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Abstract

On€'sinaccuracy for aproposition is defined as the squared difference between the truth value (1 or 0)
of the proposition and the credence (or subjective probability, or degree of belief) assgned to the
proposition. One should have the epistemic god of minimizing the expected inaccuracies of one's
credences. We show that the method of minimizing expected inaccuracy can be used to solve certain
probability problems involving information loss and self-locating beliefs (where a sdlf-locating belief of a
tempora part of an individud isabelief about where or when that tempora part islocated). We
andyze the Segping Beauty problem, the duplication verson of the Seegping Beauty problem, and

various related problems.



1. Introduction

According to Bayesianism, an agent represents her opinion via a probability function over
propositions, and updates her opinion by conditiondizing on propositions representing new evidence.
While Bayesaniam is a powerful method for representing the dynamics of partid belief, it does not have
the resources to handle cases of information loss. The act of forgetting cannot be modelled as
conditionalization on a proposition representing new evidence.! This then leads to the question: how
should an agent who wants to be a Bayesian but undergoes information loss modify her opinion? This
paper will give a partid answer to that question.

There are two types of information loss that could occur: an agent could lose information about
which possble world sheisin, and an agent could lose information about where sheisin the world
spatiotempordly. (Throughout this paper, we treat an agent as atempord part of an individud.) We will
focus on the latter sort of information loss. Specificaly, we will andyze the Segping Beauty problem,
the duplication verson of the Slegping Beauty problem, and various related problems. The method of

minimizing inaccuracy can be used to solve dl these probability problems.

2. Minimizing I naccur acy
Some preiminaries. an uncentered proposition isaset of possible worlds. A centered

proposition isa set of possible tempora parts of individuals? A centered world is represented by a

For further discussion of this point see for example Monton 2002,

2While we are using the terminology of tempora parts, we do not intend to commit oursdvesto
aparticular metaphysica view about persstence. What we say could be trandated into language
compatible with an endurance theory of persstence, dbeit sometimes awkwardly. For example, instead
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truth-vaue assgnment W(X;) of 1sand Osto al centered and uncentered propositions X;.

Let one' s credences (or subjective probabilities, or degrees of belief) be represented by the
probability function P. If one's credences were completely accurate, then one's probability function
would match W. The inaccuracy of one's credence for proposition X can be measured by the following
quadratic-lossrule, called the Brier score (Brier 1950):

S(X) = [W(X) —P(X)]?

For aset of n propositions X = (X4, ... X,)), the Brier scoreis given by

S(X) =2, Un (X))

The virtues of minimizing inaccuracy (thet is, minimizing one' s Brier score) are perhaps
intuitively obvious. Condder the framework of full belief, where the three doxastic options are full belief,
full disbelief, and suspengon of belief. In this framework, the naturd epistemic norm connected with
accurecy of belief is one which gives postive marks for full belief when the proposition istrue and
positive marks for full dishelief when the propogtion isfase. What about suspension of belief? Wall,
this accuracy norm will dso give negative marks for full belief when the proposition is fase and negative
marks for full disbdief when the propostion istrue. Thus, thereis an epistemic risk in opting for either
full belief or full disbdief. A consequence of the accuracy norm, then, is that suspension of bdlief is
epistemicaly most gppropriate when the evidence does not warrant taking such an epistemic risk.

Now consder the framework of partiad belief, where the doxastic options are continuum-many,

represented by the real numbers between 0 and 1 inclusive. These numbers are one' s possible

of talking about the opinions of a one-hour tempora part of an agent, we could talk about the opinions
of an agent fromtimet to time (t + 1 hour).



credences. In this framework, a credence of 1 corresponds to full belief and a credence of 0
corresponds to full disbelief.® What about credencesin between? To understand them, it is helpful to
note the distinction between guesses and estimates (as discussed by for example Jeffrey 1986). When
you make a guess, such as how many children someone has, it makes no sense to guess anything other
than one of the genuine options. For example, it would make no sense to guess that someone has 3.5
children. But if you are making an estimate, arriving at that vaue would make sense. Thisis because,
when engaging in estimation, as James Joyce (1998, 587) putsiit, “there is no specid advantage to
being exactly right; the god isto get as close as possible to the vaue of the estimated quantity”. Given
this digtinction, we can say that, in the framework of full belief, one offers guesses asto the truth-value
of propositions, while in the framework of partid belief, one offers estimates as to their truth-vaues*

With this explanation, it should now be clear that the accuracy norm for credences will give
higher marks to a credence the closer it isto the actud truth-vaue of the relevant proposition. Why
ever give credences other than O or 1, if having a credence of O or 1 isthe only way to receive the
highest marks? The answer pardlels the answer as to why someone might suspend belief in the

framework of full belief. Thereis an epistemic risk in opting for a credence of ether O or 1; whilethat is

3What about suspension of belief? Thereis acontroversy about how to represent this doxastic
gate in apartid belief framework, one which we can safely sde-step here. For discussion see Monton
1998, Hgjek 1998, and van Fraassen 1998.

“Why engage in the practice of estimating the truth-values of propositions? We suspect the
answer islargely practica —think of the role credences play in theories of prudentia rationality which
identify it with maximizing expected utility. We should note, however, that whatever on€e' s reason for
engaging in such a practice of estimation, the accuracy norm governing it is still purely epistemic. Thus,
we are not claming that Joyce' s (1998) attempted purdly epistemic judtification of probabilism is not
actudly purely epigemic.



the only way to get the highest marks, it's dso the only way to get the lowest marks. A consequence of
the accuracy norm for credences, then, isthat less extreme credences are more gppropriate when the
evidence does not warrant taking the epistemic risk involved in opting for more extreme credences.

Given thiskind of accuracy norm for credences, why measure inaccuracy using Brier scores?
One commonly noted reason isthat the rule that one should minimize one' s Brier score isaproper
scoring rule (Savage 1971, 787-8, 793). A scoring ruleis amethod for quantitatively establishing how
accurate an agent’ s credences are. A proper scoring ruleis a scoring rule that does not give the agent
an incentive to change her credences soldly in order to get a better score. For example, suppose that a
wegther forecaster thinks that there is an 80% chance of rain tomorrow. There are some scoring rules
such that the forecaster could recognize that his score would be worse if he reported a credence of 0.8
for rain tomorrow than if he reported some other credence (assuming that his scoreis based on
whatever credence he reports). Proper scoring rules do not provide any such perverse incentives.

We bdlieve another reason, partly connected to the previous one, for measuring inaccuracy
using Brier scoresisthat it successfully captures the fact that the accuracy norm for credences places an
epistemic risk on opting for extreme credences. By comparison, note that what is caled the linear
scoring rule, which measures the inaccuracy of a credence for X by [W(X) — P(X)|, has the result that
one should aways opt for a credence of 0 or 1.°> More exactly, following the epistemic god of
minimizing one' s expected inaccuracy (and so maximizing one' s expected accuracy) when inaccuracy is

measured this way leads one to opt for a credence of O or 1. (For a proof of this claim see Selten

5The only exception is the specid case where one begins with a credence of 0.5. In that
gtuation, one will decide that one can minimize one' s expected inaccuracy by opting for any credence.
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1998, 47.) Thus, since the linear scoring rule does not capture an important festure of the accuracy
norm for credences, it should be rejected.®

We will now discussthis notion of expected inaccuracy. Unless one knows W(X), one cannot
know an agent’ sinaccuracy for X. One can, however, calculate the agent’ s expected inaccuracy, if one
knows the expected value of W(X) —that is, if one knows what the chances are that X istrue.” For
example, suppose Alice assigns probability 1/2 to the proposition H that a particular coin lands Heads?®
Suppose that the coin is actudly biased in favor of Heads, such that it lands Heads 2/3 of thetime. (In
other words, 2/3 of the time W(H) = 1, and 1/3 of the time W(H) = 0.) Alice's expected inaccuracy for
His

Se(H) = 2/3 (1 - 1/2)? + 1/3 (0 — 1/2)?

=1/4.

If Alice were to assign probability 2/3 to Heads, her expected inaccuracy would be lower:

Se(H) =2/3 (1—2/3)? + 1/3 (0—2/3)?

=2/9.

®Patrick Maher (2002) defends the linear scoring rule to some extent, in the course of arguing
againg Joyce (1998). But Maher does not seem to redize that the linear scoring rule has important
drawbacks, such asits not being a proper scoring rule.

"Here the reader can substitute her preferred account of chances which aren’t solely subjective,
such as frequencies, propendities, or objective chances. A concept of this sort is needed, for exampleto
distinguish between coinswhich are actudly fair and coins which are actualy biased (regardless of
anyone' s subjective probabilities regarding these coins). Subjective probability will sill play arole: for
example, when an agent fully believes that acoin isfar, she assgns subjective probability 1 to the
proposition that the frequency/propensity/objective chance of Headsis 1/2.

8Here and sewhere, we are assuming that an agent’ s credences are synchronicaly coherent —
that is, a any particular time, the agent’ s credences obey the probability axioms.
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One can eadlly verify that the 2/3 answer minimizes expected inaccuracy.

Suppose that there are two tempord parts (of some specified duration) of Alice which both
have an opinion about the coin flip. There are two ways to cdculate Alice' s expected inaccuracy in this
dtuation: we can caculate her expected tota inaccuracy or her expected average inaccuracy. For
example, if she assgns probability 1/2 to H during both time intervass, then her expected totd
inaccuracy is

Ser(H) =14+ 1U4=1/2,
while her expected average inaccuracy is

Sea(H) =12 (V4 + 1/4) = 1/4.

On ether way of cdculating expected inaccuracy, one gets the result that Alice minimizes her expected
inaccuracy when she assigns 2/3 to H both times. One may suspect that this holds generdly: the
epigemic gods of minimizing expected average inaccuracy and minimizing expected totd inaccuracy
adways give the same result regarding which credence minimizes expected inaccuracy. In fact, when

sef-locating beliefs are involved, thisis not aways the case.

3. Sleeping Beauty

On Sunday Sleeping Beauty is put to deep, and she knows that on Monday researchers will
wake her up, and then put her to deep with amemory-erasing drug that causes her to forget that
waking-up. She dso knows that the researchers will then flip afair coin; if the result is Heads, they will
alow her to continue to deep, and if the result is Talls, they will wake her up again on Tuesday. Thus,

when she is awakened, she will not know whether it is Monday or Tuesday. On Sunday, she assigns



probability 1/2 to the proposition H that the coin lands Heads. What probability should sheassgnto H
on Monday, when she wakes up?

Adam Elga (2000) and many others argue that the answer is 1/3, while David Lewis (2001)
and some others argue that the answer is 1/2. We will argue that both these answers are epistemicaly
permissble 1/3 is obtained by following the god of minimizing expected totd inaccuracy, while 1/2 is
obtained by following the god of minimizing expected average inaccuracy.

In the Heads possible world, there is one tempord part of Beauty which has an opinion about
Heads, where the length of the tempora part is taken to be the amount of time Beauty is kept awake. In
the Talls possible world, however, there are two tempord parts of Beauty which have an opinion about
Heads. When one calculates expected total inaccuracy, one sums the inaccuracy for each tempora
part, while when one cal culates expected average inaccuracy, one averages the inaccuracy for each
tempord part.

Consder firgt the god of minimizing expected tota inaccuracy. Supposing that Beauty givesthe
1/3 answer,

Ser(H) = /2 (1-1/3) + 12 [(0- 1/3)* + (0—-1/3)7]

=1/3.
The 1/2 factors are there because the coin isfair: haf the time W(H) = 1, and half the time W(H) = 0.
One can easlly verify, here and in the cases below, that the expected inaccuracy for T isthe same as
that for H.
Suppose now that Beauty givesthe 1/2 answer:

Ser(H) = 1/2 (1= U2)2 + U2 [(0— 1/2)? + (0— 1/2)]



=3/8.
Beauty’ s expected tota inaccuracy for H is higher if she givesthe 1/2 answer. In fact, one can easily
verify that the 1/3 answer minimizes the expected totd inaccuracy for H.
Now congder the goa of minimizing expected average inaccuracy. Supposing that Beauty gives
the 1/3 answer,
Sea(H) = /2 (1 - 1/3)% + /2 {1/2 [(0— 1/3)* + (0— 1/3)7}
=5/18.
Supposing that Beauty givesthe 1/2 answer,
Sea(H) = /2 (1 - 1/2)2 + /2 {1/2 [(0— 1/2)? + (0— 1/2)7}
=1/4.
One can easlly verify that the 1/2 answer minimizes the expected average inaccuracy for H. We see that
the 1/3 answer is obtained by following the god of minimizing expected tota inaccuracy, while the 1/2
answer is obtained by following the goa of minimizing expected average inaccuracy.®
What reasons could one give in favor of one of these epistemic gods over the other? The
proponent of minimizing expected total inaccuracy can be expected to reason asfollows. Beauty
should care about being inaccurate for each tempord part of her that has an opinion. Sincein the Tails
world there are two tempord parts of her that have an opinion about H, then the inaccuracy for each

temporal part should matter to her. Beauty wants more than just her opinion at a particular time to be

%It isworth noting a parald between the Segping Beauty problem and Newcomb's problem:
just as the one-box and two-box answers to Newcomb'’ s problem are the results of two competing
types of decision theories, so are the 1/3 and 1/2 answers to the Sleeping Beauty problem.
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minimaly inaccurate; she wants her sum total of opinions to be minimaly inaccurate.

The proponent of minimizing expected average inaccuracy, on the other hand, can be expected
to reason as follows. Beauty, qua epistemic agent, should only care about being inaccurate regarding
the opinion she currently has, she should not worry about other opinions she may have at other times.
From an epistemic stlandpoint, when deciding what her current opinion should be, she should only
consder the expected inaccuracy for her current opinion. Thus, her god should be to minimize the
expected inaccuracy for the opinion of her current tempora part. But since she does not know which
tempord part sheis, her best guess for the expected inaccuracy of the opinion of her current tempord
part is the expected average inaccuracy for the various possible tempord parts of her. It follows that
she should minimize her expected average inaccuracy.

We do not see any conclusive arguments in favor of one epistemic god over the other, but
perhaps this lack of a definitive answer isto be commended. After careful consderation of arelatively
ample probability puzzle, smart people continue to disagree. It could be that one Sde or the other is
amply wrong, but we prefer the conclusion that neither side isincorrect; it's just that they have different
epigemic gods, each of whichis epigemicdly permissble.

Thereisavariation of the Segping Beauty problem which is worth consdering. Suppose that,
some specified interva of time after Beauty wakes up, sheistold what day it is. What probability
should she assgn to H on Monday after sheistold that it is Monday? When Beauty knowsthat it is
Monday, thereis no difference between the method of minimizing expected average inaccuracy and
minimizing expected totd inaccuracy; both methods give the answer that her probability for H should be

1/2;
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S:(H) =12 (1-1/2)2 + 1/2 (0—1/2)?
=1/4.

One can eadlly verify that this answer minimizes expected inaccuracy. Elga dso gives the 1/2 answer for
this scenario, but Lewis gives the answer of 2/3. Without giving a conclusve argument againg the 2/3
answer, we will smply report that we have the (widdly shared) opinion that that answer isimplausible.
Given that one sticks with the 1/2 answer after having woken up on Monday, we bdieve that one
should continue to assign probability 1/2 after being told that it is Monday. Lewis thinks otherwise
because Lewistreats learning that it is Monday via Bayesan conditiondization, but we maintain that
conditiondization is Sometimes ingppropriate for Stuaionsinvolving saf-locating bdiefs and information
loss.

Some have said that the Seeping Beauty problem is a case of experience duplication: Beauty
has the same experiences on Monday as on Tuesday, and that’s why she doesn’'t know what day it is.
But in fact experience duplication is an inessentid part of the problem. We can imagine ancther variant
of the Seeping Beauty problem, where Beauty knows that either on Monday she wears blue pgjamas
and on Tuesday she wears red pgamas, or on Monday she wears red pgjamas and on Tuesday she
wear's blue pgamas, but she doesn’'t know which, and isindifferent between the two possibilities.
When Beauty wakes and finds hersdf wearing blue pgamas, say, she knows that if the coin lands Talls
her other waking tempora part wears red pgamas. Nevertheless, she does’t have any more
information about whether it's Monday or Tuesday than she doesin the origind Segping Beauty
problem. In this variant, then, she and her other waking tempora part have different experiences, while

al essentid aspects of the problem are unchanged.
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4. Duplicating Beauty

Consider now the case of Duplicating Beauty.’° On Sunday God tells her that & midnight he
will flip afar coin; if the coin lands Heads God will do nothing, but if the coin lands Tails God will
cregte a quditatively identical duplicate of Beauty (Beauty*), on aquditatively identicd planet (Earth*).
On Sunday, she assigns probability 1/2 to the proposition H that the coin lands Heads. What
probability should she assgn to H on Monday?

Currently, peopl€ s opinions on this problem are not as settled as they are for the Seeping
Beauty problem. Informa discussion suggests that many of the people who give the 1/3 answer for the
case of Slegping Beauty fed compelled to give that answer for the case of Duplicating Beauty, sSince the
only difference isthat in the Segping Beauty problem oneis deding with two quditatively identica
tempord parts of one person, exigting at two different times, while in the Duplicating Beauty problem
oneis deding with two qualitatively identical tempord parts of two people, exiging at the same time.

The difficulty with the 1/3 answer (as some of its proponents recognize) is that the reasoning
that leads to that answer has counterintuitive consequencesin other scenarios. Condder firg avariant of
the Duplicating Beauty problem, where instead of God creating one duplicate when the coin lands Talls,
God creates 999 duplicates. By the reasoning that leads to the 1/3 answer in Duplicating Beauty
problem, Beauty should assign credence 1/1000 to Heads in the variant problem. Now consider a
further variation, where the coin is somewhat biased in favor of heads, and Beauty knowsthis. Beauty

will sill end up assigning alow credence to Heads, Snce her initid biasin favor of Heads will get

Thisis acombination of the Segping Beauty scenario with the duplication scenario described
by Elga (2003).

12



swamped by the large probability shift in favor of Talls.

Now congder the hypothesis that the world is continuoudy splitting into alarge number of
duplicate worlds. After one second, for example, the world splits into one billion duplicate worlds, and
after one more second, each of these worlds splits into one billion duplicate worlds, and so on. Our
credence for the proposition Sthat a hypothesis of this sort istrueis very low, but non-zero. (The
gplitting worlds verson of many-worlds quantum mechanicsis a hypothesis of this sort, and our
credence for this verson of quantum mechanicsis aso low but non-zero.) By the reasoning that leads
to the 1/3 answer for the Duplicating Beauty problem, our credence for S should keep going up.
Eventudly, we would end up assgning a credence for Sthat iscloseto 1.

Frank Arntzenius has considered this sort of hypothesisin this context. Arntzenius (2003) isa
proponent of the 1/3 answer to the Duplicating Beauty problem, and he (via persond communication)
saysthat his prior probability for Sis0. Assuming that oneis a Bayesan, this ensures that one's
probability for S stays a 0, snce conditionalization can never raise a probability assgnment of 0. We
believe that assgning probability O to Sis unreasonable, though. We want to recognize the possibility of
a scenario where God comes to earth and tells everyone that Sis true; we would want to increase our
probability for S on the basis of such testimonia evidence.

According to the epistemic goals discussed in the previous section, what probability should
Duplicating Beauty assgn to H on Monday? The mathematica reasoning from the previous section
holds for this problem, by replacing talk about the current tempora part and another possible tempora
part of Seeping Beauty with talk about the actud Duplicating Beauty and a possible duplicate of her. If

Duplicating Beauty's god isto minimize expected totd inaccuracy, for her and a possible duplicate of
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her, then she should give the 1/3 answer, while if her god isto minimize expected average inaccuracy,
again for her and a possible duplicate of her, then she should give the 1/2 answer.

We bdlieve that the correct answer is 1/2; Duplicating Beauty should follow the epistemic god
of minimizing expected average inaccuracy. Episemicaly, Beauty should not care about the
inaccuracies of other people. The god of an epistemic agent should be to get her own bdigfsinline
with redity; she should not sacrifice accuracy in her own beliefs for the sake of reducing inaccuracy in
other people sbdiefs. If her god isto minimize her own expected inaccuracy, then she should minimize
the expected average inaccuracy for her and the possible duplicate of her, snce she does not know
which of those possibleindividuds sheis.

In sum, the difference between the Seeping Beauty case and the Duplicating Beauty caseisan
epigemicaly relevant difference, and the method of minimizing inaccuracy can be used to show this. It
meatters that, in the Seeping Beauty case, the two tempord partsin the Talsworld are tempord parts
of the same person; it is open to Beauty to take this into account when reasoning about what credence
she should assign to her tempora part. It matters that, in the Duplicating Beauty case, the two tempora
partsin the Tallsworld are tempord parts of different people; from an epistemic standpoint Beauty
should not let the inaccuracies of other people influence how she assigns her own credences.

It'sworth noting that there may be non-epistemic goas that favor the 1/3 answer to the
Duplicating Beautty problem. Suppose that on the Monday afternoon after the duplication, Beauty and
(if she exists) Beauty* will be subjected to an amount of pain equd to ther inaccuracy for H. Suppose
that Beauty isa utilitarian, o her god isto minimize the totd amount of pain the world. On Sunday,

when Beauty istrying to decide what credence to assign to H on Monday, she has an ethica reason to
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decide to assign credence 1/3 to H on Monday, since that credence will minimize the expected total
inaccuracy on Monday, and hence will minimize the expected total amount of pain received on
Monday. We find this interesting but not problematic; it is to be expected that one's epistemic gods and

one s ethicd god's can sometimes conflict.

5. Conclusion

Minimizing expected inaccuracy is agenerd episemic god for agents. In Stuations that do not
involve sef-locating beliefs or information loss, following thet epistemic god is compatible with
Bayesaniam. In Stuaions that involve sdf-locating beliefs and information loss, Bayesanism does not
aways aoply, but the method of minimizing expected inaccuracy gill does. The method is not univoca
though: one could minimize expected average inaccuracy or expected tota inaccuracy. Which one
should do depends on the specifics of the problem in question, and sometimes thereis no right

answer.tt

UThanks to Frank Arntzenius, Adam Elga, Branden Fitelson, and Sam Ruhmkorff for helpful
discusson.
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