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Abstract

The traditional Lewis-Stalnaker semantics treats all counterfactuals with an
impossible antecedent as trivially or vacuously true. Many have regarded this
as a serious defect of the semantics. For intuitively, it seems, counterfactuals
with impossible antecedents—counterpossibles—can be non-trivially true and
non-trivially false. Whereas the counterpossible “If Hobbes had squared the
circle, then the mathematical community at the time would have been sur-
prised” seems true, “If Hobbes had squared the circle, then sick children in the
mountains of Afghanistan at the time would have been thrilled” seems false.

Many have proposed to extend the Lewis-Stalnaker semantics with impossi-
ble worlds to make room for a non-trivial or non-vacuous treatment of counter-
possibles. Roughly, on the extended Lewis-Stalnaker semantics, we evaluate a
counterfactual of the form “If A had been true, then C would have been true”
by going to closest world—whether possible or impossible—in which A is true
and check whether C is also true in that world. If the answer is “yes”, the
counterfactual is true; otherwise it is false. Since there are impossible worlds
in which the mathematically impossible happens, there are impossible worlds
in which Hobbes manages to square the circle. And intuitively, in the closest
such impossible worlds, sick children in the mountains of Afghanistan are not
thrilled—they remain sick and unmoved by the mathematical developments in
Europe. If so, the counterpossible “If Hobbes had squared the circle, then sick
children in the mountains of Afghanistan at the time would have been thrilled”
comes out false, as desired.

In this paper, I will critically investigate the extended Lewis-Stalnaker se-
mantics for counterpossibles. I will argue that the standard version of the
extended semantics, in which impossible worlds correspond to maximal, logi-
cally inconsistent entities, fails to give the correct semantic verdicts for many
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counterpossibles. In light of the negative arguments, I will then outline a new
version of the extended Lewis-Stalnaker semantics that can avoid these prob-
lems.
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1 Introduction

If Timonthy Williamson is right, philosophical reasoning is at its core counter-
factual reasoning (Williamson 2007). But much useful philosophical reasoning, it
seems, also involves counterpossibles: counterfactuals with impossible antecedents.
We use counterpossibles to convey philosophical information. Logic teachers, for in-
stance, inform students about various non-classical logics by saying things like “If
intuitionistic logic were correct, then the law of excluded middle would fail” and “If
paraconsistent logic had been true, then logical consequence would not have been
explosive”—psst, neither intuitionistic nor paraconsistent logic can possibly be true.
We also argue philosophically by employing counterpossibles. Philosophy teachers,
for instance, may try and convince their students about the untenability of certain
ideas by saying things like “Look, if there were a recursive computer that could prove
any mathematical sentence that is true, then Gödel’s incompleteness theorem would
be false. Hence there cannot be such a computer”—psst, Gödel’s incompleteness
theorem cannot possibly be false.

We also seem to have solid semantic intuitions about counterpossibles—assuming,
as most others working on counterpossibles, that classical logic is indeed the one true
logic. The counterpossible “If classical logic had been false, then disjunctive syllogism
would no longer hold” seems non-trivially false. Perhaps intuitionistic logic had been
correct, had classical logic not, and in intuitionistic logic, disjunctive syllogism re-
mains valid. In contrast, the counterpossible “If intuitionistic logic had been correct,
then the law of excluded middle would not be unrestrictedly valid” seems non-trivially
true. For given sufficient knowledge about the formal properties of intuitionistic logic,
we know that the law of excluded middle fails in that logic.

Counterpossibles are a species of counterfactuals. Roughly, according to the stan-
dard Lewis-Stalnaker semantics, a counterfactual A� C is true just in case C is
true in the closest or most similar possible worlds to the actual world in which A

is true.1 Notoriously, however, this semantics deems all counterpossibles trivially or
vacuously true. If A is impossible, there are no possible worlds in which A is true, and
by convention, A� C comes out trivially true. But if at least some counterpossibles
can be non-trivially false, and some non-trivially true, as the considerations above

1For canonical statements of the semantics for counterfactuals, see Lewis 1973 and Stalnaker
1968.
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suggest, then the Lewis-Stalnaker semantics seems inadequate.
Many have proposed to extend the Lewis-Stalnaker semantics with impossible

worlds to make room for a non-trivial or non-vacuous treatment of counterpossibles.
Roughly, according to the extended Lewis-Stalnaker semantics, a counterfactual A�
C is true just in case C is true in the closest or most similar worlds—whether possible
or impossible—to the actual world in which A is true. Although I will be more precise
in section 2, we can generally think of impossible worlds as worlds in which the a priori
impossible happens: worlds in which conceptual, mathematical, and logical truths are
false, and in which conceptual, mathematical, and logical falsehoods are true

Consider “If there were a recursive computer that could prove any mathemati-
cal sentence that is true, then Gödel’s incompleteness theorem would be true.” To
evaluate this counterpossible, according to the extended Lewis-Stalnaker semantics,
we go to the closest or most similar impossible world w in which there is a recursive
computer that can prove any true mathematical sentence and ask: is Gödel’s theorem
true in w? Presupposing an intuitive grasp of relative closeness or similarity between
worlds, we should answer “no” to this question: if there were a recursive computer
that could prove any true mathematical sentence, Gödel’s theorem would be false
precisely because it rules out the possibility of such a computer. If so, the extended
Lewis-Stalnaker semantics tells us that the counterpossible is false. And intuitively, it
is false, albeit only non-trivially so. Consider also “If intuitionistic logic were correct,
then the law of excluded middle would fail.” To evaluate this counterpossible, we
go to the closest or most similar impossible world w in which intuitionistic logic is
correct and ask: does the law of excluded middle fail in w? Presupposing an intuitive
grasp of relative closeness or similarity between worlds, we should answer “yes” to
this question: if intuitionistic logic were indeed true, there would be counterexam-
ples to the law of excluded middle—at least in infinite domains. If so, the extended
Lewis-Stalnaker semantics tells us that the counterpossible is true. And intuitively,
it is true, albeit only non-trivially so.

The extended Lewis-Stalnaker semantics is arguably also the standard account
of counterpossibles in the literature, and it has been endorsed by Berit Brogaard
& Joseph Salerno, Daniel Nolan, and David Vander Laan amongst others. In this
paper, however, I will argue that the extended Lewis-Stalnaker semantics fails when
impossible worlds correspond to maximal, logically inconsistent entities for which it
holds that either A or ¬A is true, for every sentence A. This negative result will be
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particularly troublesome for Brogaard & Salerno 2013 and Vander Laan 2004 who
explicitly conceive of impossible worlds as maximal, inconsistent sets of sentences or
propositions—see also Jeffrey Goodman 2004 and Edwin Mares 1997.

As far as I can tell, there are two ways in which a proponent of the extended
Lewis-Stalnaker semantics may try to avoid my negative result. On the one hand,
she may follow Nolan 1997 and appeal to non-maximal or partial impossible worlds in
which sentences may fail to receive a truth-value. Curiously, Vander Laan notices that
his account of counterpossibles—in which all impossible worlds are maximal—“differs
slightly from Nolan [1997], in which worlds may have truth value gaps.” (Vander Laan
2004, p. 259; my italics.) If I am right, however, this difference is not slight. Rather,
it could be mean the difference between failure and potential success for the extended
Lewis-Stalnaker semantics. But if so, as I argue in section 4.1, there should be a
greater focus on how exactly to understand non-maximal worlds and their role in
a semantics for counterpossibles. On the other hand, as I discuss in section 4.2, a
proponent of the extended Lewis-Stalnaker semantics may try to avoid the negative
result by identifying impossible worlds with linguistic entities that are closed under
logical consequence in some non-classical logic. I will devote most of section 4 to this
second option. Not only because I find this version of the extended Lewis-Stalnaker
semantics the most promising, but also because it constitutes the outlines of a novel
semantics for counterpossibles.

I proceed as follows. In section 2, I introduce the extended Lewis-Stalnaker seman-
tics in more details. In particular, I spell out what I—alongside many others—take
logically possible and logically impossible worlds to be. In section 3, I show that
the extended Lewis-Stalnaker semantics fails when impossible worlds correspond to
maximal, logically inconsistent entities. In section 4, I discuss how a proponent of
the extended semantics may attempt to avoid the negative result. In section 5, I
conclude.

2 Counterpossibles, semantics, and world-ontology

Let us first state more precisely the standard Lewis-Stalnaker semantics for coun-
terfactuals:

(LS-ConFac) A� C is true in the actual world wα iff some possible world in
which A and C are true is closer to wα than any possible world in which A is
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true and C is false.

While (LS-ConFac) captures the general idea behind the standard Lewis-Stalnaker
semantics, it is specific in the following two respects. First, counterfactuals are only
evaluated for truth and falsity in the actual world. This restriction will simplify
the presentation of the extended Lewis-Stalnaker semantics, which involves reference
to impossible worlds. For while it is quite clear how to evaluate counterfactuals in
arbitrary possible worlds, it is not so clear what it means to evaluate counterfactuals
in arbitrary impossible worlds. Second, (LS-ConFac) favors the Lewisian semantics
for counterfactuals over the Stalnakerian one in the sense that it validates neither the
uniqueness nor the limit assumption. Against the uniqueness assumption, that is,
worlds can tie for closeness to wα, and against the limit assumption, worlds can be
closer and closer to wα without end.2

When A is impossible, (LS-ConFac) always delivers the value “true” for A� C. I
will assume that counterpossibles trade non-trivially in the impossible, and that (LS-
ConFac) is inadequate because it vacuously deems all counterpossibles true. Both
these assumptions can of course be disputed, but in this paper I shall focus solely on
the extended Lewis-Stalnaker semantics for counterfactuals:

(ConFac) A� C is true in the actual world wα iff some world in which A
and C are true is closer to wα than any world in which A is true and C is
false.

In contrast to the world-ontology underlying (LS-ConFac), the one underlying (Con-
Fac) contains both possible and impossible worlds. While we can assume that (LS-
ConFac) and (ConFac) agree on the evaluation of counterfactuals, they need not agree
about the evaluation of some counterpossibles. For since “worlds” in (ConFac) may
refer both to possible and impossible worlds, we can use the semantics, as illustrated
above, to deem certain counterpossibles non-trivially false and others non-trivially
true. In (ConFac), relative closeness may obtain not only between possible worlds
but also between the actual world and impossible worlds. A lot can be said about
relative closeness between possible and impossible worlds, but luckily, my central ar-
guments remain largely unaffected by the finer details of how to understand closeness.

We can now start to look more carefully at the world-ontology underlying (Con-
Fac). Throughout the paper, I will identify both possible and impossible worlds with

2Also, I have for simplicity omitted an accessibility relation between worlds in (LS-ConFac).
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sets of sentences in some sufficiently strong world-making language. We already have
a good understanding of what it means to give an ersatz or a linguistic construction
of possible worlds as sets of sentences in some world-making language, and we will be
able to use the same tools to construct impossible worlds.3 Obviously, there are tricky
questions about what a sufficiently powerful world-making language should look like,
but for current purposes, I will simply assume that we have an account of such a
language.4 The language, however, is stipulated to have the following two features.
First, it contains all (possible) sentence types of English—or sufficiently regimented
such sentence types. This will facilitate the accounts below of what it means for a
sentence to be true or false in a world. Second, the language contains symbols ¬
and ∧ that play the same inferential roles as classical negation and conjunction. The
other standard connectives of propositional logic can then be treated as shorthand
for their definitions in terms of ¬ and ∧.5

My discussion will center around the class of counterpossibles whose antecedents
presuppose that classical (propositional) logic is false, or that some non-classical logic
is true. I will also call such counterpossibles counterlogicals. Given that worlds
correspond to sets of sentences (in the assumed world-making language), we can then
begin to lay down principles that distinguish logically possible from logically impossible
worlds. Following Francesco Berto 2009, there are generally two ways in which we
can think of (logically) impossible worlds.

We can think of impossible worlds as “American type” impossible worlds. These
correspond to sets of sentences that are (classically) logically inconsistent. Arguably,
the standard extended Lewis-Stalnaker semantics presupposes that impossible worlds
are American type impossible worlds, and, in particular—modeled on the familiar
conception of logically possible worlds as maximal, consistent sets of sentences—that
impossible worlds correspond to maximal, inconsistent sets of sentences. While Bro-
gaard & Salerno 2013, Goodman 2004, and Vander Laan 2004 all share this conception

3For various linguistic constructions of possible worlds, see for instance Robert Adams 1974,
Rudolf Carnap 1947, David J. Chalmers 2011, Jaakko Hintikka 1969, and Richard Jeffrey 1983.

4For further discussion of what a general purpose world-making language may look like, refer to
Chalmers 2011 and Lewis 1986, chapter 3. Insofar as one has a better grasp of a class of primitive,
arbitrarily fine-grained propositions that can stand in logical relations to each other, it is also worth
pointing out that one might replace all talk about sentences with talk of such propositions without
affecting the main ideas and arguments in the paper.

5Although I will work with a simple logical language that contains only ¬ and ∧ as logical
symbols, it will be easy to see that the results in section 3 will continue to hold if we enrich the
world-making language to include symbols for the other propositional connectives as well.
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of impossible worlds, Nolan 1997 allows that some American type impossible worlds
are also non-maximal. Alternatively, we can think of impossible worlds as “Australian
type” impossible worlds. These correspond to sets of sentences that are closed un-
der logical consequence in some non-classical logic. Edwin Mares 2004 appeals to
Australian types impossible worlds in his semantics for counterpossibles.

In what follows, I will first assume that all impossible worlds in the ontology
underlying (ConFac) are American type impossible worlds. In particular, I will as-
sume that while logically possible worlds correspond to maximal, consistent sets of
sentences, logically impossible worlds correspond to maximal, inconsistent sets of sen-
tences. In section 4, I will then look at what happens if we give up the requirement
that all American type impossible worlds are maximal, and, in more detail, at what
happens if we think of impossible worlds as Australian type impossible worlds.

2.1 Worlds: possible and impossible

We want to develop a world-ontology in which possible worlds correspond to max-
imal, consistent sets of sentences, and in which impossible worlds correspond to max-
imal, inconsistent such sets. Let us first give a simple account of what it means for a
sentence to be true in a world:

(Truth) A sentence A is true in a world w iff A ∈ w.
(Falsity) A sentence A is false in a world w iff A < w.

When A is true in w, I will also say that w verifies A. While Brogaard & Salerno
2013 gives a similar account of truth and falsity in a world, notice that my central
arguments in section 3 do not hang on this simple account. Instead we may spell out
falsity of A in w in terms of truth of ¬A in w, or we may simply take truth-in-a-world
as a primitive notion.

We can now define what it means for a set of sentences to be logically consistent.
Since I can make my main arguments by focusing on propositional logic, I will focus
on logical consistency in propositional logic:

(Consistency) A set Γ of sentences is consistent iff Γ is satisfiable, where Γ
is satisfiable iff there is a propositional evaluation that makes all sentences in
Γ true.

Let I be an interpretation function that assigns either true or false, but not both, to
each atomic sentence A and define ν to be the following classical evaluation function:
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(Evaluation)

(νI) If A is an atomic sentence, then ν(A) = I(A).

(ν¬) ν(¬A) = T iff ν(A) = F .
(ν∧) ν(A ∧B) = T iff ν(A) = T and ν(B) = T .

The semantic clauses for ¬ and ∧ reflect the idea that the world-making language
has symbols that play the same inferential roles as classical negation and conjunction.
Since we can express sentences involving the other standard propositional connectives
using just ¬ and ∧, ν governs indirectly all these sentences as well.

Given this, (Satisfiability) can be proved:6

(Satisfiability) Any set Γ of sentences that satisfies the following two condi-
tions is satisfiable:
(i) A ∈ Γ iff ¬A < Γ.
(ii) (A ∧B) ∈ Γ iff A ∈ Γ and B ∈ Γ.

We can then say that every set of sentences—and hence every world—that satisfies
(i) and (ii) is consistent, and that every inconsistent set of sentences fails to satisfy
either (i) or (ii).

Finally, we can define what it means for a set of sentences to be maximal:

(Maximality) A set Γ of sentences is maximal iff for all sentences A, either
A ∈ Γ or ¬A ∈ Γ.

If a set of sentences—and hence a world—does not satisfy (Maximality), I will also
say that the set is non-maximal or partial.

The following two principles now hold:

(Ent1) For all sentences A and B such that A logically entails B, if A is true
in w, then B is true in w.

(Ent2) For any tautology T , T is true in w.

(Ent1) follows from the fact that for any maximal, consistent set Γ of sentences, and
for any sentence B such that Γ logically entails B, B ∈ Γ. And (Ent2) follows from
the fact that any set of sentences logically entails any tautology T . Given (Ent1)

6See the appendix for the proof of (Satisfiability).
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and (Ent2), maximal consistent sets of sentences can hence play the role of logically
possible worlds. For logically possible worlds are the kinds of entities that verify
all logical consequences of sentences that they already verify—including all logical
truths.7

Given that logical possible worlds correspond to maximal, consistent sets of sen-
tences, we can then identify logically impossible worlds with maximal sets of sentences
that are inconsistent. In turn, we can identify the world-ontology underlying (Con-
Fac) with the class of logically possible and impossible worlds so construed. Call this
version of (ConFac) in which all worlds are maximal “(M-ConFac)”.

In arguing against (M-ConFac) below, I will assume—as most others endorsing the
extended Lewis-Stalnaker semantics—that the closest worlds relevant for evaluating
counterlogicals are always also logically impossible. In determining what would have
followed, for instance, had some non-classical logic such as intuitionistic logic been
correct, we consider worlds whose truths are not codified by classical logic but rather
by the non-classical logic in question. I stress this point because it might be argued
that we can handle certain counterlogicals such as “If intuitionistic logic had been
correct, then the law of excluded middle would not be unrestrictedly valid” without
appealing to logically impossible worlds in the sense above.8 Consider a world w

pretty much like ours but in which the sentences “Intuitionistic logic is the correct
logic” and “The law of excluded middle is not unrestrictedly valid” are true rather
than the actually true sentences “Classical logic is the correct logic” and “The law
of excluded middle is unrestrictedly valid.” Although w is logically consistent, and
hence not logically impossible, there is plausibly a sense in which w is impossible
nonetheless. If so, we can appeal to w to ensure that the extended Lewis-Stalnaker
semantics renders true the counterlogical “If intuitionistic logic had been correct, then
the law of excluded middle would not be unrestrictedly valid.” So it seems that we
need not always appeal to logically impossible worlds to evaluate counterlogicals.

Even if we grant that a world like w is in some sense impossible, it seems neverthe-
less clear that the closest worlds relevant for evaluating counterlogicals are logically
impossible ones. Consider an analogy. If we are asked to evaluate what would have

7Assuming that general-purpose possible worlds are also mathematically and analytically possible,
maximal consistent sets of sentences clearly cannot play this general-purpose role. Yet, since my
main focus is on counterlogicals, we can set aside issues about non-logical a priori truths such as
those resulting from mathematical and analytic reasoning.

8Thanks to an anonymous referee for discussion here.
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happened, had some actual law of nature LN been false, we are asked to consider
what happens in a physically or nomologically impossible world whose truths and
physical features cannot adequately be described by LN . We are not merely asked to
consider what happens in a world that verifies the sentence “LN is false” rather than
the sentence “LN is true”, but whose laws of nature are otherwise identical to the
ones in our world. Similarly, if we are asked to evaluate what would have happened,
had some non-classical logic Li been correct, we are asked to consider what happens
in a world whose truths and logical features cannot adequately be described or codi-
fied by classical logic. We are not merely asked to consider what happens in a world
that verifies sentences such as “Li is the correct logic” rather than “Classical logic
is the correct logic”, but whose logical structure otherwise is identical to the one in
our world. Rather, we consider what happens in a logically impossible world whose
truths are governed by Li rather than classical logic. So from now on, I take it, we
must appeal to logically impossible worlds to evaluate counterlogicals.9

My arguments against (M-ConFac) center around counterlogicals, and, as such,
around the use of logically impossible worlds in the extended Lewis-Stalnaker seman-
tics. I will argue that (M-ConFac) fails insofar as it is to play the role of a general
semantics that can cover all types of counterpossibles, and notably, counterlogicals.
But note that these arguments leave open the possibility that (M-ConFac) can cor-
rectly handle certain counterpossibles. On some conceptions of the impossible, worlds
in which water is not H2O are metaphysically impossible, and counterfactuals whose
antecedents presuppose that water is not H2O can in turn be thought of as coun-
terpossibles. Since we need not appeal to logically impossible worlds to account for
counterfactuals with metaphysically impossible antecedents, my arguments will not
show that (M-ConFac) fails for such counterfactuals. Similarly, insofar as we can
handle counterfactuals with analytically and mathematically impossible antecedents
without appealing to logically impossible worlds, my arguments will not show that
(M-ConFac) fails for such counterfactuals. Rather, my arguments in the next section
will show that (M-ConFac) fails as a general semantics for counterpossibles.

9For further discussion of logically consistent worlds that represent themselves as being logically
non-classical in different ways, see Krakauer 2012.
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3 Problems

I shall now argue that (M-ConFac) fails as a general semantics for counterpossibles.
Henceforth, I will mean logically impossible worlds—in the sense above—whenever
I say “impossible worlds” without qualification, and I will mean classical proposi-
tional logic whenever I use locutions such as “logical entailment”, “logical truth”, and
“logical consistency” without qualification.

My main line of arguing against (M-ConFac) relies on (Inc), which can be proved
using (Satisfiability):10

(Inc) All maximal, logically inconsistent sets of sentences (in the world-making
language) contain an instance of a LNC-, CF-, or NCF-inconsistency:

LNC-inconsistency (law of non-contradiction): {A,¬A}.
CF-inconsistency (conjunction fallacy): {¬A, (A∧B)}, {¬B, (A∧B)},
{¬A,¬B, (A ∧B)}.
NCF-inconsistency (negated conjunction fallacy): {¬(A ∧B), A,B}.

Given (Inc), we can divide all logically impossible worlds into the following types:

Type-1 impossible worlds: worlds that contain a LNC-inconsistency.

Type-2 impossible worlds: worlds that contain a CF-inconsistency.

Type-3 impossible worlds: worlds that contain a NCF-inconsistency.

In evaluating a given counterlogical using (M-ConFac), we know then that the relevant
antecedent worlds must be either type-1, type-2, or type-3 impossible worlds.

Consider now:

(1) If intuitionistic logic were correct and (A ∧B) true, then A and B would also
be true (for any A and B).

Given that classical logic is in fact the one true logic, intuitionistic logic cannot
possibly be true. So (1) is a counterlogical. (1) is also a true counterlogical because
intuitionistic logic respects the standard logical laws governing conjunctions, and the
set {(A ∧B),¬A,¬B} is not intuitionistically satisfiable.

10See the appendix for the proof of (Inc).
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If (M-ConFac) is to be a successful semantics, it must render (1) true. To do
so, some logically impossible world w in which intuitionistic logic, (A ∧ B), A, and
B are all true must be closer to the actual world wα than any logically impossible
worlds in which intuitionistic logic and (A ∧ B) are true, but either A or B false—
and hence, by (Maximality), either ¬A or ¬B true. Given (Inc), we know that w
must be either a type-1, a type-2, or a type-3 impossible world. I now show that
(M-ConFac) must deliver the wrong semantic verdict for some counterpossible if it is
to render (1) true. In the first part of the argument, I show that (M-ConFac) fails as
an adequate semantics when there is a unique closest impossible world that verifies
the antecedent in (1). In the second part, I then show that (M-ConFac) fails when
multiple impossible worlds, each verifying the antecedent in (1), may count as equally
close to actuality.

First part

Suppose first that w is a type-1 impossible world in which intuitionistic logic,
(A∧B), A, and B are all true. Suppose also that w is closer to wα than any impossible
world in which intuitionistic logic and (A ∧ B) are true, but either A or B false. In
this case, (M-ConFac) will deem (1) true. Since w is a type-1 world, however, we also
know that C and ¬C are true in w, for some C. So (M-ConFac) also wrongly deems
the following counterpossible true:

(2) If intuitionistic logic were correct and (A ∧B) true, then C and ¬C would
both be true (for some C).

If the closest w is a type-1 world in which C and ¬C are true in addition to intu-
itionistic logic, (A ∧ B), A, and B, then (2) is true according to (M-ConFac). But
(2) should be false. For intuitionistic does not tolerate nor license any contradictions,
and the set {C,¬C} is not intuitionistically satisfiable for any C. So if (M-ConFac)
is to make (1) but not (2) true, w cannot be a type-1 impossible world.

Suppose second that w is a type-2 impossible world in which intuitionistic logic,
(A∧B), A, and B are all true. Suppose also that w is closer to wα than any impossible
world in which intuitionistic logic and (A ∧ B) are true, but either A or B false. In
this case, (M-ConFac) will deem (1) true. Since w is a type-2 world, however, we also
know that either (C ∧ D) and ¬C, (C ∧ D) and ¬D, or (C ∧ D), ¬C, and ¬D are
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true in w, for some C and D. So (M-ConFac) also wrongly deems at least one of the
following counterpossibles true:

(3) If intuitionistic logic were correct and (A ∧B) true, then (C ∧D) and ¬C
would all be true (for some C and D).

(4) If intuitionistic logic were correct and (A ∧B) true, then (C ∧D) and ¬D
would all be true (for some C and D).

(5) If intuitionistic logic were correct and (A∧B) true, then (C ∧D), ¬C and ¬D
would all be true (for some C and D).

If the closest w is a type-2 world in which (C ∧ D) and ¬C are true in addition to
intuitionistic logic, (A ∧ B), A, and B, then (3) is true according to (M-ConFac). If
¬D is true in w rather than ¬C, then (4) is true according to (M-ConFac), whereas
if both ¬C and ¬D are true in w, then (5) is true according to (M-ConFac). But (3)
to (5) should all be false. Intuitionistic logic does not license any violations of the
standard laws governing conjunctions, and the sets {(C ∧D),¬C}, {(C ∧D),¬D},
and {(C ∧ D),¬C,¬D} are not intuitionistically satisfiable. So if (M-ConFac) is to
make (1) but not any of (3) to (5) true, w cannot be a type-2 impossible world.

Suppose third that w is a type-3 world in which intuitionistic logic, (A ∧ B), A,
and B are all true. Suppose also that w is closer to wα than any impossible world in
which intuitionistic logic and (A ∧B) are true, but either A or B false. In this case,
(M-ConFac) will deem (1) true. Since w is a type-3 world, however, we also know
that ¬(C ∧ D), C, and D are true in w, for some C and D. So (M-ConFac) also
wrongly deems the following counterpossible true:

(6) If intuitionistic logic were correct and (A ∧B) true, then ¬(C ∧D), C, and D
would all be true (for some C and D).

If the closest w is a type-3 world in which ¬(C ∧D), C, and D are true in addition to
intuitionistic logic, (A∧B), A, and B, then (6) is true according to (M-ConFac). But
(6) should be false. Intuitionistic logic does not license any violations of the standard
laws governing conjunctions, and the set {¬(C ∧ D), C,D} is not intuitionistically
satisfiable. So if (M-ConFac) is to make (1) but not (6) true, w cannot be a type-3
impossible world.
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The discussion above shows that no matter which type of logically impossible world
counts as the closest to actuality, (M-ConFac) must deem true some false counter-
logicals in order to render (1) true. So whenever there is a unique closest impossible
world to wα, (M-ConFac) cannot be the right semantics for counterpossibles. Put
differently: if the semantics satisfies the uniqueness assumption, then (M-ConFac)
fails.

To save (M-ConFac) from the problems above, we must ensure that it renders
(2) to (6) false in all cases where it renders (1) true. To do so, the uniqueness
assumption must go. It is clear that we cannot save (M-ConFac) merely by giving up
the limit assumption and allow that some impossible worlds can be closer and closer
to actuality without end. Without the limit assumption, (M-ConFac) can render (1)
true in the case we never reach a sphere of worlds—as we approach actuality—in
which some impossible world verifying intuitionistic logic, (A ∧ B) but not both A

and B is closer to actuality than some impossible world verifying intuitionistic logic,
(A∧B), A, and B. In that case, however, it is easily verified that the problems from
above will reoccur for (M-ConFac). For as long as some logically impossible world
verifying intuitionistic logic, (A ∧ B), A, and B continues to be closer to actuality
than any world verifying intuitionistic logic, (A ∧ B) but not both A and B, we can
apply the line of reasoning from above to show that (M-ConFac) must give the wrong
semantic verdict for some other counterlogicals. Rather, to ensure that (M-ConFac)
renders (2) to (6) false in all cases where it renders (1) true, there must be some
logically impossible worlds that always count as equally close to actuality. But even
then, as I shall argue now, (M-ConFac) will fail as an adequate semantics.

Second part

To save (M-ConFac) from the problems above, we must assume that there is
always at least two relevant type-1, type-2, or type-3 worlds that count as equally
close to wα. Consider first two type-1 worlds w1 and w2 in which intuitionistic logic,
(A∧B), A, and B are true but which differ on which instance of a LNC-inconsistency
is true. In particular, while A1 and ¬A1 are true in w1, and B1 and ¬B1 are true in
w2, no other inconsistencies are true in w1 and w2 respectively.11 Suppose that w1

11Strictly, w1 and w2 cannot contain just one instance of a LNC-inconsistency, but I simplify the
presentation here—as I do below. If need be, we can stipulate that A1 and B1 are atomic sentences
and that all LNC-inconsistencies in w1 involve A1, whereas all LNC-inconsistencies in w2 involve
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and w2 are closer to wα than any other impossible world verifying the antecedent in
(1), and that w1 is always as close to wα as w2. The counterlogical (1) is now true
because the closest impossible worlds to wα are worlds in which intuitionistic logic,
(A ∧ B), A, and B are all true. But at the same time every counterlogical of the
following form is false:12

(7) If intuitionistic logic were correct and (A ∧B) true, then [instance of
LNC-inconsistency] would be true.

(8) If intuitionistic logic were correct and (A ∧B) true, then [instance of
CF-inconsistency] would be true.

(9) If intuitionistic logic were correct and (A ∧B) true, then [instance of
NCF-inconsistency] would be true.

To evaluate (7), we go to the closest impossible worlds in which the antecedent in
(7) is true. By assumption, these are w1 and w2. Since all LNC-inconsistencies not
involving A1 and B1 are false in w1 and w2, we focus on the pairs {A1,¬A1} ⊂ w1

and {B1,¬B1} ⊂ w2. Since w1 and w2 are closest to wα, worlds verifying intuition-
istic logic, A1, and ¬A1 will not be closer to wα than worlds—namely w2—verifying
intuitionistic logic but not both A1 and ¬A1. So if we plug the pair {A1,¬A1} into
the consequent in (7), (7) is false according to (M-ConFac). Similarly, as can be
easily verified, (7) is false according to (M-ConFac) if we plug {B1,¬B1} into the
consequent in (7). Accordingly, (7) is false for any instance of a LNC-inconsistency
whenever at least two type-1 worlds count as closest to wα.

To evaluate (8) and (9), we go to the closest impossible worlds in which the
antecedents in (8) and (9) are true. By assumption, these are w1 and w2 both of
which are only LNC-inconsistent. Hence the consequents in (8) and (9) are false,
and in turn (8) and (9) are false for any instance of a CF- and NCF-inconsistency.
Since (2) is an instance of (7), (3) to (5) instances of (8), and (6) an instance of (9),
(M-ConFac) can render (1) but not (2) to (6) true when two type-1 worlds are closest
to wα.

B1. Intuitively, on such a picture, if we were to remove all sentences involving A1 from w1, and all
sentences involving B1 from w2, the two worlds would become consistent.

12I state (7) to (9) schematically using, for simplicity, expressions from the metalanguage.
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So when the two type-1 worlds w1 and w2 count as equally close to wα—nothing
hangs on the particular choice of w1 and w2—(M-ConFac) deems (1) but not (2) to
(6) true. But if it does, it also wrongly deems the following true counterlogicals false:

(10) If intuitionistic logic were correct and (A ∧B) true, then A1 and ¬A1 would
never both be true.

(11) If intuitionistic logic were correct and (A ∧B) true, then B1 and ¬B1 would
never both be true.

(10) and (11) are true counterlogicals because intuitionistic logic does not tolerate
nor license any contradictions. For (10) to be true, an impossible world verifying
intuitionistic logic, (A∧B), but not both A1 and ¬A1 must be closer to wα than any
world verifying intuitionistic logic, (A∧B), A1, and ¬A1. But since w1 is among the
closest worlds to wα, this condition is not met. So (10) is false. Similarly, for (11)
to be true, a world verifying intuitionistic logic, (A ∧ B), but not both B1 and ¬B1

must be closer to wα than any world verifying intuitionistic logic, (A ∧ B), B1, and
¬B1. But since w2 is among the closest worlds to wα, this condition is not met. So
(11) is false. So if (M-ConFac) is to make (1) but not (2) to (6) true—by means of
w1 and w2—it fails to make (10) and (11) true. So (M-ConFac) fails when at least
two type-1 worlds count as equally close to actuality.

Consider second two type-2 worlds w3 and w4 in which intuitionistic logic, (A∧B),
A, and B are true but which differ on which instance of a CF-inconsistency is true.
In particular, while ¬A1, ¬A2, and (A1 ∧ A2) are true in w3, and ¬B1, ¬B2, and
(B1 ∧B2) are true in w4, no other inconsistencies are true in w3 and w4 respectively.
Suppose that w3 and w4 are closer to wα than any other impossible world verifying
the antecedent in (1), and that w3 is always as close to wα as w4. It is then easy to
see that (7) and (9)—and hence (2) and (6)—are false while (1) is true. To evaluate
(7) and (9), we go to the closest impossible worlds in which the antecedents in (7)
and (9) are true. By assumption, these are w3 and w4 both of which are only CF-
inconsistent. Hence the consequents in (7) and (9) are false. In turn, (7) and (9) are
false for any instance of a LNC- and NCF-inconsistency—and along with them (2)
and (6)—whenever at least two type-2 worlds are closest to wα.

To evaluate (8), we go to the closest impossible worlds in which the antecedent
in (8) is true. By assumption, these are w3 and w4. Since all CF-inconsistencies
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not involving {A1, A2} and {B1, B2} are false in w3 and w4, we focus on the sets
{¬A1,¬A2, (A1 ∧ A2)} ⊂ w3 and {¬B1,¬B2, (B1 ∧ B2)} ⊂ w4. Since w3 and w4 are
closest to wα, worlds verifying intuitionistic logic, ¬A1, ¬A2, and (A1 ∧ A2) will not
be closer to wα than worlds—namely w4—verifying intuitionistic logic, A1, A2, and
(A1 ∧A2). So if we plug the triple {¬A1,¬A2, (A1 ∧A2)} into the consequent in (8),
(8) is false according to (M-ConFac). Similarly, as can be easily verified, (8) is false
according to (M-ConFac) if we plug {¬B1,¬B2, (B1 ∧ B2)} into the consequent in
(8). Accordingly, (8) is false for any instance of a CF-inconsistency—and along with
it (3) to (5)—whenever at least two type-2 worlds are closest to wα.

So when the two type-2 worlds w3 and w4 count as equally close to wα—nothing
hangs on the particular choice of w3 and w4—(M-ConFac) deems (1) but not (2) to
(6) true. But if it does, it also wrongly deems the following true counterlogicals false:

(12) If intuitionistic logic were correct and (A ∧B) true, then ¬A1 and (A1 ∧ A2)
would never both be true.

(13) If intuitionistic logic were correct and (A ∧B) true, then ¬B1 and (B1 ∧B2)
would never both be true.

(12) and (13) are true counterlogicals because intuitionistic logic does not license any
violations of the standard laws governing conjunctions. Since w3 is among the closest
worlds to wα, however, a world verifying intuitionistic logic but not both ¬A1 and
(A1 ∧A2) is not closer to wα than a world—namely w3—verifying intuitionistic logic,
¬A1, and (A1∧A2). So (12) is false. Similarly, since w4 is among the closest worlds to
wα, a world verifying intuitionistic logic but not both ¬B1 and (B1∧B2) is not closer
to wα than a world—namely w4—verifying intuitionistic logic, ¬B1, and (B1 ∧ B2).
So (13) is false. So if (M-ConFac) is to make (1) but not (2) to (6) true—by means
of w3 and w4—it fails to make (12) and (13) true. So (M-ConFac) fails when at least
two type-2 worlds count as equally close to actuality.

Consider finally two type-3 worlds w5 and w6 in which intuitionistic logic, (A∧B),
A, and B are true but which differ on which instance of a NCF-inconsistency is
true. In particular, while A1, A2, and ¬(A1 ∧ A2) are true in w5, and B1, B2, and
¬(B1∧B2) are true in w6, no other inconsistencies are true in w5 and w6 respectively.
Suppose that w5 and w6 are closer to wα than any other impossible world verifying
the antecedent in (1), and that w5 is always as close to wα as w6. It is then easy to
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see that (7) and (8)—and hence (1) to (5)—are false while (1) is true. To evaluate
(7) and (8), we go to the the closest impossible worlds in which the antecedents in
(7) and (8) are true. By assumption, these are w5 and w6 both of which are only
NCF-inconsistent. Hence the consequents in (7) and (8) are false. In turn, (7) and
(8) are false for any instance of a LNC- and CF-inconsistency—and along with them
(1) to (5)—whenever at least two type-3 worlds are closest to wα.

To evaluate (9), we go to the closest impossible worlds in which the antecedent
in (9) is true. By assumption, these are w5 and w6. Since all NCF-inconsistencies
not involving {A1, A2} and {B1, B2} are false in w5 and w6, we focus on the sets
{A1, A2,¬(A1 ∧ A2)} ⊂ w5 and {B1, B2,¬(B1 ∧ B2)} ⊂ w6. Since w5 and w6 are
closest to wα, worlds verifying intuitionistic logic, A1, A2, and ¬(A1 ∧ A2) will not
be closer to wα than worlds—namely w6—verifying intuitionistic logic, A1, A2, and
(A1 ∧ A2). So if we plug the triple {A1, A2,¬(A1 ∧ A2)} into the consequent in (9),
(9) is false according to (M-ConFac). Similarly, as can be easily verified, (9) is false
according to (M-ConFac) if we plug {B1, B2,¬(B1 ∧B2)} into the consequent in (9).
Thus (9) is false for any instance of a NCF-inconsistency—and along with it (6)—
whenever at least two type-3 worlds are closest to wα.

So when the two type-3 worlds w5 and w6 count as equally close to wα—nothing
hangs on the particular choice of w5 and w6—(M-ConFac) deems (1) but not (2) to
(6) true. But if it does, it also wrongly deems the following true counterlogicals false:

(14) If intuitionistic logic were correct and (A ∧B) true, then A1, A2, and
¬(A1 ∧ A2) would never all be true.

(15) If intuitionistic logic were correct and (A ∧B) true, then B1, B2, and
¬(B1 ∧B2) would never all be true.

(14) and (15) are true counterlogicals because intuitionistic logic does not license any
violations of the standard laws governing conjunctions. Since w5 is among the closest
worlds to wα, however, a world verifying intuitionistic logic but not all of A1, A2,
and ¬(A1 ∧ A2) is not closer to wα than a world—namely w5—verifying all these
sentences. So (14) is false. Similarly, since w6 is among the closest worlds to wα, a
world verifying intuitionistic logic but not all of B1, B2, and ¬(B1 ∧B2) is not closer
to wα than a world—namely w6—verifying all these sentences. So (15) is false. So if
(M-ConFac) is to make (1) but not (2) to (6) true—by means of w5 and w6—it fails
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to make (14) and (15) true. So (M-ConFac) fails when at least two type-3 worlds
count as equally close to actuality.

Obviously, we cannot save (M-ConFac) from problems similar to those above by
letting at least two different types of impossible worlds candidate for equally close
to actuality. So I conclude that (M-ConFac) must give the wrong semantic verdict
for some counterlogicals if it is to give the right semantic verdict for (1). Thus (M-
ConFac) fails as a general semantics for counterpossibles.

3.1 Remarks on problems

One might observe that all my counterexamples to (M-ConFac) so far have in-
volved reference to intuitionistic logic. But the case against (M-ConFac) is not re-
stricted to such examples. To see this, suppose for simplicity that the uniqueness
assumption holds.13 Consider then any intuitively true counterlogical A� C that
(M-ConFac) makes true. According to (M-ConFac), some logically impossible world
w in which A and C are true is then closer to wα than any logically impossible world
in which A is true but C is not. By (Inc), w will verify an instance of a LNC-, CF-,
or NCF-inconsistency. As such, we know that (M-ConFac) also must deem at least
one of the following counterlogicals true:

(G1) A� [instance of LNC-inconsistency].

(G2) A� [instance of CF-inconsistency].

(G3) A� [instance of NCF-inconsistency].

To generate a counterexample to (M-ConFac), we need a logically impossible an-
tecedent A such that A � C is intuitively true, for some C, but such that (G1),
(G2), and (G3) are all intuitively false for that antecedent.

Above I specified the relevant impossible antecedent by reference to intuitionis-
tic logic, but other examples are easy to come around. Consider, for instance, the
intuitively true counterlogical “If classical logic had not been correct, then some non-
classical logic would have been.” Suppose (M-ConFac) deems this counterpossible
true. Then, by the line of reasoning from above, we know that (M-ConFac) must also

13Counterlogicals similar to those that caused problems for (M-ConFac) in the second part of the
argument above can easily be generated for the kinds of antecedents that I will consider in this
section.
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deem at least one of following counterlogicals true—bearing in mind that we suppose
the uniqueness assumption for simplicity:

(16) (a) If classical logic had not been correct, then [instance of
LNC-inconsistency] would have been true.

(b) If classical logic had not been correct, then [instance of CF-inconsistency]
would have been true.

(c) If classical logic had not been correct, then [instance of
NCF-inconsistency] would have been true.

But all these counterpossibles might well be false—say, if intuitionistic logic is correct
in the closest impossible world where classical logic is not. So (M-ConFac) cannot be
the right semantics for counterpossibles.

We may also focus on logically impossible antecedents that involve reference to
certain mildly non-classical logics such as multi-valued logic or supervaluationism.
These logics agree with classical logic on which sets of sentences are satisfiable when
each of the relevant sentences receives a designated truth-value: either true or false.
For instance, if (A ∧ B) is assigned the value true, then Kleene’s 3-valued logic,
Łukasiewicz’s 3-valued logic, and supervaluationism all agree with classical logic that
A and B must also be assigned the value true—similar considerations apply to the
other standard propositional connectives. Suppose then that (M-ConFac) makes true
the intuitively true counterlogical “If 3-valued logic (supervaluationism) were true,
then the principle of bivalence would fail.” By the line of reasoning from the first
part of the argument above, we know that (M-ConFac) must also deem at least one
of following counterlogicals true:

(17) (a) If 3-valued logic (supervaluationism) were true, then [instance of
LNC-inconsistency] would be true.

(b) If 3-valued logic (supervaluationism) were true, then [instance of
CF-inconsistency] would be true.

(c) If 3-valued logic (supervaluationism) were true, then [instance of
NCF-inconsistency] would be true.

But all these counterlogicals are false. Regarding (17a), A and ¬A should not both
be designated the value true, according to 3-valued logic and supervaluationism. So
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even if either of these logics were true, a LNC-inconsistency would still not be true.
Regarding (17b), if (A ∧ B) is designated the value true, then both A and B must
be designated the value true, according to 3-valued logic and supervaluationism. So
even if either of these logics were true, a CF-inconsistency would still not be true.
Regarding (17c), if ¬(A ∧ B) is designated the value true, A and B should not both
be designated the value true, according to 3-valued logic and supervaluationism. So
even if either of these logics were true, a NCF-inconsistency would still not be true.
Since (M-ConFac) must deem one of these counterlogicals true, however, it fails as a
general semantics for counterpossibles.

4 Alternative world ontologies

I have argued that the extended Lewis-Stalnaker semantics fails when logically
impossible worlds are maximal. As far as I can tell, this negative result leaves the
proponent of (ConFac) with two options.14 Either she includes non-maximal or partial
worlds in the ontology underlying (ConFac), or she identifies (some) impossible worlds
in the ontology underlying (ConFac) with Australian type impossible worlds. Here I
will only briefly comment on the first option, but expand on the second. Although
I find the second option more interesting than the first, I should not be taken to
endorse either. Rather, the current section is mainly exploratory and suggestive of
ways that we might develop an extended Lewis-Stalnaker semantics that can avoid
the problems that (M-ConFac) had.

4.1 Partial modal space

If we include non-maximal or partial impossible worlds in modal space, we include
impossible worlds in which sentences may fail to receive a truth-value—here I assume
that at least possible worlds should still be maximal. Call a modal space that includes
non-maximal worlds a “partial modal space.”

If we want to base an extended Lewis-Stalnaker semantics on a partial modal
space, we need firstly determine whether every set of sentences should count as a

14It will not help the proponent of (M-ConFac) to expand the world-making language to in-
clude symbols ∨ and → that play the same inferential roles as classical disjunction and material
implication—and modify (Evaluation) in section 2.1 accordingly. For given the proof of (Inc) in the
appendix, it is not hard to see how it generalizes to sentences involving ∨ and →. In turn, it is not
hard to verify that arguments similar to those in section 3 involving ∨ and→ can be leveled against
(M-ConFac). So for now I set aside the option of enriching the world-making language.
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world. If only some sets of sentences count as worlds, we need a principled distinction
between sets that do count as worlds and sets that do not. As far as I know, this
distinction has not yet been made precise, although the framework in section 4.2 can
be seen as an attempt to do so. So for the purpose of this section, I will assume that
every set of sentences can count as a world in a partial modal space. This assumption
also seems to sit nicely with Nolan 1997 who mentions that if we allow only some
impossibilities to count as impossible worlds, then we will find ourselves in

[. . . ] a distinctly uncomfortable halfway house between those who deny that there are
impossible worlds (perhaps the standard position), and on the other hand my position,
which maintains that for every impossibility, there is some impossible world where it
holds. (Nolan 1997, p. 547.)

Presumably, we would find ourselves in a similar uncomfortable halfway position if
we allowed only some sets of sentences to count as impossible worlds.

Given that every set of sentences corresponds to some world in partial modal
space, we can define what it means for a sentence to be true and false in a world:

(Truth?) A sentence A is true in a world w iff A ∈ w.
(Falsity?) A sentence A is false in a world w iff ¬A ∈ w.

If A < w, A is not true in w. So if both A < w and ¬A < w, A is neither true nor
false in w (it is not true that A is false in w). Alternatively, if A < w and ¬A < w,
then A lacks a truth-value in w, or A is indeterminate in w. For all maximal worlds,
A is false in w just in case A is not true in w.

Suppose then that we identify the world-ontology underlying (ConFac) with the
class of worlds in partial modal space:15

(P-ConFac) A� C is true in the actual world wα iff some world in which A
and C are true is closer to wα than any world in which A is true but C is not.

Since (P-ConFac) is built on a partial world-ontology, (Inc) will no longer follow and
the problems discussed in section 3 need no longer arise. And since every set of
sentences corresponds to a world, there are worlds in partial modal space that verify

15The semantics of (P-ConFac) differs slightly from the semantics of (ConFac) because there are
now two ways in which a sentence can fail to be true in a world: either if it is false in the world, or
if it is indeterminate in the world.
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A but not C, for any two sentences A and C. Accordingly, the ontology underlying (P-
ConFac) allows that every counterpossible can be true, and that every counterpossible
can be false—perhaps except for A� A.

Although I will not engage in a detailed critique of (P-ConFac) here, I will raise
a general worry that will serve to motivate the framework in section 4.2. The worry
concerns the explanatory power of (P-ConFac). For insofar as every set of sentences
corresponds to a world, there is nothing in the construction of worlds—nothing in the
underlying world-ontology—that helps reflect the non-trivial semantic, metaphysical,
and logical dependencies or relations that obtain between various sentences. Indeed,
for any two sentences A and C that stand in some non-trivial semantic, metaphysical,
or logical relation to each other, there are worlds in partial modal space in which this
relation fails to hold. For there are sets of sentences that contain A but not C, and
hence worlds in which A obtains but C does not. In particular, worlds in partial modal
space do not allow us to capture any interesting logical relations between sentences.
Even though intuitionistic logic and (A∧B) had been true, the logical relations that
hold intuitionistically between (A ∧ B), A, and B need never be reflected at the
level of worlds in partial modal space—there are plenty of partial worlds in which
intuitionistic logic and (A∧B) are true, but A or B not. But part of the motivation
for using worlds in philosophical analyses, I take it, is to reflect such non-trivial logical
and inferential relations. Otherwise, it is not obvious which extra explanatory power
the appeal to worlds in (P-ConFac) gives us semantically.

Rather, it seems to me, if worlds are to play an explanatory relevant role in a
semantics for counterpossibles, they need to have more structure than arbitrary sets
of sentences. As Nolan says, “[w]e are often able to say quite exactly what would
be the case, logically speaking at least, in the closest impossible world where an
actually false logic is true,” and it is natural to try and reflect this semantic and
logical knowledge explicitly in a world-involving model for counterpossibles (Nolan
1997, p. 545). For instance, in the closest impossible world where intuitionistic logic
and (A ∧ B) are true, there should be a fact about the construction of worlds that
guarantees that A and B are also true in that world. If not, we may as well bypass
talk of worlds and explicate the semantics for counterpossibles without appealing to
these theoretical entities.

So if we can find a better way to account for counterpossibles, I think we should.
Insofar as we need appeal to partial worlds to avoid the negative results of section
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3, proponents of the extended Lewis-Stalnaker semantics owe us an account of the
nature of these worlds. In light of the above, I take it, such an account should impose
substantial constraints on which sets of sentences can count as worlds. In the next
section, I will sketch a framework that goes some way towards meeting this request.

4.2 Stratified modal space

In the previous section I motivated the thought that worlds—whether possible or
impossible, and whether maximal or non-maximal—should have substantially more
structure than what arbitrary sets of sentences offer. In this section, I will show how
Australian type impossible worlds might give us this additional structure and how
an extended Lewis-Stalnaker semantics based on such worlds can avoid the problems
discussed in section 3.

Generally speaking, Australian type impossible worlds have more structure than
American type impossible worlds. For whereas the latter correspond to arbitrary—
or perhaps arbitrary maximal—sets of sentences, the former correspond to sets of
sentences that are closed under logical consequence in some non-classical logic. Since
we will want to quantify over more than one non-classical logic, it is best not to
specify the nature of the relevant Australian type impossible worlds by appeal to just
one specific non-classical logic. Instead I will adopt the following liberal definition of
what it means to be a world:

(World) A set Γ of sentences (in the world-making language) is a world w iff
Γ is closed under logical consequence in logic Li.

Whereas logically possible worlds correspond to maximal sets of sentences that are
closed under classical logical consequence—except for the “explosion” world that cor-
responds to the maximal, inconsistent set of all sentences—logically impossible worlds
now correspond to sets of sentences that are closed under some non-classical notion
of logical consequence. Henceforth, whenever I use the word “world” without quali-
fication, I will mean the types of (Australian) worlds that are defined by (World).

Given this conception of worlds, we can now construct an ontology that consists
of a spectrum of modal spaces WL1 , . . . ,WLn , where:

(Strat) WLi
= the class of sets of sentences (in the world-making language)

that are closed under logical consequence in logic Li.
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To construct the space of logically possible worlds, we take the class of all maximal
sets of sentences and close each of them under logical consequence in classical logic.16

Since impossible worlds now will be typed according to various non-classical logics,
we can also refer to them as worlds that are possible with respect to some non-classical
logic—bearing in mind the assumption that the only genuine logically possible worlds
are the ones that respect classical logic. To construct the space of intuitionistically
possible worlds, we take the class of all sets of sentences and close each of them under
logical consequence in intuitonistic logic. And to construct the space of paraconsis-
tently possible worlds, we take the class of all sets of sentences and close each of them
under logical consequence in paraconsistent logic. Call the modal space that contains
all the spaces of worlds that are possible relative to each logic Li “stratified modal
space”.17

Given this construction of stratified modal space, we need to determine what it
means for a sentence to be true in a world. Insofar as we want to retain a set-
theoretical account of truth and falsity in a world, we need to change the basic
picture from section 2.1 to accommodate the kinds of truth-values that are licensed
by various non-classical logics. In particular, it seems, we cannot easily retain (Truth)
and (Falsity) for spaces of worlds that model non-classical logics such as fuzzy logic
in which there are continuum many truth-values.

To overcome the limitations of the simple set-theoretical account of truth-in-a-
world, we may use elements from fuzzy set theory and allow sentences to have de-
grees of membership in the sets of sentences that correspond to worlds.18 Let µw(A)
represent the degree x—for some x in the real interval [0, 1]—to which A belongs to
the world w. We can then define:

16Since classical logic has an explosive consequence relation, every classically inconsistent set will
be identical to the set that contains every sentence in the world-making language. This “explosive”
set of sentences will not correspond to any logically possible world, and henceforth we should assume
that it is excluded from the space of logically possible worlds.

17For now I leave it an open question whether we want to quantify over only existing logics, or
also over conceivable logics.

18In claiming that we can fruitfully utilize certain aspects of fuzzy set theory, I only want to claim
that we can utilize the idea of degrees of set membership but not that we have to endorse the whole
fuzzy set-theoretical package.
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(D-Truth) µw(A) = 1 iff A is true in w.
(D-Falsity) µw(¬A) = 1 iff A is false in w.
(De-Truth) µw(A) = x iff A is true in w to degree x, for x ∈ (0, 1).
(De-Falsity) µw(¬A) = x iff A is false in w to degree x, for x ∈ (0, 1).

If µw(A) = 0, A is not true in w. Since we need to countenance various non-classical
logics in the framework, “not true” is detached from “falsity” or “truth of negation”.
If µw(A) = 1, A is wholly included in w, and if µw(A) = 0, A is wholly excluded from
w.

For classical logics and their close 2-valued cousins, “not true” and “falsity” or
“truth of negation” will collapse: µw(¬A) = 1 just in case µw(A) = 0. In such cases,
the set-theory will be indistinguishable from classical set-theory, and (De-Truth) and
(De-Falsity) will not play a role. For logics that acknowledge only truth and falsity
as designated truth-values but nonetheless operate with truth-value gaps—as in the
model in section 4.1—we need spaces of worlds such that µw(A) = 0 and µw(¬A) = 0.
Interpreted, there will be worlds in the relevant spaces in which A is neither true nor
false (not true that ¬A). For logics with more than two designated truth-values, there
are various options. For a standard 3-valued logic, we might let the third designated
truth-value that a sentence can take in a world be given by µw(A) = 0.5. For logics
with finite or continuum many truth-values, we can use the full resources of the
degree-theoretical account of what it means for a sentence to be true in a world.

Rather than appealing to fuzzy set theory, one may also consider taking “truth-
in-a-world” as a primitive notion in the framework and define an evaluation function
V al from pairs of worlds and sentences into truth-values in the interval [0, 1]:

(D-Truth?) V al(w,A) = 1 iff A is true in w.
(D-Falsity?) V al(w,¬A) = 1 iff A is false in w.
(De-Truth?) V al(w,A) = x iff A is true in w to degree x, for x ∈ (0, 1).
(De-Falsity?) V al(w,¬A) = x iff A is false in w to degree x, for x ∈ (0, 1).

Depending on which spaces of worlds we focus on, the properties of V al may stand
in further relations to each other. For instance, in spaces where negation behaves like
classical negation, V al(w,¬A) = 1 just in case V al(w,A) = 0.

Whether or not we opt for a set-theoretical or primitive representation of truth-
in-a-world—or yet some other representation—the evaluation of complex sentences in
worlds will depend on the semantics for the logic that governs the worlds in question.
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As such, there will most often be additional constraints on the evaluation of sentences
in worlds when we focus on specific spaces in stratified modal space.

Let now “(S-ConFac)” refer to a version of the extended Lewis-Stalnaker semantics
that is formulated just like (P-ConFac) but undergirded by stratified modal space.19

Since worlds are located within specific spaces or spheres of worlds in stratified modal
space, closeness intuitions pertain no longer just to worlds but also to spaces of worlds.
Although relative closeness between worlds and between modal spaces will largely be
determined intuitively and contextually, we can be a bit more specific than that.

First, we can identify the modal space WL1 in the spectrum WL1 , . . . ,WLn with
the space of logically possible worlds in which the actual world wα is a member. We
can then assume a version of Nolan’s:20

(Strangeness of Impossibility Condition) For any logically possible world
w in WL1 and any (classically) logically impossible world w? in WLn , for n > 1,
w is closer to wα than w?.

On the face of it, this condition seems reasonable. It captures the idea that possible
worlds are always closer to the actual world than any impossible world. As Nolan
puts it, “[t]he heavens will fall before (correct) logic fails us.” (Nolan 1997, p. 550.)

Second, we can impose the following condition on relative closeness between modal
spaces:

(Relative Closeness Condition) For any counterfactual whose antecedent
presupposes that some logic Li is correct (true, adequate), a world in modal
space WLi

is closer to the actual world than any world in modal space WLj
,

where WLi
, WLj

, and where i ≥ 1 and j > 1.

This condition too seems reasonable. It captures the idea that if some logic Li had
indeed been correct, then regardless of what else might have been the case, the laws
of Li would have been the case. For instance, if intuitionistic logic had been correct,
then regardless of what else might have been the case, the world would have been a
place where the laws of intuitionistic logic hold.

19If we were to allow evaluation of counterfactuals across arbitrary worlds in stratified modal
space, we would have to allow for more a complex—perhaps even degree-theoretical—semantics for
counterfactuals. As long as we assume that the actual world is a world in which classical logic holds,
however, we can forget about these other truth-values in explicating (ConFac).

20Cf. Nolan 1997, p. 550.
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Finally, notice that the current framework validates:21

(Entailment Principle) If C is a logical consequence of A in logic Li, then
A� C is true for any counterfactual whose antecedent presupposes that Li is
correct (true, adequate).

To see that (Entailment Principle) holds, suppose that C is a logical consequence of
A in logic Li. Consider then A� C, where A presupposes that Li is correct. To
evaluate A� C, we know by (Relative Closeness Condition) that a world in WLi

is closer to wα than any world in some distinct modal space WLj
. By construction,

every world in WLi
—whether close to wα or not—that verifies A also verifies C. So

A� C is true, according to (S-ConFac). Hence (Entailment Principle) holds.
Given the features above, it is easy to see why the problems that I raised for

(M-ConFac) no longer trouble (S-ConFac). Consider again (1):

(1) If intuitionistic logic were correct and (A ∧B) true, then A and B would also
be true (for any A and B).

As it should, (S-ConFac) renders (1) true. Since the antecedent in (1) presupposes
that intuitionistic logic is correct, we know by (Relative Closeness Condition) that
some world in intuitionistic modal space WLIL

is closer to wα than any other world in
some other non-classical space. And since each world in WLIL

is closed under logical
consequence in intuitionistic logic, we know that any world in WLIL

—whether close
to wα or not—that verifies (A ∧ B) also verifies A and B. So (1) is true, according
to (S-ConFac). Alternatively, since A and B are logical consequences of (A ∧ B) in
intuitionistic logic, we know by (Entailment Principle) that (S-ConFac) will deem (1)
true.

In contrast to (M-ConFac), however, (S-ConFac) can render (1) true without
thereby also erroneously rendering true the false counterpossibles (2) to (6). To see
this, consider again (2):

(2) If intuitionistic logic were correct and (A ∧B) true, then C and ¬C would
both be true (for some C).

21(Entailment Principle) is a version of a similar principle in the standard Lewis-Stalnaker seman-
tics that allows us to infer A� C whenever C is a (classical) logical consequence of A.
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For (2) to be true, according to (S-ConFac), we would need a world in intuitionistic
modal space WLIL

that verifies both C and ¬C. Since each world in WLIL
is closed

under logical consequence in intuitionistic logic, a world inWLIL
that verifies a contra-

diction will verify all other sentences as well. For contradictions entail everything in
intuitionistic logic. But such an “explosion” world—a world in which every sentence
is true—seems very far away from wα. Indeed, as Nolan says, “it seems to be one of
the most absurd situations conceivable.” (Nolan 1997, p. 544.) If so, any world in
WLIL

that verifies at most one member of a contradictory pair of sentences is closer
to wα than the world in WLIL

that verifies a contradiction and hence everything else.
So (2) comes out false, according to (S-ConFac), as it should.22 Since we can give a
similar account for the falsity of the other troublesome counterpossibles in section 3,
(S-ConFac) is not troubled by the problems that (M-ConFac) had.

Although (S-ConFac) can avoid the problems of section 3, people have complained
that an extended Lewis-Stalnaker semantics based on Australian type impossible
worlds cannot work. For instance,

Daniel Nolan points out that a uniform weakening of the consequence relation is a bad
idea, because no weakening can handle every impossibility that we might want to reason
about. Here is a way to argue that very general point in terms of counterpossibles.
Let L be the preferred/correct but weakened logic. Then, absurdly, the following
counterpossible is not false:

[(18)] If L were not the correct logic, then all and only L-theorems would be
valid.

The conditional would not be treated as false, because ex hypothesi every world would
be an L-world. Hence, there would be no worlds where the consequent is false, and so,
no closest antecedent worlds where the consequent is false. Of course, L is an arbitrary
logic. So any uniform weakening of the consequence relation would fail in the same way.
By itself the strategy fails to capture all reasonable intuitions about the truth-values
of counterpossibles. (Brogaard & Salerno 2013, p. 651.)

While this objection has force against a version of the extended Lewis-Stalanker
semantics that is based on a single space of Australian type impossible worlds, it does
not have force against (S-ConFac). For the purpose of evaluating the counterlogical

22Alternatively, we can make (2) false, according to (S-ConFac), by stipulating that the explosion
world is not in WLIL

.
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(18), we should go to a space of worlds that is not governed by the logic L in question.23

And in such a space, the consequent in (18) need not be true, and hence (18) need
not be true, according to (S-ConFac).

One may also complain that we can reason about impossibilities in the absence
of any logic, and hence that we can entertain counterpossibles that do not respect
any logical constraints.24 If so, it seems that we need logically impossible worlds that
are not governed by any logic to evaluate certain counterpossibles, and hence that we
need logically impossible worlds that are not of the Australian type. Given that all
impossible worlds in the ontology underlying (S-ConFac) are of the Australian type,
(S-ConFac) will not be able to handle all counterpossibles that we might care about.

In reply, notice that nothing I have said prevents us from isolating a space of
worlds that are closed under logical consequence in some ultra-weak logic LX with
no—or hardly any—principles governing logical consequence. For all practical intents
and purposes, we can think of the corresponding modal spaceWLX

as a space in which
every set of sentences corresponds to a world. Insofar as every—or almost every—set
of sentences corresponds to a world in WLX

, the semantic behavior of sentences in
worlds in this space is effectively completely unconstrained. As such, everything goes
in WLX

, both semantically and logically speaking. To evaluate counterpossibles that
do not respect any logical constraints, we can hence focus on worlds inWLX

and avoid
the objection above.25

In some sense, of course, the reply above still assumes that counterpossible rea-
soning takes place in some logic. But since the logic LX can be arbitrarily weak and
formally unconstrained, there is no harm in making this assumption for the purpose
of giving a semantics for counterpossibles—although there might be for the purpose
of giving an account of impossible reasoning. Alternatively, we may expand stratified
modal space with a particular sphere of American type impossible worlds, including

23Notice that the antecedent in (18) does not assume that the logic L is correct (true, adequate).
As such, (Relative Closeness Condition) does not apply in this context.

24Nolan raises an objection along those lines (Nolan 1997, pp. 547-548).
25Notice also that the specification of WLX

allows us to validate extensionally the following prin-
ciple that Nolan 1997 tentatively subscribes to:

(Comprehension Principle) For any set ∆ of sentences that cannot possibly be jointly true,
there is an impossible world in which each sentence in ∆ is true.

For given that there are no—or hardly any—principles governing logical consequence in LX , any set
of sentences—or almost any set of sentences—will count as a world in WLX

.
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both maximal and non-maximal ones. To evaluate counterpossibles that do not re-
spect any logical constraints, we could then appeal to worlds in this space of American
type impossible worlds to avoid the objection above.

If we are liberal enough about the logics that we use to construct the different
modal spaces, the stratified ontology underlying (S-ConFac) can hence be as liberal as
ontologies based on arbitrary maximal and non-maximal American type worlds. So
(S-ConFac) will be as tolerant to impossibilities as (M-ConFac) and (P-ConFac), and
be able to capture as many fine-grained semantic distinctions as these two alternative
accounts. But (S-ConFac) also seems to fare better than both (M-ConFac) and (P-
ConFac): better than (M-ConFac) because it avoids the problems in section 3, and
better than (P-ConFac) because it has a non-trivial formal structure that validates
interesting principles.

Yet, let me stress that I have not attempted to give a full-scale defense—nor a
full-scale exposition—of a semantics for counterpossibles. I have merely discussed two
ways in which we may develop an extended Lewis-Stalnaker semantics that can avoid
the problems of (M-ConFac), and indicated my reasons for preferring (S-ConFac)
over (P-ConFac). Whether the construction of stratified modal space survives closer
scrutiny, or whether it needs adjusting in crucial respects, is a topic for another paper.
For now (S-ConFac) is on the table as a new rival to the existing semantic frameworks
for counterpossibles.

5 Conclusion

If we identify logically impossible worlds with maximal, logically inconsistent sets
of sentences, the extended Lewis-Stalnaker semantics for counterfactuals fails: it gives
the wrong semantic verdicts for many counterlogicals. Arguably, the standard version
of the extended semantics presupposes not only that impossible worlds are American
type impossible worlds, but also that they are maximal. If so, my arguments show
that the standard way of making the extended Lewis-Stalnaker semantics precise fails.

To avoid the negative result, a proponent of the extended Lewis-Stalnaker seman-
tics may include non-maximal American type impossible worlds in the underlying
world-ontology. By doing so, she may avoid the problems from section 3. I argued
that there are reasons to impose substantial logical constraints on which (partial) sets
of sentences should count as worlds, and went on to investigate a stratified world-
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ontology consisting of Australian type impossible worlds most of which obey such
constraints. I argued that an extended Lewis-Stalnaker semantics built on a strat-
ified modal space can avoid the problems from section 3, but also that it remains
as tolerant to impossibilities as ontologies consisting of maximal and non-maximal
American type impossible worlds. As such, the proposal can avoid certain problems
that other existing semantics for counterpossibles have, while at the same time make
as many fine-grained semantic distinctions as the existing semantics.

Although I have not aimed to give a detailed defense of the extended Lewis-
Stalnaker semantics, I have aimed to give detailed recommendations for proponents
of the semantics. For insofar as a successful Lewis-Stalnaker semantics for counter-
possibles cannot be built on an ontology consisting solely of maximal worlds, my
arguments recommend that it be built upon either partial American type impossi-
ble worlds or Australian type impossible worlds. I have outlined one such positive
account of counterpossibles, but a full-scale exposition must wait for future work.

33



6 Appendix

In this appendix, I give the proofs of (Satisfiability) and (Inc).

Proof of (Satisfiability)

Let Γ be any set of sentences that satisfies (i) and (ii) in (Satisfiability). We
want to show that there is a propositional evaluation function ν that makes
each sentence A in Γ true. To this end, we stipulate an interpretation I such
that for all atomic A:

I(A) = T iff A ∈ Γ.
I(A) = F iff A < Γ.

This is a possible stipulation because I cannot assign both T and F to any
atomic A. We then need to show that every sentence in Γ is true under this
interpretation. I do this by induction on the length of a sentence, where the
length of a sentence is given by the number of symbols it contains:

Base case: Assume for atomic A that A ∈ Γ. We want to show that ν(A) = T .
We get the result immediately. By definition of I, A ∈ Γ iff I(A) = T . By
(νI), I(A) = T iff ν(A) = T . So A ∈ Γ iff ν(A) = T . So ν(A) = T .
Inductive step: Assume for the induction hypothesis that every sentence in
Γ that is shorter than ¬A and (A ∧ B) is true under the evaluation ν based
on I. We want to show that if ¬A ∈ Γ, then ν(¬A) = T , and if (A∧B) ∈ Γ,
then ν(A ∧B) = T . There are two cases to consider:

Case 1: Assume ¬A ∈ Γ. By (i) in (Satisfiability), ¬A ∈ Γ iff A < Γ. By
induction hypothesis, A < Γ iff ν(A) = F . By (ν¬) in (Evaluation), ν(A) = F

iff ν(¬A) = T . So ν(¬A) = T .
Case 2: Assume (A ∧ B) ∈ Γ. By (ii) in (Satisfiability), (A ∧ B) ∈ Γ iff
A ∈ Γ and B ∈ Γ. By induction hypothesis, A ∈ Γ and B ∈ Γ iff ν(A) = T

and ν(B) = T . By (ν∧) in (Evaluation), ν(A) = T and ν(B) = T iff
ν(A ∧B) = T . So ν(A ∧B) = T . �
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Proof of (Inc)

Let ∆ be any maximal, logically inconsistent set of sentences. By (Satisfiability),
∆ will fail to satisfy either (i) or (ii) and hence contain at least one of the
following inconsistent pairs or triples of sentences:

Case 1: ∆ may be inconsistent because it fails to satisfy (i) of (Satisfiability),
in which case ∆ contains an inconsistency of the form {A,¬A}. That is, ∆
contains an instance of a LNC-inconsistency.
Case 2: ∆ may be inconsistent because it fails to satisfy (ii) of (Sat-
isfiability), in which case ∆ contains either an inconsistency of the form
{¬A, (A ∧ B)}, {¬B, (A ∧ B)}, or {¬A,¬B, (A ∧ B)}, or an inconsistency
of the form {A,B,¬(A ∧ B)}. That is, ∆ contains either an instance of a
CF-inconsistency or an instance of a NCF-inconsistency. �
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