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Abstract. In this paper we consider conditional random quantities (c.r.q.’s) in the set-

ting of coherence. Based on betting scheme, a c.r.q. X|H is not looked at as a restriction

but, in a more extended way, as XH + P(X|H)Hc; in particular (the indicator of) a con-

ditional event E|H is looked at as EH + P (E|H)Hc. This extended notion of c.r.q. allows

algebraic developments among c.r.q.’s even if the conditioning events are different; then,

for instance, we can give a meaning to the sum X|H +Y |K and we can define the iterated

c.r.q. (X|H)|K. We analyze the conjunction of two conditional events, introduced by the

authors in a recent work, in the setting of coherence. We show that the conjoined condi-

tional is a conditional random quantity, which may be a conditional event when there are

logical dependencies. Moreover, we introduce the negation of the conjunction and by apply-

ing De Morgan’s Law we obtain the disjoined conditional. Finally, we give the lower and

upper bounds for the conjunction and disjunction of two conditional events, by showing

that the usual probabilistic properties continue to hold.

Keywords: Conditional events, Conditional random quantities, Coherence, Iterated con-

ditioning, Import–Export principle, Conjunction, Disjunction, Lower/upper prevision

bounds.

1. Introduction

Probabilistic reasoning under coherence allows a consistent treatment of
uncertainty in many applications of statistics, economy, decision theory
and artificial intelligence; it allows one to manage incomplete probabilis-
tic assignments in a situation of vague or partial knowledge (see e.g. [4,6–
8,14,17,18,29,42]); in particular, it is useful for a flexible numerical approach
to inference rules in nonmonotonic reasoning and for the psychology of
uncertain reasoning (see, e.g., [5,24,26–28,34,35,47–50,56,57]). We recall
that nonmonotonic reasoning and conditional logics are important topics in
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artificial intelligence (see e.g. [2,21,37,38,53,55]). In probability theory and
in probability logic a relevant problem, discussed by many authors working
in artificial intelligence, is that of suitably defining the logical operations of
conjunction and disjunction among conditional events. In this context we
recall the pioneering paper written in 1935 by de Finetti [19], where it was
proposed a three-valued logic for conditional events coinciding with that
one of Lukasiewicz. An interesting survey of the contributions by different
authors (such as Adams, Belnap, Calabrese, de Finetti, Dubois, van Fra-
assen, McGee, Goodmann, Lewis, Nguyen, Prade, Schay) to the study of
three-valued logics and compounds of conditionals has been given in [45];
an extensive study of conditionals has been made in [22]; see also [44]. In
the many works concerning logical operations among conditional events,
the conjunction and disjunction have been usually defined as suitable condi-
tionals; see e.g. [2,11–13,21,36,37,52]. Our perspective is different because
we work in a quantitative framework rather than in a logical one: in our
approach the conjunction and disjunction of two conditional events are (not
conditional events but) conditional random quantities. We recall that usu-
ally in the literature a c.r.q. X|H is looked at as a restriction of X to H,
with X|H undefined when H is false. In our approach, using the conditional
prevision P(X|H), we look at X|H as an extended quantity which coincides
with the restriction when H is true and is equal to P(X|H) when H is false.
In this way, based on the betting scheme of de Finetti ([20]), in agreement
with [40,41] the c.r.q. X|H may be interpreted as the amount that you
receive in a bet on X conditional on H, if you agree to pay P(X|H). In
our paper we formally define the equality between two c.r.q.’s; in particu-
lar we show that X|HK coincides with [XH + P(X|HK)Hc]|K. Moreover,
among other results, by the extended notion of c.r.q. we obtain a mean-
ing for numerical operations, such as the sum X|H + Y |K, and a natu-
ral definition for a notion of iterated c.r.q. (X|H)|K, which coincides with
X|HK if H ⊆ K, or K ⊆ H. Then, we develop in the framework of coher-
ence a theory for the compounds of conditionals connected with that ones
proposed in [39,44]. We suitably define the conjunction (A|H) ∧ (B|K) of
two conditional events A|H,B|K, which in the case of some logical depen-
dencies may be a conditional event. We introduce the negation for con-
joined conditionals; then, by De Morgan’s Law, we define the disjunction of
two conditional events. Finally, we obtain the lower and upper bounds for
the coherent extensions of a probability assessment (x, y) on {A|H,B|K}
to their conjunction (A|H) ∧ (B|K) and their disjunction (A|H) ∨ (B|K).
Interestingly, the usual probabilistic properties continue to hold in terms of
previsions.
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2. Preliminary Notions and Results

In this section we recall some basic notions and results on coherence for
conditional prevision assessments. In our approach an event A represents an
uncertain fact described by a (non ambiguous) logical proposition; hence we
look at A as a two-valued logical entity which can be true (T ), or false (F ).
The indicator of A, denoted by the same symbol, is a two-valued numerical
quantity which is 1, or 0, according to whether A is true, or false. The sure
event is denoted by Ω and the impossible event is denoted by ∅. Moreover, we
denote by A∧B, or simply AB, (resp., A∨B) the logical conjunction (resp.,
logical disjunction). The negation of A is denoted Ac. Given any events A
and B, we simply write A ⊆ B to denote that A logically implies B, that is
ABc is the impossible event ∅; an equivalent notation is A � B. We recall
that n events are logically independent when the number m of constituents,
or possible worlds, generated by them is 2n (in general m ≤ 2n).

2.1. Coherent Conditional Prevision Assessments

Given a prevision function P defined on an arbitrary family K of finite
c.r.q.’s, consider a finite subfamily Fn = {Xi|Hi, i ∈ Jn} ⊆ K, where Jn =
{1, . . . , n}, and the vector Mn = (μi, i ∈ Jn), where μi = P(Xi|Hi) is the
assessed prevision for the c.r.q. Xi|Hi. With the pair (Fn,Mn) we asso-
ciate the random gain G =

∑
i∈Jn

siHi(Xi − μi); moreover, we set Hn =
H1 ∨ · · · ∨Hn and we denote by GHn

the set of values of G restricted to Hn.
Then, using the betting scheme of de Finetti, we have

Definition 1. The function P defined on K is coherent if and only if, ∀n ≥ 1,
∀Fn ⊆ K, ∀ s1, . . . , sn ∈ R, it holds that: min GHn

≤ 0 ≤ max GHn
.

Given a family Fn = {X1|H1, . . . , Xn|Hn}, for each i ∈ Jn we denote by
{xi1, . . . , xiri

} the set of possible values for the restriction of Xi to Hi; then,
for each i ∈ Jn and j = 1, . . . , ri, we set Aij = (Xi = xij). Of course, for each
i ∈ Jn, the family {Hc

i , AijHi, j = 1, . . . , ri} is a partition of the sure event
Ω, with AijHi = Aij ,

∨ri

j=1 Aij = Hi. Then, the constituents generated by
the family Fn are (the elements of the partition of Ω) obtained by expanding
the expression

∧
i∈Jn

(Ai1 ∨ · · · ∨ Airi
∨ Hc

i ). We set C0 = Hc
1 · · ·Hc

n (it may
be C0 = ∅); moreover, we denote by C1, . . . , Cm the constituents contained
in Hn = H1 ∨· · ·∨Hn. Hence

∧
i∈Jn

(Ai1 ∨· · ·∨Airi
∨Hc

i ) =
∨m

h=0 Ch. With
each Ch, h ∈ Jm, we associate a vector Qh = (qh1, . . . , qhn), where qhi = xij

if Ch ⊆ Aij , j = 1, . . . , ri, while qhi = μi if Ch ⊆ Hc
i ; with C0 it is associated

Q0 = Mn = (μ1, . . . , μn). We illustrate by an example how to compute the
constituents Ch’s and the associated point Qh’s for a pair of c.r.q.’s.
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Example 1. Given any r.q. X ∈ {1, . . . , 6}, let be H = (X ∈ {2, 4, 6}) and
K = (X ∈ {4, 5, 6}). Now, let us consider the family {X1|H1, X2|H2} =
{X|H,X|K}. We have: A11 = (X = 2), A12 = (X = 4), A13 = (X = 6),
A21 = (X = 4), A22 = (X = 5), A23 = (X = 6). Then (A11 ∨ A12 ∨
A13 ∨ Hc

1) ∧ (A21 ∨ A22 ∨ A23 ∨ Hc
2) = C0 ∨ C1 ∨ · · · ∨ C4, where C0 =

HcKc = (X ∈ {1, 3}), C1 = A11H
c
2 = (X = 2), C2 = A12A21 = (X = 4),

C3 = A13A23 = (X = 6), C4 = Hc
1A22 = (X = 5). Defining P(X|H) = μ,

P(X|K) = ν, the associated points Qh’s are: Q0 = (μ, ν), Q1 = (2, ν),
Q2 = (4, 4), Q3 = (6, 6), Q4 = (μ, 5).

Denoting by In the convex hull of Q1, . . . , Qm, the condition Mn ∈ In

amounts to the existence of a vector (λ1, . . . , λm) such that:
∑

h∈Jm
λhQh =

Mn,
∑

h∈Jm
λh = 1, λh ≥ 0 ∀h; in other words, Mn ∈ In is equivalent to

the solvability of the system (Σ), associated with (Fn,Mn), given below.

(Σ)
∑

h∈Jm

λhqhi = μi, i ∈ Jn ;
∑

h∈Jm

λh = 1 ; λh ≥ 0, h ∈ Jm. (1)

Given the assessment Mn = (μ1, . . . , μn) on Fn = {X1|H1, . . . , Xn|Hn},
let S be the set of solutions Λ = (λ1, . . . , λm) of system (Σ) defined in (1).
Then, assuming the system (Σ) solvable, that is S 
= ∅, we define:

I0 =

⎧
⎨

⎩
i : max

Λ∈S

∑

h:Ch⊆Hi

λh = 0

⎫
⎬

⎭
, F0 = {Xi|Hi, i ∈ I0}, M0 = (μi, i ∈ I0).

Then, the following theorem can be proved ([8, Thm 3])

Theorem 1. [Operative characterization of coherence] A conditional previ-
sion assessment Mn = (μ1, . . . , μn) on the family Fn = {X1|H1, . . . , Xn|Hn}
is coherent if and only if the following conditions are satisfied:

(i) the system (Σ) defined in (1) is solvable;

(ii) if I0 
= ∅, then M0 is coherent.

Coherent conditional previsions and non dominance w.r.t. proper scor-
ing rules have been investigated in [9]. Comparative previsions, qualitative
criteria of coherence and weak dominance have been studied in [46].

3. Deepenings on Conditional Random Quantities

In this section we deepen some aspects on c.r.q.’s. We consider an extended
notion for c.r.q.’s; we define the equality between two c.r.q.’s and we give
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a condition under which two c.r.q.’s are equal. Then, we examine a non
trivial case where such a condition is satisfied; moreover, by linearity of
prevision, we give a simple proof of the general compound prevision theo-
rem. We also recall a notion of iterated conditioning for c.r.q.’s, which has
a rationale in terms of economic transactions [32]. We recall that, given an
event H 
= ∅ and a r.q. X, based on the betting metaphor the conditional
prevision P(X|H) is defined as the amount you agree to pay, by knowing
that you will receive the amount X if H is true, or you will receive back the
amount you payed if H is false, because the bet is called off.

Remark 1. Usually, in literature (see e.g. [3]) the c.r.q. X|H is looked at as
the restriction of X to H; that is a r.q. whose possible values are that ones of
X compatible with H, while X|H is undefined when H is false. Thus, X|H
cannot be interpreted as the amount you receive when you pay P(X|H).
This interpretation is obtained by suitably defining X|H when H is false,
as made by some authors; see e.g. [15,32,40,41]. In Lad ([40], [41, Section
3.2]) X|H is defined as the random quantity X|H = XH + P(X|H)Hc, by
looking in this way at the conditional prevision P(X|H) as the prevision
of the ”new object” X|H. As we can see, formally this extended notion of
X|H also depends on the conditional prevision P(X|H). In [15] a system-
atic study has been developed on conditional events, where among other
things it has been shown that, for the indicator T (E|H) = EH + tHc of
a conditional event E|H, the truth-value t satisfies all the properties of a
conditional probability. This study has been extended in the setting of pos-
sibility theory in [10]. Thus, the third value of a conditional event is not
strictly related to a particular measure of uncertainty (see [16]). Our seman-
tics is probabilistic, then in our approach the third value is a conditional
probability. A similar comment applies for c.r.q.’s studied in this paper; of
course, our approach could be generalized by using other measures of uncer-
tainty. In [15] also a generalization to a c.r.q. Y |K has been considered by
setting Y |K = Y · K + t∗Kc, where Y · K is looked at as a suitable restric-
tion of Y to K. Then, taking as Y the conditional event E|H, the relation
(E|H)|K = E|HK is obtained, which is in agreement with the so-called
Import–Export Principle ([44]). Concerning the approach of Lad, we could
observe that it may be ambiguous to use the same symbol X|H to denote
both the restriction and the quantity XH + P(X|H)Hc. In Sect. 3.1 we
analyze this aspect.

3.1. An Extended Notion for Conditional Random Quantities

We introduce below our extended notion of conditional random quantity.
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Definition 2. Given an event H 
= ∅ and a r.q. X, let P(X|H) be the
conditional prevision of X|H. We set X|∗H = XH + P(X|H)Hc.

We observe that X|∗H = X|H, when H is true, and X|∗H = P(X|H),
when H is false. In particular, for the indicator of a conditional event A|H
(usually denoted by the same symbol) we have A|∗H = AH + P (A|H)Hc.
The choice of P (A|H), as third value of the indicator when H is false, has
been considered in other works (see e.g. [17,25,38,40,41,44]). In the next
result we show that P(X|∗H) = P(X|H) and (X|∗H)|∗H = X|∗H.

Proposition 1. Given any event H 
= ∅, any r.q. X, and any coherent
assessment P(X|H) = μ, we have:

(a) The extension P(X|∗H) = μ∗ is coherent if and only if μ∗ = μ;

(b) (X|∗H)|∗H = X|∗H.

Proof. (a) The random gain associated with the assessment (μ, μ∗) is

G = s1H(X − μ) + s2(X|∗H − μ∗) = s1H(X − μ) + s2(XH + μHc − μ∗),

with s1, s2 arbitrary real numbers. By choosing s1 = 1, s2 = −1, we have

G = H(X − μ) − (XH + μHc − μ∗) = −μH − μHc + μ∗ = μ∗ − μ.

As G is constant, by coherence, it must be G = 0, that is: μ∗ = μ.
(b) We have (X|∗H)|∗H = (XH + μHc)|∗H = (XH + μHc)H + μ∗Hc =

XH + μHc = X|∗H.

Remark 2. Given an event H 
= ∅ and a finite r.q. X, let VH = {x1, . . . , xr}
be the set of possible values of X restricted to H. By Definition 1, the
assessment P(X|H) = μ is coherent if and only if min VH ≤ μ ≤ max VH .
In particular, if VH = {c}, then by coherence it must be μ = c and hence
X|∗H = cH + cHc = c. Of course, for X = H (resp. X = Hc) it holds that
μ = P (H|H) = 1 (resp. μ = P (Hc|H) = 0); hence H|∗H = 1, Hc|∗H = 0.

We define below the notion of equality for two c.r.q.’s X|H and Y |K.

Definition 3. Given any events H 
= ∅, K 
= ∅, and any r.q.’s X, Y , let Π
be the set of the coherent prevision assessments P(X|H) = μ, P(Y |K) = ν.
We define X|∗H and Y |∗K equal if and only if

XH + μHc = Y K + νKc, for every (μ, ν) ∈ Π. (2)

As shown in Theorem 4, X|∗H = Y |∗K implies μ = ν, ∀(μ, ν) ∈ Π.
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Example 2. We discuss a critical example1 on the equality of c.r.q.’s. Given
a partition {A1, . . . , A5} of Ω, we set H = A1∨A2∨A3, K = A2∨A3∨A4∨A5,
X = A1 + 2A2 − A3 + xA4 + yA5 and Y = zA1 + 2A2 − A3 + A4 + A5,
with x, y, z arbitrary real numbers. We observe that the c.r.q.’s X|H and
Y |K, looked at as restrictions, do not coincide; moreover, X|∗H and Y |∗K
do not coincide too. We remark that as specified in Definition 3, in order
that X|∗H and Y |∗K coincide, the equality (2) must be satisfied for every
(μ, ν) ∈ Π. We have XH = A1 + 2A2 − A3 and Y K = 2A2 − A3 + A4 + A5;
then defining μ = P(X|H), ν = P(Y |K), with (μ, ν) coherent, it follows

X|∗H = A1 + 2A2 − A3 + μ(A4 + A5), Y |∗K = 2A2 − A3 + A4 + A5 + νA1.

The assessment (μ, ν) = (2
3 , 3

4), being associated with the uniform distri-
bution on the partition, is coherent and A1 + 2A2 − A3 + 2

3(A4 + A5) 
=
2A2 − A3 + A4 + A5 + 3

4A1. Therefore, by Definition 3, X|∗H 
= Y |∗K. Of
course, as a kind of ‘local coincidence’, it may happen that A1 +2A2 −A3 +
μ(A4+A5) = 2A2−A3+A4+A5+νA1, for some coherent assessment (μ, ν).
For instance, this coincidence holds for (μ, ν) = (1, 1), which is obtained by
assessing P (Ai) = 1

5 , i = 1, 2, 4, P (A3) = 1
10 , P (A5) = 3

10 .

Remark 3. As shown by Proposition 1, X|∗H and X|H coincide when H is
true and have the same prevision, the unique difference being that X|∗H is
defined when H is false. Moreover, defining P(X|H) = μ, the random gains
G and G∗, associated with X|H and X|∗H, coincide because

G∗ = s(X|∗H − μ) = s(XH + μHc − μ) = s(XH − μH) = sH(X − μ) = G.

More in general, in Definition 1, for the random gain G it holds that

G =
∑

i∈Jn

siHi(Xi − μi) =
∑

i∈Jn

si(XiHi + μiH
c
i − μi) =

∑

i∈Jn

si(Xi|∗Hi − μi) = G∗.

Then, in what follows we identify X|H and X|∗H; in other words, from
now on the symbol X|H denotes the quantity XH + P(X|H)Hc.

We also remark that, by this extended notion of c.r.q., given a prevision
assessment Mn = (μ1, . . . , μn) on a family Fn = {X1|H1, . . . , Xn|Hn}, the
points Qh’s associated with the constituents Ch’s represent the possible val-
ues of the random vector (X1|H1, . . . , Xn|Hn). Moreover, we can give a
meaning, for instance, to the expression X|H+Y |K, which is identified with
X|∗H +Y |∗K. As a consequence, we can look at the sum P(X|H)+P(Y |K)
as the prevision of X|H + Y |K (see Theorem 2 below), and so on.

1We thank an anonymous referee for this example.
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3.2. Some Algebraic Developments

The next result shows that the additivity of prevision for our extended
notion of c.r.q. is preserved and that X|H +Y |K = (X|H +Y |K)|(H ∨K).

Theorem 2. Given any events H 
= ∅,K 
= ∅ and any r.q.’s X,Y , we have:

(i) P(X|H + Y |K) = P[(X|H + Y |K)|(H ∨ K)] = P(X|H) + P(Y |K);

(ii) X|H + Y |K = (X|H + Y |K)|(H ∨ K).

Proof. (i) Given any coherent assessment P(X|H) = μ, P(Y |K) = ν, we
have X|H + Y |K = XH + μHc + Y K + νKc. We set P(X|H + Y |K) = η,
P[(X|H + Y |K)|(H ∨ K)] = β; then, the random gain associated with the
prevision assessment (μ, ν, η) is

G = s1H(X − μ) + s2K(Y − ν) + s3(XH + μHc + Y K + νKc − η),

with s1, s2, s3 arbitrary real numbers, and for s1 = s2 = 1, s3 = −1 we have

G = H(X − μ) + K(Y − ν) − (XH + μHc + Y K + νKc − η) = η − μ − ν.

As G is constant, by coherence it must be G = 0, i.e. η = μ + ν. Moreover,
the random gain associated with the assessment (μ, ν, β) is

G=s1H(X − μ)+s2K(Y − ν)+s3(H ∨ K)(XH + μHc + Y K + νKc − β),

and, denoting by GH∨K the set of values of G restricted to H ∨ K, for
s1 = s2 = 1, s3 = −1 we have

G = H(X − μ) + K(Y − ν) − (H ∨ K)(XH + μHc + Y K + νKc − β) =

= −μH − νK − μHcK − νHKc + β(H ∨ K) = (β − μ − ν)(H ∨ K).

As GH∨K = {β − μ − ν}, by coherence β − μ − ν = 0; i.e. β = μ + ν = η.
(ii) Given any coherent assessment P(X|H) = μ, P(Y |K) = ν, we have

(X|H +Y |K)|(H ∨K) = (XH +μHc+Y K+νKc)(H ∨K)+(μ+ν)HcKc =
XH + μ(HcK + HcKc) + Y K + ν(HKc + HcKc) = X|H + Y |K.

Below, we consider linear combinations of c.r.q.’s.

Theorem 3. Given any real quantities a, b, any events H 
= ∅,K 
= ∅, any
r.q.’s X,Y , and any coherent assessment P(X|H) = μ, P(Y |K) = ν, we
have (aX)|H + (bY )|K = a(X|H) + b(Y |K) = aX|H + bY |K.

Proof. By linearity of prevision, P[(aX)|H] = aμ, P[(bY )|K] = bν; then,
(aX)|H = (aX)H+(aμ)Hc = a(XH+μHc) = a(X|H); moreover (bY )|K =
· · · = b(Y |K) and we can simply write aX|H and bY |K. By Theorem 2,
we have P[(aX)|H + (bY )|K] = P[(aX)|H] + P[(bY )|K] = aμ + bν; then
(aX)|H+(bY )|K = (aXH+aμHc+bY K+bνKc)(H∨K)+(aμ+bν)HcKc =
aXH + aμHc + bY K + bνKc = a(X|H) + b(Y |K) = aX|H + bY |K.
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In the next result we show that two c.r.q.’s X|H and Y |K are equal if, for
each constituent contained in H ∨ K, the values of X|H and Y |K coincide.

Theorem 4. Given any events H 
= ∅, K 
= ∅, and any r.q.’s X, Y , let Π
be the set of the coherent prevision assessments P(X|H) = μ, P(Y |K) = ν.
Then, the statements (i) and (ii) below hold.

(i) Assume that, for every (μ, ν) ∈ Π, the values of X|H and Y |K always
coincide when H ∨ K is true; then μ = ν for every (μ, ν) ∈ Π.

(ii) For every (μ, ν) ∈ Π, the values of X|H and Y |K always coincide
when H ∨ K is true if and only if X|H = Y |K.

Proof. (i) Assume that, for every (μ, ν) ∈ Π, the values of X|H and Y |K
associated with the constituent Ch coincide, for each Ch ⊆ H ∨ K; then for
each (μ, ν) ∈ Π, by choosing s1 = 1, s2 = −1 in the random gain, we have

G = H(X − μ) − K(Y − ν) = (X|H − μ) − (Y |K − ν) =

= (X|H − Y |K) + (ν − μ).

Then, by the hypothesis, GH∨K = {ν − μ} and by coherence it must be
ν − μ = 0; that is ν = μ, ∀(μ, ν) ∈ Π.

(ii) By hypothesis, we have (XH +μHc)(H ∨K) = (Y K +νKc)(H ∨K);
moreover, from condition (i), μ = ν for every (μ, ν) ∈ Π; then

X|H = XH + μHc = (XH + μHc)(H ∨ K) + (XH + μHc)HcKc =
= (Y K + νKc)(H ∨ K) + μHcKc = Y K + νHKc + νHcKc = Y |K.

Vice versa, X|H = Y |K trivially implies X|H = Y |K when H ∨ K
is true.

By Definition 3 and Theorem 4 it immediately follows

Corollary 1. Given any event H 
= ∅ and any r.q.’s X and Y , assume
that XH = Y H. Then X|H = Y |H.

In Corollary 1 the values P(X|H) and P(Y |H) do not play any role. We
illustrate now a non trivial case where two c.r.q.’s are equal; then, by line-
arity of prevision we obtain the formula P(XH|K) = P (H|K)P(X|HK).

Theorem 5. Given any events H 
= ∅,K 
= ∅, and any r.q. X, we have:

(i) for all coherent assessments P(X|HK) = y, P[(XH + yHc)|K] = μ,
it holds that y = μ and X|HK = (XH + yHc)|K;

(ii) for all coherent assessments P (H|K) = x, P(X|HK) = y,
P(XH|K) = z, it holds that z = xy.
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Proof. (i) Given any coherent assessment (y, μ), we have

X|HK = XHK + y(HK)c = XHK + yKc + yHcK =

= (XH + yHc)K + yKc

and (XH +yHc)|K = (XH +yHc)K +μKc. We observe that HK ∨K = K
and that X|HK = (XH + yHc)|K when K is true. Then, by Theorem 4,
y = μ for every (y, μ) coherent and X|HK = (XH + yHc)|K.

(ii) Given any coherent assessment (x, y, z) on {H|K,X|HK,XH|K}, by
condition (i) and by linearity of prevision we have

y = P(X|HK) = P[(XH + yHc)|K] =

= P(XH|K) + yP (Hc|K) = z + y(1 − x),

from which it follows: z = xy, that is: P(XH|K) = P (H|K)P(X|HK),
which represents the (general) compound prevision theorem.

We illustrate condition (i) of Theorem 5 by the example below.

Example 3. Consider a r.q. X ∈ {1, . . . , 6}, with P (X = h) = ph, h =
1, . . . , 6, with H = (X ∈ {2, 4, 6}) and K = (X ∈ {4, 5, 6}). We have HK =
(X ∈ {4, 6}) and P(X|HK) = y = P[(XH +yHc)|K] = · · · = 4p4+6p6

p4+p6
, when

p4 +p6 > 0; moreover, when p4 +p6 = 0, using coherence, we can still verify
that P(X|HK) = y = P[(XH + yHc)|K] ∈ [4, 6]. Finally, we remark that
X|HK = (XH + yHc)|K = X, for X ∈ {4, 6}; X|HK = (XH + yHc)|K =
y, for X ∈ {1, 2, 3, 5}; hence X|HK = (XH + yHc)|K. We observe that to
check the equality X|HK = [XH + P(X|HK) Hc]|K does not make sense
if we look at the c.r.q.’s as restrictions.

3.3. Iterated Conditioning

We recall below the notion of iterated c.r.q. (X|H)K given in [32]; such a
notion is consistent with that one given for conditional events in [33] and
will be used in Section 4.

Definition 4. Given any events H,K, with H 
= ∅,K 
= ∅, and a r.q. X,
we define (X|H)|K = [XH + P(X|H)Hc]|K.

If X is any event A, we have (A|H)|K = [AH + P (A|H)Hc]|K; then

P[(A|H)|K] = P (A|HK)P (H|K) + P (A|H)P (Hc|K),

which coincides with a result given in [44]. In condition (i) of Theorem 5 the
value y is the prevision of X|HK; hence X|HK = [XH+P(X|HK)Hc]|K 
=
(X|H)|K = [XH + P(X|H)Hc]|K, with (X|H)|K = X|HK = (X|K)|H,
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if H ⊆ K, or K ⊆ H (see [32, Proposition 1]); then, given any event A
it holds that (A|H)|(H ∨ K) = A|H. Moreover A|HK 
= (A|H)|K; there-
fore, in agreement with [2,39], in our approach the Import–Export Principle
([44]) does not hold. For instance, assume that K = Hc ∨ A (material con-
ditional associated with A|H)and AH = ∅, so that P (A|H) = 0. Then the
Import–Export Principle cannot be applied because A|HK = A|AH = A|∅;
on the contrary, as Hc ∨ A = Hc, by Definition 4 we have

(A|H)|K = (A|H)|(Hc ∨ A) = (A|H)|Hc = (AH + 0 · Hc)|Hc = 0|Hc = 0;

therefore P[(A|H)|K] = P (A|H) = 0, while P (Hc ∨ A) could be high. A
probabilistic analysis of weak and strong inferences from the material con-
ditional Ac ∨ B to the associated conditional B|A has been given in [28].

4. Conjunction of Conditional Events

Some authors look at the conditional “if A then C”, denoted A → C ,
as the event Ac ∨ C (material conditional), but, since some years, many
authors look at A → C as the conditional event C|A (see e.g. [28,48,51]).
Compounds of conditionals have been studied by many researchers in many
fields, such as mathematics, philosophical logic, artificial intelligence, non-
monotonic reasoning, psychology. A very general discussion of the different
aspects which concern conditionals has been given in [22,45]. Recently, a
probabilistic theory of conditionals has been proposed by Kaufmann in [39].
In such a paper the author obtains, by a complex procedure, probabilistic
formulas which suggest how to assign values to conditionals. Given a con-
ditional A → C and the associated conditional event C|A, with P (A) > 0,
Kaufmann shows that, by defining the truth value of A → C as:

V (A → C) =

⎧
⎨

⎩

1, AC true
0, ACc true
P (C|A), Ac true

it follows: P (A → C) = P (C|A) = P (AC)
P (A) .

Moreover, assuming P (A ∨ C) > 0, Kaufmann obtains for the conjoined
conditional (A → B) ∧ (C → D) the formula

P [(A → B) ∧ (C → D)] = P (ABCD)+P (B|A)P (AcCD)+P (D|C)P (ABCc)
P (A∨C) .

Based on this result, Kaufmann suggests a natural way of defining the values
of conjoined conditionals. Another relevant theory of compounds of condi-
tionals is given by McGee in [44], where also the problem of what would be
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fair betting odds on conjunctions of conditionals is investigated. The papers
of Kaufmann and McGee contain very nice results on compounds of condi-
tionals. We obtain (and generalize) such results in a direct and simpler way
in the setting of coherence; we also show that some well known probabilistic
properties, which hold in the classical setting, are preserved.

A basic aspect: if we only assess P (B|A) = x, P (D|C) = y, how can we
check the consistency of the extension P [(A → B) ∧ (C → D)] = z ?

In our setting (A → B) ∧ (C → D) is looked at as a conditional random
quantity (B|A) ∧ (D|C); hence, we assess the prevision (and not the proba-
bility) of the conjoined conditional. Moreover, we can manage without prob-
lems the case where the denominator P (A∨C), in the formula of Kaufmann,
is zero and, starting with the assessment P (B|A) = x, P (D|C) = y, we can
determine the values of z = P[(B|A) ∧ (D|C)] which coherently extend the
assessment (x, y) on {B|A,D|C} to the c.r.q. (B|A) ∧ (D|C).

Conjunction of conditionals in the setting of coherence. We introduce the
notion of conjunction, by first giving some logical and probabilistic remarks.
Given any events A,B,H, with H 
= ∅, let us consider the conjunctions
AB and (A|H) ∧ (B|H) = AB|H. We recall that the indicator AB coin-
cides with both the minimum and the product of the indicators; i.e. AB =
min {A,B} = A · B. Moreover, AB|H = min {A,B}|H = (A · B)|H. If we
assess P (A|H) = x, P (B|H) = y, then

A|H =AH+xHc =
{

A, if H = 1,
x, if H = 0,

B|H =BH+yHc =
{

B, if H = 1,
y, if H = 0.

We set Z = min {A|H,B|H} = min {AH + xHc, BH + yHc}; we have
Z ∈ {1, 0, x, y} and, defining P(Z|H) = z, we have Z|H = ZH + zHc, with
Z|H ∈ {1, 0, z}. We observe that ZH = ABH; then, by Corollary 1, we have
Z|H = AB|H. In other words, the c.r.q.’s min {A|H,B|H}|H and AB|H
are equal.2 Then, as H = H ∨ H, we have

(A|H) ∧ (B|H) = min {A|H,B|H} |H = min {A|H,B|H} | (H ∨ H). (3)

Formula (3) suggests how to define, still taking the minimum, the notion of
conjunction (already given in [33]) for A|H and B|K, with K 
= H.

Definition 5. (Conjunction) Given any pair of conditional events A|H and
B|K, and any coherent assessment P (A|H) = x, P (B|K) = y, we define

2In particular, for B = A, in agreement with Definition 4 we have Z = A|H, Z|H =
(A|H)|H = A|H, z = x; the equality (A|H)|H = A|H still holds from the viewpoint of
iterated conditionals introduced in [33].
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(A|H) ∧ (B|K) = min {A|H,B|K} | (H ∨ K). (4)

Notice that, defining Z = min {A|H,B|K}, the conjunction (A|H)∧ (B|K)
is the c.r.q. Z | (H ∨K). Moreover, defining T = A|H ·B|K we have Z 
= T ,
while by Corollary 1 it holds that Z | (H ∨ K) = T | (H ∨ K). Then

(A|H) ∧ (B|K) = (A|H · B|K) | (H ∨ K). (5)

Interpretation with the betting scheme.3 By assessing P[(A|H)∧ (B|K)] = z,
you agree to pay the amount z and to receive the amount min {A|H,B|K}
when the disjunction H ∨ K is true, or to receive back the amount z when
the bet is called off (H ∨ K false). That is, you pay z and you receive

(A|H) ∧ (B|K) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, AHBK true,

0, AcH ∨ BcK true,

x, HcBK true,

y, AHKc true,

z, HcKc true;

therefore, operatively, for (A|H) ∧ (B|K) we obtain the representation

(A|H) ∧ (B|K) = 1 · AHBK + x · HcBK + y · AHKc + z · HcKc, (6)

with (x, y, z) coherent. Then, by linearity of prevision, it follows

P[(A|H) ∧ (B|K)]= z = P (AHBK) + xP (HcBK) +

+ yP (AHKc) + zP (HcKc),

and we obtain: zP (H ∨ K) = P (AHBK) + xP (HcBK) + yP (AHKc).
In particular, if P (H ∨ K) > 0, as in [39,44], we obtain

P[(A|H) ∧ (B|K)] =
P (AHBK) + P (A|H)P (HcBK) + P (B|K)P (AHKc)

P (H ∨ K)
.

Remark 4. We observe that, in case of some logical dependencies, the con-
junction may be a conditional event; for instance, it may be verified that for
K = AH we have (A|H) ∧ (B|AH) = (A|H · B|AH)|H = AB|H; moreover,
assuming A|H ⊆ B|K, where ⊆ denotes the inclusion relation of Goodman
and Nguyen, it holds that (A|H) ∧ (B|K) = A|H (see [33]).

Import–Export Principle and Lewis’ triviality result. We observe that, as
in our approach the Import–Export Principle does not hold, we avoid the
counter-intuitive consequences related to Lewis’ triviality result ([43]; see
also [54, Section 3.7], where Lewis’ triviality result and its consequences for

3Adams [1] found problematic this interpretation for the conjunction of conditionals.
Conjoined conditionals and conditionals bets have been also investigated in [44].
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logics for indicative conditionals have been discussed). We first prove that
the probability of A|H can be disintegrated w.r.t. a partition {B, Bc}.

Theorem 6. Given any events A,H,B, with H 
= ∅, B 
= ∅, it holds that

P (A|H) = P[(A|H)|B]P (B) + P[(A|H)|Bc]P (Bc). (7)

Proof. For the sake of simplicity we set P (A|H) = x. Then, by Definition 4
we have: P[(A|H)|B]P (B) + P[(A|H)|Bc]P (Bc) =
P[(AH + xHc)|B]P (B) + P[(AH + xHc)|Bc]P (Bc) =
P (AH|B)P (B)+xP (Hc|B)P (B)+P (AH|Bc)P (Bc)+xP (Hc|Bc)P (Bc) =
P (AH) + xP (Hc) = P (A|H)P (H) + P (A|H)P (Hc) = P (A|H).

Of course, the previous result still holds for a partition {B1, . . . , Bn}. In
particular, formula (7) holds for B = A; but, as in our approach in general
P[(A|H)|A] 
= P (A|HA) = 1 and P[(A|H)|Ac] 
= P (A|HAc) = 0, we have

P (A|H) = P[(A|H)|A]P (A) + P[(A|H)|Ac]P (Ac) 
= P (A).

On the contrary, if the Import–Export Principle were valid, we would have
P[(A|H)|A]P (A) + P[(A|H)|Ac]P (Ac) = P (A) (Lewis’ triviality result).
A critical analysis related to the disintegration of conditional probabilities
is given in [23]. We recall that, given two conditional events A|H,B|K the
iterated conditional (B|K)|(A|H) has been defined in [33] as

(B|K)|(A|H) = (A|H) ∧ (B|K) + P[(B|K)|(A|H)]Ac|H,

where the prevision of (B|K)|(A|H) is defined in agreement with the betting
metaphor. In the same paper it has been proved that

P[(B|K) ∧ (A|H)] = P[(B|K)|(A|H)]P (A|H).

In particular, for K = Ω, we have P[(A|H) ∧ B] = P[(A|H)|B]P (B). Then,
assuming P (A|H) > 0, we obtain the following Bayes formula for iterated
conditionals: P[B|(A|H)] = P[(A|H)∧B]

P (A|H) = P[(A|H)|B]P (B)
P[(A|H)|B]P (B)+P[(A|H)|Bc]P (Bc) ·

5. Lower and Upper Bounds for (A|H) ∧ (B|K)

We will now determine the coherent extensions of the assessment (x, y) on
{A|H,B|K} to the conjunction (A|H) ∧ (B|K). We recall that the exten-
sion z = P (AB|H) of the assessment (x, y) on {A|H,B|H}, with A,B,H
logically independent, is coherent if and only if

max{x + y − 1, 0} ≤ z ≤ min{x, y}.

The next theorem shows that the same result holds for (A|H) ∧ (B|K).
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Theorem 7. Given any coherent assessment (x, y) on {A|H,B|K}, with
A,H,B,K logically independent, and with H 
= ∅, K 
= ∅, the extension
z = P[(A|H)∧(B|K)] is coherent if and only if the Fréchet-Hoeffding bounds
are satisfied, that is

max{x + y − 1, 0} = z′ ≤ z ≤ z′′ = min{x, y}. (8)

Proof. First of all we observe that, by logical independence of A,H,B,K,
the assessment (x, y) is coherent for every (x, y) ∈ [0, 1]2. We will deter-
mine the values z′, z′′ by the geometrical approach described in Section
2. The constituents associated with the family F = {A|H, B|K, (A|H) ∧
(B|K)} and contained in H ∨ K are: C1 = AHBK, C2 = AHBcK, C3 =
AcHBK, C4 = AcHBcK, C5 = AHKc, C6 = AcHKc, C7 = HcBK,
C8 = HcBcK. The associated points Qh’s are: Q1 = (1, 1, 1), Q2 = (1, 0, 0),
Q3 = (0, 1, 0), Q4 = (0, 0, 0), Q5 = (1, y, y), Q6 = (0, y, 0), Q7 = (x, 1, x),
Q8 = (x, 0, 0). Considering the convex hull I of Q1, . . . , Q8, the coherence
of the prevision assessment M = (x, y, z) on F requires that the condi-
tion M ∈ I be satisfied, which amounts to the solvability of the following
system

(Σ) M =
8∑

h=1

λhQh,
8∑

h=1

λh = 1, λh ≥ 0, ∀h.

We observe that Q5 = yQ1 + (1 − y)Q2, Q6 = yQ3 + (1 − y)Q4,
Q7 = xQ1 + (1 − x)Q3, Q8 = xQ2 + (1 − x)Q4; then, the convex hull I
is the tetrahedron with vertices Q1, Q2, Q3, Q4. Thus, (Σ) is equivalent to

(Σ′) P =
4∑

h=1

λ′
hQh,

4∑

h=1

λ′
h = 1, λ′

h ≥ 0, ∀h,

with λ′
1 = λ1+yλ5+xλ7, λ′

2 = λ2+(1−y)λ5+xλ8, λ′
3 = λ3+yλ6+(1−x)λ7,

λ′
4 = λ4 +(1− y)λ6 +(1−x)λ8. Then, M ∈ I if and only if (Σ′) is solvable.

We observe that (Σ′) can be written as

(Σ′) λ′
1+λ′

2 =x, λ′
1+λ′

3 = y, λ′
1 = z, λ′

1 + λ′
2 + λ′

3 + λ′
4 = 1, λ′

h ≥ 0, ∀h ;

that is

(Σ′) λ′
1 = z, λ′

2 = x − z, λ′
3 = y − z, λ′

4 = z − (x + y − 1), λ′
h ≥ 0, ∀h.

(Σ′) is solvable if and only if max{x+ y − 1, 0} ≤ z ≤ min{x, y}. Moreover,
the vector (λ1, . . . , λ8) = (λ′

1, λ
′
2, λ

′
3, λ

′
4, 0, 0, 0, 0), where (λ′

1, λ
′
2, λ

′
3, λ

′
4) is

any solution of (Σ′), is a solution of (Σ) such that
∑

r:Cr⊆H

λr =
∑

r:Cr⊆K

λr =
∑

r:Cr⊆H∨K

λr = 1 > 0,
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and hence I0 = ∅; then, by Theorem 1, the solvability of (Σ) is also sufficient
for the coherence of M. Therefore, the extension P[(A|H)∧(B|K)] = z of the
assessment (x, y), with (x, y) ∈ [0, 1]2, is coherent if and only if z ∈ [z′, z′′],
where z′ = max {x + y − 1, 0} and z′′ = min {x, y}.

We recall that for the quasi conjunction of A|H and B|K, defined as
the conditional event C(A|H,B|K) = (AH ∨ Hc) ∧ (BK ∨ Kc)|(H ∨ K),
only the inequality on the lower bound holds; indeed, the extension γ =
P [C(A|H,B|K)] of (x, y) is coherent if and only if γ′ ≤ γ ≤ γ′′, where
γ′ = z′ = max{x + y − 1, 0} and γ′′ = x+y−2xy

1−xy if (x, y) 
= (1, 1); γ′′ = 1 if
(x, y) = (1, 1). We observe that: γ′′ ≥ max{x, y} ≥ min{x, y} = z′′.

Quasi conjunction is a basic notion in nonmonotonic reasoning ([2,21,31,
34]). A probabilistic analysis of the lower and upper bounds for the quasi
conjunction, in terms of t-norms and t-conorms, has been given in [30,35].

6. Negation and Disjunction

Given any coherent assessment (x, y, z) on {A|H,B|K, (A|H) ∧ (B|K)}, it
holds that (A|H) ∧ (B|K) ∈ {1, 0, x, y, z} ⊂ [0, 1]. We recall that for condi-
tional events the negation is usually defined as (E|H)c = Ec|H = (1−E)|H.
In our approach we have (1 − E)|H = 1 − E|H; hence (E|H)c = 1 − E|H.
Then, for the negation of conjunction we give the definition below.

Definition 6. Given any conditional events A|H,B|K, the negation of
(A|H) ∧ (B|K) is defined as [(A|H) ∧ (B|K)]c = 1 − (A|H) ∧ (B|K).

We observe that [(A|H) ∧ (B|K)]c = 1 − min{A|H,B|K} | (H ∨ K) =
(1−min{A|H,B|K}) | (H ∨K) = max{Ac|H,Bc|K} | (H ∨K). Then, based
on the relation A ∨ B = (AcBc)c (De Morgan’s Law), for the notion of dis-
junction we give the definition below.

Definition 7. Given any conditional events A|H,B|K, the disjunction
(A|H) ∨ (B|K) is defined as: (A|H) ∨ (B|K) = [(Ac|H) ∧ (Bc|K)]c.

We observe that (A|H) ∨ (B|K) = 1 − min{Ac|H,Bc|K} | (H ∨ K)
= (1 − min{Ac|H,Bc|K}) | (H ∨ K) = max{A|H,B|K} | (H ∨ K). If we
assess P (A|H) = x, P (B|K) = y, P[(A|H) ∨ (B|K)] = γ, then

(A|H) ∨ (B|K) = 1 · (AH ∨ BK) + x · HcBcK + y · AcHKc + γ · HcKc.

Prevision sum rule. The classical formula P (A∨B) = P (A)+P (B)−P (AB)
still holds for the conjunction and disjunction of conditional events. Indeed,
by recalling Theorem 2 and the properties of iterated conditioning, we have
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(A|H) ∨ (B|K) + (A|H) ∧ (B|K) = [max{A|H, B|K} + min{A|H, B|K}]|(H ∨ K) =

= (A|H + B|K)|(H ∨ K) = (A|H)|(H ∨ K) + (B|K)|(H ∨ K) = A|H + B|K. Thus

P[(A|H) ∨ (B|K)] = P(A|H) + P(B|K) − P[(A|H) ∧ (B|K)].

Finally, assuming A,H,B,K logically independent, from (8), γ is a coherent
extension of (x, y) if and only if max{x, y} ≤ γ ≤ min{x + y, 1}, i.e.

max{P (A|H), P (B|K)} ≤ P[(A|H) ∨ (B|K)] ≤ min{P (A|H)+P (B|K), 1}.

7. Conclusions

We have considered c.r.q.’s and conditional previsions in the setting of coher-
ence. In agreement with the approach of other authors, a c.r.q. X|H has
been looked at as the quantity XH + P(X|H)Hc, which assumes the value
P(X|H) when H is false. We have defined the equality among c.r.q.’s, by
showing that X|HK coincides with [XH + P(X|HK)Hc]|K; this equality,
by linearity of prevision, allows to directly obtain the compound prevision
theorem. By this extended notion of c.r.q., we have obtained some algebraic
developments; for instance, we have given a meaning to the sum X|H+Y |K;
then, the sum of previsions P(X|H) + P(Y |K) can be read as the prevision
of the sum, P(X|H + Y |K). We have examined the notion of iterated c.r.q.
(X|H)|K, which does not coincide with the c.r.q. X|HK; in particular, given
any event A, the iterated conditional (A|H)|K does not coincide with the
conditional event A|HK; thus, in our approach the Import–Export Princi-
ple is not valid and we avoid the counter-intuitive consequences related to
Lewis’ triviality result. We have studied the conjunction of two conditional
events and we have interpreted the prevision of a conjoined conditional by
the betting scheme. Then, using iterated conditionals, we have obtained
a disintegration formula for conditional probabilities and a kind of Bayes
formula. We have defined the negation of the conjunction of conditionals
and by De Morgan’s Law the associated disjunction. Differently from other
authors, in our coherence-based approach, the result of the conjunction, or
the disjunction, is (not a conditional, but) a c.r.q., for which we have deter-
mined the lower and upper prevision bounds. We have shown that the usual
probabilistic properties continue to hold in terms of previsions.
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gettiva della probabilità, Bollettino della Unione Matematica Italiana 4B(3, Serie

7):645–660, 1990.

[26] Gilio, A., Probabilistic reasoning under coherence in system P, Annals of Mathe-

matics and Artificial Intelligence 34(1–3):5–34, 2002.

[27] Gilio, A., Generalizing inference rules in a coherence-based probabilistic default

reasoning, International Journal of Approximate Reasoning 53(3):413–434, 2012.

[28] Gilio, A., and D. Over, The psychology of inferring conditionals from disjunctions:

a probabilistic study, Journal of Mathematical Psychology 56(2):118–131, 2012.

[29] Gilio, A., and S. Ingrassia, Totally coherent set-valued probability assessments,

Kybernetika 34(1):3–15, 1998.

[30] Gilio, A., and G. Sanfilippo, Quasi Conjunction and p-entailment in nonmono-

tonic reasoning, in C. Borgelt et al., (eds.), Combining Soft Computing and Statistical

Methods in Data Analysis, vol. 77 of AISC, Springer, Heidelberg, 2010, pp. 321–328.

[31] Gilio, A., and G. Sanfilippo, Quasi conjunction and inclusion relation in prob-

abilistic default reasoning, in W. Liu (ed.), ECSQARU 2011, vol. 6717 of LNCS,

Springer, Heidelberg, 2011, pp. 497–508.

[32] Gilio, A., and G. Sanfilippo, Conditional random quantities and iterated condi-

tioning in the setting of coherence, in L. C. van der Gaag (ed.), ECSQARU 2013,

vol. 7958 of LNCS, Springer, Heidelberg, 2013, pp. 218–229.

[33] Gilio, A., and G. Sanfilippo, Conjunction, disjunction and iterated conditioning

of conditional events, in Synergies of Soft Computing and Statistics for Intelligent

Data Analysis, vol. 190 of AISC, Springer, Heidelberg, 2013, pp. 399–407.

[34] Gilio, A., and G. Sanfilippo, Probabilistic entailment in the setting of coher-

ence: The role of quasi conjunction and inclusion relation, International Journal of

Approximate Reasoning 54(4):513–525, 2013.

[35] Gilio, A., and G. Sanfilippo, Quasi conjunction, quasi disjunction, t-norms and

t-conorms: probabilistic aspects, Information Sciences 245:146–167, 2013.

[36] Gilio, A., and R. Scozzafava, Conditional events in probability assessment and

revision, IEEE Transactions on Systems, Man, and Cybernetics 24(12):1741 –1746,

1994.



728 A. Gilio, G. Sanfilippo

[37] Goodman, I. R., H. T. Nguyen., and E. A. Walker, Conditional Inference and

Logic for Intelligent Systems: A Theory of Measure-Free Conditioning, North-Hol-

land, Amsterdam, 1991.

[38] Jeffrey, R., Matter-of-fact conditionals, Proceedings of the Aristotelian Society,

Supplementary Volume 65:161–183, 1991.

[39] Kaufmann, S., Conditionals right and left: probabilities for the whole family, Jour-

nal of Philosophical Logic 38:1–53, 2009.

[40] Lad, F., Coherent prevision as a linear functional without an underlying measure

space: the purely arithmetic structure of conditional quantities, in G. Coletti et al.

(eds.), Mathematical Models for Handling Partial Knowledge in Artificial Intelli-

gence, Plenum Press, New York, 1995, pp. 101–112.

[41] Lad, F., Operational Subjective Statistical Methods, Wiley, New York, 1996.

[42] Lad, F., G. Sanfilippo., and G. Agró, Completing the logarithmic scoring rule
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