G, L〉 be a reliably accurate
solution to 〈X,α〉 with scope Φ1 × . . .× Φn. Let x ∈ X and y ∈ X be such
that Φi(x) ∩ Φi(y) 6= ∅, for each 1 ≤ i ≤ n. Let x and y be compatible in
each Φi. Then for each ~ϕ ∈ Φ, G(~ϕ, x) = G(~ϕ, y).
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There is a proof in the Appendix. It makes clear that with n = 1 the
corresponding result for reliably accurate individual solutions is a special
case.

Ability is now a matter of the discrimination that can be achieved, despite
the noise and distortion in signals. Let the maximal discrimination of Φ in
P be the discrimination of any solution which, among all reliably accurate
solutions to P with scope Φ, has the greatest discrimination.17 The ability
of a person or group in 〈X,α〉 is now the maximal discrimination of their Φ
divided by the number of equivalence classes into which α partitions X. It
is the best that can be done expressed as a proportion of what may at all be
hoped for.

Example: Let each of Φyou(x), Φyou(y) and Φyou(z) overlap the
next, as in Fig. 1. Let x and y be compatible in Φyou, as are y and
z. Let 〈G, L〉 be any reliably accurate solution to P = 〈H,weight〉
with scope Φyou, using any language L at all. By theorem 9, for
any ϕ ∈ Φyou, G(ϕ, x) = G(ϕ, y) = G(ϕ, z). Therefore no reliably
accurate solution with this scope has greater discrimination than
2. There is a solution using Lyou with discrimination 2, so this is
the maximum discrimination of Φyou in P . The oxen divide into
4 classes by weight, so your ability in P is 2

4
. My ability and the

newcomer’s are under similar assumptions also 2
4
.

7. Diversity in grading standards beats individual ability

A group with diverse standards can have greater collective ability than a less
diverse group whose individual members have greater ability. Two examples
illustrate.

Example: Consider the group of Fig.1, with any collective scope
Φ ⊆ Φyou × Φme × Φnew. The previous example shows that the
individual abilities in P = 〈H,weight〉 are 2

4
. The group by fact 7

and theorem 8 has a reliably accurate solution 〈G, L〉 with scope
Φ, where L = ◦(〈Lyou, Lme, Lnew〉). Taking any ~ϕ ∈ Φ, 〈G ~ϕ, L〉 is
an accurate solution to P , by its own standards, and assigns to
each ox in H the correct supergrade. Thus,

17Assuming X is finite there has to be a maximum; let it be so.
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G ~ϕ(w) = 〈h, h, h〉.

At 1125 kilos, w meets the standard in L for this grade, which is
1000 kilos, and there is no higher grade. Also,

G ~ϕ(x) = 〈l, h, h〉,

since x at 875 kilos meets the standard of 750 for this grade, but
falls short of 1000, for the next. Similarly:

G ~ϕ(y) = 〈l, h, l〉 (since 500 ≤ 625 < 750) and

G ~ϕ(z) = 〈l, l, l〉 (since 0 ≤ 375 < 500).

All 4 supergrades are assigned. The discrimination of 〈G, L〉 in P
is 4. That’s as many as there are (equivalence classes by weight
of) oxen in P—as good as can be. The collective ability in P is a
perfect 4

4
. This group has just the heaviest ox w in its top weight

category and wins the competition.

Example: Three graders have the same scope Φ, as seen in Fig.
2. By inspection it is truth compatible for P = 〈H,weight〉,
and Φ(w) overlaps Φ(x). Assume furthermore that w and x are
compatible in Φ,18 and that the three form an independent group,
with collective scope Φ3.

By theorem 9, any reliably accurate individual or collective so-
lution with scope Φ or Φ3 must assign w and x the same grade.
The maximal discrimination in P is therefore at best 3. Choos-
ing a common ternary language that masks Φ (see Fig. 2), fact 7
and theorem 8 provide reliably accurate individual and collective
solutions with scopes Φ and Φ3 whose discrimination is 3. The
individual and collective abilities in P are 3

4
.

This group, despite the greater individual ability of its members,
has less collective ability in P than the more-diverse first group.
Besides w it has also the second-heaviest ox x in the top category
by weight. Choosing at random between them, this group only
has even odds of winning.

18The example easily generalizes so that there are distinct but somewhat similar scopes
satisfying these conditions.
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8. Concluding remarks

These findings suggest that in collective judgment it might often be a good
idea to use inputs that are not very precise. This can make it easier to gather
accurate information from diverse sources. Mismatched meanings can later
be exploited to achieve through aggregation the ultimately desired precision
and informativeness.

That inconsistent grading standards are an asset might surprise organiz-
ers and members of committees and expert panels who feel that everybody
should be “on the same page”. In ordinary cooperative conversation, after
all, it is proper to avoid ambiguity and equivocation [11]. One upshot of the
results presented here is when the goal of the conversation is to exchange
accurate information for purposes of collective judgment it might sometimes
be better to suspend this norm.

Condorcet’s Jury Theorem underlines the advantage in drawing from in-
dependent sources of information [7]. Hong and Page have shown how diverse
heuristics and representations can help with search problems [13]. These find-
ings add understandings of language to the list of differences that can give
diverse groups an edge in gathering knowledge.

Much of interest has been left for future work. A referee conjectures that
if players choose their thresholds simultaneously then, provided they care
about collective ability, optimal thresholds like those of Fig. 1 are the Nash
equilibria of the game defined over selecting thresholds. If on the other hand
players care about individual ability, then suboptimal thresholds like those of
Fig. 2 will be equilibria, and incentives for diversity will be needed in order
to promote collective ability. It would be good to have a full characterization
of the optimal grading thresholds for any given classification problem of the
kind considered here, in order to understand the conditions under which high
collective ability may be expected to develop.

There are ramifications in machine learning. In learning by Random
Forest, many tree-structured classifiers are grown from random selections of
the same training data; voting among these tree classifiers as to which is the
right class is known to bring about a significant improvement in accuracy
of the forests in comparison with the individual trees [4]. Where the classes
of interest are intervals of a common underlying dimension, as is the case
with scoring and grading, supergrading could be used to form superforests,
or ensembles of random forests. In this way, classifiers could be obtained that
like the constitutive random forests are highly accurate, but which classify
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items more precisely than they do.
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Appendix

This section has proofs for technical claims in the main text, after repeating
definitions of relevant notions introduced there.

Lemma 1

Let Li and Lj be grade languages for 〈V,≥〉. Then Li ◦ Lj is a grade
language for 〈V,≥〉.

Definitions. 〈T,�, I〉 is a grade language for 〈V,≥〉 if 〈T,�〉 is a grade
vocabulary (that is, T 6= ∅ is finite and � is a linear ordering of T ); and
I : T → ℘(V ) is an interpretation of 〈T,�〉 in 〈V,≥〉, that is:

• ∀e ∈ T , I(e) is convex : ∀u, v, w ∈ V , if u,w ∈ I(e) and u ≥ v ≥ w,
then v ∈ I(e);

• I partitions V : ∀e ∈ T, I(e) 6= ∅; ∀e, f ∈ T , if I(e) ∩ I(f) 6= ∅ then
e = f ; and

⋃
{I(e) : e ∈ T} = V ; and

• I is orderly : ∀e, f ∈ T , if e � f then I(e) > I(f) (that is: ∀u ∈ I(e)
and ∀v ∈ I(f), u > v).

Where Li = 〈Ti,�i, Ii〉 and Lj = 〈Tj,�j, Ij〉 are grade languages for a
common 〈V,≥〉, define:

• Tij = {〈e, f〉 : e ∈ Ti, f ∈ Tj and Ii(e) ∩ Ij(f) 6= ∅},

• 〈e, f〉 �ij 〈g, h〉 if both e �i g and f �j h,

• Iij〈e, f〉 = Ii(e) ∩ Ij(f), for any 〈e, f〉 ∈ Tij, and

• Li ◦ Lj = 〈Tij,�ij, Iij〉.

Proof of lemma 1. To be shown are that (1) 〈Tij,�ij〉 is a grade
vocabulary and (2) Iij is an interpretation of 〈Tij,�ij〉 in 〈V,≥〉.

(1) Tij 6= ∅ since 〈I−1i (v), I−1j (v)〉 ∈ Tij, for any v ∈ V. (I−1i (v) is the

unique e ∈ Ti such that v ∈ Ii(e), and similarly for I−1j (v).) Tij is finite since
Ti, Tj are. To see that �ij is a linear ordering of Tij, note that antisymmetry
and transitivity of �ij follow immediately from the corresponding properties
of �i and �j. To see that �ij is a total ordering of Tij, suppose 〈e, f〉 �ij

〈g, h〉, i.e. either e �i g or f �j h. Take the first case (the two are analogous).
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Then, since �i is total, g �i e. Since 〈g, h〉, 〈e, f〉 ∈ Tij it is possible to choose
u ∈ Ii(g) ∩ Ij(h) and v ∈ Ii(e) ∩ Ij(f). Since Ii is orderly, u > v. Since Ij is
orderly, f �j h, and so, because �j is total, h �j f . But then, as required,
〈g, h〉 �ij 〈e, f〉.

(2) To be shown are that (i) ∀〈e, f〉 ∈ Tij, Iij(〈e, f〉) is convex; that (ii)
Iij partitions V ; and that (iii) Iij is orderly.

(i) Suppose u, v, w ∈ V , u,w ∈ Iij(〈e, f〉) and u ≥ v ≥ w. By definition
of Iij, u,w ∈ Ii(e) ∩ Ij(f). Since both Ii(e) and Ij(f) are convex, v ∈
Ii(e) ∩ Ij(f) = Iij(〈e, f〉).

(ii) Consider any 〈e, f〉, 〈g, h〉 ∈ Tij. First, Iij(〈e, f〉) 6= ∅ by choice of the
vocabulary Tij; second, if Iij(〈e, f〉) ∩ Iij(〈g, h〉) 6= ∅ then, expanding using
the definition of Iij, we have Ii(e) ∩ Ii(g) 6= ∅, and also Ij(f) ∩ Ij(h) 6= ∅.
Because Li and Lj are grade languages for 〈V,≥〉, Ii partitions V and so does
Ij. So e = g, f = h and, as required, 〈e, f〉 = 〈g, h〉; finally,

⋃
{Iij(〈e, f〉) :

〈e, f〉 ∈ Tij} = V because for any given v ∈ V , 〈I−1i (v), I−1j (v)〉 ∈ Tij and

v ∈ Ii(I−1i (v)) ∩ Ij(I−1j (v)) = Iij(〈I−1i (v), I−1j (v)〉).
(iii) Consider any 〈e, f〉, 〈g, h〉 ∈ Tij. Suppose 〈e, f〉 �ij 〈g, h〉. Consider

any u ∈ Iij(〈e, f〉) and v ∈ Iij(〈g, h〉). Since 〈g, h〉 �ij 〈e, f〉, either g �i e or
h �j f . �i and �j are total relations, so either e �i g or f �j h. Suppose
e �i g. By definition of Iij, u ∈ Ii(e) and v ∈ Ii(g). Since Ii is orderly, u > v.
This follows similarly in case f �j h. So Iij(〈e, f〉) > Iij(〈g, h〉). �

Fact 3

◦(~L) is as precise as each of its composing languages.

Definitions. Let languages ~L = 〈L1, . . . Ln〉 measure some common

dimension. Their superlanguage ◦(~L) is defined recursively: ◦(〈L1〉) = L1;
◦(〈L1, . . . , Lm+1〉) = ◦(〈L1 . . . Lm〉) ◦ Lm+1. The composing languages are
L1, . . . Ln. 〈T1,�1, I1〉 is as precise as 〈T2,�2, I2〉 if for each e ∈ T2 there is
Te ⊆ T1 such that I2(e) =

⋃
{I1(t) : t ∈ Te}.

Proof of fact 3. An induction on the length of ~L, of which the induction
step uses: Lemma. Let Li, Lj and Li ◦ Lj be as in the statement of lemma
1. Then Li ◦ Lj is as precise as Li and Li ◦ Lj is as precise as Lj. Proof
of the lemma. To be shown is that Li ◦ Lj is as precise as Li. (The similar
demonstration that it is as precise as Lj is omitted.) Required is that for any
e ∈ Ti there is Te ⊆ Tij such that Ii(e) =

⋃
{Iij(t) : t ∈ Te}. For any given

e ∈ Ti set Te = {〈e, f〉 : 〈e, f〉 ∈ Tij}. That Ii(e) ⊇
⋃
{Iij(t) : t ∈ Te} is easily

seen since for any 〈e, f〉 ∈ Tij we have Ii(e) ⊇ Ii(e) ∩ Ij(f) = Iij(〈e, f〉). To
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see that furthermore Ii(e) ⊆
⋃
{Iij(t) : t ∈ Te}, consider any v ∈ Ii(e). Let

f be I−1j (v). Then v ∈ Ii(e) ∩ Ij(f). So 〈e, f〉 ∈ Tij, and 〈e, f〉 ∈ Te. Now
v ∈ Ii(e) ∩ Ij(f) = Iij(〈e, f〉) ⊆

⋃
{Iij(t) : t ∈ Te}. This completes the proof

of the lemma.
Note before the proof of fact 3 itself that comparative precision is both

reflexive (L is as precise as L) and transitive (if L1 is as precise as L2, and
L2 as precise as L3, then L1 is as precise as L3. Now we have:

Base step: ~L = 〈L1〉. Then ◦(~L) = L1. It is as precise as the only
composing language, L1, because comparative precision is reflexive.

Inductive step: ~L = 〈L1, . . . , Lm+1〉. By the lemma, ◦(~L) = ◦(〈L1, . . . , Lm〉)◦
Lm+1 is as precise as ◦(〈L1, . . . , Lm〉). By induction hypothesis, ◦(〈L1, . . . , Lm〉)
is as precise as each of L1, . . . , Lm. By transitivity of comparative precision
therefore ◦(~L) is as precise as each of L1, . . . , Lm. By the lemma, further-

more, ◦(~L) is as precise as the single remaining composing language, Lm+1.
�

Fact 4

Let S1, . . . , Sn be sets of standards for languages L1, . . . , Ln. Then
⋃
{S1, . . . , Sn}

is a set of standards for the superlanguage ◦(〈L1, . . . , Ln〉).
Definitions. Let L = 〈T,�, I〉 be a language for 〈V,≥〉. s is the standard

for e in L if:

• e ∈ T ,

• s ∈ I(e),

• I−1(v) � e for any v ∈ V such that v ≥ s, and

• I−1(v) ≺ e for any v ∈ V such that v < s.

S is a set of standards for L if for each s ∈ S there is some e ∈ T such that
s is the standard for e in L.

Proof of fact 4. An induction on n, of which the induction step uses
the following Lemma. Let Li and Lj be languages for 〈V,≥〉. Let Si be a set
of standards for Li and let Sj be a set of standards for Lj. Then Si ∪ Sj is a
set of standards for Li ◦ Lj. Proof of the lemma. Consider any s ∈ Si ∪ Sj.
There are two cases to consider: s ∈ Si and s ∈ Sj. We consider just the
first case (the argument for the second case is a mirror image of that for the
first). With s ∈ Si, let e ∈ Ti be such that s is the standard for e in Li.
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We will see that s is the standard for 〈e, I−1j (s)〉 in Lij. Required are (1)

〈e, I−1j (s)〉 ∈ Tij, (2) s ∈ Iij(〈e, I−1j (s)〉), (3) I−1ij (v) �ij 〈e, I−1j (s)〉 for any

v ∈ V such that v > s, and (4) I−1ij (v) ≺ij 〈e, I−1j (s)〉 for any v ∈ V such
that v < s.

(1) Because s is the standard for e in Li, s ∈ Ii(e). Furthermore, s ∈
Ij(I

−1
j (s)), so Ii(e) ∩ Ij(I−1j (s)) 6= ∅ and 〈e, I−1j (s)〉 ∈ Tij.
(2) s ∈ Ii(e) ∩ Ij(I−1j (s)) as in (1). Now, by definition of Iij, Ii(e) ∩

Ij(I
−1
j (s)) = Iij(〈e, I−1j (s)〉).
(3) Notice first that for any v ∈ V we have I−1ij (v) = 〈I−1i (v), I−1j (v)〉.

This is equivalent to v ∈ Iij(〈I−1i (v), I−1j (v)〉), which follows by unpacking
the relevant definitions. Now, consider any v ∈ V such that v > s. Since
both Ii and Ij are orderly, I−1i (v) �i I−1i (s) and also I−1j (v) �j I−1j (s). So

as required I−1ij (v) = 〈I−1i (v), I−1j (v)〉 �ij (I−1i (s), I−1j (s)) = 〈e, I−1j (s)〉. The
last equality is due to the fact that since s is the standard for e in Li we have
s ∈ Ii(e) or, equivalently, I−1i (s) = e.

(4) Consider any v ∈ V such that v < s. Because s is the standard for
e in Li, I

−1
i (v) ≺i e = I−1i (s), so 〈I−1i (v), I−1j (v)〉 �ij (I−1i (s), I−1j (s)). Since

�ij is a total ordering of Tij we have as required I−1ij (v) = 〈I−1i (v), I−1j (v)〉
≺ij (I−1i (s), I−1j (s)) = 〈e, I−1j (s)〉. This completes the proof of the lemma,
and of fact 4. �

Lemma 5

Let 〈Gi, Li〉 and 〈Gj, Lj〉 be solutions to problem P , each accurate by its
own standards, where Li and Lj measure a common dimension. Then

〈Gi ◦Gj, Li ◦ Lj〉

is an accurate solution to P , by its own standards.

Definitions. Let L = 〈T,�, I〉 be a grade language for 〈V,≥〉 and let
P = 〈X,α〉 be a grading problem. Then

• L is suitable for P if ∀x ∈ X, α(x) ∈ V ,

• 〈G,L〉 is a solution to P if G is an assignment from P into L (that is,
∀x ∈ X,G(x) ∈ T ) and L is suitable for P ,

• 〈G,L〉 is an accurate solution to P, by its own standards if 〈G,L〉 is a
solution to P and ∀x ∈ X, α(x) ∈ I(G(x)).
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Furthermore,

• Tij, Iij and Li ◦ Lj are as in the superlanguage lemma,

and for mappings Gi : X → Ti and Gj : X → Tj, we define Gi ◦ Gj : X →
Ti × Tj by putting, for each x ∈ X,

• Gi ◦Gj(x) = 〈Gi(x), Gj(x)〉.

Proof of lemma 5. To be shown are that (1) 〈Gi ◦ Gj, Li ◦ Lj〉 is a
solution to P , and (2) for each x ∈ X, α(x) ∈ Iij(Gi ◦Gj(x)).

(1) Required are that (i) Gi ◦ Gj maps each x ∈ X to some term in Tij,
the grade terms of Li ◦ Lj, and (ii) Li ◦ Lj is suitable for P .

(i) Consider any x ∈ X. Since 〈Gi, Li〉 and 〈Gj, Lj〉 are accurate by their
own standards, both α(x) ∈ Ii(Gi(x)) and α(x) ∈ Ij(Gj(x)). So α(x) ∈
Ii(Gi(x)) ∩ Ij(Gj(x)) 6= ∅. Therefore, by definition of Gi ◦ Gj and of Tij,
Gi ◦Gj(x) = 〈Gi(x), Gj(x)〉 ∈ Tij.

(ii) By lemma 1, Li ◦ Lj measures the same dimension as Li (and Lj).
Suitability of Li ◦ Lj for P follows immediately from that of Li (or that of
Lj).

(2) Consider any x ∈ X. As in (1) (i), α(x) ∈ Ii(Gi(x)) and α(x) ∈
Ij(Gj(x)). So, by definition of Iij and Gi◦Gj, α(x) ∈ Ii(Gi(x))∩Ij(Gj(x)) =
Iij(〈Gi(x), Gj(x)〉) = Iij(Gi ◦Gj(x)). �

Fact 7

Let individual scope Φ be truth compatible for P , and let L be suitable
for Φ in P . Then 〈GL, L〉 is a reliably accurate solution to P with scope Φ if
and only if L masks Φ in P .

Definitions. Let L = 〈T,�, I〉 measure 〈V,≥〉, and P = 〈X,α〉. Let Φ
be an individual scope, and let 〈G, L〉 be an individual signaled solution to
P with scope Φ. Define

• L is suitable for P if ∀x ∈ X,α(x) ∈ V ,

• L is suitable for Φ in P if ∀ϕ ∈ Φ,∀x ∈ X, ϕ(x) ∈ V ,

• GL : Φ×X → T is the signaled grade assignment from Φ and P into L
such that GL(ϕ, x) = I−1(ϕ(x)) (defined only in case L is suitable for
Φ in P ),
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• Φ(x) = {ϕ(x) : ϕ ∈ Φ}, for any given x ∈ X,

• L masks Φ in P if for all x ∈ X and all e, f ∈ T , if Φ(x) ∩ I(e) 6= ∅
and Φ(x) ∩ I(f) 6= ∅, then e = f ,

• Φ is truth compatible for P if for each x ∈ X, α(x) ∈ Φ(x),

• A signaled solution 〈G, L〉 to P with scope Φ is a reliably accurate
solution to P with scope Φ if for every ϕ ∈ Φ, 〈Gϕ, L〉 is an accurate
solution to P , by its own standards.

Proof of fact 7. For the if half, consider under the assumptions of the
theorem the signaled solution 〈GL, L〉 to P with scope Φ. Suppose L = 〈T,�
, I〉 masks Φ in P = 〈X,α〉. Take any ϕ ∈ Φ. First, 〈GϕL, L〉 is a solution to
P . For each x ∈ X we have GϕL(x) = GL(ϕ, x) = I−1(ϕ(x)) ∈ T , so GϕL is
a grade assignment from P into L. Furthermore, L is suitable for P : since
by assumption Φ is truth compatible for P , for any given x ∈ X there is
some ϕ ∈ Φ such that α(x) = ϕ(x). Now, since L is suitable for Φ in P ,
α(x) = ϕ(x) ∈ V .

To see that 〈GϕL, L〉 is accurate, by its own standards, consider any x ∈ X.
Because Φ is truth compatible for P , α(x) ∈ [Φ(x) ∩ I(I−1(α(x)))] 6= ∅. We
have, by definition of Φ(x), also ϕ(x) ∈ [Φ(x) ∩ I(I−1(ϕ(x)))] 6= ∅. Since
L masks Φ in P , therefore I−1(α(x)) = I−1(ϕ(x)). By definition of GL
furthermore I−1(ϕ(x)) = GL(ϕ, x) = GϕL(x). Putting these identities together
within the scope of I: α(x) ∈ I(I−1(α(x)) = I(I−1(ϕ(x))) = I(GϕL(x)). This
argument is good for any x ∈ X, so 〈GϕL, L〉 is an accurate solution to P , by
its own standards. It is good for any ϕ ∈ Φ, so 〈GL, L〉 is a reliably accurate
solution to P with scope Φ.

For the only if part, suppose L does not mask Φ in P . Choose some
x ∈ X and e 6= f ∈ T such that Φ(x) ∩ I(e) 6= ∅ and Φ(x) ∩ I(f) 6= ∅.
Because Φ is truth compatible, without loss of generality α(x) ∈ I(e). (If
α(x) is ”covered” by neither the chosen e nor f then, by the properties of
interpretations, there has to be some other g ∈ T such that α(x) ∈ I(g).
By truth compatibility of Φ, α(x) ∈ Φ(x) ∩ I(g) 6= ∅, so we can choose this
g instead of e.) Now, choose any v ∈ Φ(x) ∩ I(f), and any ϕ ∈ Φ such
that ϕ(x) = v. We have GϕL(x) = I−1(ϕ(x)) = I−1(v) = f . Because I
is an interpretation and e 6= f , I(e) ∩ I(f) = ∅, so because α(x) ∈ I(e),
α(x) 6∈ I(f) = I(GϕL(x)). So 〈GϕL, L〉 is not an accurate solution to P , by
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its own standards, and 〈GL, L〉 is not a reliably accurate solution to P with
scope Φ. �

Theorem 8

Let 〈G1, L1〉, . . . , 〈Gn, Ln〉 be reliably accurate individual solutions to P
with respective scopes Φ1, . . . , Φn, where L1, . . . , Ln measure some common
dimension. Then

〈◦(〈G1, . . . ,Gn〉), ◦(〈L1, . . . Ln〉)〉

is a reliably accurate solution to P with scope Φ1 × . . .× Φn.

Definitions. Let L = 〈T,�, I〉 and P = 〈X,α〉, and let Φ be a scope for
problem P .
G is a signaled grade assignment from Φ and P into L if

• G maps each (~ϕ, x) ∈ Φ×X to a grade in L (that is, G(~ϕ, x) ∈ T ), and

• G(~ϕ, x) = G(~ϕ, y) whenever for each component ϕi of ~ϕ, ϕi(x) = ϕi(y).

Replace ~ϕ by ϕ for an individual signaled grade assignment.
〈G, L〉 is an (individual) signaled solution to P with scope Φ if G is an

(individual) signaled grade assignment from Φ and P into L.
A signaled solution 〈G, L〉 to P with scope Φ is a reliably accurate solution

to P with scope Φ if for every ~ϕ ∈ Φ, 〈G ~ϕ, L〉 is an accurate solution to P , by
its own standards. Replace ~ϕ by ϕ for a reliably accurate individual solution.

Let 〈G1, L1〉, . . ., 〈Gn, Ln〉 be reliably accurate individual solutions to P
with respective scopes Φ1, . . ., Φn. A function ◦(〈G1, . . . ,Gn〉) is defined by
recursion that maps each pair (~ϕ, x), with ~ϕ ∈ Φ1 × . . .× Φn and x ∈ X, to
a grade in ◦(〈L1, . . . , Ln〉). Where ϕi ∈ Φi and x ∈ X, put

• ◦(〈G1〉)(〈ϕ1〉, x) = G1(ϕ1, x), and

• ◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, x) =

〈◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x), Gm+1(ϕm+1, x)〉.

Proof of theorem 8. An induction on n. The base case is triv-
ial, since ◦(〈G1〉) = G1 (modulo identifying any singleton 〈ϕ〉 with ϕ), and
◦(〈L1〉) = L1. The induction step is more involved. There are two main
things to be shown: (1) ◦(〈G1, . . . ,Gm+1〉) is a signaled grade assignment
from Φ1× . . .×Φm+1 and P = 〈X,α〉 into ◦(〈L1, . . . , Lm+1〉); and (2) for any
〈ϕ1, . . . , ϕm+1〉 ∈ Φ1 × . . .× Φm+1,

29



〈◦(〈G1, . . . ,Gm+1〉)〈ϕ1,...,ϕm+1〉, ◦(〈L1, . . . Lm+1〉)〉

is an accurate solution to P , by its own standards.

(1) There are again two requirements. The first is that (i) for any given
〈ϕ1, . . . , ϕm+1〉 ∈ Φ1 × . . .× Φm+1, and for any x ∈ X,

◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, x)

is a grade in ◦(〈L1, . . . , Lm+1〉). The second is that (ii) for any x, y ∈ X,

◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, x) = ◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, y)

if for each 1 ≤ i ≤ m+ 1, ϕi(x) = ϕi(y). We verify (i) and (ii) in turn.
(i) Consider any particular such 〈ϕ1, . . . , ϕm+1〉 and x. Since Gm+1(ϕm+1, x)

is a grade in Lm+1, by the definition of ◦(〈L1, . . . , Lm+1〉) it is sufficient that
(a)
◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x) is a grade in ◦(〈L1, . . . Lm〉)

and, letting I1,...,m and Im+1 be the interpretation functions of ◦(〈L1, . . . Lm〉)
and Lm+1, that (b)

I1,...,m(◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x))
∩

Im+1(Gm+1(ϕm+1, x))

is non-empty.
By induction hypothesis, 〈◦(〈G1, . . . ,Gm〉), ◦(〈L1, . . . Lm〉)〉 is a reliably

accurate solution to P with scope Φ1 × . . . × Φm. It follows immediately
that (a) ◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x) is a grade in ◦(〈L1, . . . Lm〉). Fur-
thermore,

〈◦(〈G1, . . . ,Gm〉)〈ϕ1,...,ϕm〉, ◦(〈L1, . . . Lm〉)〉

is an accurate solution to P , by its own standards, and so by the assumptions
of the theorem is 〈Gϕm+1

m+1 , Lm+1〉. This secures (b), since

α(x) ∈ I1,...,m(◦(〈G1, . . . ,Gm〉)〈ϕ1,...,ϕm〉(x))

and

α(x) ∈ Im+1(Gϕm+1

m+1 (x)).
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(ii) Suppose for given x, y ∈ X that for each 1 ≤ i ≤ m+1, ϕi(x) = ϕi(y).
By induction hypothesis ◦(〈G1, . . . ,Gm〉) is a signaled grade assignment from
Φ1×. . .×Φm and P into ◦(〈L1, . . . , Lm〉), and by the assumptions of the theo-
rem Gm+1 is a signaled grade assignment from Φm+1 and P into Lm+1. There-
fore ◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x) = ◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, y) and
Gm+1(ϕm+1, x) = Gm+1(ϕm+1, y). Thus we have as required:

◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, x)
=

〈◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x), Gm+1(ϕm+1, x)〉
=

〈◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, y), Gm+1(ϕm+1, y)〉
=

◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, y)

(2) Take any such 〈ϕ1, . . . , ϕm+1〉, and any x ∈ X. Letting I1,...,m+1 be
the interpretation function of ◦(〈L1, . . . , Lm+1〉), to be shown is that α(x) ∈
I1,...,m+1(◦(〈G1, . . . ,Gm+1〉)〈ϕ1,...,ϕm+1〉(x)). Reasoning as in (1) (i) (b) above,
by induction hypothesis and assumptions of the theorem α(x) ∈

I1,...,m(◦(〈G1, . . . ,Gm〉)〈ϕ1,...,ϕm〉(x)) ∩ Im+1(Gϕm+1

m+1 (x)),

which can be rewritten

I1,...,m(◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x)) ∩ Im+1(Gm+1(ϕm+1, x)).

By definition of I1,...,m+1 this is equal to

I1,...,m+1(〈◦(〈G1, . . . ,Gm〉)(〈ϕ1, . . . , ϕm〉, x), Gm+1(ϕm+1, x)〉),

which by definition of ◦(〈G1, . . . ,Gm+1〉) is just

I1,...,m+1(◦(〈G1, . . . ,Gm+1〉)(〈ϕ1, . . . , ϕm+1〉, x)).

Finally, this can be rewritten

I1,...,m+1(◦(〈G1, . . . ,Gm+1〉)〈ϕ1,...,ϕm+1〉(x)).

This completes the proof of (2) and of theorem 8. �
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Theorem 9

Let 〈G, L〉 be a reliably accurate solution to 〈X,α〉 with scope Φ = Φ1 ×
. . .×Φn. Let x, y ∈ X be such that Φi(x)∩Φi(y) 6= ∅, for each 1 ≤ i ≤ n. Let
x and y be compatible in each Φi. Then for each ~ϕ ∈ Φ, G(~ϕ, x) = G(~ϕ, y).

Comment. From the proof it is clear that with n = 1 we have, replacing
~ϕ by ϕ, the corresponding theorem for reliably accurate individual solutions
as a special case.

Definition. x and y are compatible in individual scope Φi if ∀ϕ, ψ ∈ Φi

∃χ ∈ Φi such that χ(x) = ϕ(x) and χ(y) = ψ(y).

Proof of theorem 9. Consider any reliably accurate solution 〈G, L〉 to
〈X,α〉 with scope Φ = Φ1 × . . . × Φn. Take any i, 1 ≤ i ≤ n. Under the
assumptions of the theorem, choose v ∈ Φi(x)∩Φi(y). There are ϕi, ψi ∈ Φi

such that ϕi(x) = v = ψi(y). Because x and y are compatible in Φi there is
χi ∈ Φi such that χi(x) = χi(y). Do this n times to obtain ~χ = 〈χ1, . . . χn〉 ∈
Φ = Φ1× . . .×Φn such that ∀i, χi(x) = χi(y). Because G is a signaled grade
assignment, G(~χ, x) = G(~χ, y). Since 〈G, L〉 is reliably accurate it is, as shown

in the paper, reliable: for every ~ϕ, ~ψ ∈ Φ and every z ∈ X, G(~ϕ, z) = G(~ψ, z).
For every ~ϕ ∈ Φ therefore G(~ϕ, x) = G(~χ, x) = G(~χ, y) = G(~ϕ, y). �
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