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Abstract This paper uses a partially ordered set of syntactic categories to accommo-
date optionality and licensing in natural language syntax. A complex but well-studied
data set pertaining to the syntax of quantifier scope and negative polarity licensing in
Hungarian is used to illustrate the proposal. The presentation is geared towards both
linguists and logicians. The paper highlights that the main ideas can be implemented
in different grammar formalisms, and discusses in detail an implementation where the
partial ordering on categories is given by the derivability relation of a calculus with
residuated and Galois-connected unary operators.
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1 Introduction: The Problem and the Main Claims

Among the basic issues that all syntactic theories have to deal with are the following:

(1) Often not only the broad categorial status of expressions but also their finer-
grained subcategories are relevant for syntactic combination. E.g., while will be
hungry combines with any noun phrase subject, are hungry requires one in the
plural.
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238 R. Bernardi, A. Szabolcsi

(2) Some expressions are optionally present, but they have fixed positions and are not
iterable; e.g., numerals. Therefore three black dogs must be categorially distinct
from black dogs. It is remarkable that despite this fact determiners like those
apparently recognize that they are getting the desired complement, whether it is
of the form black dogs or of the form three black dogs.

(3) Some expressions that have sentential status are nevertheless ungrammatical as
they stand and need a licensor for some of their components. Take Mary drank
any more wine, which contains the negative polarity item any. Drank has found
its arguments, but the addition of a decreasing operator is still required, as in Not
that Mary drank any more wine and whether Mary drank any more wine.

A common way to approach (1) and (2) is to use Typed Feature Structures or other
constraint-based grammar formalisms. See Kaplan and Bresnan (1982), Uszkoreit
(1986), Carpenter (1992), Pollard and Sag (1994), Morrill (1994), Dörre and Manand-
har (1997), Baldridge (2002), and others. The basic idea is that each syntactic category
is a partially ordered set of subcategories (or, each expression is characterized by a
feature structure and feature structures form partially ordered sets), and the combina-
tion of expressions requires subsumption, rather than identity, between the pertinent
categories.1

Bernardi (2002) extended the same idea to the licensing problem in (3). Informally,
assume the following partially ordered set of sentence types; the category labels are
ad hoc speaking names:

〈{Complete S, Incomplete S, Good-enough S},≤〉

with the following ordering relation:

(4)

Crucially, Incomplete S �≤ Complete S. The rest of the grammar will ensure that Mary
drank a glass of wine is a Good-enough S, and Mary drank any more wine is an
Incomplete S. Whether and not that select for an Incomplete S and yield a Complete
S. They are free to combine with either one of our two sentences, given Good-enough
S ≤ Incomplete S. On the other hand, whereas Mary drank a glass of wine is both
Good-enough and Complete, Mary drank any more wine must combine with whether
or not that to be part of a Complete S. Whether and not that act as licensors pre-
cisely because they can take a complement that is not Good-enough on its own and

1 Interestingly, Minimalism (Chomsky (1995) and subsequent literature) does not have a standard solution
for partial ordering and optionality; see the discussion in Sect. 6.
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Optionality, Scope, and Licensing 239

turn it into a Complete S. This type of account generalizes to various other licensing
relations.2

A technically novel feature of Bernardi’s proposal is that the partially ordered set
(poset) of categories consists of multiple smaller posets and systematic subsumption
relations among their elements. To see how this is motivated by the linguistic problem
at hand, consider the fact that expressions like Mary drank a glass of wine and Mary
drank any more wine only differ in that the second one needs a licensor. In all other
respects they are built in the same way, and moreover the former happily occurs in
all the larger environments that contain a licensor for the latter. Thus the poset of
subcategories for Good-enough expressions has to be duplicated, so to speak, by a
poset of subcategories for Incomplete ones, with their elements pointwise ordered as
S’s are in (4). Natural languages exhibit a variety of different licensing relations, all
of which call for a similar treatment. It is desirable, therefore, to have a formal device
for “copying posets”. Representing syntactic categories as formulae of some calcu-
lus, with the ordering relation provided by the derivability relation of that calculus, is
well-suited to this purpose.

The need to “copy posets” constitutes a novel argument for the logical approach
to partially ordered categories. A more standard logical undertaking is to formalize
the ordering relation in the basic poset (the one which, in our terms, gets copied)
and to fine-tune the rules of syntactic combination (e.g. Blackburn and Spaan (1993);
Johnson and Bayer (1995)).

In sum, on the logical approach the exotic-looking (5) is traded for the more
austere (6).

(5) 〈{Complete S, Incomplete S, Good-enough S},≤〉
(6) 〈{ψ1, ψ2, ψ3},−→〉, where −→ is the derivability relation of a particular

calculus

Bernardi’s proposal is developed in a type-logical setting, relying specifically on inno-
vations in Kurtonina and Moortgat (1995). In type-logical grammar, categories are
labeled with logical formulae. Then, each partially ordered set of subcategories is a
set of formulae with a derivability relation on it.

Dörre et al. (1996) consider different ways to extend a Lambek grammar for syn-
tactic combination with a calculus for subcategories (subtyping, features), using fibred
and monolithic approaches. Bernardi (2002) can be seen as an example of the mono-
lithic one, although not exactly the kind explored in Dörre et al. (1996). This paper
presents two ways of subtyping that are equivalent from the point of view of the
empirical data that we are going to work with. One follows Bernardi (2002) in all
important respects; the other uses the fibred approach and introduces a calculus with
just conjunction and disjunction. The two presentations will underscore that different
grammar formalisms can adopt and implement the basic ideas.

2 The relation of whether to Mary drank any more wine is somewhat different from that of what to did
Mary see. The reason is that the NPI-licensor does not care whether there is a NPI in its scope, whereas the
fronted what must combine with a category that contains an object gap. Therefore the treatment of these
two cases will not be identical.
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240 R. Bernardi, A. Szabolcsi

We apply these ideas to the highly constrained scope interaction between quanti-
fiers and negative operators in Hungarian. A smaller set of English quantifier scope
data was treated in this way in Bernardi (2002), based on Beghelli and Stowell (1997)
observations. Quantifier scope is an empirically new domain as compared to those tra-
ditionally treated in the literature using partially ordered sets of categories. The switch
from English to Hungarian is motivated by the fact that Hungarian offers a richer set
of data but, at the same time, a more transparent one. The surface left-to-right order
of quantifier phrases in Hungarian largely mirrors their scope order; thus the lan-
guage makes the syntax of scope directly observable. Another important property of
Hungarian is that left-to-right order is determined by quantifier class (group denoting,
distributive, counting, negative concord, etc. quantifiers), not by grammatical function,
which makes the need for intricate subtyping obvious. Thirdly, the presence of those
quantifier phrases is optional, and so the optionality problem described above arises
on a large scale. In sum, Hungarian offers a good domain for illustrating the usefulness
of partially ordered categories. It will also serve as a backdrop for the discussion of
the monotonicity of licensing.

2 Plan

This paper has the following goals.

(I) To present the basic ideas in a way accessible to linguists whose home theory
is not type-logical grammar but either some Typed Feature Structure grammar
or Minimalism. This is the task of Part I (Sects. 3 through 5).

(II) To illustrate and test the working of the theory with empirical data pertaining
to Hungarian quantifiers, drawing from Szabolcsi (1997), Brody and Szabolcsi
(2003), and other literature that is highly compatible with Beghelli and Sto-
well’s approach to quantifier scope in English. This is the task of Part II (Sects. 6
through 10).

(III) To further elaborate and study the logic presented in Bernardi (2002). This is
the task of Part III (Sect. 11 through 15).

3 Part I: The Basic Ideas

3.1 The Grammar

3.1.1 Proof Theoretical Approach

This paper presents the grammar in a proof theoretical format but strives to keep the
basics as simple as possible. This section offers an informal introduction to some basic
ideas and notations in Lambek grammar.

The proof theoretical approach to syntax presents syntax as a calculus, where the
syntactic category labels assigned to lexical expressions are the axioms and the syntac-
tic category labels derived for complex expressions—sentences among them—are the
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Optionality, Scope, and Licensing 241

theorems.3 The idea of Lambek (1958) was to take syntactic category labels to be
formulae of a propositional calculus with just material implication →, notated in
categories as /. The pertinent inference rules of this simple calculus are the ones
corresponding to modus ponens (the elimination of→) and conditionalization (the
introduction of→).

An expression of category y/x followed by an expression of category x forms an
expression of category y. Compare modus ponens:

x → y
x

∴ y

If an expression of category z and one of category x to its right form an expression
of category y, then z derives y/x . Compare conditionalization:

if

z

x

∴ y

then
z

∴ x → y

This calculus has a model theory with respect to which it is sound and complete
(Kurtonina and Moortgat 1995). Linguists are most accustomed to logics in which
the models contain individuals, events, worlds, etc. In those cases if p derives q, then
every world in which p is true is also one in which q is true. In our case the models con-
tain linguistic expressions, and the derivability relation between category labels says
something about the syntactic behavior of the expressions, not about their meanings.4

A −→ B iff [expressions labeled A] ⊆ [expressions labeled B]

That is, the derivability relation between category labels corresponds to a subset rela-
tion between the sets of expressions bearing those labels.

3.1.2 Functional Application, Scope, and Bridging

Recall problem (1) mentioned in the introduction: the verb phrase will be hungry com-
bines with any noun phrase as its subject, but are hungry requires one in the plural,
and is hungry requires one in the singular. This can be handled with the following
assumptions:

3 Syntactic categories are sets of expressions: those expressions that belong to the given category. VP, e\t ,
etc. are category labels: names for such sets. This distinction is important to bear in mind when one talks
about categories as formulae, although the literature is often sloppy about it, and we also take the liberty to
sometimes use the term “category” to refer to a category label.
4 An overview of the framework more suitable to linguists is Moortgat (2002), whereas logicians are
referred to Moortgat (1997).
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she ∈ Singular Noun Phrase, they ∈ Plural Noun Phrase
will be hungry wants an argument of category Noun Phrase
are hungry wants an argument of category Plural Noun Phrase
is hungry wants an argument of category Singular Noun Phrase
Singular Noun Phrase ≤ Noun Phrase
Plural Noun Phrase ≤ Noun Phrase

The reason why will be hungry can take either she or they as an argument is that
although the latter are directly labeled as Singular/Plural Noun Phrases in the lexicon,
the ordering relation tells us that every Singular/Plural Noun Phrase is a Noun Phrase.
In proof theoretic terms, both lexical category labels derive the label Noun Phrase. In
general,

(7) An expression of category A/C combines with an expression of category B as
an argument iff B derives C .

Another way of saying this is that a functor category is always order reversing with
respect to the category selection of its argument. If B ≤ C , i.e. every expression in B
is also in C then, if a functor category F combines with elements of C as an argument,
it also combines with elements of B.

From our perspective scope taking can be reduced to functional application. A
quantifier phrase like every man that denotes a generalized quantifier of type 〈〈e, t〉, t〉
syntactically combines with its scope by Montague’s Quantifying-in rule or some rein-
carnation thereof. Its interaction with other operators is determined by what sentential
subcategory it can be quantified into (its argument category), and what sentential sub-
category it feeds to higher operators (its value category). The fact that a quantifier
binds a variable, whereas not does not, is immaterial from this perspective. The order-
ing directly pertains to just the sentential categories and is inherited by the generalized
quantifier categories. The main body of this paper abstracts away from how atomic
sentences are built (although a sample derivation of a full sentence is provided in
Sect. 8). In this simplified context we schematically talk of the category of operators,
including quantifier phrases, as sval/sarg .5 As will be seen below, this is especially
straightforward in Hungarian, where quantifier phrases in the preverbal field line up
in their scopal order, rather than stay in subject, object, etc. position as in English.
It is also straightforward in theories of scope like Bernardi and Moortgat (2007) and
Barker and Shan (2006), which allow s/s to “migrate” to the level where the quantifier
takes scope, “leaving behind” dp.6

The generalization in (7) simply extends to quantification, as in (8).

(8) A quantifier phrase (operator) of category sval/sarg takes immediate scope over
a syntactic domain of category sa iff sa derives sarg .

The ordering relation among functor categories is not given directly; it follows from
the ordering among the subcategories that label their arguments and values.

5 The reader interested in an in-depth formal presentation of the treatment of QPs in categorial type logic
is referred to Moortgat (1997), Bernardi and Moortgat (2007) and Barker and Shan (2006).
6 Determiner Phrase, dp is the category label of expressions of type e or some lifting thereof.
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Optionality, Scope, and Licensing 243

Crucially to the solution of problems (2) and (3), recognizing the derivability (inclu-
sion) relations among subcategories offers an account of when the intervention of some
sentential operator OPb between OPa and OPc is optional or obligatory.7

Given the total ordering and the category assignment as in (9), the left-to-right order
of the operators follows:

(9) s1 −→ s2 −→ s3

OP3 > OP2 > OP1
s3/s3 s2/s2 s1/s1

By transitivity, s1 −→ s3, viz. OP3 can also scope over OP1 directly. The presence
of OP2 is optional.

OP3 > OP1
s3/s3 s1/s1

If the ordering relation is not total but partial, as in (10), then OP7 may only scope
over OP5 if OP6 intervenes and bridges between OP5’s value category and OP7’s
argument category. For instance, given the derivability relations in (10) and OP7 and
OP5 of category ·/s4 and s2/·, respectively, OP7 can precede OP5 only if operator
OP6 of category s4/s2 mediates, because s2 �−→ s4.8 Linguistic operators are notated
as curved arrows pointing from the argument category to the value category.

(10) Partial ordering on categories

s3 

OP6

s4 s2      OP2

  s1 
OP7 > OP6 > OP5 but ∗OP7 > OP5
·/s4 s4/s2 s2/· ·/s4 s2/·

Bridging between two categories that the ordering relation does not relate to each other
is crucial for the account of many phenomena, NPI-licensing among them.

3.1.3 Salvaging Incomplete Categories

Bernardi (2002) develops a proposal for negative polarity item (NPI) licensing, which
we take to be a representative of licensing relations in general. From our perspective

7 In what follows, X > Y notates “X precedes and/or scopes over Y ”, the longarrow X −→ Y notates “X
derives Y ”. We reserve the ≤ notation for the pretheoretical, informal notion of an ordering relation.
8 In ·/s4 the dot acts as a placeholder for an arbitrary category.
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the following two structures are alike, and whatever we say about NPI-licensing carries
over to the licensing of subject/auxiliary inversion:

licensor licensee
never saw anything
never would I do that

Let us flesh out the argument presented in Sect. 1. The need for the NPI to be
licensed means that a structure containing the NPI is Incomplete unless it is within the
scope of an appropriate operator. Let the category of the NPI be valNPI/arg. Category
valNPI does not derive that of Complete sentences: it is Incomplete. If the NPI has wid-
est scope within a structure, that structure inherits its value category, and thus inherits
Incompleteness from the NPI. Being within the immediate scope of an expression
whose value category is Good-enough or outright Complete salvages the structure;
such an expression is a licensor. Its category is notated as val/arglic. For example:

seldom > anything > saw
val/arglic valNPI/arg arg

The fact that the licensor is capable of scoping immediately above the structure
containing the NPI shows that valNPI derives arglic. Since an Incomplete category
by definition cannot derive a Complete one, this means that arglic itself is an Incom-
plete category! On the other hand, the licensor does not require for there to be an NPI
within its immediate scope. This means, in turn, that arglic is also derived by various
Good-enough categories:

seldom > everything > saw
val/arglic valdist/arg arg

So, we have (11), where sn stands for an arbitrary subcategory of s.

(11) valNPI(Incomplete) �−→ sn (Good-Enough)

arglic(Incomplete) �−→ sn (Good-Enough)

valNPI (Incomplete) −→ arglic (Incomplete)

valdist (Good-Enough) −→ arglic (Incomplete)

It is in principle possible to set up the poset of syntactic categories in such a way that
Incomplete categories reside in a “blind alley” that satisfies the requirements in (11).
Given however the variety of licensing relations the grammar has to accommodate,
this solution would probably be ad hoc and unable to capture finer patterns.

4 Division of Labor Between Logics

As is widely observed, a “grammar logic” needs two components: a logic of concat-
enation and a logic of feature descriptions, where the task of the latter is to check
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subtype orderings. Dörre et al. (1996) show that the proof theoretical and model
theoretical combination of these two components can be obtained in two ways: com-
bination by augmentation or combination by replacement. The former is referred to
as “fibred semantics” and proof theoretically it amounts to using combined proof sys-
tems. Combination by replacement corresponds to what Dörre et al. call a “monolithic
semantics”, which at the proof theoretical level amounts to having one derivability
relation to reason both on linguistic structures and on features.

Dörre and Manandhar (1997) employ a fibred semantics by layering a Lambek
proof system over a feature logic, where the former handles concatenation and the
latter checks the derivability relation between basic categories. A string of words
(w1 . . . wn) whose categories are labeled with the formulae A1 . . . An , respectively, is
proved to be of category s by means of a Lambek calculus (−→L ) where the standard
axiom schema a −→L a is replaced by the following.−→F is the derivability relation
of the Feature Logic.

a1 −→L a2 if a1 −→F a2

In this section we layer the Lambek calculus over a propositional logic with just
conjunction and disjunction. This proposal is formally similar to Johnson and Bayer
(1995), although the linguistic application of conjunction and disjunction is rather
different from theirs. Section 5 will then introduce the basic ideas of the “monolithic
semantics” paradigm and present an alternative solution of the scope and licensing
problems by means of a different extended Lambek system.

4.1 Subcategories of Good-Enough Sentences

Suppose that the empirical data require the distinction of five subcategories of Good-
enough sentences with some particular ordering. The elements of such a set can be
mechanically labeled using conjunctions of atomic formulae. Conjunction is commuta-
tive and it is notated with the dot for readability. We thus obtain the set
〈{A, A.B, A.C, A.B.D, A.B.C.D},≤〉, where ≤ is given by p.q −→ p.

What might be the linguistic interpretation of the atomic formulae? With an eye
on the application to Hungarian, let each proposition state that an expression whose
category is characterized by that proposition could be immediately preceded by some
particular operator type. (Because all the elements of this set are sentential subcate-
gories, “I am a sentence” is not represented as a conjunct.) This is illustrated in Fig. 1.
Linguistic operators are added to the poset in the form of curved arrows.

4.2 Subcategories for Incomplete Sentences

The two important desiderata for labelling Incomplete sentences are now as follows.
First, each category in the Good-enough set should unidirectionally derive one within
the Incomplete set (of the kind under consideration). Second, the poset of Incomplete
categories should be isomorphic to the poset of Good-enough ones. This is because the
internal composition and external behavior of sentences with and without licensees is
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∈ CatA/A

∈ CatA.C/ A.B

∈ CatA.B.C.D/ A.C

∈ CatA.B/ A.B.D

   A.B    A.C  

      A = I can be preceded by Op1 
B = I can be preceded by Op2 

      C = I can be preceded by Op3 
D = I can be preceded by Op4 

OP1 
OP2 
OP3 
OP4 

A.B.D     

A.B.C.D     

A

Fig. 1 Conjunctive labels and linguistic operators

       A∨F

       A    (A.B)∨F         (A.C)∨F

A.B   A.C   
     (A.B.D)∨F

A.B.D         (A.B.C.D)∨F   

    A.B.C.D 

Fig. 2 Disjunction used to copy a poset

the same in all other respects, but Incompleteness must not leak back into the Com-
plete set. One simple way to achieve these is to use disjunction to form Incomplete
categories and to add p −→ p ∨ r to the conjunctive logic in Sect. 4.1. In Fig. 2,
F = “I need an X- licensor”, for some grammatical property X.

As was pointed out above, linguistic expressions have many different licensing
needs. These may be independent of one another, in which case multiple posets of
Incomplete categories can be created using derivationally independent formulae Fi .
Alternatively, the elements of different posets of Incomplete categories may stand in
the derivability relation.

Disjunction is appropriate for our purposes, because the following hold:

(12) a. p −→ p ∨ q and b. p ∨ q �−→ p
(13) (p1 ∧ . . . ∧ pn) −→ pi ∧ . . . ∧ p j iff

(p1 ∧ . . . ∧ pn) ∨ r −→ (pi ∧ . . . ∧ p j ) ∨ r

Disjunction does not create isomorphic copies in general: (14)a is true but (14)b
is not.9

(14) a. If a −→ b then (a ∨ c) −→ (b ∨ c)
b. If (a ∨ c) −→ (b ∨ c) then a −→ b

9 Note that · ∨ c is a closure operator: a −→ a ∨ c, a ∨ c −→ b∨ c if a −→ b, and (a ∨ c)∨ c −→ a ∨ c.
Due to these properties (14)b does not hold.
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Let a and b be d∨c and d respectively. Then (d∨c)∨c −→ d∨c, but (d∨c) �−→ d.
However, in our case a and b will be of a specific shape, namely they are either
conjunctions of atoms, or conjunctions of atoms followed by the disjunct ci , and the
number of disjunctions in a and b is the same. This fact guarantees (13), i.e. isomorphic
copies.

Disjunction has the right logical properties, but is there an intuition behind its use
for labeling expressions that may or may not require licensing? p∨r entails¬r → p,
which can be read as saying, “If I do not need a licensor (either because I contain no
NPI or because I am within the scope of a licensor), then I am of category p.”

5 Division of Labor Within One Logic

As explained in Dörre et al. (1996), an alternative solution to the “fibred seman-
tics” approach discussed above is to employ a “monolithic semantics” method, which
replaces the basic categories with “richer” ones and uses the same derivability rela-
tion to check concatenation as well as feature correctness. In particular, Dörre et al.
explore the possibility of replacing basic categories by feature terms which, like the
basic categories, are modal propositions, i.e., denote sets of worlds. In this setting,
a basic category would be of the format f : T where f is a feature (i.e., attribute)
and T is a sort (i.e., value) and f : T describes a node with an outgoing f -arc
leading to a node matching the description T . Boolean combinations of sorts with
∧, ∨ and ¬ are allowed and f : T is taken to act as ♦T over the f -accessibility
relation. Following this line, we are now going to present an alternative solution to
the problems discussed so far by taking advantage of the extension of the Lamb-
ek calculus proposed in Kurtonina and Moortgat (1995) and in Areces and Bernardi
(2004).

Kurtonina and Moortgat extend the language of the Lambek calculus with resid-
uated unary operators and prove that the extended language is complete with respect
to Kripke semantics for all frames and valuations, with sets of linguistic structures
for worlds (cf. the sets of propositions in modal logic). Areces et al. (2003) fur-
ther extend the calculus with Galois-connected operators and again prove its com-
pleteness with respect to Kripke models. Hence, we have at our disposal a richer
logical vocabulary to build syntactic categories. This allows for a clear division of
labor, but this time it is between components of the same logic. As before, binary
residuated operators account for concatenation, but now we employ the unary
residuated operators to check the relation among the Good-enough sentential cat-
egories, and the Galois-connected ones to generate copies of it for Incomplete
sentential categories. All these components belong to the same logic: the proof sys-
tem incorporating them is complete with respect to one and the same class of
models.

The relation between feature logic and modal logic has been deeply studied, e.g.,
Blackburn and Spaan (1993). It is beyond the scope of this paper to compare our
proposal with this work. It is important however to underline the fact that we use
residuated operators rather than dual ones, and that our formulae do not reflect the
articulation of attribute value matrices.
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5.1 Residuated Pairs of Connectives

Our framework is a Categorial Grammar (CG) known as Categorial Type Logic
(CTL).10 It consists of (i) the logical rules of binary operators11 and (ii) the logi-
cal rules of unary operators.

5.1.1 Residuated Binary Connectives

The rules of the binary operator / are the same as the introduction and elimination
rules of the propositional calculus→, see the standard deduction theorem:

� • p −→ q iff � −→ q/p

In words: � concatenated with p belongs to the category q if and only if � belongs to
the category q/p. The • indicates the concatenation of structures.

The relation above between the • and the / is known in algebra as the residuation
principle. The • and the / form a residuated pair in the same way as addition and
subtraction, or multiplication and division do. Recall how one solves an algebraic
equation like 3× x ≤ 5 by isolating the unknown x using the law connecting (×,÷)
and producing the solution x ≤ 5

3 . The law connecting these two binary (residuated)
operators says:

x × y ≤ z iff x ≤ z

y

In CTL, such a pair of operators is used to put together and take apart linguistic
expressions as sketched in Sect. 3.1.1.

As it was highlighted in (7) above, it follows from residuation that A/C is order
reversing (with respect to category selection) in its argument position (C), and order
preserving in its value position (A). If B derives C , then A/C is also happy with B as
an argument; if A derives D, then A/B also counts as D/B. This is formally represented
by the inferences below.

(15) B −→ C
A/C −→ A/B

A −→ D
A/B −→ D/B

5.1.2 Residuated Unary Operators

The residuated unary operators, to which we now turn, will serve to create a fine-
grained partial order of categories. We show that the partial order among the senten-
tial subcategories required to control scope and word order can be encoded as the
derivability relation driven by residuated unary operators.

10 Alternative names are Type Logical Grammar, see for instance Morrill (1994), and Multi-modal Cate-
gorial Grammar (Moortgat and Oehrle 1994).
11 The binary operators are \, •, /. For ease of exposition we will focus only on / and •.
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Kurtonina and Moortgat (1995) further explored the space of the Lambek calculus
by exploiting unary operators inspired by tense logic. The idea of this line of research
is to take the minimum logic, i.e. a logic characterized by those properties that are at the
core of any logic (namely, transitivity of the derivability relation, upward/downward
monotonicity of operators and their compositional behavior) as a starting point to ana-
lyze linguistic universals, and then extend its language so as to increase its expressivity
and analyze linguistic structures and cross-linguistic variation.12

To give an intuitive example, the past possibility and future necessity operators
of tensed modal logic have just the core properties. That is, they obey the algebraic
principle of residuation introduced above:

PastPossA −→ B iff A −→ FutNecB

Following Kurtonina and Moortgat (1995), we fashion our residuated pair of unary
operators after these and notate them as ♦ and �. These symbols are hijacked for typo-
graphical convenience and must not be confused with the standard modal operators,
which form a pair of duals and not a pair of residuals.13 Thus, in the notation to be
used below:14

(16) ♦A −→ B iff A −→ �B

The properties below follow from (16); see details in Sect. 12.

1. ♦�A −→ A [Unit]
2. A −→ �♦A [Co-unit]
3. ♦A −→ ♦B, if A −→ B [♦ upward monotonic]
4. �A −→ �B, if A −→ B [� upward monotonic]
5. ♦�A −→ ♦�B, if A −→ B [♦� upward monotonic]
6. �♦A −→ �♦B, if A −→ B [�♦ upward monotonic]

In this paper, we use the ♦ and � operators as decorations on sentential catego-
ries. The derivability relation among decorated categories defines a partial order. As in
Bernardi (2002), that partial order will be used to express the fine-grained partial order-
ing among sentential categories that is necessary to capture the differential scoping
abilities of quantifier phrases. Section 7 will illustrate this with Hungarian material.

Figure 3 illustrates the derivability relations within one small set of decorated
categories. It exhibits all the derivability relations that exist within the given set of cat-
egories (although of course these categories are derivable from infinitely many others
and derive infinitely many others). The reader is invited to consult Sect. 12 for details.

12 Of course a more basic question is the identification of the minimum logic.
13 Past possibility and past necessity (as well as future possibility and future necessity) are duals, whereas,
past possibility and future necessity are residuals. In the latter case the accessibility relation for the ♦ is
inverted for the �, which is sometimes indicated by superscripting the � with a down-arrow. We do not
follow this cumbersome notation here, because this paper uses the unary operators unambiguously, only in
the residuated sense.
14 Roughly, the ♦ is a unary • and the � is a unary implication. That is, take “♦·” to be “· • p” and “�·”
to be “·/p”, where the unary operator is obtained by fixing one argument of the binary operator as p.
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s9 

s8 

s3 s10 s7 

s2 

s1 

s6 

s5 s4 

◊◊◊p

◊◊p

◊◊◊ p ◊p    ◊ ◊◊p

◊◊ p   p   ◊ ◊p

◊ p

◊ ◊◊ p

Fig. 3 Derivability relations among a few operators

5.1.3 Multiple Modes for Unary Operators

The last feature of the calculus of residuation to be introduced here is the availability
of multiple modes for the unary operators. There are various linguistic applications of
multimodality in CTL, some of them quite different from our own application.15 Sup-
pose we have just two modes, one notated with empty ♦,� and another notated with

15 See Heylen (1999) for a detailed study of the use of unary operators to encode feature structure infor-
mation.
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s9
◊◊◊p

     s8 
◊◊p

s7~  s7    s3   s10  s10~ 
◊◊♦ p ◊◊◊ p ◊p    ◊ ◊◊p ♦ ◊◊p

s4~  s4   s2   s5  s5~ 
◊♦ p ◊◊ p   p   ◊ ◊p            ♦ ◊p

     s1 
◊ p

                s6 
◊ ◊◊ p

     s1~ 

               ♦ p

Fig. 4 Derivability in the space of Fig. 3 with two modes. Circles indicate irrelevantly crossing lines

filled �,�. The two modes will add further flexibility to the logic whose derivability
relation formalizes the partial ordering of sentential categories.

The consequences of residuation listed above hold for unary operators of the same
mode. Distinct modes do not mix, i.e. there is no law that derives anything from
♦�A. On the other hand, the same Co-unit property that gives ♦�s −→ �♦♦�s also
derives ��s −→ �♦��s. Likewise, the Unit property that gives ♦��♦s −→ �♦s
also produces ���♦s −→ �♦s. This means that several alternative paths may be
constructed from one element of the partially ordered set to another: one involving
only operators in the empty mode, another involving both empty and filled ones, etc.
Figure 4 illustrates one way of adding operators in the filled mode to the set in Fig. 3.
The linguistic role of the two modes is discussed in Sect. 7.

5.2 Galois-Connected Unary Operators

Bernardi (2002) proposes a systematic way to encode the kind of derivability relations
described in (11) using unary Galois operators. These were first introduced into CTL in
Areces and Bernardi (2004) inspired by Dunn (1991), Goré (1998). The completeness
and decidability of the system is proved in Areces et al. (2003). These authors show
that the realm of minimum logic (i.e. the logic characterized by just the core properties
of the transitivity of derivability, the monotonicity of the logical operators and their
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compositional behaviour) has space for operators that reverse the derivability relation
among formulae. Recall

♦A −→ B iff A −→ �B

Let 0· and ·0 be two unary operators. They are said to be Galois-connected if they
obey the definition below.

B −→ 0 A iff A −→ B0

These two operators behave exactly like ♦ and �, except that they are downward
monotonic, cf. the fact that B occurs on the righthand side of the arrow in ♦A −→ B
but on the lefthand side in B −→0 A. The algebraic analogy now involves reciprocals:
the greater a number, the smaller its reciprocal:16

x × y ≤ 1 iff x ≤ 1

y

As in the case of ♦ and �, the properties regarding the composition and the
monotonicity behavior of the Galois operators follow, namely:

1. A −→ 0(A0)

2. A −→ (0 A)0

3. 0 A −→ 0 B, if B −→ A [0· downward monotonic]
4. A0 −→ B0, if B −→ A [·0 downward monotonic]
5. 0(A0) −→0 (B0), if A −→ B [0(·0) upward monotonic]
6. (0 A)0 −→ (0 B)0, if A −→ B [(0·)0 upward monotonic]

Notice that since the composition of two downward monotonic operators is upward
monotonic, 0(A0) and (0 A)0 are upward monotonic in A. In what follows we will only
use them in pairs, i.e. as (composite) upward monotonic operators.

Double-Galois operators can be used to create additional copies of the poset given by
� and ♦. As (17) indicates, each sa derives 0(s0

a ), and if sa −→ sb, 0(s0
a ) −→ 0(s0

b ).
This means that the derivability relations within each double-Galois copy are the
same as those within the � and ♦ segment of the poset. However, the paths are
unidirectional: double-Galois operators can only be added, not removed. This means

16 As in the case of the unary residuated operators ♦ and �, the Galois-connected unary operators can be
seen as binary operators with a fixed argument:

x × 2 ≤ z iff x ≤ z

2
let ♦· = · × 2 and �= ·

2

y ≤ 2

x
iff x ≤ 2

y
let 0· = 2· = ·0

If we take two directional implications \ and / instead of undirectional reciprocal ·· , we obtain 0· �= ·0
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that Good-Enough categories derive Incomplete ones, but no Incomplete category
derives a Good-Enough one. This is precisely what Incompleteness is.17

(17) Good-Enough Incomplete Incomplete
sb −→ 0(s0

b ) −→ (0(0(s0
b )))

0

↑ ↑ ↑
sa −→ 0(s0

a ) −→ (0(0(s0
a )))

0

An advantage of using the double-Galois operators to encode Incompleteness is that
we now have a systematic solution, rather than an ad hoc “blind alley” for Incomplete
categories.

A similar effect could be achieved with different modes instead of double-Galois
operators. Instead of using A −→ 0(A0), one could create, for every Good-Enough
category A, a corresponding NPI-containing category, using the Co-Unit property with
some designated modality:

A −→ �n♦n A

If one needs more Incomplete copies, then instead of iterating different Galois-
connected pairs, iterations of �♦ in different modes can be used.

There are two reasons why using double-Galois operators is neater. The weaker
one is that it does not require introducing newer and newer modes. A stronger reason
is that the Galois-connected operators only have (the analog of) the Co-Unit property,
whereas the residuated ones have both Co-Unit and Unit. Therefore they produce many
more derivations and the logical space becomes much richer. In this case, increase in
richness may be undesirable. If however the number of categories in a given linguistic
application is relatively small, using just residuated operators is logically and concep-
tually simpler.

6 Part II: Linguistic Applications

6.1 Quantifier Order and Scope in Hungarian

6.1.1 A Bird’s Eye View

The syntax of scope in Hungarian will serve as our testing ground. Our interest is not
in the Hungarian operators per se, but rather in the fact that (i) they illustrate a case
where the surface syntactic distribution of expressions depends on their interpretable
features, and (ii) they are numerous enough to give rise to rather complex interactions.

17 The pairs 0(·0) and (0·)0 are closure operators, therefore the iteration of the same pairs of Galois produces
equalities, viz. (0(0 A)0)0 ←→ (0 A)0 and similarly for the other pair. On the other hand, the iteration of
different pairs, i.e. 0(·0) followed by (0·)0 and conversely (0·)0 followed by 0(·0) produces inequalities,
(0 A)0 −→ 0(((0 A)0)0) but 0(((0 A)0)0) �−→ (0 A)0 and similarly for the other combination (see more
details in Sect. 13). Turning back to our application, the iterations of different pairs of Galois give us the
possibility to express many “Incomplete” sentential posets.

123



254 R. Bernardi, A. Szabolcsi

To a significant extent, the syntax of scope is the syntax of Hungarian: the left-to-
right order of operators in the preverbal field unambiguously determines their scopal
order. Another remarkable property is that the possible orders are determined by
quantifier class and not by grammatical function. Thus, the examples in (18) illustrate
the fact that a distributive universal must precede a counting quantifier with kevés
‘few’, irrespective of which is the subject and which is the direct object and the fact
that, given their order, the former inescapably outscopes the latter.18

(18) a. Minden
every

doktor
doctor-nom

kevés
few

filmet
film-acc

látott.
saw

‘Every doctor saw few films’, viz. everySubject > fewObject

b. Minden
every

filmet
film-acc

kevés
few

doktor
doctor-nom

látott.
saw

‘Few doctors saw every film’, viz. everyObject > fewSubject

c. ∗Kevés
few

doktor
doctor-nom

minden
every

filmet
film-acc

látott.
saw

d. ∗Kevés
few

filmet
film-acc

minden
every

doktor
doctor-nom

látott.
saw

A common way to capture these facts has been to assume that operators move
into designated positions in the manner of wh-movement, and their left-to-right order
translates into a quantifying-in hierarchy. This assumption differs from Fox-Reinhart
style Interface Economy, according to which quantifier scope is assigned by Quantifier
Raising, an adjunction operation that applies only when it makes a truth conditional
difference (Fox 1999; Reinhart 2006). Both Fox and Reinhart concern themselves with
scope assignment that has no effect on surface constituent order: covert scope shifting
in English. The case of Hungarian is different: quantifier phrases in Hungarian occur
in the positions to be discussed below irrespective of whether this has a disambig-
uating effect. Even if one were to ignore the fact that left-to-right order determines
interpretive order, the syntax of Hungarian would have to account for the fact that
certain word orders are grammatical and others are not.

The following diagram illustrates three of the relevant positions with their char-
acteristic inhabitants. For space reasons only the determiners are included. Only
definite/specific DPs that denote pluralities occur in topic (RefP). Quantifiers in the
distributive position (DistP) do not support collective readings. Both these positions
host only upward monotonic expressions. Quantifiers in the counter position (CountP)
may belong to any monotonicity type and are interpreted as performing a counting
operation. See Hackl (2006) for experimental psycholinguistic evidence for counting
as a distinct verification strategy. Some though not all quantifier phrases may occur in
more than one position and their interpretations vary accordingly. An example in (19)
is sok ‘many’. When sok ember ‘many men’ occurs in the counter position, which is the
only possible position for hatnál több ember ‘more than six men’, it supports both dis-
tributive and collective readings, but when it occurs in the distributive position, which

18 We draw directly from the results of Szabolcsi (1981, 1997), Brody and Szabolcsi (2003), Kiss (1987,
1991, 1998, 2002, Puskas (2000), Horvath (2000, 2006), Hunyadi (1999), and Surányi (2003).
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is the only possible position for minden ember ‘every man’, the collective interpreta-
tion is not available. Such semantic matters are discussed in detail in Szabolcsi (1997).

(19) Ref(erential)P*

"topics”
vala- `some’      Dist(ributive)P* 
hat `six’ 
a(z) ‘the’          "distributives" 
Kati `Kate’        minden `every’         Count(ing)P 

sok `many’
"counters" AgrP
kevés `few’ 

HAT/SOK `six/may’ Vfinite [postverbal] 
hatnál több `more than six’

The filling of each of these positions is optional; however, all the positions can be
filled simultaneously. RefP and DistP are recursive (cf. the Kleene stars), subject to the
same “left-to-right order determines scope” rule. Preverbal operators normally out-
scope all postverbal ones. Therefore, a counter gets a chance to outscope a distributive
quantifier if the latter occupies a postverbal position.19

Postverbal quantifier order is virtually free. Kiss (1998) and Brody and Szabolcsi
(2003) argue however that the sequence of operator positions observed preverbally
reiterates itself in the postverbal field. The impression of postverbal order freedom is
due to the fact that of the inflectional heads that separate the operator sequences—
Agr(eement), T(ense), etc.—only the highest is visible: the one that hosts the finite
verb. Therefore two adjacent operators in the postverbal field need not belong to the
same operator sequence and need not conform to the sequence-internal hierarchy. The
overt or covert inflectional heads play the kind of beneficial bridging role that was
described in Sect. 3.1.2.20

6.1.2 Total Order?

An important fact about the operators reviewed above is that they can all co-occur.
Adding focus, negation, and question words to the mix raises new questions about
how expressions, and their categories, can be ordered.

First consider focus. Hungarian is one of those languages that have a reflex of focus-
sing in surface syntax. Counting quantifiers and foci (emphatic focus, identificational
focus, and phrases modified by csak ‘only’) are complementary in the immediately

19 Inverse scope, i.e. one that does not match left-to-right order and where, specifically, a postverbal oper-
ator outscopes preverbal ones, is possible in two main cases: (i) with a postverbal specific indefinite, and
(ii) with a postverbal distributive that bears primary stress. Neither of these is assumed to involve overt or
covert operator movement and will not be further discussed in this paper. The wide existential scope of
indefinites may be attributed to existential closure over choice functions à la Reinhart (1997). As regards
primary stressed postverbal distributives, both Kiss (1998) and Brody and Szabolcsi (2003) argue in detail
that they effectively occur in the highest DistP projection and their postverbal ordering is obtained using
permutation rules that do not affect c-command and scope relations.
20 The analysis of the postverbal field is a matter of some disagreement, see Surányi (2003). The postverbal
facts will play little role in this paper; they are mentioned only to enable us to provide a concrete sample
derivation in Sect. 8.
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preverbal position. As they never co-occur, no left-to-right ordering can be established
between them:

(20) counter
topic > distributive > > verb . . .

focus

Next consider negation. The preverbal field may contain two distinct instances of
sentential negation (nem), to be dubbed as hi-neg and lo-neg when the distinction is
necessary. The two happily co-occur and, naturally, do not cancel out, when an appro-
priate third party intervenes. The postverbal field houses no negation. See Koopman
and Szabolcsi (2000, Appendix B).

Even putting aside negative polarity items, operators come in different flavors as
regards their ordering constraints with respect to negation. Negation may follow a
focus or a counter, and it may precede a focus, though not a counter:

(21) (∗hi-neg) > counter > lo-neg > verb . . .
hi-neg > focus > lo-neg > verb . . .

Distributive universals cannot scope immediately above negation, nor for that matter
immediately below it,21

(22) (∗neg) > distributive-∀ > (∗neg)

whereas negative concord (NC) universals such as senki ‘no one’ come with something
like the opposite restriction:22

(23) ∗NC-∀ > OP, unless OP = neg or nem_minden ‘not_every’ or NC-∀
In contrast, topics and distributive existentials do not care whether or not there is
negation in their immediate scope:

(24) topic > (neg)
distributive-∃ > (neg)

It follows from (21) and (23) that counters and NC universals cannot co-occur in the
preverbal field. Likewise, it follows from (22) and (23) that distributive and NC uni-
versals cannot co-occur in the preverbal field. Therefore there is no basis for ordering

21 Examples with nem minden fiú ‘not every boy’ contain phrase internal negation and not a hi-neg pre-
ceding the quantifier minden fiú in one of its otherwise legitimate positions. The critical data that show this
involve order interaction with verbal particles. The verbal particle (fel ‘up’, etc.) precedes the verb unless
the next element to the left is negation, or a focus, or a counter. With non-negated minden-phrases the only
possibility is (i). However, nem minden-phrases require the verbal particle to follow the verb, as in (ii). Thus
nem minden-phrases represent a separate quantifier class, cf. also (23).

(i) Minden fiú fel-ébredt.
every boy up-woke

(ii) Nem minden fiú ébredt fel.
not every boy woke up

For simplicity’s sake the mini-grammar to be presented in Sect. 7 does not include verbal particles.
22 Hungarian is a so-called strict negative concord language. Negative concord items (NC) are interpreted
as universals, following Szabolcsi (1981), Giannakidou (2000), Puskas (2000).
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NC universals with respect to either counters or distributive universals within the same
operator sequence.

Finally, question words such as ki ‘who’ occur in the preverbal position. The
received wisdom is that they are foci; but unlike other foci they can only be preceded
by topics.

(25) (∗distributive) > wh
(∗neg) > wh

These observations present a challenge for any theory of syntax that assumes that the
ordering of functional heads (Neg, Dist, etc.) is total. Minimalism is such a theory.
Could (19) be extended to the additional data, maintaining a total order? This question
has not been addressed in the Minimalist literature, so we outline an answer from
scratch. A total ordering could be maintained if the proposal is supplemented with
further assumptions or constraints. One contender would be as follows (only the head
categories are listed):

(26) Ref∗ > Dist∗ > Hi-Neg > Pred > Lo-Neg > AgrS . . .

One supplementary assumption would be that counters and foci are not two distinct
categories in complementary distribution; instead both carry a [pred] feature and com-
pete for the specifier position of a Pred head. This analysis follows the “focussing as
predication” view recently advocated by Kiss (2001, 2006). The view is not uncon-
troversial (see Horvath (2000, 2006) for another view), but for present purposes it
suffices that such a unification is imaginable. The fact that identificational foci and
csak ‘only’ phrases can be preceded by Hi-Neg, but counters cannot (unless they have a
contrastive component) is one argument for the distinct categories analysis. However,
it could be accommodated in (26) by adding that Hi-Neg requires its complement to
carry the feature [contrast], and not all [pred] phrases have [contrast]. Ki ‘who’ will
have [pred] but the PredP dominating it will be specified not to be the complement of
a head with [neg] or [dist].

Another supplementary assumption would be that distributive universals, distrib-
utive existentials, and NC universals all have a [dist] feature and are thus headed for
the specifier of a Dist head, but they are marked differently as to what features the
complement of Dist should carry. NC universals require that the closest head below
have a [neg] feature; distributive universals require that the same head not have [neg];
distributive existentials and expressions with [topic] are not marked in this regard. Not
only nem ‘not’ has [neg], but also nem mindenki ‘not everyone’, and senki ‘no one,
NC’ come with a [neg] feature that they transmit by specifier-head agreement. The
treatment of nem mindenki itself remains difficult. One might say that it has [dist] and
[neg] features and additionally requires that the complement of the Dist head have
[neg] or [contrast] or [bare agr], where [bare agr] is an ad hoc feature to pick out the
verb separated from its particle.

This will suffice to show both that the total order in (26) could be maintained and
what kind of cost this would incur. A description using a total order of categories
is possible, but the result does not look very Minimalist. Put in general terms, this
description preserves the illusion of a total order by not assigning a status to the fea-
tural restrictions within the theory of syntax. This might be fine if all the restrictions
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follow from the semantics of the expressions involved. The restrictions on question
words probably do, but it is not obvious that the same holds for all the other restrictions.

6.1.3 Optionality

The Hungarian data highlight another fundamental question. As was noted in 6.1.1,
the presence of all the operators discussed in this section is optional. Consider:

(27) Tudom,
know-1sg

hogy
that

[RefP az
the

emberek
men

[AgrSP láttak]].
saw-3pl.1sg

‘I know that the men saw me’

(28) Tudom,
know-1sg

hogy
that

[DistP minden
every

ember
man

[AgrSP látott]].
saw-3sg.1sg

‘I know that every man saw me’

(29) Tudom,
know-1sg

hogy
that

[AgrSP láttál]].
saw-2sg.1sg

‘I know that you saw me’

These examples raise the optionality problem (2) of Sect. 1. The complementizer
head hogy ‘that’ is apparently equally happy to recognize RefP, DistP, and AgrSP
as suitable arguments. Likewise, Ref selects for DistP, but it is equally happy with
AgrSP, and so is Dist, which selects for PredP. How are the complement selection
requirements of these heads satisfied?

The optionality problem is by no means specific for Hungarian; Hungarian just
illustrates it on a large scale. Although it is no novelty in formalisms using partially
ordered sets of categories or features, it does not seem to have received much attention
in the Minimalist literature and we are not aware of a standard solution. In line with the
influential proposal in Cinque (1999) that the sequence of functional heads is invariant
and universal, one hypothesis might be that whereas the full sequence of categories in
(26) is always present, the individual categories need not host lexical items in every
sentence. This hypothesis would have been easy to accommodate in earlier, phrase
structure rule based versions of generative syntax, but it is not in current Minimalism.
The problem is that in Minimalist Theory categorial structure is projected from the
lexical items that make up the sentence: no lexical item, no category. So, one would
need to postulate that for each optional head category there exists a “dummy lexical
item”, which has no ability to attract a phrase to its specifier but suffices to project
the phrasal category that satisfies the complement selection requirements of the head
above it. Moreover, to accommodate the constraints discussed in connection with the
total order (26), one would need to ensure that phrasal categories headed by dummies
inherit the features of the next phrasal category below them that is headed by a real
lexical item.

The conclusion is the same as that of the previous subsection: a solution involving
an invariant sequence of categories is in principle possible, but it does not look very
Minimalist.
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6.1.4 Partial Order and Derivability/Inclusion Relations: Two Birds with One Stone

As was pointed out in Sects. 1 and 3, the optionality problem receives a natural solution
if expressions are not thought to have a unique category label but derivability/inclusion
relations among categories are recognized. If the grammar recognizes the DistP −→
RefP (DistP⊆ RefP) relation, and the complementizer head hogy ‘that’ does not look
for a complement specifically labeled as RefP but accepts any category that derives
RefP, then the grammaticality of (28) no longer comes as a surprise; and similarly for
the other examples.

Thus the solution to the optionality problem points to a partially, not totally, ordered
set of categories. This suggests that the effort to create a total order in (26) and supple-
ment it with an extra-theoretical device, a set of featural constraints as detailed above,
is unnecessary. Those same constraints can be expressed as finer details of the partial
ordering. The next section demonstrates how this works in CTL or in conjunctive
logic.

The same conclusion that syntactic categories should be partially, rather than totally,
ordered was reached in Nilsen (2002, 2004) within Minimalist syntax, based on
somewhat different data. Nilsen’s empirical arguments come from the distribution
of adverbs in Norwegian. He observes, contra Cinque (1999), that Norwegian adverbs
by default occur in any order; whatever ordering restrictions one finds follow from the
fact that the individual abverbs are often ordered with respect to negation.

7 A Mini-Grammar of Operators in Hungarian

7.1 Using Formulae Decorated with Unary Residuated Operators

Within the multi-modal categorial type logic introduced in Sect. 5, capturing the partial
order of the most important Hungarian operators requires the use of a portion of the
logical space exhibited in Fig. 4. For easier reference each sentential category is given
a number. The category s1 is assigned to sentences whose initial element is an inflected
verb.

Prior to locating the Hungarian operators in this space, we draw attention to the two
modes in Fig. 4. The basic mode is represented with empty boxes and diamonds. The
filled boxes and diamonds can be seen to add an alternative dimension to some parts
of the system; to highlight this, the sentential categories that involve filled modes have
the numbers of the corresponding categories in the empty mode plus a tilde. So, for
example, parallel to ♦�p (= s1) is ��p (= s1∼) and parallel to �♦♦�p (= s4)
is �♦��p (= s4∼). The two alternative dimensions merge where sn and s∼n derive
the same category. s1 and s1∼ both derive p (= s2), and s4 and s4∼ both derive
�♦p (= s3), etc. The categories based on the filled mode will be used to capture
the behavior of those operators—negative concord items—that must scope immedi-
ately above negation or another negative concord item. So s1 is the category of basic
affirmative sentences and s1∼ the category of basic negative sentences. The argument
category of lo-neg is s1 and its value category is s1∼, yielding the functor category
s1∼/s1.
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       topic  S11 

   S9 

 S8     who

        everyone, 
no one-NC  XP too 

many
people  

S7~      S7    S3     

                              not everyone   counter
         S4~                 S4   S2   

hi-neg                focus 

S1

lo-neg 

S1~

Fig. 5 Hungarian operators in the space of Fig. 4

Figure 5 adds operator expressions to this diagram, but to reduce clutter, those cate-
gories that are not immediately relevant are trimmed off, and the decorated categories
are removed. Operator expressions have the category val/arg and are represented in
Fig. 5 as curved arrows pointing from the argument category to the value category. The
curved arrows are labelled either with the informal names of the classes (topic, count-
ing quantifier, focussed XP, hi-neg, lo-neg) or with a representative member (who, no
one-NC, everyone, XP too, many people, not everyone).23

Expressions that are neutral as to scoping directly above negation have argument
categories on the s2 − s3 − s8 − s9 − s11 track; those that must not scope directly
above negation, on the s1− s4− s7 track; and negative concord items that must scope
directly above negation or one of their own kind, on the s1∼ − s4∼ − s7∼ track.

To see how Fig. 5 captures other data reviewed in Sect. 6.1.1, recall that counters
(s7/s2) and foci (s4/s2) do not co-occur and are therefore not ordered with respect

23 Because question words can only be preceded by topics, a distinction between s9 and s11 is necessary.
These categories are added only to this diagram.
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to each other. Notice that neither s4 nor s7 derives s2. The reader is invited to find
other examples.

Whenever the value category of an expression derives the argument category of
another, the predicted results are grammatical, although more than five or six opera-
tors preceding the verb may sound crowded. Consider just one example:

Kati
Kate
s11/s11

hat napon át
for six days
s11/s11

mindenkivel
with everyone
s7/s7

sok újságot
many pieces of news.acc
s7/s8

rosszindulatból
out of malice
s4/s2

nem
not
s1∼/s1

közölt.
shared.3sg
s1/ . . .

‘For six days, for every person there were many pieces of news such that it was out
of malice that Kate did not share those pieces of news with that person’

The standard assumption is that like categories coordinate. In the present context
this can be implemented in two ways. The default version would be that categories A
and B may conjoin iff they derive the same category C . But in fact operators belonging
to different classes do not conjoin. This judgment is especially clear in the preverbal
domain with verbs that have particles like ki ‘out’. (Postverbal conjunctions are less
diagnostic, because they may involve gapping.)
∗Minden lány
every girl

és
and

hatnál több fiú
more than six boys

kiment/ment ki.
out-went/went out

∗Minden fiú
every boy

és
and

Kati
Kate

kiment.
out-went

The default version does not predict these data. For example, both s7/s7 and
s11/s11 derive s11/s7. Thus a stricter formulation may be warranted: either A should
derive B or vice versa, but invoking a third category C is not allowed.

7.2 Using Boolean Formulae

It goes without saying that the small poset in Fig. 4 can also be obtained using con-
junctive formulae: see Fig. 6. The only question is whether the atomic propositions
in Fig. 6 can be given a straightforward linguistic interpretation. The answer is Yes.
We continue to assume that the categories of Hungarian operators are as the curved
arrows in Figs. 5 and 8 indicate. (s10, s10∼, s5, s5∼, and s6 were not part of the actual
Hungarian category inventory, so G and H are not given a realistic interpretation.)

A = A topic can immediately precede me
B = A distributive existential can immediately precede me
C = A negated universal can immediately precede me
D = A negative concord item can immediately precede me
E = A distributive universal can immediately precede me
F = A counter or a focus can immediately precede me
I = Lo-negation can immediately precede me
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s9 

s8 

s1 

s6 

A

.B

s7~  s7    s3   s10  s10~ 
A.B.D   A.B.E                   A.B.C   A.B.G   A.B.H

s4~  s4   s2   s5  s5~ 
A.B.C.D   A.B.C.E        A.B.C.F                    A.B.C.G   A.B.C.H

A.B.C.E.F.G.I

A.B.C.E.G

s1~ 
A

A

.B.C.D.F.H

Fig. 6 The partially ordered set in Fig. 4 with conjunctive formulae (conjunction notated with a dot for
readability)

For example,

s4 = A.B.C.E = A topic, a distributive existential, a negated universal, and a distrib-
utive universal each can immediately precede me.

s4∼ = A.B.C.D = A topic, a distributive existential, a negated universal, and a
negative concord item each can immediately precede me.

To wit, s4 derives the argument categories of topics (s11), distributive existentials
(s8), negated universals (s3), and distributive universals (s7). So the propositions A
through I express exactly the kind of information that we used to model the behavior

123



Optionality, Scope, and Licensing 263

of Hungarian operators earlier in this paper. Even the generalizations that emerge are
the same. Members of the s1− s4− s7 track share E = “A distributive universal can
immediately precede me”; members of the s1∼ − s4∼ − s7∼ track share D = “A neg-
ative concord item can immediately precede me”, and the conjunct that only s1 has is
I = “Lo-negation can immediately precede me”.

As was explained in Sect. 4.2, categories for polarity items and licensors can be
defined using disjunction. Although different NPIs may require different licensors
(see Sect. 9 for detailed discussion) adding a single new feature could suffice. Let J
be “I need a polarity licensor”. The argument category of hi-neg, a strong NPI-licen-
sor is written as 0(s40) using Galois operators. Using Boolean formulae it will be as
follows:

0(s40) = (A.B.C.D) ∨ J = A topic, a distributive existential, a negated universal,
and a distributive universal each can immediately precede me, or I need a polarity
licensor.

J by itself creates a single copy of the poset in Fig. 6. Further licensing needs K
in the language may either be independent of J and/or each other, in which case they
will appear as independent disjuncts, or may exhibit derivability relations, which can
again be captured using conjunction and disjunction, replicating the multiplicity of
copies created by productive iterations of pairs of Galois operators.

The choice between modal and Boolean operators in the definition of subcategories
may depend on the linguistic application. The use of residuated and Galois-connected
operators fits seamlessly into a grammatical framework that already exploits such oper-
ators. See Sect. 8 for a brief demonstration. On the other hand, the Boolean definitions
make the descriptive content of the subcategories more transparent.

As Suresh Manandhar (p.c.) has pointed out to us, the same atomic propositions
could also be used to define a typed feature structure,[scope: Sco], wherescope
is a feature name and Sco is the type restriction on the value. By defining a multiple
inheritance hierarchy, where a given type can inherit constraints from two super-
types neither of which subsumes the other, one can postulate the relations among
types obtained by means of conjunction and disjunction. Let PosSco0 ≤ Sco and
LicSco0 ≤ Sco, with PosSco2 ≤ PosSco1 ≤ PosSco0 and LicSco2 ≤
LicSco1 ≤ LicSco0, etc. Thinking of scopal operators as s/s, the following kind
of functions can be expressed:

s/(s ∧ [scope : PosSco ∨ LicSco]): can license an NPI

s/(s ∧ [scope : PosSco]): cannot license an NPI

For concreteness, assume that the values PosSco come from a typed feature hier-
archy that replicates the derivability relations of Fig. 6. Thus the general scope pos-
sibilities depend on the specific type PosSco and its position within the hierarchy.
One of the values LicSco can be “I need a polarity licensor”, as in J above.
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8 A Sample Natural Deduction Style Derivation

Although this paper is concerned only with the operator categories (those of quantifi-
ers and negation), for concreteness we spell out the complete Natural Deduction style
derivation of a simple sentence, including inflectional categories. This shows how the
optional operators co-exist with obligatory elements in a grammar, and demonstrates
how information is passed on using modal decorations and structural rules. The present
section presupposes familiarity with Moortgat (1997) and only adds brief comments
pertaining to our innovations in the treatment of syntactic phenomena.

(30) hogy
that

mi
we

nem
not

lát-t-unk
see-past-1pl

mindenkit.
everyone-acc

‘. . .that we did not see everyone’

The analytical assumptions in Fig. 7 follow strictly those argued for in Brody and
Szabolcsi (2003) and merely recapture them in a different framework. These assump-
tions are as follows. Inflectional heads are obligatory; operator expressions are optional.
Figure 7 contains three inflectional heads, C (complementizer, see hogy ‘that’), Agr
(agreement, see unk ‘1pl’), and T (tense, see t ‘past’); for transparency, we write C, Agr
and T in the derivation. Morphology spells out the finite verb in Agr but the verb does
not move there in syntax. The sequence of operator heads is reiterated above T and
Agr. Negation occurs only in the operator sequence above Agr; topics and distributives
occur in any of the operator sequences. Although within a single sequence the univer-
sal is ordered before negation, negation is capable of scoping over it in (30) because
the universal occurs in a lower sequence. The intervening Agr head bridges between
the two sequences, in much the same way as NPI-licensors bridge between Incomplete
and Good-Enough categories. The topic mi ‘we’ occurs in the Agr-sequence. C closes
off the clause and is not preceded by any operators.

The topic and the universal bind traces of category dp. [/I] is interpreted as
λ-abstraction, allowing operators to bind their traces.

Undecorated s serves as the category of uninflected sentences. The obligatoriness of
inflectional heads is captured by assigning them categories decorated with an indexed
box (see Moortgat (1999)) for a detailed description of this use of unary operators).
T(ense) for example has the category �T (s1/s). [�E] moves the decoration over to
T in the form of 〈. . .〉T , and the structural rules abbreviated as [Pxxx] pass it back
to the whole chunk containing T, right before Agr should enter the picture. Agr now
has the category �A(s1/�T s11), which crucially differs from that of T in that the
argument it seeks is not uninflected s but a sentence already containing T. [�I] allows
(ever yone ◦ (T ◦ (see ◦ ♦�dp))) to be recognized as such. The same holds for C
requiring an argument that contains Agr.

The value categories of all operators derive s11. Both Agr and C have s11 as
their argument categories. This allows any subset of the operator expressions to occur
right below C and Agr. The categories of operators that freely occur in any sequence
(i.e. either preverbally or postverbally) are not tagged for inflectional heads. Negation
however occurs only in the preverbal field. To ensure this its argument category is
decorated with �A. The �A decoration on its whole functor category plays the same
role as it does with Agr.
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In sum, our grammar involves several different cases of feature transmission:

(i) Gaps of category dp are inherited from expression to expression.
(ii) Tense marks the containing phrase with T, which Agr then requires on its argu-

ment.
(iii) Negation both requires its argument to be marked Agr and marks its container

phrase with Agr (which in turn C requires on its argument).
(iv) Negative concord (NC) items both require their argument to be negative and mark

their container phrases as a negative one.

Cases (i) through (iii) are not local. Their treatment relies on the “lock and key” prop-
erties of the unary residuated operators, aided by structural rules for associativity and
commutativity. Gaps also require hypothetical reasoning. Case (iv) is strictly local:
nothing can intervene between the NC items and negation. This can be handled by lex-
ically decorating their categories with features (expressed using either unary operators
or conjunctive formulae) and assigning a “loop” category to NC items.

9 The Monotonicity of Licensing

This section will examine the implementation of Bernardi’s theory of licensing in a
realistic setting. But an empirical property of NPI-licensing has to be introduced first.

Different negative polarity items require different licensors. Zwarts (1983) pro-
posed that the relevant distinctions can be made in terms of the “negative strength”
of the licensors, characterizable with how many of the de Morgan implications each
bears out.

f is anti-morphic (AM) iff f (a ∨ b)= f a ∧ f b and f (a ∧ b)= f a ∨ f b
e.g., not

f is anti-additive (AA) iff f (a ∨ b) = f a ∧ f b
e.g., never, nobody

f is decreasing (DE) iff f (a ∨ b) −→ f a ∧ f b
e.g., seldom, at most five men

Thus we have the following subset relations:

(31) anti-morphic ⊆ anti-additive ⊆ decreasing

Van der Wouden (1997) provides a detailed discussion of the Dutch NPI-licensing
data in these terms. To use examples from other languages, Nam (1994) argues that
the Korean exceptive pakkey ‘only’ is an NPI that requires an antimorphic licensor.
English in weeks requires an antiadditive one, and ever is satisfied with one that is
(roughly) decreasing:

a. We haven’t been there in weeks.
b. Nobody has been there in weeks.
c. *At most five men have been there in weeks.
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a. We haven’t ever been there.
b. Nobody has ever been there.
c. At most five men have ever been there.

These properties play a role in other licensing relations as well. Roughly decreasing
adjuncts undergo negative inversion in English (Büring 2004):

(32) Under no / few / ∗some circumstances would I do this.

These data sets exhibit what we may call “the monotonicity of licensing”:
Monotonicity of Licensing:

1. A weak NPI is licensed by an operator that is decreasing
or stronger.

2. A medium NPI is licensed by an operator that is anti-additive
or stronger.

3. Negative inversion involves adjuncts that are decreasing or stronger.

We expect the syntax of licensing to conform to this generalization (where it indeed
holds). How could this be done? One possibility is for nobody, for instance, to be
tagged separately as decreasing and as anti-additive. But one hopes that it is not nec-
essary to resort to such brute force methods, and the monotonicity of licensing can be
captured in the form of derivability (inclusion) relations.

At first blush one might think that this requires incorporating the inclusion relations
in (31) into the syntax, but that is not the case.24 It suffices if the following derivability
relations hold between the categories:

arg. of strong, antimorphic licensor ←− val. of strong licensee
↑

arg. of medium, antiadditive licensor ←− val. of medium licensee
↑

arg. of weak, decreasing licensor ←− val. of weak licensee

It is easy to see that if these relations hold, a weak licensee like ever for example can
be licensed by any of the three kinds of licensors—without the syntax incorporating
any derivability relations between the categories of the licensors.

9.1 Is It Logically Viable?

Does our calculus in general and the logical space explored in Fig. 3 in particular
make it possible to pick categories in the desired way? The following assignment of
value categories to licensees and argument categories to licensors will do. No arrow
between two categories means no derivability.25

24 In Sect. 9.3 we come back to the question whether incorporating (31) into the syntax would be possible
at all.
25 The downward monotonic nature of both the licensors of NPI and the Galois operators is a pure coin-
cidence. Notice that we use Galois operators always in a pair, i.e. as upward monotonic operators, and
moreover, the same application of Galois operators could be used to model other sorts of licensing relations
that do not involve downward monotonicity of the licensors.
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0(S8~0)          0(S80)             0(S30)

decreasing
0(S4~0)            0(S40)              0(S20)            0( S5 0)

strong
licensee     

antiadditive
antimorphic

0(S10)
weak 
licensee

0(S60)            0(S1~0)

medium   
           licensee      

Fig. 8 Licensors and licensees with derivability relations among Incomplete categories

(33) arg. of strong lic-or 0(s0
4 )←− 0(s0

4 ) val. of strong lic-ee
↑

arg. of medium lic-or 0(s0
5 )←− 0(s0

6 ) val. of medium lice-ee
↑

arg. of weak lic-or 0(s0
2 )←− 0(s0

1 ) val. of weak lic-ee

Figure 8 above shows that this is indeed viable. Figure 8 exhibits double-Galois cate-
gories and their derivability relations. Recall from Sect. 5.2 that, in our case, 0(s0

a ) −→
0(s0

b ) iff sa −→ sb. Therefore the patterns of the derivability in Fig. 8 are familiar;
they are exactly the same as the ones in Galois-free Fig. 3. Because no double-Galois
category derives a Galois-free category, relations between the Galois-free (“Good-
Enough”) categories that are not part of the diagram cannot cause trouble. The deriv-
ability relations relevant in (33) are highlighted with double lines in Fig. 8. It is easy
to see that all the relations required in (33) hold. On the other hand, 0(s40), 0(s20),
and 0(s50) are independent.

The diagram also contains curved arrows corresponding to the categories of linguis-
tic expressions. The argument categories of licensees (with dotted lines) are replaced
by bullets, since they are irrelevant from the present perspective and will vary with the
licensees under consideration. The strong, medium and weak licensors are supposed
to be antimorphic, antiadditive, and decreasing functors, respectively, which, follow-
ing Sect. 5.2, point from double-Galois (Incomplete) to Galois-free (Good-Enough)
categories. What their concrete value categories are is irrelevant from the general
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logical perspective, and so Fig. 8 indicates them with empty circles. They are however
absolutely relevant from an empirical perspective, to which we now turn; the reader
is invited to fill in the circles in due course.

9.2 Is It Empirically Viable?

What we have seen demonstrates that it is possible in our calculus to assign categories
to licensees and licensors in the manner envisaged in Sect. 5.2. The empirical question
is whether natural language expressions can be matched up with these possibilities. In
this paper we only discuss the empirical properties of licensors in detail. We simply
assume that the licensees can be assigned to categories in accordance with Fig. 8.

We take the Hungarian operator poset in Fig. 4 as a point of departure. A quick
glance at Fig. 4 reveals that Hungarian has suitable decreasing operators. Almost all the
merely decreasing quantifiers in Hungarian are counters, assigned to s7/s2 in Fig. 4;
this is now revised to s7/0(s20). The revision does not affect the word order behav-
ior of counters, since, among the categories we use, all and only those Galois-free
categories that derive s2 derive 0(s20).26

Nem mindenki ‘not_everyone’ is decreasing but its word order behavior slightly
differs from that of counters; its category in Fig. 4 is s4∼/s3. If nem mindenki is a
good NPI-licensor, then its category should be revised to s4∼/0(s30). It turns out that
negated universals are cross-linguistically poor licensors of even weak NPIs, compare:

(34) ∗Not everyone saw anything / has ever been there.

Why this is so is something of a mystery. One possibility is to attribute the unac-
ceptability of (34) to the intervention of everyone between not and anything/ever, cf.
∗I don’t think that everyone saw anything (Linebarger 1987). If however there is
reason to analyze not everyone as one complex quantifier, then the intervention account
becomes less obvious. Indeed, the complex quantifier analysis was motivated for Hun-
garian in Sect. 6.1.2. Since the judgment in (34) is replicated in Hungarian, there is
no reason to assign the licensor category s4∼/0(s30) to nem mindenki.

Hungarian is a strict negative concord language and as such it has no antiaddi-
tive quantifier phrases comparable to English no one. We may however contemplate
a closely related imaginary language Hungarian′ that has no strict negative concord
but has an antiadditive quantifier. This imaginary item is comparable to no one in
scope behavior: it does not scope immediately above negation but can be immediately
outscoped by a decreasing counter, cf.

∗No one didn’t laugh.
Few men saw no one.

These properties are guaranteed by assigning it to the category s2/s5, to be revised as
s2/0(s50) because it is an NPI-licensor.

26 Although both ‘more than six men’ and ‘few men’ are counting quantifiers, their categories are now dis-
tinguished: ‘more than six men’ is s7/s2 but ‘few men’ is s7/0(s20). Thus while their word order behavior
is otherwise the same, only the latter is a licensor.

123



270 R. Bernardi, A. Szabolcsi

Hungarian has even two anti-morphic operators: lo-neg and hi-neg. Are they both
strong licensors? If not, which of the two is? It turns out that the choice of lo-neg is
simply incompatible with our most basic assumptions. If it were a strong licensor, its
category would be s1∼/0(s10). But 0(s10) is the bottom element of our small set of
categories, and indeed the “center” of the whole (infinite) set of categories defined
by our calculus. If the value category of strong licensees (or medium licensees, for
that matter) derived 0(s10), then it would derive the argument categories of all licen-
sors. That move would wipe out all the strong/weak distinctions we are trying to
accommodate. Therefore lo-neg is not in the game. Fortunately, we can resort to the
hi-neg version of nem, previously assigned to category s4∼/s4. This is now revised
as s4∼/0(s40). 0(s40) is the right value category for strong licensees, because it does
not derive the argument categories of either weak or medium licensors, and of course
it derives itself in the capacity of being the argument category of the strong licensors.

The assumption that hi-neg is a licensor but lo-neg is not is empirically less strange
than it may initially sound. In (35), where the finite verb is preceded by just one nega-
tion and by no focus or counter, this negation could be an instance of either lo-neg or
hi-neg. The category of the inflected verb, s1 derives the argument categories of both
s1 and s4.

(35) Nem
not

hiszem,
think.1sg

hogy
that

valaki
someone

is
even

hallotta
heard

volna
aux

a
the

hírt.
news

‘I don’t think that anyone heard the news’

Since (35) contains the NPI valaki is ‘someone even’, we will simply take its nem
to be hi-neg. The one case where hi-neg and lo-neg are distinguishable is where a
focus or counter precedes the negation. Our analysis makes the prediction that (36),
which cannot but involve lo-neg, is unacceptable. As linguists often say, the judgment
is subtle, but the example is certainly less natural than (35):

(36) ??ÉN
I

nem
not

hiszem,
think.1sg

hogy
that

valaki
someone

is
even

hallotta
heard

volna
aux

a
the

hírt.
news

‘It is me who doesn’t think that anyone heard the news’

Hi-neg licenses an NPI only in the absence of an intervening focus, cf. (37). Since
Linebarger (1987) NPI-licensing has been known to be sensitive to operator interven-
tion. Whatever technique is employed to capture this, it will rule out (37):

(37) ∗Nem
not

én
I

hiszem,
think.1sg

hogy
that

valaki
someone

is
even

hallotta
heard

volna
aux

a
the

hírt.
news

‘It is not me who thinks that anyone heard the news’

All in all, it is not unreasonable to assume that in this licensing domain hi-neg, but not
lo-neg, represents the strong, antimorphic licensor and, given the fact that lo-neg is at
the bottom of our category set, this is indeed the only option.

To summarize, the following licensors fit the recipe and work for the reincarnation
of Hungarian dubbed Hungarian′:

Strong NPI-licensor: s4∼/0(s40) – example: hi-neg nem
Medium NPI-licensor: s2/0(s50) – example: imaginary ‘no one’
Weak NPI-licensor: s7/0(s20) – example: any decreasing counter
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Notice that in this theory not only NPI-licensing is a licensing relation. Any structure
that must be immediately outscoped by a particular kind of operator is a “licensee”—
one whose value category is an Incomplete category, wherefore its superstructure can
only derive s11, the category of Complete sequences if it is brought back to the “Good-
Enough plane”. Does our theory predict that no licensee might call for, or allow for,
lo-neg as a licensor in Hungarian (or in Hungarian′)? It does not. Recall from Sect. 5.2
that infinitely many distinct “Incomplete planes” can be formed by adding new pairs
of Galois-operators. The iteration of different pairs, i.e. 0(·0) followed by (0·)0 and
conversely (0·)0 followed by 0(·0) produces inequalities, (0 A)0 −→ 0(((0 A)0)0) but
0(((0 A)0)0) �−→ (0 A)0 and similarly for the other combination.

(38) Good-Enough Incomplete Incomplete
sb −→ 0(s0

b ) −→ (0(0(s0
b )))

0 −→ . . .

↑ ↑ ↑
sa −→ 0(s0

a ) −→ (0(0(s0
a )))

0 −→ . . .

Suppose that some licensee has the value category (0(0(s0
1 )))

0, and that is the argu-
ment category of lo-neg. Since (0(0(s0

1 )))
0 does not derive 0(s0

1 ), this addition does
not interfere with (38). Essentially, each kind of licensing relation may be associated
with a different “Incomplete plane”.

9.3 Semantics in the Syntax? Is Licensing Truly Monotonic?

In (31) it was observed that licensors exhibit a semantic inclusion relation:
anti-morphic ⊆ anti-additive ⊆ decreasing. Perhaps the most appealing way to
accommodate the monotonicity of licensing would be to import the corresponding
derivability relations between argument and value categories into the syntax.

Would that be possible? We have already seen some empirical reasons why it would
not be. First and foremost, the semantic approach would force us to treat hi-neg and
lo-neg alike. Or, if they can be semantically distinguished, lo-neg might end up as
“the” anti-morphic operator. But lo-neg is at the bottom of both the semantic inclusion
hierarchy and the syntactic category hierarchy. Therefore, as was observed above,
if the value category of strong licensees derived the argument category of lo-neg, it
would inescapably derive the argument categories of medium and weak licensors as
well, and all the licensing distinctions would be lost.

Secondly, notice that for the sake of the argument we considered a Hungarian′ which
is not a strict negative concord language (and thus has anti-additive generalized quan-
tifiers) and whose NPIs are exactly like NPIs in English or Dutch. These two related
properties of Hungarian′ do not hold of plain Hungarian. Progovac (1994) observed
that the distribution of English anything is covered by two complementary items in
Serbo-Croatian: ništa in the context of clause-mate negation and išta elsewhere. Ništa
is a strict negative concord item in our sense, and išta a NPI. But the licensing of išta
is non-monotonic: while it is licensed by clause-mate ‘few men’, it is not licensed by
clause-mate ‘not’. The same holds for Hungarian: senki is the equivalent of ništa and
valaki is of išta. (The latter would have the value category 0(s20), not 0(s10) when its
licensor is clausemate.) If derivability relations corresponding to semantic inclusion
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were part of the syntax, licensing should always be monotonic, which Serbo-Croatian
and Hungarian show is not the case.27

The conclusion is that semantic inclusion does not amount to syntactic inclusion.
It is not true that a semantically stronger operator can do everything in syntax that a
semantically weaker one can. It may have restrictions of its own that the weaker one
lacks. Therefore, simply importing semantic inclusion relations into the syntax is not
possible.

The natural explanation of the mismatch between semantic properties and word
order behavior is that each expression has many semantic properties, whereas our
syntax builds all word order properties into the syntactic category of the expression.
(This is indeed the basic idea of categorial grammar. If I know your category, I know
how you behave.) But then we cannot expect one particular semantic property to
correspond to a syntactic category. Our syntax differs from the Minimalist syntax
employed in Stabler (1997), for example, where each lexical item is a bundle of syn-
tactic features, including [determiner], [decreasing], [singular], etc. Stabler’s idea is
to couple that syntax with a Natural Logic, whose inference schemata are anchored to
some of the features, e.g. [decreasing]. Stabler’s framework would probably lend itself
more easily to studying whether a thorough-going match between genuine semantic
properties and syntactic behavior can be found.

10 Summary

This paper has argued that using a partially ordered set of categories offers a unified
theory for solving the problem of complement selection in the presence of optional
categories and accommodating licensing relations. The partial ordering on the set of
categories could always be stipulated. If instead the category labels are logical formu-
lae, then the ordering is given by the derivability relation of the logic. This fact has
at least two important advantages. One is that the logic will predict what categories
or feature structures can combine; this is how Johnson (1991), Johnson and Bayer
(1995), and Blackburn and Spaan (1993) use their logics. Another is that the logic will
allow one to create systematic relationships between certain, smaller or larger, sets of
categories. This use of the logic is more novel, to our knowledge.

(i) The categories s1, s2, and s3 are members of the same basic poset and are ordered
as s1 −→ s2 −→ s3. This models the situation where expressions of category
s1 or s2 can satisfy a higher head that selects for a complement of category s3,
i.e. where s2 and s3 are optional.

(ii) Such a poset, or parts of such a poset, can be multiplied by the use of differ-
ent modes. The categories s1 and s1∼ belong to two distinct modes and are not
ordered with respect to each other. However, just as s1 −→ s4 −→ s3, s1∼ −→
s4∼ −→ s3. Therefore there are two minimally distinct ways to derive s3. This
models the situation where s1 and s1∼ differ from each other in one respect
and some other categories are sensitive to the distinction; in all other respects

27 Empirically even the English data are more complicated, see De Decker et al. (2005). In this paper we
investigated the idealization that forms the basis of the consensus in the literature.
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however s1 and s1∼ as well as those other categories behave identically. We
used two modes to capture some quantifiers’ constraints with respect to negation
in their immediate scope.

(iii) The basic poset (together with its distinct modes) is fully replicated by arbi-
trarily many other posets unidirectionally derived from it: s1′ −→ s2′ −→
s3′, s1′′ −→ s2′′ −→ s3′′, etc. Fully replicated means that the exact same
derivability relations obtain in each copy: s1 −→ s2 iff s1′ −→ s2′, and uni-
directionality means that s1 −→ s1′ −→ s1′′ but never the other way around.
Given this unidirectionality, an expression whose category belongs to one of the
“primed” copies can only be part of a Good-Enough sentence (whose category is
in the basic poset) if a wider scoping operator maps it back to the basic poset. This
models the situation where an otherwise well-formed expression is Incomplete
in that it requires licensing by a particular wider scoping operator; each “primed”
copy corresponds to one kind of licensing need. We used such an Incomplete
copy to assign categories to expressions containing an unlicensed NPI.

The fact that the different modes and copies have identical internal derivability
relations ensures that “other things” are always kept equal.

The grammar outlined in this paper was formulated using a version of the Lambek
calculus. However, the ideas are independent both of the Lambek calculus and of our
particular additions. The same ideas pertaining to the role of partial ordering can be
implemented in theories that do not use these particular techniques, as was briefly
demonstrated.

11 Part III: More Logic

11.1 Sound and Complete Systems

Below we present the extensions of the Lambek system (NL) by means of residuated
unary operators (NL(♦)), and Galois operators (NL(♦,·0)), we have been using through
the paper.

11.1.1 Proof Theory

Definition 11.1.1 (NL, NL(♦), NL(♦,·0): Axiomatic System) The system NL is defined
by the axioms below. Given A, B,C ∈ FORM

[REFL] A −→ A,
[TRANS] If A −→ B and B −→ C, then A −→ C,
[RES2] A −→ C/B iff A • B −→ C iff B −→ A\C.

NL(♦) is obtained by adding the following Axiom:

[RES1] ♦A −→ B iff A −→ �B
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Furthermore, NL(♦) can be extended with [GC].

[GC] A −→ 0 B if and only if B −→ A0.

Alternatively, one adds [A1], [A2] and the rules [R1], [R2].

[A1] A −→ 0(A0).

[A2] A −→ (0 A)0.
[R1] From A −→ B infer B0 −→ A0.

[R2] From A −→ B infer 0 B −→ 0 A.

It is easy to show that [GC] is a derived rule in this setting. A similar alterna-
tive presentation could have been given while introducing NL(♦). There as well, we
could obtain an axiomatic system based on the composition of residuated type forming
operators and on their monotonicity properties.

Gentzen Sequent Calculus presentations of these systems have been given in
(Kurtonina and Moortgat 1995) and (Areces et al. 2003), respectively, where they
have been proved to be equivalent to the axiomatic presentation above and decidable.

11.1.2 Model Theory

The Lambek calculi and their extensions with unary operators are modal logics. Stan-
dard models for modal logics are Kripke models, or relational structures.

In (Kurtonina 1995) NL(♦) has been proved to be sound and complete with respect
to the Kripke semantics for all frames and valuations.

Definition 11.1.2 (Kripke Models) A model for NL(♦) is a tupleM = (W, R3•, R2
♦, V )

where W is a non-empty set, R3• ⊆ W 3, R2
♦ ⊆ W 2, and V is a valuation V : ATOM→

P(W ). The R3• relation governs the residuated triple (\, •, /), the R2
♦ relation gov-

erns the residuated pair (♦,�). Given a model M = (W, R, V ) and x, y ∈ W , the
satisfiability relation is inductivly defined as follows

M, x � A iff x ∈ V (A) where A ∈ ATOM.
M, x � ♦A iff ∃y[R♦xy & M, y � A].
M, y � �A iff ∀x[R♦xy →M, x � A].

M, x � A • B iff ∃y∃z[R•xyz & M, y � A & M, z � B].
M, y � C/B iff ∀x∀z[(R•xyz & M, z � B)→M, x � C].
M, z � A\C iff ∀x∀y[(R•xyz & M, y � A)→M, x � C].

The Kripke style semantics of NL(♦) has been extended to NL(♦,·0) in (Areces
et al. 2003). A model for NL(♦,·0) is a tuple M = (W, R3•, R2

♦, R2
0 , V ), where W, V

and the accessibility relations R3• and R2
♦ are as before. The new binary relation R2

0

governs the Galois connected pair (0·, ·0) as defined below.

M, x � A0 iff ∀y(Rxy →M, y �� A).
M, x � 0 A iff ∀y(Ryx →M, y �� A).
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See (Areces et al. 2003) NL(♦,·0) for the proof of soundness and completeness.
Recall that using the Lambek Calculi as a grammar means looking at the worlds of
the Kripke models as sets of linguistics structures. Hence, for instance, the collection
of such structures associated with ♦A is the set of all y’s s.t. M, y � ♦A.

12 Properties of Unary Residuated Operators

The proofs of the properties of residuated unary operators are given below. All the
derivability relations among two formulae decorated with ♦ and � are due to these
properties. The arrows in the Fig. 3 are the results of different orders of application of
these properties.

(a) Unit: ♦�A −→ A

i. �A −→ �A [Axiom]
ii. ♦�A −→ A [Residuation]

(b) Co-unit: A −→ �♦A

i. ♦A −→ ♦A [Axiom]
ii. A −→ �♦A [Residuation]

(c) Monotonicity of �
i. ♦�A −→ A [by Unit]

ii. A −→ B [Hypothesis]
iii. ♦�A −→ B [from i. and ii. by trans]
iv. �A −→ �B [from iii. by Residuation]

(d) similarly for the Monotonicity of ♦
Not all iterations of unary operators patterns produce formulae that are not

interderivable with simpler ones. In particular, the iteration of �♦ is unproductive,
i.e. we obtain interderivability of formulae: �♦�♦A ←→ �♦A; similarly for ♦�,
♦�A←→ ♦�♦�A.

On the other hand, if we compose �♦ with the other pair ♦� we obtain inequalities,
viz. ♦�A −→ �♦♦�A and similarly for ♦�A −→ ♦��♦A. But neither �♦♦�A
nor ♦��♦A derive ♦�A, though they derive �♦A. Other productive patterns of
unary operators are what we call center embeddings. In particular, if we plug the
pair ♦� into the middle of ♦� we obtain an inequality among the formulae, namely
♦♦��A −→ ♦�A but not the other way around. Similarly, if we plug �♦ into the
middle of �♦ we obtain a new formula, viz. �♦A −→ ��♦♦A. In the following,
we highlight the embedded pairs by underlining them.

Unproductive Iteration: Unproductive iterations are due to the fact that both ♦�·
and �♦· are closure operators.

(a) �♦A←→ �♦�♦A

i. ♦A −→ ♦A [Axiom]
ii. ♦�♦A −→ ♦A [from i. by Unit]

iii. �♦�♦A −→ �♦A [from ii. by Mon. of �]
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i’. �♦A −→ �♦�♦A [by Co-unit]

(b) ♦�A←→ ♦�♦�A

i. �A −→ �A [Axiom]

ii. �A −→ �♦�A [from i. by Co-unit]
iii. ♦�A −→ ♦�♦�A [from ii. by Mon. of ♦]
i’. ♦�A←− ♦�♦�A [by Unit]

Productive Iterations: Productive iterations are obtained in two ways, (I) by com-
bining different pairs of unary operators, namely ♦� with �♦ and conversely, and
(II) by center embeddings.28 The derivations are spelled out below.

(I) i. A −→ A
ii. ♦�A −→ ♦�A [by Mon. of � and Mon. of ♦]

iii. ♦�A −→ �♦♦�A [by Co-Unit]

i. A −→ A
ii. A −→ �♦A [Co-Unit]

iii. ♦�A −→ ♦��♦A [Mon. of ♦ and Mon. of �]

(II) a) ♦♦��A −→ ♦�A

i. �A −→ �A [Axiom]
ii. ♦��A −→ �A [from i. by Unit]

iii. ♦♦��A −→ ♦�A [from ii. by Mon. of ♦]
whereas, ♦�A �−→ ♦♦��A

b) �♦A −→ ��♦♦A

i. ♦A −→ ♦A [Axiom]

ii. ♦A −→ �♦♦A [from i. by Co-unit]
iii. �♦A −→ ��♦♦A [from ii. by Mon. of �]

whereas, ��♦♦A �−→ �♦A

13 Properties of the Galois Operators

Similar observations hold for the Galois operators. In this case as well, we have to
consider the two different pairs, namely, (0·)0 and 0(·0). For the sake of transparency
we notate the second pair as •(A•).

As in the case of the residuated operators, iteration yields an equality, (0 A)0 ←→
(0((0 A)0))0 and •(A•) ←→ •((•(A•))•). On the other hand, the composition of
different pairs produces inequalities, namely (0 A)0 −→ (0(•(A•)))0, (0 A)0 −→
•(((0 A)0)•), and the same holds for the formula •(A•).

28 These patterns have been pointed out to us by Eytan Zweig during the visit of the first author to the NYU
Linguistics Department.
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Furthermore, in this case as well productive patterns are obtained by means of center
embeddings. We can embed 0(·0) within another pair of the same sort 0(·0) obtaining
0(0((A0)0)) −→0 (A0) and similarly for the other pair.

(a) Co-unit’: A −→ (0 A)0

i. 0 A −→ 0 A [Axiom]
ii. A −→ (0 A)0 [Galois]

(b) similarly for the other pair

(c) Monotonicity of ·0
i. A −→ (0 A)0 [Co-unit’]

ii. B −→ A [Axiom]
iii. B −→ (0 A)0 [from i. and ii. by trans.]
iv. 0 A −→0 B [from iii. by Galois def.]

(d) similarly for 0·
Unproductive Iterations:

(a) (0 A)0 ←→ (0((0 A)0))0

i. 0 A −→0 A [Axiom]
ii. 0 A −→0 ((0 A)0) [from i. by Co-Unit’]

iii. (0((0 A)0))0 −→ (0 A)0 [from ii. by Mon. of ·0]
i’. (0 A)0 −→ (0((0 A)0))0 [by Co-unit’]

(b) similarly for the other pair.

Productive Iterations:

(I) (0 A)0 −→• (((0 A)0)•) simply by Co-unit. Whereas, •(((0 A)0)•) �−→ (0 A)0

(II) (a) i. A0 −→ A0 [Axiom]
ii. A0 −→0 ((A0)0) [from i. by Co-Unit’]

iii. 0(0((A0)0)) −→0 (A0) [from ii. by Mon. of 0·]
(b) similarly with the other pair.

For the application in this paper it is important to pay particular attention to the
following difference between Galois-connected and residuated operators: while the
pair of residuated operators ♦� can disappear from a formula by means of the Unit
♦�A −→ A, there is not such possibility for the pairs of Galois, there is neither
(0 A)0 −→ A nor 0(A0) −→ A. The failure of both these derivability relations is
easily checked: in the definition of Galois operators both 0· and ·0 are on the right side
of the −→ and hence they cannot be brought on the left as it happens for the ♦ (see
the derivation of the Unit above 12.)

This fact is relevant for us, since we use pairs of Galois operators to mark Incomplete
expressions, and of course, they should not have the power of becoming Good-Enough
by themselves, but rather only when a proper operators (a licensor) take scope over
them.
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14 Isomorphic Copies

We want to show that the copy of any poset will be isomorphic to the original one. In
other words, that (a) given si and s j of a poset s.t. si −→ s j , their copies are also in
the derivability relation in the copied poset, i.e. (0si )

0 −→ (0s j )
0 (similarly for the

other pair of Galois); and (b) given si and s j s.t. si �−→ s j , their copies are not in a
derivability relation either, i.e. (0si )

0 �−→ (0s j )
0.

Recall that si are formulae built from the atomic formula s by means of pair of
residuated operators only. Furthermore, sentential categories within the same Incom-
plete poset are decorated by (i) the same number of Galois pairs; (ii) the exact same
patterns of Galois pairs. This means that none of the two situations below will occur.

(i) Assume we would allow two sentential categories of the same poset to be deco-
rated by a different number of Galois pairs. Then, the isomorphism would not be
preserved.
Take si and s j to be (0 p)0 and p, respectively, then si �−→ s j , but (0si )

0 −→
(0s j )

0, i.e. (0((0 p)0))0 −→ (0 p)0, as it is spelled out below.

p −→ p
0 p −→0 p

0 p −→0 ((0 p)0)

(0((0 p)0))0 −→ (0 p)0

This is due to the fact that by applying the Galois pair to si we have formed
a closure, i.e., (0((0 p)0)0 −→ p. Since the number of Galois pairs decorating
sentential categories within the same Incomplete poset is the same, no such si

and s j exists within the same Incomplete copied poset.
(ii) Assume that in a poset there are sentential categories decorated by different pairs

of Galois. Take si and s j to be (0 p)0 and 0(p0), respectively, then si �−→ s j , but
(0si )

0 −→ 0(s0
j ), i.e. (0((0 p)0))0 −→0 ((0(p0))0). By applying the Galois pair to

si and s j we have formed a closure, i.e., (0((0 p)0))0 −→ p, and 0((0(p0))0) −→
p. Hence, (0((0 p)0))0 −→0 ((0(p0))0), simply reduces to p −→ p. Since sen-
tential categories within the same Incomplete poset are decorated by the exact
same Galois pair patterns, no such si and s j exist within the same Incomplete
copy.
Notice that the example in (ii) can be used to observe that it is not true that if
(0(A))0 −→ (0(B))0 then A −→ B. Take A and B to be (0 p)0 and p, respec-
tively, (0 p)0 �−→ p, but (0(0 p)0)0 −→ (0 p)0 as shown above.

We can now, look at the proof of (a) and (b),

(a) The first part is trivial, it simply follows by the monotonicity of the Galois pairs.

1. Let si and s j to be of the Good-Enough poset, i.e. they are decorated only by
residuated unary operators. Starting from (0si )

0 −→ (0s j )
0 we can apply the

monotonicity rules of the two Galois and arrive to si −→ s j . Hence, since
there exists a derivation, D, of si −→ s j , it holds that (0si )

0 −→ (0s j )
0.
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Take for instance, si = ♦�p and s j = p:

D....
♦�p −→ p

0 p −→ (0(♦�p))

(0(♦�p))0 −→ (0 p)0

since there exists a derivation, D, of ♦�p −→ p, it holds that (0♦�p)0 −→
(0 p)0.
Similarly, for the other pair of Galois.

2. Let P(si ) and P(s j ) be two sentential categories of an Incomplete poset,
where P stands for the pattern of pairs of Galois operators decorating the
atomic formula. By induction hypothesis (a) holds for P(si ) and P(s j )when
the number of pair is n. The derivation would consists of applications of
Galois rules so to arrive to the atomic formula decorated only by residuated
pairs as in the basic case.

3. Let P(si ) and P(s j ) be two sentential categories of an Incomplete poset,
and let the number of pairs in P be n + 1. (a) holds by I.H., since the only
thing we can do is to first eliminate the out most pair of Galois operators and
get back to the I.H. case.

(b) The second part is guaranteed by the fact that iteration of Galois never form clo-
sure operators, and that sentential categories within the same poset are decorated
by the same order of pairs of Galois operators.

1. Let si , s j be two sentential categories in the Good-Enough poset, such that
si �−→ s j , we want to show that (0si )

0 �−→ (0s j )
0. Again, this is guaran-

teed by the fact that si and s j are decorated only by pairs of residuated unary
operators. Since there is no way for Galois and residuated unary operators to
interact with each other, the only rules that can be applied are the ones elim-
inating the Galois operators till we reach atomic formulas decorated only
by residuated operators. Hence, the proof goes as before. We look at the
following derivation by means of example. Take si = p and s j = ♦��♦p,

D....
p −→ ♦��♦p

0(♦��♦♦p) −→ 0 p

(0 p)0 −→ (0(♦��♦♦p))0

since there is no such derivation, D, we conclude that (0 p)0 �−→
(0(♦��♦♦p))0.
Hence, since si �−→ s j , then s1

i �−→ s1
j .

2. Similarly, it follows that this holds also for further copies of the Incomplete
poset.
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15 Proof of Non-Derivability

Here we show that in NL(♦,·0), for any si , s j in Fig. 3, such that there is no derivability
arrow from si to s j , then si �−→ s j . We first look at the Good-Enough poset, then to
the Incomplete ones.

The easiest way to see that the derivation of a theorem fails is to use a Gentzen
Sequent Calculus since it’s decidable, viz. we only have a finite number of options at
each step in the derivation—in the bottom up reading.

Let us first look at the poset of Good-Enough sentences. As the reader could check,
given any si , s j in Fig. 3, such that there is no derivability arrow from si to s j , a
derivation of si −→ s j will arrive to one of the following dead-ends:

1. � . . . p −→ ♦ . . . p
2. � . . . p −→ p
3. p −→ ♦ . . . p

When arrived at this stage there are no rules to apply, the derivation fails. We illus-
trate these schema by means of the examples below. Let’s take (I) s8 −→ s3 and (II)
s3 −→ s4. Recall, s8, s3, s4 stand for ��♦♦p,�♦p,�♦♦�p, respectively.

15.1. Example (I) The first step can only be (�R), after applying this rule there are
two options (�L) in (Ia) or (♦R) in (Ib) as it is spelled out below.

(Ia) FAIL
�♦♦p −→ ♦p

No rules!

〈��♦♦p〉 −→ ♦p
(�L)

��♦♦p −→ �♦p
(�R)

(Iab) FAIL
��♦♦p −→ p

No rules!

〈��♦♦p〉 −→ ♦p
(♦R)

��♦♦p −→ �♦p
(�R)

(Ia) and (Ib) are examples of failure due to the dead-end 1. and 2. above, respectively.

15.2. Example (II) Here as well there are only two cases:

(IIa) FAIL
p −→ ♦�p

No rules!

〈p〉 −→ ♦♦�p
(♦R)

♦p −→ ♦♦�p
(♦L)

〈�♦p〉 −→ ♦♦�p
(�L)

�♦p −→ �♦♦�p
(�R)

(IIb) FAIL
�♦p −→ ♦�p

No rules!

〈�♦p〉 −→ ♦♦�p
(♦R)

�♦p −→ �♦♦�p
(�R)
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(IIa) and (IIb) are examples of failure due to the dead-ends 3. and 1. above, respec-
tively.

Since we have shown that the Incomplete posets are isomorphic to the Good-Enough
one, it follows that all the sentential categories that are not marked to be in a derivability
relation in Fig. 3 are indeed not derivable from each other.

15.3. Model theoretical proofs Here we build two counter-examples to the two de-
rivabilities seen above, namely (I) s8 → s3 and (II) s3 → s4.

(I) We build a model in which s8 is true and s3 is false. Take M to be a model
in which: Ryx and such that M, x �� p. Then M, x � ��♦♦p trivially holds, but
M, x �� �♦p since it would require M, y � ♦p to be true and this cannot be since
p is false in x and there are no other possible worlds in the model related to y.

(II) We build a model in which s3 is true and s5 is false. Take a model in which:
Ryx and M, x � p. Then by definition M, x � �♦p, but M, x � �♦♦�p cannot
be true since it would require M, y � ♦♦�p to hold, and hence x to be related to a
world where p is true.
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