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Abstract

Godel’s incompleteness theorems establish the stunning result that mathematics
cannot be fully formalized and, further, that any formal system containing a modicum
of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton
Field, in their paper Automated Search for Gédel’s Proofs, presented automated proofs
of Godel’s theorems at an abstract axiomatic level; they used an appropriate expan-
sion of the strategic considerations that guide the search of the automated theorem
prover AProS. The representability conditions that allow the syntactic notions of the
metalanguage to be represented inside the object language were taken as axioms in the
automated proofs. The concrete task I am taking on in this project is to extend the
search by formally verifying these conditions. Using a formal metatheory defined in
the language of binary trees, the syntactic objects of the metatheory lend themselves
naturally to a direct encoding in Zermelo’s theory of sets. The metatheoretic notions
can then be inductively defined and shown to be representable in the object-theory
using appropriate inductive arguments. Formal verification of the representability con-
ditions is the first step towards an automated proof thereof which, in turn, brings the
automated verification of Gédel’s theorems one step closer to completion.
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1 Preliminaries

1.1 Background

In 1931, Kurt Godel established in his seminal paper On formally undecidable propo-
sitions of Principia Mathematica and related systems I that any consistent formal system
containing a modicum of number theory is inherently incomplete, in that there exist true
propositions of the formal system that are not provable in the formal system. He also proved
that any such system cannot prove its own consistency. The proofs of Gddel’s incomplete-
ness theorems rely on the representation of metatheoretic notions like “formula”; “proof”,
and “theorem” inside the formal system, allowing the system to effectively prove statements
about itself. A sentence can then be constructed that says of itself that it is not provable in
the formal system. Such a sentence is undecidable as neither it nor its negation is provable,
thus rendering the system incomplete.

Wilfried Sieg and Clinton Field, in their paper Automated Search for Godel’s Proofs, pre-
sented automated proofs of Godel’s theorems at an abstract axiomatic level that were gen-
erated by AProS, an automated theorem prover that searches for natural deduction proofs.
With an appropriate expansion of the strategic considerations guiding the search proce-
dure of AProS, they were able to generate concise and structurally intelligible proofs of the
theorems. The representability of the metatheory, the construction of the self-referential
sentence, and the derivability conditions needed for the second incompleteness theorem were
taken for granted in their abstract presentation [2]. The present work seeks to provide foun-
dational support to the proofs of Godel’s theorems at the abstract level by formally verifying
the representability conditions that permit the representation of the metatheory inside the
object theory.

1.2 Description of Metatheory

The metatheory will provide a rigorous buildup of notions leading up to the theorem
predicate, which is used to prove incompleteness. Instead of formalizing the metatheoretic
notions as primitive recursive functions and then using natural numbers to encode them as
Godel did [1], we attempt to bypass the arithmetization by formalizing the metatheory in
the language of binary trees. This approach was originally explored by Wilfried Sieg in [4]
and elucidated on in his joint paper [3] with Ingrid and Sten Lindstrom. In their paper
Gaodel’s Incompleteness Theorem: A computer-based course in elementary proof theory, they
describe the development of a formal theory for elementary metamathematics TEM that
is the starting point for the formal metatheory described next. The advantage to using a
formal metatheory defined in the language of binary trees is that the coding of the metathe-
oretic notions is immediate in ZF (which will be used as the object-theory); each binary
tree can be uniquely mapped to an ordered pair in ZF. The codings then directly reflect
the structure of the objects being coded.

The syntax of the metatheory includes:

e Logical connectives: &,V, —, <



e Quantifiers: V,d
e Variables ranging over all binary trees: X, X7, Xo, ...

For convenience we may use also subscripted Y’s and Z’s for variables, but note that they are
used only for readability. Note also that the same logical symbols are used in the metatheory
as the object-theory. Ambiguity is avoided in proofs by a clear distinction between state-
ments being proved in the metatheory and statements being proved in the object-theory,
which will be further explained in the next section. There is also no ambiguity in the defi-
nitions as the metatheoretic notions are defined separately from the object-theoretic ones.

We also require an appropriate syntax to represent binary trees. The empty tree is
denoted by S, and more complex trees are denoted by X = [X;, X5] where X7 is the left
sub-tree of X and X, the right sub-tree. The axioms for binary trees are stated as follows:

e B : (VX,Y)S # [X,Y]
o By: (VX1, X0, Y1, Y5)([X1,Y1] = [Xo, V5] «+— (X1 = X0 & Y1 =Y2))
e Ind: (0(5) & (VX1, Xo)((p(X1) & p(X2)) = o([X1, X3]))) = (VX)(X)

A key notion that will be used extensively in the metatheoretic definitions is that of
projection. We define left and right projections inductively as follows:

e (9);=Sand (S), =5
e For X = [Xl,XQ]

We will also need a binary tree representation for arbitrary sequences of n objects. We
adopt the convention of using a binary tree that branches off to the left, where the right
branches store the elements of the sequence. For example, if we had the sequence {1, 2, 3,4},
the binary tree would look like:



and this would be represented in our tree notation as X = [[[[S, 1], 2], 3],4]. This
representation will be used both in representing n-ary predicates and terms, as well as
sequences of assumptions. In the latter case, we use the €-relation to express membership
of a sequence. For example, 1 € X from above, but 5 ¢ X.

Note that the € sign is used also in set theory to denote set membership; we overbook the
symbol so that the intutition is the same in the metatheory for an element being a member
of a sequence. The ambiguity is resolved by the object that the membership is ascirbed to;
sequence membership is only in the metatheory and set-membership is only in the object-
theory.

Within this system we will be able to formulate inductive definitions for the notions of
“formula”, “proof”, and “theorem” and will represent each of them as a binary tree exhibiting
a particular structure.

1.3 Description of Object-theory

For the object theory we use a slightly modified axiomatic formulation of Zermelo-
Fraenkel set theory (ZF). Such a formulation allows us to prove representability in a reasoned
way while adhering to the required conditions of the incompleteness theorems and avoiding
the need to arithmetize the syntax. The language of ZF is as follows:

e Logical connectives: &, V, —, <>

Quantifiers: V, d

Variables: z,x1, 2o, ...

e Function symbols: f, fi, fo, ...

o Terms: x, 21,22, ..., fi(Tmy oo Tn), ...

e Predicates: P, P, Py, ...

We have as axioms:

e (Extensionality) (Va)(Vy)((V2)(z € x +— 2z €y) — = = 2)
o (Powerset) (Vz)(Jy)(Vz)(z € y +— 2z C 1)

e (Union) (Vz)(3y)(Vz)(z € y +— (Fw € z)z € w)

e (Infinity) (3y)(0 € y & (Va1, 29 € y) (1, 22) € Y)

Note that the last axiom is a slightly modified version of the traditional Axiom of Infinity;
it uses ordered-pair generation as its successor operation in place of the unary successor
function that is typically used. This modification guarantees the existence of a set v that



contains the emptyset and all of its binary tree successors and makes the following definition
of the set of ordered pairs well-defined:

B = ﬂ{z € p(v) |0 € z& (Va1, 29 € 2)(21,22) € 2}

In the spirit of Dedekind, the intersection over all sets satisfying the defining conditions
produces the smallest such set. This intersection is well-defined since there is at least one
set satisfying the conditions, namely v, and thus we are not taking the intersection of the
empty set. The set B will be used as the set of all codes of binary trees from the metatheory.

We also have two axiom schemata that generate infinitely many axioms. They are the
following;:

e (Replacement) (Vz)(Sv(p(z,y),2) — (Fv)(Vy)(y € v +— (Fx € 2)p(x,y))) where
(x,y) is a formula with free variables « and y and Sv(p(z,y), z) is an abbreviation

for (Vo € 2)((Vy1)(Vy) (o(z, 1) & p(2,42)) — y1 = o)
e (&-Induction) (Vz)((Vy € z)p(y) — ¢(z)) — (Vz)p(2)

A theorem that will be particularly useful in the representability proofs is the Funda-
mental Theorem of Ordered Pairs (FTOP), stated as:

(V$17$2,y1,y2)(<1’1,y1> = <1’2,y2> — (fl =x &y = yz))

The proof is not difficult to show inside of ZF.

1.4 Conventions/Notation

Formal proofs will be presented in Fitch diagrams using the same Intercalation Calculi
used in AProS (a standard first-order theory that uses introduction and elimination rules for
a fully specified language). As was mentioned earlier, Wilfried Sieg and Clinton Field used
an appropriate expansion of the the strategies guiding the search procedure of AProS. One
such strategy permitted movement between the metatheory and object-theory. To be more
precise, when presented with a goal of the form ZF ¢, one can move into the object theory
and try to prove ¢ inside ZF, justifying it by the inverted rule Provl. Similarly, if one has
as an assumption ZF F ¢, one can use the rule ProvE to make the assumption inside ZF
and proceed from there. In the Fitch diagrams, statements being proved inside of ZF' will
be denoted by an asterisk (*) preceding the line in the derivation. Some lines in the proofs
will be justified by numbered lemmata; an index of lemmata with brief justifications can be
found at the end of the document.

The representability conditions were also used in a strategic way, and were captured by
the introduction and elimination rules of Repl and RepE respectively. If one is faced with a
statement in the metatheory that is a representable notion in ZF', one can move the coded
object into Z Fusing the rule RepE. For Repl, if one proves something about a representable
notion inside ZF', one may move the notion to the metatheory. These rules are of course
justified by the reprentability conditions that are to be verified in what follows, but we will

6



still utilize them in the inductive cases when we have previously shown or assumed some
notion to be representable.

Every notion in the metatheory that is shown to be representable is first formalized in
the metatheory using inductive definitions and represented as an object by assigning it a
binary tree representation. This can be confusing as there is a distinction between saying
something is, for example, a proof, and some binary tree X is a proof. The former might
be the explicit sequence of steps in the proof, whereas the latter is a binary tree meant to
represent the proof as an object. The object is to include information about what formula
is being proved, how it is being proved, and what was used to establish the proof. For each
object I will indicate the general binary tree structure, and then the inductive definitions in
the metatheory will implement the structure with particular conditions that each component
of the tree must satisfy.

2 Representability

The general formulation of the representability conditions that must be satisfied is as
follows:

Ry :P(Xy,.... X)) — ZF Fp(| X1],..., | Xn])
Ry :NoTP(Xy,....X,) — ZF F —p(|X1], ..., [ X))

where P is some metatheoretic notion, X7, ..., X,, are objects of the metatheory, and p and
| X1],...,[X,] are the object-theoretic codes of those respective objects. We would in the
end like to verify these conditions for the theorem predicate, as this is the notion used in the
construction of the undecidable sentence of ZF. We first require the representation of the
notions of “formula” and “proof”, which themselves require the representation of a number
of metatheoretic notions. We will begin the process by showing that the formal sytax of the
metatheory can be represented inside of ZF'.

2.1 Representability of Syntax

Each symbol in the language of ZF' is assigned a binary tree representation in the
metatheory. The actual assignment is arbitrary, so long as each symbol is uniquely rep-
resented. We give an iterative specification, representing each symbol in terms of some
previously defined symbol, beginning with the empty tree and branching off to the right.
The coding into ZF' is then immediate, as we can define the following mapping that takes
advantage of the structural identity that holds between the representation of binary trees
and ordered pairs:

S0
(X1, Xo] — ([ X4], [X2])

where | X;| and | X5] are the codes for X; and X, respectively, i.e. the ordered pairs that
are assigned to the binary trees X; and Xs. The codings are defined as follows:



Symbol | Binary Tree | Code in ZF
- S 0
& 5, @, [=])
v [5, &] 0, |&])
— [5, V] @, [vV])
© [5, =] @, =)
= 5, ] 0, [<])
v [S’ :] <@7 L:J>
e [5,V] (@, |v])
x 5,9 @, 13])
Iy [5, 2] @, |=])
T, (S, 1] 0, |zn_1])
f 1S, [z, z]] | @, (lz], []))
fi 5, /] @, 111
fn [Sv fn—l] <®, Lfn—lJ)
P 1S, U ) 0. (UL LA
Py S, P] @, P])
P, 1S, P, 4] 0, | Po1])

(Coding is based on Wilfried Sieg’s formulation in his initial work on the formalization of

the metatheory in [4])

2.2 Representability of Equality

The first metatheoretic notion to represent in ZF' is equality. We would like to prove:

VX)WY)X =Y — ZF F | X]| = |Y]]
(VX)X #Y — ZFF [ X] # Y]]

Proof. (1) follows immediately from the coding defined in the metatheory: if two binary trees
X and Y are equal, then their ordered pair counterparts | X | and |Y | will be syntactically

identical and the equality | X | = |Y| is then provable in ZF'.

We prove (2) by induction on X.




Base Case: X = 5.
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Lemma(3): 1
Assume
Assume
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We wish to show true for X = [X;, X3].
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We conclude, by the principle of induction for binary trees, that

VX)WV X #A#Y — ZFF | X]| # Y]]

[leXQ] 7& Y

Y =SV @EYLYL)Y =1,V

*

*

*

*

*

*

*

*

7Y =S

ZFF[[Xy, Xo]| # |Y]
(3Y1,Y2)Y = [Y1,Y)]

Y =[¥1,Y3

(X1, Xo] # [Y1, Y7

X1 £ ViV Xo # Y
X1 #Y,

| ZPF Xy £ %

[ Xa] # [Y4]

(X1, [Xa]) # (], [Y2))
L[X1, Xo] # [[Y3, Y2
L[X1, Xo]| # V]

ZF + |[X1, Xo]] # Y]
X% #Y
ZF | Xs] # |Ya]

[ Xa] # [Ya]

(X1, [Xa]) # (], [Y2))
L[X1, Xol] # [[Y3, Y2
L[X1, Xo]| # Y]

ZF b |[ X1, Xo]] # Y]
ZFF [ X1, X,]] # Y]
ZF F [ X1, X5]] # Y]

ZF [ X1, X5]] # Y]
(X1, Xo] #Y — ZF & [[ Xy, Xo] | # |Y]

(WY)([X1, Xo] #Y — ZF & [[X0, Xo] | # [V])
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Assume
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Assume
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=E: 1,6
Lemma(4): 7
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IH: 9

ProvE: 10
Lemma(5): 11
DefI(Code): 12
RepE(=): 13,6
Provl: 14
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O
We have thus established that the metatheoretic notion of equality can be represented

inside of ZF'.

2.3 Representability of Variables

Though we have a syntactic specification of variables, we would like to justify the exis-
tence of the set of variables in ZF'.

Metatheory

Based on the binary tree assignment in the metatheory, variables will be inductively defined
as:
(VX)((X =[5, 3]V (X =[5, (X)2] & VAR((X)2))) — VAR(X))

Such an inductive definition justifies also an induction principle that is formulated as follows:

((19,3]) & (VX) (p((X)2) — (15, (X)2]))) — (VX)(VAR(X) — ¢(X))

Informally this principle states that if one can show a property ¢ to hold for the object
X =[5, 3] and, assuming for some arbitrary object X of the form [S, (X)s] that ¢ holds for
(X )2, one can prove that it holds also for X, then one may conclude the property ¢ holds
for all variables.

Object-theory

The same considerations that went into defining the set of binary trees will go into
defining the set of variables. We would like to obtain the smallest set z satisfying the
following conditions:

e 0. [3) ez
o (Vxez)duz) ez
For convenience in the proofs that follow, we define v to be:
v={z€pB) |0 (3] € z& (Vx € 2){,z) € 2}
and then define the set of variables V as:
V= ﬂ v
We can now give a quick proof by induction on variables in the metatheory that

(VX)(VAR(X) — ZF | X]| € V)

11



Induction Case: X =[S, (X)2] & VAR((X)2).

© oo N O Ot = W N

Proof. Base Case: X =[S, .

X =[S,3]
x| | zew
* @,13]) € 2
* |[S,3]] € =
* | X | €z
x| (Vzew)|X] ez
x| | X]eNv
x| | X] eV
ZFF|X] eV

Premise
Assume
DefE(v): 2
DefI(Code): 3
RepE(=): 4,1
Vel b
DefI((): 6
Defl(V): 7
ProvI: 8

Induction Hypothesis: Assume for arbitrary X that

VAR((X)g) — ZF F |[(X)2] €V

1 X =[5, (X)q] Premise

2 VAR((X)2) Premise

3 | ZFF (X)) eV TH: 2

4 x| [(X)2] €V ProvE: 3

5 * zZ€w Assume

6 * 7(Vx €z2){0,z) €z  DefE(v): 5

7 * [(X)2] €v Lemma(6): 4
8 * 0,1 (X)2]) € 2 VeE: 6,7

9 * L[S, (X)2]] € 2 DefI(Code): 8
10 * | X | ez RepE(=): 9.1
11 x| (Vzewv)|X] ez Vel 10
12 x| | X]eNv DefI(()): 11
13 x| | X] eV Defl(V): 12
14 ZFF | X]| eV Provl: 13

Thus by the principle of induction on variables, we have

(VX)(VAR(X) — ZF I | X| € V)
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We would also like to establish Ry for variables, i.e. show:
(VX)(NOTVAR(X) — ZF F | X]| ¢ V)
Equivalently we may define the set of all non-variables NV in ZF' and show
1. (VX)(NOTVAR(X) — ZF F | X]| € NV)
2. ZF F (Vx)(z € V— 2 ¢ NV)
3. ZF F (Vx)(x e NV — 2 ¢ V)

(2) and (3) prove that V and NV are disjoint. We will first provide an inductive definition
for non-variables in the metatheory and an appropriate definition in the object theory for
the set of all non-variables.

Metatheory
(VX)(X =5
V(X = [(X)1, (X)2] & (X1 # 5)
V(X =1[59,(X)2] & (X)2 # (3) &NOTVAR((X)3))) — NOTVAR(X))

This definition admits an induction principle for non-variables, which will be utilized in
proving the above claim.

Object-theory
We define the set nv as

nv={z€ pB)|0e =z
& (Vo # 0)(Vy)(z,y) € 2
& (Vo € 2)(z # 3] — (0,2) € 2)}

and then the set of non-variables is defined as
NV = ﬂ nv
We will now complete the representability of variables by proving (1),(2), and (3) above.

Proof. (1) will be established by the metatheoretic principle of induction on non-variables.
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Base Case 1: X = 5.
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z €nv
7@62

|1S] €=

| X]| €z
(Vz e nv)| X| € 2
| X] eNnv
| X | € NV

ZF F | X| € NV

Base Case 2: X = [(X)1, (X)2] and (X); # S.
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— = =
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X = [(X)l,(X)z]
7(X)1 #S
* Z €Env

*

*

(Vo # 0)(Vy)(z,y) € 2
L(X)1] #0

([(X)1], [(X)2]) € =
LX), (X)o]] € 2

| X ]| €z

(Vzenw)| X] €z

| X | € N
| X | € NV

ZF+ |X| € NV
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Premise
Assume
DefE(nv): 2
DefI(Code): 3
RepE(=): 4,1
Vel b
DefI(N): 6
Defl(NV): 7
Provl: 8

Premise
Premise
Assume
DefE(nv): 3
RepE(=): 2
VeE: 45
Defl(Code): 6
RepE(=): 7,1
Vel: 8
DefI(N): 9
Defl(NV): 10
Provl: 11



Inductive Case: X =[5, (X)2] and (X)s # 3 and NOTVAR((X)s).

Induction Hypothesis: Assume for arbitrary X that

NOTVAR((X)2) — ZF - [(X)2] € NV

1] X =5,(x))
2 (X)g # 3
3 NOTVAR((X)2)
4 | ZFF (X)) €NV
5 x| [(X)2] €NV
6 * Z €nv
7 * (Vo € 2)(z # |3] — (D, z) € 2)
S | x| | (X)) en
9 | x| | LX) £ 18] — LX) € 2
101 =) | (X)) # 13
11 * 0,[(X)2]) € 2
12| x| | LS (X
13 * | X ]| €z
14 x| (Vzenv)|X] ez
15 x| | X]eNnv
16 x| | X] eNV
17 | ZFF|X|eNV

Premise
Premise
Premise

IH: 3

ProvE: 4
Assume
DefE(nv): 6
Lemma(6): 5
VeE: 7,8
RepE(=): 2
—E: 9,10
Defl(Code): 11
RepE(=): 12
Vel 13
DefI(N): 14
Defl(NV): 15
ProvI: 16

Thus by the metatheoretic principle of induction on non-variables, we have

It remains to show that ZF proves V and NV are disjoint. The definitions of V and
NV in ZF justify the specification of an induction principle for each (as the sets have some
collection of base elements and are closed under a finite list of generating operations). These
induction principles will be utilized to establish the claims guaranteeing V and NV to be

disjoint.

We first prove ZF + (Vz)(x € V — z ¢ NV) using the induction principle for V and
the following lemma that is jusified by the definition of NV:

(Vz)(z e NV+— (2 =0V (Jy #0)(3z)x = (y,2) V(T2 e NV)(z # |T]| &x = (0, 2))))

(VX)(NOTVAR(X) — ZF - | X | € NV)

15



Base Case: x = (0, |3]).

1 * @,13]) e NV Assume

2 ff || 0,13))=10 Assume

3 * o Lemma(2): 2
4 * (Jy # 0)(32)(0, |3]) = (y, 2) Assume

5 * | y# 0 Assume

6 * @, 13]) = (y, 2) Assume

7| s =y FTOP: 6

8 * L 1I: 75

9 * L JE: 4,8
10 * (Fz e NV)(z # |3 &0, [3]) = (D,2,))  Assume
11 * | z € NV Assume
12 * z# |3 Assume
13 * @,13]) =@, z,) Assume
14 | « 13 == FTOP: 13
15 * 1L 11: 14,12
16 * L JcE: 10,15
17 * 1 Lemma(7): 3,9,16
18 x| (0,13]) ¢ NV =L 17
19 ZF+ (0,|3]) ¢ NV Provl: 18
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Inductive Case: For arbitrary z € V, x = (), 2).

Induction Hypothesis: Assume for z that

ZFFzeV— 2¢NV

1 zeV Premise

2 |« (0, z) e NV Assume

3 fl || 0,2) =10 Assume

4 |« | ] 1 Lemma(2): 3

5 * (Fy # 0)(Fw) (D, ) = (y, w) Assume

6 * i y#0 Assume

7 * 0, z) = (y,w) Assume

8 | « =y FTOP: 7

9 | « 1 L1: 8.6
10 | = 1 3E: 5.9
11 * (Jw e NV)(w # (3| & (0, 2) = (D, w,))  Assume
12 * i w € NV Assume
13 * w # 3] Assume
14 * 0,2) = (0, w,) Assume
15 | I FTOP: 14
16 | x 2 € NV —E: 12,15
17 * z2€V — z¢ NV TH
18 | « 2 ¢ NV LE: 17,1
19 | « 1 L1: 16,18
20 | « 1 3E: 11,19
21 * 1 Lemma(7): 4,9,20
22 x| (0,z) ¢ NV -1 21
23 ZFE(0,z) ¢ NV ProvI: 22

Thus ZF F (Vz)(z € V — = ¢ NV) holds from the induction principle for V. It only
remains to show ZF F (Vz)(x € NV — x ¢ V), this time using the induction principle for
NV and a similar lemma for V stated as:

(Ve)(x e Ve—a=(0,|3])V(3ze V)x=(0,2z))

17



Base Case 1: = = 0.

Base Case 2: For arbitrary y, z, x = (y, z) and y # 0.
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* Pev

| | 0=0.13)
* 7J_

¢ (32 e V) =(0,z2)
* 726V

* 0=,z
* L

* 1

* 1

x| D¢V
ZF-0¢V

y#0
* 7@,2) ev
* y,2) =(0,13])
o | ] y=0
* 1
* 7(Elz € V)(y, z) = (0,2)
* zeV
' 9,2) = (0,2)
" =0
* 1
* 1
* 1
«| (y,2) ¢V
ZFF (y,2) ¢V
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Assume
Assume
Lemma(2): 2
Assume
Assume
Assume
Lemma(2): 6
JeE: 4,7
Lemma(7): 3,8
—-1: 9

ProvI: 10

Premise
Assume
Assume
FTOP: 3
1I: 41
Assume
Assume
Assume
FTOP: 8
11: 9,1
JeE: 6,10
Lemma(7): 5,11
- 12
ProvI: 13



Inductive Case: For arbitrary z € NV such that z # |3], z = (0, 2).

Induction Hypothesis: Assume for z that

© o0 N O Ot = W NN

e e e T T e T =
S Ot e W N = O

17

Thus by the induction principle for NV, ZF + (Vz)(x € NV — z ¢ V), and thus

ZFFzeNV —2¢V

z € NV
- z# 3
* J@,Z)GV
* 7{@,2) =(0,13])
* z=|3]
* 1
s 7(Elw e V{0, z) = (0, w)
* weV
* J@,z)z(@,w)
* zeV
* 2€NV — 2¢V
* 2 ¢V
* 1
* 1
x| (0,2) ¢V
ZFEF{(D,2) ¢V

concludes the proof of representability for variables.

(Note: the proof for non-variables will serve as an archetype for all subsequent proofs
of “negative” representability for the other metatheoretic notions. We will show most of
the formal proof for the representability of non-formulae in full, but the others will only be
indicated as they all follow the same line of reasoning. These proofs also become increasingly
impractical as the definitions of the metatheoretic notions become more complex, since the
definitions generate a large number of sub-cases that each need to be verified. Without a
more general specification of inductive definitions, it is almost necessary to use a machine
to verify these proofs; doing them by hand is far too time-consuming and adds very little to

Premise
Premise
Assume
Assume
FTOP: 4
11: 5,2
Assume
Assume
Assume
FTOP: 9
=E: 8,10
IH

—E: 121
A1: 11,13
dcE: 7,14
—I: 15
ProvI: 16

one’s understanding of the overall procedure of proving representability.)
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2.4 Representability of Function Symbols and Predicates

The definitions in both the metatheory and ZF will be given for function symbols and
predicates, but the representability proofs will be omitted as they follow the same argu-
ment used for the representability for variables, with the appropriate replacement of initial
syntactic codings.

Metatheory
(VX)((X =[5, [z, 2]] v (X =[5, (X)2] & FUNC((X)2))) — FUNC(X))
(VX)((X =[S, [f. A} V(X =[S, (X)2] & PRED((X)2))) — PRED(X))

Object-theory

func = ﬂ{z € pB) (D, (|z], |x])) € 2& (Vz € 2)(D,z) € z}
pred = ({z € p(B) | (0, {Lf], Lf])) € z& (Va € 2) (8

,x) € z}

2.5 Representability of Terms
The informal specification of terms is as follows:

e If x is a variable, then x is a term.
e If f is a function symbol and ¢y, ...,t, are terms, f(t1,...,t,) is a term.

Metatheory

We need a way of representing arbitrary terms as binary trees. For the case where a
term t is a variable, this is clear, as we have already indicated the binary tree structure of
variables. We thus require a binary tree structure for terms of the form f(¢i,...,%,) where
f is a function symbol and ¢4, ..., t, are themselves terms. X is considered to be a term if
it exhibits the following structure:

[f? [tla [t27 ceey [tn—latn] o ]H

where f and tq,...,t, are specified as before.

Terms are then defined inductively in the metatheory as

(VX)((VAR(X) V (X = [(X)1, [(X)2, -, [(X)221, (X)2020] -+ - ]]
&FUNC((X)1) & TERM((X )a1) & -+ - & TERM((X )2...21) & TERM((X)2...22)))
— TERM(X))

with an induction principle that allows one to conclude (VX)(TERM(X) — ¢(X)), defined
in the same way the induction principle for variables was (one must show ¢ to hold for the
base case and then assume ¢ to hold for arbitrary objects an show that ¢ holds also for the
composition of those objects specified by the definition).

20



Object-theory

The set of terms is defined as T = (¢, where ¢ is

t={z2€pB)|VCz& Nz e func)(Vyi,...,yn € 2){z, Y1, , (Yn-1,Yn) - -

We will show by induction on terms that
(VX)(TERM(X) — ZF - | X] € T)

Proof. Base Case: X is a variable.

1 VAR(X) Premise

2 e zet Assume

3 * 7V Cz DefE(t): 2

4 * | X| eV RepE(Var): 1
5 * | X| €z DefE(C): 34
6 x| (Vzet)|X|ez Vlih

7 | | X]eNt DefI(N): 6

8 x| | X]eT DefI(T): 7

9 | ZFF|X]eT Provl: 8

Inductive Case: X is built up from arbitrary terms.

Inductive Hypotheses: Assume for arbitrary X that

TERM((X)21) — ZF F |[(X)9| €T

TERM((X)Q...QI).—> ZFF [(X)2.01] €T
TERM((X)g..22) —> ZF F |(X)g.22] € T

21
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21
22
23
24
25
26
27
28

Func((X)1)
TERM((X )a1)

TERM((X)a...21)
jERM((X)Q...QQ)
A L(X)QIJ eT

ZFF [(X)go| €T
ZF - (X)Q...QQJ eT
# [(X)a] €T

]
]

ES L(X)gglJ (S
# | [(X)2.02) €2
* z €l

X = [(X)1, [(X)a, ...

(X221, (X)220] -+ - ]]

* (Vx € func)(Vyi, ..., Yn € 2)

(Yn—1,Un) - ++)) €2

* (z, (Y1, .-,
* X)1] € func
* (X)1, [(X)2,
* | X| €z

x| (Vzet)X]| ez
| [ X]eNt

x| |[X]eT

ZFF |X|€eT

22

Premise
Premise
Premise
Premise
Premise

Premise

IH: 3

IH: 5
IH: 6
ProvE: 7

ProvE: 9
ProvE: 10
Lemma(6): 11

Lemma(6): 13
Lemma(6): 14

Assume

DefE(t): 19
RepE(Func): 2
VeE: 20,21,15-18
DefI(Code): 22
RepE(=): 23,1
Vel: 24

DefI(N): 25
DefI(T): 26
Provl: 27



Thus by the induction principle for terms,

(VX)(TERM(X) — ZF F | X | €T)

2.6 Representability of Formulae

Formulae are defined informally as:
e All atomic formulae are formulae.
o If ¢ is a formula, then —p is a formula.

e If v and v are both formulae, then ¢ O is a formula (where 'O’ is an arbitrary binary
logical connective, i.e. one of &, V,—, ).

e If ¢ is a formula and x is a variable, then Qxy is a formula (where '@’ is one of V, 3).

We will first show the representability of atomic formulae.

2.6.1 Atomic Formulae

Atomic formulae consist of all equalities between two terms ¢; and t, of the form ¢; = ¢
and all n-ary predicates P(ty,...,t,) where ¢y, ..., t, are terms. Atomic formulae are slightly
different from the other notions we have been and will be considering as they do not need
to be inductively defined; their construction depends only on terms and predicates and does
not require any atomic formulae to be previously shown to be representable. We can thus
use an equivalence definition in the metatheory and show that the definition specifies the
same objects as the defined set does in the object-theory.

Metatheory

Similar to terms, n-ary predicates will exhibit the following structure:
[P, [, [22, - [, 2] - ]]]

where P is a predicate symbol and x4, ..., x, are variables.

Atomic formulae are then specified as

(VX)(ATOM(X) ¢— ((X = [=, [(X)21, (X)22]] & TERM((X)2:))

VX =[(X)5 (X1, (X221, (X)2002] -+ ]
& PRED((X)1) & TERM((X)g1) & - - - & TERM((X )a...91)
& TERM((X)2..22)))

Object-theory

23



The set of all atomic formulae A is defined as A = [)a where a is
a={z€pB)|(Vr,y € T)(|=],(z,y)) € 2
&(Va € pred)(Yyr, - yn € 2)(@, (Y15 Wn1,Un) - +)) € 2}

We will first show (VX)(AToM(X) — ZF + |X]| € A) directly by making a case
distinction for when X is considered atomic, i.e. in one case we will assume it is an equality
of terms, and in the other an n-ary predicate.

Proof. Case 1: X is an equality of terms.

1 X = [=,[(X)a1, (X)a2]] Premise
2 TERM((X)g;) Premise
3 e zZ€a Assume
4 * (Vz,y € T)(|=],(z,y)) € 2 DefE(a): 3
5 * [(X)2] €T RepE(Term): 2
6 | | (=52, [(X)2])) € 2 VeE: 45
7 * L[=, [(X)a1, (X)22]]] € = Defl(Code): 6
8 * | X]| €z RepE(=): 7,1
9 x| (Vzea)|X]| €z Vel: 8
10 x| | X] € ﬂa DefI(N): 9
11| *| [X]e¢ DefI(A): 10
12 ZFF|X]€eA Provl: 11
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11
12
13
14
15
16
17
18
19
20
21
22
23
24

Case 2: X is an n-ary predicate.

X = [(X)1, [(X)21, -+ [(X)2e21, (X)2002] -+ ]
PRED((X)1)
TERM((X)21)
TERM((X)2..21)
TERM((X)2...22)
7* zeEa
* (Vo € pred)(Vyr, ..., yn € 2)
* (@, (Y1 Yn-1,Un) ) €2
* |(X)1] € pred
* [(X)1] €T
s | 1(X)po1] €T
* |(X)g..00] €T
* [(X)21] € 2
* | (X)2..01] € 2
* [(X)2.22] € 2
| | AL (L2 (X221 )5 [(X)2m22]) - ) € 2
* LX), [(X)21s - (X221, (X)2e22] - ]]] € 2
* | X | €
x| (Vzea)|X] €z
x| | X]eNa
x| | X] €A
ZFF |X]| €A

Thus we have shown (VX)(AToM(X) — ZF - | X ]| € A).

sentability of all non-formulae.

Premise
Premise
Premise
Premise
Premise
Premise

Assume

DefE(a): 7
RepE(Pred): 2
RepE(Term): 3

RepE(Term): 5
RepE(Term): 6
Lemma(6): 10

Lemma(6): 12
Lemma(6): 13
Ve E: 8.9,14-17
Defl(Code): 18
RepE(=): 19,1
Vel: 20
DefI(N): 21
DefI(A): 22
ProvlI: 23

]

The representability of non-atomic formulae will be included in the proof of the repre-
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2.6.2 Formulae

Formulae will be inductively defined so as to satisfy the informal specification given
initially.

Metatheory

(VX)((AToM(X)
VX = [, (X)2] & ForM((X)s)]
VX =0, [(X)21, (X)22]] & FORM((X)2:)]
VX = [[Q, (X)i2], (X)2] & VAR((X)12) & FORM((X)2)]) — FORM(X))

Such an inductive definition justifies an induction principle for formulae that allows one to
conclude

(VX)(FORM(X) — ¢(X))
and is defined in a similar fashion to the induction principles for variables and terms.
Object-theory

We again define the smallest set satisfying a finite list of closure conditions. For formulae,
the conditions each set z in the intersection must satisfy are:

e AC 2
o (Vzez)(|~],z) ez
o (Vay, 20 € 2){|O], (x1,22)) € 2

o (Vx; € 2)(Voo € V){(|Q], x2), 1) € 2

The existence of at least one set satisfying these conditions is guaranteed by the Axiom
of Separation using B as the set from which elements are taken. We can then take the
intersection of all sets satisfying the conditions to obtain the smallest such set. We define
the set f as:

f={zepB)ACz=
& (Vz € 2)(|~],z) € 2
& (Vay, 29 € 2)(|0], (z1,22)) € 2
& (Vxy € z)(Vae € V){(|Q], 22), x1) € 2}

and then define the set of formulae F as

F=()f

With these definitions in place, we can now prove the first representability condition for
formulae, namely:

(VX)(ForM(X) — ZF - | X | € F)

Proof. By the metatheoretic induction principle for formulae.
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Base Case: Atomic formulae.

Shown previously.

Inductive Case 1: Negation.

Induction Hypothesis: Assume for arbitrary X that

© oo N O Ot s W N

— = = =
= w N = O

FOrRM((X)3) — ZF F (X), € F

X = [, (X)2]
- For((X):)
ZF b (X), €F
*| [(X)] €F
* zef
* (Vo € 2){|—],x) € =

* | X ] €z

x| (Vze f)|X] ez
| Xlens

x| |[X]|eF

ZFF |X| €T
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Premise
Premise

[H: 2

ProvE: 3
Assume
DefE(f): 5
Lemma(6): 4
VeE: 6,7
DefI(Code): 8
RepE(=): 9,1
Vel 10
Defl(N): 11
DefI(F): 12
ProvI: 13



Inductive Case 2: Binary Connectives.

Induction Hypothesis: Assume for arbitrary X that

© o0 N O Ot ks W N

= = R =
= W N = O

*

*

FORM((X)g;) — ZF F [(X)y] €F

7(‘v’x1,x2 € 2){(|a],(zy,z2)) € 2

(X
(@
O

)2 €
1AL 2], L(X

)22])) € 2

[(X)21, (X)2]]] € 2
| X | €z

(Vze f)|X] €z

X]ens

| X|eF

ZFF |X|€F
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Premise
Premise

IH: 2

ProvE: 3
Assume
DefE(f): 5
Lemma(6): 4
VeE: 6,7
Defl(Code): 8
RepE(=): 9,1
Vel 10
Defl(N): 11
DefI(F): 12
Provl: 13



Inductive Case 3: Quantified Formulae.

Induction Hypothesis: Assume for arbitrary X that

FORM((X)2) — ZF F |(X)o] € F

1 X =@, (X)12], (X)2]

2 VAR((X)12)

3 ForM((X)2)

4 | ZFF (X)) €F

5 | «| [(X)o] €F

6 * z€ef

7 * (‘v’xl € z)(ng e V){(|Q],x2), 1) € 2
8 * [(X)12] €

9 * |(X)2] € =
10|« | (@ (X)), [(X)2]) € 2
11 * L@, (X) 2], (X)2]] € 2
12 * | X | €z
13 x| (Vze f)|X] ez
14 | | X]eNf
15 x| | X]eF
16 | ZFF|X|eF

Premise
Premise
Premise

IH: 3

ProvE: 4
Assume
DefE(f): 6
RepE(Var): 2
Lemma(6): 5
VeE: 7,9,8
Defl(Code): 10
RepE(=): 11,1
Vel 12
DefI(N): 13
Defl(F): 14
ProvI: 15

Thus by the metatheoretic principle of induction for formulas, we conclude

(VX)(ForM(X) — ZF - | X| € F)

To establish Ry for formulae, we must prove

(VX)(NoTFORM(X) — ZF - | X | ¢ F)

Similar to the representability proof for non-variables, we may equivalently define the set of

non-formulae NF in ZF and show
1. (VX)(NotForM(X) — ZF + | X | € NF)
2. ZFF (Vx € F — z ¢ NF)
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3. ZF+ (V2 € NF — 2 ¢ F)

We will first prove (1) by providing a metatheoretic and object-theoretic definition for non-
formulae.

Metatheory
VX)((X =S
VX =I[=09]
VX =1[0_9]
V(X = [=[(X)a1, (X)22]] & (NOTTERM((X)21) V NOTTERM((X)22)))

V(X = [(X)1 (X2, - [(X)2~-~217(X)2~~22]"']]&(NOTPRED(( )1)
V NOTTERM((X)a1) V- -+ VNOTTERM((X)2..91) V NOTTERM((X )2...22)))
)1,

V(X = [(X)1, (X )2]&NOTPRED((X) )& (X1 # () & (X)1 # (O)
&(Xh# (=) &(X)n #Q)
V(X = [, (X)) & NOTFORM((X)3))
V(X =10, [(X)a1, (X)a2]] & (NOTFORM((X)a1) V NOTFORM((X )22)))
V(X = [[Q, (X)12], (X)2] & (NOTVAR((X)12) V NOTFORM((X)2))))

— NoTForM(X))
with an appropriate induction principle for non-formulae.
Object-theory
We define the set of non-formulae NF as NF = (\nf, where nf is

nf={z€pB)|0e2&([=],0) € 2&([D],0) € =
& (Vz)(Vy € NT)(([=], (z,9)) € 2&([=], {y. 2)) € 2)
& (Y, ..., x,)(Vx € pred)(Vy € NT)((z, (y, ..., (x1,2Zp) ) € 2

&lz, (21, .., (@n,y) ) € 2)

& (Va)(Vy € NV){(([Q],y), z) €

& (Vo) (Vy € npred)((y # |~ &y # (O] &y # [=] & (yh # |Q))
— (y,z) € 2)

& (Vx € z)(|—],x) € 2

& (Vo)(Vy € 2)({[O], (z,y) € 2& (D], (y, 2)) € 2)

& (Va)(Vy € 2){(lQ], x), y) € 2}

We can now prove the representability of non-formulae by proving (1),(2), and (3) above.

30



Proof. We will show (1) by the principle of induction for non-formulae.

Base Case 1: X = 5.

© o0 N O Ot ke W N

Base Case 2: X = [=,5].

© o0 N O Ot ks W N =

*

*

zenf
0ez
|1S] € 2

| X ]| €=

(Vzenf)|X]| €z

[ X] eNnf
| X| € NF

ZF+ | X| € NF

*

*

7z€nf
([=].0) € =
[[=,5]] €2
| X]| €z

(Vzenf)| X] €z

[ X]eNnf
| X | € NF

ZF+ | X| € NF
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Premise
Assume
DefE(nf): 2
Defl(Code): 3
RepE(=): 4,1
Veli b
DefI(N): 6
Defl(NF): 7
Provl: 8

Premise
Assume
DefE(nf): 2
Defl(Code): 3
RepE(=): 4,1
Vel 5
DefI(N): 6
Defl(NF): 7
Provl: 8



Base Case 3: [0, 5].

© o0 N O Ot ks W N

X

*

*

*

*

*

*

*

= [0, 9]

zenf

(a0 € -
[0, 8] € =

| X ]| €z

(Vzenf)| X] €z

[ X] enf

| X | € NF

ZF+ | X| € NF
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Premise
Assume
DefE(nf): 2
Defl(Code): 3
RepE(=): 4,1
Vel 5
DefI(N): 6
Defl(NF): 7
Provl: 8



Base Case 4: X =

=

1 X = [=,[(X)21, (X)a2]]
2 NOTTERM(( )o1) V NOTTERM((X )92)
3 NOTTERM(( )o1)
4 * zenf
5 «| | (Vo)(Vy e ND)(([=], (z,9)) € 2 &
* ([=],(y,2)) € 2)
6 * |(X)a21] € NT
7 | | (=12l [(X)22]) € 2
8 * L=, [(X)21, (X)22]]] € 2
9 * | X ]| € =
10 *| (Vzenf)|X] ez
11 x| | X] eNnf
12 x| |X]eNF
13 ZF+ |X| € NF
14 NOTTERM((X )22)
15 7* zenf
16 | | (Vo)(Vy e NT)(([=], (z,9)) € 2 &
* ([=].(y,2)) € 2)
17 * | (X)22] € NT
18 | | =L )], [(X)22])) € 2
19 * L=, [(X)21, (X)22]]] € 2
20 x |X| ez
21 x| (Vzenf)X] €z
22 x| | X] eNnf
23 x| |X|€eNF
24 ZF+ | X| € NF
25 ZF+ |X| € NF
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,[(X)a1, (X)2o]] either of (X )9 or (X)ge is not a term.

Premise
Premise
Assume

Assume

DefE(nf): 4
RepE(NotTerm): 3
VeE: 5,6
Defl(Code): 7
RepE(=): 8.1

Vel 9

DefI(N): 10
DefI(NF): 11
ProvI: 12

Assume

Assume

DefE(nf): 14
RepE(NotTerm): 15
VY E: 16,17
Defl(Code): 18
RepE(=): 19,1

Vel: 20

DefI(N): 21
Defl(NF): 22
Provl: 23

VE: 2,13,24



Base Case 5: X = [(X)1, [(X)a1, .-+, [(X)2.01, (X)2..02] - - - ]] where either the first com-
ponent is not a predicate symbol or one of the other components fails to be a term.

Similar to Base Case 4, with arbitrarily many subderivations, each corresponding to one
of the disjuncts above where either the first component fails to be a prediate or one of the

other components fails to be a term.

Base Case 6: The initial component of X fails to be a logical symbol or predicate.

1 X = [(X)1, (X)2] Premise
2 NOTPRED((X)1) Premise
3| (Xn#()&X)#O)&Xh # (=) &X)n #Q Premise
4 * zenf Assume
5 | x| | (Vo)(Vy enpred)((y # | -] &y # [B] &y # |=] &

* Wh # [Q]) — (v, 2) € 2) DefE(nf): 4
6 * [(X)1] € npred RepE(NotPred): 2
T x| (O A R & (X)) # D& (X # [=] &

* (X)) # Q) — (LX), [(X)2)) € VeE: 5,6
8 | | | L A & (X # (B & (X # [=] &

* [(X)u] # Q) RepE(=): 3
O | x| | (XL LX) €2 SE 78
10 * [[(X)1, (X)a]] DefI(Code): 9
11 * | X] €z RepE(=): 10,1
12 x| (Vzenf)|X]| ez Vel 11
13 x| | X] eNnf DefI(N): 12
14 | %| |X]eNF DefI(NF): 13
15 | ZFF |X]€NF Provl: 14
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Inductive Case 1: X = [, (X)2] and (X)2 is not a formula.

Induction Hypothesis: Assume for arbitrary X that

NOTFORM((X)2) — ZF F |(X)2| € NF

1 X = [, (X)) Premise

2 NOoTFORM((X)2) Premise

3 | ZFF|(X),] eNF TH: 2

4 x| [(X)2] € NF ProvE: 3

5 * zenf Assume

6 * (V:c €2){|~].x) €z DefE(nf): 5
7 * [(X)2] € 2 Lemma(6): 4
8 | x| | 2L 1(X)2) €2 VeE: 6,7

9 * |[7, (X)o]] € 2 Defl(Code): 8
10 * | X ]| €z RepE(=): 9,1
11 x| (Vzenf)| X] ez Vel 10
12 x| | X]eNnf DefI(N): 11
13 | *| |X]eNF DefI(NF): 12
14 ZFF |X| e NF Provl: 13

Inductive Case 2: X = [0, [(X)a1, (X)22]] and > 1 component not a formula.

Induction Hypothesis: Assume for arbitrary X that

NOTFORM((X)9) — ZF = |(X)2| € NF
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X =0, [(X)a1, (X)2]]

| NOTFORM((X)21) V NOTFORM((X)22)

7NOTFORM((X)21)
ZF b |(X)s1] € NF
* L(X)Qlj € NF

* zenf

#| | (Vo)(Vy € 2)(([O), (z,y) € 2& (D], (y,2)) € 2)
#| | (Xl €

| | (B LX), [(X)22]) € 2
* LE, [(X)a1, (X)2]l] € 2

* | X | €z

x| (Vzenf)| X] ez

x| | X]eNnf

x| |X]eNF

ZFF | X| e NF
NOTFORM((X )22)

ZF F |(X)s] € NF
x| [(X)| € NF

* 7z€nf
* (Va)(Vy € 2)((|8], (z,y) € 2& (O], (y,z)) € )
* [(X)22] € 2

* (18], ([(X)a1], [(X)a2]) € 2
* 1O, [(X)a1, (X)a22]l] € 2

* | X ] €z

x| (Vzenf)| X] ez

x| | X]eNnf

x| |X] eNF

ZF - |X] € NF
ZFF |X] € NF
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Premise
Premise
Assume

[H: 3

ProvE: 4
Assume
DefE(nf): 6
Lemma(6): 5
VeE: 7,8
Defl(Code): 9
RepE(=): 10,1
Vel 11
DefI(N): 12
DefI(NF): 13
Provl: 14
Assume

[H: 16

ProvE: 17
Assume
DefE(nf): 19
Lemma(6): 18
VY E: 20,21
DefI(Code): 22
RepE(=): 23,1
Vel 24
DefI(N): 25
DefI(NF): 26
Provl: 27

VE: 2,15,28



Inductive Case 3: X = [[Q, (X)12], (X)2] and (X )12 is not a variable or (X), is not a
formula.

Induction Hypothesis: Assume for arbitrary X that

NOTFORM((X)2) — ZF F |(X)2| € NF

1 X =[lQ, (X)i2], (X)2] Premise

2 NOTVAR((X)12) V NOTFORM((X)2) Premise

3| | NOTVAR((X)1) Assume

4 7* zenf Assume

5 * (Vz)(Vy € NV){(|Q],y),x) € = DefE(nf): 4

6 * [(X)2| € NV RepE(NotVar): 3
7 | (@) [(X)12]), [(X)2)) € 2 Vek: 5.6

8 * L@, (X)12], (X)2]] € 2 Defl(Code): 7
9 * | X] ez RepE(=): 8,1
10 x| (Vzenf)|X] ez Vel 9

11 x| | X|eNnf DefI(N): 10
12 «| |X]€eNF DefI(NF): 11
13 ZF I\ | X| € NF Provl: 12
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(cont’d)

1 NoTFORM((X)2) Assume
15 | | ZFF [(X)y] € NF TH: 14
16 x| [(X)2] € NF ProvE: 15
17 * zenf Assume
18 * (Vo)(Vy € 2)((|Q],z),y) € =z DefE(nf): 17
19 * |(X)2] € = Lemma(6): 16
20 | (@) (X)), [(X)2]) € 2 VeE 18,19
21 * L[[Q, (X)12], (X)2]] € 2 DefI(Code): 20
22 * | X ]| €= RepE(=): 21,1
23 x| (Vzenf)| X]| ez Vel 22
24 x| | X] eNnf Defl(N): 23
25 x| |X] eNF Defl(NF): 24
26 ZFF |X| e NF Provl: 25
27 | ZFF |X|eNF VE: 2,13,26

Thus by the principle of induction for non-formulae, we have
(VX)(NoTtForM(X) — ZF F | X | € NF)

We must now show that ZF can prove that F and NF are disjoint by showing (2) and
(3) from earlier. As in the case for variables, the object-theoretic definitions for F and NF
in ZF justify principles of induction for each.

We will first show ZF + (Vz)(x € F — x ¢ NIF) using the induction principle for F just
described and the following lemma that is justified by the definition of NIF:

(Vw)(w € NF +— w =0V w=(|=],0) vw=(0],0)

V (3z)(3y € NT)(w = (|=], (z,9)) Vw = (|=], (y,2)))

V (31, ..., 2,) 32 € pred)(Jy € NT)(w = (x, (y, ..., (X1, Zp) )
VeV = (2, (x1, ..., (Tn,y) -+ )))
V (3z)(Fy € NV)w = ((|Q], ), z)
V (3x)(3y € npred)(y # [—]&y # [O)&y # |=]&(y)1 # [Ql&w = (y, z))
V(T € 2)w = (|~],2) V(3r)(Fy € 2)(w = (O], (z,y))

Vw=([0],(y,2))) vV (Fz)(Ty € 2)w = {([Q], 7),y)

The proofs for the base cases (where x is some atomic formula) will not be demonstrated
explicitly, as they involve only the representation of explicitly coded objects and are thus
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not any different from the cases shown in the proof of the representability of non-variables.
We will, however, provide the formal proofs for each of the inductive cases.

Inductive Case 1: For arbitrary z € F, x = (||, 2).

Induction Hypothesis: Assume for z that

ZFFzelF — 2z ¢ NF

1 | *€ F Premise

2 x| z€F— 2¢NF H

3 * 7<hj,2> € NF Assume

4 * 7(L—|J ,z2)y =10 Assume

5 * 1 Lemma(2): 4

6 * 7(L—|J,z) = (|=],0) Assume

7 * z2=10 FTOP: 6

8 * z € NF Lemma(8): 7

9 | « 2 ¢ NF SE: 2,8
10 * L 11I: 8,9
11 * 7(L—|J,z) = (]3], 0) Assume
12 * 1 Previous Case: 11
13 ] * (32)3y € NT)({[~], 2) = ([=], (=,9))

o 1L ViRl s = =) ) Assume

14 * y € NT Assume
15 ] o« (e ==z ) vil=)2) = (=], (y,2))  Assume
16 * 7(L—|J7z) = (=], {(x,y)) Assume
17 * =] = |=] FTOP: 16
18 * 0= (0 «]) DefE(Code): 17
19 * 1 Lemma(2): 18
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(cont’d)

1 *
21 *
22 *
23 *
24 *
25 *
26 *
27 *
28 *
29 *
30 *
31 *
32 *
33 *
34 *
35 *
36 *
37 *
38 *
39 *
40 *
41 *
42 *
43 *

([=):2) = (=], (v, )
1

al

1

(3x1,...,2,)(3z € pred)(Jy € NT)
(=], 2) = (z,{y, ..., (21, 2,) - )V
VA=) ) = (e (e (T, y) - )))
xr € pred
y € NT
(=], 2) = (@, (y, ..., (x1,2) - )V

VA=), 2) = {x, (o, (e, y) )

()2 = s (e ) )
-] ==
(Fy1)0 = (0, y1)
1

40

Assume

Previous Case: 20
VE: 15,19,21
JeE: 13,22

Assume
Assume

Assume

Assume
Assume
FTOP
Lemma(9): 29
Lemma(2): 30

Assume
Previous cases: 33
VE: 27,31,....,34
JeE: 2435
Assume
Assume
Assume

FTOP: 39
DefE(Code): 40
Lemma(2): 41
JeE: 37,42



(cont’d)

1 * (F2)(Fy € npred)(y # -] &y # |B] &y # |=] &

* - Wh #F QL&) 2) = {y,2)) Assume
45 y € npred Assume
46 y# -] &y # O] &y # [=] &) # Q] Assume
47 ()2 =, 2) Assume
48 =) =y FTOP: 47
49 # [ &E: 46
50 1 1T: 48,49
51 JE: 44,50
52 (Jz € NF)([~], 2) = (|, z) Assume
53 x € NF Assume
b4 ([=], 2) = (=], 2) Assume
55 r=x FTOP: 54
56 z € NF _F: 5355
57 = ¢ NF —E: 2,1
58 il 1T: 56,57
59 JeE: 52,58
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61
62
63
64
65
66
67
68
69
70
71
72
73
74
I0)
76
77
78

79
80

* (32)(Fy € 2)([=], 2) = (O], (=, 9))V
1L (ke =18y 7))

* Yyez

* (=) =8y vln]2) =
* (=2 = (18] ()

* [~} = (0]

* (Fy1)0 = (0, 31)

* L

. (=), 2) = ([0, {y, 2))

* L

* 1

* L

o || @@y e )2 = (@) 2).u)
* yez

A Uee = el

. =) = {[Q).2)

. 0=1{Ql.)

* L

* L

* L

«| (1=),2) ¢ NF

ZFF (|—],2) ¢ NF

42

Assume
Assume
Assume
Assume

FTOP: 63
Lemma(9): 64
Lemma(2): 65
Assume
Previous Case: 67
VE: 62

JcE: 60,69
Assume
Assume
Assume

FTOP: 73
DefE(Code): 74
Lemma(2): 75
JE: 71,76
Lemma(8):
5.10,12,23,
36,43,51,59,70,77
—[: 78

ProvI: 79



Inductive Case 2: For arbitrary 2y, 20 € F, x = (O], (21, 29)).

Induction Hypothesis: Assume for 2y, z5 that
ZFl_ZlEFZl¢NF

The proof for this case will follow the same procedure as in Case 1, i.e. each case will fail in
the same way with |O] being the term that will generate the contradictions in place of the
term |—] above. We will thus not show every case. The only two cases that will be different
(and for which formal proofs will be provided) are:

o (Jz e NF)([O], (21, 22)) = (=], )
e (F2)(3y € NF)(([B], (21, 22)) = ([O], (z,9)) V([B], (21, 22)) = ([B], {y, )

To be clear, the following two subderivations are part of a larger derivation, the larger
derivation intended to establish ZF + (|O], (21, z2)) ¢ NF by using the same lemma that was
utilized in Case 1. The argument is indirect, so each subderivation generated by the lemma
is to establish a contradiction. Thus the two subderivations given below, corresponding to
the two cases described, will each try to establish a contradiction.

1 * 7(3:1: e NF)(|OJ, (z1, 22)) = (|—], ) Assume

2 * x € NF Assume

3 * JLDJ, (z1,29)) = (|~], ) Assume

4 * || = || FTOP: 3

5 * (Fy1)(0,y1) =0 Lemma(9): 4
6 * 1 Lemma(2): 5
7 x| L JeE: 1,6
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1 x| (Fz)(Fy € NF)((| O], (21, 22)) =
w18 ) V(8] (2 22)) = (1O), (g, 2))) - Assume
2 * y € NF Assume
3 || (1B (a1, 22)) = (18], (@, 9))v
w8 (=, 22)) = (18], (g, 7)) Assume
4 | x| B ey 2) = (18], (=) Assume
5 * =Y FTOP: 4
6 * 29 € NF =E: 2,5
7 * 2o ¢ NF H
8 x 1 11 6,7
9 w18 () = (0], 2)) Assume
10| = a=y FTOP: 9
11 * z1 € NF =E: 2,10
12 * 7 ¢ NF TH
13 * 1 A1 11,12
14 * € VE: 3,8,13
15 «| L IE: 1,14

Inductive Case 3: For arbitrary z € F and y € V, z = ((|Q], v), 2).

Induction Hypothesis: Assume for z that
ZFFzeFz¢NF

As in the previous case, it is unnecessary to show every sub-case. Most of the cases
allow one to immediately infer that two different basic codings are equal to each other, and
since all of the basic codings must be unique, we get a contradiction trivially. The case that
will be explicitly carried out is the last case where we assume (3x)(Jy € 2){({|Q],v),2) =
((|@],x),y) and try to derive a contradicion (this is again just one subderivation of a larger
derivation that is trying to establish that ((|Q],y),z) ¢ NF using the same main lemma
from the previous cases. The proof is by refutation, so each subderivation, including the one
shown below, should try to establish some contradiction).
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L] x| BBy e NF)(([Q],y),2) = ([Q),7),y  Assume
2 * y € NF Assume
3 x| | (@Ly,2) ={lQ], )y Assume
4 * 2=y FTOP: 3
) * z € NF =E: 24
6 * z ¢ NIF IH

7 * s 1I: 5,6
8 x| L JE: 7

This is the final inductive case, and thus we conclude by the principle of induction for
the set [F that
ZFF (Vz)(x € F — = ¢ NF)

To conclude the representability of non-formulae, and thus the complete representability
of formulae, it remains to show that

ZFF (Vz)(r e NF — 2 ¢ F)

so that it is guaranteed that the set containing all coded formulae and the set containing all
coded non-formulae are disjoint. The proof of this claim will only be indicated as it follows
nearly identically to the proof carried out for the previous claim. We use the induction
principle for NF and use the following lemma justified by the definition of formulae:

(Vz)(x € F¢—z e AV (IzeF)x = (|—]z)
V(321,20 € F)o = ([D], (21, 22)) V (Fr € V)(Fy € F)z = (([Q], ), v))

For each case in the inductive argument, we assume that x is of some particular structure
and try to show that ZF - z ¢ F. Each case proceeds indirectly, assuming = € F and
using the lemma described above to derive a series of subderivations, each establishing a
contradiction.

From this we conclude that ZF F (Vz)(x € NF — x ¢ F) by the principle of induction
for NF.

We have shown

—_

. (VX)(FORM(X) — ZF I | X| € F)

[\]

. (VX)(NotForM(X) — ZF F | X | € NF)
3. ZF F (Vz)(x € F — = ¢ NF)
4. ZF = (Vz)(r e NF — z ¢ IF)
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(1) is the first representability condition, R;. (3) and (4) together show that F and NF
are disjoint, and these together with (2) show

(VX)(NoTFORM(X) — ZF - | X | ¢ F)
which is the second representability condition Ry, and thus we have shown that formulae are

representable inside Z F'. O

2.7 Representability of Free Variables

Informally, free variables are specified as
e All variables are free in all terms and atomic formulae.
e If z is a free variable of formula ¢, then x is a free variable of —p
o If z is a free variable of formulae ¢ and ¢, then x is a free variable of ¢ 0.

o If z; is a free variable of formula ¢ and x5 is a variable different from z;, then z; is a
free variable of Qzop

(informal specification is based largely on Van Dalen’s formulation in Logic and Structure

[5])
Metatheory

We again require the objects representing free variables to be of a particular binary tree
structure:

X =[[[X1,...,X.], V], F]

where X1,..., X,, are some other free variable objects that are appealed in inductive cases
(this list may be empty, for base cases), V is the free variable itself, and F' is the formula
for which the variable is free.

The metatheoretic definition is as follows:

(VX)([[X = [(X)1, (X)2] & VAR((X)1) & TERM((X))]
V [X = [(X)1, (X)2] & VAR((X)1) & ATOM((X)2)]
VX = [[(X) 1211, (X)12], [, (X)122]] & FREE((X)12) & FORM((X)122)]
VX = [[(X) 12011, [(X D121, (XD i22]ls [0 [(X) 1212, (X)1202]]] & FREE((X )12)

X)1222) (X)12111 = (X)12211]

also with an induction schema for proving (VX)(FREE(X) — ¢(X)).
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Object-theory

As in the other cases, we define the smallest set satisfying the appropriate conditions, in this
case for free variables. We first define fv as

fo={z€pB)| {zeB|(x); eV&(x)€T}Cz
&{reB|(zx); e V& (z), € A} C 2

&(ve € 2)((x)2 € F — ({(2)11, 2), ([ =], (2)2)) € 2)
&(va,y € 2)([(2)2, (y)2 € F& (2)11 = (y)u] —

1= (h

(@), (2,90, (1B, (2)2, (¥)2))) € 2)
&(va € 2)(Vy € V)([(2): € F& (2)1n # y] —
2)

({(@)1,2), {[Q],9), (x)2)) €

and then define the set of free variables F as

F=(fv

We can now show by the principle of induction for free variables that

}

(VX)[FREE(X) — ZF + | X | € F]
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Proof. Base Case 1: Terms.

© o0 N O Ot = W NN

NN NN NN NN s e e e e
o) B ST GV VN =N o RN o BN I ) BN G GV VN =)

X = [(X)1, (X)2]
VAR((X)1)
TERM((X)2)
7* z € fu
s | {zeBl@heV&(z)eT}C2
* yeb
* (V1,29 € y){x1,22) €Y
* (X)) eV
* (X)) eB
* LX)l ey
* [(X)2] €T
* [(X)2] €B
* [(X)2] €y
* (LX), [(X)2]) €
* (Vy € ){L(X)1], [(X)2]) €y
| | (L], L(XD)2]) € Mo
| | (LX) [(X)2]) € B
| | (L (X)) €V
* (L], [(X)2]))2 €T
| | (LX) [(X)2]) e {z € B[ (2)1 € V& (z); € T}
| | (L], [(X)2]) € 2
* L[(X)1, (X)o]) € 2
* | X ]| €z
x| (Vz € fu)|X] ez
| [ X]eNfo
x| | X]|eF
ZFF|X|eF
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Premise
Premise
Premise
Assume
DefE(fv): 4
Assume
DefE(b): 6
RepE(Var): 2
DefE(V): 8
Lemma(6): 9
RepE(Term): 3
DefE(T): 11
Lemma(6): 12
VeE: 7,10,13

Defl(Comp): 17,18,19

DefE(C): 5,20
DefI(Code): 21
RepE(=): 22,1
Vel: 23
Defl(N): 24
Defl(F): 25
Provl: 26



© 00 N O Ot e W N =

NN NN NN NN kR e e
TJ S R W N R O © o~ Ul R W N~ O

Base Case 2: Atomic Formulae.

X = [(X)1, (X)2]
VAR((X)1)
AToM((X)s)
7* z € fu
| | {z€B|(@) cV&(z), €A} C 2
* yeb
* (V1,29 € y){(x1,29) €Y
* |(X)] eV
* [(X)] €B
* (X)) €y
* |(X)2] € A
* [(X)2] €B
* [(X)2] €y
* (LX), [(X)2]) €y
* (Vy € D)(L(X)1), [(X)2]) €y
| (IO L(XD)2]) e Nb
| (L)L L(X)2]) € B
* (LX) [(X)2)))r eV
| (L], L(X)2]))2 € A
| | (LX) L(X)2]) e {w e B (2)1 € V& (2)2 € A}
* (L(X)1], [(X)2]) € =
* L[(X)1, (X)2]) € 2
* | X]| €z
x| (Vze fu)|X] ez
* [ XTeNfo
x| | X]eF
ZFF|X|eF
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Premise
Premise
Premise
Assume
DefE(fv): 4
Assume
DefE(b): 6
RepE(Var): 2
DefE(V): 8
Lemma(6): 9
RepE(Atom): 3
DefE(A): 11
Lemma(6): 12
VeE: 7,10,13

Defl(Comp): 17,18,19
DefE(C): 5,20
Defl(Code): 21
RepE(=): 22,1

Vel: 23

DefI(N): 24

Defl(F): 25

Provl: 26



Induction Case 1: Negation.

Assume for arbitrary X that

© 00 g O Ot kW=

10
11
12
13
14
15
16
17

FREE((X)11) — ZF F [(X)n] € F

* [(X)12] €
(L

* LX) 11, (X2, [
* | X | €

x| (Vze fu)|X] ez

x| | X]eNfo

x| | X]|eF
ZFF|X|eF

= [[(X)11, (X)1112]; [, (X)112]]
FREE((X)11)
jORM((X)HQ)
ZFH (X)) e F
| [(X)u] €F
*| | %€ fu
* (Vz € 2)((2)2 € F — ((z, (2)12), (| =], (x)2))
* [(X)u] € 2

* [(X)12] € F— ((L(X)11], [(X)1n12]),
* (=], (X )112J>> €z

(X1, [(XD)1a2)), (=), [(XDne))) € 2
, (X)u2]]] € 2

20

€ 2)

Premise
Premise
Premise

IH: 2

ProvE: 4
Assume
DefE(fv): 6
Lemma(6): 5

VeE: 7.8
RepE(Form): 3
SE: 9,10
DefI(Code): 11
RepE(=): 12,1
Vel 13
Defl(N): 14
Defl(F): 15
ProvI: 16
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15
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19
20

Induction Case 2: Binary Connectives.

Assume for arbitrary X that

FREE((X)11:) — ZF F |[(X)11:] € F

X = [[[(X) 111, (X)112], (X)11112) [B, [(X) 1112, (X)1122]]]
FREE((X)114)
FORM((X)1152)
7(X)11112 - (X)11212
JF + L(X)HZJ e F

ol

x| (X)) € F

* z € fo

* (Va,y € 2)([(%)2, (¥)2 € F& (2)12 = (Y)12] —

* (({z,9), (2)12),

* ([O], ((z)2, ()2))) € 2)

* [(X)i] €

* [[(X)1112], [(X)1122] € F& [(X)11112] = [(X)1212]] —
* (LX), [(XD)12]), (X)11112),

* ([0, ([(X)1112], [(X)1122]))) € 2

* (X112, [(X)1122] € F

* [(X)11112] = [(X)11212]

* (X112, [(X)1122) € F& [(X)11112] = [(X)11212]

* (LX), [(XD)2]), (X)a1112),

* ([0, ([(X)1112]; [(X)1122]))) € 2

* LX) 111, (X)e]s (X)1aaa2], [0, [(X) 1112, (X)1i22]]]] € 2
* [ X] €

x| (Vze fu)|X] ez

«| [ X]eNfu

x| | X]eF

ZF ¢+ | X eF

Premise
Premise
Premise
Premise
IH: 2
ProvE: 5

Assume

DefE(fv): 7
Lemma(6): 6

VeE: 8,9
RepE(Form): 3
RepE(=): 4
&I 11,12

SE: 10,13
DefI(Code): 14
RepE(=): 15,1
VI 16
DefI(N): 17
DefI(F): 18
ProvI: 19
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12

13
14
15
16
17
18
19
20
21
22

Induction Case 3: Quantified Formulae.

Assume for arbitrary X that

FREE((X)11) — ZF F [(X)11] € F

= [[(X)u, (X
FREE((X)11)
FORM((X)HQ)
VAR((X)ng)
7(X)1112 7£ (X
ZF - L(X)IIJ e F
| [(X)n]eF

* z € fu

(
(
)212

* (Ve e z)(Vy e V)([(x), e F&
* ((z, (2)12), ([Q]. v), (x)2))
* [(X)u] €
* [(X)212] €
* [[(X)112] € F&[(X
* ((LX
[(X)2] €

L[(XD)112] # [(X)212]
* [(X)112) € F& [(X)ne] # |

(€ I

L

* (X)), [(X)2]), (€

* [(X) 11, (X)1112], [[Q; (X)212],
* | X ]| €z

x| (Vz € fu)|X] ez

| XJeNfo

x| | X]eF

ZFFH|X|eF

)1112]7 HQ? (X)212]7 (X)112H

()12 #y] —
€ z)

Jiiz] # [(X)ai2]] —
)1 J [(X)1m2]), (@], [(X

(X)212]
QJ, [(X

Ja12]), [(X)112])) € 2
(X)u2ll] € 2

Thus by the principle of induction for free variables,

(VX)[FREE(X) — ZF + | X | € F|

o2

Ja12]), [(X)12])) €

Premise
Premise
Premise
Premise
Premise
IH: 2
ProvE: 6

Assume

DefE(fv): 8
Lemma(6): 7
RepE(Var): 4

V.E: 9.10,11
RepE(Form): 3
RepE(=): 5
&I: 13,14

SE: 12,15
Defl(Code): 16
RepE(=): 17,1
Vel 18
DefI(N): 19
Defl(F): 20
ProvlI: 21



We must also show
(VX)INOTFREE(X) — ZF - | X| ¢ F]

The proof of this claim proceeds in the same way that the proof for the representability of
non-variables did. As was mentioned before, we will not carry out the proof for this direction
as the general structure follows that of the proof of non-variables exactly.

With the proof of Ry, and Ry being taken for granted (though straightforwardly provable),
we conclude the representability of free variables.

2.8 Representability of Bound Variables

The informal specification of bound variables is as follows:
e If z is a free variable of ¢, then z is a bound variable of Qxp
e If x is a bound variable of ¢, then x is a bound variable of —¢
e [f z is a bound variable of ¢ or of ¥, then x is a bound variable of p O
e If z is a bound variable of ¢, then x is a bound variable of Qzy

(also based on Van Dalen’s formulation [5]).
Metatheory

The binary tree objects representing bound variables will be of a same structure as free

variables:
X =[[[Xy,...,X,], V], F]

where X1, ..., X, are some other bound variable objects, V is the bound variable itself, and
F' is the formula in which the variable occurs.

The metatheoretic definition is formulated as:

(VX)([[(Vz € F)((2)2 € F — {{(z)11, ), (([Q), (x)11), (2)2)) € 2)]

( ( )
VX = [[(X)1211, (X)2], [, (X)122]] & BOUND((X)12)]
VX = [[(X)12111, (X)121], (3, [(X)1212, (X)1222]]] & BOUND((X)121) & FORM((X )122)]
VX = [[(X)12111, (X)122], [0, [(X)1212, (X)1222]]] & BOUND((X)122) & FORM((X)121)]
VX = [[(X)1211, (Xh2], [[@, (X)212], (X)122]] & BOUND((X)12) & VAR((X)212)]]

— BouND(X))

also with an induction principle for proving (V.X)(BOUND(X) — ¢(X)).
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Object-theory
We define the set bv to be

bv={z € pB)|(Vz € F)(((z)n,z)

&(Vz € 2){((z)11, 2
&V € 2)(Vy € F
&V € 2)(Vy € F
&NVr e z)(Vy eV

~_ — ~—
o~ T~
o~ —~
—~ o
< &
~ s S
— =
— =

5]
E I3 2

and then define the set of bound variables B to be

B={bv

We can now prove R; for bound variables. We will show

(VX)[BounD(X) — ZF F | X| € B] by induction on X.

Proof. Base Case: Formulae containing free variables.

1 = [[(X)11, (X)1m2], [[Q, (X112, (X)112]] Premise
2 FREE((X)11) Premise
3 FORM((X)112) Premise
4] zeby Assume
5 * 7(Vx€.7:)((3:)2€IF—>
* ((z, (x)lz) (L@, (@)12), (x)2)) € 2) DefE(bv): 4

6 * |(X)11] € RepE(Free): 2

)i

7 * |_(X)112 cefF —

* (([(X ) J [(X)112]), (L@, [(X)1n2]), [(X)ui2])) € 2 VeE: 5,6
)11

8 * |(X)112] € RepE(Form): 3
9 * (LD ], [(XD12]), ((LQJ, [(XD)1n12]), [(X)12])) € 2 —E: 7.8

10 * LX) 11, (XD 1112), [[@, (X)1112], (X)112])] € = DefE(Code): 9
11 * | X]| € = RepE(=): 10,1
12 x| (Vzebv)|X]| ez Vel: 11

13 x| | X]eNbv DefI(N): 12

14 x| | X]eB Defl(B): 13

15 ZFFH|X|eB Provl: 14

o4



Induction Case 1: Negation.

Induction Hypothesis: Assume for arbitrary X that

O 00 N O Ot ke W N =

e e S et
B ow N o~ O

BouND((X)11) — ZF F [(X)u] € B

X = [[(X)11, (X)1112], [75 (X)112]]

jOUND((X)H)

ZF L(X)HJ eB

*

*

*

*

*

(X)) €B

z € bv

(V€ ), (@ho), (1), (@))€ 2

[(X)u] €
(LX) ]s (X)), () [(X)2]) € =
LX) 11, (XD)1naa], [= (K]l € 2
[ X

J e
(Vzebv)|X]| €z

| X]| € ﬂbv
[ X] e

ZFF |X|eB
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Premise
Premise

IH: 2

ProvE: 3
Assume
DefE(bv): 5
Lemma(6): 4
VeE: 6,7
DefE(Code): 8
RepE(=): 9,1
Vel 10
DefI(N): 11
DefI(B): 12
ProvI: 13
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Induction Case 2.1: Binary Connectives (left component).

Induction Hypothesis:

BouND((X)11) — ZF F [(X)u] € B

X = [[(X) 11, (X)12]s B, [(X)i2, (X)222]]]
BoUND((X)11)
FORM((X)220)
ZFF [(X)u] €8
*| [(X)u] eB
* z € bv
* (Vo € 2)(Vy € F){(z, (¥)12), {[O], {(2)2,9))) € =
* [(X)11] € 2
* |(X)o2] € F
* (L], LXD1m2]), (1B, (LX) 112], [(X)222]))) € 2
* LX) 11, (X)1112], [0, (X112, (X)a222]]]] € 2
* | X | €z
x| (Vzebv)|X] ez
x| | X]eNbv
ol |X]eB
ZFF|X|eB

o6

Premise
Premise
Premise

IH: 2

ProvE: 4
Assume
DefE(bv): 6
Lemma(6): 5
RepE(Form): 3
VeE: 7.9
Defl(Code): 10
RepE(=): 11
Vel 12
DefI(N): 13
Defl(B): 14
Provl: 15
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Induction Case 2.2: Binary Connectives (right component).

Induction Hypothesis:

BouND((X)11) — ZF F [(X)u] € B

X = [[(X)11, (X)1m2]s B, [(X)221, (X)112]]]
BoUND((X)11)
FORM((X)221)
ZFF [(X)u] €8
*| [(X)u] eB
* z € bv
* (Vo € 2)(Vy € F){(z, (¥)12), (O], {y; ()2))) € =
* [(X)11] € 2
* |(X)oo1] € F
* (L], LXD1m2]), (1B, (L(X)221 ], [(X)112]))) € 2
* LX) 11, (X)1112], [0, [(X)221, (X)112]]]] € 2
* | X | €z
x| (Vzebv)|X] ez
x| | X]eNbv
ol |X]eB
ZFF|X|eB
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Premise
Premise
Premise

IH: 2

ProvE: 4
Assume
DefE(bv): 6
Lemma(6): 5
RepE(Form): 3
VeE: 7.9
Defl(Code): 10
RepE(=): 11,1
Vel 12
DefI(N): 13
Defl(B): 14
Provl: 15



Induction Case 3: Quantified Formlae.

Induction Hypothesis:

BouND((X)11) — ZF F [(X)u] € B

1 X = [[(X) 11, (X)e]s [[Q, (X)212], (X)112]] Premise

2 BoUuND((X)11) Premise

3 VAR((X)a12) Premise

4 | ZFF|(X)nl €B TH: 2

5 x| (X)) eB ProvE: 4

6 * zebv Assume

7| x| | (e )y e V(e (@ha) (1Q),9). (2)a)) € 2 DefE(bv): 6

8 * |(X)11] € Lemma(6): 5
9 * [(X)212] €V RepE(Var): 3
10 * (LX) ], (X)), (LQ], [(X)212]), [(X)12])) € 2 VeE: 7,89

11 * LIXD)11, (X)1112], [[@, (X)212], (X)11a]]] € 2 Defl(Code): 10
12 * | X ]| €z RepE(=): 11,1
13 x| (Vzebv)|X]| €z Vel 12
14 x| | X]eNbv DefI(N): 13
15 x| | X|eB Defl(B): 14
16 ZFF|X|eB Provl: 15

Thus by the principle of induction for bound variables, we have

(VX)[BouND(X) — ZF + | X | € B]

Again the proof of Ry for bound variables, i.e.
(VX)[NorBounD(X) — ZF F | X ]| ¢ B]

will be taken for granted, though it is directly provable by following the same procedure as
in the case of non-variables and non-formulae.

The proofs of Ry and R, together establish the representability of bound variables.
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2.9 Representability of Substitution Instances

©[t/x] will denote a substitution instance of ¢ where all free instances of x are replaced by
a term t. Substitution instances are then specified as:

o ylt/y] =t

o ylt/z] =y forz#y

o f(tr,...,tn)[t/x] = f(ti[t/z], ... t,[t/x])

o (ty =t)[t/x] = ti[t/x] = to]t/x]

o P(xy,...,x,)[t/x] = P(ti[t/x],... ta[t/x])

o (mp)[t/x] = —plt/x]

o (pOY)[t/x] = plt/z] DY[t/x]

o (Quo)[t/z] = Quyp

o If v #y, then (Qup)[t/y] = Quelt/y]
(based on Van Dalen [5])

Metatheory

Substitution instances will have the following binary tree structure:
X =[[[X1,..., X, [T, V]], F]

where X1,..., X, are some other substitution instance objects, T is the term being substi-
tuted in for the variable V', and F' is the formula that the substitution instance is of.
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The metatheoretic definition is formulated as:

(VX (([X = [[(X)11, [(X) 11, (X)122]]s (X)122] & TERM((X)11) & VAR((X)122)]
VX = [[(X)11, [(X)121, (X)122]], (X)11] & TERM((X ) 121) & VAR((X)11) &

VX =[[[(X)r,---, (X)) 11221, (X)112022) - - - ], [(X)111121, (X)111122]],
[(X)a1, [(X)1112, - -, [(X) 112212, (X)112.202] - - - ]]] & SUBST((X )111) & - - -
& SUBST((X)HQ...Q ) & TERM((X)HlQ) &--- & TERM((X)HUZ‘Q) &
(X)11112i = -+ = (X)11221120 = (X)112.2212s E FUNC((X)21)]

VX = [[[(X) 111, (X)12]s [(X) 111121, (X)111122]], [=, [(X) 1112, (X)1122]]] &
SUBST((X)11;) & TERM((X)1142) & (X)11112i = (X)112124]

VX = [[(X)1, [(XD)1na21, (X)11a2e]], [7, (X)112]] & SUBST((X)11) &

FORM((X)HQ)]

VX = [[(X)111, (X)12), [(XD1a1121, (X)11122)], [BUX ) 1112, (X)1122]]] &

SUBST((X)113) & FORM((X)11i2) & (X) 111120 = (X) 112123

VX = [[(X)1n, [(XD)1nn21, (X)11120]], [[@, (X)212], (X)112]] & SUBST((X)11) &
)

)
FORM((X 112) &VAR((X>212> &( )11122 7£ ( ) ]) — SUBST(X))
with an appropriate induction principle that establishes (VX )(SUBST(X) — ¢(X)).
Object-theory

We define s to be the set

s ={z € p(B)|(Vz € T)(Vy € V){{z, (z,y),y) € 2
& (Vz € T)(Vy1, y2 € V)(y1 # y2 — (Y1, (2, 42)), 1) € 2)

& (Vo e F)(Yy € T)((2)11 = [Q] — (D, {y, (2)12)),

& (Y, ..., x, € 2)(Vy € func)(((z1)2, ... (Xn)

(@)12i = -+ = (Tn-1)12i = (fb’n)u) (v,

& (V, ZUGZ)((( )2, ()2 € T& ()12
(

[\3\_/

(((z,9), {((2)121, (2)122)), ([ =], )

& (Vo € 2)((2)2 € F — ({z, {(2)121, x)m ), (L), (@)2)) € 2)
&(Vr,y € 2)([(2)2 € F& (y): € F& (v ]
) (z ( )

)2
({{z,9), (@121, (2)122)), ([B], € 2
& (Vx € 2)(Vy € V)([(z): € F& (z )122 £y —

({2, ((2)121, (2)122)), ([ Q, v), (7)2)) € 2)

and then define the set of substitution instances S to be

S:ﬂs
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By the principle of induction for substitution instances, we would like to prove the fol-

lowing statement:

(VX)[SuBsST(X) — ZF F | X]| €§]

Proof. Base Case 1: Term in for same variable.

© 00 N O Ot ks W N -

e S
Bow N Rk O

X = [[(X)11, [(X) 11, (X)122]], (X)122]
TERM((X)11)
| VAR((X)122)

*

*

*

*

*

zZ €S
(Vz € T)(Vy € V)((z, (z,y),y) € 2
[(X)u] €T
[(X)122] €V
(LD 1], (L], [(XD22]), [(Xh2e]) € 2
LX) 11, (X, (Xaa]], (X)122]] € 2
| X ] €z
(Vzes)|X]| €z
[ X] es
| X]| €S

ZF+ |X]| €S
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Premise
Premise
Premise
Assume
DefE(s): 4
RepE(Term): 2
RepE(Var): 3
VeE: 56,7
Defl(Code): 8
RepE(=): 9,1
Vel 10
DefI((): 11
DefI(S): 12
ProvI: 13



Base Case 2: Term in for non-identical variables.

N O Ot s W Ny~

0]

10
11

12
13
14
15
16
17
18
19

X = [[(X)11, [(X) 121, (X)122]], (X)11]
TERM((X)121)

VAR((X)11)

VAR((X)122)

(X1 # (X)12

* zes

* (Vo € T)(Vyr,y2 € V)(y1 # yo —
* {{y, (x, yz>> h) € 2)

* [(X)121] €

* (X)) €

* [(X)122] €

* L(X)11] # [(X)122] —

* (LD, (L&D 2], [(XD22]))s [(X)1a]) € =
* (X)) # [(X)122]

* (L], (LX), [((Xr22]))s [(X) 1)) € 2
* LX) 11, (X121, (X)122]], (X) 1]
* | X] €

x| (Vzes)|X]| ez

x| | X]eNs

x| | X] €S

ZFF |X] eSS
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Premise
Premise
Premise
Premise
Premise

Assume

DefE(s): 6
RepE(Term): 2
RepE(Var): 3
RepE(Var): 4

VeE: 7,8,9,10
RepE(=): 5
SE: 11,12
Defl(Code): 13
RepE(=): 14,1
Vel: 15
DefI((): 16
DefI(S): 17
ProvI: 18



Base Case 3: Quantified Formulae (substitution into bound variable)

1
2
3
4
)
6

10
11
12
13
14
15
16
17

= [[8, [(X)121, (X)a12]], (X)a]
ForM((X)2)

TERM

((
((X)121)
=Q

PRSI

(Ve e F)(vy € T)((2)n = Q] —
<<®7 <y7 <$>12>>7

x) € z)

(0, ([(X)121], [(X)212])), L(X)2]) € 2
LIS, (X121, (X)212]], (X)o]] € 2
| X] €z

(Vzes)|X]| €z

Induction Case 1: n-ary functions.

Induction Hypothesis: Assume for arbitrary X that

SUBST((X)lH) — JF L(X)IHJ €S

Premise
Premise
Premise
Premise

Assume

DefE(s): 5
RepE(Form): 2
RepE(Term): 3

VeE: 6,78
RepE(=): 4
—E: 9,10
Defl(Code): 11
RepE(=): 12,1
Vel 13
DefI(): 14
DefI(S): 15
ProvI: 16

SUBST((X)112..2i) — ZF F |(X)112.2:] €S
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12
13
14

15
16
17

18

= H[(X)lll ----- [(X)112---21, (X)112---22] Ce ]7
[(X) 1111215 (X)111122]]5

[( ) [(X)1112 ----- [(X)UQ..QU, (X)112--~222] e H]
SUBST((X)111) & - - - & SUBST((X ) 112..2)

TERM((X)lHQ) & & TERM((X)lllQiQ)
(X>11112’i == (X>112--~2112i - (X)112-~2212i

jUNc((X)Ql)

ZFF (X)) €S

ZF L(X)llz...QiJ €S
ol 10 €S, [(X)iani] €S

* Z€s

* (Vq, ..., z, € 2)(Vy € func)(((x1)2,...(Xn)2 € T&
* (T)12i = - = (Tn-1)120 = (Tn)12s) —

* (y, (1, ..., (Tp_1,Tp)-++)) € 2)

* [(X)111] € 2, ..., |(X)112..2i] € 2

* [(X)21] € func

* ([(X)1112]), - [(X)112.2012i] € T&

* L(XDmzd) = = [(X)11z2m12i) = [(X)112-22124])
* — (LX), (LX), -+

* ([(X)11z21)s [(X)11z22]) ) € 2
* LX)z, - [(X)nze2212i) € T
* L(XDmzd] = = [(X)ize2nzi] = [(X)112-22124]
* L( X112, -+ [(X)112002124] € T&

(
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* I_ X)llllZZJ == L(X)112---2112iJ = L(X>112---2212iJ
* (LX) ], (LX) 1], - -+,
* (LX) 1z-21]; [(X)112.22]) -+ +)) € 2

Premise
Premise
Premise
Premise
Premise

IH: 2

IH: 2
ProvE: 6-8

Assume

DefE(s): 10
Lemma: 9

RepE(Func): 5

VoE: 11,12,13
RepE(Term): 3
RepE(=): 4

&I: 15,16

—F: 14,17



(cont’d)

20
21
22
23
24

* LX) 111, -+ (XD 11221, (X 1120022] -+,

* [(XD)111121, (X)11n22]], (X1, [(X1nne, - -
* [(X)112212, (X)112.020] - - ]]]] € 2

* | X | €z

x| (Vzes)|X]|ez

x| | X]eNs

«| |X]es

ZFF|X| €S

Induction Case 2: Equality of terms.

Induction Hypothesis: Assume for arbitrary X that

SUBST((X)11;) — ZF F |[(X)115] €S
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)

Defl(Code): 18
RepE(=): 19,1
Vel: 20
DefI(): 21
DefI(S): 22
ProvI: 23
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10

11
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13
14

15
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= H[(X)lll ( )112]7 [(X)1111217 (X)111122]]7
(=, [(X)1112, (X) 112]]]
SUBST((X)114)

TERM((X)1142)

7(X)11112i - (X)11212i

JF L(X)IIZJ esS

* | [(X)] €S

* zZ €S

* (Vz,y € 2)(((2)2, (¥)2 € T& (2)12i = (Y)12:) —
* (@, y), ((2)121, (2)122)), {[=], ((2)2, ()2))) € 2)
* (X)) €

* (LX) 1m12), [(X)1122] € T&

* L[(X)11112i] = [(X)112121]) —

* (LX) v, (LD, [(X)111122])),

* ([=], (L(X )12, [(X)1122]))) € =

* [(X)1112)s [(X)1122] €T

* (X)) = [(X) 112124

* (X112, [(X)1122] € T& [(X)11mi2i] = [(X)112124]
* (LX), )5 (LX) 1z, [(X)111122])),

* ([=], (L(X)1m2], [(X)1122]))) € =

* LX) 100, (X)1a2], [(XD)1nni21, (XD 1ina2]],

* (=, [(X) 1112, (X)u22]l]] € =

* | X | €z

x| (Vzes)|X] ez

x| | X]eNs

x| |X] €S

ZFF|X] €S
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Premise
Premise
Premise
Premise
IH: 2
ProvE: 5

Assume

DefE(s): 7
Lemma(6): 6

VE: 8,9
RepE(Term): 3
RepE(=): 4
&T: 11,12

—E: 10,13

Defl(Code): 14
RepE(=): 15,1
Vel 16
DefI(): 17
DefI(S): 18
ProvI: 19



Induction Case 3: Negation.

Inductive Hypothesis: Assume for arbitrary X that

N O Ot e W NN =

oo

10
11

12
13
14
15
16
17

SUBST((X)11) — ZF F |[(X)11] €S

X = [[(X)11, [(X) 11121, (X)11122]], [, (X)112]]
SUBST((X)11)
ForM((X)112)
| ZFF (X)) €S
x| [(X)11] €S
* FASH]
* (Vo € 2)((x)2 € F — ((z, {(2)121, (2)122)),
* ([=]. (2)2)) € 2)
* |(X)11] € 2
* |(X)112] €F —
* (L], (LD 2], [(XD12])),
* ([=), [(X)na))) € 2
* |(X)112] €F
* (L], (LD 2], [(XD)1z2])),
* ([=), [(X)2])) € 2
* LX) 11, [(XD)er, (X)1m2]], [7, (X)e]]] € 2
* | X ]| €z
x| (Vzes)|X]| ez
x| [ X]eNs
«| [X|es
ZFF|X]| €S
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Premise
Premise
Premise
IH: 2
ProvE: 4

Assume

DefE(s): 6
Lemma(6): 5

VY E: 7.8
RepE(Form): 3

—E: 9,10
Defl(Code): 11
RepE(=): 12,1
Vel 13
DefI((): 14
DefI(S): 15
ProvI: 16
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Induction Case 4: Binary Connectives.

Inductive Hypothesis: Assume for Arbitrary X that

SUBST((X)11;) — ZF F [(X)11:] €S

X = [[[(X) 111, (X)112], [(X) 111121, (X)111122]], [BI(X) 1112, (X)1122]]]
SUBST((X)114)
FORM((X)1152)
7(X)11112i = (X)11212
ZFF|[(X)n €S
x| (X)) €S
* 77: €S
* (Va,y € 2)([(z)2 € F& (y)2 € F& (2)12i = (y)12:] —
* (&, 9), ((2)121, (2)122)), {[O], ((2)2, (¥)2))) € 2)
* L(X)
* (X )1112) € F& [(X)1122) € F& [(X)1m12i] = [(X)11212:]]
* — (L&D 1], LX) 112]), (LX) 1z, (XD 1in122])),

11iJ S

* ([0, ([(X)1112], [(X )1122J>>> €z

* [(X)1112] € F& [(X)22] €

* (X)) = [(X) 112124

* [(X)1112] € F& [(X)n22] € F& [(X)1in2i] = [(X)112124]
* (LD, LX) 12]), (LX) 111121 ], [(X)111122])),
* ([0, ([(X)1112], [(X)1122]))) € =

* LX) 111, (XD aa2], [(XD) 111121, (X)111122]],

* [D[(X)1112 (X)uz2lll] €

x| (Vzes)|X]|exz

x| | X]eNs

x| | X] €S

ZFF|X] €S
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Premise
Premise
Premise
Premise
IH: 2
ProvE: 5

Assume

DefE(s): 7
Lemma(6): 6

VeE: 89
RepE(Form): 3
RepE(=): 4
&T: 11,12

—E: 10,13

DefI(Code): 14
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Defl(): 17
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Induction Case 5: Quantified Formulae (substitution into free variable)

Induction Hypothesis: Assume for arbitrary X that

SUBST((X)a2) — ZF F |(X)22] €S

X = [[(X)11, [(X) 11121, (X)11122]], [[@, (X)212], (X)112]]
SUBST((X)11)
ForM((X)112)
VAR((X)212)
7(X)11122 7é (X>212
ZFF[(X)n] €S
*| [(X)u] €S
* zes
* (Vo € 2)(Vy € V)([(2)2 € F& (2)122 # y] —
* ((z, ((2)121, (2)122)), ((| Q). ), (2)2)) € 2)
* |(X)11] € =
* [(X)212] €
* [[(X)112] € F& [(X)11122] # [(X)212)] —
* (LD, (LX), (XD 12])),
(LQ]; [(X)212]), [(X)112])) € 2
[(X)11122] 7& L(X)212]
* [(X)112] €
L(X)
(€

(
(
)
)

X)112] € F& [(X)11122) # [(X)212]

* LX), (LX) 1121 ], [(XD122])),

* ((LQ), [(X)212]), [(X)112])) € 2

* LX) 11, (X 11121, (X)11122])s [[Q, (X)212], (X)112]] ) € 2
* | X ]| €z

x| (Vzes)|X] €z

«| [ X]es

x| | X] €S

ZFF|X]| €S
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Premise
Premise
Premise
Premise
Premise
IH: 2
ProvE: 6

Assume

DefE(s): 8
Lemma(6): 7
RepE(Var): 4

VY E: 9,10,11
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RepE(Form): 3
&T: 14,13

SE: 12,15
Defl(Code): 16
RepE(=): 17,1
Vel 18
DefI((): 19
DefI(S): 20
Provl: 21



Thus by the principle of induction for substitution instances:
(VX)[SuBsT(X) — ZF F | X] € §]
O

Ry was just established, and we again take Ry for granted, and thus concludes the com-
plete representability of substitution instances in ZF'.

2.10 Representability of Terms Free for a Variable

The informal specification for a term t being free for a variable z is as follows:

e If  is an atomic formula, then ¢ is free for x in .

If t is free for = in ¢, then t is free for x in —p.

If ¢ is free for x in both ¢; and s, then t is free for x in ¢ O ps,.
e If x is a free variable in Qyp and y is not free in ¢, then ¢ is free for x in Qyep.

(based on Van Dalen [5])
Metatheory

A term free for a variable will be represented by the binary tree structure
X =[[[X1,..., X, [T, V]], F]

where X1, ..., X, are some other objects representing terms free for a variable, T" is the term
free for the variable V', and F' is the formula in which it occurs.

We define terms free for a variable inductively as follows:

(VX)(([X = [[S, [(X)121, (X)122]], (X)2] & ATOM((X)2) & TERM((X)121) & VAR((X)122)]

VX =[5, [(X)121, (X)i22]], (X)2] & FORM((X)2) & (X)on = (Q) &
TERM((X )121) & FREE((X)192) & (X )1220 = (X )2 & NOTFREE((X )212) &
122 =

(X)212 X)121]
VX = [[(X) 11, [(X) 1121, (X)1n122]], [7 (X)112]] & FREEFOR((X)11)]

VX = [[[(X)11, (X)1ne], (X121, (X)1nnaze]]s [B, [(X) 1112, (X)1120]]] &
FREEFOR((X)11:) & (X) 111120 = (X)11212))) — FREEFOR(X))

with an induction principle that allows one to infer (VX )(FREEFOR(X) — ¢(X)) and is
defined in the same way the other induction principles have been.

Object-theory
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We will define the set of terms free for a variable FF by FF = () ff, where ff is defined
as

ff={z€pB)|(Vz € A)(Vy € T)(Vw € V)((D, (y,
& (Ve € F)(Vy € T)(Vw € F)(((z
(.’L’)lg GN.F&( )122 —y) — <

(0,
&(V$€Z)<<-’B7<(93)121 (z )122>>><L I
(

(O], ((z)2, (y)2))) € 2)}

We will prove
(VX)[FREEFOR(X) — ZF - | X | € FF]

by the principle of induction for terms free for a variable.
Base Case 1: Atomic Formulae.

1 X =[S, [(X)121, (X)122]], (X)2] Premise

2 AToM((X)2) Premise

3 TERM((X )121) Premise

4 VAR((X)122) Premise

5 7* ze ff Assume

6 * 7(%(: € A)(Vy € T)(Vw € V){(0, (y,w)), z) € 2 DefE(ff): 5

7 * [(X)2] € A RepE(Atom): 2
8 * [(X)121] € RepE(Term): 3
9 * [(X)122] € RepE(Var): 4
10 * (0, ([(X)121] € T, [(X)122] € V), [(X)2] € A) €2 VeE:6,7,89
1 * LIS, [(XD121, (X)122]), (X)2]] € 2 DefI(Code): 10
12 * | X ]| € RepE(=): 11,1
13 x| (Vze fX]|exz Vel: 12
14 | | X|eNff DefI(N): 13
15 x| | X]eFF Defl(FF): 14
16 ZFF |X|eFF Provl: 15
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Base Case 2: Quantified Formulae.

© o0 N O Ot ks W N

—_
=}

11
12
13
14

15
16
17
18
19

20

= [[5, [(X)121, (X)122]], (X)2]
ForM((X)2)
(X)o11 =Q
TERM((X )121)
FREE((X)122>
(X)1222 - (X)Z
NOTFREE((X)212)
(X>2122 = (X)121
¥| | z€ fr

* — ({0, {y, w)),
)QJ el

I
* |(X)121] €T
I

* (Vz € F)(Vy € T)(Vw € F)(((x)1n = [Q] &
* (W) =2& (x)12 € NF& (2)122 = y)

x) € 2)

(X
(
(X)122] €
([(X)211] = Q) & [(
* (X)a12 e NF& |(X)

&

X)ia22] = [(X)2]

) 2122] = [(X)121]) —
(0, (L(XD121]s L(X)122])), [(X)2]) € 2

[(X)211]) = Q)

[(X)1222] = [(X)2]

(X)212 E NF

[(X)2122] = [(X)121]

[(X)211] = [Q) & [(X)1222] = [(X)2] &
(X)12 € NF & [(X)2122] = [(X)121]

(0, (L(X D121, L(X)122])), [(X)2]) € 2
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Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise

Assume

DefE(ff): 9
RepE(Form): 2
RepE(Term): 4
RepE(Free): 5
VeE: 10,11,12,13
RepE(=): 3
RepE(=): 6
RepE(NotFree): 7
RepE(=): 8

&I: 15,16,17,18
—E: 14,19



(cont’d)

22
23
24
25
26

* LIS, [(X) 121, (X)122]], (X)o]] € 2
* | X] €z

ol (Vze ff)X] €z

Xlenrss

X|eFF

ZFF |X| e FF

]
]
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DefI(Code): 20
RepE(=): 21,1
Vel: 22
DefI(N): 23
Defl(FF): 24
ProvI: 25



Inductive Case 1: Negation.

Induction Hypothesis: Assume for arbitrary X that

co I O Ot k= W=

10
11
12
13
14

X = [[(X)11, [(X)11121, (X)11122]], [
jREEFOR((X)H)

FREEFOR((X)11) — ZF F [(X)11] € FF

ZF - |(X)ul € FF

|(X)11] € FF
zeff
(Vx € z)((x
[(X)u] € =

(X0
[ X] e
(Vz €

X enss
| X| e FF
H|X]|eFF

ez

fHIX] €z

(LX) (LX) amaa ], [(X
([=): LX)z
[(X)111217 (X)11122]]7 [_'
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 (X)12]]

(@121, ()122)), (], (2)2)) € 2

)11122J >>a

, (X)112]])

Premise
Premise

[H: 2

ProvE: 3
Assume
DefE(ff): 5
Lemma(6): 4

VeE: 6,7
Defl(Code): 8
RepE(=): 9,1
Vel 10
Defl(N): 11
DefI(FF): 12
ProvI: 13



Inductive Case 2: Binary Connectives.

Induction Hypothesis: Assume for arbitrary X that

N O Ot = W N

oo

10
11

12

13
14
15
16
17

Thus by the induction principle for terms free for a variable, we have

FREEFOR((X)11;) — ZF F |(X)11:] € FF

X = [[[(X) 111, (X)112], [(X)111121, (X 111122]],

[0, [(X) 1112, (X) 1122]]]
FREEFOR((X)11:)

(X)11112i - (X>11212i

ZFF [(X) € FF
x| |(X)) € FF
¥ | z€ fr
* (Va,y € 2)((2)12i = (Y120 —
* (({z, ), {((2)121, (2)122)), (|D), ()2 ()2))) € 2)
* L(X )] €
* L(X1mzi) = [(X)11212:] —
(L)1, L&D m2))s (LX) 121 ], [(X)1ez ),
(1O, (L(X)12], [(X)122]))) € 2
* (X)11112i) = [(X) 112124
* (LD 1], (XD 12]), (LX) 111121, [(X)111122])),
(1B (LX) mz), [(X)1i22]))) € 2
* LX) 111, (XD 12]s [(X) 111121, (X)111122]],
[ ]

* [0, [(X) 1112, (X)1122]]]] €
* | X| ez

x| (Vze ffX] ez

«| [ XJenff

x| | X]eFF

ZF Vv |X| € FF

(VX)[FREEFOR(X) — ZF - | X | € FF]

Premise
Premise
Premise
IH: 2
ProvE: 4

Assume

DefE(ff): 6
Lemma(6): 5

VeE: 7.8
RepE(=): 3

—E: 9,10

Defl(Code): 11
RepE(=): 12,1
Vel: 13
Defl(N): 14
DefI(FF): 15
ProvI: 16

R, is again taken for granted and thus, together with the claim just established, we
conclude the representability of terms free for a variable.
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2.11 Representability of Proofs

We will define proofs in the context of a natural deduction system. It is common to use the
minimal number of logical operators possible and then define the other operators in terms of
the few basic ones (e.g. defining all other connectives in terms of only negation and disjunc-
tion). This greatly limits what one can do though in terms of rule applications in proofs.
We thus decided to use a fully specified language, having introduction and elimination rules
for each. The full language requires significantly more cases to be verified, which is why the
formal proof for representability of proofs is too comlex to show explicitly here. The full
language is desired though so that the proof-theoretic framework in the object-theory is rich
enough to produce short and intelligible proofs.

Using Gentzen’s notion of a sequent, we indicate a formula ¢ depending on a set of
assumptions I' by I' D . If Dy and D, are proofs, we denote the combination of these two
proofs by Dy U Dy, and if D is a proof and ¢ a formula, D U ¢ denotes a new proof obtained
by appending ¢ to D and is then a proof of ¢. Proofs are then specified informally as follows:

e Each axiom is a proof of itself.
e Every assumption is a proof of itself.

e If D is a proof of I'1 D ¢1 and Dy is a proof of I's D 9, then Dy U Dy U (1 & 9) is
a proof of I't UT's D o1 & vs.

e If Dis a proof I' D ¢1 & 9, then D U ¢y is a proof of I' D 1 and D U s is a proof of
I'> Y2.

e If D is a proof of I'U {1} D @9, then DU (p; — ¢3) is a proof of T' D ¢ — ¢o.

o If D is a proof of I'y D 1 — o and Dy is a proof of I'y D ¢, then Dy U Dy U s is a
proof of I'y UT's D .

o If D is a proof of I' O ¢y, then D U (¢1 V ¢y) is a proof of I' D ¢y V ¢,
o If D is a proof of I' O ¢, then D U (¢1 V 3) is a proof of I' D ¢y V ¢,

e If Dy is a proof of I' D ¢1 V ¢, Dy is a proof of I' U {¢1} D @3, and Dj is a proof of
I'U{p2} D s, then Dy U Dy U D3 U 3 is a proof of T' D 3.

e If Dy isa proof of 'U{p1} D 9 and Dy is a proof of 'U{ps} D 1, then D1UDsU(¢p1 <=
o) is a proof of I' D 1 <> ps.

o If D is a proof of I'y D ¢ <+ ¢ and Dy is a proof of I'y D 1, then Dy U Dy U s is a
proof of I'y UT's D .

o If D is a proof of I'y D ¢1 <+ o and Dy is a proof of I'y D o, then D; U Dy U ¢ is a
proof of I'y UT's D .

o If Dy is a proof of I'y D ¢ and D5 is a proof of I'y D =, then D; U DU L is a proof
of Fl U FQ Ol.
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e If D is a proof of 'U {p} DL, then D U —¢ is a proof of I' D —.
e If D is a proof of T U {=p} DL, then DU ¢ is a proof of T D ¢.

o If D is a proof of I' D ¢[t/z] and x is a variable not free in any formula in I', then
D UVzyp is a proof of I' D V.

e If D is a proof of I' D Vxp and ¢ is a term free for x in ¢, then D U pl[t/x] is a proof
of I' D plt/z].

e If ¢ is term free for variable = in ¢ and D is a proof of I' D ¢[t/x], then D U 3Jxyp is a
proof of I' D Jxp.

e If Dy is a proof of I' D Jxyy, Dy is a proof of I' U {¢1[v/z]} D ¢2 and v is a variable
not free in any formula in I' or in g, then Dy U ¢ is a proof of [' D ¢s.

Metatheory
Proofs will have the following binary tree structure:
X =[[[Xy,...,X.],G], F]

where Xy, ..., X,, are the binary tree proof objects that represent the proofs of the assump-
tions on which the inference rule depends, G is the set of assumptions on which the proof
of F' (represented by sequences), where F' is the formula that results from the application of
the inference rule.
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We define proofs in the metatheory as follows:
(VX)((Axiom(X)
VX = [[(X) 111, (X)112), (X) 11112 U (X)11212], [&, [(X) 1112, (X)1122]]]
& PROOF((X)114) & FORM((X)1142)]
VX = [[(X)11, (X)1112], (X)11221] & PROOF((X)11) & FORM((X)112) & (X)1121 = (&)]
VX = [[(X)11, (X)1112 \ (X)221], [, [(X)221, (X)112]]] & PROOF((X)11)
& FORM((X)112) & FORM((X)291)]
VX = [[(X) 111, (X)112), (X) 11112 U (X)11212), (X)111220] & PROOF((X)114)
& FORM((X)1112) & (X) 11121 = (=) & (X) 111221 = (X)1122]
VX = [[(X)11, (X)1aa2], [V, [(X) 112, (X)222]]] & PROOF((X)11)
& FORM((X)112) & FORM((X)292)]
VX = [[(X)11, (X)1112], [V, [(X) 221, (X)112]]] & PROOF((X)11)
& FORM((X)112) & FORM((X)291)]
VX = [[[(X) 111, [(X) 1121, (X)1i22]], (X)11112]s (X)11212] & PROOF((X)111)
& PROOF((X )112 YFORM((X)1112) & FORM((X)112:i2) & (X)11121 = (V)
& (X)12i12 = (X) 11112 U (X) 111226 & (X) 11212 = (X)11229)
VX = [[[(X)111, (Xe], (X)11112 \ (X)122], [+, [(X)1122, (X))l &
PROOF((X)115) & FORM((X)1152) & (X) 11212 = ((X) 11112 \ (X)1122) U (X)1112]
VX = [(X) 111, (X)112), (X) 11112 U (X)11212), (X)111221] & PROOF((X)115) &
FORM((X1142) & (X)11121 = (+) & (X) 111222 = (X)1122]
v I[X (X)) 111, (X)112), (X) 11112 U (X) 11212, (X)111220] & PROOF((X)115) & FORM((X1142)

(X
(X 1121 <_>) & (X)111222 - (X)ll 2]
(X

(X)) 111, (X)112), (X) 11112 U (X)11212), L] & PROOF((X)11;) & FORM((X )1142))

>

( 1 — ( ) ( )lll? - (X) 1222]
Jits (XD 1112 \ (X)22], [, (X)22]] & PROOF((X)11) & (X)112 = (L) & FORM((X)22)]
)11, (X112 \ [, (X)2]], (X)2] & PROOF((X)11) & (X)112 = (L) & FORM((X)2)]
(X)1112]s [V, (X)112122], (X)1122]], & PROOF((X)11) & SUBST((X)112) &
FORM((X)1122 W)s =Y)]
VX = [[(X)11, (X)1112], (X)2] & PROOF((X)11) & FORM((X)112) & (X) 11211 = V&
SUBST((X)2) & (X)2122 = (X )11212 & FREEFOR((X )2121) & (X)21212 = (X )1120 &

(X)21211 - (X)11212]
VX = [[(X)11, (X2l [3, (X)212], (X)1122]] & PROOF((X)11) & SUBST((X)112)

& FORM((X)1122) & VAR((X)a12)]

(X
(

= |
)
[
)
[
{Xll
[

B %E%

[
v [
v [ (
% (X)), (X (
( )& (VY € (X)1112) (GW)(NOTFREE(W) & (
[ (X

VX = [[[(X)1, (X)1i2], (X)11112]s (X)1122] & PROOF((X)117) & FORM((X)1142) &
(X)111211 = & (X) 11212 = (X) 11112 U (X)112122 & SUBST((X )112122) &
(X)112122122 = (X)111212 &, VAR((X ) 112122121) & (FY)(NOTFREE(Y ) &
(Y2 = (X)1122) & (VW1 € (X)11112) W) (NOTFREE(W) & (W)2 = W1)])

— PROOF(X))
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with an induction principle that establishes (V.X)(PROOF(X) — ¢(X)).
Object-theory

The set p is defined as

p={z€ pB)AX C 2
& (Vr,y € 2)([(2)2, (¥)2 € F] — (({z,9), (2)12 U (9)12), ([&]. ((2)2, (¥)2))) € 2)
& (Vr € 2)([(2)2 € F& (2)21 = |&]] — ({2, (2)12), (7)22:) € 2)
&(Vr € 2)(Vy €F)(()2 € F — ((z, ()12 \ v), ([—=], (v, (2)2))) € 2)
( = | =& (@)221 = (y)2) —

(
& (Va,y € 2)(((%)2, (y)2 € F& (2)21 =
(({z,9), ()12 U (¥)12), (2)222) € 2)
& (Vo € 2)(Vy € F)((z)2 € F — ((z, (2)12), ([V]. ((z)2,9))) € 2
& (Vz € 2)(Vy € F)((x)y € F — (=, (2)12), (| V], (g, (¥)2))) € 2
& (Vw, 2,y € 2)([(w)2, (2)2, ()2 € F& (w)a1 = [V] & (2)12 = (w)12 U (w)22

& (Y)12 = (w)12 U (w)a22 & ()2

& (Va,y € 2)(((2)2, (¥)2 € F& (y)iz = ()12 \ (y)2) U (2)2) —
({2, 9), ()12 \ (¥)2), ([, {(®)2, (¥)2))) € 2)

& (Vr,y € 2)(((2)2, (¥)2 € F& ()21 = || & ()220 = (y)2) —
(({z,9), (@12 U (Y)12)(2)221) € 2

& (Vr,y € 2)(((2)2, (y)2 € F& ()21 = || & (2)221 = (y)2) —
({2, 1), ()12 U (y)12)(2)222) € 2)

& (Va,y € 2)(((2)2, (Y)2 € F& (y)ar =[] & ()2 = (y)22) —
({2, 9), ()12 U (¥)12), [ L]) € 2)
& (Vr € 2)(Vy € F)((2)2 = | L] — ({z, @)\ v), (| ], 9)) € 2)
& (Vr € 2)(Vy € F)(()2 = | L] — ({z, (@2 \ (=] ), y) € 2)

(Vo € 2)(((x)2 € S& (2)22 € F& (Vy € (2)12)(Fw € NF)(w)s =y) —
((z, (@)12), (([V], (2)2122), ()22)) € 2)

(Vo € 2)(Vy € S)((()2 € F& ()21 = [V] & (y)121 € FF & (Y)1212 = (1) &
(¥)12112 = (2)212) — (@, (¥)12), y) € 2)
(Vo € 2)(Vy € V)([(z)2 € S& ()22 € F] — (&, (2)12), {([3],9), (x)22)) € 2)
(Va,y € 2)(((7)2, (y)2 € F& (2)211 = [3] & (Y12 = ()12 U (Y122 & (y)122 €S &
(Y)122122 = (2)212 & (Y)122121 € V& (Fw e NF)(w)2 = (y)2 &
Y),

(Vv1 € (2)12)(3vg € NF)(v)2 = v1) — (({z,9), (2)12), (¥)2) € 2)}
We then define the set of Proofs P as

]P’:ﬂp

We will show by the principle of induction for proofs that
(VX)[PrROOF(X) — ZF F | X | € P
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Proof. Base Case: Axioms.
The representability of the axioms is immediate, as the coding of the basic syntax can

be used to code each axiom and axiom schema without any need for an inductive definition
or argument.
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Inductive Case 1: Conjunction Introduction

Induction Hypothesis: For arbitrary X, assume

N O Ot = W N

0]

10
11

12

13
14
15
16
17

PROOF((X)111) — ZF F |(X)1y] € P

= [[[(X)111, (X)112], (X) 11112 U (X )11212),

[
&, [(X) 1112, (X)1122]]]
Proor (X)111>

(
| FORM((X)11:2)
(

)
ZFF (X)) €eP
x| |(X):] €P
* zZep
* (Vz,y € 2)([(2)2, (y)2 € F] —
* (2, y), ()12 U ()12), ([&], ((@)2, (1)2))) € 2)
* (X)) €
* [L(X)1112]), [(X)1122] € F] —

( )

{
)

* (L)1), L&D 2))s LX) U [(X)11212])
* (L&, (LX) 1m12]s [(X)1122]))) € 2
* LX)z, [(X)1122] € F
* (L)1), L&D 12))s LX) U [(X)11212])
(

* L& (XD amz)s [(X)122]))) € 2
* LH(X)1117 (X)112]7 [(X)IIIIQ U (X)11212

% & [(X) 112, (X)n2l]l] € 2
* | X] €z

x| (Vzep)|X]|€ex

«| [ XJenp

x| | X]eP

ZFF|X|€P
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Premise
Premise
Premise
IH: 2
ProvE: 4

Assume

DefE(p): 6
):

Lemma(6): 5

VY E: 7.8
RepE(Form): 3

—E: 9,10

Defl(Code): 11
RepE(=): 12,1
Vel 13
Defl(N): 14
Defl(P): 15
Provl: 16



Inductive Case 2: Conjunction Elimination

Induction Hypothesis: For arbitrary X, assume

co N O Ot s W N

10

11
12
13
14
15
16
17
18
19
20

PROOF((X)11) — ZF F [(X)11] € P

X = [[(X) 11, (X)1n12], (X)11224]
PROOF((X)11)
ForM((X)112)
(X2 =&
| ZFF (X)) €P
x| |[(X)] eP

* Z€Ep

w| | (Vo ez)([(x) € F& (2) = [&]] —
* (2, (¥)12), (¥)22:) € 2)

* |(X)11] € 2

* (X)) € F& (X)) ] = [&]] —

(
* |(X)112] € F
* L(X)u21] = [&]
* [(X)112] € F& [(X)1121] = [&]
* (L], [(XD)12]), [(X)nea]) € 2
* LX), [(X) 1112, (X)uzeil]] € 2
* | X | €z
x| (Vzep)|X] ez
| X enp
x| | X]eP
ZFF|X|eP
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Premise
Premise
Premise
Premise
IH: 2
ProvE: 5

Assume

DefE(p): 7
Lemma(6): 6

VeE: 8,9
RepE(Form): 3
RepE(=): 4
&I 11,12

SE: 10,13
DefI(Code): 14
RepE(=): 15,1
Vel: 16
Defl(n): 17
DefI(P): 18
ProvI: 19



Inductive Case 3: Conditional Introduction

Induction Hypothesis: For arbitrary X, assume

co I O Ot k= W=

10
11

12
13

14
15
16
17
18
19

PROOF((X)11) — ZF F [(X)11] € P

X = [[(X)11, (X112 \ (X)az], [, [(X)a221, (X)112]]]
PROOF((X)11)
FORM( X>112>

)

* zep

* (Ve € 2)(Vy € F)((x), € F —
* ({z, (@h2 \ 9), ([=], (v, (2)2))) € 2)

* (L], LX) 1a2] N [(X)221]),

* ([=], (L(X)221], [(X)112]))) € 2

* LX) 11, (X)1112 \ (X)a221], [, [(X)221, (X)12]]]] € 2
* | X ]| €z

x| (Vzep)|X] ez

«| [ XJenp

x| | X]eP

ZFF|X|eP
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Premise
Premise
Premise
Premise
IH: 2
ProvE: 5

Assume

DefE(p): 7
Lemma(6): 6
RepE(Form): 4

VeE: 8,9,10
RepE(Form): 3

—E: 11,12
Defl(Code): 13
RepE(=): 14,1
Vel 15
DefI(N): 16
Defl(P): 17
ProvI: 18



Inductive Case 4: Conditional Elimination

Induction Hypothesis: For arbitrary X, assume

PROOF((X)1;) — ZF F [(X);] € P
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X = [[[(X) 111, (X)112], (X) 11112 U (X)) 11212], (X)111222]
PROOF((X)114)

FORM((X) 1152

(X)11121 ==

7<X)111221 = (X)1122

A L(X)llzJ cP

x| (X)) €P

* zep

* (Vo,y € 2)((%)2, (y)2 € F& (2) = [ =] &

* ()21 = (y)2) —

* (({z,9), (212U (¥)12), (2)222) € 2)

* (X)) € 2

* (L(X)1112)s [(X)1122) € F& [(X )11z = [—]
* & [(X)near] = [(X)1122]) —

* (LX), [(XD)12)), (XD 11m12] U [(X)izi2]), |
* L(X)111222]))) €

* L(X) 2], [(X)1122] € F

* LX)z = [—]

* L(X)11221] = [(X)1122]

* (X112, [(X)1122] € F& [(X)1m1zn] = [—]

* & [(X)11221) = [(X)1122]

* (LX), (XD 12]), [(X)11n12] U [(X)11212]),

* L[(X)111222]))) € 2

* LX) 111, (X)1n2]s (X2 U (X)11212], (X)111222] ] € 2
* | X | €z

x| (Vzep)|X] ez

«| [X]eNp

x| | X]eP

ZFF|X|eP
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Inductive Case 5: Disjunction Introduction Right

Induction Hypothesis: For arbitrary X, assume

PROOF((X)11) — ZF F [(X)11] € P

PROOF((X)11)
FORM( X)HQ)
)

* (Vx € 2)(Vy €

* | (Xl e

* L(X 222

[(X)12] €
* (LX) ], [(X
[

* | X | €z

x| (Vzep)|X] ez
| [X]eNp

x| | X]eP
ZFF|X|eP

h
)22 €
x| | L(X)n2) €F —
{
)

X = [[(X)11, (X)1112]s [V, [(X) 112, (X)222]]]

F)((z); e F —

* ({z; (@)2), ([V]: ((2)2,9))) € 2)

iz ), (L], (LX) 2], [(X)222]))) €
(X1, (X)amna], [V, [(X) 112, (X)222
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N ez

* (([(X ) J L(X)1na2])s (V] (LX) 112]s [(X)222]))) €

z

z
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Inductive Case 6: Disjunction Introduction Left

Induction Hypothesis: For arbitrary X, assume

PROOF((X)11) — ZF F [(X)11] € P

PROOF((X)11)
FORM( X)HQ)
)

* (Vx € 2)(Vy €

* | (Xl e

* L(X 221

[(X)12] €
* (LX) ], [(X
[

* | X | €z

x| (Vzep)|X] ez
| [X]eNp

x| | X]eP
ZFF|X|eP

h
)] €
x| | L(X)n2) €F —
{
)

X = [[(X)11, (X)1112] [V, [(X)221, (X)112]]]

F)((z); e F —

* ({z, (£)12), (L], (Y, (2)2))) € 2)

Jiniz])s (V] (LX) 221 ], [(X)112]))) €
[(XD)11, (X)anna], [V, [(X)a21, (X112

87

N ez

* (([(X ) J L(X)1na2]),s (V] (LX) 221 |5 [(X)112]))) €

z

z
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Inductive Case 7: Disjunction Elimination

Inductive Hypothesis: For arbitrary X, assume

PROOF((X)11) —> ZF F [(X)1] € P
PROOF((X)llQi) — ZJF | L(X)llQiJ eP

[H(X)lll [( )11217 (X)HQQ]], (X)11112]> (X)11212]
PROOF((X)111)

((X)
((X)
X)2)
FORM((X)112i2)

(X121 =V

(X)112i12 = (X)11112 U (X) 111224

PRrRoOOF 1121>

Form(
(

(
(

(X)11212 = (X)11222

ZFF (X)) eP
ZFF (X)) €P
x| (X)) €P
| (X)) €P

38

* zZeEDp

* (Vw, 2,y € 2)([(w)2, ()2, (y)2 € F& (w)21 = | V]

* & (2)12 = (w)i2 U (w)a21 & (y)12 = (w)12 U (w)a222

* & ()2 = (y)2] — (((w, (z,9)), (w)12), ()2) € 2)

* [(X)111] €

* [(X)112:]) €

* (LX) 1112, [(X)11212], [(X)11222] € F& [(X 11121 ] = | V]
* & [(X)1z112] = [(X)11112] U [(X)111221]

* & [(X)112212] = [(X)11112] U [(X)111222] &

* L(X)11212) = [(X)11222]]

* — (LD 1], (LX) n2n ), [(X)aa22])), [(X)11n12]),

Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise
IH: 2
[H: 3
ProvE: 9
ProvE: 10

Assume

DefE(p): 13
Lemma(6): 11
Lemma(6): 12



19
20
21
22
23
24

25

26
27
28
29
30
31

* [(X)11212]) € 2

* LX), [(X)11212]), [(X)11222) € F

* [(X)m21] = V]

* [(X)112112] = [(X)11112) U [(X)111221]

* [(X)112212] = [(X)11112) U [(X)111222]

* [(X)11212) = [(X)11222]

* L(X)1112])s [(X)11212], [(X)11222] € F& [(X)11121] = | V]
* & [(X)1z112) = [(X)11112] U [(X)111221]

* & [(X)na212] = [(X)11112] U [(X)111222] &

* [(X)11212] = [(X)11222]

* (LX), (LX) 1121 ], [(XD)1122])), [(X)11112]),

* [(X)11212]) € 2

* LX) 111, (XD 1121, (X)1a22]], (X)11112), (X)11210] ] € 2
* | X]| €z

x| (Vzep)|X] ez

| [X]eNp

x| | X]eP

ZFF |X]| P
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Inductive Case 8: Biconditional Introduction

Induction Hypothesis: For arbitrary X assume that

PROOF((X)111) — ZF F |(X)1y] € P
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X = [[[(X)111, (X)1a2), (X)11n12 \ (X122, [, [(X) 1122, (X)1112]]]
PROOF((X)114)
FORM((X)HZ‘Q)

7(X)11212 = ((X)11112 \ (X)1122) U (X)1112

ZFF (X)) €eP
| [(X)i) €P

* zEp

* (Vz,y € 2)(((x)q, ()2 e F&
* (W12 = ()12 \ (¥)2) U (2)2) —
* ({2, y), ()12 \ (¥)2), ([, {(Y)2, ()2))) € 2)

* (X)) € 2
* ([(XD)112]), [(X)1122) e F&

* L )11212J (L( )11112J \ L( )1122J) L(X)IHQJ) -
* (LD s LX), (XD imz] \ [(X)ne]),
* (L=, (L(XDn22] L( )1112J>>>€Z

(X
(
|
)
* L(X)11212J = (LX) 11112) \ [(X)1122)) U [(X)1112]
)
(
(
|

* |(X)1112], [(X)1122) € F&

* L(X)11212] = (L(X)11112) \ [(X)1122]) U [(X)1112]
* (LD, LD m2]), (XD 12 \ [(X)1122]),
* (L], (LX) 1n22], [(X)m]))) € 2

* LX) 111, (Xn2], (X 11112\ (X)1122],

* [, [(X)1122, (X)1m2]]]] € 2

* | X ]| € =

x| (Vzep)|X]|exz

«| [X]eNp

x| | X]eP

ZFF|X|eP
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Inductive Case 9: Biconditional Elimination Left

Induction Hypothesis: Assume for arbitrary X that

PROOF((X)11;) — ZF F |(X)1y] € P
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X = [[[(X) 111, (X)112], (X) 11112 U (X)11212], (X)111221]
PROOF((X)114)

ForM((X)11i2)

(X)11121 =4

7(X>111222 = (X)1122

A L(X)ll’LJ el
#| (X)) eP

* 72 cp
* (Va,y € 2)(((%)2, (y)2 € F& () =[] &
* ()220 = (¥)2) —> ({((z,¥), (¥)12 U (¥)12)()221) € 2)

* | (X)11:] € 2

* ([(X)1112)s [(X)1122] € F& [(X) 11121 =[] &
Jinizzz] = [(X)1122]) —

(L(X)111]s [(X)112]), [(X)11112]U

X)uzi2]) [(X)111221]) € 2

12}, [(X)1122] € F

X)) =[]

L(X
* (€
L(
L(X)
L(X)
* L[(X)111222) = [(X)1122]
L(X)
(
(
(

]
X

* Xz, [(X)uze] € F& (X)) = [¢] &

* L(X)111222] = [(X)1122]

* (LD 1), [(XD)n2]), [(X) 11112V

* L[(X)11212]) [(X)111221]) € 2

* LX) 111, (Xn2], (X)11112 U (X) 11212, (X)111221]]
* | X ]| €=

x| (Vzep)|X] ez

«| [ X]eNp
x| | X]eP
ZFF |X]| €P
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Inductive Case 10: Biconditional Elimination Right

Induction Hypothesis: Assume for arbitrary X that

PROOF((X)11;) — ZF F |(X)1y] € P
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X = [[[(X)111, (X)112); (X) 11112 U (X)11212], (X)111222]

PROOF((X)Hi)
FORM((X)lliQ)
(X121 =¢

7<X)111222 = (X)IIQQ
A L(X)llzJ elP
* (X)) €P

* zep

* ]

* | X ] €z
«| (Vzep)lX]e
| X enp
x| [ X]|eP

ZFF|X|eP

| | Yoy e (@)

(X
* (LX), [(X
* L(X)11212]) [(X)111222]) € =
* LX)z, [(X)1122] € F
* L(X)1n21] = [¢2]
* [(X)1m221] = [(X)1122]
* LX)z, [(X)1122] € F& [(X )] = [<] &
( = [(X)1122]
( X)u2)), [(X) 11112V
(

* [(X)111222] =
* (LX) 111,
* L(X)11212]) [(X)111222]) € =

* LX) 111, (XD 12]s (X)11112 U (X)11212], (X)111222]]

()2 €EF& ()0 =[] &
* (@)221 = (¥)2) — ({2, 1), ()12 U (¥)12)(2)222) € 2
* (X)) € 2)

* (L(X)1112)s [(X)1122] € F& [(X )] =[] &
Jiniear] = [(X)1122]) —

Ji121)s L(X)11112)U
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Inductive Case 11: Falsum Introduction

Induction Hypothesis: For arbitrary X, assume

PROOF((X)Hi) — ZF | L(X)llzj ep

X = [[[(X) 111, (X)112], (X112 U (X)11212], L]
PROOF((X)114)
FORM((X)1152)
(X)11221 = =
- (2 = (X122
ZFF (X)) €eP
| [(X)) €P
* zep
* (Vz,y € 2)(((z)2, (y)2 € F& (y)or =[] & (z)2 = (y)22) —
* (({z,9), (@)12U (¥)2), [L]) € 2)
* (X)) €
* [[(X)1112], [(X)1122] € F& [(X)11221] = [ ]
* & [(X)iz] = [(X) 1] —
* (LX), [(XD) 1)), [(XD)11n12] U [(X)neae]), [L]) € 2
(X112, [(X)1122] € F
L[(X)11221] = | =]
* [(X)1112] = [(X)11222]
(X112, [(X)1122] € F& [(X)2z] = [
* & [(X)112) = [(X)11222]
* (LD 1), (X)), [(XD)11112] U [ (X)2ae]), [L]) € 2
* LX) 111, (X)n2], (X)11112 U (X)11212], L]
] €

(
)

| 1X

x| (Vzep)|X]| ez
| Xleny

x| | X]eP

ZFF |X]eP
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Inductive Case 12: Negation Introduction

Induction Hypothesis: For arbitrary X, assume

PROOF((X)11) — ZF F [(X)11] € P

X = [[(X)11, (X2 \ (X) 22, [, (X)a2]]
PROOF((X)11)
(X112 =1
FORM((X)22)
| ZFF (X)) €P
x| |[(X)] eP
* z€p

#| | (Veez)(VyeF)((x) = L] —
* ({z, (@) \9), (=], 9) € 2)

* L(X)u] €
* L(X QQJ cF
* (X L

)
)
iz = [
(
)

* [(X)2] = [L

* (L1 (XD 1m12] \ [(X)22]), ([ =], [(X)22])) € 2
* LX) 11, (X112 \ (X)a2], [, (X)22]] ] € 2

* | X ]| €z

x| (Vzep)|X] ez

| [X]enp

x| | X]eP

ZFF |X|eP
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] —

* (LX), [(XD) 112 \ [(X)a2]), ([ ]s [(X)22])) €
|
)
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Inductive Case 13: Negation Elimination

Induction Hypothesis: For arbitrary X, assume

co I O Ot =W =
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PROOF((X)1) — ZF F [(X)] € P

X = [[(X)n, (X)1112 \ [_'7 (X)ZHa (X)2]
PROOF((X)11)
(X)112 =1

| Foru((X),)

ZFF (X)) eP

«| [(X)u] eP

* zep

* (Vz € 2)(Vy € F)((z)2 = [ L] —

* ((z, (@) \ (=], 9)), ) € 2)

* (X)) €

* [(X)22] €

* [(X)2] = [L] —

* (L], LX) 1a2] \ (], (X)), L(X)2]) € 2
[(X)112] = [L]

* (LD 1], LX) 2] \ (=], LEX)20)), L(X)2]) € 2

LX) 11, (X 1112\ [, (X)), (X)2]] € 2

* | X | €z

x| (Vzep)|X] ez
| [X]eNp

x| | X]eP
ZFF|X|eP
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Assume
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Inductive Case 14: Universal Introduction

Induction Hypothesis: For arbitrary X, assume
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PROOF((X)11) — ZF F [(X)11] € P

X = [[(X)11, (X)1112)s [V, (X)112122], (X)1122]]
PROOF((X)11)
SUBST((X )112)

FORM((X)1122

)
7(VY € (X)1112) (W) (NOTFREE(W ) & (W )y =Y)

ZFF [(X)n] eP
| (X)) €eP

¥ |2 Ep
* (Vo € 2)(((x)2 € S&(2)n € F&
* (Vy € (2)12) Fw e NF)(w)y =y) —

* (@, (2)12), ({LV], (2)2122), (T)22)) € 2)
* [(X)ul €z

* (L(X)HQJ eES& L(X>1122J cF&

* (Vy € [(X)1112))(Fw € NF)(w)2 = y) —
* (LX) 1], (X2,

* (V] LX) 12122]), [(X)1122])) € 2

* [(X)i2] €5

* [(X)1122] €
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(cont’d)
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ZF

Y] e [(X)1]
Y € (X)1112
(IW)(NOTFREE(W) & (W), =Y)
NOTFREE(W)
(W) =Y
| (W] eNF
L(W)2] = [Y]
(Sw € NF)(w)2 = [Y]
ZFF (Gw e NF)(w), = Y]
ZF F (3w e NF)(w), = |Y]
(Fw e NF)(w)y = |Y|
(Vy € [(X)1112))(Fw € NF)(w)2 = y
[(X)112] € S& [(X)122] €F&
(Vy € [(X)1112))(Fw € NF)(w)2 = y
X, [(X)12]),
(LV], [(X)112122]), [(X)1122])) € 2

LX) 1, (XD anna], [V, (X)) 112122], (X)1122]]] € 2
[ X] €

((L(
{

(Vzep)[X] ez
LXJeﬂp

| e

[ X
HIX]eP

100

Assume
Repl(€): 14
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Inductive Case 15: Universal Elimination

PROOF((X);

(X>11211 - v
SUBST((X)2)

FREEFOR((
(X

( )21212 -

PROOF((X)11) — ZF F [(X)1] € P

(X)2122 = (X)11212
X)2121)

)1122

(X)212112 - (X)11212

X = [[(X) 11, (X)1112), (X)2]

1)
FOrRM((X)112)

101

)11212J )

ZFF (X)) € P

| (X)) eP

* zep

* (Ve e z)(Vy € S)(((x)2 e F& (x)a11 = |V] &

* (W)121 € FF & (y)1212 = (#)22& (Y) 12112 = ()212)
* — ((z, (2)12), ) € 2)

* |(X)11] € 2

* [(X)2] €8

* ([(X)112] € F& [(X)1211] = [V] & [(X)2121] € FF &
* [(X)21212) = [(X)1122) & | (X)212112] = [(X

* — (LX) 11, L(XD)1n12]), [(X)2]) € 2

Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise
IH: 2
ProvE: 10

Assume

DefE(p): 12
Lemma(6): 11
RepE(Subst): 5
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(cont’d)

18
19
20
21
22

23
24
25
26
27
28
29

* [(X)112] € F
* [(X) 2] = |V]
* |(X)2121] € FF
* L(X)21212] = [(X)1122]
* L(X)212112] = [(X)11212]
(X)
(

* (LD ] [(XD1ni2]), [(X)2]) € 2
* L(XD)11, (X)1112], (X)2]| € =

* | X | €z
x| (Vzep)lX] ez
« [Xlenp
x| | X]|eP
ZFF |X]| €P
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* [(X)2) € F& [(X)ii2u] = [V] & [(X
* L X)21212J == L( )1122J & L(X)212112J == L(X)11212J

)2121J e FF&

RepE(Form): 3
RepE(=): 4
RepE(FrecFor): 7
(
(

RepE(=): 8
RepE(=): 9

&I 17-21

—E: 16,22
Defl(Code): 23
RepE(=): 24,1
Vel 25
DefI(N): 26
Defl(P): 27
ProvI: 28
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Inductive Case 16: Existential Introduction

Induction Hypothesis: For arbitrary X, assume

PROOF((X)11) — ZF F [(X)11] € P

X = [[(X)11, (X2l [3, (X)212], (X)1122]]
PROOF((X)11)
SUBST((X)112)
FOrRM((X)1122)
VAR((X)212)
 ZFF (X)) €P
#| (X)) P
x Z€Dp
* (Vo € 2)(Vy € V)([(x)2 € S& (2)2 € F] —
* ((z, (2)12), (3], 9), ()22)) € 2)
* (X)) €
* [(X)212] €
* [[(X)112] € S& [(X)1122) € F] —
* (LX) J L(XD12]), (3], L(X)212]), [(X)1122])) € =
[(X)12] €
[(X)1122] € F
* [(X)112] € S& [(X)1122) €F
(
L

(X
(

LX), [(XD) 1z}, (3], [(X)212])s [(X)1122])) € 2
[(X)11, (X)1m2], [[3, (X)a12], (X)1122]] | € 2

* | X | €z

x| (Vzep)|X] ez
| [X]eNp

x| | X]eP
ZFF|X|eP
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Premise
Premise
Premise
Premise
Premise
IH: 2
ProvE: 6

Assume

DefE(p): 8
Lemma(6): 7
RepE(Var): 5

VeE: 9,11,12
RepE(Subst): 3
RepE(Form): 4
&I: 15,16

—E: 13,17
Defl(Code): 18
RepE(=): 19,1
Vel: 20
DefI(N): 21
Defl(P): 22
ProvI: 23



Inductive Case 17: Existential Elimination

Induction Hypothesis: Assume for arbitrary X that

© o0 N O Ot = W NN

e e e
~ W N = O

15

PROOF((X)11;) — ZF F |(X)1y] € P

X = [[[(X) 111, (X)112], (X)11112)5 (X)1122]
PROOF((X)114)

FORM((X)HZ'Q)

(X)111211 = 3

(X)11212 = (X)11112 U (X) 112122
SUBST((X)112122)

(X) 112122122 = (X) 111212
VAR((X)112122121)

(AY)(NOTFREE(Y) & (V)2 = (X)1122)

7(VW1 € (X)11112) (W2)(NOTFREE(W) & (W)g = W)

ZFF (X)) €P

* | [(X)] €P

* zeEDp

* (Va,y € 2)(((%)2, (y)2 € F& (2)ann = [3] &
W2 = (2)12U (Y122 & (Y22 €S&
(Y)122122 = (2)212 & (y)120121 € V&

* (Bw e NF)(w)2 = (y): &
(Voy € (2)12)(Fvy e NF)(v)g = v1) —>
(((z,9), (2)12), (¥)2) € 2)

1i] € 2

{
| LX)
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Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise
Premise
IH: 2
ProvE: 11

Assume

DefE(p): 13
Lemma(6): 12



(cont’d)

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

(L(X)1112)s [(X)1122) € F& [(X)111211] = [T &
L(X)1i212) = [(X)11112] U [(X)112122]
& [(X)12122] €S&
L(X)112122122] = [(X)111212) & [(X)112122121] € V&
(Fw € NF)(w)2 = [(X)1122] &
(Vo1 € |[(X)11112)) Bvg € NF)(v)g = v1) —>
(LX), [(XD)2]), [(XD) 1)), [(X)1122]) € 2
Xz, [(X)uze] € F

X)i2122121] €'V
NOTFREE(Y)
- (V)2 = (X)nz

Y| e NF

L(Y)2] = [(X)1122]

(Fw e NF)(w)2 = [(X)1122]

ZF = (3w e NF)(w)a = [(X)1122]
ZFF (Gw e NF)(w)y = [(X)1122]
(Fw € NF)(w)2 = [(X)1122]

(W1l € [(X)1in2]
Wi € (X)i1112
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VeE: 14,15
RepE(Form): 3

RepE(NotFree): 23
RepE(=): 24

3l 25,26

Provl: 27

JcE: 9,28

ProvE: 29

Assume

Repl(€): 31



34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50

(cont’d)

(IWs)(NOTFREE(W) & (W), = W) VeE: 10,32

NOTFREE(W) Assume

( )2 = Wi Assume
* (W] e NF RepE(€): 34
* [(W)2] = [W] RepE(=): 35
) (3vs € NF)(0)s = | W] 3.1 36,37

ZFF (Fuy e NF)(v)g = |[W4] Provl: 38

ZF F (Juy e NF)(v)y = |[W4] JE: 33,39

* (Fva e NF)(v)g = |W4] ProvE: 40
* (Vo1 € [(X)11112))(Fve € NF)(v)2 = 1y Vel 41
* (X112, [(X)1122) € F& (X)) = [ &
* [(X)1212] = [(X)11112] U [(X)112122]
* & |(X)i12122] € S&
* L(X)112122122] = [(X)111212) & [(X)112122121] € V&
* (Fw € NF)(w)2 = [(X)1122] &
* (Vur € [(X)11112])(Fve € NF)(v)g = vy &I: 17-22,30,42
* (LX), [(XD)12]), (X)), [(X)1i22]) € 2 —E: 16,43
* LX) 111, (XD 2]s (X)11112], (X)1122]] € DefI(Code): 44
* | X | €z RepE(=): 45,1
x| (Vzep)|X] ez Vel 46
x| | X]eNp DefI(N): 47
x| |[X]|eP Defl(P): 48
ZFF |X]| eP Provl: 49

Thus by the principle of induction for proofs,

(VX)[PROOF(X) — ZF F | X | € P]

It is also necessary to show

(VX)INOTPROOF(X) — ZF - | X | ¢ P)
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but the proof will not be given here. The proof has the same structure as the proofs for
the reprentabilty of non-variables and non-formulae, but as there are so many sub-cases to
consider here, the proof is just not practical to do by hand. We will define non-proofs and
give the basic outline of the proof so that we can at least take it to be provable in principle.

To show the complexity the inductive definitions can reach, we will explicitly provide
the metatheoretic definition for non-proofs. It should be clear why proofs involving such
definitions are just not practical for human use and would be better deferred to the machine.
The object-theoretic definition is an immediate result from the metatheoretic definition and
will thus not be given.
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Metatheory

(VX)((NoTAx1OM(X)

VX = [[(X) 111, (X) 2], (X 2], [&, [(X) 221, (X)222]]] & (NOTPROOF((X)111)V
NOTPROOF((X)112) V NOTFORM((X)1112) V NOTFORM((X)1122)V
(X)12 # (X)11112 U (X)11212 V (X)221 # (X)1112 V (X )a22 # (X)1122)]

VX = [[[(X)111, [&, (X)1122]], (X)12], (X)2] & (NOTPROOF((X)11)V
NOTFORM((X)112) V (X)12 # (X)1112 V (X)2 # (X)11221)]

VX = [[(X) 11, (X)a], [= [(X)a21, (X)222]]] & (NOTPROOF((X)11)V
NOTFORM((X)112) V NOTFORM((X )221) V (X)12 # (X)1112 \ (X)221V
(X)a22 # (X)112)]

VX = [[[[(X) 1111, [= (X 1n122]], (X)12), (X)12], (X)2] & (NOTPROOF((X)111)V
NOTPROOF((X)112) V NOTFORM((X)1112) V NOTFORM((X)1122)V
(X)12 # (X)11112 U (X)11212 V (X)11121 7# (X)1122 V (X )11122 # (X)2)]

VX = [[(X) 11, (X)aal, [V, [(X)a21, (X)a22]]] & (NOTPROOF((X)11)V
NOTFORM((X)112) V NOTFORM((X )a21) V (X )12 # (X)1112V
(X)221 # (X)112 V (X)221 # (X)112)]

VX = [[[[(X) 1111, [V (X122, [(X) 1121, (X)1122]]s (X)12], (X)2&
(NOTPROOF((X)111) V NOTPROOF((X )1121) V NOTPROOF((X)1122)

V NOTFORM((X)HU) V NOTFORM((X)anQ) V NOTFORM((X)HQQQ)
V (X)i2 # (X112 V (X)112112 # (X)11112 U (X) 111221V
(X)112212 # (X112 U (X)111222 V (X )11212 7 (X)2 V (X )11222 7 (X)2)]

VX = [[[(X)111, (X)1a], (X)al, [« [(X)a21, (X)222]]] & (NOTPROOF((X)111)
V NOTPROOF((X)112) V NOTFORM((X )1112) V NOTFORM((X)1192)V
(X)12 # (X)11112 \ (X)1122 V (X )12 # (X)11112 \ (X)1112V
(X)QZI 7é (X)1122 V (X>222 ?A (X)IIIQ)]

VX = [[[[(X) 1111, [« (X)1n122]], (X)112], (X)12], (X)2] & (NOTPROOF((X)111)V
NOTPROOF((X)112) V NOTFORM((X)1112) V NOTFORM((X )1122)V
(X)12 # (X)11112 U (X)11212 V (X)11121 # (X)1122 V (X)2 # (X)11122)]

VX = [[[[(X) 1111, [¢5 (XD 1n122]], (X)112], (X)12], (X)2] & (NOTPROOF((X)111)V
NOTPROOF((X)112) V NOTFORM((X)1112) V NOTFORM((X )1122)V
(X)12 # (X)11112 U (X)11212 V (X)) 11122 # (X)1122 V (X)2 # (X)11121)]

VX = [[[(X) 11, [(X) 1121, [ (X)1222]]]; (X)12], L] & (NOTPROOF((X)111)V
NOTPROOF((X)112) V NOTFORM((X)1112) V NOTFORM((X )1122)V
(X)12 # (X)11112 U (X)11212 V (X112 # (X)11222)]
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VX = [[[(X)111, L], (X)2], [, (X)22]] & (NOTPROOF (X )11)V
NOTFORM((X)112) V (X)12 # (X)1112 \ (X)22)]

VX = [[[(X)111, L], (X)2], (X)2] & (NOTPROOF((X)11)V
NOTFORM((X)112) V (X)12 # (X)1112 \ [, (X)2])]

VX = [[(X)11, (X)2]s [V, (X)212], (X)22]] & (NOTPROOF ((X)11)V
NOTSUBST((X)112) V NOTFORM((X)1192) V (X)12 # (X)1112V
(X)212 # (X)112122 V (X)22 # (X) 1122V
@Y € (X)1a) (W) (FREB(W) V (W), £ V)

VX = [[[(X)111, [V, (X)1122]]s (X)1z2], (X)2] & (NOTPROOF((X)11)V
NOTFORM((X)112) V NOTSUBST((X)2) V (X)a120 7# (X)11212V
NOTFREEFOR((X)2121) V (X)21212 # (X) 1122V
(X)212112 # (X)11212 Vv (X)12 7é (X)1112)]

VX = [[(X) 1, (X)12], [[3, (X)212], (X)22]] & (NOTPROOF((X)11)V
NOTSUBST((X)112) V NOTFORM((X)1192) V NOTVAR((X )212)V
(X)12 # (X112 V (X)22 # (X)1122)]

VX = [[[[(XD) 1111, [3: (XD 11122]], (X 112), (X)12], (X)2] & (NOTPROOF((X)111)V
NOTPROOF((X)112) V NOTFORM((X )1112) V NOTFORM((X )1192)V
(X)11212 7 (X)11112 U (X) 112122 V NOTSUBST((X) 112122) V
(X)112122122 7# (X)111212 V NOTVAR((X ) 112122121)V
(AY)(FrREE(Y) & (V)2 = (X)1122)V
(IW1 € (X)11112) BW2)(FREE(W?) & (W) = Wi) V (X)12 # (X) 11112V
(X)2 # (X)1122)]) — NOTPROOF(X))

We would then define the set of non-proofs NP in ZF using the same idea of enumerating
all the possible cases in which a set-theoretic object could fail to be a coded proof. The
representability argument would then proceed in the same way that the proof for showing
the representability of formulae did. We would need to show:

1. (VX)(ProOF(X) — |X| €P)

2. (VX)(NoTPrROOF(X) — | X | € NP)
3. ZF - (Vz)(x € P — = ¢ NP)

4. ZF+ (Vz)(z e NP — z ¢ P)

(1) is the first representability condition and was shown previously by the metatheoretic
principle of induction for proofs. (2) would utilize the metatheoretic principle of induction
for non-proofs as defined above. (3) and (4) together show that P and NP are disjoint and
each are shown by using the induction principles justified by the definitions of the respective
sets. (1), together with (3)-(4) establish the desired representability conditions, i.e. they
show R; and R, for the metatheoretic notion of proofs:
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o (VX)(PROOF(X) — |X| € P)
e (VX)(NOTPROOF(X) — | X | ¢ P)

2.12 Representability of Theorems

The representability arguments shown previously have all been pointing to a single goal,
namely to show the representability of the theorem predicate inside of ZF. The undecid-
ability of ZF precludes a complete representation of theorems, so the theorem predicate is
only semi-representable, in the sense that we can define what it means to be a theorem and
show this notion to be representable inside of ZF', but we cannot define what it means to
not be a theorem and also show the collection of non-theorems to be reprsentable in ZF'.

Theorems are taken to be precisely the statements that are provable in ZF', that is, state-
ments for which there exists a proof. The previous argument established the representability
of proofs, where proofs in the metatheory are represented by binary trees whose right sub-
tree is the formula that the proof is of. Thus, we can define theorems to be the collection
of objects for which there exists a Y in the collection of proofs whose right sub-tree is the
formula to be proved. More formally, the metatheoretic definition of theorems is:

(VX)(THEO(X) <— (FOrRM(X) & (FY)(PROOF(Y) & (V)2 = X))
In the object theory we can then define the set of theorems to be
TH = {= € F| (Jy € P)(y); = =}

The representability is clear. Non-theorems would then be defined using the negation of
the existential (but, as indicated above, cannot be shown to be representable in ZF' as the
collection of theorems is only recursively enumerable).

The theorem predicate is then used in the self-reference lemma to construct an undecid-
able sentence of ZF'. The sentence is of the form

G« |G| ¢ TH

We can informally verify that such a sentence would cause some trouble in ZF'. If ZF F G,
then |G| ¢ TH, therefore =(Jy € P)(y)s = |G]. But since ZF F G, it must be that
(Jy € P)(y)2 = |G}, a contradiction. So consider instead the case in which it is not the case
that ZF = G. Then —(3y € P)(y)2 = |G|, so |G| ¢ TH. From this and the construction of
G, we are able to derive GG. Thus ZF F (G, also a contradiction. Thus G is undecidable, and
Z F' is incomplete.
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3 Conclusion

The goal of this project was to provide foundational support to the automated proofs
given by AProS. Though the verification was carried out by hand here, we would eventually
like the proofs to be verified using AProS. The way in which the proofs were done in this
work almost requires the help of a machine, as the more complex metatheoretic definitions
generate a huge number of cases to verify and the proofs get very long and tedious, losing
all intelligible structure.

Though it is good to see the task of representability in full, the reader should have no-
ticed a certain sense of redundancy in it all. Each of the metatheoretic and object-theoretic
definitions had the same basic structure, and each of the representability proofs proceeded
in exactly the same way. Thus a more elegant approach would be to formulate a general
specification for inductive definitions in the metatheory and provide an argument that all
metatheoretic definitions adhering to the general specification are representable. Once this
is done, the representability proof itself can be represented in the object-theory, which is the
first key step to verifying the derivability conditions of Godel’s second incompleteness theo-
rem. This is an area for further research and is planned to be carried out over the summer
of 2011.

AProS is already equipped to give metamathematical proofs, but some additional fea-
tures will need to be added in order to attempt the representability proofs. There will need
to be a slight expansion of syntax to handle a representation of binary tree notation (the
[X, Y] notation used here would be most reasonable). It would also need to be able to work
with a more robust formal metatheory that includes a series of inductive definitions and
induction principles for each. The proof search would then need to be expanded to consider
proofs by induction.

The next step is thus to try to formulate a more general description of inductive defi-
nitions, and the particular proofs that were carried out here for formulae, proofs, etc. will
motivate the requirements that the general specification must meet. Once this is sufficiently
developed, AProS will be expanded accordingly so that the representability proof can be
done mechanically. The abstract axiomatic-level proofs have already been given in AProS,
and with an automated proof of representability, it would then only remain to verify the
derivability conditions and the self-reference lemma (that allows the construction of an un-
decidable sentence). The proof of representability is a large piece of the verification project
and brings the prospect of automatically verifying Goédel’s incompleteness theorems in AProS
closer to realization.
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A Index of Lemmata

1. V2)(Z =SV (3X,Y)Z = [X,Y]) : follows directly from the axioms for binary trees.

2. (Vz,y)({z,y) = 0 — L) : immediate from the definitions of ordered pairs and the
empty set.

3. (VZ #5)(3X,Y)Z = [X,Y] : consequence of Lemma 1.

4. (VX1, X0, Y1, Y)([X1, V1] # [ X2, Ys] — (X7 # Xo VY] # Y3)) @ follows from axioms
for binary trees.

5. (Vx1, 22,1, y2) (1 # 9 — (x1,y1) # (T2, ys)) : follows from FTOP.
6. (Vr,y,z,w)((r =Ny&z€rx&w € y) — 2z € w) : trivial definitional reasoning.

7. (Vo) (x e NV+— (2 =0V (Ty £ 0)(3F2)z = (y,2) V(T2 e NV)(z # |F] &z = (0, 2))))
: follows from the definition of NV

(Vw)(w € NF +— w=0Vw=(|=],0) Vw=(|0O],0)
V (Fz)(Fy € NT)(w = ([=], (z,9)) Vw = ([=], {y, 2)))
V (Fz1,...,2,)3x € pred)(Jy € NT)(w = (x,(y, ..., (X1, Zpn) -+ +))
Ve Vw =z, (xg, ..., (Tp,y) -+ +)))
(F2)(Fy € NV)w = ((|Q],y), z)
(32)(Fy € npred)(y # [—]&y # [O)&y # |=]&(y)1 # [Ql&w = (y, 7))
Jz € z)w = ([~],2) V (I2)(Fy € 2)(w = (O], (z,y))
w = (0], (y,2))) vV Bx)(3y € z)w = ([Q], z),y)

: follows immedately from the definition of NIF.

V
V
V
V

9. Vx)(|=] =2 — (Fy1)0 = (B, y1)) : immediate from coding of negation.
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