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 Logic and Limits of Knowledge and Truth*

 PATRICK GRIM

 SUNY AT STONY BROOK

 Though my ultimate concern is with issues in epistemology and
 metaphysics, let me phrase the central question I will pursue in
 terms evocative of philosophy of religion:

 What are the implications of our logic-in particular, of Cantor
 and G6del-for the possibility of omniscience?'

 The attempt to draw philosophical lessons from metalogical texts
 is a notoriously perilous business.2 With that in mind let me frame
 what follows as a suggestion, or offer it as an argument worthy of
 consideration, rather than trumpet it as a proof. What I want to
 suggest is that within any logic we have-in particular, in terms
 of systems and sets-omniscience appears to be simply impossible.
 In that sense Cantor and G6del offer at least a suggestive case against
 the possibility of omniscience.

 The path to this conclusion will be somewhat more circuitous
 than this introductory statement might suggest, however. In the first
 section that follows I consider the standard Gddel result, and in
 the second some intriguing nonconstructive extensions, neither of
 which suggests so definitive a negative conclusion regarding omni-
 science. In section III, however, I offer a more general argument
 for 'expressive' incompleteness of relevant systems, supplemented
 in section IV by a general argument for 'internal' incompleteness
 closer in spirit to Gddel. Each form of incompleteness appears again
 in section V as the basis of a first argument against omniscience.

 The work of the paper to this point concerns formal systems as
 analogues of omniscience.3 In section VI, I offer a more direct
 Cantorian argument against a set of all truths and hence against
 omniscience, disgressing slightly to consider implications for possi-
 ble worlds. Here alternative set theories may seem promising as
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 a way out, however, and these are briefly considered-with negative
 results-in section VII.

 Perhaps in the end there really cannot be any totality of truths
 and really cannot be any omniscience. Plantinga and Wittgenstein
 are used in a final section to summarize major epistemological and
 metaphysical suggestions.

 L. OMNISCIENCE AND THE STANDARD GODEL RESULT

 Many a body of knowledge may be thought of-at least ideally-
 on the model of an interpreted formal system. To the admissible
 formulae of the system, on this analogy, correspond all statements
 in the general domain of the body of knowledge, true or false, known
 or unknown. Formulae interpreted as basic truths or basic items of
 knowledge are chosen as axioms, and formulae interpreted as derivative
 truths-given appropriate transformation rules-will appear as
 theorems.4 Axiomatic geometries are prime examples here, of course.
 But given a liberal enough attitude towards sets of axioms, types
 of transformation rules, and the like, it appears that any body of
 knowledge might ideally be conceived on the model of a formal
 system.5

 If bodies of knowledge might be so conceived, might not knowers?
 Here we need not suggest that processes of knowing or patterns
 of epistemic justification must somehow correspond to demonstra-
 tions within a formal system. But might not at least what a knower
 knows-the mere content of his knowledge-be conceived on the
 model of a formal system?

 There is a major obstacle here, at least for familiar types of
 knowers and familiar types of systems. A formal system contains
 as a theorem every formula obtainable from its axioms by its specified
 transformation rules. If the transformation rules of such a system
 correspond to standard patterns of logical inference, then, a cor-
 responding knower would have to know-as derivative truths-
 every truth derivable from his basic items of knowledge. None of
 us is such a knower.6

 This is precisely the difficulty which seems to arise concerning
 Hintikka's work in Knowledge and Belief Once rules which appear
 indispensable from a formal point of view are adopted, we seem
 to be saddled with the following result. Given any 'p D q' valid
 in ordinary propositional logic, we appear to be committed to:

 Kap D Kaq,

 where 'Kap' is initially glossed as 'a knows that p' (Hintikka, 1962).7
 But this does not appear to hold for ordinary knowers, who may
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 LOGIC AND LIMITS 343

 well not know all that what they know entails. Hintikka originally
 responded to the problem as follows:

 Our results are not directly applicable to what is true or false in
 the actual world of ours. They tell us something definite about the

 truth and falsity of statements only in a world in which everybody
 follows the consequences of what he knows as far as they lead him.
 (Hintikka, 1962, p. 36)8

 On this approach, then, Hintikka's knowers are ideal knowers.
 So too are those knowers envisaged above, modelable on formal

 systems transformation rules of which correspond to standard patterns
 of logical inference. This limitation to ideal knowers is not the worri-
 some constraint for our purposes that it is commonly held to be
 for Hintikka's, however. For here it is ideal knowers-in fact divine
 knowers-that are at issue.9

 Let us thus construct in imagination an ideal knower whose
 knowledge can be conceived on the model of a formal system G.

 The transformation rules of G, we suppose, do include on interpreta-
 tion all standard rules of logical inference, so our ideal knower will
 know all that follows from what he knows. We will also suppose
 that his rules of inference operate only on workably finite sets of
 premises, that formulae of G are kept finite as well, and that the

 alphabet of G is kept manageably denumerable.
 What of the basic knowledge of our ideal knower, correspond-

 ing to the axioms of G? Here we might insist that the axioms of
 G be finite as well, but will instead impose only the weaker stipulation
 that they be recursively enumerable.

 If an ideal knower so constructed is to have even a pretense
 of divine knowledge, of course, he must have at least a working
 knowledge of number theory. We will then suppose all statements
 of number theory to be expressible in his corresponding system,
 and will expect to find among the axioms of G the mere handful
 required for predicate calculus with identity and the five Peano
 postulates. But of course we can also build in much more: a
 googolplex of basic propositions of biochemistry, perhaps, an in-
 finite (though recursively enumerable) set of basic propositions of
 physics, and all seven true propositions of macroeconomics.

 What Gddel's standard incompleteness result shows, however,
 is that no matter what other basic knowledge we imagine building
 into such an ideal knower-no matter what else is included among
 the recursively enumerable axioms of G-such an ideal knower cannot
 be omniscient. If, as specified, he knows enough to handle basic
 number theory, in fact-no matter what else he knows-he already
 knows too much to know everything. i
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 Gddel numbering for G is assured by the fact that formulae
 of G are finite and the axioms of G are adequate for number theory.
 Given Godel numbering and these axioms a substitution predicate
 can be introduced, and-since the axioms of G are recursively
 enumerable and its rules of inference operate only on finite sets
 of premises-a proof predicate as well. These are in essence all we
 need to construct an undecidable sentence for G: a formula which,

 if G is omega-consistent," demonstrably cannot appear as a theorem
 of G-and so cannot represent anything our ideal knower knows-
 and yet does represent a number-theoretical truth.

 A similar incompleteness result will hold, moreover, for any im-
 proved model of an ideal knower we attempt to construct within

 the confines of the basic conditions above. It is tempting, for example,
 to try adding as an axiom to G the formula for G's missing truth.
 When this in turn gives us an incomplete system it is tempting to
 try adding an infinite series of missing truths, or an infinite series
 of infinite series of missing truths. As long as what we add remains
 recursively enumerable, however, any improved system we build

 will still be incomplete, and for basically the same reasons.'2 All
 systems within the basic conditions above are essentially incomplete,
 and the ideal knowers to which they correspond are essentially non-
 omniscient. 11

 II. BEYOND STANDARD SYSTEMS

 The ideal knowers considered above are analogous to formal systems

 adequate at least for the general purposes of number theory and
 which have (1) recursively enumerable axioms, (2) formulae of finite
 length and a denumerable alphabet, and (3) rules of inference from
 only finitely many premises.

 On the grounds of Gddel's standard incompleteness result, no
 such ideal knower can be omniscient. But God is standardly con-
 ceived as omniscient. So God-if there be such a being-must not

 be an ideal knower of this kind.

 Should this be considered a negative theological conclusion? Not
 necessarily. The work of the preceding section might instead be con-
 sidered a positive theological contribution in the spirit of the via
 negativa-an approach to God by way of an understanding of what
 He is not. God's knowledge is quite standardly said, for example,
 to be infinite. But this would clearly be inadequate as a characteriza-
 tion of omniscience, since knowledge of many a mere ideal knower
 of the lowly sort considered above is literally infinite. God's knowledge
 would have to be much more than merely infinite, essentially in-
 capable of being captured at all within the systematic confines laid

This content downloaded from 
�������������141.211.4.224 on Wed, 24 Feb 2021 18:01:30 UTC������������� 

All use subject to https://about.jstor.org/terms



 LOGIC AND LIMITS 345

 down above. Some have argued in effect that those confines are
 our confines as well (see for example Benacerraf, 1967). If so, our
 work to this point might be welcomed with open arms in theological
 circles as a particularly precise vindication of the doctrine that a
 divine mind must be humanly incomprehensible.

 But what lies beyond the type of system considered above? What
 happens if we weaken one or more of the constraints imposed above
 on systems and on corresponding knowers?

 That is a question for which no general and exhaustive answer
 can be said to exist. The systematic constraints outlined above are
 essentially the limits of constructive methods, and to go beyond them
 is to leave constructive methods behind. Beyond such constraints
 'formal systems' cease to be genuinely 'formal' at all, and concep-
 tions of 'proof' and 'demonstration' must change at the border.
 Beyond lies not logic in the familiar sense but what Geoffrey Hellman
 has not inappropriately termed 'theologic' (Hellman, 1981). 14

 Important attempts to cross over have been made, however.
 Among the most promising for our purposes are the following.'5

 Barkley Rosser was the first to propose relaxing that condition
 which limits rules of inference to finite premises, introducing a form
 of transfinite induction instead. Rosser considered only systems allow-
 ing up to W2 uses of a non-constructive rule of inference fromf(O),

 f(1), f(2), . . . to (x)/(x), however, and within that limitation systems
 still prove incomplete in the standard ways: each system still contains
 an undecidable sentence and a consistency formula unprovable in
 the system (Rosser, 1937).

 Transfinite induction is taken further in a system SO developed
 in various forms by G. Gentzen, W. Ackerman, P. Lorenzen, K.
 Schutte, and I. Hlodovskii.'6 'Proof' within S is redefined in
 terms of proof trees. To each formula of a proof tree an ordinal
 is assigned-the result of applying a weak rule in the system is given
 the same ordinal as its premise, but the result of applying a strong
 rule or cut is given an ordinal greater than that of its premises.

 Restriction on the ordinals assignable to the formulae of proof
 trees restricts the notion of proof accordingly. But if no restriction
 is placed on the class of ordinals which can be attached to proofs,

 we get a system S., that is both co-consistent and complete
 (Mendelson, 1964, 270).

 This may make it appear as if omniscience can escape the curse
 of Gddel on the wings of transfinite induction. But here some im-

 portant limitations of So. should be noted. The proof of S , 's con-
 sistency, first of all, is not formalizable internally; as Gentzen himself

 showed, transfinite induction up to eo cannot be formalized in So,,
 (see Mendelson, 1964, p. 270; Wang, 1964, pp. 369-370; and
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 Webb, 1968, p. 177). A second difficulty is perhaps more crucial.

 SOO, obtained from a more standard system S for number theory
 by the addition of a rule of inference permitting transfinite induc-
 tion, is still capable of dealing only with finite sets. For systems
 dealing with infinite sets as well, an obvious desideratum in any
 system intended to mirror omniscience, even transfinite induction
 will not be enough-those systems will still be incomplete.'7

 A somewhat different non-constructive approach appears in the

 work of Solomon Feferman (Feferman, 1962; see also Feferman,
 1960 and Feferman and Spector, 1962). In 1939 A. M. Turing dealt
 with collections of axiom systems under the name ordinal logics.
 Feferman's work, although related, is extended to transfinite sequences
 of recursively enumerable axiom systems. Building on an initial

 axiom system AO, we construct a progression of systems; for each
 successor ordinal we add a formula asserting the consistency of the
 preceding system, taking unions at each limit ordinal. Consider then

 the theorems of an entire transfinite progression of axiom systems
 of this sort. Might not these offer a promise of completeness?

 So it might seem. Feferman notes that a general incompleteness
 result for such progressions would have been dramatic proof of the
 far-reaching extent of incompleteness phenomena. "However, the
 situation has not turned out this way" (Feferman, 1962, p. 261).
 For progressions based on a particular reflection principle, all true

 statements of elementary number theory are provable in the pro-
 gression. It is possible, moreover, to select a path through 'the ordi-
 nals along which all theorems of the progression are provable.

 But here again it would be rash to think that crucial limitations
 had finally been overcome.

 As Feferman emphasizes, the construction of progressions at issue

 is intensional in character. This gives us a peculiar non-uniqueness
 result: two systems Ad and Ad' may yield radically different
 theorems even though they are associated with the same progres-

 sion function and even though IdI = Id' I (Feferman, 1962, pp.
 261-262, 286). It is the intensional character of Feferman's pro-
 gressions that allows for proofs of consistency and the appearance
 of completeness. These rely, however, on what Michael Resnik has
 termed 'pathological' consistency predicates (Resnik, 1974). As
 R. G. Jeroslow notes,

 The issue is that a non-standard designator s(w) may so mysteriously
 describe S that S can prove consistent whatever s(w) may designate,
 not "knowing" that s(w) designates S itself. (Jeroslow, 1971, p. 25)18

 Those features of such progressions which seem initially to trans-
 cend Gddelian limits, then, rest ultimately on the progressions' basic
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 ignorance-a strongly presumptive disqualification for any system

 intended to model omniscience.
 Even the initially attractive features of such progressions,

 moreover, are lost for sequences based on higher than first-order

 calculi. Here Feferman does demonstate a quite general in-

 completeness result: For any consistent progression based on at least

 the second-order calculus, either there is a true IV sentence or there
 is a true El sentence which is not provable from UdEOAd (Fefer-
 man, 1962, p. 314).

 Feferman's work has been incorporated and extended in R. G.

 Jeroslow's 'experimental logics' Jeroslow, 1975; see also Hajek,
 1977). These logics transcend the limits of standard systems in being

 in effect dynamic rather than static, progressively building by trial

 and error. As such a system develops, axioms and even rules of

 inference can be withdrawn or supplemented. Thus experimental

 logics model not merely ideal knowers but ideal learners.

 As might be expected from the link with Feferman's work, there

 are experimental logics capable of proving their own consistency.
 But this is not enough to offer much hope for modelling omniscience.

 A logic of this sort is termed convergent if its recurring formulae

 do not vacillate indefinitely-if eventually "the conceptual superstruc-

 ture settles down" Ueroslow, 1975, p. 256).19 To model an (even-
 tually) omniscient being, then, we would need a system which con-

 verged on all truth-on at least, say, all truths of the form (Vx)R(x)
 for recursive predicates R. But this does not appear to be possible.
 For systems at issue Jeroslow has shown that joint requirements

 of consistency, convergence, and closure under reasoning are in fact

 inconsistent with the goal of obtaining all truths (Vx)R(x) (Jeroslow,
 1975, pp. 257, 264-265).

 None of the non-constructive attempts we've considered, then,

 seems to offer an acceptable model for omniscience. Is that enough,
 with the results of section I, to show that there simply is no such
 model?

 Certainly not. The standard Gbdel result stops at the limit of
 standard systems, and there are options for non-constructive systems
 that have not yet been developed.20 In the next section we will con-
 sider a more general negative result, the first of a series which does
 seem to suggest the genuine impossibility of omniscience.

 III., EXPRESSIVE INCOMPLETENESS

 The knowledge of an omniscient being can correspond to no system
 yet considered. But we have not yet shown that it can correspond
 to no system at all.
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 A quite simple but powerful -Cantorian argument seems to show

 just that. For at least a particular type of incompleteness-what we
 will term 'expressive incompleteness'-any system meeting certain

 minimal conditions will prove incomplete. Those minimal conditions
 would seem clearly necessary in any system intended to model omni-

 science. But no system which meets those conditions can be complete,
 and no incomplete system can model omniscience. To the knowledge

 of an omniscient being, it appears, will correspond no system at all.

 It should perhaps be noted that what follows is not a form of

 G6del's argument, and that expressive incompleteness is not the

 familiar form that incompleteness takes in his work. A broad but
 more strictly Gbdelian treatment will be left to the following section.

 We have offered above a very general statement of the conclusion

 of the argument. But let us begin with a proof of expressive in-
 completeness for a particular and particularly familiar type of system.

 Consider the standard systems of number theory to which G6del's
 theorems apply. In such systems, basic strings of formulae correspond
 on interpretation to the natural numbers, and it is these that such
 systems are taken to be about. Fairly intuitively, then, the natural
 numbers are what we will term the objects of such systems.

 Within such systems appear formulae of various kinds, among

 which are formulae of one variable. These, in accord with common

 parlance, we will call predicates.2'
 Suppose now such a system with the following characteristics:
 (1) It can, first of all, take each predicate expressible in its

 language as an object. A system with this capacity we will call self-
 reflective, for fairly obvious reasons. The systems immediately at issue
 are of course self-reflective by virtue of gddel numbering: to each
 predicate corresponds a gddel number which can be taken as an
 object of the system.

 (2) Secondly, the system is designed to be capable of at least
 expressing all properties of its individual objects, the natural numbers.

 Here's the rub: conditions (1) and (2) cannot both be satisfied
 for any system of the sort at issue. For consider the following ques-
 tions: How many objects would be at issue for such a system? How

 many properties of individual objects? How many expressible
 predicates?

 There must first of all be at least as many objects of such a
 system as there are predicates within it, since each predicate can
 be taken as an object. The device of gddel numbering assigns a
 distinct number to each open formula of one variable, so there must
 be at least as many numbers-the objects of such a system-as there
 are predicates within it.
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 But there must also be more properties of individual objects of
 the system than there are objects. For consider the set of objects
 of the system-numbers-which we might envisage as the set 0:

 0 = ?1, 02, 03, . .

 If we treat properties purely extensionally, possession of distinct prop-
 erties will amount to membership in distinct sets. The properties
 of objects at issue, then, will correspond to subsets of the set of
 objects-to elements of the power set ?PO of the set of objects at
 issue. A complete listing of such properties we might envisage as
 follows:

 pi, corresponding to 0

 p2 corresponding to fo1)
 P3e corresponding to to2l
 P4, corresponding to to3)

 P'1, corresponding to [o1, 021
 p'2 corresponding to fo1, 03J

 P/1, corresponding to fo1, 02 031

 Intensionally construed, of course, a number of coextensional prop-
 erties may correspond to each set.

 There will then be as many properties applicable to individual
 objects as there are elements in the power set of objects. But by
 Cantor's power set theorem we know that the power set of any set
 is larger than the set itself.22 Thus there must be more properties
 applicable to individual objects than there are objects.

 Let us sum up. By the first part of the argument, for any system
 of the sort specified, there are as many objects of the system-
 numbers-as expressible predicates-open formulae of one variable.
 But by the second part of the argument there must be more proper-
 ties of individual objects than there are objects.

 For any such system, then, there will be more properties of in-
 dividual objects of the system than there will be appropriate predicates
 with which to express them. Properties will outnumber correspond-
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 ing predicates. Some genuine property of the objects of a self-
 reflective system must thus go unexpressed, and so condition (2)
 above-that each property of its objects be at least expressible in
 the system-cannot be satisfied.

 Correspondingly, of course, some truth regarding an object of
 the system-that it does (or does not) have a particular property-
 will be incapable even of expression in the system. All such systems
 will be expressively incomplete.23

 As presented above, the argument for expressive incompleteness
 is tied to particular features of familiar systems; numbers are taken
 as objects in the argument, open formulae of one variable as predicates,
 and it is by the device of gddel numbering that such systems can
 take their own predicates as objects.

 The argument will hold, however, for any system interpreted

 as applying to a domain of objects-those things the system is taken

 to be about-and including a range of predicates applicable within
 the system. If any such system is self-reflective-if each of its
 predicates can also be taken as an object to which the system

 applies-it will have at least as many objects as predicates. But taking
 properties purely extensionally, by Cantor's power set theorem there
 will be more properties of individual objects of the system than cor-
 responding predicates with which to express them. Some genuine
 property of some object of the system-and thus some truth-will

 be inexpressible, and any such system will prove expressively

 incomplete.
 Expressive incompleteness, then, is by no means limited to the

 standard systems of section I: it will apply for any system which
 meets the basic condition of self-reflection.

 At least no system, it appears, can achieve omniscience. For any

 system intended to model omniscience would surely have to include
 its own predicates among the objects it knows things about-it would

 have to be self-reflective in the sense outlined above. But any self-
 reflective system, we've seen, will be expressively incomplete: some

 property of its objects, and thus some truth, will be incapable even
 of expression within the system.

 Note also how very thin a notion of 'system' is in fact required
 in the basic argument above. Nothing has been said to indicate that
 any system at issue must be formal or axiomatic, that it must generate

 theorems by means of demonstrations or even that it must contain
 a category of assertions or asserted theses.

 All the argument requires, in fact, is a system of expression-in
 a word, a language. This first result might then be put as follows.
 Given even minimal requirements of expressible self-reflection, it
 appears, any system of expression must prove expressively in-
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 complete. In that sense there could not even be a language ade-
 quate for the expression of all truths.

 IV. GODEL GENERALIZED

 Expressive incompleteness, because it does appear to hold for every
 self-reflective system, may pose real difficulties for omniscience.

 As noted above, however, this is not G6del's argument and ex-
 pressive incompleteness is not the form that incompleteness takes
 in his work. Expressive incompleteness is a pervasive limitation on
 what can even be expressed within certain systems. What Gbdel
 shows is that for a wide range of systems, on the assumption of
 consistency,24 some formula which is expressible in the system and
 represents a truth on interpretation nonetheless cannot be captured
 as a theorem of the system. This more familiar form we might term
 internal incompleteness.

 These two forms of incompleteness are not co-extensive; inter-
 nal incompleteness holds only for a somewhat more restricted class
 of systems than does expressive incompleteness. In the basic spirit
 of the preceding section, however, we can also offer a fairly general
 argument for internal incompleteness-an argument general enough
 to indicate that even internal incompleteness applies far beyond its
 usual association with the standard systems of section J.25

 Let us start, as before, with a self-reflective system, capable of
 taking each of its expressible predicates as a particular object of
 the system.

 For any self-reflective system, consider the set P of expressible
 predicates:

 P = (PI,1 P2, P3. .. .

 and the corresponding set P0 of predicate objects-those objects of the
 system which are expressible predicates taken as objects:

 Po = (PO[1, PO2, PO3, X.26

 Clearly these two sets will be the same size. A one-to-one function
 f will be possible between them, then, which assigns each predicate
 object Po to an expressible predicatef(P0) and such that to each
 expressible predicate of the system some predicate object is assigned.
 An obvious candidate for such a function, of course, would be that
 which assigns each predicate object to the predicate of which it is
 the object. Within the specified conditions there will be many other
 possibilities for f as well, however.

 For any suchf, now, consider any individual predicate object
 PO and its associated predicate byf, namelyf(P0). That predicate
 may or may not in fact apply to the object at issue. The predicate
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 f(P0) applied to the object P', in other words-giving us the for-
 mulaf(P0)P0-may or may not represent a truth on the intended
 innterpretation. f(P0)P' may also, or may not, appear as a theorem
 within the system at issue.

 For any choice off, then, consider the following set:

 Po f = [Po : f(P0)P is not a theorem}.

 Here Po is any predicate object, andf(P0) its associated predicate
 by our chosen function f. P', then, is the set of those predicate
 objects to which the corresponding predicates f(P0) do not apply
 as theorems.

 Note however that Po is explicitly just a set of objects of the

 system, and in that regard might seem a plausible candidate for
 the extension of a predicate. Such a predicate would apply to precisely
 those objects which are members of Po': to all and only predicate

 objects P0 to which the associated predicate f(P?) does not apply
 as a theorem.

 The crucial question here is this: Is such a predicate-a predicate
 of which this is the extension-expressible in the system?

 If not, of course, the system is expressively impoverished in cer-
 tain respects. But if such a predicate is expressible, for anyf of the
 sort indicated, and if the system at issue is also consistent, then
 it must be internally incomplete. Some truth expressible within the
 system will not be captured as a theorem.

 For suppose that such a predicate, for some appropriate f, is
 expressible in the system. f, it will be remembered, has been chosen
 as a function mapping some predicate object Po onto each predicate
 expressible in the system. If this predicate is expressible, f must then
 also map some P0 onto it.

 Consider then the predicate at issue and any Po which our chosen
 f assigns to it. Does the predicate at issue in fact apply to that P0
 or not? We have two options:

 Let us suppose first that the predicate at issue will not apply
 to its correlated object. Here we will bring in our final assumption-
 of consistency-in the following form: that it is only truths on the
 intended interpretation that are taken as theorems of the system.27

 We are supposing that the predicate at issue will not apply to
 its associated P'. Since only truths are captured as theorems, then,
 f(P0) applied to P0 in this case-the formulaf(PO)P0-will not be
 a theorem. The predicate at issue, however, is specified as having
 PF' as its extension-as applying to every Po for whichf(P0)P0 is
 not a theorem. Contrary to our intitial negative supposition, then,
 we are forced to conclude that the predicate at issue will apply to
 its associated object.
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 The only option left here is the second: that the predicate at
 issue does apply to that P0 with which it is correlated.

 It is then true in this case that P0's correlate-f(P0)-in fact
 applies to PF; f(P0)P' represents a truth. The predicate at issue,
 however, has been specified as applying only to those objects P0
 for which f(P0)P0 is not a theorem. Since the predicate at issue

 does apply to its corresponding P0 in this case-sincef(P0)P0 is
 true-it is also true that f(P0)P0 is not a theorem of the system.

 At least one truth expressible within the system, then, is not
 captured as a theorem; any such system must be internally
 incomplete.

 The argument can be repeated, of course, for any choice of a
 one-to-one function f which assigns to each expressible predicate
 a corresponding object. For any such f there will be a predicate
 which if expressible in the system will give us the same result.

 Note also that although the argument concerns systems con-
 ceived as containing expressible predicates, objects, and theorems,
 little else has been said to constrain that class of systems for which
 the argument will apply. Nothing has been said, in particular, to
 limit relevant systems to those meeting the formal contraints im-
 posed in section I.

 Where then does this leave us? Despite the surface complexities
 of the argument above, the assumptions we have made regarding
 any system at issue have been genuinely minimal: that it is self-
 reflective, consistent, and capable of expressing at least one of a
 range of predicates that we have specified in terms of their exten-
 sions. For any system which satisfies these basic conditions the argu-
 ment above can be repeated, and thus any such system will prove
 internally incomplete.

 How general then is the phenomenon of incompleteness? Ex-
 pressive incompleteness, we've seen, will hold for any self-reflective
 system. Internal incompleteness will hold for any self-reflective and
 consistent system capable of expressing any of a range of particular
 predicates.

 Here we can also say a bit more, however, about precisely how
 little expressive capacity is actually required for internal in-
 completeness. Just two elements will basically suffice: (1) that a
 system be capable of expressing theoremhood within the system-
 that a formula is or is not a theorem-as a predicate, and (2) that
 it be capable of expressing at least one functions which assigns an
 object P0 of the system to each expressible predicatef(P0). Given
 essentially these two elements a predicate can be constructed with
 extension PF':

 pFt = [P0 : f(P0)P0 is not a theorem),
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 and with such a predicate expressible any self-reflective and consis-
 tent system will also prove internally incomplete.

 V. FIRST ARGUMENTS AGAINST OMNISCIENCE

 Let us return to the analogy between systems and knowers, and
 in particular to systems and the notion of an omniscient knower.

 Do the incompleteness results of the preceding sections offer an

 argument that omniscience is impossible?
 Consider first an argument which follows the pattern of expressive

 incompleteness. Here we'll speak of conceptions of properties in-
 stead of predicates, and will use 'objects of knowledge' somewhat
 irregularly to indicate those things a knower knows something about.

 Any omniscient mind would surely be self-reflective in at least

 the following sense: among its objects of knowledge-among those

 things it knows something about-would be its own conceptions of
 properties. But here the argument of section III can be rephrased

 to show that the knowledge of no such mind can be complete. It
 will have at least as many objects of knowledge as conceptions of

 properties, since each of the latter is also an object of knowledge.
 But by Cantor's argument there will be more actual properties of
 its objects than objects themselves. Actual properties will outnumber

 its conceptions of properties, and thus some genuine property of
 its objects of knowledge-and so some truth-will remain inconceivable
 for such a being.

 Any omniscient being, so the argument goes, would have to
 be self-reflective in the sense specified. But no self-reflective being
 can be omniscient. There can be no omniscient being.

 Whatever our final verdict, I think, the argument from expressive
 incompleteness is an elegantly simple one. Although significantly
 more awkward, we can also offer an argument from internal
 incompleteness:

 An omniscient mind, we've suggested above, must be self-
 reflective in at least the sense of being able to take its conceptions

 of properties as objects of knowledge. But we might also argue that
 a genuinely omniscient mind would have to be self-aware in deeper
 senses as well. Among the things that such a being will know, of
 course, is that it knows certain things, and thus '. . . is known by
 me' or the like will be among its conceivable properties. Such a
 mind, we might insist, will surely also be cognizant of obvious aspects
 of its own conceptual structure-it will for example be aware of
 one-to-one mappings between its conceptions of properties and these
 taken self-reflectively as objects of knowledge.
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 Omniscience, then,-so the argument goes-has formal features
 analogous to those outlined for systems in the preceding section:
 self-reflectivity, expressible theoremhood, and the expressibility of
 some one-to-one mappingf from predicate objects to predicates of
 the system. The knowledge of any omniscient being would of course
 also be consistent. But any system with these formal features will
 be internally incomplete: some truth expressible in the system will

 not be captured as a theorem. For the same reasons, it appears,
 the knowledge of any being proposed as omniscient must be cor-
 respondingly incomplete: there will be some truth which is expressible
 or conceivable by such a being and yet will not appear among those

 things it knows.
 Or so the argument goes.

 How good are these arguments as, say, genuine disproofs of
 omniscience?

 The argument from expressive incompleteness seems by far the

 more persuasive of the two, if only because it is significantly simpler
 and more direct. The argument from internal incompleteness
 demands more points of comparison between systems and knowers,
 and here conviction may fade as the analogy begins to show the
 strain.

 Both arguments presented rely on some points of analogy be-
 tween knowers and systems, however. An objector might then take
 the following tack: 'If analogous to a system in the sense required,
 the knowledge of any being proposed as omniscient would be
 demonstrably incomplete. But perhaps that merely indicates that
 omniscience is not analogous to any system. Perhaps the knowledge
 of an omniscient being not only cannot be conceived of on the model

 of a standard system such as those of section J, but cannot be con-
 ceived of in terms of any system at all.'

 Full vindication of the arguments above against such a reply

 would call for further work. One option here would be to carefully
 strengthen, strand by strand, the relevant analogy between systems
 and knowers-to emphasize how little is really required by the notion
 of 'system' at issue, how a set of propositions known will have the
 crucial formal properties of a set of theorems, and so forth. Another
 option would be to rephrase the incompleteness arguments of the
 preceding sections entirely in terms of knowers and what they know,
 thereby avoiding talk of 'systems' entirely.

 With patience, I think, even the more complex second argu-
 ment above could be defended in one of these ways. But perhaps
 none of this is necessary. A short and direct Cantorian argument,
 offered below, seems to give us the same conclusion while avoiding
 the complications of systems altogether.
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 Consider also a related objection. Even where not tied to formal

 systems, an objector might claim, the arguments above are at least
 tied to formal languages in some way. 'Perhaps the arguments above
 indicate only that there can be no language adequate for the represen-
 tation of all truths, or indicate only that there can be no divine
 language in the relevant sense.'28

 This, I think, would be a mistake. What the arguments above
 require is not formal languages but merely certain features analogous
 to those of formal languages-features which may themselves be
 quite natural and non-linguistic features of knowers, minds, or sets

 of things known. The first argument against omniscience above,
 for example, is phrased entirely in terms of just objects of
 knowledge-things about which something is known-and concep-
 tions of properties.

 We can, at any rate, sidestep this second objection in the same
 way as the first. The Cantorian argument of the following section
 seems to cut quite neatly through complications of either systems
 or languages.

 VI. THERE IS NO SET OF ALL TRUTHS

 There is no set of all truths.
 For suppose there were a set Co of all truths, and consider all

 subsets of tS, elements of the power set ?P&l.
 To each element of this power set will correspond a truth. To

 each set of the power set, for example, a particular truth T1 either
 will or will not belong as a member. In either case we will have
 a truth: that T1 is a member of that set, or that it is not.30

 There will then be at least as many truths as there are elements
 of the power set ?3P. But by Cantor's power set theorem the power
 set of any set will be larger than the original. There will then be
 more truths than there are members of Of, and for any set of truths
 X there will be some truth left out.

 There can be no set of all truths.

 One thing this gives us is a shorthand sweet Cantorian argument
 against omniscience, uncomplicated by systems or formal languages:

 Were there an omniscient being, what that being would know
 would constitute a set of all truths. But there can be no set of all

 truths, and so can be no omniscient being.3"
 Let me digress slightly in order to mention some further im-

 plications of the argument as well, however. One victim of such

 an argument, it appears, is a common approach to the notion of
 possible worlds and in particular to the notion of an actual world.

 Possible worlds are often introduced as maximal consistent sets

This content downloaded from 
�������������141.211.4.224 on Wed, 24 Feb 2021 18:01:30 UTC������������� 

All use subject to https://about.jstor.org/terms



 LOGIC AND LIMITS 357

 of propositions-proposition-saturated sets to which no further propo-
 sition can be added without precipitating inconsistency-or as some

 sort of fleshed-out correlates to such sets. The actual world, on such
 an account, is that maximal consistent set of propositions all members
 of which actually obtain-a maximal and consistent set of all and
 only truths-or is an appropriately fleshed-out correlate to such a

 set (see Adams, 1974, Plantinga, 1974, and Plantinga, 1980).32

 By the argument above, however, there is not and cannot be
 any set of all truths. Any set of true propositions will leave some

 true proposition out, and thus there can be no maximal set of truths.
 In this sense of 'actual world', then, there is and can be no actual
 world.33

 It should perhaps not be too surprising that the notion of an

 actual world outlined above faces difficulties similar to those that

 can be raised against omniscience. These are, after all, largely cor-
 relative notions. That which would be known in omniscience is that
 which would obtain in such an actual world-omniscience is the
 epistemic correlate to this metaphysical conception of the actual
 world.

 It should also be noted that the argument above can be applied
 against the existence of some 'smaller' sets as well. Consider for
 example the set not of all truths but merely of all metamathematical
 truths. Is there such a set?

 Here we first have to answer a clarificatory question. Does each
 truth regarding the membership of a set of metamathematical truths
 itself quality as a metamathematical truth? If so, by an argument
 perfectly analogous to that offered above, there will be no set of
 all metamathematical truths; each set of metamathematical truths
 will leave out some metamathematical truth.34

 The same will hold for any set of truths of a type e, where
 truths regarding membership in sets of truths of type 0 themselves
 qualify as truths of that type. For no such type of truths will there
 be a set of all truths of such a type.

 VII. ALTERNATIVE SET THEORIES: A POSSIBLE WAY OUT?

 The simple Cantorian argument runs as follows:
 Were there an omniscient being, what that being would know

 would constitute a set of all truths. But there can be no set of all

 truths, and so can be no omniscient being.
 Might we not give up the idea of a set of all truths, however,

 or of what an omniscient being knows as a set of things known,
 and substitute something else here instead? Perhaps there is no set
 of all truths, but there is a class of all truths (or proper class or ultimate
 class) in the sense of alternative set theories.
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 Will this offer a way out?

 The short answer, I think, is 'no' .
 All axiomatic set theory, standard or alternative, is essentially a

 response to two paradoxes: Cantor's paradox regarding a set of all

 sets and Russell's paradox regarding a set of all non-self-membered
 sets. By the Aussonderung axiom of standard ZF set theory, of

 course, there simply are no such sets. What we've suggested in
 preceding sections, in effect, is that a 'set of all truths' leads to

 similar difficulties and should be similarly abandoned.
 In some alternative set theories something like Cantor's and

 Russell's sets do appear, however-though in the guise of 'classes'
 or 'ultimate classes' or 'proper classes', carefully distinguished from
 sets and for which different principles hold. But in one way or another

 all such alternatives seem to come to grief.

 Quine's "New Foundations" and the von Neumann-Bernays

 system, for example, both avoid paradox by effectively crippling
 the mechanism of Cantor's theorem, and in that sense may seem

 to offer hope for something like a class of all truths. NF and VNB
 also share one crucial and quite exhorbitant cost, however: both
 entail a sacrifice of general mathematical induction.36 As Quine con-
 cludes with respect to NF,

 the fact remains that mathematical induction of unstratified conditions is

 not generally provided for . . . This omission seems needless and arbitrary.
 It hints that the standards of class existence . . . approximate insufficiently,

 after all, to the considerations that are really central to the paradoxes and

 their avoidance. (Quine, 1963, p. 199)37

 Quine's system in Mathematical Logic and a modified VNB he
 suggests, on the other hand, both manage to remedy this glaring
 inadequacy with respect to mathematical induction. In order to do

 so, however, both restore the basic mechanism of the Cantorian
 argument just enough to dash any hopes for either a class of all
 classes or a class of all truths.

 If these are any sample, then, alternative set theories do not

 seem a very promising route of escape. For our purposes, moreover,
 these technical problems are only one of the marks against them.

 Ultimate classes in general, in whatever alternative system, are
 introduced as classes which are not members of further classes. But
 a 'class of all truths' would surely not qualify as ultimate in that
 sense. Wouldn't it be a member of the class of classes of propositions?
 Wouldn't it form an ordered pair with the class of all false
 propositions?

 Consider also the class of classes of things known by existent
 beings-wouldn't what God knows be a member of that class?
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 In the end, I think, the ultimate classes of alternative set theory

 turn out to be an unacceptable option even on simple intuitive
 grounds. This last difficulty is closely related to Quine's general

 objection:

 [VNB modified] shares a serious drawback with ML, and with von

 Neumann's unextended system, and with any other system that in-

 vokes ultimate classes . .. We want to be able to form finite classes,
 in all ways, of all things there are assumed to be . . . and the trouble

 is that ultimate classes will not belong. (Quine, 1963, p. 312)

 VIII. VERSUS PLANTINGA AND WITTENGSTEIN: CONCLUSION

 I have attempted above to use Cantor and G6del in suggesting an

 argument, or group of arguments, against omniscience-that there

 can in principle be no being that knows everything. There can in
 fact be no set of all truths, and alternative set theory offers little

 hope for even an ultimate class of all truths as an alternative.
 Does the work above actually show that omniscience is impossible?
 As noted in introduction, philosophical speculation regarding

 metalogical results is a notoriously risky business. With that in mind
 I have confined myself throughout to suggesting Cantorian and

 Gbdelian arguments against omniscience, offering these as arguments
 worthy of consideration, but without trumpeting them as proofs.

 Nonetheless, philosophical speculation-however risky-also has
 its place. In that spirit let me stick my neck out at least this far:

 Is omniscience impossible?

 Within any logic we have, I think, the answer is 'yes'.
 What I mean is this. In terms of either systems or sets, on the

 basis of work presented above, omniscience appears to be simply
 incoherent. All the logic we have, however, is essentially a matter

 of systems and sets. Within any logic we have there appears to be
 no coherent notion of omniscience.

 The theist, of course, can be expected to pounce on the crucial
 qualifying phrase above-'within any logic we have.' 'Perhaps our
 logic is merely inadequate to do justice to the notion of omniscience.
 Perhaps some other logic, not a matter of mere systems and sets,
 eventually within our grasp or forever beyond our grasp, would allow
 us a coherent notion of omniscience.

 What gives this response plausibility is the fact that new logics
 have been developed to serve special needs. And perhaps it could

 be done again. Perhaps despite appearances it would be possible
 to specify a 'bunch' or 'gob' that would coherently collect all truths
 in a way that neither sets nor their alternative classes can. Perhaps.
 As things stand, however, the theist's invocation of that 'perhaps'
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 is merely a promisory note on a debt of coherence-a second or
 third or fourth mortgage on omniscience.

 Note also that the same response could be made in behalf of
 any position, however ludicrous, and in the face of any argument,
 however rigorous. Perhaps our logic is merely inadequate to do justice
 to the notion of circular squares or married bachelors.35 As it stands,
 then, the theist's response does nothing to distinguish omniscience
 from any of various incoherent notions that fall victim to logical
 argument.

 Epistemological and metaphysical aspects of the work above have
 of course been mentioned throughout. Let me summarize these

 suggestions, however, by way of points regarding Plantinga and
 Wittgenstein respectively.

 Gaunilo, a contemporary of Anselm's, parodied Anselm's ontol-
 ogical argument for the existence of God by constructing a parallel
 argument for a greatest possible island. In defending a form of
 Anselm's argument for Anselm's God, Plantinga attempts to avoid
 Gaunilo's argument for Gaunilo's island. He does so by insisting
 that the great-making characteristics of islands, unlike those of God,
 are without intrinsic maxima:

 The idea of an island than which it's not possible that there be a
 greater is like the idea of a natural number than which it's not possible
 that there be a greater . .. There neither is nor could be a greatest
 possible natural number; indeed, there isn't a greatest actual number,
 let alone a greatest possible. And the same goes for islands. No matter
 how great an island is, no matter how many Nubian maidens and
 dancing girls adorn it, there could always be a greater-one with
 twice as many, for example. The qualities that make for greatness
 in islands-numbers of palm trees, amount and quality of coconuts,
 for example-most of these qualities have no intrinsic maximum. That
 is, there is no degree of productivity or number of palm trees (or
 of dancing girls) such that it is impossible that an island display more
 of that quality. So the idea of a greatest possible island is an incon-
 sistent or incoherent idea; it's not possible that there be such a
 thing....

 But doesn't Anselm's argument founder on the same rock? If
 the idea of a greatest possible island is inconsistent, won't the same
 hold for the idea of a greatest possible being? Perhaps not.... Anselm
 clearly has in mind such properties as wisdom, knowledge, power,
 and moral excellence or moral perfection. And certainly knowledge,
 for example, does have an intrinsic maximum . . . (Plantinga, 1980,
 pp. 90-9 1 )39

 What the argument of the preceding sections suggests, however,
 is that knowledge does not have an intrinsic maximum. The case
 of a 'greatest possible number' would in fact be perfectly analogous
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 here. For any natural number, there is a greater. What the Cantorian
 argument suggests is that for any body of knowledge-that possessed
 by any particular being, for example-there is some truth it leaves
 out, and so some body of knowledge beyond it.

 If knowledge has no intrinsic maximum, of course, the notion
 of an omniscient being itself becomes "an inconsistent or incoherent
 idea; it's not possible that there be such a thing."

 Metaphysical aspects of the work above can be summarized using
 Wittgenstein.

 The opening lines of the Tractatus run as follows:

 1 * The world is all that is the case.
 1.1 The world is the totality of facts, not of things.
 1.11 The world is determined by the facts, and by their being all

 the facts. (Wittgenstein, 1961, p.7)

 What the arguments of the preceding sections suggest is that
 these famous lines must be dead wrong.40 Given Cantor and Gddel,
 it appears, there simply is no totality of facts or of all that is the
 case. The universe itself, on such a view-like any knowledge or
 description of it-is essentially open and incomplete.

 NOTES

 *I have many people to thank for tolerating me at various points in the long develop-

 ment of this set of ideas. I am grateful to Hector-Neri Castafieda, Geoffrey Hunter, and
 A. J. Stenner for encouragement at crucial points, and to David Auerbach, David L. Boyer,

 Robert F. Barnes, Evan W. Conyers, and Christopher Martin for more recent help.
 I would like to dedicate this paper to the memory of my father.

 'Defining omniscience is harder than it looks. In the first section of Grim, 1983, I
 argue that definitions offered by Peter Geach, A. N. Prior, Richard Swinburne, James F.
 Ross, and William E. Mann are inadequate. As a replacement I there suggest the following:

 x is omniscient = df. for all p, p is true IFF x believes that p,
 AND x believes that p IFF x knows that p.

 For the purposes of this paper, however, all that is crucial is that any omniscient being
 will believe all and only truths.

 'Witness for example the checkered history of Lucas, 1961. Among its many replies
 see esp. Webb, 1968, and Benacerraf, 1967.

 3The notion of a 'formal system' is stretched well beyond familiar limits in the course
 of the discussion, however.

 4Which are the basic truths of a body of knowledge, of course, may be relative to the
 choice of transformation rules. Even given a particular set of transformation rules, moreover,
 there may be alternative sets of truths any of which might be taken as basic.

 5Judson Webb notes that

 whether or not a discipline regarding a given subject matter can be deductively
 systematized is simply the question whether or not the set T of true sentences
 about the subject matter is recursively enumerable . . . (Webb, 1968, p. 167)

 If requirements on 'systems' are relaxed beyond recursive enumerability, even this will
 not restrict those bodies of knowledge which might be captured as 'systems'.

 6It might be thought that the following is an additional obstacle to any comparison
 between knowers and formal systems: a (standard) formal system, if it is to exclude any
 formula as a non-theorem, must be consistent. Knowers, on the other hand, are rarely if
 ever perfectly consistent.
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 There are unusual systems in which inconsistency does not result in the inclusion of
 everything as a theorem-see for example Rescher, 1979; Priest and Routley, forthcoming;
 Routley, 1984; and DaCosta, 1974. But at any rate inconsistency cannot pose a problem
 if we limit ourselves to formal systems analogous to merely what a knower knows. For no
 matter how inconsistent I-a knower-may be in my beliefs, what I know must be perfectly
 consistent. It must be consistent simply because what I know must all be true.

 7The rules at issue here are the following:
 (A. -K) If X is consistent and if "-Kap" E X, then X + {"Pa-p"J is also
 consistent.

 (A. -P) If X is consistent and if "-Pap" E X, then X + ["Ka-p"1 is also
 consistent. (Hintikka, 1962, p. 29)

 8Alternatively, still in Hintikka, 1962, Hintikka proposes a reinterpretation of his operators;
 that "Kap" should perhaps be read not as "a knows that p" but "it follows from what
 a knows that p" (Hintikka, 1962, p. 38).

 But Hintikka has since changed his tune. He now emphasizes that the difficulty above
 arises only if we insist that every epistemically possible world is logically possible. See Taylor,
 1983, and Hintikka, 1975.

 9This point actually applies to bodies of knowledge as well-it is only ideal bodies of
 knowledge that are to be captured by standard systems.

 We might be able to simulate non-ideal knowers, and non-ideal bodies of knowledge,
 by means of crippled transformation rules. This is in fact one way of characterizing Nicholas
 Rescher and Robert Brandom's intriguing work on belief in esp. chapter 19 of Rescher
 and Brandom, 1979. Here, however, it is ideal knowers and bodies of knowledge that are
 at issue.

 'OA more standard statement of the standard Godel incompleteness result is the follow-
 ing. Consider any formal system with recursively recognizable formulae and axioms, rules
 of inference only from finite sets of premises, and which is adequate at least for the purposes
 of number theory. If any such system is omega-consistent, it is unavoidably incomplete;
 something will be left out. Syntactically put: for some formula expressible in the system,
 neither that formula nor its negation will appear as a theorem. Semantically put: some truth
 of number theory will not be captured as a theorem in the system.

 I do not consider my purpose here to be that of a general introduction to Gddel-that
 has been done wonderfully elsewhere by others. I have in mind particularly Nagel and
 Newman, 1956, and of course Hofstadter, 1979.

 "In Rosser's extension of Gddel's theorems, Gddel's stronger hypothesis of omega-
 consistency is replaced with the weaker hypothesis of mere consistency. See Rosser, 1936,
 pp. 87-91.

 '2The attempt to 'fill in' incompleteness holes in such a manner eventually leads one
 to a progression which corresponds to that of the constructive ordinals. But by a result due
 to Alonzo Church and Stephen C. Kleene (Church and Kleene, 1936), there is no recursively-
 related notation system adequate even for naming each of the constructive ordinals.

 13On essential undecidability in this sense see Tarski, Mostowski, and Robinson, 1968,
 and Goodstein, 1963.

 "4Similar comments on the peculiarity of non-constructive methods appear in Hofstadter,
 1979, p. 470, and Wang, 1964, pp. 318-319.

 I5 have not here included work involving non-denumerable alphabets or formulae of
 infinite length, each of which seems to fizzle out at the level of first-order predicate calculus.

 Non-denumerably many symbols appeared in a system Leon Henkin used to show com-
 pleteness for first-order functional calculus (Henkin, 1949). The limitations of the system
 even in that context are comparable to those of Soo in Gentzen's consistency proof for first-
 order number theory, considered below.

 Henkin originally considered three ways in which infinite formulae might be introduced:
 (1) by means of infinitary predicate symbols and hence infinitely long primitive formulae,
 (2) by means of infinitely long conjunctions and disjunctions together with quantification
 over infinitely many variables, and (3) infinitely alternating quantifiers of a peculiar type
 (Henkin, 1961). It is the second of these that has been most developed, in particular in
 the work of Carol R. Karp (see esp. Karp, 1964).
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 For some such predicate systems Lo0, in which conjunctions of fewer than a formulae
 and quantifications of fewer than (3 variables are permitted, completeness can be proven.

 A fairly uninteresting case here is L...L, which is simply the standard predicate calculus without
 extension to infinite formulae. Where genuinely infinite formulae are at issue, completeness
 holds only for those predicate systems in which an ability to handle conjunctions outstrips
 an ability to handle quantifications. Jon Barwise, G. Kreisel, and Dana Scott have expressed
 doubts about any such system admitting infinite quantifiers (Barwise, 1969, p. 227). But
 at any rate no definable system in which oa = ( = oy , where y is infinite-even if the
 underlying system has only one two-place predicate in addition to equality-will be complete
 (see Karp, 1964, pp. 166-174).

 '6The standard use of S O-to prove consistency for first order numbers theory-is

 not here of much importance. In my sketch of Soo I follow Mendelson, 1964, pp. 258-27.
 But see also Wang, 1964, pp. 362-375.

 7A result attributed to Rosser in Wang, 1964, p. 45.
 181n Jeroslow, 1971, Jeroslow also shows that consistency statements which differ from

 Feferman's can be proven in extraordinarily weak systems.
 '9The systems at issue, however, are still in some sense mechanical. See esp. Jeroslow,

 1975, p. 255.

 20The most promising candidates here would seem to be systems with non-recursively
 enumerable sets of axioms.

 21As specified here these include only one-place predicates, for the sake of simplicity.
 The basic structure of the argument would be the same, however, if all n-ary predicates
 were included.

 21There are of course many standard presentations. See for example Copi, 1979, pp.
 185-190. My treatment below follows Copi's closely.

 21This argument is related to an incompleteness argument for finitary formal systems
 presented in Hunter, 1971, pp. 28-30, and to some wonderful work by Hans Herzberger
 in Herzberger, 1970, Herzberger, 1981, and Herzberger and Herzberger, 1981. The form
 of the argument offered here, however, is perhaps most similar to Johannes Baagoe's in
 Baagoe, 1975. Baagoe's is a marvelous piece of work to which I owe a very great debt.

 24See note 11.

 2'That form of G6del's proof that the argument of this section most closely resembles,
 perhaps, is Gddel's own less formal presentation in the opening pages of Gbdel, 1931. Gddel
 himself notes a resemblance to Richard's paradox, itself but a step away from some 6f the
 Cantorian techniques employed here.

 26Here and throughout the argument, for noble motives of simplicity, I will unabashedly
 exploit a particular ambituity: Po will sometimes be referred to as an object of the system-
 that to which a predicate on interpretation applies-and yet will also appear as a term for

 such an object in formulae such as fAP0)P0. A similar ambiguity appears in many informal
 presentations of G6del, and with good reason: the attempt to avoid it adds merely one more
 subtlety for the reader to try to keep track of. As a corrective for this type of subterfuge,
 however, see Fitzpatrick, 1966.

 2"Strictly speaking this is a somewhat stronger assumption than mere consistency, but
 such a simplification is fairly standard in informal presentations of G6del and seems harmless
 in the present context.

 28The expressive incompleteness argument of section III was of course characterized
 as showing that no language can be adequate for the expression of all truths. The objector's
 suggestion here is that perhaps that is all that any of the arguments really show.

 29There is no need here to treat 'truths' as linguistic entities in any sense. The argument
 would be the same against any supposed set of all true propositions or of all facts-at least
 in the ordinary sense of 'fact' in which it's a fact that 7 + 5 = 12.

 With regard to truths and linguistic entities another Cantorian argument should also
 be noted. In Castafieda, 1975, p. 34 ff. Castafieda uses a Cantorian argument to show that
 propositions are not reducible to classes of sentences.

 3"There is of course nothing special about T, here-we could have used any particular
 truth in its place. There are also myriad other ways of constructing a truth for each element
 SJt.
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 For a slightly expanded form of the argument see Grim, 1984.

 311n personal correspondence J. H. Sobel has outlined a very similar Cantorian argument

 against omniscience, developed independently. Sobel has also pointed out that such an argu-
 ment can be constructed against even a non-omniscient being of a certain type.

 Consider any being which, although perhaps not omniscient, does know itself very well:
 it knows (de re, let us say), for each set that contains only propositions that it knows, that

 that set contains only propositions that it knows. Consider now the set of all propositions
 that that being knows, and the power set of that set. To each set of the power set will correspond
 a proposition that our being, as specified, knows-that that set consists only of propositions
 it knows. But by Cantor's theorem there are more elements of the power set, and thus more
 propositions our being knows, than in the original set-the set of all propositions that the
 being knows. There can be no such being, then, and even 'Know thyself' has Cantorian limits.

 David L. Boyer has pointed out that the argument against omniscience can also be

 presented without explicit mention of sets of truths:
 Let us assume there is an omniscient God. Consider all that such a being would know,

 and consider further what would be known by each of a chorus of archangels meeting the
 following conditions:

 Each archangel knows something, no two archangels know precisely the same thing,
 and for each archangel there is something that God knows and it does not.

 Let us also add two more 'archangels,' in a somewhat extended sense: an archangel
 who knows absolutely nothing, and God himself. (This is not entirely without theological

 precedent, by the way: Aquinas claims that to each degree of being there corresponds a being.)

 Now for each of the archangels envisaged there would be something that an omniscient

 being would know: that it is possible that such a being exists, perhaps, or that it is not
 possible; that the knowledge of that archangel would include the fact that seven is prime,
 perhaps, or that it would not. There will then be at least as many things God knows as
 envisaged archangels.

 By the basic mechanisms of Cantor's power set theorem, however, there will be more

 archangels than things God knows. Our initial assumption leads to contradiction, then, and
 so must be rejected: there is no omniscient God.

 32This is not, however, the only way that possible worlds have been introduced. In
 Lewis, 1973, for example, possible worlds are ways things might have been. In Slote, 1975,

 they are possible histories of the world. Whether possible worlds in these senses must be
 analogously incomplete is a question I leave to others or to another paper.

 33For a similar argument against possible worlds using a variation on the paradox of
 the Liar, see Grim, 1983.

 34Does every conjunction of mathematical truths, even if transfinite, correspond to a

 mathematical truth? If so, there is not even a set of all mathematical truths. Here the argu-

 ment would be the same as the above except that to each element of the power set of a
 supposed set of all mathematical truths would correspond that mathematical truth represented
 by the conjunction of all members of that set.

 35For a longer answer see especially Quine, 1963; Fraenkel, Bar-Hillel, and Levy, 1973;
 and Kuratowski and Mostowski, 1966.

 I have not included here a section on many-valued set theories. But these don't seem
 to offer a plausible way out either; many-valued logics exhibit many-valued forms of the

 Liar and of Russell's paradox, and for essentially the same reasons can be expected to ex-
 hibit many-valued forms of the Cantorian argument above as well. In this regard see Rescher,

 1969, esp pp. 87-90 and 206-212.

 36NF has other difficulties as well. In Rosser and Wang, 1950, J. B. Rosser and Hao
 Wang initially showed that no model of NF-no interpretation of 'E' compatible with the
 axioms-could make well-orderings of both the lesser-to-greater relation among ordinals and

 that among finite cardinals, except by interpreting ' =' as something other than identity.
 In Specker, 1953, Ernest Specker went on to show that those sets of NF which are non-
 Cantorian cause the relations of lesser to greater among cardinals to fail of being a well-
 ordering, and thereby produced a disproof of the axiom of choice within NF.

 3"In a similar spirit Fraenkel, Bar-Hillel, and Levy note, drawing on work by Mostowski:
 A particularly embarrassing fact about VNB is that in VNB . . . one cannot prove

 all instances of the induction schema, "If 0 fulfils the condition B (x) and for every
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 natural number n, if n fulfils U (x) then n + 1 fulfils l (x) too, then every number
 fulfils U (x)." (Fraenkel, Bar-Hillel, and Levy, 1973, p. 139).

 38With regard to circular squares serious work in a Meinongian tradition should perhaps
 be mentioned, including Parsons, 1980, Rapaport, 1978, Rapaport, 1979, Routely, 1980,
 Zalta, 1983, and Castafieda's guise theory (see esp. Alvin Planinga's "Guise Theory," and
 Castafieda's reply, in Tomberlin 1983). Regarding paraconsistent logics, designed to incor-
 porate carefully quarantined contradictions, see esp. Da Costa, 1974, and refs.; Priest and
 Routley, forthcoming; Routley, 1984; and related work in Rescher and Brandom, 1979.

 39For further cricial work on Plantinga's treatment of Gaunilo see Grim, 1979 and
 Grim 1982.

 40To quote Wittgenstein is to risk contradiction by Wittgensteinian scholars, however.
 Evan W. Conyers has argued in personal correspondence that 'facts' appear in the Tractatus
 in a technical sense that does not include '7 + 5 = 12' or truths regarding set membership
 such as those relied on in the arguments above.
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