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Pattern and Chaos: New Images in the 
Semantics of Paradox 

GARY MAR AND PATRICK GRIM 
Group for Logic and Formal Semantics 

Department of Philosophy 
SUNY at Stony Brook 

Dedicated to the Memory of Hector-Neri Castanieda. 

The paradox of the Liar and its kin are well known as recalcitrant 
puzzles, perennially resistant to perennial attempts at solution. There 
is also a tradition, however, in which such paradoxes are treated 
as more than mere puzzles: a tradition running at least from Russell 
(1903) through Godel (1931) and Tarski (1935) to Kripke (1975), 
Herzberger (1982), Gupta (1982), and Barwise and Etchemendy 
(1987). In such approaches, patterns of paradox are respectfully 
treated as possible keys to a better understanding of incompleteness 
phenomena and semantics in general. Our work here is intended 
as a part of this latter tradition. 

Given certain standard assumptions-that particular sentences 
are meaningful, for example, and do genuinely self-attribute their 
own falsity-the paradoxes appear to show intriguing patterns of 
generally unstable semantic behavior. In what follows we want to 
concentrate on those patterns themselves: the pattern of the Liar, 
for example, which if assumed either true or false appears to oscillate 
endlessly between truth and falsehood. We see the work of the present 
paper, then, as very much in the spirit of Hans Herzberger's 'naive 
semantics': 

Rather than attempting to resolve the paradoxes by rendering critical 
statements truth-valueless or otherwise neutralizing them, naive 
semantics undertakes to exhibit and characterize their specific patterns 
and degrees of instability. (Herzberger (1982), p. 135 of Martin) 

We won't here be concerned with proposed solutions to the 
paradoxes. The standard assumptions mentioned above may of course 
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be assumptions critically challenged in one or another attempt at 
solving the paradoxes, and the goal of attempts at solution may 
be precisely to show that the apparent semantic instability of such 
paradoxes is merely apparent-that despite appearances, for e'xample, 
the Liar does have some single and stable third truth-value. What 
we want to explore, however, are the apparent semantic patterns 
themselves, regardless of whether these are portrayed as merely ap- 
parent within one or another ,attempt at solution. 

In what follows we offer some new ways of using computer 
graphics to analyze the apparent semantic behavior of a variety of 
paradoxes, both old and new.' When considered within the range 
of an infinite-valued logic and on the mathematical model of iterated 
functions studied in chaos theory,2 in particular, familiar paradoxes 
often show elegant, unexpected, and visually beautiful semantic 
patterns, and exhibit moreover a number of surprising structural 
relations. 

In section I below we outline the parametric-operator develop- 
ment of infinite-valued logic, due to Nicholas Rescher, that we will 
be using throughout, and indicate by example some basic tools of 
graphic analysis. 

Section II is an extended tour of some of the remarkable images 
generated under such graphic analysis by both familiar paradoxes- 
including the Liar, the Heterological paradox, the Curry paradox, 
and Dualist forms of the Liar-and a range of new variations sug- 
gested by tools of the analysis itself. Here we introduce a sentence 
we call the Chaotic Liar which exhibits genuinely chaotic semantic 
behavior and proves to be of quite central importance. Our analysis 
of variations on the Dualist takes us into both strange attractors 
and fractals. 

The graphic exhibition and analysis of this range of paradoxes 
is admittedly a main purpose of the present paper, and in this regard 
we must confess to a fascination with the beauty of the images 
themselves. In section III, however, we also offer a brief example 
of philosophical and metamathematical applications. Here we use 
a strengthening of the Chaotic Liar to illustrate an intriguing route 
into limitative results regarding chaos theory itself in the tradition 
of G6del (1931), Tarski (1935), Church (1936), and Turing (1936). 

I. 

In what follows we will treat the paradoxes, new and old, in the 
context of an infinite-valued logic. What we will be asking is what 
the semantic behavior of various sentences looks like if we are not 
restricted to merely two values-true and false, or 1 and 0-but 
are allowed any real number between 0 and 1 as a semantic value.3 
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PATTERN AND CHAOS 661 

There are of course arguments-of various types and of various 
plausibilities-that we should in general think of sentences or 
statements as infinite-valued: as having not merely two possible 
values, true or false, but a continuum of possible intermediate values 
as well .4 

One consideration is that of vague statements. Take for example: 

(1) It is cold today . 

Is (1) either absolutely true or absolutely false? Is 

(2) Alvin looks like Abraham Lincoln 

or 

(3) Oklahoma is a lovely state 

either absolutely true or absolutely false? In many cases, at least, 
the common unprompted and untutored response is that such 
examples are not simply true or false, but more or less true-that 
(3) is less true than (2), perhaps, itself less true than (1), which 
is fairly true. And this common response, at least for sentences such 
as these, may ultimately be the right one.5 

It is also possible to view the values assigned to statements within 
an infinite-valued logic as something other than genuine truth-values. 
Even those most uncompromising in their bivalence with regard 
to truth and falsity, for example, are quite willing to admit that 
some propositions may be more or less accurate. On a second inter- 
pretation, then, the assignment of a value of .7 to a statement might 
be taken to indicate not a measure of partial truth but simply a 
measure of accuracy. 

Our treatment throughout is perhaps more in accord with the 
first approach to infinite-valued logics: we will often speak as if 
sentences can genuinely take any of a continuum of semantic values 
between truth and falsity.6 Nonetheless we don't consider our task 
here to be one of arguing for infinite-valued logics in general, and 
we don't feel ourselves in any way committed philosophically to 
the ultimate rightness of infinitely many semantic values. Our ap- 
proach is hypothetical: what does the semantic behavior of certain 
sentences look like if we do assume an infinite-valued logic? 

Assuming a range of real values between 0 and 1, and represent- 
ing the value of a sentence p as /p/, we will take the value of -p 
to be i-/p/. For sentences p and q with values /p/ and /q/, we take 
the value of (p & q) to be min{/p/,/q/} and the value of (p v q) 
to be max{/p/,/q/}. All of this is a straightforward generalization 
from standard finitely many-valued logics. The value of (p q) 
we take to be max{1-/p/,/q/}.7 
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We will also use Nicholas Rescher's development of infinite- 
valued logics in terms of a parametrized propositional operator. 
Following Rescher, we take the value of a proposition Vvp assert- 
ing that a proposition p has value v to be given by: 

/Vvp/ = I-abs(v-/p/), 

where abs(v-/p/) indicates the absolute difference between v and 
/p/ (Rescher, 1969, 81-82).8 Intuitively, such a formula states that 
the proposition that p has the value v is untrue to the extent that 
the value of p differs from v. The standard Tarskian T schema 
can be seen as a special instance of this formula in which v and 
Ip/ are restricted to values of 0 and 1. 

At this point we offer a simple illustration of the kinds offormal 
lessons regarding paradox that such an infinite-valued logic may 
have to teach, regardless of whether such a logic is taken to be fully 
defensible philosophically or not. 

We start with merely the two classical values and the Simple Liar: 

(4) This sentence is false . 

Given the standard T schema, by a standard pattern of reasoning 
the assumption that (4) is true leads to the conclusion that it is false 
and the assumption that (4) is false leads to the conclusion that it 
is true. It is therefore quite natural to think of the classical semantic 
behavior of the Liar as an oscillation between truth-values t and f: 

t f t f t f t f 

Using 1 for truth and 0 for falsity, then, we can model the 
classical semantic behavior of the Liar in terms of a sequence of 
values x, where xo is some initial assumed truth-value and 

xn+1 n1-x. 

Starting with an initial estimate of either 1 or 0, we obtain a sequence 
of alternating Is and Os. In a simple graph: 

truth-value ./ 

e 1 2 3 4 a 6 7 8 9 le 

iterations 

Figure 1 
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Consider now the Simple Liar within the context of the infinite- 
valued logic outlined above. 

If (4) is assigned a value of 0, the Vvp schema above forces 
us to a revised estimate of I-abs(0-0), or 1. Given an estimated 
value of I, the Vvp schema forces us to conclude that (4) has a 
value of I-abs(0-1), or 0. Thus if assigned either 0 or 1 the Liar 
will still give us the familiar oscillation between 0 and 1. 

If we propose that the Liar is .25 true, on the other hand, using 
the Vvp schema above, we are forced to a revised estimate of 
I-abs(0-.25), or .75. With an estimate of .75 the Vvp schema forces 
us to a revised estimate of .25. Starting with an initial estimate 
of .25 the Liar thus gives us the following series of values: 

.25 .75 .25 .75 .25 .75 . . .9 

Graphed as before: 

truth-value 

* X 2 3 4 5 a 7 * 9 IS 

iterations 

Figure 2 

Here let us also introduce an alternative form of graphic analysis, 
known as a web diagram, capable of showing patterns of behavior 
through indefinitely many iterations. In a graph such as that below 
our initial value a- .25, in this case-is plotted as (a,0). A line 
is drawn vertically to meet the plotted function f(x) at point (a, 
f(a)). In order to graphically represent the iteration of the function, 
we draw a horizontal (to the right or to the left) to a point (f(a), 
f(a)) on the diagonal y = x and then draw a vertical line from 
there to our function at (f(a), f(f(a))). This process is repeated. 

In this second form of graphic analysis an initial estimated value 
of .25 for the Liar gives us a simple box, indicating the infinite 
oscillation between .25 and .75: 
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Figure 3 

With an initial estimate of .86, on the other hand, the 
characteristic Liar-like oscillation appears between .86 and .14: 

.86 .14 .86 .14 .86 .14 . 

truth-value 

e 

e 1 2 3 4 5 6 7 8 9 le 

iterations 

Figure 4 

Figure 5 

U, AL.ILIJ , W,. 
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Only a value of .5 serves as a fixed point, generating a constant 
series of .5s as iterated values. 

So much, for the moment, for the Simple Liar. Consider now 
another sentence, the 'Minimalist', which refers not merely to its 
own truth-value but to its estimated truth-value: 

(5) The actual value of this sentence is whichever is smaller: 
its estimated value or the opposite of its estimated value . 

Here we take the opposite of a value v, fairly naturally, to be 1-v. 
Is (5) true or false? Given an estimated value of 'true', or 1, 

what (5) says is that its actual value is whichever is smaller: 1 or 
0. With an estimated value of 'true', in other words, what (5) asserts 
is that it is false. Given our initial estimate, then-that (5) is true-we 
are forced to conclude that (5) is false. Take this as a revised estimate. 
With an estimated value of 'false' for (5), what (5) asserts is that 
its actual value is 0. But with an estimated value of 'false', if (5) 
asserts that it's false, we're forced to a further revised estimate of 
'true' . . ., and so forth, endlessly oscillating between 0 and 1.10 

Notice that if we restrict ourselves to two values-'true' and 
'false' or 0 and 1-what (5) gives us is behavior identical to that 
of the Simple Liar. Within an infinite-valued context, however, the 
behavior of the Minimalist and the Simple Liar diverge sharply. 

An initial estimate of .25 for the Simple Liar, we've seen, gives 
us a periodic oscillation between .25 and .75. Consider the behavior 
of the Minimalist with the same initial estimate. Given an estimate 
of .25, what the Minimalist asserts is that its actual value is whichever 
is smaller: .25 or .75. What it asserts, in other words, is that its 
actual value is .25. Using the Vvp schema above, we can then 
calculate its 'actual' value as 1-abs(.25-.25), or 1. Starting with an 
initial estimate of .25 for the Minimalist, then, we are forced to 
a revised estimate of 1. But given an estimate of 1, what the 
Minimalist asserts is that its actual value is whichever is smaller: 
0 or 1. By the Vvp schema we are forced to a further revised estimate 
of 1-abs(0-1), or 0, and this in turn leads to a series of revised 
estimates 1, 0, 1, 0, 1, 0,. 

An initial estimate of .6 for the Minimalist, on the other hand, 
gives us the following series of values: .6, .8, .4, 1, 0, 1, 0, 1, 0, . . . I 
again converging on an infinite oscillation between 0 and 1. An 
initial value of .66 gives us .68, .64, .72, .56, .88,. 24, 1, 0, 1, 
0, 1, 0, ... Web diagrams with arrows to indicate direction appear 
below. (Figures 6 and 7) 

With but one exception, all initial values for the Minimalist con- 
verge ultimately on an oscillation between 0 and 1. The exception 
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/~ 
\ 

initial value .6 initial value .66 

Figure 6 Figure 7 

is the point 2/3. Although any terminal decimal approximation to 
2/3 will give us the same oscillation, an easy calculation regarding 
the Vvp schema shows that an initial value of 2/3 will result in 
a revised estimate of 2/3 as well: 2/3 is the single fixed point for 
the Minimalist. 

Although the behavior of the Minimalist is indistinguishable from 
that of the Simple Liar within a two-valued logic, then, the semantic 
patterns of the two diverge sharply within an infinite-valued context. 
For initial values v between 0 and 1 the Simple Liar gives us a 
Liar-like oscillation between v and 1-v. For any initial value v be- 
tween 0 and 1 other than 2/3, the Minimalist gives a series of values 
which converge on an oscillation between 0 and 1. Within an infinite- 
valued context it is thus the Minimalist, rather than the Simple 
Liar itself, that converges on the characteristic behavior of the classical 
two-valued Liar. 

Whatever its philosophical status, then, an infinite-valued logic 
is capable of exhibiting clear formal differences between certain 
sentences which a standard two-valued logic is not. One way of 
thinking of the matter, of course, is this: that employment of an 
infinite-valued logic creates illusory images of semantic-like patterns 
where there are in fact none-on the conviction, say, that both the 
Minimalist and the Simple Liar can in reality have only one of two 
values. An alternative way of thinking of the matter, however, is 
the following: that these sentences have latent ranges of semantic 
behavior some of which are visible for the first time only when con- 
sidered within an infinite-valued context. Here we aren't prepared 
to argue for this second approach as a philosophical thesis, though 
we must confess that such a view has in fact guided our exploration 
of patterns of paradox and related metamathematical results. 
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II. 

In introducing some tools of analysis above we illustrated the semantic 
behavior of the Simple Liar and the Minimalist in the context of 
an infinite-valued logic. In this section we want to do the same for 
both traditional relatives of the Liar and a range of new variations- 
variations in many cases suggested by the tools of the analysis itself. 

1. THE TRUTH-TELLER AND THE SAMESAYER 

Long discussed as a companion to the Liar is the Truth-Teller, which 
asserts not its own falsity but its own truth: 

(6) This sentence is true . 

Although not paradoxical in the sense of forcing a contradiction 
given an assumption of either truth or falsity, the Truth-Teller is 
still semantically peculiar: (6) can consistently be assumed either 
true or false, but there seem to be no grounds for either assign- 
ment. For this reason the Truth-Teller is often treated in ways similar 
to the Liar within attempted solutions for the paradoxes. Kripke 
(1975), for example, diagnoses both the Truth-Teller and the Liar 
as ungrounded and so without truth-value. 

Within an infinite-valued logic using the Vvp schema above, 
(6) will take a series of iterated values 

T(xn + 1) = 1 -abs(1 -x.) , 

or, since the values of our sentences are restricted to the interval 
[0,1], simply T(xn+1) = xn. The behavior of the Truth-Teller 
within the infinite-valued context is thus an extension of its behavior 
in the two-valued case: any estimated truth-value for (6) proves con- 
sistent, in the sense that (6)'s actual value, computed by means 
of the Vvp schema, will in all cases match that estimated value. 

Consider also the Samesayer, a sentence superficially similar 
to the Truth-Teller but which says that its value is as estimated: 

(7) The value of this sentence is precisely what it has been 
estimated to be . 

Given an estimate of xn, what (7) says is that its value is x . Its 
series of revised values, then, computed by means of our Vvp 
schema, is: 

S(xn + I) = 1 -abs(xn-xn) 

or simply S(xn+1) = 1. 
Perhaps contrary to initial intuitions, the Truth-Teller differs 

quite sharply from the Samesayer within both infinite-valued and 
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two-valued contexts. The Truth-Teller can consistently be assigned 
any of the available values. The Samesayer cannot: it proves 
tautologous in the sense of forcing in all cases a revised estimate 
of perfect truth. 

Beneath these differences, however, lies an intriguing structural 
symmetry between the Truth-Teller and the Samesayer. 

Let *T(x)* be the value that the Truth-Teller says it has-that 
is, 1. Let *S(x)* be the value that the Samesayer says it has-x., 
for any previous estimate xn. Then it happens that the actual value 
/T(x)/ of the Truth-Teller, computed by means of the Vvp schema, 
is identical to what the Samesayer says its value is: 

/T(x)/ =*S(x)* 

Conversely, the actual value /S(x)/ of the Samesayer is identical 
to what the Truth-Teller says its value is: 

/S(x)/ = *T(x)* . 

2. THE HALF-SAYER 

As a variation on the Samesayer consider the Half-Sayer, which 
says not that its actual value is its estimated value but that it is 
half its estimated value: 

(8) The actual truth of this sentence is half its estimated truth 

If we start with an initial estimate of .5 for the truth of (8), 
what (8) asserts is that its actual truth is half our estimate-that 
is, .25. But how true is (8) then? Given our initial estimate and 
the Vvp schema, the value of (8) will be 1-abs(.5-.25), or .75. This 
of course qualifies as a new estimate. But what (8) says is that its 
actual truth is half its estimated truth. Given our new estimate, 

Figure 8 
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then, what (8) says is that its value is .375. How true is (8)? Using 
the Vvp schema, we are forced to a further revised estimate of 
1-abs(.75-.375), or .625. 

Continuing this pattern of reasoning we are forced to successive 
estimates of .6875, .65625, .671875, .6640625, .6660125, . . . con- 
verging ultimately on 2/3. (Figure 8) 

It happens, in fact, that any initial estimate will give us the 
same result: revised estimates for (8) converge inexorably on a fixed 
point of 2/3. 

The dynamical behavior of the Half-Sayer is thus precisely the 
opposite of the Minimalist. For the Minimalist 2/3 is a fixed point 
repeller. For the Half-Sayer 2/3 is a fixed point attractor: 

I~~~~~ 

The Minimalist with an The Half-Sayer with an 
initial estimate of .665 initial estimate of .916 

Figure 9 Figure 10 

What of a 'Quarter-Sayer', giving us 

xn + 1= 1 -abs((l /4)xn-x.) I 

or a 'Third-Sayer', giving us 

xn+1 = 1-abs((1/3 )X-x) ? 

Each of these converges to its own fixed point: the 'Quarter-Sayer' 
has a fixed point of 4/7, the 'Third-Sayer' a fixed point of 3/5. 
In general, for any k between zero and one, the attractor fixed point 
for the 'k-Sayer' will be 11(2-k).'1 

3. THE CHAOTIC LIAR 

Given an estimated truth v for a sentence, we will speak of its 
estimated falsehood as (1-v). Consider: 
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(9) The actual truth of this sentence is its estimated falsehood 

or alternatively 

(10) This sentence is as true as it is estimated to be false 

which we shall call the Chaotic Liar. Other renderings include: 

(11) The actual value of this sentence is precisely the opposite 
of its estimate, 

(12) The actual value of this sentence is precisely the opposite 
of what you estimate it to be 

or still more informally 

(13) I'm as true as you think I'm false 

What the Chaotic Liar asserts, of course, is that its value is (1-v), 
where v is its estimated value. In terms of the Vvp schema, then, 
successive values xn+i for the sentence will be given by 

xn + = 1 -abs(( 1 -x )-xn) 

For an initial value .32, for example, the Chaotic Liar gives 
us a graph which begins as follows: 

1 

truth-value .5 

0 1 2 3 4 5 n 7 8 9 16 

iterations 

Figure 11 

and a web diagram something like the following, represented at four 
successive stages: 
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A71 <~~~~~~~~~A 

. . ........ ........ .... ........ * .5 1.O * .5 1.0 

Figures 12-15 

Iterated values for sentence (9) exhibit the sensitivity to initial 
conditions that is the hallmark of chaos.12 Initial values .314 and 
.3141, for example, give us quickly divergent iterations: 

Iteration .314 .3141 
1 .628 .6282 11 .928 .7232 
2 .744 .7436 12 .144 .5536 
3 .512 .5128 13 .288 .8928 
4 .976 .9744 14 .576 .2144 
5 .048 .0512 15 .848 .4288 
6 .096 .1024 16 .304 .8576 
7 .192 .2048 17 .608 .2848 
8 .384 .4096 18 .784 .5696 
9 .768 .8192 19 .432 .8608 

10 .464 .3616 20 .864 .2784 
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It happens that xn+i = 1-abs((1-xn)-xn) is a very simple but 
paradigmatically chaotic function on the interval [0,1].13 Since this 
is precisely the interval of semantic values within our infinite-valued 
logic, (9) through (13) will be sentences with genuinely chaotic 
semantics. In section III we use a strengthened relative of the Chaotic 
Liar in order to introduce a family of limitative results regarding 
chaos theory itself. 

Here we also note an intriguing relationship between the Chaotic 
Liar and the Simple Liar. 

Let us first introduce the useful notion of the Vvp of a value. 
A sentence which self-attributes a value s, we've seen, takes a series 
of values 

x n + I= 1-abs(s-xn) 

computed in terms of the Vvp schema. It thus seems natural to 
think of 1-abs(s-xn) as 'the Vvp of' the value s. In general, for 
any value function s(x), we will take the formula 

xn + I = 1-abS(S(Xn)-xn) 

to be the Vvp of s(x). 
The value of the Chaotic Liar, in these terms, is precisely the 

Vvp of the formula for the Simple Liar. Values for the Simple Liar, 
it will be remembered, are given by: 

xn + I = 1-abs(0-xn) Y 

or more simply, for positive x, 

xI = 1-x 

This function is not itself chaotic: as indicated above, it produces 
a pair of oscillating values which appear as a simple box within 
a web diagram. Its Vvp, on the other hand, 

x n + I= 1-abs((1 -xn)-xn) 

does give us a fully chaotic semantics. 

4. THE HETEROLOGICAL PARADOX 

The Heterological paradox (Grelling and Nelson (1908)) concerns 
adjectival phrases which do not apply to themselves. An adjectival 
phrase is said to be autological if it has the property it expresses, 
and is said to be heterological otherwise. Letting ir be any adjectival 
expression and 'ir' the name of that adjectival expression, we may 
express these properties as follows: 

This content downloaded from 129.49.250.35 on Fri, 13 Feb 2015 10:00:38 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


PA TTERN AND CHAOS 673 

(I 4) Aut('gr') - ('r') 
and 

(15) Het('ir') - ('r') 

But is the adjectival phrase 'is heterological' itself heterological 
or not? Instantiating (15), we quickly obtain a contradiction: 

(16) Het('Het') - - Het('Het') 

Strictly speaking, the Heterological paradox depends not on 
sentential self-reference, as does the Liar, but on adjectival self- 
application. Quine (1962) offers a form of the Liar which is struc- 
turally similar to the Heterological paradox, however, employing 
the notion of falsity within an adjectival expression. When 

(17) is false when appended to its own quotation 

is applied to itself-appended to its own quotation-we get: 

(18) 'is false when appended to its own quotation' is 
false when appended to its own quotation . 

To generalize these ideas to the infinite-valued case, we work 
with the following natural assumption: that a predicate ir self-applies 
fully iff the value of ir('r') = 1, and in general applies with a value 
v iff the value of ir('ir') is v; it applies with the value of .4, say, 
iff the value of ir('ir') = .4. 

Now consider 

(19) 'applies to itself precisely as much as you estimate it does 
not' applies to itself precisely as much as you estimate 
it does not . 

Let us start with an estimate of .3, say, regarding the degree to 
which 'applies to itself precisely as much as you estimate it does 
not' applies to itself. What (19) says is that its value is the opposite 
of our estimate-that is, (1-.3) or .7. Using the Vvp schema, we 
are then forced to a revised estimate of I-abs(1-.3)-.3) or .6. Note 
that .6 is both a revised estimate for the value of (19) and-by our 
assumption above-a revised estimate of the self-applicability of the 
adjectival phrase incorporated in (19). 

In general, the formula for revised values of (19) will be given by 

xn+1 = 1 -abs(( -xn)-xn) 

This is of course precisely the formula for the Chaotic Liar.t4 Just 
as the simple Heterological paradox parallels the Simple Liar, then, 
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a chaotic version of the Heterological paradox parallels the Chaotic 
Liar. 

Here we outline some intriguing relationships in somewhat more 
detail. 

5. THE CURRY PARADOX 

The Curry paradox15 is generated by a conditional 

C: If C is true, then P , 

where P is some arbitrarily chosen proposition. 
In a standard two-valued logic and given the Tarskian princi- 

ple that C is true iff what it says is the case, from C we can derive 
P simpliciter. The paradox, of course, is that P may be any pro- 
position whatsoever; we have seemingly proven any arbitrarily chosen 
proposition by pure logic alone. 

Consider an infinite-valued variant of the Curry sentence which 
says 

This is as true as 'If I am true, then P' 

Using a conditional (p - q) definable as ( - p v q), which takes 
a value within our logic of max{1-/p/,/q/}, what this variation on 
the Curry says is that its value is max{1-/C/,/P/}.I6 Using the Vvp 
schema, then, this gives us a series of values 

xn+1 = 1-abs(max{1 -xn,/P/}-xn) 

With a value of P greater than .5, values for C seem to 'stair- 
case' up to a periodic oscillation. With a P of .75, for example, 
and an initial value of .2, we get a series of values that converges 
on an oscillation between .85 and .9: 

Figure 16 
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With a value of 1 for P, we get 1 as a fixed point for all initial 
estimates: our Curry variation converges on the Samesayer. 

For P less than .5, on the other hand, we seem to get a region 
of chaotic behavior governed by the extent of a central 'tent' in 
the graphing of the function. For a P of .3, for example, with an 
initial value of .1, we get the following: 

......... ... ... 

/~~~~~~~~~ 

Figures 17 20 

As the value of P approaches 0, chaotic behavior increases to 
the full unit interval; with the value of P equal to 0 we obtain a 
function identical to the Chaotic Liar. 

To see how the behavior of our Curry sentence changes with 
different values for P we can also use an alternative form of graphing. 
The following, a variant of what is known as an orbit diagram, 
shows the range of values taken by our sentence for values of P 
between 0 and 1. Here in all cases we use an initial input of .23: 
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P e P= 1 
Figure 21 

6. THE DUALIST 

As has been clear from at least the medieval period,17 beyond the 
Simple Liar is an infinite series of Liar cycles in which indirect self- 
reference replaces the direct self-reference of the Liar. The simplest 
of these is the Dualist, which combines features of both the Liar 
and the Truth-Teller:18 

Socrates: What Plato is about to say is false 
Plato: Socrates speaks truly 

or simply 

X: Y is false 
Y: X is true 

Within a two-valued logic the reasoning of the Dualist is as 
follows. If X is true, then Y is false, but then it is false that X 
is true, and thus X is not true. If X is false, on the other hand, 
then it is false that Y is false; Y is then true, and thus X is true 
rather than false. 

A fairly natural infinite-valued representation of iterated values 
for these sentences is given by 

xn+i = 1-abs(O-y.,1) 
Yn+1 = 1 -abs( 1-xn) 

Here it is assumed that we start with an estimate xn for X, 
calculate Yn +I as an estimate for Y in terms of that xn, and then 
re-evaluate our original estimate for X in light of our last estimate 
for Y. 19 Successive values for X then exhibit semantic behavior iden- 
tical to that of the Simple Liar within an infinite-valued context: 
given an initial estimate of .25 for X, for example, we are forced 
to revised estimates of .75, .25, .75, .25, ... 

Consider also a variation of the Dualist: 
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X': This sentence is as true as Y' is false 
Y': X' is true , 

which on a similar pattern of reasoning gives us 

x n+1= 1-abs([1-yn+I]-x.) 

Yn + = 1-abs(1-xn) 

Note that if we substitute the right hand side of the second equa- 
tion for Yn+ in the first we obtain 

Xn+1 = 1-abs([1-(1-abs(1-xn))]-x.) 

Consequently, for xn between 0 and 1, we derive 

xn+1 = 1-abs((1-xn)-xn) I 

which is precisely the formula for the Chaotic Liar. 

7. SOME DUALIST STRANGE ATTRACTORS 

Here we offer a further variation on the Dualist, in which both 
sentences speak of each other in tones akin to that of the Chaotic Liar: 

X": X" is true to the extent that Y" is true 
Y": Y" is true to the extent that X" is false 

Alternatively put: 

X": X" is as true as Y" 
Y": Y" is as true as X" is false 

What X" says is that its truth-value is that of Y". Using the 
Vvp schema, then, we can compute its value as 1-abs(/X"/-/Y"/). 
Given estimates of xn and yn for X" and Y", the value of X" at 
the next estimate is thus given by: 

Xn + I= 1-abS(Yn-Xn) 

What Y" says, on the other hand, is that it is true to the extent 
that X" is false, or that its value is the opposite of that of X". Given 
the same xn and Yn, in other words, 

Yn+1 = 1 -abs((1-xn)-yn) 

With initial values of 1/8 and 1/8 for X" and Y"-(.125,.125)- 
these formulae give us revised values of (1,.25), (.25,.75), (.5,1), 
(.5,.5), (1,1), (1,0), (0,1), (0,1), (0,1),. . . . Graphically represented, 
these value pairs (x,y) outline the triangular upper half of the unit 
square as they move toward a final fixed point of (0,1): 
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Figure 22 

Other pairs of points give us periodic behavior: initial estimates 
of .4 and .6 for X" and Y", for example, give us as successive 
value pairs (.8,1), (.8,.2), (.4,1), (.4,.6),. . ., with a repeating period 
of four points. Throughout the [0, 1 ] interval, however, the triangular 
upper half of the unit square appears as a persistent constraint. The 
following is an overlay of graphs for initial points (x,y) where x 
and y range from 0 to 1 in increments of .05:20 

. .: . . .. . 

Figure 23 

It should be noted that what our formulae above actually cap- 
ture is not merely two sentences but a particular pattern of reason- 
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ing with regard to them. Starting with a pair of estimates for 
sentences X " and Y ", we have in effect calculated revised estimates 
for X " and Y " simultaneously. But here one might also consider an 
alternative pattern of reasoning with respect to the Dualist sentences. 
On this second pattern of reasoning, one would start with a pair 
of estimates for X " and Y ", calculate a revised estimate for the 
first sentence in terms of those two estimates, but then go on to 
calculate a revised estimate for the second sentence in terms of the 
initial estimate for Y " together with the most recently revised estimate 
for X". 

This 'sequential' rather than 'simultaneous' pattern of reason- 
ing with respect to X " and Y " can be represented by a pair of 
formulae: 

xn+1 = 1-abs(yn-xn) 

Yn+1 = 1 -abs((1-xn + 1)-Yn) 

in which we replace the previous xn of the second formula with 

Xn + I 

For a wide range of initial values (x,y), what these formulae 
yield is a very persistent strange attractor.21 Initial values (.1,.9), 
for example, give us the following pattern of successive values: 

Figure 24 

The persistence of such an attractor is clearly evident in an 
overlay diagram for initial points (x,y) in increments of .05 as before: 
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Figure 25 

An entirely different strange attractor appears if the first member 
of our Dualist pair is replaced with a sentence reminiscent of the 
Half-Sayer: 

X I"': X ... is true to half the extent that Y . is true 
Y I: Y ... is true to the extent that X "' is false 

Following the successive pattern of reasoning outlined above, 

= 1-abs(. 5Y-Xn) 

Yn1= 1 -abs((1 -Xn +1)-Yn) 

In the case of X .and Y . the persistent attractor takes the form 
of two elipses. For initial values (.7,.3): 

Figure 26 
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An overlay diagram using initial values (x,y) in increments of 
.1 for this attractor shows ellipses in much the same position but 
of differing sizes depending on initial values. For some values, only 
a four-fold scattering of dots or a central cross-pattern emerges: 

* g. 
Figure 27 

8. FRACTALS IN THE SEMANTICS OF PARADOX 

Here we finally want to offer another way of graphing the behavior 
of the Dualist functions sketched in terms of attractors immediately 
above. Though we consider the results that follow to be intriguingly 
beautiful, we cannot at this point claim to understand fully the seman- 
tic lessons they may have to teach. 

Standard escape-time diagrams show, for each pair of points 
(x,y) on the Cartesian plane, the number of iterations through a 
given function that is required before a certain specified result is 
achieved. An escape-time diagram may show us, for example, 
whether the point (.5,.5) cycled through a particular function gives 
a result (x,y) such that -x2 + y2 > 1 within one iteration, within 
two iterations, within three iterations, or more . . . . Those points 
on the plane which reach the chosen threshold in one iteration can 
be colored with one shading, those in two iterations with another, 
and so forth. Alternatively, as below, we can emphasize the inter- 
faces between different areas: points at which the number of re- 
quired iterations changes. 

Here we offer an escape-time diagram for the simplest of the 
chaotic Dualist variations sketched above, in which X" and Y" are 
calculated simultaneously for input values (x,y):22 
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Figure 28 

This fragile tracery of lines indicates those points at which there 
is a change in the number of iterations required for the 'hypotenuse' 

Ix2 + y2 of a result (x,y) to exceed 1.03. 
We've confined the image above to the unit square, reflecting 

the fact that semantic values for x and y within our logic are con- 
fined to the interval [0,1]. Formally, however, this image is a sec- 
tion of the larger one below, for values x and y between -1.4 and 
+ 2.4. A central box indicates the unit square: 
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17 % 

,$I 

Figure 29 

These images clearly exhibit an intricate fractal character, or 
self-similarity under magnification. 23 Nonetheless what is being 
graphed within the unit square is simply information regarding the 
semantic behavior for different inputs of a pair of English sentences: 

X": X" is true to the extent that Y" is true 
Y": Y" is true to the extent that X" is false 

The following is an escape-time diagram for the second varia- 
tion of the Dualist-that in which values for X" and Y" are com- 
puted successively and which gave us the first of the strange attrac- 
tors above. Both this diagram and the next are for values between 
-2 and +6, with the unit square indicated as before: 
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Figure 30 

An escape-time diagram for the third variation of the Dualist- 
which gave us the double ellipse attractor-appears as follows: 

Figure 31 
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Note that the general shape of the second two escape-time 
diagrams-despite the fact that the corresponding attractors are quite 
different-are obviously related both to each other and to the first 
escape-time diagram, though it is also true that the three differ in 
an infinite range of details. 

The existence of such fractal images within an infinite-valued 
semantic analysis of paradoxical sentences seems to offer beauty and 
an intriguing promise of some deep truths. Nonetheless at present 
we cannot say precisely what they may have to tell us about truth 
and paradox. 

In the next section, however, we do want to offer a clear il- 
lustration of at least one area in which the semantical work above 
offers a route into important philosophical and metamathematical 
results regarding chaos theory itself. 

III. 

In this section we use a strengthening of the Chaotic Liar to in- 
troduce a family of limitative results in the tradition of G6del (1931), 
Tarski (1935), Church (1936) and Turing (1936) but here regard- 
ing chaos theory. Though the results we offer can also be reached 
by other means,24 the route through the Chaotic Liar seems par- 
ticularly elegant and appropriate with regard to formal limitations 
on chaos theory. 

1. A MOTIVATING ANTINOMY 

We start with a motivating antinomy. The familiar Strengthened 
Liar, it will be remembered, is as follows: 

(20) This sentence is false or neither true nor false 

and proves useful in showing that the move to truth-value gaps is 
at best a temporary expedient with regard to Liar-like paradoxes. 

The Chaotic Liar, outlined in section II.3 above, introduces 
the possibility of a sentence with genuinely chaotic semantic behavior: 
such that its value is dependent on its previously estimated value 
and the pattern of its iterated values is chaotic on the interval [0, 1]. 

Here we use the pattern of (20) with the general notion of chaotic 
semantic behavior in order to introduce what might be considered 
a strengthened form of the Chaotic Liar: 

(21) Either this sentence has chaotic semantic behavior or its 
actual truth is its estimated falsehood 

Rather than ask whether (21) is true or not, however-the stan- 
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dard question asked of the Strengthened Liar-we will ask whether 
(21) has chaotic semantic behavior or not. 

Note that the semantic behavior of a sentence that is simply 
true will not qualify as chaotic. If thought of on the model of an 
iterated function at all, it will simply take the value 'true' regardless 
of previous estimates, and can thus be thought of as giving us merely 
a constant series of Is. 

If (21) does have chaotic semantic behavior, however, it will be 
simply true in virtue of its first disjunct. By our reasoning above, 
then, it won 't be semantically chaotic, and we have derived a 
contradiction. 

If (21) does not have chaotic semantic behavior, on the other 
hand, its truth-value will depend entirely on its second disjunct and 
will thus parallel the values of the Chaotic Liar: 

(9) The actual truth of this sentence is its estimated 
falsehood 

The semantic behavior of that sentence, however, we know to 
be chaotic. Thus if (21) is non-chaotic, its semantic behavior will 
be chaotic, and we have again derived a contradiction.25 

Just as the G6del results can be seen as employing a Liar-like 
sentence within formal systems (and G6del himself alludes to the 
Richard paradox and the Liar in motivating his (1931)), the results 
that follow can be seen as employing a formal analogue to this 
antinomy. 

2. SOME COMPLICATIONS 

In what follows we will be concerned with formal systems intended 
to deal with real arithmetic and adequate for number theory. Systems 
of real arithmetic include, for example, Rogers' system R (Rogers 
(1971)), taken from Montague's formulation in Kalish, Montague, 
and Mar (1980) and equivalent to Tarski's theory of real closed 
fields in Tarski (1951). The condition 'adequate for number theory' 
requires merely three additional axioms for 'is an integer'. Our 
reason for concentrating on systems of real arithmetic is to illustrate 
some interesting limitative results regarding chaos theory, and 
paradigmatically chaotic functions such as xn+1 = 1-abs((1-Xn)-Xn) 
are most commonly thought of as functions on the reals-as chaotic 
on the real interval [0,1], say. 

Formal systems of real arithmetic such as those at issue, 
however-precisely because they are formal systems-contain only 
denumerably many expressions, and thus cannot for example con- 
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tain as many numerals as there are reals.26 One difficulty this creates 
is that the notion of representation of a function standard within number 
theory cannot simply be carried over to real arithmetic without 
qualification. Within number theory an n-place function f on natural 
numbers is said to be represented by a formula A(xi, . . .Xn'Xn+i) 

just in case for any natural numbers pi, .Pn,j, if f(p,1 ... P 
= j, then 

F- Vxn +(A(pl,. .PnXnl - = i) 

where pi,. . .,Pn and j are numerals within the system at issue for 
pi,. . .'Pn and j respectively (see Boolos and Jeffrey (1980)). 
Within formal systems for the reals, on the other hand, there simply 
won't be numbers pi,. . .,pn and j for all real numbers pi, 

. Pn and j.27 
One way to accommodate this cardinality problem is to follow 

Tarski (1931). We continue to address functions genuinely on the 
reals, but use a notion of functions determined within formal systems 
for real arithmetic instead of a notion of functions represented within 
such systems. Tarski outlines 'definable' sets of reals as follows: 

A set X is a definable set (or a definable set of order n) if there is a senten- 
tial function (or a sentential function of order n at most) which con- 
tains some variable of order 1 as its only free variable, and which 
satisfies the condition that, for every real number x, x e X if and 
only if x satisfies this function. (Tarski (1931), p. 118 of Corcoran) 

Using 'determined' in place of Tarski's 'definable' for the sake of 
clarity, and treating one-place functions on the reals as sets of ordered 
pairs of reals, we can similarly speak of a function X on the reals 
as determined by a functional expression fe within a formal system 
just in case for every pair of reals x, x c X if and only if x satisfies 
fe 

3. THE UNDEFINABILITY OF CHAOS 

With this notion of functions on the reals determined within formal 
systems, and on the pattern of the antinomy above, we can now 
illustrate a limitative result regarding formal theories of chaos: given 
any consistent formal system of real arithmetic T adequate for 
number theory, the set r of g6del numbers of expressions which 
determine functions f(x) chaotic on the interval [0,1] is undefinable 
iT. 

Theorem I on the undefinability of chaos. There is no function 
c representable in T such that 
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( 1 if #f(x) c F 
c(#f(x)) = # 

( if #f(x) d IF 

Proof. Suppose, for a proof by contradiction, that such a function 
c is represented in T. There will then be a class of expressions which 
determine a class of functions g such that, for a fixed godel number 
#fo(x) of an expression determining a one-place function, 

-(y-y) if c(#fo(x)) = 1 
g(y) = 

1-abs((l-y)-y) otherwise 

Different numbers #fo(x) in such a schema will give us dif- 
ferent functions g, of course. If #fo(x) is the godel number of an 
expression which determines a function which is chaotic on [0,1], 
assuming c, we will have a g(y) that will simply give us a constant 
series of Is for all iterations. If on the other hand #fo(x) is the 
g6del number of an expression which determines a function not 
chaotic on [0,1], assuming c, we will have a g(y) which gives us 
1-abs((1-y)-y) as output. Here the particular formula we have chosen 
is that for the Chaotic Liar, which as noted above is paradigmatically 
chaotic on the real interval [0,1]. 

Now on the assumptions above, by the diagonal lemma, there 
will be an expression which determines a function G where #G(x) 
is the g6del number of the expression at issue: 

l -(y-y) if c(#G(x)) = 1 

G(y) = 
1 1-abs((l-y)-y) otherwise 28 

But will G(y) be chaotic on the interval [0,1] or not? 
Suppose that it is. In that case, on the assumption of a 

represented function c and since #G(x) is the godel number of an 
expression which determines G(x), it will be the case that c(#G(x)) 
= 1. By the specifications of G, then, G will give us a constant 

output of Is for any y. Since for every natural number n > 0, 
Gn(y) = 1, G will then not be chaotic on the interval [0,1], and we 
have derived a contradiction. 

Suppose instead that G(y) is not chaotic on [0,1]. Assuming 
function c represented, c(#G(x)) = 0. By the specification of G, 
then, G gives us 1-abs((1-y)-y). But G will then be chaotic on the 
interval [0,1]; here again we have derived a contradiction. 

Within any consistent system of real arithmetic adequate for 
number theory, then, there can be no function c represented. It 
follows that within any such system the set r of g6del numbers of 
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expressions which determine functions f(x) chaotic on the interval 
[0,1] is undefinable. 

As related results it should perhaps be noted that F will be 
nonrecursive and undecidable. Assuming Church's thesis, then, there 
can be no effective method for deciding whether an arbitrary ex- 
pression of a system such as T determines a function chaotic on 
the interval [0,1]. 

These formal limitations on chaos theory can also be seen- 
along with the halting problem and for that matter G6del's and 
Tarski's theorems-as special applications of Rice's Theorem in 
recursion theory.29 With regard to chaos theory in particular, 
however, we think the route through the Chaotic Liar a particular- 
ly intriguing and instructive one. 

Submitted June 1990. 

NOTES 

'We are grateful to Paul St. Denis for programming inveption and assistance throughout 
the project. We leave a more complete outline of relevant programming techniques to another 
context. 

2Basic notions of chaos theory, also known as the mathematics of dynamical systems, 
are introduced informally in section 11.3. For a formal outline see footnote 12. 

3An alternative here of course would be an infinite-valued logic which uses as values, 
say, merely the rationals rather than the full reals in the unit interval. How much difference 
that might make seems to us a question worthy of further investigation. For Eukasiewiczian 
many-valued propositional logics Rescher shows that these alternatives give us essentially 
equivalent systems; i.e., systems which share the same tautologies (Rescher (1969), 37-38). 

41n general we use 'sentences', 'statements', and 'propositions' interchangeably, put- 
ting aside for present purposes the philosophical controversy as to which should properly 
be considered the bearers of truth. 

5J.A. Goguen (1969) proposes an infinite-valued logic as a solution to the sorites 
paradoxes, and arguments for and applications of infinite-valued 'fuzzy set theory' and 'fuzzy 
logics' appear in Zadeh (1965) and Zadeh, Fu, Tanaka, and Shimura (1975). Some arguments 
against philosophical applications of many-valued logics, on the other hand, appear in 
Urquehart (1986) and Haack (1974). 

6The Vvp schema outlined below, it appears, may also be more appropriate to a genuine 
truth-value interpretation of infinite-valued logics than a probabilistic one. We are obliged 
to Jordan Howard Sobel for calling our attention to this point. 

7This last specification, regarding the conditional, distinguishes ours-an infinite-valued 
Kleene strong system-from a Eukasiewiczian alternative in which 

1 if /p/ c /q/ 
/(p - q)/ = 

(I -/p/) +/q/ if /p/ > /q/ 

The only difference this would make for our work here is in the treatment of the Curry paradox. 
8Alternatives to Rescher's Vvp schema are of course possible, and well worthy of in- 

vestigation. We won't, however, pursue them here. 
9The behavior of the Liar within this infinite-valued context can in fact be given the 

same characterization as in the two-valued case above since 1 -abs(O-xn) = 1 -xn for the in- 
terval [0,1 ]. 

This content downloaded from 129.49.250.35 on Fri, 13 Feb 2015 10:00:38 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


690 NOUS 

'0Reference within the Minimalist to 'its estimated value', of course, serves as an in- 
dexical element; given a revised estimate, what (5) effectively asserts changes. Such index- 
icals also appear in a number of the sentences we consider. In working through sample 
calculations, we talk about a sentence's 'actual' value in a similar way. 

"For k = 0, intriguingly enough, we get the Simple Liar. 
"2There are many outlines for chaos in the literature, stronger and weaker, ranging 

from measure theoretic notions of randomness in ergodic theory to topological characteriza- 
tions such as that immediately below. For definiteness, 'chaotic' here and throughout can 
be understood as follows, using a slight modification of Devaney (1989): 

Let J be a set. f:J -J is said to be chaotic on J if 

(a) f has sensitive dependence on initial conditions, 
(b) f is topologically transitive, and 
(c) the set of periodic points is dense in J. 

Here we use the notation f n(x) to stand for the composition or iteration of the function 
f(x) n times, i.e. 

f n(x) = fo. . .of(x) 

n times 

(a) f:J -J has sensitive dependence on initial conditions if there exist points arbitrarily 
close to any x e J which eventually separate from x by at least 6 under iteration of f, i.e. 
there exists 6 > 0 such that. for any x e J and any neighborhood N of x, there exists y 
e N and n 2 0 such that abs(fn(x)-fn(y))> (. 

(b) f:J -J is said to be topologically transitive if it has points which eventually move 
under iteration from one arbitrarily small neighborhood to any other, i.e. for any pair of 
open sets U, V C J there exists k > 0 such that fk(U) n v is non-empty. 

(c) The set of periodic points of J, PERUJ), is the set of all x e J such that fn(x) 
x for some natural number n, i.e. PERUJ) = {x e J: An fn(x) =x}. PERUJ) is dense in 
J if PERUJ) together with all its limit points is equal to J, i.e. J = PERUJ). 

The proof offered for Theorem I below, it should be noted, doesn't demand any features 
of this definition in particular. 

'31n a mathematically more familiar guise the function for the iterated values of the 
Chaotic Liar may be expressed as a tent function 

2xn for 0 c x < .5 

n +1 

2(1 -xn) for .5 c x c 1 

Though well known as a particularly simple chaotic function, however, this function was 
not known to have the kind of natural semantic interpretation offered for it here. It is relegated 
to the class of mere "mathematical curiosities", for example, in Robert May's classic (1976). 

One peculiarity of this particular function is that standard rounding off within the binary 
arithmetic of computers in fact disguises its chaoticity: although it is provably chaotic on 
the interval [0,1], it doesn't show up as such on the computer screen. In order to graph 
something closer to its true behavior it is thus standard to 'cancel out' the effect of the rounding- 
off by introducing a small element of randomness. Here we are obliged to John Milnor 
for discussion. 

'4The affinity of this function to the Heterological paradox is perhaps more evident 
when expressed in the alternative form of footnote 13. 

'5Curry (1941), (1942). The paradox is also known as the Kleene-Rosser antinomy 
(see however Church (1942)) and is called Lob's paradox in Barwise and Etchemendy (1987). 

'6As indicated above (footnote 3), the use of such a conditional distinguishes ours as 
an infinite-valued Kleene strong system as opposed to a Eukasiewiczian alternative. We leave 
a treatment of the Curry using this alternative to another context. 

'7See for example Buridan (1489), pp. 200-201 of Scott. 
'8Liar cycles are nicely outlined in Herzberger (1982) and showcased in Barwise and 

Etchemendy (1987). 
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Barwise and Etchemendy characterize Liar cycles in general as combining features of 
the Liar and Truth-Teller (p. 22). This however is clearly inessential: Liar cycles can be 
produced without any shadow of the Truth-Teller using any odd number of sentences all 
of which except for the last say 'the next sentence in the series is false,' and the last of 
which says 'the first sentence in the series is false'. Here we are obliged to Stephen Bae. 

19Another alternative is to represent the successive values of the two sentences at issue as: 

xn+l = 1-abs(1-yn) 

Yn + 1 = I-abs(O-xn) 

This would reflect a procedure which started with simultaneous estimates for the two sentences, 
calculated a new estimate for each independently in terms of the last estimate for the other, 
and so forth. This second form of reasoning about the Dualist has an important role to 
play with regard to fractal images discussed below. 

20This graph should however be viewed with a measure of skepticism with regard to 
the reality of some calculated points. Because of the computer limitations indicated in foot- 
note 13, for example, (.4,.6), though truly periodic, appears when graphed to converge to (0,1). 

21See David Ruelle and Floris Takens (1971). As Ruelle remarks in Ruelle (1980), 
however, "the mathematical theory of strange attractors is difficult and, in part, still in its 
infancy." Our function here, of course, is not continuous. 

"The idea of adapting escape-time diagrams to the present case is due to Paul St. Denis. 
"3Although fractal geometry was given its name by Benoit Mandelbrot (1977), the sub- 

ject has a long and interesting mathematical history extending back to Peano, Cantor, and 
Hausdorff. See Devaney (1990), p. 129. 

24They can, for example, be seen as applications of Rice's Theorem in recursion theory. 
See Rice (1953) and Rogers (1967), 34. 

25Within the reasoning of this antinomy, it should perhaps be noted, we have assumed 
that only the two classical values will be possible for 'has chaotic semantic behavior': that 
(21) either will or will not be chaotic, and thus that its first disjunct will have a value of 
either 1 or 0. At least for the present, then, we are not attempting to apply an infinite-valued 
logic to degrees of chaoticity itself. 

261t is also because such systems contain only denumerably many expressions, of course, 
that they will be g6del numberable using only the natural numbers. 

"7We are grateful to Robert F. Barnes for helpful correspondence on this point. 
A related issue regarding extention of the notions of 'recursive' and 'recursively 

enumerable' to sets of complex or real numbers is addressed in Penrose (1989), 124-129. 
28The precise form of the diagonal lemma required is that for a formula B(x,y) of our 

language there will be a formula G(y) such that 

IT G(y) - B(#G(y), y) 

Here Boolos and Jeffrey's proof for the diagonal lemma can simply be extended, given ap- 
propriate restrictions, to formulae with one additional variable. See Boolos and Jeffrey (1980), 
172-173. The generalized diagonal lemma also appears in Boolos (1979), 49-50. 

29See Rice (1953) and Rogers (1967), 34. 
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