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Russell's paradox and the resultant distinction of logical types have been cen­
tral topics of philosophical discussion for almost a century. In this essay I claim 
that a more fundamental distinction, that which distinguishes properties and rela­
tions as monadic, dyadic, etc., provides a basis for blocking Russell's paradox 
as applied to properties, not sets, without distinctions of type (or equivalent dis­
tinctions). The distinction also points to fundamental features of predication that 
bear on the nature ofrelations, the extension ofrelations, the problem of the anal­
ysis of relational order, and questions about symmetrical relations (identity) and 
purported monadic relational properties (self-identity). In particular, an early un­
published analysis of relational order that Russell proposed is examined in detail 
and contrasted with the standard set-theoretical analysis of Wiener and 
Kuratowski. I argue that the analysis ofKuratowski presupposes a basic ordering 
relation, and hence does not provide an analysis of order, whereas a modification 
of Russell's analysis provides a viable alternative analysis. The discussion of Rus­
sell's paradox and relational predication brings out a connection with Bradley's 
lesser-known paradox of predication, which, like the Russell paradox, is found 
to stem from a mistaken conception of the exemplification relation. 

Though I argue that a Principia-style schema without type distinctions avoids 
the familiar paradox involving self-predication, I defend Russell's rejection of im­
predicative properties, and his use of a ramified theory of orders, from Ramsey's 
arguments attacking Russell's claim that a "vicious circle" is involved in the use 
of impredicative predicates. This discussion involves a consideration of Ramsey's 
view of quantification, which he derived from Wittgenstein. As both the ramified 
theory, involving Russell's axiom of reducibility, and the acceptance of impredica­
tive predicates are found to be problematic, I conclude that complex predicate ab­
stracts involving predicate quantifiers should not be taken to represent properties. 

I. Self-predication and Paradox 

Russell and others have held that the Russell paradox arises for both properties 
and classes, given an unrestricted comprehension rule. The paradox is sometimes 
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mistakenly said to arise from the introduction of a certain expression into a 
schema. Thus, if one introduces a predicate"!" defined by: 

(1) /(/) = Jf I /(/) 

so that we have: 

(2) (/)[/(/) = 1.f(f)], 

which we instantiate to: 

(3) /(/) = 1/(/), 

we have a contradiction. Quine has stressed the point that this is mistaken since 
the paradox results only when one holds that the property (or class) I exists. 1 The 
paradox does not arise from the mere introduction of"/" into the schema by ( 1). 
Thus, the additional assumption of "(3/)(/ = /)"or "(3/)(g)[f(g) = -, g(g)]" is 
needed to generate (3). This, for Quine, is implicit in the instantiation from (2) 
to (3), since, as Quine sees it, one is committed to the existence of something if 
one instantiates to a sign "for it" or existentially generalizes from such a sign. The 
instantiation from (2) to (3) also involves letting "/" occupy subject place, even 
though we define the sign, in (1), only as it occurs in predicate place. This, too, 
fits with Quine's notions of"ontological commitment," since, for Quine, we arrive 
at the paradox of (3) only by means of an instantiation of (2), or an equivalent 
rule for substitution covering the free variable in (1), which presupposes the ap­
propriate existential claim. Thus, Quine and others avoid the paradox by adopting 
a comprehension axiom warranting existential statements like "(3/)(g)[.f(g) 
= ... g ... ]" if restrictions on the context " ... " are satisfied. The restrictions 
limit instantiations to "non-problematic" predicates. Russell's theory of types 
amounts to such a restrictive comprehension axiom, since it excludes contexts 
like "1.f(/)" as ill formed, hence blocking existential statements like 
"(3/)1.f(f)." 

The use of a definition like (1) is problematic in that while "/" is a defined 
predicate, it cannot be replaced in (3). This is not only due to the use of"/" in 
both subject and predicate place in (3), while it occurs only in predicate place in 
the definiendum of (1). What is also peculiar is the use of the free variable "f" 
in both subject and predicate place in the definiens. These peculiarities suggest 
that the definition in (1) is not really a definition. But we can define"/" by the 
use of an abstract in the form of a definite description: 

(4) I= df (if)(g)[f(g) = -ig(g)]. 

One can now attempt to generate the Russell paradox, along lines Russell 
sometimes used in the exposition of it, by use of the law of excluded middle. 2 

Thus, 

(5) /(/)V I /(/) 
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is taken as an instance of"pV -, p," and the paradox supposedly results since each 
disjunct in (5) entails its negation. But the matter is not so simple. Replacing "!" 
by its definition, given in (4), in"/(/)," we get 

(6) (tf)(g)[ftg) = -, g(g)] { (if)(g)[ftg) = -, g(g)]), 

with the use of braces in (6) to set off the occurrence of the description in subject 
place. If we retain standard features of Russell's theory of descriptions in our 
"type-free" notation, (6) is readily seen to entail (in fact it is equivalent to): 

(7) £! (if)(g)[ftg) :; I g(g)], 

which is the existential condition Quine takes to be necessary to generate the para­
dox. (6) and (7) are easily seen to be contradictions upon expansion of the descrip­
tions. Replacing "!" by its definition in "/(/)" we get: 

(8) I (tj)(g)[ftg) :; I g(g)] { (if)(g)[ftg) :; I g(g)]}. 

By Russell's theory of descriptions we now face the familiar ambiguity of scope. 
If we take the scope to be secondary, then (8) may be read as the denial that there 
is a unique Russell property that applies to itself. Upon expansion of the description 
in (8), (8) is clearly not a contradiction. lfwe take the scope (or a scope) as pri­
mary, (8) is contradictory. But, to treat the scope as primary is not to take (8) as 
an instance of"pV--ip." Thus, a well known feature of the theory of descriptions 
blocks the attempt to derive a paradox by the use of"pV--ip." One may then allow 
the predicate "(if)(g)[ftg) = --ig(g)]" into a type-free schema without paradox, 
just as one may allow "(if)(/ * f)" as a predicate. One can no more claim that 
"E!(if)(g)[/ (g = -,g(g)]" holds than one can adopt "E!(if)(f * f)." However, 
there is a problem involved in treating "!"as an abbreviation of a definite descrip­
tion or lambda abstraction in a calculus where predicates are taken to represent 
properties, rather than classes. 

The problem is easily seen in a simpler context. Let "R" and "S" be two predi­
cates that we take to stand for properties, say being red and being square. If we 
limit ourselves to lower functional logic we may define a predicate "RS" by 

(D1) RS(x) = df R(x) & S(x) 

or use an abstract 

R(i) & S(i) 

so understood that 

(D2) [R(i) & S(i)](y) = df R(y) & S(y) 

is assumed. But, if we consider "RS" or "R(i) & S(i)" in a higher functional calcu­
lus, ( D1) and ( D 2 ) do not suffice. They do not provide for the elimination of the 
defined signs in all contexts where such signs occur as subject signs, as in 
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"(3/)(f = RS)" and "(3cf> )cf>(RS )"or in "(3/)(f = [R(x) & S(x)])" and "(3cf>)cf>[R(i) 
& S(x]." Hence, we may use definite descriptions (or lambda abstracts) so that 
"RS" and "R(i) & S(i)" are construed in terms of"(if)(x)[fix) = (R(x) & S(x))]." 
But, doing this presupposes that we hold that only one property has the extension 
had by RS, namely, RS itself. This is precisely what we should not assume if we 
take predicates to stand for properties, rather than classes. 3 Making such an as­
sumption amounts to the introduction of an extensionality axiom. Even if one 
holds that necessary or logical equivalence guarantees identity, as Carnap once 
suggested, one presupposes a variant of an extensionality axiom. Aside from the 
familiar problems associated with such a claim, it simply amounts to a stipulation 
regarding "identity conditions" for complex properties. Moreover, it would not 
only force one to hold that there is only one tautologous and one contradictory 
property, but it also goes against the obvious point that complex properties with 
different constituents are different-RX & -, RX and Gi & -, Gx, for example. To 
avoid making an unwarranted assumption about equivalence as a condition of 
identity, we should not use such definite descriptions (or lambda abstracts where 
such abstracts are construed "extensionally") to define expressions like "RS" or 
"R(i) & S(i)," where the latter are taken to stand for a property: the property we 
would normally take as being red and square. We can then take the juxtaposition 
of"R" and "S" in "RS" or the use of"&" in "R(i) & S(i)" to be devices for forming 
compound predicates, from other predicates, that represent "complex" proper­
ties. The explicit use of"&" in "R(i) & S(i)," and its implicit use in "RS," is not 
as a truth-functional connective. Rather, "&"operates as a primitive sign that is 
used to form predicates from predicates. The predicates formed by its use are, 
then, undefined complex predicates. Hence, we require 

(9) (y)([R(i) & S(i)](y) = [R(y) & S(y)]) 

as an instance of an axiom schema governing the use of"&" in predicate expres­
sions. Not having (D1) or (D2 ), (9) is not a consequence of any definitional 
pattern. 

The same situation arises in a type-free schema in the case of contexts like 

(10) R(R) 

and 

(11) 1R(R ). 

We can form the predicates 

(12) (/,((/,) 

(13) I(/,((/,) 

by abstraction. But, there is a problem about how to treat such predicate abstracts 
in sentential contexts. So long as we have taken predicates to stand for properties, 



RUSSELL'S PARADOX 67 

we cannot treat such abstracts as abbreviations of definite descriptions, such as 
"(tf)(g)[fig) = 1 g(g)]." Just as we may not use "(if)(x)[ftx) = (R(x) & S(x))]" 
in a calculus where the predicates are taken to stand for properties, so we may 
not use "(if)(g)[ftg) = 1g(g)]," and, hence, we may use neither"/," defined as 
in (4), nor (13), construed as an abbreviation for "(if)(g)[ftg) = 1g(g)]." 

(13) must then be construed as a primitive complex predicate that is not 
eliminable by definition. Hence, as in the case of "R(i) & S(i)," a question arises 
about the treatment of such abstracts in sentential contexts. Again, let us consider 
a simpler case. From the contexts "(3x )R(x)" and "(3/)fta)," where "a" is a proper 
name, we may construct the abstracts "(3x)ftx)" and "(3/)fti)" and read them, 
respectively, as "applying to something" and "having some property." If we then 
consider the appropriate sentences used to attribute such properties to R and a, 
respectively, to be 

[(3x )ftx)](R) 

and 

[(3f)fti)](a) 

we must assume, as instances of axiom schemata for such abstracts, 

[(3x )ftx)](R) = (3x)R(x) 

and 

[(3f)fti)](a) = (3f)fta), 

in order to have the predicate abstracts carry the "sense" intended. Therefore, it 
is simpler, following Russell and Whitehead in PM, to express the attribution of 
(3x)ftx) to R by replacing the occurrence of"!" by "R" to yield "(3x)R(x)," and 
employ a similar pattern in the case of "a" and "(3/)fti)." This way of construing 
such predicate abstracts can be taken to be a reason for denying that such abstracts 
stand for properties iftheir use is limited to predicate place. Where such abstracts 
function as subject terms, as in "</>[(3)ftx)]," no such replacement is possible, just 
as in the earlier case of "RS" and "R(i) & S(i)." In the present cases we do not 
construct the predicate abstract by combining predicate signs, as in the case of 
"R(i) & S(i)," but by "abstracting from" a constant predicate (or "open sentence" 
if one prefers). Interestingly enough, just as one may deny that such abstracts 
stand for properties, if they are confined to use in predicate place, since, for ex­
ample, "[3(x)ftx)](R )"is merely an alternative rendition of "(3x)R(x)," one may 
also object to taking such abstracts to stand for properties if they are not so 
confined. For, in the latter circumstances, such abstracts must be construed as 
undefined but complex predicates, since they are not eliminable, as subject terms, 
by axiom schemata or rules of replacement. Ruling out such properties on such 
grounds would, of course, rule out the Russell property.4 But ruling out the Rus-
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sell property by denying that complex, yet undefined, predicates stand for proper­
ties is not a resolution I wish to pursue here. Rather, there is a more fundamental 
point about the abstract "----, ¢( ¢)" and the "Russell property" that will block the 
paradox. 

Given the abstract"----, ef,( ¢)"as a sign for the "Russell property," one may then, 
purportedly, form 

(14) ----, ef,(c,b)[--, c,b(c,b)J, 

as the relevant self-predication. 5 By our understood replacement rule we would 
take the subject abstract to replace each token of "¢" in the predicate term and 
obtain 

(15) ----, [----, c,b(c,b)[ 1 c,b(c,b)]], 

which contradicts (14). One might object to the legitimacy of"¢(¢)" and"----, ef,(ef,)" 
as predicate expressions, since their use as predicates leads to an unending appli­
cation of the replacement rule. Thus, by that rule, (15) will generate another state­
ment, equivalent to (14), that will generate yet another statement, and so on. One 
will never arrive at a statement where the abstract in predicate place is removed 
by application of the replacement rule. This is reminiscent of the peculiarity of 
"I," defined as in (1), as it occurs in (3) and, hence, points to another way of dis­
missing the Russell paradox. But there is still a more fundamental point to be 
made about ----, ef,((/J). This we can see by considering the argument purportedly 
establishing the paradox. Supposedly, given the derivation of (15) from (14), one 
concludes that (14) is contradictory and hence that ----, ¢(¢)cannot apply to itself. 
And, if we assume that it does not, i.e., assume (15), then by the replacement 
rule we obtain 

(16) ----, [---, [----, (/J((/J)[ 1 ef,(ef,)]]], 

which is the other strand of the familiar paradox. Thus, assuming our replacement 
rule and that either (14) or (15) holds, we seem to arrive at the familiar con­
tradiction. 

The appearance is deceiving and illustrates a crucial point about the "Russell 
property." Neither (15) nor (16) is obtained by a legitimate application of the 
replacement rule. The purported Russell property ----, ef,( ;/J) is really a two-term re­
lation, and the abstract"----,¢(¢)" a two-term relational predicate. Yet to arrive 
at (15) and (16) we replaced a monadic predicate variable abstract"¢" by a two­
term relational predicate. Once again, the point is easily seen in a simpler case. 

Consider the sentence "Ra." We form an abstract by abstraction on the sign 
"a" and obtain "RX", which we may take to be another sign for the property being 
an R, i.e., R itself. If we abstract from the predicate sign and obtain "c,ba," we 
get a sign for being a property of a. Suppose we abstract from both signs and ob-
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tain ":/>i." What do we have a sign for? One obvious answer is the relation exem­
plification that obtains between properties and objects. Thus, we can take 

(17) :/>x(R, a) 

to be a way of stating that a has Rand, by appropriate use of the replacement rule, 
take (17) to yield "Ra." The crucial point is that ":/>i" is a relation sign and that 
we must apply the replacement rule to two sign tokens to obtain "Ra" from (17). 
Notice also that one replaces the token of":/>" in (17) by a monadic predicate, "R." 
The same situation is present in the case of":/>(:/>)" and "1 :/>(:/>)."They are relation 
signs, just as ":/>i" is. The Russell property is really a relation, not a monadic 
property. :/>(:/>)may be taken as the relation of self-exemplification for monadic 
properties and 1:/>(:/>), the Russell "property," as the relation of non-self­
exemplification for monadic properties. Thus, (14) is not well formed, irrespec­
tive of a theory of types, since "-, :/>( :/>)" is a relational predicate that is used as 
a monadic predicate in (14). In place of (14) we should seek to use 

(18) I:/>(:/>)( I:/>(:/>), I:/>(:/>)] 

to state that the Russell relation applies to itself, i.e., that it stands in the relation 
to itself. One would then seek to derive the contradiction by replacing "1 :/>(:/>)" 
for each occurrence of":/>" in the predicate expression "1 :/>(:/>)" in (18). But, 
whereas "1 :/>(:/>)"is a two-term relation sign,"¢" is a monadic predicate abstract 
and must be replaced by a monadic predicate sign. Recall (17) and the replace­
ment of":/>" by "R." Thus, such a replacement in (18) is illegitimate. 6 The deriva­
tion of the paradox is also blocked if we seek to use 

(19) (g)[1:/>(i/>)g = 1g(g)] 

in place of the replacement rule, for ( 19) must be modified to 

(20) (g)[1:/>(:/>)(g, g) = 1g(g)] 

to be well formed, given that "1 :/>(¢)" is a relational predicate. But, then, we 
can, at best, only instantiate to 

(21) 1:/>(:/>)[1:/>(:/>), 1:/>(:/>)] = 1[1:/>(:/>)[1:/>(:/>)]] 

and not to 

(22) 1:/>(:/>)[1:/>(:/>)] - 1[1:/>(:/>)[1:/>(:/>)]]. 

But, even (21) is illegitimate, since we instantiate a relation sign for a monadic 
predicate variable, "g ,"to obtain the right-hand side of the biconditional. Thus, 
(21) is not only not contradictory, it is not even well formed. 

Taking the Russell property as a relation, as we should, the Russell paradox 
does not arise for properties and relations in a type-free schema that distinguishes 
between monadic and relational properties and predicates in the familiar way. 
The paradox does arise for classes, without the familiar restrictions, and for a 
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schema that would permit definite descriptions of properties, based on exten­
sional conditions, as in (4), and where (7) is assumed. But the use of such descrip­
tions for properties is problematic in its own right. Thus, for properties and rela­
tions, one may recognize self-predication and the Russell relation without 
paradox, if one employs a viable schema for the representation of properties. 
Such a schema need not employ either a version of type theory or a corresponding 
restricted comprehension rule. The distinction between monadic and relational 
properties suffices as a restriction that prohibits the paradox. Thus, we may con­
clude that a fundamental feature of exemplification or predication suffices to 
block the paradox. It is worth recalling that Russell once took the "fact" that par­
ticulars were of one kind while attributes were of logically different kinds, mo­
nadic, dyadic, etc., to be the ultimate distinguishing feature between particulars 
and attributes (properties). 

II. Properties, Relations, and Identity 

Besides the difference between classes and properties that prevents the use of 
a sign like "(if)(g)(f(g) = 1 g(g))" for a property, another reason the paradox 
arises for classes, but not for properties, is that there is no distinction for classes 
like that between monadic, dyadic, etc., attributes. Taken "in extension," as one 
says, a dyadic relation is a class, though a class of ordered pairs or, following 
the Wiener-Kuratowski procedure, a class of two-membered classes (whose 
members, in turn, are classes). Thus, one can speak of the class of classes that 
are not members of themselves. In the case of attributes one must speak of the 
dyadic relation of non-self-exemplification that monadic attributes stand in (or do 
not) to themselves. It is clear that a monadic Russell property does not exist since 
"(3/)(g)(f(g) = -ig(g))" is paradoxical. Moreover, ifone claims that there is a 
monadic property had by all properties that stand in the Russell relation to them­
selves, 

(23) (3/)(g)(/(g) E I i/J$(g, g)), 

a paradox results as well, since, by the replacement rule, we arrive at 
"(3/)(g)(f(g) = -.g(g))" from (23). This means that the abstract "(g)(i/J(g) -
1 g(g))," taken as an abstract standing for a monadic property that applies to any 
monadic property that is a Russell property, stands for an empty property. The 
class of monadic Russell properties is empty. No paradox results, however, from 
recognizing (g)((i/J)(g) = -ig(g)) as an attribute (see note 5), just as no paradox 
results from recognizing 1 ¢¢ as a dyadic relation. 7 Moreover, as no paradox 
results from "(3R2 )(R2 = 1 ¢(/,)" or "(3R2 )(g)(R2(g, g) = 1 (/,(/J(g, g))" or 
"(3R2 )(g)(R2(g, g) = -, g(g))," it is clear that there are several ways in which 
one can say that the Russell relation exists without paradoxical consequences. 

The relation (/J( ¢)poses a problem ignored in the preceding discussion. Suppose 
one considers"¢(~)" to represent monadic exemplification for properties. Thus 
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(24) ¢('1r)( G, G) 

would express the self-exemplification of G, and (24) would be equivalent to 
"G(G)." 

To say that G exemplifies G is to say that G stands in the relation of exempli­
fication to G (itself). But if one also recognizes¢(¢) we have a second situation 
obtaining: that G stands in the relation of self-exemplification to G. The situations 
would be different since one involves ¢('1r) while the other involves ¢(¢). Yet, 
both "¢('1r)(G, G)" and "¢(¢)(G, G)" are equivalent to "G(G)," by the under­
stood replacement rule. This points to the peculiarity of recognizing a relation of 
self-exemplification, as well as a relation of exemplification. It is problematic to 
take "¢(¢)" to stand for a relation, since what we have when we use"¢(¢)" in 
"¢(¢)(G, G)" is simply a case of the use of"¢('1r)." There is no more a relation 
of self-exemplification in addition to that of exemplification than there is a relation 
of self-identity in addition to the identity relation. What can lead one to recognize 
such an additional relation is the confusion whereby one takes such a relation to 
be a monadic property, which is easily done. Thus, one may think of self-identity 
as a monadic property that an entity exemplifies, and not as a reflexive relation. 
Being a monadic property, it is then different from a reflexive relation. But this 
is mistaken. If we take "i = y" as a predicate for the identity relation, then "i = 

i" only appears to be a monadic predicate, since it involves two tokens of the same 
type. Consider "LiY" to represent the relation of being to the left of. It is clearly 
absurd to take "Lii" to represent the further relation, or property, of being to the 
left of itself. There are really two questions involved. First, is there an additional 
relation or monadic property in the case of self-identity and being to the left of 
itself? Second, if there is, is it a monadic property or a relation? It is clear that 
we do not have a monadic property. For when one asserts that an object a is not 
to the left of itself and is to the left of an object b, it must be that one denies that 
the object a stands to itself as it stands to the object b. That is, what is denied 
is that the pair (a, a) stands in the very same relation that obtains of the pair (a, 
b). But, even if it is taken to be a relation, Lii would have to be taken to hold 
of the pair (a, a) only when the relation Liy holds of the pair. To recognize Lii 
in addition to Liy is not only pointless by Occam's razor, but introduces the 
difficulty of forcing one to recognize the distinct situations involving the different 
relations, while having both "Liy (a, a)" and "Lii(a, a)" being elliptical for "Laa." 
But, then, we no more have "Lii" standing for a relation than for a monadic prop­
erty. What goes for Lii goes for self-identity and¢(¢). Thus, neither"¢(¢)" nor 
"-, ¢(¢)" stands for a relation. The purported Russell relation -, ¢(¢) may 
thus be avoided, and with it the purported paradox disappears in yet another 
way. 



72 Herbert Hochberg 

III. Relations and Order 

Not acknowledging Lii, x = x, and(/>((/>) as relations, for the preceding rea­
sons, shows something further about relational predication. It has been common 
to construe properties in extension as classes. Relations, then, are taken as classes 
of ordered pairs or, following the Wiener-Kuratowski procedure for the construal 
of such pairs, as classes of classes. This means that in taking relations as classes, 
one either recognizes a further kind of entity- an ordered pair- or treats relations 
like Uy, which obtain among particulars, as higher-order classes of classes of 
classes, as opposed to monadic properties of objects, which become first-order 
classes of particulars. By so treating relations one obliterates a logical distinction 
between monadic and relational properties by, in effect, treating relations as mo­
nadic properties of ordered pairs. Yet, by so doing one appeals to a different logi­
cal distinction: that between the objects, particulars as opposed to pairs, or that 
between the order of classes relative to the particulars, since relations like Uy 
become classes of classes of classes of particulars. 

In the case of the use of the Wiener-Kuratowski procedure there is an interest­
ing consequence. The pair (a, a) becomes the class ( {a) ) , a one-membered class 
of a unit class of a particular. This, in a way, correlates with the notion that signs 
like "x = x," "Lii," and"(/>((/>)" are signs for monadic properties. Yet, there is 
also an obvious correlate of the point that "x = x," etc., are not signs for monadic 
properties, for the appropriate class for a monadic property of objects a, b, etc., 
would be {a, b , ... , ) , whereas the appropriate class correlated to the relational 
predicate "x = x" would contain { [a} }, { { b} }, etc. The difference between a 
and { {a ) ) as members of the extension of predicates reflects the difference be­
tween a monadic property and a reflexive relation. Of course, if one thinks of 
"open sentences" being satisfied, one can speak of "x = x" and "Gx" both being 
satisfied by, say, a, and hence of classes of objects of the same kind as the exten­
sions of both "predicates." But this already overlooks the relational form of "x = 

x" by treating it along the lines of "Gx & Hx." In both cases there are two tokens 
of an individual variable, but no relational predicate occurs in "Gx & Hx." 

Russell was long preoccupied by the problems posed by the analysis of rela­
tional facts. One problem he was concerned with was that of the logical form of 
propositions. That problem would be resolved by recognizing different exempli­
fication relations for monadic, dyadic, etc., facts. Thus, one difference between 
the facts expressed by "Ga" and "Lab" would be that the former involved the two­
term exemplification connection expressed by "(/,x," while the latter would in­
volve a three-term connection expressed by "Rxy." The exemplification connec­
tion would be the form of the fact. But such a form would not suffice to distinguish 
the facts expressed by "Lab" and "Lba." Russell's most detailed attempt to deal 
with the problems of relational predication occurs in the recently published The­
ory of Knowledge. 8 It has been suggested that his solution of the difficulty was 
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similar to the Wiener-Kuratowski procedure in that he appeals to higher-order re­
lations. 9 But this is not accurate. What Russell did was to suggest coordinating 
a relation, say Uy, to two relations, say L1 and L2, which were relations that ob­
tained between objects, like a, and "complexes," as nonlinguistic entities. Thus, 
the fact or proposition10 that-Lab was the fact or proposition to which a stood in 
the relation L1 and to which b stood in the relation L2. The complex that-Lab was 
thus denoted by a definite description: 

(R1) (tp )[(aL1p) & (bL2p )]. 

Such an analysis is problematic, since it distinguishes alb from bla by holding 
that the first stands in one relation to a, while the second stands in another relation 
to a. This means that one assumes that one may distinguish two entities by means 
of relational properties. Ironically, Russell had, following Moore, earlier argued 
that one could not do this. 

This problem is avoided by modifying Russell's analysis and doing the follow­
ing. Let us take "(Uy, a, b )"to indicate a "complex" that obtains when one of 
the two particulars is to the left of the other, without specifying any "order." Let 
L1 and L2 be relations between a particular and the complex indicated by "(Uy, 
a, b )."Then 

(R2) [aL1(Uy, a, b)] & [bL2(Uy, a, b)] 

can be taken to state that a is the first element, and b the second, of an instance 
of Uy. Hence, "Lab" and (R2) express the same proposition or situation. But 
(R2 ), unlike "Lab," makes no use of order in several senses. First, conjunction 
is commutative. 11 Second, the sign "(LJy, a, b ),"like a set sign, makes no use 
of the order of the terms. Thus, (Uy, a, b) =(Uy, b, a) =(a, b, UY) =etc. 
Third, given the difference in the ,kinds of terms of L 1 and L2 - individuals and 
situations or propositions-one can take "aL1(Uy, a, b )"and "(Uy, a, b )Lia" 
to state the same thing: that the particular a is the first term of an instance of a 
left-of relation (with b ). 

Russell's use of a description rather than a sign like "(Uy, a, b )"avoids the 
redundancy of one of the conjuncts of (R2 ). (Actually, given the redundancy in 
(R2) one may take "Lab" to be analyzed in terms of one conjunct.) But his 
description is peculiar. For Russell replaces a sentence, such as "Lab," by a 
description, since we understand that the sentence "Lab" stands for a complex that 
the description picks out. We, at best, have "Lab" as an abbreviation for the 
description, but it is not an abbreviation for a sentence, unless 

(R3) E!(tp )[(aL1p) & (bL2p )] 

is the appropriate sentence, a sentence Russell uses to assert that the complex ex­
ists. Russell's use of a description instead of an unordered complex sign like 
"(Uy, a, b ),"may be partly motivated by an apparent circularity in the use of 
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such a complex. He rakes the relation LXY to be determined by L1 and L2. And, 
if we think of specifying what "Lab" asserts in terms of (R1 ) or (R3 ) , as opposed 
to (R2 ), we see an apparent problem with (R2) that is not present in (R3) or 
(R1 ).

12 The problem is only apparent. For "L1" and "L2" are used in different 
ways in (R2 ), on the one hand, and (R1) and (R3) on the other. Russell's L1 and 
L2 determine Uy as well as the order of the terms a and b in the expressed propo­
sition or situation. By using (R2 ), one takes L1 and L2 simply to supply the order. 
Thus, whereas Russell would require two completely different relations, playing 
the roles analogous to L1 and L2, in the case of another two-term relation, say 
below, "L1" and "L2" may be used for such a relation, as those terms are used 
in (R2 ). As referred to in (R2 ), the relations L1 and L2 simply determine the order 
of terms, and not the relation involved. Thus, there is no circularity in the use 
of "L1" and "L2" in (R2 ). Rather the pattern recognizing (Uy, a, b) separates 
the two features involved: the content supplied by one relation rather than another 
and the ordering of the terms standing in the relation. On the pattern, L1 and L2 
are the basis for the analysis of order in propositions (or situations or facts). 
Moreover, one does not appeal to Russell's vague talk of L1 and L2 "determining" 
Uy. For what this amounts to is simply the running together of the two quite 
different aspects of a relational fact: the content supplied by the relation and the 
order of the terms. 

The Wiener-Kuratowski procedure appears to offer an alternative analysis of 
order without appealing to ordering relations like L1 and Lz. But this is mislead­
ing. If one were to employ such a procedure in the analysis of facts or proposi­
tions, one would have to introduce higher-order classes or some correlate of such 
classes as constituents of facts or propositions. Either alternative is problematic. 
For not only are additional entities introduced, but the ordering relations are not 
avoided. It is easy to see why they are not. Suppose one takes Uy to be a property 
of the class { {a), {a, b] ) , and thus takes the fact that-Lab to be the exemplifica­
tion of Uy by that class. It is clear that two relations, say is a member of a unit 
class in and is not a member of a unit class in, are implicitly employed in the anal­
ysis of relational facts by the use of classes like { {a], {a, b] ] . The former rela­
tion replaces L1 as an ordering relation, since we understand that a is the first ele­
ment, as in the standard definition 

(a, b) = df [{a), {a, b} }. 

The appeal to order is not eliminated by the use of the Wiener-Kuratowski proce­
dure. Rather, one uses a property (really a relation) like being a member of a unit 
set as an ordering property instead of something like being the first member of 
a pair. In short, what the procedure shows is that a property like being a member 
of a unit set can be used to order a pair of elements. When we have an ordered 
pair, (a, b), we have two elements, and one is the first of the pair and the other 
is the second. We express that by the linear ordering of the signs in "(a, b) ."With 
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" [ [a} , [a, b} } " we take is the member of the unit set to perform the role of is 
the first. 13 

We may conclude that Russell has proposed a way of analyzing relational facts 
that appeals to ordering relations that are not really avoided by procedures of the 
Wiener-Kuratowski type. On the pattern suggested here, derived from Russell's, 
one need not introduce classes as constituents of facts nor appeal to ordered pairs 
as basic entities. However, on such a pattern, the analysis of a fact or situation, 
such as that-Lab, involves the particulars, a and b; the relation liy; 14 the order­
ing relations L1 and Li; the unordered compound (LJY, a, b ); and compounds 
like aL1(liy, a, b ). 15 

IV. Bradley's Paradox, Russell's Paradox, 
and Exemplification 

While Russell's paradox has preoccupied philosophers and logicians since the 
turn of the century, Bradley's paradox of predication has received relatively little 
attention. Yet it is far more threatening, since it involves the claim that predica­
tion is incoherent. There are many ways of construing the problem posed by 
Bradley. One way that is germane to the preceding discussion of Russell's para­
dox and to Russell's concern with relational predication is the following. We take 
an atomic sentence "Ga" to state that a particular has or exemplifies a property. 
The existence of the indicated fact- the particular exemplifying the property- is 
the truth condition for the sentence. The fact is taken to consist of the particular, 
a, and the property, G, in the exemplification relation, /l>i. But, supposedly, it 
cannot be so taken. For there must be a further constituent: a three-term exempli­
fication connection that obtains of G, a, and /l>i. Thus, the fact must be construed 
to consist of a, G, and /l>i in the three-term exemplification relation. But, then, 
there must be a further constituent connecting these four constituents, and so on. 
The supposed problem can be taken to be that to acknowledge /l>i as a constituent 
of the fact that a is G is to prohibit allowing one to specify the factual truth condi­
tion for the sentence "Ga," since it is not the fact consisting of a and Gin the rela­
tion ¢.x. For that purported fact turns out to be a fact containing the three-term 
connection that, in turn, must be construed as a fact containing a four-term rela­
tion and so on. Frege, it should be noted, took Bradley's problem to be a serious 
problem prior to Bradley's statement of it. He suggested one type of response to 
it, a response that Russell adopts at some places. This response holds that proper­
ties (or at least relations) do not require connecting relations to combine with par­
ticulars. This is a, if not the, fundamental difference between particulars and 
properties. It is a logical feature of a property or relation that it provides the con­
necting link in a fact (or proposition). In this vein one may say that the various 
logical kinds of properties- monadic, dyadic relations, etc. - provide the logical 
form of the facts in which they attributively enter. There has been a second type 
of response to Bradley's problem. This is to hold that there is an exemplification 
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connection (or many such) but that such connections need not, in turn, be related 
to what they connect. This singular feature of an exemplification relation is 
marked by classifying it as a tie, a nexus, or a logical relation. 

The Fregean response suffers from giving each property a further, yet com­
mon, role in a fact or proposition. The alternative response faces the charge of 
stipulating that exemplification relations are unique in order to avoid Bradley's 
problem. It is thus an ad hoc solution. What I wish to argue is that the construal 
of exemplification as a logical form provides us with a solution that is not ad hoc. 

Consider a list of primitive monadic, dyadic, etc., predicates representing 
properties and relations. Exemplification could not be represented by one of the 
basic dyadic predicates. For we must have 

(E1 ) Ex(G, a) = Ga 

and, in general, 

(E2) (/)(x)[Ex(f, x) = fx] 

as logical truths, with "Ex" representing exemplification. But there is no justifica­
tion for (E1 ) and (E2) being such truths if "Ex" is a primitive predicate. More­
over, it is clear that one appeals to such a relation, exemplification, by the use 
of sentential patterns like "fx" and "Ga." In effect, sentence structure is taken to 
represent such a relation. Yet, there is a trap one must avoid in making such a 
claim. The sentence "Ga" represents the purported fact that a is G. How, then, 
does the structure of the sentence represent exemplification? The point of the 
question is that as "a" represents an object and "G" a property, the sentence pat­
tern represents the fact that a is G, and not the structure of the fact. The abstrac­
tion device provides a way of representing the structure, with ";/>i" as a sign for 
the exemplification relation and ";/>i(G, a)" as an alternative rendition of "Ga." 
In a way, ";/>i" is not a constituent sign of "Ga" as "G" and "a" are, but in that 
we form ";/>i" by abstraction and in that ";/>i( G, a)" is an alternative rendition of 
"Ga," one can see what is meant by the claim that the sentence structure of "Ga" 
represents the exemplification relation. For it is clear that a sign like ";/>i" presup­
poses sentential patterns, since without such patterns one could not form "¢x" by 
abstraction. Hence, without such patterns one could not have "¢x" on a list of 
signs standing for relations. Thus, we already recognize and represent exempli­
fication by the use of "Ga." Removing the content terms "G" and "a" from "Ga" 
we are left, by abstraction, with "¢x," which represents the form of monadic ex­
emplification between a particular and a property. The exemplification relation 
J,x may then justifiably be called the form of monadic atomic facts containing par­
ticulars and properties. 

Bradley's paradox may then be taken to amount to the claim that to recognize 
the form of a fact, as a constituent of a fact, requires acknowledging that there 
is a further form with respect to which the first form is a constituent among consti-
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tuents. Or, to put it another way, the claim is that one cannot specify the form 
of a fact, since whatever one takes to be the form will merely be a constituent 
requiring a further form. But, in view of the contrast between the form ¢.x, and 
the content constituents, G and a, of the fact that-Ga, Bradley's problem loses 
its force. For clearly, there is nothing ad hoc about the difference between a form 
and the things, particulars and properties, that are "in" it. It is worth recalling that 
monadic exemplification can be represented by a sign like "¢x" only if we already 
represent it by the sentential juxtaposition of the subject and predicate signs. And, 
if we introduce "/f>i" and, subsequently, from 

/f>x( G, a) 

form something like 

R(¢, x) 

and subsequent abstracts, then the members of the series of sentences 

¢.X(G, a) 
R(¢, i)[¢x, G, a] 

all "reduce" to "Ga," by the understood replacement rule. Ironically, Bradley's 
purported paradox would be bothersome only if such a reductive chain were not 
present. One way of avoiding such a reductive chain would be to introduce "Ex" 
as a primitive predicate representing exemplification; but then we do not get (E1) 
and (E2) as formal truths. 

There is a further irony. Even if one holds that the fact that-Ga is to be ana­
lyzed as the fact that-<f;i(G, a), and so on, one cannot conclude that we have not 
specified the form of the fact that-Ga unless one also holds that we can only 
specify the form of a fact that is not further analyzable. Such a position involves 
a kind of assumption characteristic of the atomism of Russell and Wittgenstein. 
And it is only on such an assumption that we could make our version of the Brad­
ley problem a paradox. 

We can see another point. On the Fregean-style resolution of Bradley's prob­
lem, a property (concept) supplies the form to a proposition. This is revealed by 
the use of the sign "Gi" What then happens when a property exemplifies another? 
It would appear that both properties "carry" conflicting forms into the proposition 
or fact. Thus one can be led to deny that properties can be subjects in prepositions 
or facts-as Frege and Russell, at times, were led to do in their respective ways 
and as Wittgenstein may also have done in the Tractatus. Separating the form 
from the property or concept, as Russell did at other places, avoids this pointless 
problem, for the property Gi can enter into the form /f>x or the form~(¢). Or, 
if we have a general form for monadic predication without regard to types, say 
¢~, where a can be either a property or a particular, then Gi can combine in such 
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a form as either attribute or term. All the "i" in "Gi" reveals is that the attribute 
referred to is a monadic attribute of particulars and not that it must be "predicated" 
in a fact or proposition. 

Bradley's purported paradox can be seen to be a reflection of the fact that, 
given a procedure for producing abstracts, we can carry on the series of abstracts 

ef,.x 
R c<b, x) 
R3 (R, ef,, x) 

and the series of sentences 

¢,.X(G, a) 
R(ef,, x)[ef,x, G, a] 
R3 (R, J,, x)[R(ef,, x), ef,.x, G, a] 

indefinitely. But this is not paradoxical, unless one stipulates that the successive 
members of the series reveal the correct logical form of the previous members. 
What is then paradoxical is that one can never state or show the form of a fact 
correlated to an atomic sentence. Without such a stipulation, the series of sen­
tences is no more paradoxical than the fact that we can generate, with an appropri­
ate truth predicate, the series 

Ga 
T'Ga' 
T' T' Ga'' 

What one may conclude is that it is pointless to introduce "¢,i," by abstraction, 
as a predicate expression. For, as we noted earlier, doing so presupposes the 
recognition of exemplification by the very use of sentential structure. Thus, the 
"paradoxes" of Russell and Bradley stem from a common implicit and, in a way, 
unrecognized assumption: that exemplification is, logically, a relation and, hence, 
representable by a predicate. This overlooks the fundamental difference between 
what is a logical form and the "objects" that may stand in a form. This, in turn, 
invites one to hold that the objects and the form stand in a form and so on. Recog­
nizing the difference, one avoids both paradoxes while acknowledging the form 
ef>x. But this involves rejecting <bx as a relation among relations. Thus, Russell's 
paradox and Bradley's paradox disappear, with respect to the attribution of prop­
erties, without appealing to types or to a special relation that does not require to 
be related in turn. 

Wittgenstein rejected Russell's paradox in the Tractatus by an appeal to logical 
form in a Fregean manner. 16 Taking the appropriate predicate form for a monadic 
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predicate to be "<f>x" he rejected the pattern"</>(</>)," since "<f>x" could only be a 
subject term for a predicate whose form was "'V(fx)." Hence, as its form is "<f>x" 
and not "'V(fx)," no predicate of the first form can be its own argument. But Witt­
genstein's claim either over-relies on the use of "</>x" in place of"</>" or builds the 
type distinction into the predicate form. His solution either repeats Russell's in 
different words or simply and arbitrarily forbids the substitution of "</>x" for "x" 
in "</>x." Wittgenstein's appeal to logical form to reject Russell's paradox is thus 
quite different from the use of logical form in this essay. Yet, the rejection of 
Bradley's paradox I have advocated is in keeping with Wittgenstein's insistence 
that form be shown, not represented. 

V. Wittgenstein, Ramsey, and the Ramified Theory of Types 

So far, the discussion of Russell's paradox has focused on the role of the exem­
plification relation and the consequent connections of the paradox with Bradley's 
attack on the exemplification relation and with issues raised by a consideration 
of relations. By so doing, I have avoided a problem concerning versions of Rus­
sell's paradox that arise in complex contexts, and which involves further issues 
raised by so-called impredicative properties. Thus, consider 

(25) /(f) = df (3g)[(g = f) & 1/(g)]. 

To claim that"/," or the abstract "(3g)[g = j) & -i}'(g)]" that it abbreviates, is 
a relational abstract, as "-,/f,/j/' is, poses a number of problems, though I believe 
one can block the ensuing paradox along such lines. Aside from that, (25) in­
volves a context that is impredicative in the sense that a quantifier is used to form 
a sign for a property and that property is in the range of the quantifier. Thus, we 
are concerned with impredicative contexts relevant to Russell's ramified theory 
of types. I will argue (1) that Russell was correct, as opposed to Ramsey and Car­
nap, to rule out such impredicative properties; (2) that the ramified theory of types 
is problematic; and hence, (3) that contexts like "(f)fa" do not yield abstracts, 
"(f)fi," which represent properties whether or not one takes the quantifier to be 
general or restricted by considerations of ramification. The argument for (1) will 
rule out contexts like (25). 

Russell's ramified theory of types was intended to avoid functions like (f)fi 
and (3/)fi as well as--, ef,(ef,) and an unrestricted truth property. Ramsey argued 
that the ramified theory was an unnecessary complication. 17 His argument was 
twofold. First, he argued that Russell's claim that a "vicious circle" was involved 
in the recognition of impredicative functions was unfounded. Russell had held 
that impredicative functions "presupposed" a totality, the functions comprising 
the domain of the quantifier, and hence could not belong to such a totality. Thus, 
they could not be elements of the domain of the quantifier. Ramsey argued that 
impredicative functions only apparently posed a problem due to our inability to 
itemize an infinite list of functions. He might have meant that it would be mistaken 
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to think we could not determine whether a function, (j)fi, applied to it. For it 
is obvious that we do not determine such matters by going through an infinite list. 
We know that (j)fi does not apply to anything, since it is a contradictory func­
tion, just as we know that (3f)fi applies to everything, since it is an analytic func­
tion. Ramsey clearly argued that there was nothing wrong with including an item 
in a totality it "presupposed." Thus, for example, in the case of the conjunction 
"p & q" we have an item that is logically equivalent to a "totality" 

(26) p & q & (p & q), 

of which it is an "element." Thinking of the quantifiers in Wittgenstein's fashion, 
Ramsey took "(f)fi" and "(3f)fi" to represent an infinite conjunctive and disjunc­
tive function, respectively. And, as in the case of (26) and "p & q,"he saw nothing 
wrong with one argument of such functions being the function itself. Second, 
Ramsey noted no contradiction was forthcoming from permitting impredicative 
functions, as opposed to self-predicative functions like --, ¢<¢), which violated 
a simple type restriction. 18 Ramsey's rejection of ramified type theory has 
prevailed, and there has been little interest in the ramified theory of types. But, 
even aside from its dependence on Wittgenstein's problematic view of quantifica­
tion, Ramsey's argument is not cogent. Russell's worry about a "vicious circle" 
is well founded. 

Russell's worry is that the quantifier has to be specified as governing a domain 
of "objects." The issue is, then, whether impredicative functions "involving" a 
quantifier may belong to the domain. It is as if Russell thinks of "introducing" the 
quantifier with respect to a domain. Hence, nothing in that domain can be spe­
cified by use of the quantifier. To speak of "involving" and "introducing" a quan­
tifier is vague, and unfortunately it must be. For it is not clear just what quantifiers 
are construed to be, as nonlinguistic items, if they are construed to be anything 
at all, and how, as nonlinguistic items, they are construed to be related to im­
predicative properties (as the correlates of impredicative predicates). Linguisti­
cally, the matter is clearer. A quantifier (sign) and its bound variable are consti­
tuents of the sign for the impredicative property. But leaving aside problems 
about the nature of quantification, we can see the force of Russell's worry in an­
other way. Whatever we take the quantifiers to be, the quantification signs are 
understood in terms of their connection with the rules of universal instantiation 
and existential generalization. These rules are the correlates of truth tables for 
the connectives, for the rules codify the use and, in that sense, the "meaning" of 
the quantifiers (signs). Suppose we take "(f)fi" and "(3/)fi" to stand for 
properties-the property of having every property and the property of having a 
property. Then, 

(27) (3f)fi(a) 



RUSSELL'S PARADOX 8J 

states that a has the property of having some property. The existential quantifica­
tion from (27), over the predicate, would be 

(28) (3g)g(a). 

But (28) is not a generalization of (27): it is (27), by the understood replacement 
rule. Thus, there is no sense to the notion of an existential generalization from 
"(3f).fi" in (27). (A related point can be made about the purported universal in­
stantiation involving "(f).fi" and "(g)g(a).") This points up Russell's worry. His 
concern can be taken to be that for (28) to be true a must have some property. 
Yet, if we allow "(3f).fi" to stand for a property, satisfying that property could 
not be the instance that warrants the existential generalization, since to say that 
a has (3f).fi is to state the existential generalization. But, then, we do not use the 
quantifier in an appropriate way in going from (27) to (28). This puts quite speci­
fically the point that functions that presuppose the use of a quantifier to specify 
them may not belong to the domain of quantification. Ramsey's argument over­
looks a fundamental asymmetry between the case of the quantifiers and the case 
of conjunction. Moreover, if, as Ramsey suggests, "(3f).fi" represents an infinite 
disjunctive function, one constituent of which is the infinite disjunctive function 
itself, then, like the familiar case of the label on the bottle, which contains a pic­
ture of a bottle with the label, we have an embedded infinite regress with respect 
to specifying the function. 

There are three issues involved. First, there is a question about whether we 
can specify the meaning and use of the quantifier "(3f)" if we include (3f).fi in 
the domain of properties over which the quantifier ranges. I have argued that we 
cannot. Second, there is a question as to whether including (3f).fi in that domain 
is like the case of"p & q" and "p & q & (p & q)," where we have a constituent 
included in a totality to which it is equivalent. The cases are not the same for the 
simple reason that the specification of the meaning and use of"&" is provided by 
the truth table for that sign and not, as in the case of the quantifier, by an inference 
rule connecting the sign to a specified domain of "entities." Third, there is a ques­
tion as to whether construing the quantifiers in terms of infinite disjunctive and 
conjunctive functions enables one to avoid the problem raised by the first question 
and to hold that such infinite functions can unproblematically be specified, while 
containing "themselves" as "p & q & (p & q)" unproblematically contains "p & 
q." This third question is complex. For it involves, as a first step, the construal 
of the quantifiers in Wittgensteinian fashion in terms of the connectives. This is, 
at least, problematic. It also involves the additional issue regarding the claim that 
there is no problem in specifying the infinite disjunctive (and conjunctive) func­
tion even if we construe the quantifiers in terms of the connectives. My concern 
here is with this second step and not with the general problem raised by the Witt­
gensteinian interpretation of quantification. The problem is not about the speci­
fication of the meaning and use of the quantifiers, since that is supposedly re-
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solved by the Wittgensteinian move. Rather, the problem is about the specifica­
tion of the infinite functions, given that such functions are elements of them­
selves. 

In a sense Ramsey has a point. Given an infinite domain of functions or proper­
ties F1, F1, . .. , Fn, ... and an infinite conjunctive function, </>1, compounded 
from them, we may assume that we have an infinite conjunctive function, </>2, 
compounded from the original Fi and ¢ 1. ¢ 2 is logically equivalent (hence identi­
cal) to </>1. Ramsey makes use of this point, but he does so in an illegitimate way. 
For he includes </>1, identified with </>2, among the original h One can see how 
he may be thinking. Since "p & q" is the logical product of "p," "q," and "p & 
q" and hence is "p & q (p & q)," a conjunction can contain itself. So, if "(f)fa" 
is a conjunction it can contain itself. Moreover, when we consider conjunction 
in terms of a truth table for "p & q," it is understood that "p" and "q" may be 
replaced by any propositional signs, including conjunctions like "p & q" and "p 
& q & (p & q)." Hence, in a way, we have a domain of propositions over which 
"&" ranges, and that domain includes conjunctive compounds. One may then 
think of specifying conjunction in terms of applying to a domain that includes con­
junctions, and hence applying to a totality that includes itself. But there is a signi­
ficant difference in the case of Ramsey's infinite functions. Given an infinite con­
junction C, which contains a conjunct K, we may identify C with C & K. The 
problem is with the specification of C if we take it to include itself as a conjunct. 
Ramsey cannot specify such a function in general. For he is faced with an infinite 
embedded and self-referential series. By contrast, we can specify both the truth 
functional connective expressed by"&," by the truth table, as well as the field of 
propositions to which it applies. Identifying "p & q" with "p & q & (p & q)" does 
not preclude specifying the conjunction. Allowing a function to be one of the 
original Fi over which "(/)" ranges and the logical product of functions com­
pounded from the Fi does preclude specifying the function in some cases. 

If one allows for functions like (f)fi and (3/)fi, one should resort to something 
like ramification to avoid impredicative properties and preserve the asymmetry 
of the instantiation and generalization rules. But the ramified theory has an insol­
uble problem. Russell and Whitehead introduced the axiom of reducibility to 
overcome problems connected with their definition of identity as 

x = y. =: (<fl) :<fl!x . ~ .<fJ!y D/19 

and with the need in mathematics for statements "which will usually be equivalent 
to what we have in mind when we (inaccurately) speak of 'all properties of x.' "20 

They were concerned with the status of the axiom as a truth of logic and with 
whether of not it could be deduced from other logical truths. 21 But there is a more 
basic problem that Wittgenstein noted in a letter to Russell: 



RUSSELL'S PARADOX 83 

Your axiom of reducibility is 

:(3f):<f>x = J!x; 

now is this not all nonsense as this proposition has only then a meaning if we 
can turn the <f> into an apparent variable .... The axiom as you have put it is 
only a schema and the real Pp ought to be 

:(<f>):(3f):<f>(x) = xf!x, 

and where would be the use of that?22 

Wittgenstein's point is that the axiom cannot be stated without an unrestricted 
quantifier that violates the restrictions of the ramified theory of types. What one 
can state are indefinitely many axioms (or meta-axioms or statements in a back­
ground language) for various orders of functions. It is as if one were to state in 
a metalanguage or background schema that there is an axiom for every order or 
function of the system. But this background statement involves a quantified ex­
pression not governed by "the axiom" itself. Any statement of the axiom violates 
the point of the ramified theory of types. Yet, without such an axiom, or some­
thing equivalent to it, the problems Russell and Whitehead noted about the ram­
ified theory of types remain. 23 

Wittgenstein's criticism overlooks a distinction that lies behind Russell's way 
of stating the axiom. The distinction was based on the supposed difference be­
tween "all" and "any." As Russell put it in 1908: 

If <f>x is a propositional function, we will denote by "(x).<f>x" the proposition 
"<f>x is always true." ... Then the distinction between the assertion of all values 
and the assertion of any is the distinction between (1) asserting (x).<f>x and (2) 
asserting <f>x where x is undetermined. The latter differs from the former in 
that it cannot be treated as one determinate proposition .... In the case of such 
variables as propositions or properties, "any value" is legitimate, though "all 
values" is not. Thus we may say: "p is true or false, where p is any proposi­
tion," though we can not say "all propositions are true or false." The reason 
is that, in the former, we merely affirm an undetermined one of the proposi­
tions of the former "p is true or false," whereas in the latter we affirm (if any­
thing) a new proposition, different from all the proposition of the form "p is 
true or false." Thus we may admit "any value" of a variable in cases where "all 
values" would lead to reflexive fallacies. 24 

and, specifically about the axiom of reducibility, as formulated by Wittgenstein 
above, Russell writes: 
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This is the axiom of reducibility. It states that, given any function ¢x, there 
is a predicative function f!x such that f!x is always equivalent to ¢x. Note that, 
since a proposition beginning with "(3f)" is, by definition, the negation of one 
beginning with "(f)," the above axiom involves the possibility of considering 
"all predicative functions of x." If c/Jx is any function of x, we can not make 
propositions beginning with "(¢)" or "(3¢)," since we can not consider "all 
functions," but only "any function."25 

The real problem, however, is whether Russell's distinction between "all" and 
"any" (and its connection with his notions of "undetermined value," "ambiguous 
denotation," "ambiguous statement" and "statement about an ambiguity") makes 
his statement of the axiom viable. What is of course specious about Russell's 
claim, aside from questions about his account of "denotation," is, first, the claim 
that we can assert an indeterminate proposition by the use of a free (real) variable, 
and second, the use of a free variable with the "power" of a universally quantified 
(apparent) variable while holding that no determinate proposition is asserted. His 
overlooking of Russell's discussion of "any" and "all" notwithstanding, Wittgen­
stein's point is well taken. Moreover, even on his own terms, Russell's view is 
in trouble. First, he must admit that some primitive proposition of Principia can­
not be symbolized but must be expressed in words. And he goes on to suggest 
the introduction of a new symbolic device to carry the sense of the words. Thus 
the symbol "[c/Jy]" is introduced in the primitive proposition 

:[¢y]. ::> .(x).<Px 

to symbolize "<Py is true however y may be chosen."26 Second, Russell's discus­
sion of the use of a free variable in the axiom of reducibility is inconsistent with 
the primitive proposition of Principia amounting to the rule of universal generali­
zation. 

*9.13 In any assertion containing a real variable, this real variable may be 
turned into an apparent variable of which all possible values are asserted to 
satisfy the function in question. 27 

Of course one can point out that it does not apply in such a case because the result­
ing universal generalization is an "illegitimate" statement. But that merely points 
up the specious use of a free variable to state the axiom of reducibility. Given the 
cogency of Wittgenstein's criticism, one may conclude that with or without rami­
fication, abstracts like "(f)fi" and "(3f)fi," involving quantifiers, should not be 
taken to stand for properties. Hence, we may conclude that there are no "complex 
properties" represented by such quantified abstracts. 

We may consider paradoxes of the Russell type to be of two kinds. One kind, 
the "pure" paradoxes of predication, involves only negated elementary subject­
predicate contexts, such as"-,¢(¢)," for monadic properties, "-, R(R,R)" for 
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dyadic relations, and so on. These are all blocked by the same considerations 
leading to the construal of"--, (/i((/i)" as, at best, a relational abstract and by the 
basic distinction between monadic, dyadic, etc., predicates. In this vein 
"--, R(R,R)" will be a three-term relational abstract, and so on. The other kind 
of paradox, making use of complex quantified contexts, like "(3g)((g = j) & 
1.f(g))," involves the use not only of a term in an "unstratified" context but also 
of a quantifier ranging over such a term. Thus, even if one could not block such 
versions of the paradox by construing abstracts like "(3g)((g = /) & -,]<g))" as 
relational abstracts (and I believe that one can block them in this way), they can 
be blocked by not acknowledging "impredicative" properties. Hence, assuming 
that one allows ramified predicate abstracts to stand for properties, which I have 
argued we should not do, the paradoxes arising from quantified contexts can be 
blocked by a variant of Russell's ramified theory of "orders," which does not make 
use of a type distinction as that is normally construed. Consider a familiar way 
of presenting the distinction between simple and ramified type theory- a way of 
presentation that is, though familiar, not an accurate account of the theory of Rus­
sell and Whitehead. One distinguishes types of predicates and properties­
properties of 0-level objects, properties of properties of 0-level objects, and so 
on. These are properties of the first type, the second type, and so on. Within each 
type of property one then distinguishes orders of properties. 28 In type 1, for ex­
ample, the properties of the first order are taken to be, say f 1
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ranging over the properties (predicates) of order 1, will be taken to form an ab­
stract "(f 11)f11(i)" oforder 2, and hence that abstract (predicate) will not repre­
sent a property in the domain of "(f 11 ) . " Such a ramified theory of orders does 
not make the type distinction, but the separation of properties into orders will 
block the paradoxes making use of quantified contexts, as in "(3g)((g = f) & 
1.f(g))." However, such a theory, by recognizing complex properties repre­
sented by ramified abstracts, faces the problems that led to (and are involved in) 
the axiom of reducibility. But, whatever one might come to hold about the 
representation of properties by abstracts containing predicate quantifiers, the 
main concern of my discussion has been with what I have called the "pure" 
paradoxes of predication. These, I have argued, should be looked at and resolved 
in terms of the distinction that Russell took to be the essential demarcation be­
tween properties and particulars-the division of properties into monadic, 
dyadic, etc. -and the early insights Russell had regarding the need to ac­
knowledge logical forms. 29 
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