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Abstract

Group living is a widespread and ubiquitous phenomenon in the animal kingdom. Animals in

groups are subjected to numerous costs and benefits. Of the benefits, increased protection from

predators is the most theoretically and experimentally researched. Three “principal” effects explain

the anti-predation benefits of grouping: collective vigilance, dilution of risk, and the confusion

effect. In this thesis, new theoretical models are developed to study the behaviours that emerge

from groups of prey. Using a mathematical approach, this research analyses how the principal

anti-predation effects interact to influence the behaviours of grouping animals.

Through an analytical approach, the first part of this thesis examines the role of anti-predation

effects on individuals with discrete behavioural choices. The outcomes of group interactions are

classified by exact analytical conditions. Results are provided which show how factors relating to

predation risk, such as group size, affect anti-predator behaviours.

Another component of this research uses field data to assess the theoretical results that are

presented. The relative influence of each anti-predation effect, and how the anti-predation effect

interact to influence individual behaviours within groups is assessed. Consideration of how preda-

tion risk and other factors of grouping affect behaviours is also analysed.

The final section of research considers highly flexible and continuous anti-predator behaviours.

This shift in theory is relevant in groups of prey, for example in models of vigilance. Intuitive re-

sults are presented, and conditions are provided which determine qualitatively distinct behavioural

dynamics when groups are characterised by continuous behaviours. Equivalences to the discrete

behaviour analogue case are shown. It is also shown that individuals may choose neither of the dis-

crete behavioural options. Conditions are derived which specify the occurrence of multiple distinct

anti-predator behaviours emerging from a group initially composed of one behaviour, and when the

reserve process occurs.
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Chapter 1

Introduction

The risk of predation is a major force in shaping the behaviours and physical characteristics of

animals. Predation presents a challenge for many species because both the non-lethal effects (such

as avoiding the predator) [1], as well as the more obvious lethal effects (such as being killed)

[2], reduce an animal’s reproductive success. To increase the probability of unsuccessful predation,

prey have developed a variety of anti-predator characteristics, from physiological and morphological

defences, to behaviours. For examples of physiological changes, in the fish guppies, populations

exposed to predators that predominantly feed on large individuals have developed reproductive

maturity at a smaller size (and earlier age) compared with populations exposed to weaker predation

on small individuals [3]. Anti-predator behaviours ranging from forming groups [4], to stunning

dynamics in bird flocks [5] and fish shoals [6], to sentinel behaviour [7, 8] or raising alarm calls [9],

are all believed to be adaptations to reduce predation [4, 10, 11].

Adaptations generally change over a very long period of time, i.e., over generations. Occasionally

individuals are born with altered characteristics, caused by the genetic changes (or mutations) in

the reproduction process. The changes cause differences in the mutant individuals ability to survive

and reproduce. If the mutant individuals have a survival and reproductive advantage then they

reproduce at higher rates and pass the altered characteristics to their offspring. If the mutant

individuals are at a disadvantage then they have a lower chance of survival. The ability of an

individual to survive and reproduce is referred to as that individual’s “fitness”. The theory of

how mutation and selection explain the changing characteristics in populations is now considered

classic, and has had success in many applications, for example the work of Fisher [12], Wright [13]

and Haldane [14] showed that selection was consistent with Mendel’s theory of genetic inheritance.

Some anti-predator characteristics, and in particular behaviours, can change on a much faster

timescale. For example, prey exhibit adaptive responses when in the presence of a predator, such

as changing habitat use, altering temporal activity and responding to predator cues [2, 15–18].

This thesis is interested in the behaviours which prey adopt to reduce predation risk. Behaviours

(and thus anti-predation behaviours) are defined through the individual’s phenotype, i.e., the traits

whether behavioural or morphological, that distinguish an individual and that are to some extent

determined by genotype. Although phenotypic traits are the result of complex interactions between

an individual’s inherited genes and the environment that they experience, even when the effect

genotype has on phenotype is complex or unknown (which is nearly all of the time [19, 20]), one

can focus on the implication’s of phenotype on fitness [21]. Thus, to explain the certain behavioural

responses of prey individuals subject to predation, one can study how anti-predation behaviours
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and other phenotypic traits of the prey interact and give rise to some measure of fitness, which is

dependent on predation risk.

Behaviour is widely considered to be phenotypically plastic (able to alter across environmental

conditions) [22], and prey responses can vary according to the type of predator [23], the responses

of other prey [24, 25] and the environmental surroundings [26]. Moreover, differences in prey

behaviours can also reflect connections to other phenotypic traits relating to vulnerability. For

example morphological defences and aggressiveness can covary within individuals [27], and under-

lying metabolic conditions can prevent individuals from making costly defences [28, 29]. In a broad

sense, this thesis attempts to bridge complex anti-predator behaviours and how they interact with

other aspects of the prey’s phenotype, to explain the dynamics of prey behaviour.

It is believed that anti-predator behaviours combine with other phenotypic traits to maximise

predator evasion [18, 30–32]. Yet the ways in which multiple behavioural, morphological, life

history traits – or a combination of the above – act in synergy, compensation, co-dependence or

co-specialisation is largely under-investigated and varies on a taxonomic scale. What is certain is

that behaviours such as responding appropriately to predator cues are vital in contributing to an

evasion mechanism [17, 27], and thereby an individual’s fitness.

The use of mathematical models allows the study of phenotypic change. Popular modelling

frameworks include evolutionary game theory and adaptive dynamics. The appropriateness of each

framework largely depends on the specific problem. In this thesis, evolutionary game theory [33–35]

is predominantly used along with adaptive dynamics. In the following sections of this introduction,

first the basic concepts of static evolutionary game theory will be introduced, and then the shift to

dynamic evolutionary game theory will be outlined. A brief account of the relevance of stochastic

game theory follows, and finally, the framework of adaptive dynamics will be given.

1.1 Deterministic Evolutionary Game Theory

Game theory was formalised by von Neumann & Morgenstern [36], and developed by Nash [37]

amongst others as a framework to analyse decisions in human behaviour. Any situation in which

at least two agents interact through anticipating their opponents actions, either consciously or

implicitly is known as a “game”. The agents are referred to as “players” whose available set of

actions is called their “strategy”. A strategy played in the game produces a payoff, i.e., how

successful the strategy is. Mathematically, game theory analyses how the payoff of one strategy

depends on the other strategies played. Nash [37] showed that assuming only rational agents

interact, there exists a “Nash equilibrium” for each game in which no agent can do better by

changing their strategy. Hamilton [38] and Maynard Smith [39] applied the ideas of game theory

to explain the ecological problems of sex-ratio and animal conflicts. In evolutionary game theory,

the idea of rationality is replaced with fitness: payoffs are equated to fitness, and strategies to

phenotypes. It is useful to think of biological interactions in terms of games. One can then

associate the actions that a player takes with given probabilities, i.e their so-called strategies, with

different behaviours, and the payoffs that one receives with fitness. If the fitness that one receives is

constant regardless of the strategies of others, fitness is frequency-independent, where as if fitness

depends on the actions of others it is frequency-dependent. In order to establish an evolutionary
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argument, strategies have to be able to spread in the population. The way in which strategies

spread depends on the biological problem: for example the more successful strategies may spread

through imitation [40] or reproduction [35].

In this section, cases of games in a non-dynamic setting are first introduced. Static evolutionary

arguments are defined with regards to the ESS concept. Following this, dynamic game theory is

introduced in a deterministic form.

1.1.1 Two player games

From an economic perspective it is assumed that players have some pre-defined capacities that

compose their “rationality”. A focal player’s actions are then based on their expectations of the

actions of other players in the game. At the precise same time, the action’s of other players are

based on their expectations of the focal player’s actions. Because each player’s actions are based

on expectations, it is quite possible for the outcome of a game to have not been intended by any

agent. If every player in the game has perfect knowledge of the actions taken in the game up

to that point, then agents have “perfect information”. In games with perfect information and all

players being rational, each player knows which actions lead to which outcomes and can therefore

discriminate from alternative actions to achieve their preferred outcome. In this case players can

rank-order outcomes of actions, know which sequence of events lead to which outcomes, and choose

actions from alternatives (their strategy space) according to their rank-order of outcomes. Games

fall into the categories of either “normal form” or “extensive form.” The extensive form game is

more general than the normal form and allows for sequential rather than simultaneous decision

making. For the scope of this thesis an introduction to normal form games is sufficient.

Normal form games consist of n players, a set of all strategies available to each player, and a

payoff function for each player [33]. Technically the payoff function for a player is a mapping from

the cross product of all players’ strategy spaces to that player’s payoff set. The payoff function takes

the so-called strategy profile, i.e., the n-tuple of strategies chosen by each player, and produces a real

number (payoff). Often games are assumed to have only two players. In this case a representation

by a payoff matrix A with elements describing the payoffs to each player suffices to encompass all

potential outcomes.

Let there be M fixed distinct behaviours are referred to as “pure strategies”. The strategy

space is given by S = {S1, S2, ..., SM}. Players are allowed to either choose a pure strategy Si ∈ S

or a mixed strategy specified by a vector of probabilities p = (p1, p2, ..., pM ) where each pi gives

the probability of using strategy Si. Generally, two player games can be simply represented by a

payoff matrix in which a “row” player whose strategies are {R1, R2, ..., RM} and a “column” player

with strategies {C1, C2, ..., CM} have respective payoff functions α1(Ri, Ci) and α2(Ri, Ci):



C1 C2 . . . CM

R1 α1(R1, C1), α2(R1, C1) α1(R1, C2), α2(R1, C2) . . . α1(R1, CM ), α2(R1, CM )

R2 α1(R2, C1), α2(R2, C1) α1(R2, C2), α2(R2, C2) . . . α1(R2, CM ), α2(R2, CM )
...

...
...

. . .
...

RM α1(RM , C1), α2(RM , C1) α1(RM , C2), α2(RM , C2) . . . α1(RM , CM ), α2(RM , CM )
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Here, when the row player chooses strategy Ri and the column player chooses Cj , the row

player gets a payoff α1(Ri, Cj) the column player receives α2(Ri, Cj). An obvious condition on the

probability vector p is that p1 + p2 + ... + pM = 1. Therefore each mixed strategy belongs to the

M (number of strategies) dimensional simplex

∆M =
{
p = (p1, p2, ..., pM ) ∈ RM : pi ≥ 0 and

M∑
i=1

pi = 1
}
. (1.1)

The vertices of the simplex are the unit vectors whose ith component is equal to one and represent

each of the Si ∈ S pure strategies. The interior of the simplex, denoted by int∆M contains only

(and all of the) mixed strategies p and the boundary bd∆M (sometimes ∂∆M ) consists of all the

p with support supp(p) = {i : 0 ≤ i ≤M and pi > 0} ⊂ {1, 2, ...,M}. We interpret the support of

a mixed strategy p as the set of pure strategies with positive probabilities pi.

Let pR(Ri) be the probability that the row player chooses the strategy Ri, and pC(Ci) be the

probability that the column player chooses strategy Ci. The pR and pC describe probability distri-

butions (mixed strategies), for the row and column players respectively. The expected payoff for the

row player with strategy Rj is pC(C1)α1(Rj , C1)+pC(C2)α1(Rj , C2)+ ...+pC(CM )α1(Rj , CM ), i.e.,

the sum of the conditional payoff probabilities that the column player plays a particular strategy,

given the row player’s strategy choice.

In symmetric games both of the row and column players have the same strategic choices,

S = {S1, S2, ..., Sn}. The payoff obtained by using any of the available strategies is then irrespective

of the player that uses it. As such, the game can be characterised by an n × n square matrix, A,

whose elements in the ith row and the jth column (here denoted aij) are the singular entries:

aij = α1(Si, Sj). A player choosing the pure strategy Si has the expected payoff πSi = (Aq)i when

its opponent chooses q, and a player choosing a mixed strategy p obtains the expected payoff pAqT

when its opponent plays a mixed strategy q. In the following it should be clear that the transpose

vector is assumed if not notationally explicit.

An important concept in game theory is the Nash equilibrium. The “best response strategy” is

a strategy such that when used against a given strategy offers the “best” or highest possible payoff.

If the best response strategy is unique it is called the “strict” best response. A “dominant strategy”

is a strategy which is a strict best response to every other strategy. A Nash equilibrium is a set

of strategies consisting of a strategy for each player for which each player’s strategy is the best

response to the other players’ strategy, i.e., if any focal player alters its strategy while the other

players do not, then the focal player’s payoff will either decrease or remain the same. Strategies

can be pure or mixed. If the only result of a focal player changing strategy is a decrease in payoff,

the Nash equilibrium is “strict”.

Mathematically, a strategy p is a Nash equilibrium if the following holds: if player 1 chooses a

strategy p, then any other player with an alternate strategy q cannot achieve a higher payoff. The

Nash equilibrium is written as

pAp ≥ qAp, ∀q ∈ ∆M (1.2)
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and is said to be strict (and unique) if

pAp > qAp, ∀q ∈ ∆M (1.3)

To illustrate the Nash equilibrium concept, consider a symmetric 2 player game (players 1 and

2) with two available strategies given by S1 and S2. The payoff matrix, A, can be written as

( S1 S2

S1 a11 a12

S2 a21 a22

)
(1.4)

The strategy S1 is a pure Nash equilibrium if a11 ≥ a21 since neither player can improve their payoff

by choosing strategy S2, given that their opponent chooses S1. By the same reasoning, S2 is a pure

Nash equilibrium if a12 ≤ a22. If a11 < a21 and a12 > a22 then there is a mixed Nash equilibrium

where the players choose strategy S1 with probability u and S2 with probability 1− u. To find the

mixed equilibrium we use the expected payoffs πS1 = ua11+(1−u)a12 and πS2 = ua21+(1−u)a22.
The probability u ∈ (0, 1) is found by finding the root of ∂q(qπS1 + (1− q)πS2), which is equivalent

to solving πS1 = πS2 and yields u = (a22 − a12)/(a11 + a22 − a12 − a21).

The solutions to classical strategic games are based on assumptions of full information, full

rationality and simultaneous decisions. However, in reality (and in biological interactions) players

may act irrationally. In the next subsection, a brief overview of an important concept in biology is

given. Similar to classic game theory, the concept of evolutionary stable strategies does not involve

dynamics, but an important development is made in that a population of interacting strategies is

considered rather than two players.

1.1.2 Evolutionary Stable Strategies

The research of Maynard Smith & Price [39] addressed the question of why animals of the same

species escalate conflicts. Their principle assumptions have since created a new paradigm of evolu-

tionary game theory. Evolutionary game theory shifted from an individual perspective, i.e., a focal

player choosing some strategy, to a population perspective: a large (possibly infinite) number of in-

dividuals with a set of pre-defined strategies. Within the population strategies are hard-wired into

each individual. Completely new strategies can arise through mutations. Individuals are randomly

and repeatedly paired, and play a game using their hard-wired strategies.

The idea of an evolutionary stable strategy (ESS) is concerned with the success of invading

mutant strategies. In the population setting, the issue addressed by Maynard Smith is as follows:

given a monomorphic population in which all individuals play the same strategy, can an alternative

strategy enter the population and do better? That is, can a mutant strategy invade? An ESS

is theoretically explained by Maynard Smith [35] p.10 as a “behavioural phenotype... [which] if

all members of a population adopt it, then no mutant strategy can invade the population.” From

a mathematical perspective, consider a symmetric M -strategy game between two players, let the

pure strategies be given by S1, S2, ..., SM , and let aij be the payoff for strategy Si played against

strategy Sj (and aji for Sj played against Si). The strategy Si is an ESS for ∀k ̸= i if aii > aki

holds or aii = aki and aik > akk. Players are not restricted to play the pure strategy Si all of the
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time, and instead can play (probability distributions) mixed strategies p. The (possibly mixed)

strategy p̂ is an ESS if

p̂Ap̂ ≥ qAp̂, ∀q ∈ ∆M (1.5)

with the condition

for q ̸= p̂ and qAp̂ = p̂Ap̂ then qAq < p̂Aq (1.6)

Condition (1.5) is simply the Nash equilibrium condition. When applied in solitary, condition (1.5)

does not guarantee non-invasibility (since another strategy q can also be a best reply). When (1.6)

is applied in conjunction with (1.5), the strategy p̂ cannot be invaded by any mutant strategy q

because p̂ played against q fares better than q does against itself [33, 41]. Strict Nash equilibrium

implies ESS and ESS implies Nash equilibrium. For two strategy two player matrix games with

payoff matrix A as in (1.4) there is a mixed strategy ESS if a11 < a21 and a22 < a12.

The concepts of the Nash equilibria and the ESS are closely linked. All strict Nash equilibrium

are ESS’s and every ESS is a weak Nash equilibrium. To illustrate, consider the “Hawk-Dove”

game [35] that served as motivation for the ESS concept. In the two strategy game, individuals

compete over some resource V , and can choose to play hawk H, or dove D. Encounters involve

pairwise contests. If a hawk meets a dove then the dove gets zero payoff and the hawk receives

the full resource V . When the encounter is between two hawks the fight escalates, with probability

one half each wins the resource V devalued by the costs of fighting C, both receive expected payoff

(V −C)/2. When two doves meet, each wins the resource with a probability of one half, there are

no costs, both expect a payoff V/2. This leads to the symmetric payoff matrix

( H D

H 1
2(V − C) V

D 0 V
2

)
(1.7)

where for now either of V > C or V < C are possible. It is clear that playing dove can never be

an ESS since V/2 < V : a population of doves can always be invaded by a hawk. H is an ESS if

(V − C)/2 > 0 or V > C since choosing the hawk strategy against another hawk is always better

than playing the dove strategy against a hawk. Alternatively, if V < C the game has one ESS which

is a mixed strategy. To find the mixed ESS, let the strategy p = (p, 1−p) represent the probability p
of playing H, and 1−p of playing D. By the Bishop Cannings Theorem [42], the payoff from playing

either pure H or pure D against the mixed strategy, is equal to the payoff from playing the mixed

strategy against mixed strategy: the ESS is found by setting πH = p(V −C)/2+ (1− p)V equal to

πD = (1−p)V/2. It is easy to check (but not done so for space constraints) that p̂ = (V/C, 1−V/C)
is a mixed ESS and satisfies both of the ESS conditions (1.5) and (1.6). The best possible strategy,

i.e., the ESS, is not to play H all of the time, but rather to play H with probability V/C, and to

play D the rest of the time.
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1.1.3 Population Games

So far, games have been assumed to be random pairwise encounters which subsequently specify

the success of strategies. In many biological problems, the success of a strategy may depend on

the population state (frequencies of other strategies) rather than the probability that one opponent

plays a specific strategy. A classic example of this is the sex ratio game for which the success of a sex

ratio depends not on the sex ratio of any particular opponent, but rather on the average sex ratio

within the population. Maynard Smith [35] explained a correspondence between a monomorphic

population in which all individuals play a (mixed) strategy of choosing strategy S1 with a probability

p, and S2 with probability 1 − p, and a polymorphic population in which a frequency x adopt S1

and a frequency 1− x adopt S2. The equivalence is that p and x can be used interchangeably [33,

35].

Symmetric population games are a generalisation of matrix games with an infinitely large pop-

ulation with a finite set of pure strategies. The population state x = (x1, x2, ..., xM ), through each

xi, gives the population frequency of the strategy Si. Since the frequencies of strategies sum to

one, i.e., x1+x2+ ...+xM = 1, each population state lies in the ∆M simplex which here is referred

to as the set of “mixed population strategies” [33, 43]. For the population to evolve continuously,

the outcomes of individual encounters are described by a payoff that is a function of the population

state. If the payoff function is linear the population state, the game can be represented via a payoff

matrix, whereas nonlinear payoff games are so-called “playing-the field” games [35]. Mathemati-

cally, population games are equivalent to the 2-player games of section 1.1.1, the only difference

being that in population games, the vector p of probability distributions of each pure strategy is

replaced by the state vector x of population frequencies of each pure strategy.

As such, there is a concept similar to the ESS definition, but applied to a population of strate-

gies rather than an individual strategy. Namely, an “evolutionary stable state” is a population

equilibrium in which the composition of pure strategies is resistant to perturbation, i.e., will be

restored after disturbance. Define fi(x) as the expected payoff to an individual playing strategy

Si which has a frequency xi in a population with state x. Next, consider a potential dissident

group of individuals of which a proportion yi play strategy Si and define
∑

i yifi(x) = yf(x) as the

average payoff in that group (which in the case of a linear payoff function can be expressed as yAx).

Whenever y ∈ ∆M and supp(y) is contained in supp(x) where x is an equilibrium population state,

one has that yf(x) = xf(x) [42, 44]. To find the evolutionary stable state one has to consider the

effects of a perturbation of the state x. If a small subpopulation of density ϵ adopt a state y, the

state x is stable if the average fitness of x in the perturbed state is greater than the average fitness

of the remaining population [44]. The evolutionary stable state, x̂ is defined by x̂f(x̄) > yf(x̄) for

all y ̸= x̂ where x̄ = (1− ϵ)x̂+ ϵy for sufficiently small ϵ.

To see the mathematical connection between the mixed (individual) ESS in a monomorphic

population, and the equivalent mixed evolutionary stable (population) state, consider the hawk

dove game with V < C. Let x denote the frequency of hawks in the population, and let 1 − x be

the frequency of doves. Assuming that the strategies H and D are paired off at random, then the

expected payoff to H (which depends on the frequencies of hawks and doves in the population) is:

πH = x(V − C)/2 + (1 − x)V and to D is πD = (1 − x)V/2. The condition πH = πD results in
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x̂ = V/C. We see that x̂ and 1 − x̂ are the evolutionary stable frequencies of hawks and doves in

the population since V/2 < V and (V − C)/2 < 0.

1.1.4 Multiplayer Games

In this section we consider games in which each individual simultaneously interacts with more than

one other individual at each instance [43, 45–48]. Such games are known as “multiplayer games”.

Despite multiplayer games receiving less attention compared two player games (partly due to the

wide applicability and simplicity of two player games) within the field of evolutionary biology, in

many ecological contexts multiplayer games are appropriate. For example when considering group-

wide interactions [31, 49–51]. Here, we only introduce symmetric multiplayer games: for which the

ordering of opponents does not matter.

Let the (pure) strategy set be fixed, finite and of size M . Consider interactions involving n

players and let the vector x = (x1, x2, ..., xM ) represent the frequency distribution of individuals

playing each strategy. Payoffs are nonlinear in the population state x ∈ ∆M and are found by

averaging over weighted probabilities of rewards that arise through specific compositions of oppo-

nents. Thus, the payoff to an individual depends on its strategy, and the composition of strategies

of the other n − 1 players. An n ×M−dimensional matrix can be used to represent payoffs. As

an example, the simplest case of a three player, two strategy game is considered. Let the two pure

strategies be S1 and S2 with frequencies x and 1 − x respectively so that the population state

x = (x, 1− x) ∈ ∆2. The payoff matrix is

(S1S1 S1S2 S2S2

S1 a11 a12 a13

S2 a21 a22 a23

)
. (1.8)

The matrix (1.8) describes the respective payoffs for an individual playing strategies S1 or S2 as

dependent on the composition of the strategies played by its (two) opponents. If the row player

chooses S1 then either; both opponents may choose S1 (column one), one opponent plays S1 while

the other plays S2 (column two), or both opponents play S2 (column three). Hence, because each

opponent player chooses strategy S1 with probability x and S2 with probability 1−x, the expected
payoffs to each strategy are now polynomials:

πS1 =x2a11 + x(1− x)a12 + (1− x)2a13

πS2 =x2a21 + x(1− x)a22 + (1− x)2a23 (1.9a)

The above payoffs for two strategy games can be extended to an arbitrary number of players.

Consider a population in which there are two available strategies, S1 and S2, and with state

x = (x, 1 − x) respectively representing the frequencies of individuals playing each strategy. As

the population is assumed to be infinite and well mixed (every individual can interact with any

other individual), randomly formed groups have compositions of strategies defined by the binomial

distribution. In a group of size n, any focal player faces n − 1 opponents, each of which chooses

strategy S1 with probability x and S2 with probability 1− x. Let πSi(x;S
l
1, S

n−1−l
2 ) be the payoff
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for a focal individual playing S1 in the population defined by x, when it finds itself in the group with

l opponents who play strategy S1 and n− 1− l opponents who choose strategy S2. The expected

payoff from choosing S1 depends on the probabilities of facing certain strategic compositions of

opponents, i.e., is summed over all possible compositions of opponent strategies in the group

E[πSi(x;S1, S2)] =

n−1∑
l=0

(
n− 1

l

)
xl(1− x)n−1−lπSi(x;S

l
1, S

n−1−l
2 ). (1.10)

In this case, a polymorphic population in which a frequency 0 < x < 1 play S1 and 0 < 1− x < 1

play S2 is equivalent to a monomorphic population in which each individual plays strategy S1 with

probability x and S2 with probability 1− x.

Palm [45] provided the general groundwork to analyse the concepts of a Nash equilibrium and

an ESS for multiplayer games. The ESS condition becomes a significantly more complicated for

multiplayer games, see Bukowski & Miekisz [52] or Broom & Rychtář [53] for further details.

A motivating example of a multiplayer game is the n-player public goods game [54, 55]. In

the game each player is given some initial endowment ρ > 0 and must then choose some fraction

γ of this endowment to contribute to a public good. All of the contributions are multiplied by a

factor r > 1 and distributed equitably between the group. Each player payoff is ρ− γ nuanced by

their share of the public good. Consider that the focal player contributes γ1 and the other players

contribute γ2, γ3, ..., γn then the payoff to the focal playing γ1 with opponents concurrently playing

γ2, ..., γn is

πγ1(γ2, γ3, ..., γn) = ρ− γ1 +
r

n

n∑
i=1

γi (1.11)

So long as r < n each player is returned with only a fraction of their contribution. There is

only one Nash equilibrium in the game, and that is to contribute nothing. We see this because

π0(γ2, γ3, ..., γn) > πγ1(γ2, γ3, ..., γn) for all γ1 > 0. The Nash equilibrium is however at the detri-

ment of the group as each player receives their maximum payoff if all contribute ρ. The public

goods game has become the standard game for investigating social dilemmas and the evolution of

cooperation (here defined as a behaviour that is costly to the actor but benefits all other group

members) when defecting is attractive [55, 56]. Similar games considering the evolution of coop-

eration under multiple and simultaneously interacting group members are the n-player prisoners

dilemma [57], volunteers dilemma [58, 59] and snowdrift game [60, 61].

Multiplayer games provide a rich tool to study biological interactions in which the strategy

chosen by each member of a group has a direct consequence for its own fitness and for the fitness

of other group members. Of interest in this thesis, are model’s such as Pulliam’s [49], as to

be introduced in section 1.5.1, which study the evolutionary stable strategies of anti-predator

behaviours in groups of prey. Numerous other multiplayer games have researched the strategic

compositions of animal groups [31, 32, 46, 51, 62, 63].

1.1.5 Replicator Dynamics

The research of Maynard Smith [39] can indicate whether a strategic composition is prone to mutant

strategies invading or not. A limitation of the ESS concept, however, is that it assumes an initial
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state where all of the members of the population play the same strategy. That is, the Maynard

Smith understanding of stability does not consider how the population state has been reached.

In contrast to the concept of evolutionary stable strategies, Taylor & Jonker [44] introduced a

set of differential equations that describe how the frequencies of strategies within the population

change in time, i.e., the dynamics from any initial population state to an evolutionary stable one, or

vice versa. Largely developed by Taylor & Jonker [44], and named by Schuster & Sigmund [64], the

so-called replicator equation deterministically describes the relative spread of continuously changing

frequencies of different strategies within a population playing an underlying game. In applying the

replicator dynamics, one can model the changing frequencies of genotypes or phenotypes [41, 65].

For the concerns of this thesis which is focused on behavioural strategies, the replicator equation

can model situations whereby strategies spread through imitation or learning [60, 65, 66]. Here the

basic assumptions and simple applications of the replicator dynamics are given.

Consider a population of M different types represented by S1, S2, ..., SM strategies. Denote by

xi the frequency (proportion of individuals) of those playing strategy Si within the population. A

key assumption is that the population size N is infinite so that in an evolutionary setting, xi ∈ [0, 1]

is continuous and differentiable in time. An equivalent understanding is that xi is the probability

that a randomly drawn individual has strategy Si [41]. A natural constancy implies that

M∑
i=1

xi = 1 (1.12)

To measure the evolutionary change in the relative frequencies of strategies, one needs to ascribe

a fitness to each strategy. The initial derivation of the replicator equation equates the fitness fi of

the strategy Si to the expected number of offspring of that strategy [44]. In this sense, individual

fitness can be thought of as the product of vitality; the probability that the individual reaches

productive age, and fecundity; the number of offspring that the individual has. We assume that all

population members with strategy Si possess the same vitality and fecundity, and thereby fitness

fi. Accordingly, the average fitness (or growth rate) in the population is defined by the scalar

⟨f⟩ =
M∑
i=1

xifi (1.13)

where fi : ∆M → R is generally a function of the population state x = (x1, ..., xM ) ∈ ∆M ,

i.e., fi = fi(x). We would like to capture the idea that the higher the fitness of strategy Si in

comparison to the mean fitness of the entire population, the more advantageous it is to the growth

of that strategy. As such, the relative rate of growth of the frequency of xi is governed by how well

this strategic type is doing relative to the population average. One arrives at ẋi/xi = fi − ⟨f⟩ as a
measure of the advantage or disadvantage of strategy Si over other population strategies in terms

of reproductive success. In this case, the growth rate of the population frequency using strategy Si

is given by the replicator equation:

ẋi = xi(fi(x)− ⟨f⟩) , i = 1, ...,M. (1.14)
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Equation (1.14) leaves both bd∆M and int∆M of the simplex invariant. This means that any

trajectory starting from the interior of the simplex will remain there for all time and never reach

the boundary [41]. Likewise, trajectories starting on the boundary stay on the boundary. This

property allows one to find lower dimensional subsets of the simplex, for which any trajectory

starting from must stay there. The roots of equation (1.14) provide equilibrium frequencies of the

strategy Si and characterise the “population dynamics”.

Suppose that individuals of the population are paired randomly and engage in a symmetric

game as described in section 1.1.1. In this case, an individual’s fitness can be found from a payoff

matrix of the form

A =


a11 a12 · · · a1M

a21 · · · · · · a2M
...

...

aM1 · · · · · · aMM

 (1.15)

An individual playing the pure strategy Si against an ensemble of strategies y = (y1, y2, ..., yM )T

has an expected payoff π(i,y) = (Ay)i. Hence, the fitness of a pure strategy Si is simply fi(x) =

(Ax)i =
∑

j aijxj . The average fitness in the population with state x is given by ⟨f⟩ = xAx =∑
i

∑
j xiaijxj . In evolutionary dynamics modelled by the replicator equation, the rate of increase

or decrease of a strategy is proportional to fitness, and typically depends on the relative fitness of

the strategy as compared to the average fitness in the population. This gives rise to the standard

the replicator equation (1.14) which describes the per-capita growth rate (logarithmic derivative)

of frequency of individuals playing strategy Si:

ẋi = xi
(
(Ax)i − xAx

)
i = 1, ...,M. (1.16)

A fixed point x̂ of equation (1.16) is stable (in Lyapunov sense) if for every neighbourhood U of x̂

there exists a neighbourhood V of x̂ such that x ∈ V =⇒ x(t) ∈ U ∀t ≥ 0. The fixed point x̂ is

said to be attracting if it has a neighbourhood U such that x(t) → x̂ as t → ∞ and ∀x ∈ U . The

fixed point x̂ is asymptotically stable if it is both stable and attracting.

If the replicator dynamics a posteriori are obtained from matrix games, then there is a natural

mathematical connection between the stability properties of the dynamics’ fixed points, and the

stability properties of strategies in the underlying game. These features are summarised in the Folk

theorem of evolutionary game theory [41]. A Nash equilibrium population state, v ∈ ∆M is such

that self interactions of v are at least as or more than successful than any other state y ∈ ∆M ,

[43], i.e.,

π(v,v) ≥ π(v,y) (1.17)

A point v ∈ ∆M is an evolutionary stable state if

π(v,y) > π(y,y) (1.18)

for all y ̸= v [43]. The main features of interest of the Folk, and other theorems (which can be found

in Cressman & Tao [43] or Hofbauer & Sigmund [41]) are as follows: if a rest point of the replicator

dynamics v is the convergent limit of an orbit contained in int∆M , then it is a Nash equilibrium in
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the sense of condition (1.17). If a rest point v of the replicator dynamics is asymptotically stable

then it is a Nash equilibrium. If the state v is an evolutionary stable state as in condition (1.18)

then it is a locally asymptotically stable rest point of the replicator dynamics (1.16) [41].

In more detail, it is useful to connect the replicator dynamics’ equilibrium frequencies xi of each

pure strategy Si in the population, and the probabilities that in a single game, an individual will

play a mixed strategy in which each pure strategy Si is played with probability xi. Let π(p,q) now

represent the payoff to a player with mixed strategy profile p playing an individual with mixed

strategy q. Consider the rest point of the replicator dynamics as p such that all ṗi = 0 where

pi is now interpreted as the frequency of the strategy Si. Then, if p̂ is a strict Nash equilibrium

of the game, then p̂ is locally asymptotically stable solution of the replicator equation (where

the probabilities of playing a pure strategy in the game equal the equilibrium proportion of pure

strategy in the population). An ESS p̂ in the interior of ∆M is a globally stable rest point of the

replicator dynamics. The converse is not true [67]. A Nash equilibrium p̂ of the underlying game

with matrix payoff matrix A is a rest point of the replicator dynamics [33, 41].

A natural extension to the replicator equation is to allow for mutations between the fixed

set of strategies. The replicator-mutator equation considers mutations in the sense of replicas of

a strategist being characterised by different strategies. Selection is accounted for by supposing

that the replication rate of a strategy is proportional to its success in the underlying game. The

probability that during the replication process, an individual choosing Si produces an individual

choosing Sj is given by qji. The replicator-mutator equation reads as

ẋi =
M∑
j=1

xjfj(x)qji − xi⟨f⟩ i = 1, ...,M. (1.19)

Equation (1.19) is applicable to a broad range of biological problems, for example it has been used

on both evolutionary and ecological timescales [68].

In this research, the replicator-mutator equation is appealing as one can apply it to fast be-

havioural timescales. In a behavioural setting, the dynamics have been used to model the change

in dominant languages [69, 70] as well as popular dance trends [71]. In this context, mutations

are equivalently interpreted as mistakes in an imitation process: instead of imitating the better

performing strategies, an individual chooses to randomly “explore” its choices of strategy [40]. In-

cluding exploration or “random sampling” of an individual’s strategic choices is important because

animals rarely act rationally, i.e., do not always choose the optimal behaviour. It is far more likely

that animals demonstrate a small but non-zero propensity to randomly sample from a number of

alternate behaviours [21].

The replicator is conceptually simple and reasonable way to model a range of biological inter-

actions. This however comes at a cost. As noted by Nowak & Sigmund [65], only selection in the

population (sometimes “demographic”) dynamics is accounted for in the equation. That is, because

the replicator equation only allows for only a finite set of fixed strategies which are invariant over

time, i.e., does not incorporate mutation, then the evolutionary dynamics driven by mutation and

selection cannot be captured. Another issue when using the replicator dynamics is an unrealistic

assumption of an infinitely large population. Later in this introduction (section 1.2) we briefly
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introduce game dynamics in finite populations which address this issue.

Replicator dynamics for two strategy games

Here we introduce some simple game dynamics using the replicator equation. The simplest case of

a game is when there are two strategies S1, S2 and a payoff matrix game representation of

A =

(
a11 a12

a21 a22

)
(1.20)

The relative frequencies of strategies S1, S2 are respectively given by x1 and x2. The population

state x = (x1, x2)
T allows the respective fitness for each strategy to be given by f1(x) = (Ax)1 and

f2(x) = (Ax)2 and as such the replicator equation gives ẋ = x(1 − x)
(
(Ax)1 − xAx

)
as we can

set x = x1, 1 − x = x2. As the assumption of a well mixed population means that the expected

payoff of each strategist are evaluated according to random pairwise interactions with the entire

population, one can write

π1(x) =(Ax)1 = a11x+ a12(1− x) (1.21a)

π2(x) =(Ax)2 = a21x+ a22(1− x) (1.21b)

and the average payoff in the population ⟨π⟩ = xAx = xπ1(x)+(1−x)π2(x). Substituting equations
(1.21) into the replicator equation (1.16) allows a simplification of the frequency dynamics such

that

ẋ =x(1− x)
(
a11x+ a12(1− x)− a21x− a22(1− x)

)
(1.22a)

=x(1− x)(cx+ d) (1.22b)

where c = a11 + a22 − a12 − a21 and d = a12 − a22. Clearly there are up to three fixed points

of equation (1.22b), one on each boundary of the simplex ∆2 given by x̂1 = 0 and x̂2 = 1 and

a possible interior solution on the interior of the simplex x̂3. The interior solution depends on

the payoff matrix through the values of c and d: if physical, (existing in the interval (0, 1)) one

finds the interior fixed point x̂3 by solving cx + d = 0. The values of the payoffs in the matrix

(1.20) specify the stability properties of each fixed point. Stability can be determined by standard

methods of non-linear dynamics, namely the sign pattern of the eigenvalues of the linearised system

[72]. By denoting the Jacobian matrix (which is not really a matrix for one-dimensional systems

but is for M > 2) by J(x) a quick check finds that J(0) = a12 − a22, J(1) = a21 − a11 and J(x̂3) is

straightforward to calculate (but not explicitly written for space).

If a11 = a21 and a12 = a22 then ẋ = 0 for any x ∈ [0, 1] and one speaks of neutral evolution; no

strategies do not change. In all other scenarios there are three possibilities; dominance, bi-stability

and co-existence. If a11 > a21 and a12 > a22 then clearly J(0) > 0, J(1) < 0 and the strategy S1

dominates (by consistency of stability x̂3 cannot be physical). See Fig 1.1a for an illustration.

If both J(0) > 0 and J(1) > 0 then by fundamentals of dynamic systems the interior must lie

between the two boundary states and be stable. A situation of coexistence of the strategies persists
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Figure 1.1: For illustration the unstable fixed points are shown by red points and
stable fixed points are blue. (A): x̂2 = 1 is a stable fixed point of the dynamics
and x̂1 = 0 unstable. For all initial states x0 ∈ [0, 1) the time change given by ẋ
is positive and x increases up to the point where the entire population adopts S1.
(B): The interior fixed point x̂3 is stable and each of population states x̂1 and x̂2 are
unstable. Any initial state converges to the mixed population state: for x ∈ (0, x̂3) we
see ẋ > 0 (x is increasing towards x̂3) and for x ∈ (x̂3, 1) we see ẋ < 0 (the frequency
of S1 strategies is decreasing towards x̂3). (C): Both edge states of all adopt S1 and
all adopt S2 are stable. Depending on which side of x̂3 the initial state x0 lies, the
entire population plays either strategy S1 (if x0 > x̂3) or strategy S2 (if x0 < x̂3)

as shown by the stable fixed point x̂3 in Fig 1.1b. This case is representative of a11 < a21 and

a12 > a22.

Bi-stable dynamics occur when the payoff matrix entries are such that a11 > a21 and a12 < a22.

A class of games known as coordination games [57] describe such cases where each strategy requires

some threshold density to have an advantage over the other strategy. Both of the vertices of the

simplex x̂1 = 0 and x̂2 = 1 are stable so that the population is at a stable state if all adopt S1 or S2,

and it is the location of the unstable interior solution that then determines the threshold density

required for either strategy to dominate. Denote x0 the initial state of x. If x0 < x̂3 then the initial

population state lies in the basin of attraction of x = 0 and thus the strategy S2 dominates, where

as if x0 > x̂3 then S1 dominates as shown in Fig 1.1c.

Cyclic 3 strategy replicator dynamics

Perhaps the most common example of the replicator dynamics with three strategies is the Rock-

Paper-Scissors game [33, 34]. The idea behind the game is that of cyclic dominance: that the
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strategy R beats strategy S, and strategy S beats strategy P , but then strategy P beats strategy

R. In a pairwise encounter, the winning strategy obtains payoff 1, and the losing strategy gets −b.
Thus, the payoff matrix is

ARPS =

 0 −b 1

1 0 −b
−b 1 0

 (1.23)

Any payoff matrix demonstrating cyclic dominance can be transformed to one of this form by linear

algebra operations, which do not affect the dynamics orbits [41]. The payoff for each of the pure

strategies R, P and S, with respective frequencies xR, xP and xS = 1− xR − xP are

πR =− bxP + (1− xR − xP ) (1.24a)

πP =xR − b(1− xR − xP ) (1.24b)

πS =− bxR + xP (1.24c)

and the replicator dynamics can be fully specified by the frequencies of xR and xP :

ẋR = xR(πR − ⟨π⟩) (1.25a)

ẋP = xP (πP − ⟨π⟩) (1.25b)

where ⟨π⟩ = xRπR + xPπP + (1− xR − xP )πS is the mean population payoff.

Before analysing the fixed points and their stability, it is useful to note that the Poincaré-

Bendixon theorem applies here such that there cannot be an isolated periodic orbit, i.e., there are

no limit cycles.

The fixed points of the dynamic system (1.25a)-(1.25b) can be fully specified by (xR, xP ): three

of which exist on the boundary of ∆3 given by eS = (0, 0), eP = (0, 1), eR = (1, 0). There exists an

interior fixed point given by x̂. The stability of each boundary solution is determined by the (two

dimensional) Jacobian matrix: (
∂

∂xR
ẋR

∂
∂xP

ẋR
∂

∂xR
ẋP

∂
∂xP

ẋP

)
(1.26)

which produces eigenvalues λei1 = 1, λei1 = −b for i ∈ {R,P, S}. Thus, each of the vertices of ∆3

are saddle fixed points and form what is called a heteroclinic cycle, together with the edges of ∆3

[41]. There are three generic cases of b = 1, b < 1, b > 1 that determine the stability of x̂.

For b > 1 the determinant of ARPS is negative then x̂ is unstable. Any orbit starting from the

interior of ∆3 converges to the heteroclinic cycle on the boundary, although since intS3 is invariant,

the trajectory never quite reaches it.

If b < 1 then the determinant of ARPS is positive, and x̂ is an asymptotically stable fixed point.

In this case all orbits inside the simplex converge to it.

When b = 1 one finds that ⟨π⟩ = 0, and thus

ẋR =πRxR = xR(1− xR − 2xP ) (1.27a)

ẋP =πPxP = xP (2xR + xP − 1) (1.27b)
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By multiplying equation (1.27a) by (1 − xp − 2xR) and equation (1.27b) by (2xP + xR − 1), one

finds that

ẋR

(
1

xR
− xP
xR

− 2

)
+ ẋP

(
1

xP
− xR
xP

− 2

)
= 0. (1.28)

Multiplying equation (1.28) by xRxP and applying the product rule, one then finds

0 =xR(1− 2xP − xR)ẋP + xP (1− xP − 2xR)ẋR = (1.29a)

d

dt

(
xRxP (1− xR − xP )

)
=: G(xR, xP ) (1.29b)

and H(xR, xP ) =
∫
G(xR, xP )dt. The function H(xR, xP ) = xRxP (1 − xR − xP ) is a constant of

motion [41] and since
∂

∂xR
H(xR, xP ) = xP (1− xP − xP )− xPxR (1.30)

equals zero at xR = xP = 1/3 and that ∂x2
R
H(xR, xP ) = −2xP < 0 the center x̂ = (1/3, 1/3) is a

maxima. The constant level sets, {(xR, xP ) ∈ int∆3 : H(xR, xP ) = Constant}, of which there are

infinitely many, are closed curves surrounding x̂. Each closed periodic orbit has a time average of

x̂ [41]. In other words all trajectories inside the simplex return to their starting place.

1.1.6 Continuous strategies and the G-function

Up to this point, the strategies in the considered game dynamics have been discrete and finite.

Later in this introduction the interpretation of continuous strategies is outlined by the application

of adaptive dynamics. Here, it seems appropriate to introduce the G-function approach pioneered

by Vincent & Brown [73] and co-authors as a framework for converting discrete strategy matrix

games to continuous strategy games. The key concept is a so-called fitness generating, or G-

function (see [74, 75] and references therein) which generates the fitness of any individual within a

population given a dynamic ecological system.

The way to convert matrix games into continuous strategy games is shown in great detail in [73,

74] where the reader is referred for a more comprehensive outline. Here the basic idea is presented.

Consider a population in which there are i = 1, 2, ..., ρ strategies. Each strategy, denoted ui, is

limited to some feasible set S, and each individual in the population adopts some strategy. Note

that in general strategies can be vectors, but in this thesis only scalars are considered. Each strategy

ui has a population density xi. The individuals using strategy ui have some fitness Hi(u,x), where

fitness depends on the population strategies u = (u1, u2, ..., uρ) and densities x = (x1, x2, ..., xρ).

Similar to the replicator dynamics of section 1.1.5, one can use a differential equation to model the

change in the population densities:

ẋi = xiHi(u,x) for i = 1, ..., ρ (1.31)

The definition of a G-function according to Vincent & Brown [73] is “a fitness generating function

if and only if G(v,u,x)|v=ui = Hi(u,x).” The strategy v is referred to as a virtual variable, which

upon substitution with any other ui ∈ {u1, u2, ..., uρ} generates the fitness of those individuals

using strategy ui.
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Unlike Maynard Smith & Price [39] who distinguish between the fitness rates of distinct strate-

gies, but not between a focal strategy and other distinct strategies, the G-function separates the

focal strategy from all other strategies at play via the virtual variable v. Thus, fitness is modelled

from an individual selection point of view (the strategy maximises individual fitness and not the

fitness of all those adopting the strategy). Without the virtual variable fitness is not frequency

dependent with respect to all individuals adopting the same strategy. The G-function, roughly

speaking, can be redefined as the fitness of a very small population of mutants [76–79] which pro-

vides a direct link between evolutionary (matrix) game dynamics and the invasion analysis of the

field of adaptive dynamics (see section 1.3).

The G-function is able to model density or frequency dependence. For the interpretation of

different strategies competing within a single population it is most convenient to represent the

G-function in terms of the frequency of each strategy. This thesis applies a frequency dependent

approach to allow a proportional representation of each strategy. As such one can write G(v,u,x)

with x1 + ...+ xρ = 1 and
∂

∂x
G(v,u,x) ̸= 0. (1.32)

In the methodology of Vincent & Brown [73] the notion of an adaptive landscape is what

governs the strategy dynamics. The adaptive landscape is a plot of G(v,u,x)−Ḡ, i.e., fitness if the
virtual strategy is adopted, relative to the average fitness in the population with existing strategies

given by u and frequencies x. Using the idea of a fitness landscape, the G-function provides

an alternative ESS definition, namely the “ESS Maximum principle”. A coalition of strategies

u∗ = (u∗1, u
∗
2, ..., u

∗
s), assuming that there are ρ− s strategies not being played, (we can order such

that xs+1 = ... = xρ−1 = xρ = 0), is an ESS if

max
v∈S

{(
G(v,u,x)− Ḡ

)
|u=u∗,x=x∗

}
= 0 at v = u∗1, u

∗
2, ..., u

∗
s. (1.33)

According to equation (1.33), each strategy of an ESS must be a (global) maximum of adaptive

landscape. That is, any possible strategy v ∈ S attains its global maximum value at u∗1, u
∗
2, ..., u

∗
s.

This property ensures that the coalition u∗ is resistant to invasion since it resides at a peak of the

adaptive landscape [73]. Clearly in a monomorphic population, the ESS Maximum principle can be

thought of as an invasion landscape where u∗ lies at a maxima (of value zero) of the invasion fitness

of v, and is therefore resistant to invasion. We shall see later on in section 1.3 that this concept is

very similar to the “invasion fitness” of adaptive dynamics. Further conditions on strategies such

as dynamic attainability, i.e., able to invade other populations can be found in [73, 80, 81].

Thus, using equation (1.31) and the adaptive landscape, the G-function models the population

and strategy dynamics of the strategy ui according to

ẋi =xi
(
G(v,u,x)− Ḡ

)
|v=ui (1.34a)

u̇i =k
∂

∂v
G(v,u,x)|v=ui (1.34b)

where k is a simple timescale constant. Generally, the method does not specify a need for a sepa-

ration in timescales, although implicitly does so through assuming that the population dynamics

at equilibrium x∗, i.e., G(v,u,x∗)− Ḡ = 0, whenever strategy adaptations occur.
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The G-function is a useful tool and is closely connected with the theoretical synthesis of adaptive

dynamics (which are introduced in section 1.3 of the introduction). In fact, Vincent & Brown [81]

applying the G-function methodology, and Doebeli et al. [61] applying computer simulations to

an adaptive dynamics model, found the same qualitative results when studying the continuous

snowdrift game. Moreover, the G-function is flexible enough to model a range of ecological and

evolutionary dynamics. Dercole & Geritz [79] used the G-function to comprehensively classify

degenerate evolutionary outcomes in a resident and mutant competition model. Krivan & Cressman

[82] applied the G-function to general predator-prey models to find whether mutant strategies can

invade populations in which strategies change instantaneously, i.e., are plastic. Despite intermittent

periods of relative success, the G-function has not quite become a dominant force in the modelling

of evolutionary dynamics.

1.2 Stochastic dynamics

In section 1.1.5 the replicator and replicator-mutator dynamics where introduced as way to describe

the changing frequencies of strategy types in an infinitely large population. In some biological

problems, the interactions of phenotypes do not precisely fit a continuous model: the deterministic

equation is a (mean field) approximation. For the scope of this thesis the deterministic description

is a sufficient tool to tackle the subsequent research problems. However, it can be advantageous

to derive the deterministic equation using a stochastic framework. In this way one can specify

biologically appropriate mechanisms which describe how strategies change at a specific time, i.e.,

through births and deaths, or learning, or imitation. The resulting dynamics emerge naturally

and should be a good description of the biological problem: the biological problem should not be

assumed to fit some arbitrary equation, e.g., the replicator dynamics.

Stochastic dynamics considers that a population contains a finite number of individuals. In this

case, rather that the relative frequencies of strategies which are continuous variables, one considers

integer quantities of the number of certain strategies in the population. The change in strategies in

finite populations are governed by probabilistic laws, i.e., through a master equation. The master

equation depends on specific transition probabilities that are derived from the underlying game.

Thus, the complexity of the stochastic process depends on the complexity of the biological problem.

In this section, the intention is not to give a comprehensive introduction to stochastic game dy-

namics, but rather to identify the important concepts that are used as a way to derive deterministic

equations. The important features for this thesis (i): the master equation shortly introduced in sec-

tion 1.2.1 (ii): how the underlying biological problem should set transition probabilities that enter

the master equation, and (iii): how one can expand the master equation to recover a deterministic

characterisation of the problem.

1.2.1 From stochastic dynamics to a deterministic description

The approach used in this thesis is to represent the number of individuals adopting different strate-

gies by a discrete set of variables referred to as the system. Continuous time descriptions are also

possible but for the scope of this thesis, a discrete description suffices. The probability that at

a certain time the variables take on some specific value is characterised by a probability density
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function with a discrete support. Values which the random variable assume at the time is known

as the systems state. Generally the systems state changes according to a transition matrix which

specifies the probability that from one time to another the state jumps to another state. Interac-

tions between strategies in the underlying game determine the nature of the transition probabilities

and thus the probabilistic movement of the systems state.

If the probability that the system moves to a state at a given time does not depend on the

systems previous states, i.e., the system is Markovian, then a master equation describes the change

in time of the probability density function. From the master equation follow a series of differential

equations for each moment defining the stochastic process. The moments scale with the systems

size, in particular, the average step size and variance of step size are inversely proportional to the

system size and therefore decrease with increasing system size [83, 84].

Assuming a large enough system size (or population) only the mean and variance respectively,

are required to model the macroscopic (deterministic) and fluctuating dynamics respectively. In

the subsequent sections the van Kampen expansion is introduced [85]. The expansion results in

a continuous approximation for the discrete random variables. Usually a Fokker-Planck equation

[83] shows the average directional changes of the system through the “drift” term and fluctuations

though the “diffusion” term (where the diffusion term within the physics literature is often known

as “genetic drift” in the biology literature). A population large enough for the expansion to give

rise to scaled variables that are approximately continuous is essential.

The master equation

Here, an introduction to one-dimensional Markov chains that are common throughout evolutionary

game theory is given. In this thesis, we only treat one dimensional discrete state, discrete time

Markov chains. Given two strategies (A and B) and a population of size N < ∞, at any time

step, the number of A strategists, i ∈ {0, 1, ..., N} fully specifies the systems state (since there are

N − i B strategists). The change in state i with each time step defines a stochastic process. In the

subsequent chapters of this thesis we consider populations in which the number 0 ≤ i ≤ N , of A

strategies, can only move to i±1 or remain unchanged as visualised in Fig 1.2. These processes are

known as one-step [84], birth-death [85], or Generation-Recombination (G-R) processes [83]. The

so-called generation rate G(i, t) is the probability per unit time for a transition from i to i+1, and

the recombination rate R(i, t) is the probability per unit time for a jump from from i to i− 1.

0 1 2 3 4 · · · i− 1 i i+ 1 · · · N

T+
0 T+

1 T+
2 T+

3
T+
i−2 T+

i−1 T+
i T+

i+1 T+
N−1

T−
1 T−

2T−
3T−

4 T−
i−1 T−

i T−
i+1 T−

i+2
T−
N

Figure 1.2: The one-step process and transition probabilities. The population state
i ∈ {0, 1, ..., N} increases by one (i → i + 1) with probability T+

i and decreases by
one (i → i − 1) with probability T−

i . A natural condition is T+
N = T−

0 = 0 so that
the population size remains constant. If there are no mutations (i.e., µ = 0) between
the A and B strategies, one finds that T−

N = T+
0 = 0 due to absorbing boundary

conditions, whereas when µ > 0 this no longer holds.
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The generation and recombination rate define a transition matrix,

Ti→i+1 =T
+
i = G(i, t), Ti→i−1 = T−

i = R(i, t), (1.35a)

Ti→i =T
0
i = 1− T+

i − T−
i , Ti→i±k = 0, for k ∈ Z, k > 1 (1.35b)

which specifies the permitted jumps of the systems state (see Fig 1.2). The probability of finding

the system in state i at time t given by a master equation:

d

dt
P t(i) = G(i− 1, t)P (i− 1, t)−G(i, t)P (i, t) +R(i+ 1, t)P (i+ 1, t)−R(i, t)P (i, t) (1.36a)

= T−
i+1P

t(i+ 1) + T+
i−1P

t(i− 1)− T−
i P

t(i)− T+
i P

t(i). (1.36b)

The boundary conditions are important to consider. So that the population size is constant, the

transitions T−
0 = 0 and T+

N = 0 are necessary. As such, the transition matrix is zero everywhere

except the main diagonal, and the diagonals above and below. Other properties of the boundary,

for example absorbing, reflecting of natural depend on the details of the transition probabilities,

and in particular whether mutational effects are incorporated into the process. These issues are

addressed in the next section.

Traditionally, G-R process applies to births and deaths, and associates with G the birth of a new

A strategist (and subsequent death of a B strategist) and with R the birth of a new B strategist

(and death of an A strategy). Mutations traditionally correspond to the probability that a birth is

not a clonal copy of the reproducing individual. In the absence of mutations, the states i = 0, N

are absorbing boundaries, whereas, with mutations the states are reflecting. Later in this thesis, we

follow Antal & Nowak [66], and Nowak et al. [40] and use one-step processes to model imitation.

Behavioural mutations, or “exploration” [40] in the transition probabilities are equivalent to the

genetic mutations of the birth-death interpretation.

How interactions specify transitions

This section is motivated to outline the most appropriate choices for strategy updating mechanisms

in the underlying game. Choosing a suitable microscopic biological process to model the increase

or decrease in strategy with fitness is important for the stochastic dynamics of the system [86–91].

Microscopic interactions govern updating processes, and thus specify the transition probabilities

and the complexity of the master equation of section 1.2.1. Here, in a finite population setting with

two strategies A and B, the frequency dependent Moran process and the pairwise update process

are introduced.

The interactions between strategies in the underlying game produce payoffs which specify the

transition probabilities of the system. Let πA and πB be the respective payoffs for each strategy

in the underlying game. It is important to specify a payoff to fitness mapping in finite systems.

In the mapping, a parameter ω, reflects the intensity of selection: the relative contribution of the

underlying game to individual fitness [92]. Fitness, fA = f(πAω) (and fB = f(πBω)), can be

modelled by any product of selection intensity and payoff so long as fitness is non-negative. The

increase in strategy is proportional to the increase in fitness.
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The frequency-dependent Moran process: a classical model used in population genetics

and more recently been applied to evolutionary game theory [88, 93]. Fitness is usually set to a

background fitness of 1, plus the payoff from the game with a mechanism describing the intensity

of selection ω: fA = 1− ω + ωπA. If ω = 0 then selection is neutral (frequency independence) and

if ω = 1 then fitness is fully determined by the payoffs of the game.

At each time step an individual is chosen from the population with probability proportional to

their fitness. The chosen individual produces an offspring which, to keep the population constant,

then replaces another randomly chosen individual. A mutation rate µ, i.e., the probability that

an individual produces offspring that are of a different strategy, can be included. In this case, the

probability that the population gains one A strategist (and loses one B strategist) is the probability

that the individual chosen for elimination is a B strategist, and that the offspring is an A strategist.

This can occur in two ways: with a probability 1 − µ, an A (B) strategist is chosen to reproduce

with probability ρA (ρB):

ρA =
ifA

ifA + (N − i)fB
, ρB =

ifB
ifA + (N − i)fB

(1.37)

proportional to that individual’s fitness relative to the average population fitness. The probability

that population transitions from i number of A strategies to i+1 is ρA(N − i)/N where (N − i)/N
is the probability that the individual chosen to be removed is a B type. Alternatively, with a

probability µ, a B strategy is chosen to reproduce with a fitness proportionate probability, but has

an offspring A strategy. The transition probabilities in the limit of µ → 0 are shown in Table 1.1.

The adjusted replicator equation of section 1.1.5 is recovered in the infinite population limit, and

for µ > 0 the replicator-mutator equation (section 1.1.5) is recovered (see Table 1.1). Of interest to

this thesis, is that the frequency dependent Moran process can describe the spread of behaviours in

a cultural or learning setting [40, 66]. Viewing the process as a model of imitation, one can think

of a focal individual being selected to “update” its strategic choice, and choosing a strategy with a

probability equal to the total fitness of individuals using that strategy divided by the total fitness

in the population [94].

Local (or pairwise) update : often used in situations where it may be unrealistic for in-

dividuals to compute the average fitness in the population [91]. Two random individuals from

the population; a focal and a role model are chosen. The focal imitates the strategy of the role

model with a probability depending on the difference in payoffs they receive. The focal does not

necessarily adopt a strategy with higher payoff as imitation is probabilistic, and worse strategies

may be imitated.

Traulsen et al. [93] proposed that the probability of imitation could be linear with the payoff

difference, on top of a baseline probability of 1/2. This model limits the intensity of selection

measured by the rate of probability increase. To account for strong intensities of selection, the Fermi

function (from statistical physics) is more appropriate (see [89, 90, 95] for examples). Using the

Fermi function, the relative fitness of an individual is given by the exponential fA = exp [βπA], and

the difference between strategies, exp [β(πB − πA)] determines the probability that an individual

imitates another. β ∈ [0,∞) measures the strength of selection, ranging from 0 and the case of

neutral drift, to extreme selection for β → ∞.
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Moran Local update Fermi

ρA = ifA
ifA+(N−i)fB

ρA = 1
2 + ω

2
πA−πB

∆ ρA = 1
1+e−ω(πA−πB )

T+ = (1− µ)ρAN−i
N + µρB i

N T+ = ρA i
N

N−i
N + µN−i

N T+ = ρA i
N

N−i
N

0 ≤ ω ≤ 1 0 ≤ ω ≤ 1 0 ≤ β

In the deterministic limit (N → ∞) when µ = 0

Adjusted replicator eq:
ẋ = x(fA − ⟨f⟩) 1

⟨f⟩− 1
ω
−1

Replicator eq:
ẋ = x(πA − ⟨π⟩) ω

∆π

Replicator eq in∗

ẋ = x(1− x)tanh
(β
2 (πA − πB)

)
* Traulsen et al. [97]

Table 1.1: Update processes and their deterministic limits

The ρA, ρB are interpreted as the probability that a role model is chosen to be imitated. These

values can take on many forms, but the most common examples are based on linear [93], or Fermi

functions. In the linear case used Traulsen et al. [96], one finds

ρA =
1

2
+
ω

2

πA − πB
∆π

, ρB =
1

2
+
ω

2

πB − πA
∆π

(1.38)

where ∆π is the maximum payoff difference between two strategies. The probability of population

transition from i number of A types to i+1 is ρ(i/N)(N − i)/N . Although behavioural mutations

are likely in animal imitation, for general µ it is not possible to define a microscopic process with

the deterministic limit of the replicator-mutator equation. Various transition probabilities have

been proposed. An example used by Traulsen [96] is shown in Table 1.1. For this example, in the

deterministic limit with µ = 0, the replicator dynamics are recovered Table 1.1, but in the regime

of µ > 0 the replicator-mutator equation is not.

van Kampen’s expansion to find the deterministic limit

Depending on the complexity of the payoff structure in the underlying game, and thus the transition

probabilities, often the master equation (1.36a) cannot be solved analytically. To find a suitable

description of the time evolution of the probability density function one can apply an expansion

to the inverse of the system size. This approximates the spatial and temporal variables such that

x = i/N and ∆t = 1/N are assumed continuous. Changing from the extensive variable i, the

number of individuals adopting strategy A, to the density x being an intensive variable of those

individuals results in an approximation of a continuous stochastic process on the unit interval [0, 1].

Starting with the transition probabilities, T+
i and T−

i , and assuming a large enough population,

the master equation (1.36b) governs the time evolution of the system. The intuitive idea is that

the deterministic part of the system x should be of order N where as the fluctuating part of the

system should be of a lower order N1/2. Introducing the shift operators E±f(n) = f(n ± 1) and



1.2. Stochastic dynamics 23

the probability density p(ξ, t) = P t(Nx(t) +
√
Nξ) where the van Kampen ansatz

i = Nx(t) +
√
Nξ. (1.39)

is used, one then Taylor expands the transition probabilities and shift operators (see [85] or [83]

for details). After the Taylor expansions, and taking the time derivative of p(ξ, t), one collects

coefficients of order N1/2 which yields the deterministic dynamics:

dx

dt
= T+(x)− T−(x) (1.40)

and collecting terms of order N0 the stochastic dynamics are given by:

∂p(ξ, t)

∂t
= − ∂

∂x

(
T+(x)− T−(x)︸ ︷︷ ︸

A(x,t)

)
∂

∂ξ
ξp(ξ, t) +

1

2

(
T+(x) + T−(x)

N︸ ︷︷ ︸
B2(x,t)

)
∂2

∂ξ2
p(ξ, t). (1.41)

Equation (1.41) is a linear Fokker-Planck equation whose coefficients depend only on x(t). The

drift and diffusion terms are respectively given by A(x, t) and B2(x, t).

The Fokker-Planck equation serves as a foundation for further analysis of the systems asymptotic

behaviour [96]. Equation (1.41) is relevant to the subsequent chapters in this thesis because it

provides a natural derivation of deterministic equations used to describe changing frequencies of

strategies in infinite populations, based on microscopic interactions based on the underlying game.

For example, different forms of the replicator dynamics and depend on the microscopic update rule

[93, 98].

The Fokker-Planck equation (1.41) corresponds to a stochastic differential Langevin equation

which describes the time evolution of x, rather than its probability density function. By applying

the Ito calculus [83, 85] the following stochastic differential equation is found:

ẋ = A(x, t) + Γ(t)B(x, t) (1.42)

where Γ(t) is multiplicative white noise. Equation (1.42) can be written as

dx = A(x, t)dt+B(x, t)dW (t) (1.43)

where W (t) is the Wiener process of increment w(τ) = W (t + τ) − W (t), with zero mean and

autocorrelation ⟨w(τ1)w(τ2)⟩ = 2min{τ1, τ2}. We see that in the limit of N → ∞ the noise term of

equations (1.42) and (1.43) vanishes and we recover a replicator equation of section 1.1.5, given by

ẋ ∝ x(1−x)(fA(x)−fB(x)). Hence, one can derive a stochastic representation of the model which,

under appropriate assumptions produce deterministic dynamics. Importantly, by considering the

more specific way in which the strategies in the population change, e.g., via imitation, or births and

deaths, or with mutational effects, the emerging deterministic equations should suitably reflect the

underlying assumptions of the biological problem. A systematic method can be used: one defines

specific updating processes which are appropriate for the biological problem. The microscopic

interpretation of how the distribution of strategies change in the population thereby specifies the
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transition probabilities which enter the master equation. By appropriately re-scaling state space

and time, the expansion of the master equation (1.36b) leads to corresponding equations for the

time evolution of the probability density of the state variable (equation 1.41), or the time evolution

of the state variable itself (equation 1.42). By assuming a large enough system these equations

predict exact frequencies of strategies within the population.

1.3 Adaptive dynamics

So far, static game theory has shown whether a mutant strategy can invade a population, deter-

ministic game dynamics has provided a means to predict the frequencies of strategies competing

in a population, and stochastic game dynamics have shown the importance of microscopic interac-

tions specifying how strategies spread. Even with the methods developed so far, there remains an

important and unanswered question: can an ESS strategy invade another population of strategies?

In other words, do ESS strategies attract nearby populations of strategies.

The traditional approach of adaptive dynamics (AD), pioneered by Dieckmann & Law [99],

Metz et al. [100] and Geritz et al. [101] provides methods for predicting the longer term evolution

of quantitative traits. The natural place to start when applying to the techniques of AD, is to

identify the traits that are subject to change. In this thesis, we stick to the evolutionary game

theory convention of strategy rather than trait. The options of what types strategies are appropriate

to model has somewhat changed as the modelling breadth of adaptive dynamics has considerably

expanded since its conception (see Abrams [102] for a review). The framework has been used to

model behaviours such as kleptoparatism [103] and the evolution of cooperation [60, 61].

Whatever strategy under consideration, the techniques of AD are essentially used to understand

the fate of small perturbations of a strategy from an ecological perspective. A key feature of AD

is that it connects population dynamics and evolutionary dynamics in a way such that the idea

of frequency-dependence is incorporated into the framework. Ecological systems are constantly

changing, and the environment in which individuals live in changes with such adaptations. As

such, an eco-evolutionary feedback describes the changing strategies of individuals in a population.

1.3.1 Fundamentals

The first step using adaptive dynamics is to specify a quantitative phenotypic strategy x in a

population of individuals. One then specifies a demographic model that accounts for the effects of

biotic and abiotic factors on an individual’s fitness. The demographic model can be as complicated

as the biological problem. In the simplest form, the demographic model accounts for the competition

between a resident and a mutant strategy (“resident-invader” model), and is explicitly described

by an ODE model (see equation 1.44). The ODE model can be extended to any number of existing

strategies, and thereby to polymorphic resident populations, but for the introduction presented

here the focus is on only the basic framework of a resident and invader. Assume that there are ρ

strategies present in the population (for the resident-invader model ρ = 2). Let xi be the value of

each strategy, and let Ni be the number of individuals playing strategy xi. The strategies of each

population can be represented by a strategy vector x = (x1, x2, ..., xρ), and the population sizes
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can be expressed by N = (N1, N2, ..., Nρ). The population dynamics are given by

dNi

dt
= NiW (xi,x,N), i = 1, 2, ..., ρ (1.44)

where W (xi,x,N) is the average growth rate of strategy xi which depends on the composition of

strategies x and the relative sizes N, i.e., growth is frequency dependent.

The function W is usually interpreted as a fitness function and for analysis when ρ = 2 we

write W (xi, xj),∀(xi, xj) ∈ {x1, x2} × {x1, x2}. Consider a monomorphic resident population in

which only strategy x1 is present. The growth of the population solely depends on the strategy x1

itself and the environment. It is assumed that an equilibrium population size is naturally reached.

Denote the equilibrium as N∗
1 . At the ecological equilibrium characterised by N∗

1 , the fitness - or

growth rate - of an individual in the population must be equal to zero, otherwise the population

would continue to grow indefinitely. Therefore by definition one has that W (x, x) = 0.

At the core of adaptive dynamics are two fundamental assumptions. First, competition between

the resident and invader occurs on a fast (ecological or sometimes demographic [68]) timescale,

whereas mutations (new invaders) are rare, and occur on a much slower (evolutionary) timescale.

In this way, the population is nearly always monomorphic and one can reasonably expect the

population to be at a dynamical equilibrium by the time the next mutant strategy occurs. Second,

the success of the mutant strategy is fully determined by its initial growth rate when rare [99, 101,

104]. When combined, these two assumptions amount to a separation of time scales in the adaptive

dynamics framework. The separation of timescales allows one to study monomorphic population

evolution: mutations are small enough to be considered perturbations of the resident strategy (the

population is approximately monomorphic). On the fast ecological timescale, competition amongst

the strategies in the population results in one strategy fixating. By the time a mutant strategy

enters the population, the resident population is at a monomorphic ecological equilibrium. In

this way, the evolution of a monomorphic population can be described by a sequence of strategy

substitution events [105], and each strategy substitution event leads to extinction or fixation of the

mutant strategy [105, 106]. One can then predict the longer term changes in strategy within the

population.

1.3.2 Time scales

The key idea here is that mutations are assumed to be rare so that the evolving population remains

monomorphic. This allows two separate timescales to be examined: the demographic timescale on

which competition between the strategies in the population, and fixation occur, and the evolutionary

timescale on which a sequence of strategy-substitution drives the adaptations in the strategy space.

Depending respectively on whether the mutant strategy fixates or not, the population converges to

the mutant strategy or remains unchanged [107]. Thus each competitive event in the demographic

model can at most, direct incremental changes in the strategy space. The evolutionary dynamics

depend on each of the demographic events: each competition event specifies the directional change

if any in the evolutionary timescale, and the sequence of such events gives rise to the evolutionary

change. Because after each mutational event on the demographic timescale the population tends
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back to a monomorphic dynamical equilibrium, when considering the longer term evolutionary

dynamics one can consider that the population or demographic dynamics are constant [101, 106].

1.3.3 Invasion Fitness

The invasion fitness, W (y, x), is defined as the per-capita growth rate of an initially rare mutant

strategy y in an environment set by the resident population of strategy x. Since individuals with the

mutant strategy y are considered rare, the effect that the mutant strategy exerts on the environment

is negligible.

W is generally assumed to be a continuously smooth function of x and y. An approximation of

W (y, x) is found by Taylor expanding the mutant strategy about the resident strategy:

W (y, x) =W (x, x) +
∂W (y, x)

∂y

∣∣∣∣
y=x

(y − x) (1.45)

where by definition W (x, x) = 0 implies that the mutant y can invade if and only if W (y, x) > 0.

From equation (1.45) the selection gradient is defined by

D(x) =
∂W (y, x)

∂y

∣∣∣∣
y=x

(1.46)

. and by the definition of the mutant invasion fitness equation (1.45), we see that when the selection

gradient is positive (or negative) only mutants with strategies y > x (or y < x) can invade in a

neighbourhood of x.

1.3.4 Canonical Equation

The canonical equation of adaptive dynamics [99] gives the expected dynamics of the strategy values

on an evolutionary timescale as the strategy values are sequentially updated through successive

fixations of rare mutant types.

The canonical equation is a deterministic approximation derived via an infinite realisations of a

stochastic process. The movement of a population through the strategy space occurs as a Markov

chain and as such, the following master equation describes the evolution for the probability, P (x, t),

that at time t the resident population is characterised by the strategy x:

d

dt
P (x, t) =

∫
[w(x|y)P (y, t)− w(y|x)P (x, t)]dy (1.47)

Here w(i|j) are the transition probabilities that the population changes from strategy i to strategy

j. w depends on two factors: first the probability of a mutant y occurring in a population of resident

x and second, the probability that the mutant does not immediately become extinct. The reader

is referred to Dieckmann & Law [99] for a comprehensive ecological derivation of the transition

probabilities. Here, the mathematical theory is given.
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The mean path

The dynamics of the mean strategy are given by

d

dt
⟨x⟩ =

∫
dxx

d

dt
P (x, t)

where using equation (1.47) one finds

d

dt
⟨x⟩ =

∫
dxx

∫
[w(x|y)P (y, t)− w(y|x)P (x, t)]dy

=

∫
dx

∫
[xw(x|y)P (y, t)− xw(y|x)P (x, t)]dy (1.48a)

Writing the transition probability as w(y|x) = w(x; ϵ) with y = x + ϵ, via a change of variables

x→ y− ϵ which is absorbed by the integral limits, one finds that equation (1.48a) can be expressed

as
d

dt
⟨x⟩ =

∫
dx

∫
dy(y − x)w(y|x)P (x, t) (1.49)

Taking the Van Kampen kth jump moment [108]

ak(x) =

∫
(y − x)kw(y|x)dy (1.50)

it follows that
d

dt
⟨x⟩ =

∫
dxa1(x)P (x, t) = ⟨a1(x)⟩(t) ≈ a1(⟨x⟩(t)) (1.51)

If the first jump moment a1(x) is a linear function of x then ⟨a1(x)⟩ = a1(⟨x⟩) [99] meaning

d

dt
⟨x⟩(t) = a1(⟨x⟩(t)) (1.52)

If the first jump moment is a non-linear function of x then one instead should use

⟨a1(x)⟩ ≈ a1(⟨x⟩) +
⟨(x− ⟨x⟩)2⟩

2
a
′′
1(⟨x⟩) + ... (1.53)

As long as stochastic deviations from the mean path are relatively small, the approximation of (1.52)

holds well. Although from equation (1.53), the evolution of ⟨x⟩ depends on its fluctuations as well

as ⟨x⟩ itself, similar to studying any macroscopic quantity, we ignore such stochastic fluctuations

and focus only on the mean path (compare for example to the deterministic dynamics in section

1.2.1). The assumption that the macroscopic quantity itself is a meaningful description of the

biological process, when in reality a precise description should also refer to the variance, is generally

defended (for example by Dieckmann & Law [99]) by reference to Van Kampen [108] who describes

the “macroscopic approximation” as not needing to regard moments higher than the first. Thus,

non-linear functions a1(x) are neglected and the approximation of (1.52) is used to describe the

process.
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Dieckmann & Law [99] go on to substitute the following explicit transition probability

w(y|x) = (y − x)µ(x)NxM(x, y − x)
∂W (y, x)

∂y

∣∣∣∣
y=x

(1.54)

into equation (1.52) to recover

d

dt
⟨x⟩ =

∫
(y − x)2µ(x)NxM(x, y − x)

∂W (y, x)

∂y

∣∣∣∣
y=x

dy. (1.55)

which describes the evolution of ⟨x⟩. By changing the integration variables y − x = ϵ, observing

that M(x, y − x) is symmetric about the origin, and omitting the averaging brackets one finds

d

dt
x =

1

2
µ(x)σ2µNx

∂W (y, x)

∂y

∣∣∣∣
y=x

(1.56)

where σ2µ =
∫
ϵ2M(y+ ϵ, ϵ)dϵ. Equation (1.56), known as the so-called “Canonical equation” shows

the expected change in x per unit time, as averaged over infinitely many strategy-substitution

events.

Deterministic approximation

Equation (1.56) is composed of two factors: the “evolutionary rate of change coefficient” and the

“selection gradient” [99]. For the scope of this thesis which only considers scalar strategies, the

term µσ2µNx describing mutational effects can be set to 1 without loss of generality [77]. In this

case, the sign of the selection gradient D(x) (equation 1.46) describes the direction of evolutionary

change.

1.3.5 Evolutionary Singular Strategies

Solutions x̂ for which the selection gradient (equation 1.46) vanishes yield “evolutionary singular

strategies” (singular strategies henceforth). The population evolves via successive strategy substi-

tution events, where changes in the strategy x are directed by the sign of equation (1.46), until

a neighbourhood is reached where the fitness gradient is zero, i.e., some x̂. If there are no such

singular strategies then x unilaterally increases or decreases depending on the sign of the selection

gradient. If the population reaches a singular strategy x̂, the selection gradient offers no further

information on future dynamics. Following Geritz et al. [101] the higher order derivatives of the

invasion fitness function are then used to classify the stability properties of the singular strategy.

ESS-stability

It is useful to compare the properties of a singular strategy to the ESS concept of Maynard Smith,

i.e., whether the strategy is invasible. By taking the second order Taylor expansion of equation
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(1.45), two conditions determine whether a singular strategy is resistant to invasion:

A ≡ ∂2W (y, x)

∂y2

∣∣∣∣
y=x=x̂

(y − x)2 > 0 ⇐⇒ x̂ can be invaded (1.57a)

A ≡ ∂2W (y, x)

∂y2

∣∣∣∣
y=x=x̂

(y − x)2 < 0 ⇐⇒ x̂ cannot be invaded (1.57b)

When condition (1.57b) holds (A < 0), the selection gradient D(x̂) equals zero and the invasion

fitness has a maxima at y = x̂. Therefore, all strategies in some local neighbourhood U of x̂,

i.e., x′ ∈ U(x̂) must yield a negative fitness. Mutant strategies in U cannot invade x̂ and the

singular strategy is known as an “evolutionary stable strategy” (ESS) [101] or “ESS-stable” [35].

Singular strategies that are ESS-stable are evolutionary end points of the dynamics. Conversely

when condition (1.57a) is observed and A > 0, the invasion fitness lies at a minima at x̂ and all

neighbouring strategies yield a positive invasion fitness. In this case x̂ can be invaded.

Convergence stability

The ESS-stability concept informs whether a strategy can be invaded but doesn’t inform whether

strategy is an evolutionary attractor, i.e. whether it can invade a nearby population with a different

strategy when initially rare. For a mutant with strategy y = x̂ to be able to invade a nearby strategy

x the condition W (x̂, x) > 0 must be satisfied. Therefore by expanding equation (1.45) around x

and evaluating at the point x = x̂ it follows that

W (x̂, x) =W (x̂, x̂) +
∂W (x̂, x)

∂x

∣∣∣∣
x̂=x

(x− x̂) +
∂2W (x̂, x)

∂x2

∣∣∣∣
x̂=x

(x− x̂)2

2
. (1.58)

Noting that again the first two terms are zero we have the condition for invasion that

B ≡ ∂2W (y, x)

∂x2

∣∣∣∣
y=x=x̂

> 0 ⇐⇒ x̂ can invade (1.59)

Condition (1.59) is independent of the ESS conditions (1.57). One could possibly find a singular

point x̂ for which any population initially at this value would be stable, but populations arbitrary

close to x̂ could never reach the point. Even if x̂ is uninvasible when resident and can invade other

populations when rare, we do not know whether a resident population far from x̂ will converge

towards it or not.

Convergence stability of a singular strategy x̂ requires the additional conditions of W (y, x) > 0

when x < y < x̂ or x̂ < y < x, and W (y, x) < 0 for |x̂ − y| > |x̂ − x|. Since D(x) changes sign at

x̂, one requires D(x) to be a decreasing function of x:

d

dx
D(x) =

d

dx

[
∂W (y, x)

∂y

∣∣∣∣
y=x

]
=

[
∂2W (y, x)

∂x∂y
+
∂2W (y, x)

∂y2

]
y=x

< 0. (1.60)

Since at W (x, x) = 0 we see that all of the derivatives of W (y, x) along the line y = x are zero.

Therefore
∂2W (y, x)

∂x2
+ 2

∂2W (y, x)

∂x∂y
+
∂2W (y, x)

∂y2
= 0 (1.61)
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is used to get rid of the mixed partial derivative in equation (1.60). This leaves us with the following

condition for a strategy x̂ to invade another strategy x:[
∂2W (y, x)

∂x2
− ∂2W (y, x)

∂y2

]
y=x=x̂

> 0 ⇐⇒ x̂ is convergence stable (1.62)

If condition (1.62) holds then the singular strategy is “Convergence Stable” (CS) [109]: a population

of a nearby strategy x can be invaded by a mutant strategy y that is nearer the singular strategy

x̂. Invasion occurs precisely when W (y, x) > 0 for x < y < x̂ and x > y > x̂. Combining the

conditions (1.62) and (1.57b) leads to a stability condition sometimes referred to as a “continuously

stable strategy” [109] (see also [74]).

Invasion analysis

The evolutionary dynamics can be visualised by the use of pairwise invasibility plots (PIPs). Recall

that mutant strategy values y can only successfully invade the resident population adopting strategy

value x if W (y, x) > 0. In such cases the outcome of a successful invasion results in the mutant

replacing the resident. The fitness landscape experienced by the mutant then changes. Pairwise

invasibility plots can be used to graphically describe the consequences of such an invasion event. In

a PIP, for each resident strategy value x, the value of a mutant strategy y for which W (y, x) > 0 is

depicted by a (usually shaded) region with a “+” and each strategy pairing such that W (y, x) < 0

by a “-” as shown in Fig 1.3. Since by definition W (x, x) = 0, along the principal diagonal there

is a zero contour, i.e., along the line y = x the mutant’s fitness must equal the resident’s because

both adopt the same strategy value: the mutant’s invasion fitness equals zero. Singular strategies

are located at the intersection of the boundaries of the positive invasion fitness and the principal

diagonal. In PIPs the invasion fitness of rare mutants can be seen by considering vertical lines

along which the resident strategy is constant. Fig 1.3a illustrates the direction of evolutionary

change in the strategy value by black arrows. We see that for each vertical line lying below the

singular strategy, mutants with strategy values greater than the resident’s strategy value have a

positive invasion fitness. Such a visual description corresponds to the selection gradient D(x) > 0

(by equation 1.45) and evolutionary change results in strategies initially below the singular strategy

increasing in value. Along any vertical line above the singular strategy, a mutants invasion fitness

is only positive when y < x. Therefore D(x) < 0 and evolutionary change results in the strategy

value decreasing. As strategies both above and below converge towards the singular strategy, the

PIP illustrates the singular strategy is convergence stable, and since the vertical line through the

singular strategy lies in a “-” region, the PIP illustrates that the singular strategy is evolutionary

stable. Fig 1.3b visualises how the directional change in a strategy is governed by mutant invasion

and subsequent replacement. We see that a sequence of strategy substitution events, as shown by

the red arrows, results in the directional change of the strategy. Each mutant strategy is assumed

to be sufficiently close to the resident (the vertical red arrows reflect small perturbations) so that

equation (1.45) remains valid, i.e., y ≈ x.
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Figure 1.3: How pairwise invasibility plots (PIPs) can be used to visualise the
singular strategies and evolution via strategy-substitution events. (A): We see that
the singular strategy is both evolutionary stable and convergence stable (see geometric
interpretation as described in text). The population evolves (indicated by the black
arrows) towards the singular strategy, located at intersection of the principal diagonal
and the boundary of the positive mutant invasion fitness. Once the population reaches
the singular strategy there is no further evolutionary change in the strategy value. (B):
A close up from below the singular strategy. We visualise the strategy-substitution
events: starting at a resident population with strategy x0, each vertical red arrow
shows how a mutant with a strategy of greater value than the current resident can
invade. The following horizontal arrows describe the mutant replacing the resident
(the population is again monomorphic with all adopting the mutant strategy). Each

invasion-replacement event constitutes a strategy-substitution.

Fig 1.4 illustrates four examples of PIPs. In each plot we see a different stability of the singular

strategy x̂, depending on the conditions presented in (1.57b) and (1.62). In Fig 1.4a we see a singular

strategy which is evolutionary stable since the invasion fitness is negative both above and below a

vertical line intersecting the singular strategy, i.e., mutant strategies y < x̂ and y > x̂ are unable to

invade. In the PIP the vertical line through the singular strategy lies completely in regions marked

by “-” . The singular strategy is also convergence stable because nearby monomorphic populations

can be invaded by mutants nearer the singular strategy. This ensures the singular strategy is an

attractor under small mutational steps. In the PIP this is depicted by the horizontal line through x̂

on the mutant axis lying completely inside a “+” region. We see that the singular strategy depicted

in Fig 1.4a is therefore a continuously stable strategy and is a possible endpoint of evolutionary

change. Fig 1.4b provides an illustration of a PIP where the singular strategy is evolutionary stable

but is not convergence stable. Such strategies should be rarely observed in nature because there is

no means for the population to converge to them. Monomorphic populations should evolve away

from a strategy that is neither evolutionary stable nor convergence stable, as shown in Fig 1.4c.

In Fig 1.4d we see a singular strategy that leads to branching. In this case, the population evolves

towards the singular strategy, but once realised, the singular strategy can be invaded on either side,

i.e., W (y, x̂) > 0 for both y < x̂ and y > x̂. We see this in the PIP as both the horizontal and

vertical lines through the singular strategy lie in “+” regions.
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Figure 1.4: Pairwise invasibility plots (PIPs) showing the four combinations of
evolutionary stability for a singular strategy, as determined by conditions (1.57b)
(evolutionary stability) and (1.62) (convergence stability). (A): Evolutionary and
convergence stable. Singular strategies can be attained by gradual strategy substi-
tution events, and once reached are resistant to invasion. (B): Evolutionary stable
but not convergence stable. (C): Neither evolutionary stable nor convergence stable.
(D): Convergence stable but not evolutionary stable. Such a singular strategy can
result in a population becoming dimorphic; the singular strategy can be attained by a
sequence of strategy substitution events, but then mutant strategies both above and

below the singular strategy can invade at the same time.

Summary of adaptive dynamics

Adaptive dynamics draws from models of population genetics [109, 110] and evolutionary game

theory [111] using models of frequency (or density) dependent fitness to describe the evolution of

strategies. Early incarnations of the theory tend to almost exclusively focus on asexual popula-

tions with rare mutations arising from a birth death process [76, 99–101, 110] and a continuous

quantitative trait that is passed down through discrete generations [106].
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There is a growing recognition for a wider applicability of adaptive dynamics. Of particular

interest in this thesis, the assumption of slow evolutionary change in strategy has been relaxed and

the theory has been used to model the change in cultural trends [112, 113], cooperative behaviours

[57, 60, 81, 114] and kleptoparatisism [103]. For example, in Dobeli [112] p.20, models are presented

to explain the diversification of languages and religions. Mutant strategies emerge through errors in

cultural transmission rather than through birth death processes. Importantly, the same dynamical

possibilities are recovered regardless of the timescale assumptions.

Later in the research of this thesis, we encounter situations where it is more appropriate to

consider a continuum of strategy values. For specific examples, consider cooperative investment

into some resource, or anti-predation defences. The archetypal games of evolutionary game theory,

such as the snowdrift game, can suitably recast into continuous games [57, 60, 81, 112]. In these

continuous game analogues, by considering the fate of rare mutant strategies, the framework of

adaptive dynamics is used to determine the evolution of strategies that otherwise would not occur.

1.4 Strategies in groups of prey

The goal in this thesis is to predict the behaviours of grouping individuals subject to predation. To

do this, the mathematical techniques introduced in sections 1.1-1.3 are utilised. In this section the

more specific biological problem is introduced. The description of the biological problem indicates

which mathematical framework is appropriate. One can then proceed as follows: derive a descrip-

tion of the biology and specify fitness or at least some quantity proportional to fitness. Having

specified the biological problem, one of the mathematical techniques can be applied to predict the

changes in behaviours of individuals, which are governed by fitness.

Here we present the main theoretical arguments which explain how by forming groups, indi-

viduals are subject to fitness costs and benefits. We consider the general costs and benefits of

grouping, and more specifically consider how grouping can provide an individual fitness benefits

through reduced predation risk. The most prominent theories which seek to explain how group-

ing provides protection from predators are the “dilution effect” [31], “encounter dilution effects”

[18, 115], “vigilance effects” (or many eyes hypothesis) [49, 116],“confusion effects” [117], and the

“selfish herd” hypothesis [118]. The fundamental assumptions and hypotheses of each effect are

introduced in this section. An introduction on how the anti-predation effects can operate interde-

pendently is also given. This last issue is of interest in this thesis since the interaction between

specific anti-predation effects can select for different anti-predation behaviours in groups, compared

to the selective pressures of only one anti-predation effect in isolation. The chapter ends by intro-

ducing some relevant previous mathematical models which apply some of the mathematical tools

introduced in sections 1.1-1.3 to the explicit problem of anti-predator strategies in prey groups.

1.4.1 The costs and benefits of grouping

Although there are many proposed advantages of living in a group such as improved foraging

efficiency [4, 50, 119], information transfer [4, 10], mating [4], proximity to kin [120], there are

also costs. Costs involve kleptoparatisism [4], increased competition for resources [121–123] and

agnostic competition [4, 124]. Higher levels of pathogen transmission are also associated with larger
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groups, potentially making group members more vulnerable to disease [125] and increased parasitic

burdens [126]. Groups are nevertheless ubiquitous throughout animal species, suggesting that the

balance of these costs and benefits still favours individuals membership.

Perhaps the most favoured benefit, and of most interest in this thesis, is protection from preda-

tors [118, 127–129]. As such the anti-predation benefits of grouping have attracted a great deal

of theoretical [32, 49, 62, 130, 131] and observational [16, 18, 132–135] research. The research

in the subsequent chapters of this thesis is primarily focused on the behavioural strategies that

individuals within groups of prey adopt to balance self-maintenance and predation. Evolutionary

game theory and other mathematical models can be used to predict the behaviour of prey groups

and have had relative success since the selfish herd hypothesis of Hamilton [118]. Yet there is still

much unknown about how selection acts on individuals to develop anti-predation mechanisms that

in turn encourage certain behavioural (anti-predator) strategies in prey, if and how these strategies

compensate or complement one another. It is therefore often hard to explain observed behaviours

with theoretical predictions (see for example [32, 62, 130]).

1.4.2 Dilution of risk

One advantage of grouping for an individual is the “dilution” of its personal risk [115, 118, 131].

Dilution of risk encapsulates three distinct concepts in one [4]: the “dilution effect”, “encounter di-

lution” (predator avoidance) effects and the “abatement” effects. Each separate effect is introduced

here.

The dilution effect

The dilution effect in principle states that per-capita predation risk is shared equally amongst group

members, meaning larger groups lower the risk for any focal group member [115, 136]. To see this,

consider a group that consists of “Q” prey individuals. Each group member has a 1/Q chance of

being a predator target. Assuming that the predator does not preferentially target specific prey,

each group member’s risk decreases inversely with group size, 1/Q [31, 137]. The 1/Q rule is

appropriate under three additional conditions. First, the predator must only catch one prey at a

time. Second, the probability that a predator makes a successful attack must not be influenced by

group size (e.g., by confusion effects as discussed shortly). Finally the predator must not attack

larger groups at a higher rate than smaller ones [4].

Many studies show that animals in groups are subject to a lower predation risk than solitary

animals. Krause & Godin [138] found that a predatory fish attacked larger shoals more than

smaller ones, but despite the over-proportionately high attack rates, individuals in larger shoals

were still at lower risk than those in smaller shoals. Cresswell & Quinn [25] found that in larger

flocks of the wading bird redshank, Tringa totanus the increases in individual dilution of risk more

than compensated for any increases in attack rate induced by the larger flock size. Perhaps the

most notable support for the dilution effect comes from the research of Foster & Treherne [139]

who tested the risk dilution hypothesis on sea-skaters, Halobates robustus. These grouping insects’

dwell on the surface of water and are predated from below, meaning that vigilance for the predator

is ineffective, i.e., an increase in group size does not yield any benefits of increased detection. The
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attack rate per group was found to be independent of group size, and the number of attacks per

individual decreased with group size as would be predicted by the pure dilution effect.

Encounter-dilution (avoidance) effects

Grouping prey can also benefit from avoidance effects [140–142] (also referred to as encounter-

dilution [4]). The idea here is that a predator is less likely to detect a single cluster of individual

prey items compared to prey that are spread out as scattered individuals. Predator avoidance is

likely to procure grouping individuals benefits when the perceptual range of the predator is low in

relation to the movement speeds of the predator and prey [4]. In addition to the avoidance effects

that affect the predator’s ability to detect groups, grouping can also decrease the probability of

running into (encountering) a predator. This latter effect can lengthen the time prey are able to

spend foraging.

Avoidance effects have been considered geometrically by Vine [140] and Treisman [141] who

developed the idea that a predator’s visual acuity can be exploited by prey groups forming compact

formations. The idea is that the predator scans its environment with low efficiency and considerable

time. As such, the greater the angle of deviation required to detect prey, the more likely the predator

is to give up the scan. If animals group, the mean of this angle will be greater, and on average

the predator will give up the search more often. Vine [140] hypothesised a “selfish” advantage to

each group member to combine into a compact formation, similar to the idea of Hamilton [118]

as will be discussed shortly. Treisman [141], with a few modifications and extensions to Vine’s

model, accounted for predators that repeatedly scan their surroundings. The same conclusion that

compact grouping lowers the probability of predator detection was found.

Attack abatement

The term (Q − 1)/Q adequately describes individual survivorship over one attack, but of equal

importance is the overall rate of attacks on the group over some period of time [32, 130, 143].

If groups of Q individuals are more than Q times likely to be detected (and attacked) than a

solitary prey, then the advantage gained through dilution is lost [143]. Dilution and avoidance

must be considered in concert. The concept of attack abatement was born out of the theoretical

synthesis of Turner & Pitcher [115] who argued that the two mechanisms of dilution and avoidance

must be considered together. Here, the idea is to separate a focal group member’s overall risk

into two additive terms: the probability that the group is detected (avoidance effects), and the

conditional probability that given the group is detected, the focal individual is targeted (dilution

effects). If the following three conditions hold: the probability of group detection increases less

than proportionately with group size; given an attack, the probability that the predator makes

a successful capture is independent of group size; and the predator can only capture single prey

items, there will be an overall reduction in risk for group members

Support attack abatement has been found for example by Wrona & Dixon [144] who used a

regression model to separate and compare the effects of encounter and dilution on observational

data of predation of a water insect. Their research showed that larger groups were attacked more

than small groups, i.e., the opposite of the avoidance effect, but also that within larger groups,
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focal members were less likely to be attacked supporting the dilution effect. The authors concluded

that the second effect was dominant and that overall, there was an attack abatement effect.

In essence, the attack rate of the predator specifies when grouping is favourable in terms of

dilution risk. If a predator attack rate asymptotes with increasing group size [25] then an indi-

vidual’s per capita risk is lowered by a complement of the dilution effect and predator behaviour.

This last observation, also found by Jackson et al. [142] shows that the encounter-dilution and

attack abatement effects are complex, and depend on linearity or nonlinearity of the relationship

between predator detection (and subsequent attack rate) and group size. If attack rate increases

precisely at the same rate as group size increases, then a group members per-capita risk remains

unchanged. Attack rate may be a nonlinear function of group size [25]. Jackson et al. [142], for

example, found that single individuals were detected less than groups, but once a group reached a

size of greater than two, there was little if any increase in group detection with increases in group

size. One obvious result from these findings is that for the specific study, there would be strong

advantages in increasing group size far above two individuals since dilution effects would increase

without incurring a greater number of attacks. However, if the increase in detectability from mov-

ing from a singleton to a group of two individuals caused a proportionate increase in attacks, one

could expect individuals to either form large groups or remain solitary. The study did not find that

groups of two were twice as likely to be detected than singletons.

Observational studies have led to other questions regarding the theoretical assumptions of risk

dilution [127, 136, 145, 146]. Critically, none of the three concepts of risk dilution consider possible

variation between individuals within a group. For example, age can influence an individual’s risk

dilution [4] as shown by Sorato et al. [147] who found that groups containing young were prefer-

entially attacked relative to groups that did not. Other factors such as differentiated behaviours

between group members also complicates the predictions of risk dilution. For example, group

members may adopt bold or aggressive responses to predation [2, 24, 28, 148] but such behaviours

are not assumed to affect an individual’s dilution risk. The effects of spatial position [149–151],

variation in conspicuousness between group members [152], or the behaviour of the predator [138,

153] are not considered in risk dilution. Group position has attracted much theory and empirical

evidence which we move on to next.

1.4.3 The selfish herd

In a highly commented on paper, Hamilton [118] addressed the issue of spatial positioning within

a group, whereby an individual could reduce its per-capita predation risk by moving towards

others. This idea is known as the selfish herd hypothesis. In theory, the selfish herd argument is

that two group members have relative risks of predation that can be determined by the respective

minimum areas around each individual and its nearest neighbour: the individual’s so-called domain

of danger. Predator attacks are launched from random locations. The predator attacks the nearest

group member to it. Thus any group position has an equiprobable chance of being attacked. If

the predator launches its attack within a focal group members domain of danger, then that group

member is killed. Hence, an individual’s predation risk is proportional to individual’s domain of

danger. To see this more clearly, original idea of Hamilton [118] is described in a little more detail.
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Hamilton envisaged a hypothetical lily pond in which frogs occupy the periphery. A snake,

disguised from view attacks a frog. The question that Hamilton posed is: how should a focal frog

behave to minimise its risk? His answer was that each frog should attempt to not be nearest to

the snake, i.e., to minimise its domain of danger (originally measured as half the distance between

the focal frog and its neighbours on either side). The focal frog can reduce its domain of danger if

and only if there exists a gap between two neighbouring frogs which is narrower than the distance

between the focal frog and either of its two adjacent neighbours. Simple illustrations can explain

the domain of danger concept Fig 1.5.

Put simply, the selfish herd hypothesis argues that by moving towards a neighbour, an individual

is subject to less predation risk, and that aggregation is then a natural consequence of the danger

minimising behaviour of each individual [154–156]. One should picture an endless cycle of movement

towards the origin of the group as prey continually attempting to place their neighbours between

themselves and the peripheral predator. In this case, differential predation risk occurs due to

variation in spacing within the group: one individual’s increases in safety must come at the expense

of other group members [149, 157]

Figure 1.5: By moving to the final position shown by the white frog, the third frog
from the left reduces its domain of danger. Image re-drawn from Haynes & Moore-

Crawford [158]

The selfish herd hypothesis brings up the question of how predators search for, and attack

prey. An important assumption made by Hamilton is that the predator appears from a random

location and attacks the nearest group member. In the case of marginal predation, i.e., the predator

appears from a random location outside the group, this assumption is questionable. Evidence for

marginal predation is found in stationary groups (see [4]) where animals on the groups edge are

generally surrounded by fewer individuals, yet other studies show that central individuals may

be at more risk [159]. An individual’s spatial risk thus depends on what type of predator is

attacking [4, 151, 156]. Brunton [160] for example, showed that central nests in least tern, Sterna

antillarum are at relatively more risk than peripheral nests. The discrepancy is due to the relative

frequencies of predators with alternative strategies: most nest predation was due to black-crowned

herons Nycticorax nycticorax, which only attack central nests, and less nest predation was due

to American crows Corvus brachyrhnchos which targeted edge nests. Importantly, if the authors

had only considered attacks from American crows then they would have found support for the

selfish herd argument as peripheral nests would have been predated more. This example clearly
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illustrates how the efficacy of an anti-predation effect and thereby the behaviour (or strategy) of

the prey depends on the behaviour (strategy) of the predator.

Another issue taken to Hamilton’s hypothesis is that it’s hard to distinguish whether marginal

predation occurs because the predator is focusing its efforts on peripheral group members, or be-

cause peripheral group members share some specific phenotype which the predator finds attractive

(e.g., juveniles, sex, less dominant individuals). Generally, studies that support marginal predation

cannot control for these confounding factors [161]. The idea of marginal predation also raises the

question addressed by Pulliam [49], of why peripheral individuals should remain part of the group.

If each individual acts in this selfish way, then any relative advantage is lost and the collective

group’s welfare is lower [49, 141]. If predation risk is greater at the periphery of a group, then

individuals at the groups edge would be better fleeing and that the group would disband.

Observing the selfish herd in real species systems is difficult, but there is observational evidence

supporting the theory [162]. For example, Viscido & Wethey [163] found that in fiddle crabs, Uca

pugilator subjected to predation, consistent with the selfish herd hypothesis individuals minimised

their domains of danger upon attack. Moreover, Kimbell & Morrel [157] provide evidence that the

shoaling fish guppies Poecilia reticulata make complex aggregation decisions based on the number

of and position of neighbours. The authors conclude that when threatened by a predator the

fish form more compact and cohesive shoals. More recently the aid of computer simulations have

allowed for models of digital evolution based on individual movement rules within groups [155,

156, 164–167]. In such models distinct behavioural strategies can evolve through simulated prey

responding to a predator. For example Wood & Ackland [155], using an individual based model

with a game theoretic treatment, found that simulated prey formed compact groups, interpreted as

Nash equilibrium states, i.e., simulated states where no prey could benefit from altering behaviour.

The compact groups evolved by each simulated prey minimising its own domain of danger, as

consistent with the selfish herd hypothesis. More recently and in a similar vein, Algar et al. [166]

showed that simulated prey which explicitly seek to minimise their domains of danger form small

clusters, supporting Hamilton’s notion that once nearest neighbours are reached, individuals further

reduce domains of danger by finding minimal “corners” [118] p.304.

1.4.4 Confusion Effect

The confusion effect succinctly put by Krause & Ruxton [4] p.19 “. . . describes the reduced attack-

to-kill ratio experienced by a predator resulting from an inability to single out and attack individual

prey” and can provide antipredation advantages of grouping [117, 168–170]. Groups with multiple

moving individuals prove harder to process by the predator due to cognitive and sensory limitations

[171, 172]. This results in the predator having difficulties in both selecting and targeting any one

group member during an attack [170]. Additionally, because multiple moving targets are harder

for the predator to track, changing target during an attack is also more difficult. The confusion

effect increases probability that the entire group eludes the predator. Confusion effects can be

enhanced through the addition of specialist prey behaviours, for example coordinated motion [173,

174] or swarming behaviour [175]. Therefore, unlike the dilution effect which retains a constant

selective pressure with time, the confusion effect additionally selects for advantageous individual

strategies within a group. For example Olson et al. [175], using a computer simulation model
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found that the strategy of swarming by prey is sufficient to exploit the confusion effect. Similar

prey reactions have been observed in several species of birds [174] and fish [148, 176]. Picther &

Parrish [177] suggested that coordinated movement rules, and in particular evasive manoeuvres,

could enhance the confusion effect. Research has considered the adaptive benefit of a phenomena

known as “flash-expansion” in which each group member moves away each other [5, 178]. Storms

et al. [5] observed that starlings frequently adopted flash expansions as a defence mechanism when

attacked by a peregrine falcon, at high speed.

Research conducted by Tosh et al [172], Ioannou et al. [170] and co-authors used artificial models

of neural networks to investigate confusion effects. The authors found a U-shaped relationship

between group size and confusion, with mid-sized groups benefiting most from confusion effects.

This finding was attributed to the contrast between the object (group) and background being at

a maximum for intermediate group sizes. A second finding of this research which contrasts with

other experimental evidence on the confusion effect (see [179] for example) was that compact or

denser groups provided more reliable predator targets. In a similar vein Ruxton et al. [171] used

an interactive computer programme in which human subjects acting as surrogate predators had to

capture virtual prey dispersing on a screen. The authors investigated five predictions relating to the

confusion effect and found the following results: (i): the authors found a confusion effect regardless

of any specialist prey behaviours, (ii): prey that stood out were found to be captured more than

other prey items, (iii): neither group homogeneity nor heterogeneity significantly affected on the

probability that a group member was captured. In other words, it made no difference whether all

group members looked the same or if there were physical differences in prey items, (iv): solitary

individuals were found to be more vulnerable (more likely to be captured) than grouping individuals,

and (v): there was no evidence that compact groups enhance the confusion effect, although the

findings neither showed that compact groups are more likely to result in a prey capture.

Perhaps the archetypal example of the confusion effect within experimental studies is the fish

shoal [4, 11, 179, 180] (although coordination within starling murmuration’s come close) [174, 181].

In relation to fish, Landeau & Terborgh [117] showed that bass Micropterus salmoides attacking

minnows Hybognathus muchalis only capture prey 11 percent of the time when the prey shoal

consists of 15 individuals. Compare this to 100 percent capture rate on singleton minnow. For a

completely different case consider that leopard geckos Eublepharis macularius show more “fixations”

on multiple prey items, i.e., constant turning of the head, when presented with a group of mealworms

Tenebrio molitor compared to a solitary prey item [182].

The anti-predator fitness benefits grouping individuals receive through the effects of confusion

depend on the type of predator. Jeschke & Tollrian [183] analysed 28 sets of data and found that

in all cases tactile predators suffered confusion effects, while visual predators seemed susceptible

to confusion effects mainly if their prey was highly agile. Moreover, Cresswell & Quinn [151] argue

that there will be stronger selection for flocks of redshank to adopt behaviours which yield confusion

benefits for the group, such as reducing within group spacing or coordinated flight, when confronted

with peregrine falcons Falco peregrinus as opposed to sparrowhawks Accipiter nisus. The authors

concluded that because the peregrine is a “pursuit” predator, it is respectively more susceptible to

confusion effects than the sparrowhawk which is an “ambush” predator. Other notable research

of Ioannou et al. [179] illustrates the complexity of confusion effects. In this study, the effects of
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confusion were found to be sensitive to the stage predator attack. The predator’s detection of prey

increased with group density. But as the predator drew nearer the prey group, its ability to target

one individual decreased. Nearer the prey, fewer individuals within the predators visual range were

argued to produce considerable confusion effects. Moreover, Ioannou et al. [179] demonstrate a

interdependency between confusion and abatement effects as introduced in section 1.4.2: When

the predator is at a distance, denser groups are attacked relatively more, but when the predator is

close denser groups reduce its targeting success.

A natural extension of the confusion effect is the so-called “oddity effect”. Because the confusion

effect is due to a predator’s inability to switch focus among prey group members, it is considered

that when all group members are phenotypically similar the confusion effect is more inhibitive

to the predator. Whereas if some group members phenotypically distinctive then the predator

finds it easier to focus its attention on the distinctive individuals. This consequently improves the

predator’s attack success rate. Most of the basis on the oddity effect comes from observational

studies: Landeau & Terborgh [117] studied bass fish feeding on minnow shoals and the primary

study of Ohguchi [184] investigated sticklebacks predating water fleas. In more detail, Landeau &

Terborgh [117] demonstrated that a single odd individual lowered the effect of confusion in small

groups. The conclusion of their study was that the effect of oddity in reducing the confusion effect

only occurs in smaller groups. Interestingly, the research of Ruxton et al. [171] found no support

for the assertion that increased vulnerability was confined to small groups. Using an artificial

experiment in which humans targeted digital boids on a computer, the authors did find that the

oddity effect disappears when the phenotype of the target is common in the group.

1.4.5 Group Vigilance

The “group vigilance effect” (also many eyes hypothesis) predicts that two benefits arise from

grouping. First, any focal group member can reduce its personal vigilance without any increase

in overall predation risk. Secondly, so long as vigilance is equitably shared amongst the group,

all group members receive increased fitness through being able to spend more time foraging. The

upshot is that when vigilance effects are considered in isolation (without factors like competition,

other anti-predator effects or predator behaviour) there will be selective advantages for grouping,

at least up to a certain group size. Over the last half century the group vigilance effect has been the

most prominent explanation for grouping, attracting significant amounts of observational [18, 128,

132, 149, 185, 186], and theoretical [31, 32, 46, 63] research. As such, this section will give a more

comprehensive review of group vigilance. In the following subsections, some of the confounding

factors noted by Elgar [127] are addressed.

Perfect collective detection

This assumption is that if one group member detects the predator, then the whole group is alerted

and have an equal probability of escape. This assumption surmounts to an individual’s personal

risk being independent of its vigilance level. The assumption does not consider that the overall

probability for the group to detect a predator may be compromised by the lower personal vigilance

rates of its members. If some threshold number of individuals are required to detect the predator,



1.4. Strategies in groups of prey 41

or individual detection is not transmitted throughout the group, then each individual may not gain

increased safety.

Monitoring

Collective detection (as explained above) reflects the notion that “detectors” warn other group

members about an attack. As such, group vigilance models generally assume that either prey

individuals monitor one another, or that detectors give some form of signal regarding an attack.

The idea of monitoring stemmed from the game theoretical concept of “conditional vigilance”

[49] (see also section 1.5.1), i.e., that a group member will be vigilant as long as other members

remain vigilant. However, there is no clear evidence for monitoring, and the widely reported group

size effects [127, 136] show that although individuals respond to conspecifics [187], this does not

necessarily suggest that individuals monitor conspecifics [116, 188].

Food density

It is common for patches of richer food densities attract and sustain larger groups [149, 185, 189,

190]. As the quality or density of foraging resources increase, vigilance of group members is argued

to decrease. There are two lines of reasoning behind this argument. First, “information theory”

suggests that in regimes of poor food density individuals rely more upon social vigilance to glean

information of local resources from neighbour group members [124, 191]. The producer scrounger

model provides the theoretical basis for this prediction: foragers either produce to locate resources

on their own or scrounge to locate resources found by producers. Opportunities for scrounging

behaviour decrease with food density, which in turn decreases social vigilance to locate food found

by others. Thus vigilance should decrease at a steeper rate than expected with group size alone

[191].

Alternatively state dependent predator models [32, 46, 50] predict a correlation between indi-

vidual vigilance and food density as individuals face a trade-off in survival through a reduction in

predation risk, and an increase in food intake. Implicitly, an increase in food density is supposed

to result in an increase in food intake rate, which has a knock on effect to an individual’s vigilance

[46]. With time constraints it can be worthwhile for an individual to increase its foraging rate

at the expense of a decrease in its vigilance [32, 192]. This prediction is based on modelling the

probability of starvation as a function of vigilance, for different food intake rates [32, 124]. Under

time constraints, and when food intake rate is high, a decrease in vigilance has a more pronounced

decrease in the probability of starving compared to when food intake is low. For example, if energy

reserves are low, then an animal’s intake should be high. While the animals energetic budget is

not balanced, altering the intake rate (through vigilance) will have a profound effect on expected

future fitness [32].

As an example of the effects of food density on vigilance, Barnard [193] found that house spar-

rows Passer domesticus are less vigilant in times of increased food density due to increased foraging

rate. Larger groups tended to form in areas of higher seed density, and without scrutiny one could

assume a causal relationship between group size and vigilance. In fact “seed density” modulates
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both the vigilance rate and group size of the birds [193]. For more examples see Beauchamp [122],

Fritz et al. [190] or Pays et al. [189].

Competition

The relationship between food intake and food density is complicated by competition between

foragers. Intra-group competition can manifest itself through “agnostic” competition where in-

dividuals perform aggressive displays such as fighting over food [194]. This type of competitive

behaviour typically occurs when food density is high and there are no time constraints on foraging

[124]. Vigilance is expected to increase with agnostic competition because foragers need to monitor

aggressive neighbours and a positive correlation between food density and vigilance is expected.

Alternatively “scramble” competition generally occurs at low food density when individuals

compete for limited resources. The effect of this is that foraging becomes more valuable compared

to being vigilant. As food density increases, an individual’s need to feed decreases, and it can

devote more time to vigilance. Examples of scramble competition are summarised by Elgar [127],

and observed in Beauchamp [122] and Schutz & Schulze [195]. Also of interest is how scramble

competition from grouping alters an individual’s functional response, as theoretically explored by

Fryxell et al. [196].

Posture and morphology

It is often proposed that vigilance and feeding are mutually exclusive activities [18, 127, 191]. If

an increase in food density results in an increase in feeding, the obvious outcome is a decrease in

vigilance. Many wading birds demonstrate this trade-off between scanning and feeding [124, 195].

If individuals are able to feed head up and maintain some degree of vigilance whilst foraging one

could expect a positive correlation between vigilance and food density. As food density increases

so does foraging time and time able to scan for predators [189]. A comprehensive review conducted

by Beauchamp [124] however concludes that posture plays an insignificant effect in the relationship

between group size and vigilance.

Functional response

Functional responses describe the relationship between food density and intake rates. In numerous

species food intake increases at a decreasing rate with food density, and eventually plateaus (no

further intake is possible with any increase in food density), i.e., a type II functional response.

When food density is high, foragers reach this plateau sooner, and intake rate becomes largely

independent of food density. Vigilance in this case, should not vary. The role that functional

response can have on vigilance is observationally demonstrated in Goss-Custard [197], Kvist &

Lindstrom [198].

State

One could predict that vigilance should increase with food density given that any genuine threat of

starvation decreases when there is more food [192]. Thus a positive correlation between food density

and vigilance would be expected through the indirect effect of an individuals state. To maximise
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ones fitness an animal should prioritise safety (through increasing vigilance) when they are satiated

and prioritise feeding (reducing vigilance) otherwise [32]. When food density is high an individual

should be able to accumulate reserves more quickly and thus reach a state of satiation sooner.

Then the individual behaves more vigilantly. Thus as food density increases so should vigilance.

For examples of how state can affect vigilance see the research of Bednekoff & Woolfenden [29],

Clutton-Brock et al. [8] Ebensperger & Hurtado [199] or Ydenberg et al. [200].

1.4.6 How anti-predation effects interact to affect prey behaviour

In this thesis, the focus is on how the threat of predation gives rise to the strategic behaviours

of individual group members. It is therefore important to identify how each anti-predation effect

can select for particular anti-predator behaviours in prey, and how potentially the anti-predations

effects interact when producing such selective forces.

Most studies tend to examine one of the three principle anti-predation effects in isolation [49,

188] (but see [32, 175]) because it is hard to control for each independent effect. Safety in numbers

in animals for example, is often discussed with respect to detection and dilution operating as

separate and discrete effects. Equal dilution of risk among group members depends on the explicit

assumption of perfect collective detection: if some group members (the non-detectors) do not

have the same information regarding an oncoming predator, then they may be more vulnerable to

predator targeting. The approach of this thesis is to consider that detection and dilution are instead

intertwined. Collective detection is in reality, always imperfect, and animals that detect predators

imperfectly face considerable disadvantages compared to animals that detect directly [31, 132, 145,

201]. In addition to the prey behaviour, one must consider that the prey targeting behaviour of the

predator also affects the per-capita differences in risk between detectors and non-detectors. From

this perspective, one can understand the behaviours of prey as acting to avoid being a predator

target, and if targeted, acting to minimise the probability of capture. As an example, Lima &

Zoller [116] find that in house sparrows, Passer domesticus, vigilant (detector) birds initiate faster

responses when threatened with a predator than non-vigilant (non-detectors). The upshot being

vigilant birds were less likely to be predator targets through risk dilution and that there are selective

advantages for adopting a vigilant behaviour. Alternatively, consider sentinel behaviour in meerkats

Suricata suricatta [8]. Vigilant sentinels generate a group wide benefit through increasing safety for

all (a collective vigilance effect), yet at the same time receive a private benefit of first response (a

personal dilution benefit). In the extreme, one vigilant group member could suffice for entire group

safety, and one could expect for a dominant behaviour of individuals being non-vigilant, especially

in cases where vigilance incurs foraging costs.

To demonstrate the importance of the magnitude of each anti-predator effect, consider the bird

redshank, Tringa totanus. Numerous observational studies document how anti-predator behaviours

within flocks of redshank are affected by the anti-predation effects of sections 1.4.2-1.4.5 [1, 18, 25,

151, 162, 201–207]. These studies are of interest because they show that the predator hunting

behaviour can modulate the efficacy of anti-predator effects. For example Quinn & Cresswell

[201] find that when attacked by a sparrowhawk, vigilant redshank initiate earlier responses to the

predator and gain a preferable dilution of risk profile, compared to non-vigilant birds. In this case,

by adopting a vigilant behaviour a focal individual group member provides (i) fitness benefits for
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all group members through increasing the overall probability that the flock detects and “evades”

attack, and (ii) receives a personal fitness benefit through its relative smaller probability of being

targeted given an attack. In contrast to the findings of Quinn & Cresswell [201], when redshank

are attacked by a peregrine, confusion of the predator [151] plays a more important role for prey

survivorship. In this case, it is beneficial for individual prey to form larger flocks [151] and to

minimise their domains of danger [162]. Although Hamitlon’s hypothesis of section 1.4.3 cannot be

ruled out, Cresswell & Quinn [162] argue that tightly spaced flocks confuse the predator, and are

consequently attacked at a lower rate. To predict the behaviours within the prey group, one must

consider the magnitude of sparrowhawk versus peregrine attacks, how each type of attack gives rise

to individual survivorship through an interplay of the anti-predation effects, and how certain prey

behaviours can operate advantageously or disadvantageously through each anti-predation effect.

In this research, the methodology is to consider the importance of how the anti-predation

mechanisms can interact. The interaction of anti-predation effects can lead to different levels of

individual predation risk and thereby select for certain behavioural strategies in prey. Importantly,

these behaviours would not be expected when considering each anti-predation effect in isolation.

Thus, behaviours originating from groups such as collective motion [175], vigilance [18], and herding

[118, 166] depend on predation pressures, which in turn are specified by a potential interdependence

of the effects introduced in sections 1.4.2-1.4.5.

1.4.7 How can behaviour spread

Behavioural strategies can either be assumed to be hard wired into that individual from birth, or

can be labile and likely to change with environmental factors and with the frequencies of other

behaviours. In groups of prey, behaviours can change according to the type of predator, and with

the behaviours of other group members. Here we introduce the concepts of learning and imitation

which are often used to model the spread of behaviour [40, 60, 93]. For the game theoretic analysis

of subsequent chapters, the choice of mechanism is not fundamental.

One possibility is that an evolutionary learning process gives individuals some predisposed set

of behaviours [21, 208]. In this case it is not the behaviour itself that is under selective pressure

to be adaptive, but the psychological mechanisms underlying behavioural flexibility. As such, one

would expect animals to evolve a wide ranging set of psychological mechanisms that allow good

performance over a range of environments, as documented in experimental [209–211] and theoretical

studies [212–216].

Alternatively, associative learning can allow animals adaptive responses to novel environments

[217]. On this line, through previous mistakes “the cost of naivety” may determine an individ-

ual’s strategic choices [218]. As example, processes of trial and error allow for animals to change

behaviours in the presence of novel predators [219]. Hence, new behaviours (strategies) can arise

by individuals applying previous experience when responding to novel environments. In this sense

an individual’s behaviour may have the ability to change across a range of environmental contexts

[220, 221], and one can assume that individuals exhibit a sufficient degree of flexibility to chose

appropriate behaviours for given situations.

In the simplest form behaviours may spread through pure imitation [60, 61, 222] (with no special

learning process). For imitative behavioural strategies, individuals must be able to in some way
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assess their fitness relative to others: if the behaviour of some observed “role model” appears to be

more conducive to survival, an individual chooses the role model’s behaviour. On the other hand,

imitative behaviours may simply be “contagious” if it only takes the sight of others performing

the behaviour to release the behaviour in the focal individual [217]. Here, the relevance to this

thesis is that the imitation of fitter strategies argument provides a simple yet plausible theoretical

assumption for how strategies spread within a population. To restrict attention to anti-predator

behaviours, consider examples of birds imitating the flight responses of others in a flock, upon

predator detection [116], individuals adopting a vigilant position after inspecting the vigilance of

neighbouring individuals [223], or individuals imitating alarm calls [152, 224].

1.5 The role of mathematical models

So far, mathematical techniques which use fitness as a measure to model the success or change in

strategies have been introduced in sections 1.1-1.3. Through sections 1.4.1-1.4.5, the prominent

anti-predation effects which modulate individual mortality risk (usually taken as proportional to

fitness) within groups of prey and which depend on the behaviours of group members, have been

explained. One is now in a position to model the strategy dynamics in groups of prey. By specifying

some appropriate anti-predator behaviour (strategy) or set of behaviours within a group, interpret-

ing how behaviour affects an fitness (payoff) through the anti-predation effects, and applying an

appropriate mathematical framework, one can predict how behaviours or the frequencies of be-

haviours emanating from the group change. This procedure is applied in the subsequent research

chapters of this thesis.

Often theoretical models assume that strategy interactions are pairwise (two player games),

and payoffs a linear combination of constant benefit terms multiplied by frequencies of existing

strategies in the population [92]. However, simple two player games cannot capture common

synergistic benefits that occur within groups. In groups there are multiple interacting players.

The underlying game’s payoffs is most likely nonlinear with the number of players (even if they are

reducible to pairwise interactions [47]). When games are reducible to two player games evolutionary

game theory provides a powerful yet simple framework to explore strategic interactions. To some

extent, this comes at the expense of how realistically the biological problem is modelled. More

specific to this research, in groups of prey, the payoff that an individual receives from adopting a

certain anti-predator strategy may be nonlinear in the number of other individuals playing the anti-

predator strategy, for example if collective detection [32, 116], or collective motion [169, 170] are

strategies to evade a predator. When strategy interactions cannot be reduced to two player game,

evolutionary game theory dynamics become complex (see for example the analytically inaccessible

nonlinear public goods game [225]. In this thesis, a key assumption is that a focal group member’s

strategy (discrete or continuous) affects its fitness through either one or a combination of the anti-

predation effects of 1.4.2-1.4.5. Other strategies within the group, at the same time influence the

focal group member’s survivorship. Fitness is therefore frequency dependent within the group and

nonlinear in the strategies within the group.

Previous mathematical models considering groups often use the term “cooperative” (see [32,

59, 63, 226] for example) to describe behaviours which benefit all group members irrespective of
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the fitness effects of the performer. Vigilance against predators, for example, is one of the simplest

and widely reported examples of the cooperative behaviour within groups [18, 32, 59]. Later in

this thesis, we adopt this convention in a specific context where a focal individual’s behaviour

brings fitness benefits to all other group members. In the modelling sense, whether an individual

chooses a cooperative behaviour to intentionally benefit other group members, or simply to benefit

itself, is irrelevant. All that matters is the outcome of the game. This final subsection provides a

brief introduction to some notable previous mathematical models, their terminology, and their key

results.

1.5.1 Pulliam’s ESS model

Pulliam [49] presented a model which was subsequently extended by Pulliam el al. [130] to predict

the ESS vigilance rate in groups. The model directly associates predator survivorship to fitness.

Pulliam’s idea was that n group members face some time period, T , in which a predator attacks.

If no group member detects the predator within this time, the predator attack is successful, and

all group members face a 1/n chance (i.e., pure risk dilution) of being killed (and a (n − 1)/n

probability of not being killed). If any group member detects the predator, the entire group

escapes with probability 1 − b > 0. Thus, group members are less likely to be killed if a group

member detects: (n− b)/n > (n− 1)/n.

Group members are assumed to have random scan rates, λ per unit time, which follow a negative

exponential distribution, and each scan lasts for τ seconds. The probability that the predator is

not detected by a solitary group member is

e−λT

λτ + 1
. (1.63)

Given that all group members scan independently of one another, the probability that no individ-

ual detects the predator is simply the product of all the probabilities, i = 1, ..., n, i.e., that each

individual with scan rate λi does not detect. The model finds the probability that any particular

bird is not killed during a specified time period in which there are αTGi attacks. Maximisation

of this probability leads to an optimal scan rate (strategy) λ̂. When all group members choose λ̂,

because each individual maximises its probability of survival, the outcome is termed the so-called

“cooperative equilibrium”. An important result of the model is that the scan rate which charac-

terises the cooperative equilibrium is not an ESS strategy, but prone to deviant group members

decreasing their scan rates (and increasing their probability of survival). The deviant scan rate is

an ESS since when adopted by all, no group member can increase its survivorship by altering scan

rate.

A comparison of observational data to the predicted ESS scan rate indicates that the birds

yellow-eyed juncos Junco phaeonotus, actually choose strategies that are closer to the cooperative

equilibrium. Pulliam et al. [130] conclude that the reason for this finding is due to “conditional

vigilance” as defined in section 1.4.5. An alternative explanation which partly motivates the subse-

quent research of this thesis is as follows: scan rates are higher than expected because by personally

detecting the predator, a group member is at less risk from the predator and receives a fitness benefit

of a higher probability of survival [145].
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1.5.2 The model of McNamara & Houston [32]

Using a different approach, McNamara & Houston [32] use a life history model to predict ESS

levels of vigilance within groups. The authors investigate group foraging and vigilance behaviours

in grouping individuals subject to more than one of the anti-predation effects of sections 1.4.2-1.4.5.

The key finding is an ESS level of individual vigilance as a function of individual state and of group

size. Here, a brief review of the model is given.

Consider groups of n individuals that are subject to a trade-off between vigilance and feeding. In

the model, predation risk is modulated by the many eyes effect and the dilution effect. Individuals

choose some foraging investment strategy u, characterised by a state variable x which reflects factors

such as satiation. Fitness is defined through “expected future reproductive success” (EFRS), and

is an increasing function of x. Feeding increases an individual’s state x through increased energetic

intake, but also increases the probability that the individual is predated. The probability that the

individual is killed depends on the other group members. Thus an ESS reflects the behavioural

strategies of all group members.

The following state dependent variables are introduced: R(x, t) defines an individual’s EFRS

after foraging has ended, U(x, t) the EFRS while engaging in foraging, V (x, t) the increase per unit

time in state, K(x, t) the cost for partial termination of foraging, h(u) the associated factor for

surviving attack and ∆(x, t) as a time constraint factor. A focal group members EFRS is affected

by the following predation variables: α, the attack rate, g(u) the probability individual fails to

detect, An the probability of death if no individual detects (a simple dilution effect An = 1/n), Bn

the probability of death when at least one (but not focal) individual detects, Cn the probability of

death when the focal detects and Dv(u) the probability of death when the focal forages at rate u

and the rest of the group forage at rate v. Finally, the authors use variables γ; the rate of energy

gain while feeding, and q(t); the rate of premature termination of foraging after time t, to reflect a

focal individual’s foraging behaviour.

A focal individual playing strategy u in a group where all other members choose strategy v,

experiences a probability of death given by

Dv(u) = Ang(v)
n−1g(u)︸ ︷︷ ︸

dilution alone

+ Bn

(
1− g(v)n−1

)
g(u)︸ ︷︷ ︸

group but not individual detection

+ Cn

(
1− g(u)

)︸ ︷︷ ︸
individual detection

(1.64)

Despite being complicated, equation (1.64) simply describes a focal individual’s mortality risk when

it spends a proportion u of its time feeding, while the rest of the group choose to feed at a rate

given by v. Each term of equation (1.64) should be interpreted as follows:

dilution alone: This term gives the probability that a focal group member is killed, given

that neither the focal member, nor any other group member detects, i.e., the product of three

independent probabilities. In this case, the dilution effect An, which equitably shares risk between

all group members, is multiplied through g(v)n−1; the probability that no other group member

detects, given that all other group members use foraging strategy v, and by g(u); the probability

that the focal individual also fails to detect, given its foraging strategy u.

group but not individual detection: This term gives the probability that the focal is killed given

that it fails to detect, but at least one other group member detects. The product of the probability
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that at least one other group member (excluding the focal) detects; 1 − g(v)n−1, the probability

that the focal individual fails to detect; g(u), and the probability that an individual dies, given at

least one group member detects; Bn.

individual detection: The probability that the focal detects is 1−g(u), in which case Cn gives the

probability of being killed. Hence, the product Cn(1− g(u)) gives the focal individual’s mortality

risk.

To find an ESS level of vigilance in the group, the model considers a mutant strategy that

spends a proportion of time u feeding when the rest of the group spend v. For δ > 0 a small time

increment and individuals foraging between times t and t+ δ the ERFS for the mutant, Gv(u), is

given as

Gv(u) =
{
1−

(
q + αDv(u)

)
δ
}[
U(x, t) + (V (x, t)γu−K(x, t))δ

]
+ q(t)δR(x, t). (1.65)

The mutant’s fitness (1.65) is explained as follows: the mutant survives to time t+δ with probability

1−(q+αDV (u))δ, at which point its state is x+γuδ and its EFRS is U(x, t)+
(
V (x, t)γu−K(x, t)

)
δ.

However, with a probability q(t)δR(x, t) the mutant prematurely terminates foraging. The best

strategy for the mutant is a simple maximisation problem for Gv(u). One can see that this is

equivalent to maximising Fv(u) for all u ∈ [0, 1] where

Fv(u) = V (x, t)γu− αDv(u)U(x, t) (1.66)

since V (x, t)γu is the increase in EFRS per unit time resulting from feeding, αDv(u) is the risk of

death due to feeding v and U(x, t) is the loss in EFRS as a result of death. Fv(u) is the reward

from feeding minus the cost of feeding in terms of predation. An ESS strategy u∗ for the whole

group (all group members choose u∗) is found in the sense of Maynard Smith & Price [39], i.e., the

mutant’s best choice is u∗ when all other group members choose u∗.

Without going any further into the mathematics, we see how the ESS strategy is derived (for

more mathematical details see [32]). The model is important because it shows how the ESS depends

on both the effects of dilution and of vigilance, i.e., how the main anti-predation effects interact to

give rise to emergent group behaviours, explained in section 1.4.6. Interestingly, the authors briefly

propose a way in which the model can capture the effects of confusion. By altering the dilution

functions Bn, Cn to be size dependent, and in particular, by using nBn as a decreasing function of

n to reflect a reduced predator attack success rate with group size, somewhat tentatively the model

is argued to “represent these [confusion] effects” [32] p.649.

1.6 Outline of the subsequent research

Evolutionary game theory introduced in section 1.1 provides a variety of modelling approaches to

study biological problems. In chapter 2 we investigate the changing frequencies of fixed strategies

using deterministic dynamics similar to those in section 1.1.5. The strategies in chapter 2 relate

to anti-predator behaviours in groups of prey, e.g., cooperative vigilance, and the games played

between group members have an intrinsic connection to the multiplayer games of section 1.1.3. To

prescribe a measure of fitness (which depends on its strategy) to a group member, we consider
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the extensively anti-predation effects introduced in sections 1.4.1-1.4.5, and how they might be

interdependent when giving rise to an individual’s overall predation risk. We adopt a framework

of modelling the population composition as a Markov chain (section 1.2) and define two different

transition probabilities. Importantly, we study two different ways in which strategies can spread, in

the frequency dependent Moran, and the pairwise comparison of section, both with a behavioural

mutation term. This provides differing interpretations of how group members change their be-

haviours to better performing ones, and we show that in the deterministic limit, we obtain two

different dynamic systems.

In chapter 3 we qualitatively assess the theoretical results presented in chapter 2 using data on a

specific predator-prey system. Some of the mathematical equivalences introduced in sections 1.1.3

and 1.1.4 are leveraged to draw correspondences from stable population states derived in chapter

2 to individual strategies in the prey species.

Chapter 4 uses the techniques of adaptive dynamics as introduced in section 1.3 and the G-

function, as introduced in section 1.1.6. In this chapter we seek to find the change in some continu-

ous anti-predator strategy, as opposed to the change in frequencies of fixed anti-predator strategies.

We explore how investment into an anti-predator strategy results in a trade-off between individual

risk dilution and other benefits of grouping, explained in section 1.4.6. Different trade-off relation-

ships are considered, and we use adaptive dynamics to categorise evolutionary singular strategies.

We compare cases in which there is a continuously stable strategy adopted by all group members,

to cases in which a diversification of behaviours is predicted, i.e., a behavioural branching point.

Applying the G-function allows us to explore the evolutionary singular strategies using a system of

differential equations.
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Chapter 2

Finite anti-predator strategy

dynamics

Abstract

Three prominent principles are often theorised to explain the anti-predation benefits of group-

ing: the group vigilance effect, the dilution effect, and the confusion effect. The influence

that each mechanism has on a group member’s survivorship depends on that group mem-

bers behaviour, as well as the other behaviours in the group. Most studies consider each

anti-predation effect in isolation. However, there is mounting evidence that the mechanisms

are intertwined. In this chapter we present a simple game theoretical model which considers

how these three anti-predation effects may interact when providing safety benefits for group-

ing individuals. We show how this interaction can explain the behaviours emerging from

groups. Individuals are subject to a binary strategy space; to either “contribute” towards

anti-predator activities, or not to contribute. To account for the potential of randomness in

decision making, we assume that individuals exhibit a small propensity to explore these op-

tions. Our results describe how individual group members contribute towards anti-predator

activities. Subsequently, we clarify how anti-predator behaviours change with factors relating

to predation risk and environment. Our key findings show that individuals alter their be-

haviours in response to changes in the relative influence that each of the three anti-predation

mechanisms have on survival.

2.1 Introduction

In the introduction, section 1.4.6 explained how the three principal anti-predation effects of group

vigilance, confusion and dilution may be complementary in providing fitness enhancing benefits for

individuals in groups of prey. Although a broad range of experimental research shows that these

three anti-predation effects operate interdependently to give rise to the overall risk experienced

by group members [18, 146], most theoretical studies tend to study each anti-predation effect in

isolation [49, 188]. In this chapter we explore the interdependence of the effects of vigilance, dilution

and confusion. The research presented here is inspired by the following observation made in section
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1.4.6: that an individual’s per-capita dilution risk is not simply equal to the inverse of group size,

but instead, depends on its behaviour as well as the behaviours of other group members [145,

147], which are in turn moderated by the three dominant anti-predation effects. As motivation

consider Lima & Bednekoff [227] who find that in flocks of house finch Carpodacus mexicanus, the

direct (predator) information an individual obtains from personal vigilance is of better quality than

indirect information from others. The author’s findings are significant in suggesting that vigilant

individuals can increase their safety by moving near non-vigilant individuals through a favourable

risk dilution: vigilant individuals respond faster and are relatively less likely to be targeted.

In this research chapter we develop a simple and explicit mathematical model to capture how

the three principal anti-predation effects can interact, and can give rise to non-trivial compositions

of behavioural phenotypes. The model we present explores the strategic options for individuals

with a group of prey. Group members can adopt either of two strategies which we term cooperate

and defect. We adopt a broad understanding of what it means for an individual to adopt a

cooperative behaviour (for a more specific definition see [228]) and use the term for the narrative

of the game theoretical model. Individuals that adopt the cooperative behaviour are perceived to

contribute towards the whole group escaping the predator. Thus, we use the term cooperate to

reflect a type of public goods production [59], in the sense that some group members contribute

to an increase in the safety of all group members. We propose that the individuals contributing

towards predator evasion, however, are not necessarily doing so to directly increase the safety of

others. By contributing towards overall group safety, an individual may simply be behaving to

reduce its own predation risk, which concomitantly improves the safety of others, e.g., vigilant

is generally assumed to benefit a focal individual (early response) and the whole group (alerting

others to threat). We do not consider indirect benefits of cooperation such as kin selection or

reciprocated altruism [229–231]. Individuals that adopt the behaviour we term defect make no

contribution to predator defence. To illustrate, actively contributing to detecting a predator can

render one’s experience of the dilution effect more favourable [25, 31, 116, 132, 195, 201]. Whereas,

alarm calling can magnify an individual’s chance of being explicitly targeted, due to increased

conspicuousness [172, 232–234] or due to preferential predator selection [232, 235]. In both cases,

the relative per-capita predation risk an individual contributing to overall group safety – i.e., the

cooperate behaviour – faces depends on (i) its experience of the dilution effect given that some

group member is attacked, i.e., its risk of being the predator target and (ii) the probability that no

group member is attacked, i.e., the whole group evades due to confusion effects or group vigilance.

A delicate interplay between the anti-predation effects therefore influences each group member’s

behavioural choices.

By combining the interaction of the effects of vigilance, confusion and dilution into a simple

theoretical model we aim to explain the behavioural choices grouping individuals make in response

to predation. To our knowledge, no previous theoretical model has investigated the emergent

selection of anti-predation strategies in a population of groups of prey, that are a consequence

these effects. Elucidating this will explain the selection of anti-predator behaviours for a wide

range of group living animals that are subjected to predation.
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2.2 Model

We consider groups of prey in which each group member must balance self-maintenance with

avoiding predation [236, 237]. By self-maintenance we refer to foraging and other activities that

have future consequences for an individual’s reproduction. Within a group, an individual can

choose from the strategies that we term to cooperate (C) or defect (D), as described above. The

choice of strategy specifies the individual’s predation risk and general grouping benefits. We model

a focal group member’s payoff as the product of their general benefits from grouping and the

probability that they are not targeted by the predator upon an attack. The probability that the

focal group member is not targeted by the predator is composed by the sum of the probability that

the entire group escapes the predator (no group member is targeted) which we term “evasion”, and

the conditional probability that given a group member is targeted, it is not the focal individual.

An individual’s general benefits from grouping are denoted by γi. Such benefits depend on the

individual’s respective choice of strategy i = C,D. We assume that γi are independent of predation

risk and will to some extent be species specific. The general grouping benefits, γC , experienced

by individuals playing cooperate, differ from general grouping benefits, γD, experienced by those

playing the defect strategy. We allow for both of γD ≶ γC . Henceforth for mathematical analysis

we often simply refer to the benefit differential defined as δ := γC − γD.

We apply a function of g(j, n) to describe the probability that the entire group evades the

predator. Group evasion is assumed to depend on the (integer) number of C strategists in the group;

j, and group size; n. In the subsequent analysis, when appropriate we replace the extensive variable

j with the intensive variable x; the frequency of individuals playing strategy C (see equations (2.23)

of section 2.3.2). In the case of g(x, n) = 1 no individuals are targeted and every group experiences

zero risk of predation.

We apply g(x, n) to capture the effects of confusion through an n-dependency, and vigilance

through an x-dependency. Both of n and x may operate synergistically to give rise to overall

predator evasion. The exact functional form that g(x, n) assumes is contingent on the predator-

prey system. A monotonic increasing function in both n and x with an upper bound of 1 (and a

lower bound of 0) is appropriate. For analytical progress we suggest the following functions that

we believe capture a broad range of predation cases:

g(x, n) = p0 +
p1n

k1 + n
+

p2x

k2 + x
(2.1)

where we consider the frequency of C strategies and absolute numbers in the group to respectively

modulate the vigilance and confusion effects in an additive way, or

g(x, n) = p0 +
p1n

k1 + n
×
(
1− p2x

k2 + x

)
(2.2)

where the interaction between group size and the frequency of C strategies is taken to be multi-

plicative. Other functions are of course possible, but not explored here for simplicity of analysis.

Our modelling of risk dilution is motivated by the dilution function of Dehn [31] and the results

of Lima & Bednekoff [145]. An underlying assumption is that when all group members choose

the same strategy, each has an equal probability of not being targeted given by 1 − 1/n, i.e., a
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pure dilution of risk. We introduce a parameter ϵ ∈ (−1, 1) to reflect the observation that certain

strategic behaviours may be more (or less) prone to targeting by a predator: if ϵ < 0 the individuals

playing strategy C receive a fitness benefit of being relatively less likely to be targeted compared

to those individuals playing D. If ϵ > 0 the individuals playing strategy C face a fitness penalty

of being relatively more likely to be targeted. As such, we propose that the respective dilutions

of risk experienced by a randomly chosen group member which plays either strategy C or D, in a

group of size n with j players which choose C (and n− j choose D) are given by

Prob
(
not targeted | choose to play C

)
= DC(j, n, ϵ) =

(j − 1)(1 + ϵ) + n− j

j(1 + ϵ) + n− j
(2.3a)

Prob
(
not targeted | choose to play D

)
= DD(j, n, ϵ) =

j(1 + ϵ) + n− j − 1

j(1 + ϵ) + n− j
. (2.3b)

Equations (2.3) reflect the observation that the relative dilution of risk a group member experiences

is dependent on its strategic choice, and on the composition of other strategies within the group.

Here, if ϵ = 0 neither strategy is more prone to predator targeting and DC(j, n, 0) = DD(j, n, 0) =

1 − 1/n. We also have that DC(n, n, ϵ) = DD(0, n, ϵ) = 1 − 1/n: if all group members play either

C or D, then all face equal risk.

Payoff is derived by applying the above assumptions regarding grouping benefits, the probability

of group evasion (equations 2.1 and 2.2) and an unequal risk of dilution (equations 2.3). A focal

individual in a group with n− 1 opponents, receives payoff πC when choosing to play strategy C,

and πD when choosing to play strategy D. Here

πC(j) =γC

{
g(j + 1, n) +

(
1− g(j + 1, n)

)
DC(j + 1, n, ϵ)

}
(2.4a)

πD(j) =γD

{
g(j, n) +

(
1− g(j, n)

)
DD(j, n, ϵ)

}
(2.4b)

given that the focal individual faces j opponents in the group that play strategy C, and n− 1− j

opponents in the group that play strategy D. The j +1 term in the evasion function g(j +1), and

risk dilution function DC(j + 1, n, ϵ) in equation (2.4a) reflects the focal individual contributing to

an additional C strategy in the group (given j opponents in the group already play C): when the

focal individual’s choice in strategy is considered, the total number of C strategies in the group

becomes j + 1. When the focal individual chooses strategy D, there remains j opponents playing

strategy C in the group.

The sign structures of ϵ and δ, explained in Fig 2.1, can subject an individual to conflicting

pressures in its choice of strategy. We identify two regimes of Fig 2.1 that are of interest (and

produce non-trivial dynamics) which reflect a trade-off: δ, ϵ < 0 and δ, ϵ > 0. These cases are the

focus of this research chapter.
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0 < ϵ

ϵ < 0

δ < 0 0 < δ

0

Case 2: Foraging re-

turns favour C strategists,

dilution experiences

favour D strategists

Case 3: Foraging returns

and dilution experiences

favour C strategists

Case 4: Foraging re-

turns favour D strategists,

dilution experiences

favour C strategists

Case 1: Foraging returns

and dilution experience

favour D strategists

Figure 2.1: The model trade-off: When ϵ < 0 (resp ϵ > 0) those individuals playing
strategy D (resp C) are more likely to be targeted by the predator. When δ < 0
(δ > 0) those individuals playing strategy D (C) receive greater general grouping

benefits.

2.2.1 Dynamics

We now consider a well mixed population of N individuals, the size of which does not change

with time. Since the population is well mixed, each individual is able to interact with any other

individual. The state of the population can be fully specified by the number of individuals playing

strategy C, given by i ∈ {0, ..., N}, and is defined through a discrete state, discrete time Markov

process [238–240]. Within the population groups are randomly formed. Groups are subject to bouts

of foraging and predation which yield individual payoffs. We assume that each group occupies a site

and that group size is fixed by the prevailing environmental conditions, such as feeding site quality,

population health and perceived predation risk. This assumption is an extremal interpretation of

the ideal free distribution hypothesis in which resources are equally spread between a number of

sites [241, 242].

The concept of how the strategic distribution of the population changes is straightforward;

payoffs are determined from strategic interactions within each group, and imitation of the better

performing strategies occurs anywhere (a well mixed population). Imitation is not necessarily

pure: with a certain probability the strategies with higher payoffs are selectively imitated, and

with another probability we allow for individuals to randomly “explore” their strategic options [40,
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Parameter Symbol Value Description

Parameters used in the strategy update process (section 2.3.2)

Population size N N >> 1
Infinitely large, or large but fi-
nite

Group size n variable
How many individuals in the
group

Population frequency of C x x ∈ [0, 1]
State variable in the replicator
dynamics

Population fitness fC(x), fD(x) variable
Respective population fitness
of C and D strategists

Exploration rate µ variable
The rate at which any indi-
vidual randomly samples be-
tween strategies C and D

Parameters used for payoff functions (section 2.2)

no. of C opponents in
group

j integer ∈ [0, n− 1]
Non-predation benefits of strategy
i = C,D

General benefits γi variable
Non-predation benefits of strategy
i = C,D

Evasion function g(j, n) variable
Probability that no group member
is killed

Benefits differential δ variable
Difference in general benefits be-
tween C and D strategists

Unequal dilution term ϵ variable

When ϵ < 0 the D strategists are
preferentially targeted; when ϵ > 0
the C strategies are preferentially
targeted.

Evasion constant p0 variable
Probability of group evasion, inde-
pendent of group size, n, and the
number j of C strategies

Evasion n asymptote p1 variable ∈ [0, 1]
Defines the probability of evasion
depending on group size

Evasion j asymptote p2 variable ∈ [0, 1]
Defines the probability of evasion
when all group members play C

Evasion n sensitivity k1 variable >0
Measures the sensitivity of evasion
to group size

Evasion j sensitivity k2 variable ∈ [0, 1]
Measures the sensitivity of evasion
to group composition

Table 2.1: Parameters relating to fitness and the dynamics
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243]. Exploration does not introduce a novel strategy (i.e, a different strategy than the two present),

but instead lowers the probability that one individual correctly imitates another. For the timescale

on which the imitation occurs, we assume predation pressures and general group attributes to be

fixed. Each individual therefore has a payoff determined by their strategic response to the prevailing

environmental and predation pressures.

We proceed as follows: in section 2.3.1 we present the results of deterministic dynamics when

µ = 0 and N → ∞ which give the frequency of individuals choosing strategy C. In section 2.3.2

we show how these results are justified by presenting a stochastic representation of the model. A

master equation governs the stochastic dynamics of the probability that the population is in a given

state. We present two potential transition probabilities for the imitation process. Each transition

probability is based on different assumptions of how individuals update their strategic choices. In

particular, we show that the choice of a behavioural frequency dependent Moran process (bm) [94]

or a pairwise comparison process (pc) [90], can in the deterministic limit lead to different dynamic

systems when µ > 0. In section 2.3.3 we investigate these qualitative differences.

Here, we state the dynamic equations that the rest of this chapter analyses. Using either of

two behavioural updating processes denoted by (bm) and (pc), we find that two subtly different

deterministic equations emerge from the master equation expansion (see section 2.3.2):

ẋ =
(1− x)x(fC(x)− fD(x))

⟨f⟩
+ µ

(1− x)fD(x)− xfC(x)

⟨f⟩
(2.5a)

ẋ =
x(1− x)

(
fC(x)− fD(x)

)
∆f

+ µ
(12 − x)∆f + x(1− x)

(
fD(x)− fC(x)

)
∆f

. (2.5b)

where fC and fD are the respective fitness of C strategists and D strategists, ⟨f⟩ is the average

fitness in the population, ∆f is the maximum difference in fitness between strategies C and D, and

fC(x) = πC(x) , fD(x) = πD(x). (2.6)

Equations (2.5a) and (2.5b) characterise the results presented in the rest of this chapter. In the

case of µ = 0 equation (2.5a) becomes the adjusted replicator equation [35], and when µ > 0

equation (2.5a) becomes the replicator-mutator equation [43]. Up to a rescaling of time, when

µ = 0 equation (2.5b) recovers the standard replicator dynamics. When µ > 0 equation (2.5b) does

not recover the replicator-mutator equation, but rather a general mutation-selection equation. A

a full derivation of the dynamics is given in section 2.3.2.

2.3 Results

For mathematical analysis we present the results for a model with a reduced evasion function

which only depends only on the fraction of C strategists: g(x) = p0 + p1x
k+x . We do this partly

not to overwhelm the notation, and partly to exhibit the interesting dynamics which can arise

from a simple concept. Including group size effects in g(x) through an n-dependent additive (see

equation 2.1) term does not qualitatively alter the results as shown in Appendix A.3.2, but makes

mathematical analysis harder to interpret.
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2.3.1 Theoretical results for µ = 0

When µ = 0 we can apply either of equations (2.5a) or (2.5b) as the denominator terms are absorbed

into a dynamical rescaling of time, to find

ẋ = x(1− x)

{
δ −

(
1− p0 −

p1x

k + x

)(
δ + ϵγC
n(1 + ϵx)

)}
=: J(x) (2.7)

The roots, x∗, to equation (2.7) represent different compositions of strategies in the population.

We refer to these solutions as population states. We find four different possible states which we

denote x1, x2, x3 and x4. As such x1 = 0 and x2 = 1 respectively represent states consisting only

of individuals playing strategy D, or only of individuals playing strategy C. The states x3 and x4

describe regimes where both strategies are present. We find that

x3 =
1

2δϵn

(
δ(1− n− ϵnk − p0 − p1) + ϵγC(1− p0 − p1) + Σ

)
x4 =

1

2δϵn

(
δ(1− n− ϵnk − p0 − p1) + ϵγC(1− p0 − p1)− Σ

)
(2.8a)

where

Σ =

√
4δϵnk

(
δ(1− p0 − n) + ϵγC(1− p0)

)
+
(
δ(n+ ϵnk + p0 + p1 − 1) + ϵγC(p0 + p1 − 1)

)2
.

(2.9)

Equation (2.7) leaves the simplex ∆2 invariant, and (asymptotic) stability of a state x∗ is determined

by the single eigenvalue of the (scalar) Jacobian matrix, i.e., simply ∂xJ(x)|x=x∗ . One finds that

x∗ is asymptotically stable if J ′(x∗) < 0.

Group size effects

As group size is an important factor when considering the anti-predator strategies groups, we use

this parameter as a natural bifurcation parameter. As such, stability is dependent on three critical

values of group size n1, n2 and n3:

n1 =
(1− p0)(δ + ϵγC)

δ

n2 =
(δ + ϵγC)

(
(1 + k)(1− p0)− p1

)
δ(1 + ϵ)(1 + k)

n3 =
(δ + ϵγC)

δ(ϵk − 1)2

{
(1− p0 + ϵk(p0 − p1 − 1)− p1) + 2

√
ϵk
(
(1− ϵk)(p0 − 1) + p1

)}
(2.10a)

In the scenario of ϵ, δ < 0 as described by case 4 of Fig 2.1 and illustrated in Fig 2.2a, the model

produces regimes of dominance, co-existence and bi-stability. The pure state x1 = 0 is stable if

group size is larger than n1 since

λ1 = J ′(x1) =
δ(n− 1 + p0) + ϵγc(p0 − 1)

n
< 0 ⇐⇒

n >
δ(1− p0) + ϵγC(1− p0)

δ
=

(1− p0)(δ + ϵγC)

δ
= n1 (2.11a)
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The pure state x2 = 1 is only stable if group size is smaller than n2:

λ2 = J ′(x2) =
(δ + ϵγC)

(
(1 + k)(1− p0)− p1

)
− nδ(1 + ϵ)(1 + k)

n(1 + ϵ)(1 + k)
< 0 ⇐⇒

nδ(1 + ϵ)(1 + k) > (δ + ϵγC)
(
(1 + k)(1− p0)− p1

)
⇐⇒

n <
(δ + ϵγC)

(
(1 + k)(1− p0)− p1

)
δ(1 + ϵ)(1 + k)

= n2 (2.12a)

Mixed strategy population states x3 and x4 concurrently occur for n ∈ (n3,min{n1, n2}). At n3

the system undergoes a fold bifurcation, such that the interior solutions leave the complex plane

and become real. For n < n3 both interior solutions are imaginary. For a range of group sizes

between n3 and min{n1, n2} all four solutions are real, however at most two are stable and x3, x4

are only physical according to parameter conditions outlined in Appendix A.3. When physical the

mixed strategy state x3 is always unstable, whereas x4 is always stable when physical. Both fixed

points leave the physical region via transcritical bifurcations at (0, n1) and (1, n2). If n1 < n2 then

for n ∈ [n3, n1) both x2 and x4 stable independent of one another, and for n ∈ [n1, n2) we find

that x2 and x1 are stable independent of one another. In both cases the stable fixed points are

separated in phase space by the unstable x3. If n1 > n2 then x2 and x4 are stable independent of

one another for n ∈ [n3, n2) and when n ∈ [n2, n1) we find that only x4 is stable in our system (not

shown diagrammatically). While the interior solution x4 is stable and physical we find ∂nx4 < 0:

the mixed population state always decreases in the frequency of individuals playing C as group size

increases; Fig 2.2a.

In all cases where there exist two stable fixed points, respective basin of attraction size and

initial conditions determine the dynamics, i.e., which side of the unstable interior x3 the initial

state lies. At n1 the system undergoes a transcritical bifurcation: for n > n1 (resp n < n1) the

state x1 is stable (resp unstable) and the interior solution x4 /∈ (0, 1) (resp x4 ∈ (0, 1)) is unstable

(stable). At n2 a second transcritical bifurcation occurs. For n > n2 (resp n < n2) the solution x2

is unstable (stable) and the mixed state x3 /∈ (0, 1) (resp x3 ∈ (0, 1)) is stable (resp unstable).

In the case of ϵ, δ > 0 as described by case 2 of Fig 2.1 and illustrated in Fig 2.2b, the critical

group sizes are such that n2 smaller than n1. The state x1 is stable for n < n1, and x2 is stable

for n > n2. The only possible interior solution is given by x3. We find that x3 ∈ (0, 1) if and only

if n2 < n < n1. However x3 is always unstable. The other mixed state x4 never exists between

zero and one, and we pursue it no further. For a range of group sizes between n2 and n1 we

find that both of x2 and x1 are stable, and separated in the phase space by the unstable state

x3. Transcritical bifurcations at (0, n1) and (1, n2) define this region of bi-stability (see Fig 2.2b).

Basins of attraction and initial conditions again fully specify the resulting dynamics. In the regime

of bi-stability, by increasing group size we find that the basin of attraction of the state x2 increases.

Thus for some value of n ∈ (n2, n1) the strategy of playing C becomes risk dominant. The group size

n1 can be considered as a threshold group size: groups of size larger than n1 propagate individuals

choosing to play the strategy C in the population.

A full analysis of all theoretical results can be found in Appendix A.3.
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0

1

n

x

n2 n1n3

x4

x3

(a) δ, ϵ < 0

0

1

n

x

n2 n1

x3

(b) δ, ϵ > 0

Figure 2.2: Theoretical representation of our system. Solid blue curves depict
stable population states, and red dashed curves show unstable states. (A): The three
critical group sizes (in text) specify regions of bi-stability, co-existence and dominance
of strategies in the population. (B): The critical group sizes specify regions of bi-
stability and dominance. Note that unless states otherwise all subsequent figures

adopt the same colour scheme, i.e., blue-stable fixed point, and red-unstable.

Analysing the anti-predation effects

The importance of each anti-predation effect can shown by evaluating the results upon indepen-

dently removing each of the effects. If we do not consider a difference in the dilution experience

between those individuals playing strategy C and those individuals playing strategy D (i.e., ϵ = 0)

then the results become trivial and the strategy with greatest grouping benefits dominates; for

δ > 0 individuals will always choose to play C.

The effects of vigilance and confusion are effectively removed by setting p1 = 0. In this case we

find that there exists only one interior solution:

x
(p1=0)
3 =

γC(1− p0)ϵ+ δ(1− n− p0)

ϵδn
(2.13)

which is always unstable. One sees that x3 ∈ (0, 1) depending on two critical group sizes:

np1=0
1 =

(1− p0)(δ + ϵγC)

(1 + ϵ)δ
(2.14a)

np1=0
2 =

(1− p0)(δ + ϵγC)

δ
. (2.14b)

While δ, ϵ > 0 we have that x
(p1=0)
3 ∈ (0, 1) ⇐⇒ np1=0

1 < n < np1=0
2 whereas if δ, ϵ < 0 the reverse

(i.e., np1=0
2 < n < np1=0

1 ). When x
(p1=0)
3 exists it acts to separate the basins of attraction of stable

states x1 and x2. The population will always be monomorphic with the proportion of C strategists

being equal to zero or one.
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Varying other parameters

By considering how n1 and n2 change with other models parameters we illustrate the biological

features that our model captures, and how they influence the population frequency of strategy C.

In the trade-off regime of case 4 in Fig 2.1 (δ, ϵ < 0), the value n1 is the minimum group size for

which a population in which all individuals play strategy D is viable (i.e., x1 is stable), and n2 the

maximum group size for which a state of all C strategists is viable (i.e., x2 stable). By increasing

the general grouping benefits to those individuals playing strategy D, we find that both n1 and n2

decrease – i.e., – both ∂γDn1 < 0 and ∂γDn2 < 0. The converse applies when increasing grouping

benefits afforded to those individuals choosing strategy C (∂γCn1 > 0 and ∂γCn2 > 0).

Both n1 and n2 depend on the parameter p0; the probability of evasion independent of the

frequency of C strategists. Additionally n2 depends on k; the sensitivity of evasion to the frequency

of individuals playing strategy C, and p1; the parameter that specifies the asymptote of g(x, n) if

all individuals play strategy C. We observe that ∂p0n1 < 0 and ∂p0n2 < 0. This is explained as

follows: as p0 increases there is a lower chance of any group member being targeted, independent of

the frequency of C strategists. This has the effect to relatively lower the influence of fitness benefits

through risk dilution for each group member. Because those individuals playing strategy C receive

an additional fitness benefit through risk dilution, and the effect of risk dilution on fitness decreases,

the relative fitness of the C strategists decreases relative to those individuals playing strategy D.

We also find that ∂p1n2 < 0 and ∂kn2 > 0. The result of a decrease in the maximum group size to

maintain a population of C strategies with an increase in p1 illustrates that for no change in the

number of individuals playing strategy C, by increasing the absolute probability of group evasion

(increasing p1) the dilution effect becomes less important in an individual’s survival. In this case

the fitness of those individuals playing D increases relative to those playing C (since δ < 0) and n2

decreases. This result (∂p1n2 < 0) reflects cases in which the effects of group vigilance or confusion

are enhanced without any change in the strategic behaviours of group members, and thereby

increase the probability that the group as a whole evades attack for no change in x. The result of

∂kn2 > 0 is due to an increase in k lowering the probability of evasion for any group of given size

and frequency of individuals playing strategy C. In order to maintain a high probability of evasion

— i.e., to maintain the level of safety pre increase in k – a greater frequency of those individuals

playing strategy C is required. Games within larger groups (of size n2) than previously permitted

(before the increase in k) will then also result in a population state in which all individuals play C.

The increase in group size for which the pure population state of x2 is stable reflects individuals

choosing the strategy C in larger groups in order to maintain the anti-predation benefit of evasion,

i.e., the value of n2 increases.

For the case of δ, ϵ > 0 we find that varying the parameters produce diametrically opposed

effects on the critical group sizes compared to δ, ϵ < 0. Parameter changes that increase (decrease)

ni and encourage (discourage) a certain behaviour in the regime of δ, ϵ < 0, now decrease (increase)

ni and discourage (encourage) that behaviour in the regime of δ, ϵ > 0, due to the opposite logic of

above. A full analysis of all theoretical results can be found in Appendix A.3.
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2.3.2 Derivation of the deterministic dynamics

To recover equation (2.7) we provide the following stochastic descriptions of the model. Changes

in the population state to occur through a one-step process, governed by transition probabilities

T±,Υ± from state i to i ± 1. The exploration rate, µ, enters the mathematics precisely the same

as a mutation [96] and can be conceptualised as recurrent behavioural mutations.

Transition probabilities

We first consider that transitions are determined by a behavioural frequency dependent Moran

process [93]. In this case, the population can increase by an individual that adopts the strategy C by

one of two ways. With a probability 1−µ an individual who plays strategy C is chosen to be imitated

with a probability proportional to fitness: (i/N)(fC/⟨f⟩) where ⟨f⟩ = (ifC + (N − i)fD)/N is the

average fitness in the population. A randomly selected imitator is a D strategist (with probability

(N − i)/N) and adopts the strategy C. Alternatively, with a probability µ an individual playing

strategy D is chosen to be imitated (with probability proportional to fitness: ((N − i)/N)fD/⟨f⟩),
and the randomly chosen imitator plays strategy D (with probability (N− i)/N) . However, rather

than adopting the strategy of the individual chosen to be imitated (i.e., the D strategist), the

imitator explores its strategic choices and adopts the strategy C. Hence we arrive at the following

transition probabilities for the behavioural Moran (bm) process:

T+ =(1− µ)
i

N

N − i

N

fC
⟨f⟩

+ µ
N − i

N

N − i

N

fD
⟨f⟩

(2.15a)

T− =(1− µ)
i

N

N − i

N

fD
⟨f⟩

+ µ
i

N

i

N

fC
⟨f⟩

(2.15b)

By definition, if there is no change in the number of individuals playing the strategy C, we have

T 0 = 1− T+ − T−.

We also consider the pairwise comparison process [40]. A focal individual is chosen to compare

its fitness with a randomly selected role model, and adopts the role model’s strategy with a prob-

ability proportional to the difference in fitness. With a probability (N − i)/N (resp i/N) the focal

individual is a D (resp C) strategist. With a probability 1− µ pure imitation occurs. In this case,

the role model is a C (resp D) strategist with probability i/N (resp (N − i)/N). Switching to the

role models strategy occurs with probability 1/2+(1/2)(fC−fD)/∆f (resp 1/2+(1/2)(fD−fC)/∆f
if the focal is a C strategy and role model is a D strategy) where ∆f is the maximum difference in

fitness. With a probability of µ the focal individual randomly explores either of the two available

strategies with equal probability. Hence, the transition probabilities for the pairwise update process

(pc) are

Υ+(i) =(1− µ)
i

N

N − i

N

(
1

2
+

1

2

fC − fD
∆f

)
+
µ

2

N − i

N
(2.16a)

Υ−(i) =(1− µ)
i

N

N − i

N

(
1

2
+

1

2

fD − fC
∆f

)
+
µ

2

i

N
(2.16b)

Either of the transition probabilities defined by equations (2.16) or (2.15) have the following

properties. If µ = 0 then when i = N one has T+(N) = T−(N) = Υ+(N) = Υ−(N) = 0 and if
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i = 0 then T+(0) = T−(0) = Υ+(0) = Υ−(0) = 0. That is, the boundaries of the Markov chain are

absorbing in the limit of no exploration, but when µ > 0 the boundaries are reflecting.

In the transition equations (2.15) and (2.16), individual fitness is derived from the payoffs

obtained from within a group via the linear mapping [93, 244]:

fC =1− ω + ωΠC(i) (2.17a)

fD =1− ω + ωΠD(i) (2.17b)

where ω ∈ [0, 1] quantifies the contribution of payoff from the game to fitness [92, 93]. We assume

that ω → 1 and interactions in the game specify fC and fD. Equations (4.4a) also use ΠC(i) =∑n−1
j=0 HC(i, j)πC(j) and ΠD(i) =

∑n−1
j=0 HD(i, j)πD(j) which map payoffs from games played within

each group, to average population payoffs for each strategy. The term HC(i, j) gives the probability

that precisely j out of the other n − 1 players in the group of a player using strategy C are also

C strategists (and n− 1− j are D strategists), given that there are i individuals of strategy C in

the population. Likewise, HD(i, j) is the probability that an individual playing strategy D faces

precisely j opponents in the group who are of strategy C (and n − 1 − j of strategy D), in a

population with an integer i of C strategies.

Towards the deterministic dynamics

Using either of the transition probabilities defined by equations (2.15) or (2.16), the stochastic

process can be described by a master equation [84]:

P τ+1(i) =P τ (i− 1)T+(i− 1) + P τ (i+ 1)T−(i+ 1)+

P τ (i)
(
1− T+(i)− T−(i)

)
(2.18a)

where P τ (i) is the probability that the state of the system is given by i at time τ . For large N , the

state space is re-scaled x = i/N , and time re-scaled t = τ/N , and the probability density function

p(x, t) = NP τ (i) is introduced. By either a truncated Kramers-Moyal expansion (see Appendix

A.1) about x and t, or a van Kampen expansion (see Appendix A.2), the diffusion approximation

of the imitation process is found to have the form of a Fokker-Planck equation:

∂

∂t
p(x, t) = − ∂

∂x

[
A(x, t)p(x, t)

]
+

1

2

∂2

∂x2
[
B2(x, t)p(x, t)

]
(2.19)

with drift and diffusion terms A(x, t) and B2(x, t) respectively given by

A(x, t) = T+(x)− T−(x) (2.20a)

B2(x, t) =
1

N
(T+(x) + T−(x)) (2.20b)

or replacing T± with Υ± depending on the update process. By applying the Ito calculus [83, 245],

a stochastic differential equation describing the evolution of the state x (rather than its probability

density) can be used:

ẋ = A(x, t) + Γ(t)
√
B2(x, t) (2.21)
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where Γ(t) is multiplicative white noise. Equation (2.21) is the Langevin equation corresponding to

the Fokker-Planck equation (2.19) (with no noise induced drift). By assuming an infinite population:

limN→∞B2(x, t) = 0, the equation (2.21) becomes deterministic, and the dynamics of x change in

continuous time on ∆2 = [0, 1].

Thus, for N → ∞, equation (2.21) provides a deterministic representation of the system:

ẋ = A(x, t), and through specific choices of transition probabilities (2.15) or (2.16), equation (2.21)

recovers one of two deterministic equations given by:

ẋ =A(bm)(x, t) = T+(x)− T−(x) (2.22a)

ẋ =A(pc)(x, t) = Υ+(x)−Υ−(x) (2.22b)

which are precisely equations (2.5a) and (2.5b).

In the limiting case of µ = 0, either of equations (2.5a) or (2.5b) correspond to the replicator

dynamics (2.7) because the dynamical rescaling of time can be absorbed into the one dimensional

simplex, and thus, the fixed points of the system are unchanged. However, when µ > 0 equations

(2.5a) or (2.5b) produce quantitatively different fixed points depending on the value of µ. This is

because both the selection and mutation dynamics are rescaled in time, i.e., the 1/⟨f⟩ and 1/∆f

terms can no longer be absorbed into the simplex.

The last step is to give an analytical expression of fitness used in equations (2.22). Given a

population of infinite size in which there is a frequency x playing strategy C and frequency 1 − x

playing strategy D, the expected payoffs ΠC and ΠD can be written as

ΠC(x) =

n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−jπC(j/n) ≈ πC(x) (2.23a)

ΠD(x) =
n−1∑
j=0

(
n− 1

j

)
xj(1− x)n−1−jπD(j/n) ≈ πD(x). (2.23b)

Equations (2.23) make use of the following approximation. Given any continuous function f , the

Bernstein polynomial is defined by Bn

(
f
)
(x) =

∑n
a=0 f(a/b)ba,b(x) where is ba,b(x) =

(
b
a

)
xa(1 −

x)b−a is the Bernstein coefficient. The Bernstein polynomial converges uniformly to its coefficient in

[0, 1], i.e., limn→∞Bn

(
f
)
(x) = f(x). We emphasise that this approximation is used for analytical

progress; otherwise the replicator equation is a polynomial of degree n− 1, and only amenable to

numerical methods. In particular, the speed of the convergence is relatively unknown (see Archetti

[56] for a discussion). Fig 2.3 illustrates the analytical approximation for finite n we make here.
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Table 2.2: Simulation parameters

Parameter values used in Fig 2.4a (*) and Fig 2.4b (**)

Parameter Symbol Value Meaning

Population size N 1000 large but finite population

Number of subgroups m variable varies according to n0

subgroup size n0 variable
strategy behaviour changes with subgroup
size

Number of fitness events M 100 determines individual fitness levels

Tournament size K 4∗, 1∗∗
number of pairwise competitions between
individuals

Number of generations E 800∗, 1000∗∗ required iterations to obtain final state

Simulated final state ⟨XN ⟩ variable frequency of C strategists
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Figure 2.3: Comparisons between the Bernstein approximation and numerical so-
lutions. Blue curves show the analytical approximations using equations (2.23) and
orange points give the exact numerical solutions to the polynomial replicator equation
(explained in text). (A): The approximation is less accurate for smaller group sizes.
(B): For larger group sizes the approximation improves, and in the limit n→ ∞, one
sees πC(j/n) → πC(x). Parameter values, (A): γC = 1.9, γD = 1.92, ϵ = −0.7, p0 =
0.3, p1 = 0.6, k = 0.1 and (B): γC = 1.96, γD = 1.964, ϵ = −0.35, p0 = 0.16, p1 =

0.53, k = 0.14.

Simulation

Due to the approximations made in equations (2.23), and in particular, our modelling of x in the

dilution effect, we are aware that a potential outlet for stochastic noise to alter our results arises.

For this, we adopt a fractional probability of attack after the initial group evasion function has

failed. We do not take into account potential changes in group size due to successful attacks –

instead targeted individuals receive a fitness penalty. As such, we would expect this to result in

them changing strategy over time or alternatively for them to be more likely replaced in the larger
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scale population dynamics occurring on longer timescale. This serves to maintain the population at

the equilibrium value N . We adopt a continuum hypothesis assumption on the dilution function to

approximate the change of an individual being targeted. For n sufficiently large this will be a valid

approximation, but as n decreases it will lead to increasing stochastic effects in the population. We

explicitly check our results in this region by direct stochastic simulation.

By direct stochastic simulation we test the robustness of our model for small group sizes n. We

randomly select m subgroups (denoted by ñi for each i = 1, ...,m) of size n from a larger population

of size N such that N = ñ1 + ñ2 + ... + ñm : |ñi| = n ∀i ∈ {1, ...,m}. The initial composition of

the population XICpop is determined by assigning each individual some probability of being a C

strategist. We simulate each of the m subgroups and evaluate each individual’s fitness due to its

interaction with the subgroup. Individuals are then returned to the population.

Step 1: Fitness Evaluation. We randomly construct a subgroup of size n from the popu-

lation. The fitness of each individual in the subgroup is determined by both their strategy and of

the other individuals in the subgroup. The fitness levels of individuals are additively calculated by

on average “M” fitness determining events within different subgroup compositions.

Step 2: Selection. We then initiate a round of tournament selection. A new population

is created by selecting n random pairs from the population subjected to fitness evaluation. A

member of the new population is created by selecting the strategy with the highest fitness of the

selected pair. The pairs are then replaced into the original population. This process is repeated

until with have a new population of size N and then the old population is discarded. This gives

us a composition state Xpop = (q1, q2, ..., qN ) for the population where qi = 0, 1 is the strategy of

individual i (qi = 0 when individual i plays D and qi = 1 if individual i plays C).

“E” realisations of Step 1 to Step 2 is a “generation” and gives us a final composition for the

population of size N ; XN = (q1, q2, ..., qN ). The mean state in the population is then given by

⟨XN ⟩ = 1
N

∑N
i=1 qi. We take this population average as representative of the replicator dynamics.

We control the initial population compositions XICpop to obtain the regions of attractions for the

simulated states.

The parameters we use for the simulation are given in Table 2.2, and the results of the simulation

are shown in Fig 2.4.
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Figure 2.4: Simulations: the position in the n− x plane gives an initial population
state XICpop

given group size n. The colour at each position gives the final state
⟨XN ⟩; on a scale where blue corresponds to zero and cream to one. Each final state
corresponds to a simulated final frequency of C strategies shown by one of the black
dots (along any vertical cross section of each image). Solid black lines show the
theoretical stable solutions of the adjusted replicator dynamics and dashed black
lines the unstable solutions. Adjacent regions where two colours meet show simulated
regions of instability and should be compared to the theoretical unstable fixed points.
Initial states differ by increments of 0.01 and group size by increments of 1. Parameter
values: (A) γC = 1.9, γD = 1.92, ϵ = −0.7, p0 = 0.3, p1 = 0.6, k = 0.1 and (B)

γC = 1.92, γD = 1.9, ϵ = 0.6, p0 = 0.4, p1 = 0.4, k = 0.6

2.3.3 Results for µ ̸= 0

In this section we analyse how including nonzero rates of exploration qualitatively affects the

results presented in section 2.3.1. Given that the dynamics with µ > 0 are completely specified

by equations (2.22) we use A(bm)(x, µ) to denote the drift term in the replicator-mutator equation

(2.5a) and A(pc)(x, µ) for equation (2.5b).

We find the following roots of equation (2.5a): xbm1 (µ), xbm2 (µ), xbm3 (µ), xbm4 (µ), and the following

roots of equation (2.5b): xpc1 (µ), xpc2 (µ), xpc3 (µ), xpc4 (µ). In general, these fixed points are analytically

unwieldy but clearly recover the solutions of equation (2.7) in the limit of µ = 0:

xbm1 (0) =xpc1 (0) = x1, xbm2 (0) = xpc2 (0) = x2 (2.24a)

xbm3 (0) =xpc3 (0) = x3, xbm4 (0) = xpc4 (0) = x4 (2.24b)

When µ > 0 there is always a non-zero probability that individuals randomly explore their

strategic choices. In this case, the states of x1, x2 are no longer valid fixed points of equations

(2.5a) and (2.5b). Increasing µ pushes the stable population states away from the boundaries of

x = 0, 1, so that each respective strategy becomes less dominant. In the limit of µ = 1/2, with a

probability of one half, individuals adopt strategies at random.
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Bifurcation analysis for µ

Although the population states are analytically inaccessible, we proceed to provide a qualitative

description of the behaviour of the solutions as µ changes, i.e., a bifurcation analysis. In the case

of µ = 1/2, equation (2.5a) gives a trivial fixed point of x = 1/2 (which is well known [246]). This

fixed point is also valid for equation (2.5b). It is easy to see that x = 1/2 is a root of either of

equations (2.5a) or (2.5b) when µ = 1/2:

A(bm)(x, 1/2) = 0 ⇐⇒ (1− 2x)
(
xfC(x)− xfD(x) + fD(x)

)
= 0

A(pc)(x, 1/2) = 0 ⇐⇒ ∆f(1− 2x) = 0

Since the dynamics are trivial for µ ≥ 1/2 we only consider the local stability of fixed points as µ

varies between zero and one half. We give a detailed analysis only for the dynamics of (2.5a) (as

the dynamics of equation (2.5b) are qualitatively similar). For notational ease we write A(x, µ) :=

A(bm)(x, µ) and drop the superscript bm in the fixed point so that xbmi (µ) = xi(µ) , i = 1, ..4.

If x(µ) is a solution to equation (2.5a) then by the implicit function theorem [72],

dx(µ)

dµ
= −Aµ(x, µ)

Ax(x, µ)
(2.26)

where we use Av(x, µ) for the partial derivative of A with respect to v. Recall that A(x, 0) is simply

the (adjusted) replicator equation, and Ax(x, 0) its Jacobian. Using the fixed points x1(0) = x1 = 0

and x2(0) = x2 = 1 we find that

Aµ(0, 0) = 1 , Aµ(1, 0) = −1 (2.27)

As stability of the adjusted replicator dynamics (equivalently, equation 2.7) must be preserved up

to a non-hyperbolic value of µB for which Ax(x, µ
B) = 0, i.e., a bifurcation value, equation (2.26)

is singular and of constant sign for µ < µB. Thus, the initial direction of travel in the µ− x plane

for x1(µ) and x2(µ) can be entirely determined by their stability at µ = 0:

dx1(µ)

dµ

∣∣∣
µ=0

=− 1

Ax(0, 0)
< 0 ⇐⇒ J(0) > 0 (2.28a)

dx1(µ)

dµ

∣∣∣
µ=0

=− 1

Ax(0, 0)
> 0 ⇐⇒ J(0) < 0 (2.28b)

and

dx2(µ)

dµ

∣∣∣
µ=0

=− −1

Ax(1, 0)
> 0 ⇐⇒ J(1) > 0 (2.29a)

dx2(µ)

dµ

∣∣∣
µ=0

=− −1

Ax(1, 0)
< 0 ⇐⇒ J(1) < 0 (2.29b)

where J(x) is defined in equation (2.7). To find the qualitative behaviour of x3(µ) and x4(µ) with

increasing µ we again use equation (2.26). To find the sign of Aµ(x, µ) at the either solution, we

first observe that

Aµ(x, µ) =
(1− x)fD(x)− xfC(x)

(1− x)fD(x) + xfC(x)
= 0 (2.30)
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has precisely one unique root, x̂, in the interval (0, 1) which is independent of µ. Therefore, the

sign of Aµ(x, µ) in the µ− x plane is simply partitioned by a horizontal line specified by x̂ (see Fig

2.5b). To show that x̂ ∈ (0, 1), we use the intermediate value theorem with I = [0, 1], Aµ(0, µ) > 0

and Aµ(1, µ) < 0; there exists some c ∈ (0, 1) such that Aµ(c, µ) = 0.

To see that x̂ = c is unique in (0, 1) we apply Budan’s theorem [247]. Direct calculations show

that the roots of equation (2.30) are those of the following univariate polynomial:

c1(x) = a3x
3 + a2x

2 + a1x+ a0, where

a0 = γDk − γDkn− γDkp0

a1 = γCk
(
n− 1 + ϵ(p0 − 1) + p0

)
− γD

(
k + n− 1 + (ϵ− 1)kn+ p0 − kp0 + p1

)
a2 = γD

(
n− 1 + ϵ(k − 1)n+ p0 + p1

)
+ γC

(
n− 1 + p0 + p1 + ϵ(kn− 1 + p0 + p1)

)
a3 = ϵn(γC + γD).

Note that a0 < 0. Let R(0,1] be the number of real roots of c(x) in the half open interval (0, 1] and

vk be the number of sign changes in the sequence of the coefficients, ai, i = 0, 1, 2, 3, of c(x + k).

Then v0 − v1 −R(0,1] is a non-negative even integer. If δ, ϵ < 0 then a0 < 0, a2 > 0 and a3 < 0 and

therefore max{v0} = 2. Denoting bi, i = 0, 1, 2, 3 for the coefficients of c(x+1), we find that b0 > 0

and b3 < 0. Therefore, min{v1} = 1. Combining max{v0} = 2 and min{v1} = 1 implies that there

is at most one root x̂ ∈ (0, 1] which solves c(x) = 0. We already know, however, there exists at

least one root. Hence R(0,1] = 1 and x̂ is unique. Alternatively, in the case of δ, ϵ > 0, we find that

a3 > 0 and a0 < 0. Here, we use that c′′(x) changes sign at most once for 0 < x < 1, combined

with c(0) < 0, c(1) > 0, implies that c(x) crosses the x-axis only once in (0, 1). Then there can only

be one root, x̂ ∈ (0, 1).

Having established the uniqueness of x̂, we use Aµ(0, 0) > 0 and Aµ(1, 0) < 0 such that if x < x̂

then Aµ(x, µ) > 0 and if x > x̂ then Aµ(x, µ) < 0.

If we consider the case of δ, ϵ > 0 as described by case 4 of Fig 2.1, then Ax(0, 0), Ax(1, 0) < 0

and Ax(x3, 0) > 0 where

Ax(x, 0) ≡ (1− 2x)fC(x)− (1− 2x)fD(x) + (1− x)x(f ′C(x)− f ′D(x)). (2.32)

If x3 ∈ (1/2, 1), we can define F1(x) := fC(x) − fD(x) which is concave on the simplex (F ′′
1 (x) <

0, ∀x ∈ [0, 1]) with F1(0) < 0, F1(1) > 0 and F1(x3) = 0. By Jensen’s Inequality, ∀q ∈ [0, 1] the

following must hold:

F1(qx3 + (1− q)1) ≥ qF1(x3) + (1− q)F1(1) ⇐⇒

fC(qx3 + (1− q))− fD(qx3 + (1− q)) ≥ (1− q)
(
fC(1)− fD(1)

)
≥ 0 (2.33a)

where we use (2.32) such that Ax(1, 0) = fD(1) − fC(1) < 0. Any x′ ∈ [x3, 1) can be represented

by x′ = qx3+(1− q)1 for some q ∈ (0, 1). Given that fC(x
′) ≥ fD(x

′) and x′ ≥ x3 > 1/2, equation

(2.30) must be negative. Now consider x′ ∈ (0, x3). Because at x3, equation (2.30) is negative and

at x = 0 equation (2.30) equals one, by the intermediate value theorem the solution x̂ ∈ (0, x3).
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The solution must satisfy

x̂ =
1

1 + fC(x̂)
fD(x̂)

. (2.34)

However x̂ cannot be greater than or equal to one half since if the ratio fC(x̂)/fD(x̂) = θ < 1,

then equation (2.34) would imply that 1/2 ≤ x̂ = 1/(1 + θ) < 1/2 which provides a contradiction.

Thus x̂ ∈ (0, 1/2) and for all x > x̂ equation (2.30) is negative and for all x < x̂ equation (2.30) is

positive.

If x3 ∈ (0, 1/2) we define F2(x) := fD(x)− fC(x) with F2(0) > 0, F2(1) < 0, F2(x3) = 0. Since

F ′′
2 (x) > 0 and x3 is unique, we see that fD(x

′′) > fC(x
′′) for all x′′ ∈ (0, x3). In this case equation

(2.30) is positive. If x′′ ∈ [x3, 1/2), then F2(x
′′) < 0, but we use equation (2.34) and note that

fC(x
′′)/fD(x

′′) < 1. Thus, x̂ /∈ [x3, 1/2) and equation (2.30) is positive. It follows that x̂ > 1/2

when x3 ∈ (0, 1/2). Note that if x3 = 1/2 then x̂ = 1/2.

In the case of δ, ϵ < 0 (case 4 of Fig 2.1) with x2 stable and either of x4 or x1 stable separated in

phase space by x3 (see Fig 2.2a) the payoff functions must have properties such that fC(1) > fD(1),

fC(x3) = fD(x3) and fC(x4) = fD(x4). If x1 is stable then fC(0) < fD(0) and x4 is not present

in the system. If x4 is physical, it is stable and fC(0) > fD(0). While x4 lies in the interval (0, 1)

we define the function F3(x) := fD(x)− fC(x) which is strictly convex for x ∈ [0, 1]. By the same

argument as above, we use that

F3(qx4 + (1− q)x3) ≤ qF3(x4) + (1− q)F3(x3) = 0 (2.35)

Therefore fD(x
′) ≤ fC(x

′) for all x′ ∈ (x4, x3). If x4, x3 > 1/2 this implies that equation (2.30) is

negative at x′ and thus x̂ < 1/2. If x4, x3 < 1/2 then as fC(x
′)/fD(x

′) < 1 for x′ > x3 we see that

x̂ must be greater than one half. If x4 < 1/2 < x3 then x̂ ∈ (x4, 1/2).

Since the curve of Aµ(x, µ) = 0 is independent of µ, once a solution branch xi(µ) satisfying

equation (2.26) reaches the (constant) line defined by x̂ it remains there invariant with µ. From this

observation one can state the following: if the unstable interior solution of the replicator dynamics,

x3, has precisely the same value as x̂, then dx3(µ)/dµ = 0 (as Aµ(x3, µ) = 0 in equation (2.26)

then x3 = x̂ = 1/2 (see Fig 2.5a).

We now move on to analysing Ax(x, µ). First we note that Ax(x, µ) = 0 provides threshold

values of µ for which the stability of the solutions obtained from the replicator dynamics can change.

We find that the only root of Ax(x, µ) = 0 is

µ̂(x) =
p0 + p1x+ p2x

2 + p3x
3 + p4x

4 + p5x
5 + p6x

6

q0 + q1x+ q2x2 + q3x3 + q4x4
(2.36)

where each pi, qi are expressions of model parameters, and singularities of µ̂(x) lie out of x ∈ [0, 1].

The intersections of the curve of µ̂(x) and the solution branches given by xi(µ) produce a subset

of co-dimension 2. The non-hyperbolic fixed points of the system within this space are generally

of co-dimension 1, unless xi(µ) intersects µ̂(x) at its minima in the x − µ plane, in which case

the singularity is more degenerate (since Axx(x, µ) = 0) and is of co-dimension 2 [72]. For any

parameter configuration this subset provides the space of possible local bifurcations as illustrated

in Fig 2.5 by blue and red solution branches, xi(µ), in Fig 2.5a and a black curve of Ax(x, µ) = 0
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depicted in Fig 2.5b. Fold bifurcations occur at the intersections of solutions xi(µ) and any point of

the curve Ax(x, µ) = 0 so long as it does not coincide with the intersection of Aµ(x, µ) = 0 or occur

at the minima of Ax(x, µ) = 0 in the x − µ plane. Transcritical bifurcations occur when solution

curves xi(µ) coincide with the intersection of the curves Ax(x, µ) = 0 and Aµ(x, µ) = 0 so long

as this does not take place at the minima of Ax(x, µ) = 0 in the x − µ plane (i.e Axx(x, µ) ̸= 0).

Pitchfork bifurcations do not occur with our choice of parameter bounds (|ϵ| > 1 is a required

condition).

Fig 2.5 illustrates how the sign of equation (2.26) determines the direction of travel of xi(µ) with

µ, by depicting grey regions as those where dx3(µ)/dµ < 0 and white for which dx3(µ)/dµ > 0

(see Fig 2.5a). Fig 2.5b provides illustrations of the curves defined by x̂ and µ̂, i.e., respective

zero contours of Aµ(x, µ) and Ax(x, µ) which determine the sign of equation (2.26) and specify the

grey and white regions. All possible generic bifurcations are shown in Fig 2.5a and the curve of

Ax(x, µ) = 0 – necessary for a bifurcation – is shown in Fig 2.5b as a black cubic in the x−µ plane.

For all subsequent figures this line is omitted.
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Figure 2.5: (A): Illustration of bifurcations. Grey regions show dx(µ)/dµ < 0
and white show dx(µ)/dµ > 0 as determined by equation (2.26) in text. In the
grey regions, solution branches are decreasing with µ and in the white, increasing
with µ. The intersection of the grey and white show points where equation (2.26)
is undefined (bifurcations) or equals zero (no change in direction). Examples of a
transcritical bifurcation (at the intersection of solution curves and Aµ(x, µ) = 0 and
Ax(x, µ) = 0 shown in (B)) and a fold bifurcation (where solutions cross Ax(x, µ) = 0)
are shown. Notice that a condition for the transcritical bifurcation is that interior
solution x3(µ) is equal to x̂ and is invariant with µ. (B): Solutions curves of Ax = 0
and Aµ = 0 from equation (2.26). The root of Aµ(x, µ) = 0; x̂ ≈ 1/2 is shown by the
grey line. The concave black curve in the x− µ plane is defined by µ̂(x); the root of

Ax(x, µ) = 0. All bifurcations must occur along Ax(x, µ) = 0.

If δ, ϵ > 0 the only potential interior solution of the replicator dynamics is x3, which is unstable.

Then one has that Ax(0, 0), Ax(1, 0) < 0 and Ax(x3, 0) > 0. The respective stabilities of x1(µ), x2(µ)

and x3(µ) are preserved up to a value of µ where a respective solution branch intersects µ̂(x).

Combining the information into equation (2.26) there exist four regions where dx(µ)/dµ changes
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sign. From equations (2.28) and (2.29) we know that dx1(µ)/dµ > 0 and dx2(µ)/dµ < 0. The

position of the x3(µ) at µ = 0 determines whether x3(µ) increases or decreases with µ: if x3(0) =

x3 > x̂ then x3 lies in a region where Aµ(x, µ) < 0 and Ax(x, µ) > 0 and by equation (2.26) we

see that dx3(µ)/dµ > 0. In this case a bifurcation point occurs at µB when x3(µ) collides with

x2(µ) and the solutions become complex (not illustrated). Otherwise if x3(0) = x3 < x̂, we see that

dx3(µ)/dµ < 0 and x3(µ) bifurcates out of phase space when it collides with x1(µ) as illustrated in

Fig 2.6b and Fig 2.6d.

If δ, ϵ < 0 and two interior solutions x3 ∈ (0, 1) and x4 ∈ (0, 1) with x4 < x3, then from section

2.3.1 x1 and x3 are unstable, with x2 and x4 stable. In this case Ax(0, 0) > 0, Ax(x3, 0) > 0 and

Ax(x4, 0), Ax(1, 0) < 0, by equation (2.28), x1(µ) doesn’t enter phase space and by equation (2.29),

x2(µ) is initially decreasing. The curve of µ̂(x) is cubic in the x − µ plane and must intersect x

at µ = 0 between x1 and x4, between x4 and x3 and between x3 and x2 (see Fig 2.6a or Fig 2.6c)

in order to preserve the stabilities of the replicator dynamics. Putting together equations (2.28),

(2.29) and the information about µ̂ and x̂ determines the possible sign changes of dx(µ)/dµ. Since

Ax(x4, µ) < 0 we find that if x4(µ) < x̂ at µ = 0 the solution x4(µ) always increases Fig 2.6a. In

this case, if x3(0) < x̂ then (since Ax(x3, 0) > 0) x3(µ) is initially decreasing, and collides with

x4(µ) (not plotted). If x̂ < x3(0) then x3(µ) is initially increasing and collides with x2(µ) Fig 2.6a

and Fig 2.6c.
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Figure 2.6: (A),(B): Behavioural Moran imitation and (C),(D): pairwise update.
(A): (δ, ϵ < 0). The replicator dynamics are bi-stable in x4 ≈ 0.17 and x2 = 1. The
solution branch x1(µ) never appears in phase space. The solution x2(µ) decreases with
µ and collides with x3(µ) in a fold bifurcation at which both solutions turn complex.
The solution x4(µ) increases with µ and equals 1/2 when µ = 1/2 (B): (δ, ϵ > 0).
The replicator dynamics are bi-stable in x1 = 0 and x2 = 1. The solutions x1(µ)
and x2(µ) respectively increase and decrease with µ and a collision between x3(µ)
and x1(µ) resulting in the fixed points leaving phase space. (C),(D): Qualitatively
similar pattern, but for larger µ values. Parameter values: γC = 1.9, γD = 1.92, ϵ =
−07, p0 = 0.3, p1 = 0.6, k = 0.1, n = 25 (Left) and γC = 1.92, γD = 1.9, ϵ = 0.6, p0 =

0.4, p1 = 0.4, k = 0.6, n = 25 (Right)

Group size bifurcations

When µ > 0 the critical group sizes analysed in section 2.3.1 are analytically inaccessible. The

system given by equation (2.5a) can be viewed as a perturbation of equation (2.7). By including the

perturbation term (the coefficient of µ) of equation (2.5a) the orbit structure near the bifurcation

points defined by n1, n2, n3 is affected by the addition of terms of order less than O(x3). We find
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that the transcritical bifurcations at (n1, 0) and (n2, 1) are structurally unstable: for µ ̸= 0 but

µ << 1, each transcritical bifurcation is replaced by either of a pair of fold bifurcations occur

at critical values of nf11 , n
f2
1 and nf2 , n

f2
2 , or by a pair of continuity curves (no bifurcations), one

physical and one not. Note that only one fold bifurcation occurs for x ∈ [0, 1] local to each of n1

and n2. Perturbation of the fold bifurcation at (n3, x4) does not introduce any qualitatively new

dynamical behaviour.

Case 4 of the trade-off Fig 2.1 (i.e., δ, ϵ < 0) is shown in Fig 2.7 and Fig 2.8. Fig 2.7a illustrates

that if µ = 0 the critical group sizes are the same as the results of section 2.3.1, and can be inferred

from comparison to Fig 2.2a. For small exploration rates, e.g., µ = 0.0001 shown in Fig 2.7b the

perturbation is small, and replicator-mutator dynamics closely resemble the adjusted replicator

equation (Fig 2.7a), with the exception that the states x = 0, 1 are now repelling. As such the

transcritical bifurcations occurring at (n1, 0) ≈ (47, 0) and (n2, 1) ≈ (33, 1) are respectively replaced

by a local fold bifurcation and a continuity curve. The fold bifurcation of the replicator dynamics

remains. With increasing µ the fold bifurcation diverges farther from the transcritical bifurcation

and at a critical value µ̄ the replicator-mutator dynamics lose their invariance with the fixed points

of the replicator equation Fig 2.7c. Thus, increasing µ decreases the maximum group size n2(µ)

for which x2(µ) is stable, and eliminates the value of n1(µ) since the x = 0 state is never reached.

This acts to reduce the region of group sizes in phase space where the population state is bi-stable,

and simultaneously, push both of x1(µ) and x2(µ) towards 1/2.

The qualitative picture is the same for the pairwise process (Fig 2.8) however invariance with

the replicator dynamics is maintained for significantly larger exploration rates.
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Figure 2.7: The effect of exploration on group size bifurcations for the behavioural
Moran process: δ, ϵ < 0. (A): The replicator dynamics, as analysed in section 2.3.1.
(B): For µ = 0.0001 the replicator-mutator solutions largely resemble the replicator
dynamics. Transcritical bifurcations are replaced by local fold bifurcations that di-
verge father from the bifurcation point with increasing µ. (C) and (D): µ = 0.001
and µ = 0.01. Solutions to the replicator-mutator equation are no longer invariant
to the replicator dynamics. Parameter values: γC = 1.9, γD = 1.92, ϵ = −07, p0 =

0.3, p1 = 0.6, k = 0.1
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Figure 2.8: The effect of exploration on group size bifurcations for the pairwise
comparison process: δ, ϵ < 0. (A): The replicator dynamics, i.e., µ = 0. (B) and (C):
µ = 0.0001 and µ = 0.0001 the resulting dynamics remain invariant with the replicator
equation. Transciritcal bifurcations are locally replaced by a fold bifurcation and
continuity curve, and the fold bifurcation remains. (D) For a large enough µ = 0.01
group size bifurcations no longer occur. Parameter values: γC = 1.9, γD = 1.92, ϵ =

−0.7, p0 = 0.3, p1 = 0.6, k = 0.1

When δ, ϵ > 0 the transcritical bifurcations occurring at (n2, 1) ≈ (14, 1) and (n1, 0) ≈ (35, 0)

in Fig 2.9a are replaced by fold bifuractions that diverge with increasing µ (see Fig 2.9b,Fig 2.9c

and Fig 2.9d). Hence, we find that increasing µ decreases the maximum group size n1(µ) for which

x1(µ) is stable, and increases the minimum group size n2(µ) for which x2(µ) is stable. At the same

time, increasing µ pushes both of x1(µ) and x2(µ) towards 1/2: the regions of bi-stability become

smaller , and within the regions of bi-stability, the basin of attraction of the risk dominant strategy

decreases.
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Figure 2.9: The effect of exploration on group size bifurcations for the behavioural
Moran process: δ, ϵ > 0 (A): The adjusted replicator equation: the critical group sizes

are shown by the transcritical bifurcations at roughly n1 ≈ 35 and n2 ≈ 18.
(B) and (C): µ = 0.0001 and µ = 0.001. The replicator-mutator equation retains
invariance with the replicator dynamics. Fold bifurcations diverge with n1 ≈ 30, n2 ≈
16 in (B) and n1 ≈ 20, n2 ≈ 19 in (C). (D): When µ = 0.01 invariance is lost, and
stability does not change with n. Parameter values: γC = 1.92, γD = 1.9, ϵ = 0.6, p0 =

0.4, p1 = 0.4, k = 0.6
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Figure 2.10: The effect of exploration on group size bifurcations for the pairwise
comparison process: δ, ϵ > 0 (A),(B),(C) and (D): The solutions of the selection-
mutation equation largely resemble the adjusted replicator equation. In (A),(B),(C)
and (D) µ = 0.001, 0.01 and 0.1. Even in (D) where µ = 0.1, the dynamics are bi-
stable like the replicator equation. Param values: γC = 1.92, γD = 1.9, ϵ = 0.6, p0 =

0.4, p1 = 0.4, k = 0.6

The effects of the parameter ϵ

As shown in section 2.3.3, when the unstable interior solution of the replicator dynamics x3, equals

one half, equation (2.30) is satisfied and x3(µ) = x̂ = 1/2 is invariant with µ. Moreover, the

solution at µ = 1/2, x = 1/2 is always stable for the dynamics. Thus, there exists some value µtb,

such that for µ < µtb the solution x3(µ) = 1/2 is unstable, and for µ > µtb the solution branch is

stable. The change in stability of x3(µ) occurs through a codimension 1 transcritical bifurcation

where x3(µ) and Ax(x, µ) = 0 intersect. A unique value of ϵ corresponding to the bifurcation is

found by solving Aµ(x, µ) = 0 and denoted by ϵ∗, i.e., ϵ∗ ensures that x3(0) = x3(µ) = 1/2. The

other solution branch that collides with, and transfers stability to x3(µ) depends on the sign cases

of δ, ϵ (see Table 2.1.) In either case, the transcritical bifurcation is structurally unstable: when

ϵ ̸= ϵ∗ fold bifurcations and continuity curves occur. We use a scalar parameter unfolding of the

system with ϵ as an unfolding parameter to capture qualitatively different dynamical behaviour.

We first consider the structural trade-off regime of δ, ϵ > 0, as illustrated by case 2 of Fig

2.1. Fig 2.11a (guided with arrows) and Fig 2.11c (same qualitative behaviour) compare phase

portraits for ϵ = ϵ∗ and ϵ ≶ ϵ∗. In this regime, x3 = x3(0) = 1/2 is unstable, and x1 = x1(0) = 0
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and x2 = x2(0) = 1 are stable. From analysis of section 2.3.3 we know that x1(µ) initially increases

with µ and x2(µ) initially decreases with µ. In the case of ϵ = ϵ∗ the solution x3(µ) is unstable for

µ < µtb. Stability is transferred to x3(µ) = 1/2 at µtb through a transcritical bifurcation in which

x3(µ) collides with x2(µ). At a slightly larger value of µf , the solutions x2(µ) and x1(µ) collide and

disappear through a fold bifurcation. For a small range of µ ∈ (µtb, µf ) the dynamics are bi-stable

with both x3(µ) and x1(µ) stable and separated in phase space by x2(µ). For µ < µtb the dynamics

are bi-stable in x2(µ) and x1(µ) separated by x3(µ). The case of ϵ > ϵ∗ results in a fold bifurcation

at µf where x2(µ) and x3(µ) collide (in the x > 1/2 region of phase space), and a continuity curve

x1(µ) which remains stable. The dynamics are bi-stable in x1(µ) and x2(µ) separated by x3(µ) for

µ < µf . When ϵ < ϵ∗ the fold bifurcations occurs where x1(µ) and x3(µ) collide, and x2(µ) remains

stable. The dynamics are bi-stable in x1(µ) and x2(µ) separated by x3(µ) for µ < µf .

The results for case 4 of the trade-off; δ, ϵ < 0, are shown in Fig 2.11b and Fig 2.11d. When ϵ = ϵ∗

a transcritical bifurcation occurs at µtb where stability is transferred from x2(µ) to x3(µ) = 1/2.

At a larger µf > µtb a fold bifurcation occurring in the upper-half plane removes the x1(µ) and

x2(µ) from the system. For a range of µtb < µ < µf dynamics are bi-stable with x2(µ) and x3(µ)

separated in phase space by x1(µ). For µ < µtb the solutions x1(µ) and x2(µ) are stable and

separated by x3(µ). For µ > µf an equal frequency of each strategy is the only stable state. For

the case of ϵ < ϵ∗ a pair of fold bifurcations replace the transcritical bifurcation: at µf1 the solutions

x1(µ) and x3(µ) leave phase space, and at µf2 the solutions x1(µ) and x3(µ) bifurcate back into

phase space. A further fold bifurcation occurs at µf3 at which x2(µ) and x3(µ) collide and exit

phase space. For ϵ > ϵ∗ a fold bifurcation between x2(µ) and x3(µ) occurs, and x1(µ) remains

stable.

For both of the above cases we see that decreasing ϵ is favourable to the players that adopt

strategy C: the solution branch x2(µ) is stable for greater regions of µ meaning that the population

state containing the highest frequency of C strategists is stable for greater exploration rates. This

finding is seen by comparing ϵ∗ < ϵ to ϵ < ϵ∗ in either of Fig 2.11a or Fig 2.11b. Concurrent with

decreasing ϵ, the region of µ where x1(µ) (the population supporting the greatest proportion of D

strategies) is stable contracts. Increasing ϵ lowers the fitness of the C strategy and the region of µ

where x2(µ) is stable contracts as ϵ increases. The region of µ for which x1(µ) is stable expands.

Notice that all the while x3(0) ∈ (0, 1) bifurcations are inevitable because the initially unstable

x3(µ) must either turn stable or leave phase space for µ→ 1/2.
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Figure 2.11: Unfolding the transcritical bifurcation. (A),(C) when δ, ϵ > 0 and
(B),(D) for δ, ϵ < 0. In all plots the transcritical bifurcation occurs in the parameter
regime of ϵ = ϵ∗. (A): The transcritical bifurcation occurs at µ ≈ 0.0015 in which
stability is transferred from x2(µ) to x3(µ) = 1/2. For ϵ ≷ ϵ∗ the phase space is split
between the stable solution branches of x1(µ) and x2(µ) separated by the unstable
x3(µ) ̸= 1/2 with fold bifurcations and continuity curves replacing the transcritical
bifurcation. (B): The transcritical bifurcation occurs at µ ≈ 0.0007. For ϵ < ϵ∗

two fold bifurcations, and for ϵ > ϵ∗ fold bifurcation and continuity curve, replace
the transcriticalbifurcation. Parameter values (A),(C): γC = 1.92, γD = 1.9, p0 =

0.4, p1 = 0.4, k = 0.6, (B),(D): γC = 1.9, γD = 1.92, p0 = 0.3, p1 = 0.6, k = 0.1.

Extension: two time scale oscillatory behaviour for dynamic µ

Section 2.3.3 illustrates the qualitative differences in the resulting dynamics of the frequency of

C strategists that arise from the master equation expansion for µ ̸= 0, compared to the standard

replicator equation (2.7) that is recovered in the limit of µ = 0. These results are important

because in animal behaviours, the propensity for an individual to explore its strategic choices may

be relatively high [21]. In this section we are motivated to consider the longer term dynamics

on a timescale where µ ̸= 0 and µ̇ ̸= 0. We consider the possibility that the rate of strategic
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exploration varies according to the dominance of strategies within the population. The idea is that

in the absence of a dominant strategy within the population, individuals are less likely to sample

alternative strategies and µ should be small. Alternatively, if some strategy is dominant in the

population, then one expects each individual in the population to be more willing to explore its

alternative options, and µ to be high.

As illustrated in Fig 2.11 for a range of µ, two relatively dominant and stable solutions can

co-exist independent of one another, separated by an unstable mixed equilibrium. Here, we utilise

such regimes of bi-stability to enable a fast switching behaviour in the underlying frequency of x,

to capture the idea of non-constant strategic exploration. We introduce a feedback control for the

parameter µ. The closed loop fast-slow dynamics are given by

µ̇ =−Kµ(1− µ)(x− β1)(β2 − x) =: g1(µ, x) (2.37a)

ẋ =µ
(1− x)fD(x)− xfC(x)

⟨f⟩
+

(1− x)x(fC(x)− fD(x))

⟨f⟩
=: g2(µ, x) (2.37b)

where β1 ∈ (1/2, 1) and β2 ∈ (0, 1/2) and K << 1 represents the separation between the timescales

of ẋ and µ̇. As K → 0 the exploration rate becomes constant (i.e., does not change with time), and

the dynamics are those of equation (2.5a) in section 2.3.3. The dynamics of (2.37) imply that in the

absence of either strategy being dominant, the rate of exploration decreases so that the population

moves away from x = 1/2, whereas, if either of the strategies dominate then µ increases and the

population moves towards an equal abundance of each strategy.

The coupled dynamics are invariant on Λ := {(x, µ) : x ∈ [0, 1] and µ ∈ [0, 1]}, with boundary

bdΛ and interior intΛ. A solution given by x∗ = (µ∗, x∗) = (1/2, 1/2) is always valid. Additionally,

there exist boundary solutions defined by µ = 0 and x̂i(0). By the implicit function theorem, any

solution to the ẋ-dynamics can be locally represented as a graph, µ̃(x). The lines defined by x = β1

and x = β2 belong to the nullclines of µ̇ and intersect with the solution curves ẋ = 0 in the µ− x

plane to define the interior fixed points, i.e., xint ∈ intΛ. Motivated by the bifurcation analysis of

section 2.3.3 we consider the cases in which either of x = β1, β2 intersect ẋ = 0 at a degenerate fixed

point of the x-dynamics. We denote these non-hyperbolic equilibria by xH . Fig 2.12 illustrates

these cases of interest. Here we seek to examine the local dynamics about xH in more detail. We

focus on the case of δ, ϵ < 0, but the case of δ, ϵ > 0 produces similar results.

Consider the case of either fold bifurcation of ẋ in the upper half of the plane shown in Fig

2.12 and suppose that x = β1 of intersects the critical manifold of ẋ = 0 at this point. Refer to

the x-coordinate as βH1 =: xH . The coordinate for µ can be found through µH = µ̃(xH) so that

the interior solution of equation (2.37) is given by xH = (µH , xH). Straightforward analysis shows

that at xH , the vector field V = (µ̇, ẋ) lies on a zero-contour, i.e., divV |xH = 0. To see this, we use

divV =
∂

∂µ
g1(µ, x) +

∂

∂x
g2(µ, x). (2.38)

It is clear from

∂

∂µ
g1(µ, x) = Kµ(x− β1)(β2 − x)−K(1− µ)(x− β1)(β2 − x) (2.39)
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Figure 2.12: Illustration of xH . (A): One of the nullclines of µ̇ shown by x = β1
(black dotted line) intersects the critical manifold of ẋ = 0 at degenerate fixed point.

Two cases are shown by x = βH1
1 and x = βH2

1

that for x ∈ (β2, β1), ∂µg1(µ, x) < 0, and for x ∈ (β1, 1) or x ∈ (0, β2), ∂µg1(µ, x) > 0. Moreover,

when x = β1, β2 then ∂µg1(µ, x) = 0. The ∂xg2(µ, x) term is precisely Ax(x, µ) from section 2.3.3.

By assumption of the fold bifurcation we know that

Ax(xH , µH) ≡ ∂xg2(µ, x)|x=xH=βH
1
= 0. (2.40)

Combining the results of (2.39) and (2.40), we see that at x = βH1 , µ = µH the divergence is equal

to zero. Moreover, we can always find a point, x′ = xi(µ), along ẋ = 0 such that x′ ̸= xH = βH1 and

∂xg2(µ, x)|x=x′ > 0. If x′ > xH then ∂µg1(µ, x) > 0 at x′ by equation (2.39) and the divergence is

positive at (µ̂(x′), x′) and negative at (µ̂(x′′), x′′) for x′′ < xH . Thus, the divergence of V changes

sign at xH .

The Jacobian matrix of the system is

J =

 ∂
∂µg1(µ, x)

∂
∂xg1(µ, x)

∂
∂µg2(µ, x)

∂
∂xg2(µ, x).

 (2.41)

with eigenvalues λ± = (trJ ±
√
(trJ)2 − 4detJ)/2. At the interior fixed points of interest; xH , by

assumption, ∂xg2(µ, x) = 0 and equation (2.39) shows that ∂µg1(µ, x) = 0. At xH , one finds that

J only has off diagonal entries, and eigenvalues at xH have the form λ± = ±
√
−detJ. Moreover,

for xH = βH1 ∈ (1/2, 1) one finds that

∂

∂x
g1(µ, x) = −K(1− µ)µ(β1 + β2 − 2x) (2.42)

is positive. Alternatively if xH = βH2 ∈ (0, 1/2) then equation (2.42) is negative. All that remains

to determine the sign of ∂
∂µg2(µ, x) evaluated at xH = βH1 . Using the analysis of section 2.3.3

and in particular equations (2.30) and (2.34), we know that while xH < x̂ the partial derivative is

positive, and while xH > x̂ the opposite holds.
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Combining the all of the above conditions, we find that when xH < 1/2, ∂xg1(µ, x)|xH < 0 and

∂µg2(µ, x)|xH > 0, and if xH > 1/2 then ∂xg1(µ, x)|xH > 0 and ∂µg2(µ, x)|xH < 0. In both cases,

at xH , the Jacobian becomes

J|xH =

(
0 J12

J21 0

)
(2.43)

where J12 := ∂xg1(µ, x)|xH > 0 and J21 := ∂µg2(µ, x)|xH < 0, such that detJ|xH > 0 at xH , and

trJ|xH = 0. The eigenvalues of xH are complex conjugate given by λ± = ±i
√
J12J21.

Thus, we can state the following: when the solution branch, x(µ), of the x-dynamics undergo a

one-dimensional fold bifurcation, then the eigenvalues of (2.37) are purely imaginary. That interior

fixed points of (2.37), can be expressed through x = β1 and µ = µ̃(x) = µ̃(β1), and the eigenvalues

λ± are continuous with β1. Moreover, at the interior solutions xH , the trace of the Jacobian

vanishes (trJ = 0) and the determinant of the Jacobian is positive (detJ > 0). These conditions

are necessary and sufficient for the existence of a Hopf bifurcation.

Importantly, in section 2.3.3 (when µ is fixed) we identify multiple conditions on the stability and

physicality of the solutions of the replicator dynamics, which result in inevitable fold bifurcations

when µ > 0 is used as a bifurcation parameter: 0 < µ < 1/2. This is an important observation

because it means that in situations in which there is a trade-off between cooperating and defecting

(i.e., δ, ϵ < 0 or δ, ϵ > 0) and the propensity of individuals to explore their strategic choices changes

with the dominant frequencies in the population, then it is possible that oscillatory dynamics are

inevitable. The oscillations are the result of a Hopf bifurcation which we now examine more closely.

Hopf Bifurcation

Hopf bifurcations can be supercritical or subcritical. In the supercritical case, stable limit cycles

bifurcate into phase space, whereas in the subcritical case, the bifurcation gives rise to unstable limit

cycles. The periodic orbits are restricted to some vicinity of the bifurcation point, and generally

lose structural integrity the farther they move from this point. The regimes of supercritical and

subcritical bifurcations are distinguished by the first Lyapunov coefficient, l1, [72]. l1 captures

nonlinear effects at the bifurcation point: although the eigenvalue stability criterion is neutral, up

to second order xH may still be attracting (l1 < 0). In this event the bifurcation is supercritical

and a stable limit cycle appears when x becomes stable (β1 < βH1 ). If xH is repelling (to second

order) then l1 > 0 and an unstable limit cycle appears for β1 > βH1 .

Using x = β1 as the bifurcation parameter we see that the bifurcation is subcritical if l1(β
H
1 ) > 0

and supercritical if l1(β
H
1 ) < 0, where l1(β1) is found following Kuznetsov [248]:

l1(β1) = − 1

4ω3

{
K(µ− 1)µH

(
(β2 − β1)L1L2 + L3

(
(β1 − β2)L4 + 2L2

))}
(2.44)

where ω =
√
detJ =

√
J12J21 > 0 and

L1 =
∂3

∂x3
g2(µ, x)

∣∣∣∣
µ=µH ,x=β1

, L2 =
∂

∂µ
g2(µ, x)

∣∣∣∣
µ=µH ,x=β1

, L3 =
∂2

∂x2
g2(µ, x)

∣∣∣∣
µ=µH ,x=β1

(2.45a)

L4 =
∂2

∂x∂µ
g2(µ, x)

∣∣∣∣
µ=µH ,x=β1

(2.45b)
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It is possible to provide an analytical expression for l1, but due to its complexity we do not. The

signs of coefficients Li in equation (2.44) could also be deduced by studying the convexity of the

fitness functions fC(x) and fD(x) along with the location of xH in phase space. In all numerical

investigations we find that l1 < 0: all bifurcations result in a stable limit cycle introduced to phase

space. Fig 2.13 shows the Hopf bifurcation for the example of an unstable solution branch of the

ẋ-dynamics enclosed by two fold bifurcations (shown in Fig 2.12). For β1 < βH1
1 the interior fixed

point is a stable focus (first panel). At βH1
1 a stable limit cycle bifurcates into phase space, and

exists for β1 ∈ (βH1
1 , βH2

1 ) (panels 2-5). At βH2
1 the limit cycle disappears and for β1 > βH2

1 the

interior fixed point is a stable focus.
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Figure 2.13: The formation and disappearance of the limit cycles. Each panel de-
picts the nullcines of ẋ = 0 and µ̇ = 0 by the grey dashed lines which intersect at the
interior fixed point. Each respective value of β1 = 0.51, 0.6, 0.65, 0.7, 0.725, 0.8 deter-
mine the fixed point. In the cases where limit cycles exist two solution trajectories
are shown, orange with initial conditions outside the closed orbit, and blue inside.
Fold bifurcations in the ẋ-dynamics occur at roughly x = 0.52 and x = 0.78, i.e.,
βH1
1 ≈ 0.52 and βH2

1 ≈ 0.78. When β1 ∈ (1, 0.78) or β1 ∈ (0.5, 0.52) the fixed point is
a stable focus and when x ∈ [0.51, 0.78] the solution is unstable and surrounded by a

stable limit cycle.

The oscillations correspond to periodic switches between the relatively mixed equilibrium and

a dominant solution. The nature of oscillatory behaviour depends on the timescale separation

parameter K. In the limit of K → 0 the limit cycles cling to the critical manifold of ẋ = 0

because x changes much faster than µ. Fig 2.14 provides a geometric illustration of this. Along

the dominant x branch, µ is increasing and the limit cycle approaches the upper fold singularity.

There, jump downwards to the relatively mixed frequency solution, where µ is decreasing. Thus,

the cycle approaches the vertical line defined by µ = 0. Here, the cycle jumps back to the dominant

branch of x, and the process starts again. As K increases this process becomes less defined, and

the cycles diverge further from the stable solution branches of ẋ.
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Figure 2.14: The timescale separation. (A): For K = 0.2 the changes in x occur
on a timescale slightly faster than the change in µ. The limit cycle (green) has large
amplitude. (B): For K = 0.0001 the exploration rate µ changes on a much slower
timescale and the limit cycle clings to the stable solutions of ẋ up to singularities.

2.4 Discussion

We have found that the variety of behaviours exhibited by grouping prey in nature can only

be reproduced when vigilance, confusion and dilution are all modelled together. We find that

the potential for transitions from population states characterised by all individuals choosing the

cooperative anti-predator behaviour, or all choosing to defect, to a mixture of each behaviours occur

only when benefits from grouping are traded-off against all three of vigilance, confusion and dilution

effects. Because both costs and benefits are dependent on the ecological and environmental contexts,

our model is able to explain the manner in which grouping individuals change their behaviour in

response to external changes. Only when there is a trade-off between anti-predatory behaviour

and grouping benefits do we find ecologically relevant cases. This predicts two distinct behavioural

phenotypes for grouping animals: the first where contributing to overall group evasion leads to

greater group benefits but greater risk of predation (ϵ, δ > 0), and the second where contributing

to group safety leads to decreased predator targeting at the expense of diminished grouping benefits

(ϵ, δ < 0) as illustrated in Fig 2.1. In both cases we predict unique population attractors for each

configuration which are dependent on model parameters.

General conclusions for δ, ϵ < 0

In the absence of behavioural exploration our model predicts three potential population states.

Namely either of the two pure population states; all play the strategy C, or all play D, and a mixed

population state that describes a co-existence of cooperative and defector behavioural phenotypes.

Here we draw conclusions in the case of perfect behavioural decision making (µ = 0).

For the case of δ, ϵ < 0 we identify a negative group size effect: the frequency of the cooperative

behavioural type decreases with increasing group size. This result is in line with most theoretical
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[32] and observational studies [18, 127, 136, 191] suggesting that vigilance should decrease with

group size. The group size effect we find can be characterised by both an increase in the basin

of attraction of the stable population state sustaining only D strategists, and a decrease in the

frequency of the C strategy at equilibrium, with an increase in group size (Fig 2.2a). This regime

is characterised by three critical group sizes. When group size exceeds a critical value, n2, choosing

the defect strategy is the only viable behaviour for a group member: all group members have a

sufficiently high chance of survival, and there is little incentive to contribute to predator evasion.

Essentially, the incentive to play the strategy we term cooperate is decreasing with the number of

other individuals playing cooperate in the group, and with group size. With increasing group size,

the fitness of those individuals playing the strategy which we term defect increases relative to the

fitness of those individuals choosing to play the cooperate strategy.

For an intermediate range of group sizes, we find that there is a possibility for two stable

population states independent of each other: either of a polymorphic or pure population state of

only D strategies, and a population state of only C strategies (as shown in Fig 2.2a). The bi-

stable regime is separated in phase space by an unstable polymorphic population state and the

population dynamical attractor depends on the initial fraction of individuals playing the strategy

C. Polymorphic populations or a population of only C strategists occur when group size lies in

a range given by n ∈ (n3, n1), and stable population states of either all C strategies or all D

strategies occur if n ∈ [n1, n2), where n1 is not necessarily less than n2. Notice that the values

of the critical group sizes characterise the properties of the population dynamical attractors. As

such, it is possible that the only the polymorphic population state is stable, i.e., if n1 > n2. The

interpretation of a polymorphic population in which a fraction, x4, play pure strategy C and 1−x4
play D is equally valid for a mixed strategy mixed equilibrium in which each individual plays the

strategy C with probability x4 and plays D with probability 1− x4.

When groups are smaller than the critical size n1 the only stable population state is characterised

by all individuals choosing to play the cooperate strategy. The anti-predation fitness benefits

of preferable risk dilution (ϵ < 0) that individuals playing the C strategy receive increase with

decreasing group size: advantages of not being picked are more pronounced when there are less to

chose from. With decreases in group size, the fitness an individual choosing to cooperate increases

relative to an individual choosing the D strategy.

The change in the population frequency of C strategists with group size is modulated by the

effects of confusion, dilution and vigilance. All group members experience the same safety of group

evasion, and as grouping benefits are independent of group size. Thus, as group size changes,

unequal dilution of risk is the only factor that causes a nonlinear rate of change for the fitness

difference between the individuals playing C and those playing D. The smaller the group the

greater the magnitude of effect ϵ < 0: as group size decreases the individuals playing strategy D

become relatively more vulnerable through increased predator targeting. Therefore, with decreasing

group size, the relative fitness differential between the two strategies increases in favour of playing

C. Through their respective effects on overall predator evasion, confusion and vigilance effects

specify the rate at which the fitness differential changes with group size. The more probable the

group as a whole escapes, the less influence dilution of risk has on individual fitness. In this sense

the probability of group evasion controls the absolute fitness differential for any group size. At
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the individual level, the effects of vigilance and confusion thereby contribute to which strategy is

chosen.

General conclusions for δ, ϵ > 0

Contrastingly, for the case of δ, ϵ > 0 as described in Fig 2.2b, we have shown a positive group

size effect (an increase in the basin of attraction of the stable population state sustaining only

C strategists) on the behavioural phenotypes which contribute to anti-predator evasion in prey

groups. In particular, we show that when group size exceeds a critical group size n1, the only

stable population state is for all individuals to play the strategy which we term cooperate. With

increases in group size, the dilution effect offers increases in safety for all group members. The

relative fitness advantages that individuals playing strategy D receive (through being less likely

targets) diminish with increasing group size. For very large groups, the differences in the dilution of

risk between individuals playing each strategy become negligible. As such, the relative magnitudes

of fitness components change with increasing group size in a way that general grouping benefits

become more important and group size effects less so. Since those individuals who contribute to

predator defences (C strategists) receive greater general benefits than those who play D, there will

exist some threshold group size for which it is advantageous to play strategy C. Note that this

finding does not suggest that the strategy which contributes towards predator evasion is chosen

because it provides safety benefits for all group members. It could be the upshot of by playing C

an individual is afforded more favourable general grouping benefits.

For small groups of size n < n2 (where n2 < n1) the only stable population state is for no

individuals to play strategy C. This finding is explained by the opposite argument of that above:

the magnitude of the effect of ϵ on overall risk profile is decreasing with group size. Thus, in smaller

groups, the difference in risk dilution experienced by an individual who contributes to group evasion

(a C strategist), compared to the risk dilution experienced by an individual who does not (a D

strategist), is greater. The greater the difference in dilution risk between the strategies the greater

the difference in fitness, since other grouping benefits are independent of group size.

For a range of intermediate group sizes, n ∈ (n2, n1) we find that the population state is de-

scribed by a region of bi-stability, with both population states characterised by either all individuals

playing strategy C or D locally stable. When group size is within this range, the final population

state is governed by the initial frequency of the C strategy. In these scenarios, the preferable be-

haviour depends on the expected number of C strategies in the group. For example, favourable risk

dilution may provide those individuals playing defect respectively higher fitness only when there is

some threshold number of individuals who contribute to predator evasion, i.e., a certain number of

C strategists within the group. For n2 < n < n1 the stable population state reached depends on

the expected initial composition of each group.

At the individual level, the behavioural transition from defector to cooperative strategies with

group size, can be explained by the interplay between general benefits of grouping and how the

effects of confusion, dilution and vigilance moderate predation risk. If the group cannot evade

attack (through vigilance or group size effects), then risk dilution has a large effect on an individuals

safety. In this case, by adopting the strategy that reduces personal targeting risk, a group member

gains significant increases in safety and thereby fitness. If it is extremely likely that a predators
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attack fails, then dilution effects are negligible, and the risks of personal targeting do not have such

influence on fitness. Under our modelling of dilution, the survival probabilities for each strategy

increase and (eventually) converge with increasing group size. But the general grouping benefits

are constant and consistently favour those individuals playing the cooperate strategy over those

playing defect. It is therefore no surprise that there exists a threshold group size (i.e., n∗ ∈ (n2, n1)

for which the cooperate strategy becomes risk dominant, and a further group size n1 for which the

only viable behaviour in the population is to play strategy C. Hence, for δ, ϵ > 0 we find that the

cooperate strategy is subject to an Allee type effect.

The mathematical system helps elucidate how certain grouping animal species become extinct

or suffer depleted populations. As we vary environmental parameters such as habitat availability

or other external parameters, the changes in stability in the dynamical system directly correspond

to changes in behaviour at the population level. Thus effectively explaining the effects of external

factors on decision making. If the viability of certain behaviours are incompatible with the animal

species specific requirements, then this may have severe consequences. For example, consider that

a population consisting of groups which is in an ecologically stable behavioural state. Following

external environmental changes the stable configuration may abruptly switch and if the species is

not sufficiently behaviourally plastic it will become ecologically unviable.

The importance of strategy exploration

Our results indicate that when strategy exploration is small but non-negligible (µ ̸= 0), stochasticity

at the level of an individual’s decision making augments the resulting dynamics. However, the

core qualitative dynamical features of the case of no exploration are retained. For example, while

individuals possess some small propensity to randomly sample between the two strategic behaviours

(µ << 1), equations (2.5a) and (2.5b) produce qualitatively similar results for the composition

of the population, when compared with the case of µ = 0 ( equation (2.7)). Moreover, when

exploration rates are very small, the pure population states are never valid. Instead the population is

always characterised by a polymorphic equilibrium state, i.e., a mixture of cooperative and defector

individuals. In the limit of large exploration rates, i.e., when µ ≥ 1/2, we find equal abundances of

each strategy. These results are valid for a polymorphic population state characterised by x ∈ (0, 1),

and a mixed strategy monomorphic population state (where each individual plays strategy C with

probability x, and plays the D strategy with probability 1− x)

We show that it is important to consider the possibility of imperfect behavioural imitation,

especially when modelling animal behaviours. Here we explain why. First, evolutionary game

theory in the form of the replicator dynamics implicitly treats group members like rational agents.

Yet rather than always adopting the optimal strategy, animals are never fully rational (and in

fact neither are humans [40]). Even when individuals possess the behaviours of others’ in their

own repertoire, most animal species face some cognitive limitations in their ability to adaptively

assess and imitate behaviours that would yield a greater fitness than their own [249]. There are

likely to be mistakes in the imitation process. The irrationality of, and constraints imposed on an

individual’s decision making can be captured by including an exploration rate.

Secondly, animals often forage in stochastic environments [250]. Unpredictability of an individ-

ual’s surroundings may render an appropriate responses to balance state and predation pressures
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impossible. As one example of this consider the behavioural responses of grouping individuals when

there are visual obstructions [16]. In this case the ability to imitate a better performing conspe-

cific or make preferable decisions may be severely curtailed. Taken to the extreme, if individuals

cannot obtain information from others regarding how to appropriately respond to a predator then

the assumption that behaviours spread through imitation is flawed, and one would expect purely

random strategic decision making. Both of the above points are be captured by µ > 0 in the

dynamical system, and indicate the importance of exploration in the probability of adopting any

given behaviour.

General connection with other social type dilemmas

One could observe that without including the dilution effect into the payoff structures, the model

reflects a type of (nonlinear) public goods game [54, 55, 251]. The resemblance occurs because

only one of the strategy types contributes towards the probability that the whole group escapes

(yet both strategy types benefit from group escape). Hence our choice of “cooperator” for the be-

havioural phenotype that contributes towards the predator evasion. What distinguishes our model

from general forms of the public goods game (analysed by Archetti & Scheuring [251]) is the way

that dilution of risk alters payoff: modelling the effects of detection and dilution interdependently

prevents a tragedy of the commons [252] type scenario because in the absence of cooperators, the

probability of survival (and fitness) is non-zero due to all defectors facing an equal probability of

not being targeted. This fitness safeguard of dilution by numbers thereby changes the payoff struc-

ture that is found in standard social dilemmas. If dilution effects are set to zero (i.e., the square

brackets in equation 2.4) the model recreates the structure of the public goods game in certain

parameter regimes.

Our results also show that because dilution of risk is not equitably shared amongst group

members, cooperation need no longer be costly relative to defection. It is possible for the best

outcome of the game when all group members adopt the same strategy, is for all cooperate. When

all group members adopt the same strategy, cooperation is preferable if cooperators receive greater

grouping benefits, i.e., when δ > 0, or if δ < 0, but the increased safety through group evasion

outweighs the benefits differential. The model therefore captures the snowdrift-type games [57]

analogous to vigilance behaviour, whereby if no group members cooperate the entire group is worse

off but when all group members cooperate, each individual has incentives to defect. It would be

interesting to consider a threshold number of cooperators required to procure group evasion fitness

benefits, as similar to the volunteers dilemma [59].

Since cooperation can be beneficial or costly in terms on an individual’s risk dilution, we pro-

pose that a cooperators investment into group wide predator evasion is not necessarily performed

to directly increase the fitness or others. Adopting the cooperative strategy may simply be a

self-serving behaviour that makes individuals less likely to be a target (ϵ < 0), but at the same

time improves the fitness of others’ through group evasion. A detailed review of the terminology,

e.g., “negative pseudo-reciprocity” [228, 253] is beyond the scope here, and we use cooperation

to encompass a range of payoff trade-offs. For example, vigilance is a cooperative behaviour [32]

and it has been shown that personal vigilance is more advantageous than relying on the vigilance

of others. It is quite possible that non-vigilant individuals face a fitness penalties from failing to
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detect the cues of their vigilant counterparts [62, 116], suffering late detection of a predator and a

delayed response [254, 255]. We encompass scenarios where both cooperation may be positive for

both actor and recipient (+,+) and where it benefits the recipient but is costly to the actor. The

latter case corresponds to cases in which non-predation group benefits such as foraging gains or the

experience of risk dilution favour the defector strategy. We use the term cooperation to encompass

a range of scenarios with focus on the public type good cooperators produce of the probability of

group evasion.

Specific choices of functions

The functional choices that we present (equations 2.1,2.2) to capture predator evasion are flexible

enough to approximate linear, saturating [6, 149] and constant relationships with the number of

group members (C strategists) which adopt a proactive anti-predator behaviour. By examining

either of equations 2.1,2.2 with p1 = p2 = 0 the evasion function collapses to the simplest of

possible functions; a constant. The probability of a failed attack is then independent of group size

and the frequency of the so termed cooperative strategy. A constant group evasion is explained

as follows. Consider an additional member joining the group. According to the group vigilance

hypothesis [49, 188], each individual in the group should accordingly lower it’s own vigilance. If

vigilance is independent between groups members, and the combined reduction individual vigilance

rates of existing group members, is equal to the additional vigilance from the new group member,

then whole group vigilance does not change with size. Poysa [133] for example, found no significant

relationship between group size and vigilance in the duck teal Anas crecca.

If the only argument of the evasion function is fraction of individuals playing the cooperate

strategy, we apply either of equations 2.1 or 2.2 with p1 = 0. In this case the probability that no

group member is attacked given that all group members play the cooperate strategy, is determined

by p2 alone. The variable k2 specifies how sensitive the probability of group evasion is to the

expected proportion of C strategies in the group. So long as p2/(k2 + 1) ≤ 1 one can use k2 >> 1

and p2 >> 1 to approximate a linear relationship [128, 129, 132] whereas k2 ∈ (0, 1) can reflect

saturating returns of increased group safety with an increase in the frequency of the C strategy

[6, 130, 149]. We do not explicitly draw a relationship between those group members who adopt

a cooperative strategy and the confusion effect (but see [169, 179]) since not enough is known

about how the confusion effect operates on the predators cognitive abilities. Instead, we assume

that group size affects predator confusion [117, 170, 180] and that confusion effects dominate the n

dependent components of equations 2.1 or 2.2. The Holling Type II structure of the function can

accommodate linear and concave relationships between group size and confusion dependent evasion.

One could also consider a threshold function which would be applicable when the probability of

group evasion changes at a critical amount of cooperators, or a critical group size. The extreme

being that only one cooperative individual is needed for group protection [7, 8].

Although we do not draw an explicit relationship, with caution, it is interesting to postulate

how what we refer to as the cooperative strategy relates to a prey’s other behavioural phenotypes.

Coordinated behaviours in a group, as one example, can confuse predators and thereby increase the

probability that no group member is killed. Examples are found in dragonfly larvae Aeshna cyanea

[183] and stickleback [179] preying on Daphnia magna. Confusion effects are also known to vary on
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spatial scales [154]. Denser groups, and parts of groups may be easier for a predator to detect, and

receive an increased attack rate. During the targeting stage of an attack, predator attack error may

increase with local group density [179]. Our model accounts for group size effects on risk dilution

and predator evasion, but does not consider density effects. More generally, complex movement

rules of prey are often theorised as adaptive responses to predation [155, 166]. Morrell [164]

demonstrates that on a temporal scale, group members are safer by moving towards their nearest

neighbour when subjected to short attacks, whereas during longer attacks, prey are safer moving

to the densest part of the group. Incorporating spatial structure into the model presented in this

research would most likely result in intractable mathematics: the function describing individual risk

dilution would become highly nonlinear if group’s contain denser subsets.The results of an unequal

risk dilution of group members previously found [164, 256], although premised on movement rules,

support the results presented in this chapter which models unequal dilution through ϵ: without

explicit spatiality.

Final remarks

Previous models have considered that the effects of dilution and detection are not mutually ex-

clusive in producing selective pressures for behaviours in grouping prey [31, 32, 146] however to

our knowledge none have explored the possibility that dilution of risk is a function of behavioural

strategy. Our model is unique in differentiating how adopting a proactive cooperative behaviour

can directly affect a group members relative per-capita risk as compared to not doing so. The

consequences of unequal dilution effects will have profound consequences emergent behaviours of

groups of prey, and could be factored in to future models predicting such behaviours.

There are limitations and possible extensions of our model which we outline here. The payoffs

of section 2.2 simply assume that average fitness in the group monotonically increases with group

size because the probability of surviving a predator attack does so. In the Introduction section 1.4.2

we explain how group size can affect the predator attack rate. Our model does not account for this

relationship. Predator attack rate may increase with group size [115] or with other factors that are

enhanced by increasing group size, for example increased movement [138] or coordination [11]. Thus

larger and more conspicuous groups may be targeted more relative to smaller groups. Alternatively,

increasing in group size may lead to a reduced attack success rate for the predator [134, 147]. In this

respect, we believe that our modelling could be enhanced by considering attack abatement [115] and

encounter-dilution [4, 138] effects. By assuming that dilution effects are controlled by a group size

dependent attack rate, individual survivorship, and thereby fitness, would not necessarily increase

with group size. Attack abatement effects could be most simply incorporated into the model by

considering a strategists probability of survival (big curly brackets in equations 2.4) as the product

of the conditional probability of surviving given an attack, and the probability that the group is

attacked as depending on a group size dependent attack rate α(n) ∈ [0, 1]. This approach would be

flexible enough to encompass situations whereby increases in group size strictly lead to increases

in predator attack rate [143], when group size negatively affects attack rate [25], and other more

complex, e.g., quadratic [25] relationships observed in species.

Another way in which group size can affect individual fitness is mediated through within group

competitive interactions (see Introduction section 1.4.5).The group size effect that we find in the
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case of δ, ϵ > 0 may be more pronounced when considering factors such as food density, which

often dwindles with increasing group size [124]. In other words, if the difference between general

grouping benefits in terms of foraging is a function of group size and the importance of foraging

gains increase with group size increases. Group size dependent foraging could magnify the rate at

which the payoffs to cooperators increase relative to the payoff to defectors, as group size increases.

To capture a more complex group size-fitness relationship, we could investigate group size effects on

resource competition [257] by setting γi = γi(n). These functions could be (i) monotonic decreasing

if increases in group size strictly led to increases in competition and decreases in foraging benefits,

(ii) concave with group size if increasing group size initially procures greater foraging rewards

but later reduces foraging rewards [258], or (iii) Holling type II if foraging gains asymptote with

group size. It could be that foraging benefits monotonically increase with group size: in models of

information transfer for example, it is shown that the shared knowledge of resources that benefit

group members depends on the cooperative behaviour of individuals that actively search out food,

which in turn depends on the size of the group [259, 260]. However in this case there must be some

other cost associated with grouping that bounds group size or groups would grow indefinitely.

We show that it is possible for anti-predatory behaviours to change with variables such as

group size, predation pressures and other grouping benefits. The model is able to demonstrate

how ecological changes may influence the state and size of a group including when viable groups

undergo sudden changes. We show that it is important to consider multiple anti-predation effects

affecting grouping animals: each anti-predation effect will vary in its effectiveness against different

predators. Importantly, disentangling such effects will help understand the appropriate behavioural

responses to differing predators [18, 151] and the value of identifying attacking predators [24, 261].

Incorporating individuals and their heterogeneous life histories and preference into this picture

remains a challenging problem for the field.
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Chapter 3

A field data assessment of the model

of chapter 2

Abstract

Mathematical models can be powerful tools in predicting and explaining anti-predator be-

haviours in animal groups. The purpose of this chapter is to show that the model presented

in chapter 2 can provide novel insights into the anti-predator behaviours in wild systems. We

present and inform the model of chapter 2, and make a series of explicit predictions based on

the vigilance behaviours of the wading bird, redshank Tringa totanus. Subsequently, we the-

oretically predict how vigilance in redshank should change with factors relating to predation

risk, as well as climactic conditions. An analysis of observational data elucidates which of the

theoretical predictions are qualitatively reflected by the behaviours of redshank. We demon-

strate that only when at least two of the three principle anti-predation effects are theoretically

considered, can the theoretical model describe the behaviours of redshank. We clarify that

a broad theoretical model can capture subtle and complex state dependent variables which

influence behaviours in a particular grouping species. Our findings show the importance of

theoretical considerations in explaining the anti-predator behaviours in animal groups.

3.1 Introduction

In this chapter, some of the general results of section 2.3.1 are qualitatively examined. The research

presented here is motivated to show the importance of the theoretical framework of chapter 2: that

the three principal anti-predation effects of group vigilance, dilution and confusion are interdepen-

dent forces influencing prey behaviour. As such, we seek to demonstrate that the general theoretical

results anticipated in section 2.3.1 are relevant in predicting behaviours in observational systems,

and that when any of the three principal anti-predation effects are not theoretically considered, the

predicted behaviours do not capture the complex behavioural choices of grouping animals.

In this research the tasks described above are achieved by qualitatively assessing predictions

made from the results of chapter 2, with observational data on the wading bird redshank, Tringa
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totanus. Grouping redshank are well documented to benefit from the effects of vigilance, dilu-

tion and confusion whilst under predation [18, 25]. The foraging behaviours of individual birds

within flocks are well documented in an environment where they feed within proximity of preda-

tory sparrowhawk, Accipiter nisus [1, 18, 25, 123, 151]. Time spent feeding by redshank strikes

a compromise between scanning for the predator and foraging [204]: vigilance therefore reflects a

trade-off between starvation and predation risk.

In the following research, section 3.2.1 justifies our use of, and section 3.2.2 parametrises,

the model of chapter 2 to predict behaviours in redshank flocks. The general results of sections

2.3.1 and 2.3.3, under the parametrisation, produce a series of species specific predictions given in

section 3.3. The first prediction of section 3.3 intends to highlight the importance of modelling all

three principal anti-predation effects. To show this importance, we provide theoretical predictions

when independently removing each of the key anti-predation effects from the theoretical model.

The goal here is to contrast the subsequent predictions of each theoretical model configuration and

compare these to the data. Another motivation of this chapter is to show that the broad theoretical

results presented in chapter 2 are able to describe relatively complex features in grouping animals.

Predictions based on some of the key parameters analysed in chapter 2 are made explicit with

regards to redshank behaviour. In section 3.4 the observational data on redshank is presented. We

use this section to conduct new analysis on existing data sets for the specific purposes of model

comparison. We quantify trends in the data, and assess whether such trends are consistent with

the predictions of each theoretical model configuration, and each model prediction. This approach

shows which of the anti-predation effects are theoretically required for the model to be able to

qualitatively predict vigilance behaviours in redshank. We therefore emphasise the importance of

considering the multiple effects of vigilance, dilution and confusion as potentially interdependent

factors influencing the behaviours in groups of prey.

3.2 Methods

3.2.1 The mathematical model

We apply the model of chapter 2 with general assumptions therein to reflect the behavioural

dynamics of vigilance in redshank. As vigilance and feeding are largely exclusive for redshank

[18], we assume that a bird’s phenotype is sufficiently plastic to produce two distinct and discrete

behaviours. Birds either choose to play the “cooperate” (C) strategy of section 2.2 and prioritise

predator defence by adopting a vigilant behaviour (henceforth simply “vigilant” birds). These

birds contribute to collective detection benefits for the entire group. Otherwise, birds prioritise

feeding (henceforth “non-vigilant” birds) and choose to play strategy D. During a predation event,

a bird’s choice of vigilance behaviour has a marginal effect on it’s expected future reproductive

success (EFRS) through mortality risk and time spent not foraging. Over the modelling timescale

the combination of many predation events give rise to a bird’s EFRS [212, 262].

We use equations (2.4) in section 2.2 to specify EFRS. Foraging benefits for vigilant (C) and

non-vigilant (D) birds are respectively given by γC and γD. Predator evasion is given by g(x, n). For

more details of the payoff functions see section 2.2. We assume that the frequency of vigilant birds

either changes through a pure imitation process outlined in section 2.2.1 which we refer to as µ = 0,
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or that small rates of behavioural exploration, µ > 0, affect the imitation process. Exploration is

interpreted as random sampling of either of the vigilant or non-vigilant behaviour (animals often

sample alternative behaviours which do not maximise fitness [21]), or random behavioural mutations

between the vigilant and non-vigilant behaviours. On the ecological timescale, which we suppose

to be a winter, equations (2.7) (without exploration) or (2.5b) (with exploration) give equilibrium

frequencies of vigilant birds defined by population states.

To justify our use of the model we make the following assumptions. Variation in flock size is not

assumed to be a proactive anti-predator behaviour: we adopt the hypothesis that changes in flock

size are responsive to longer term cues about risk [263]. We assume instead, that short term cues

about a predator give rise to reactive responses of a bird’s vigilance. Because we do not consider

variable flock size as an anti-predator behavioural response, we do not consider differentiated attack

rates for different sized flocks. Nor do we consider the optimal flock size [264]. We assume that

flocks may consist of both adult and juvenile birds [1, 265], although juvenile birds often form

separate flocks [266]. We do not consider differences in age or sex as factors that affect vigilance.

3.2.2 Parametrising the Model

The data sets used to qualitatively assess the model (introduced in section 3.4) are not used in

informing the model parameters. We use previous research on the specific predator-prey system

[18, 25, 206, 267] and a more general wider literature of research on wading birds (specified when

used) to infer key model parameters. Foraging benefits are informed using general literature on

the metabolic demands of wading bird’s, and other field data, regarding the quality of food at the

site location. The evasion function; g(x, n) of equations (2.4) is fitted by empirically supported

inferences from [18, 206, 267]. The parameter ϵ is fitted using simple calculations and guided

observations [266].

Parametrising the foraging benefits functions: γC and γD

We consider that general grouping benefits (γi in equations 2.4) are solely and explicitly specified

by foraging gains. Following McNamara & Houston [262] we assume that a redshank’s EFRS is

proportional to surviving a winter. Over the winter we assume there are approximately α predation

events. Let Ψ be a function that maps energy to fitness over this period. The effects of one predator

attack on EFRS can be expressed by Ψ1/α. Guided by Cresswell & Quinn [151] we set α = 100

attacks.

We propose that Ψ(E) is sigmoidal with an individual redshank’s hourly energetic intake, E

[250, 268]. As risk prone and risk averse foraging behaviours can characterise both increasing and

decreasing returns to fitness [250, 262, 268], the gains in fitness through Ψ(E) depend on the initial

state of satiation E0 of a bird [262, 269, 270]. Due to harsh weather conditions, starvation is a

real possibility for individual redshank on the saltmarsh, and redshank only forage in this habitat

when experiencing negative energy budgets [1, 204]. Therefore, we assume that foraging redshank

are initially risk prone. Let E∗ be the minimum hourly intake to avoid starvation. Before energetic

needs are met (for E < E∗), a bird’s survival probability is low, and each extra amount of energy is

highly valuable to a bird (birds are risk prone). As E approaches E∗ a bird’s survivorship increases
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at an increasing rate. When E = E∗, energetic needs are balanced, and for E > E∗ any additional

amount of energy is likely to be decreasing in value (to an already satiated bird) [250] (birds are

risk averse). To capture this mapping of energy to marginal fitness we use

Ψ(Ei, k) =

(
(Ei)β

kβ + (Ei)β

) 1
α

. (3.1)

Here, Ei distinguishes hourly energetic intake for vigilant (i = C) and non-vigilant (i = D) birds.

The parameters β and k respectively describe the slope of the function, and energetic cost per hour

in terms of a birds metabolic rate. A parameter choice of β = 8 reflects a steep slope about the

point of inflection where energy is balanced, E∗. We choose this functional form to reflect that

while a birds energetic intake is less than metabolic costs, fitness increases at an increasing rate

with feeding, but once energetic needs are surpassed, the relationship should plateau. Eventually

a bird cannot intake any more energy whether it be limited by time constraints [200] or digestive

physiology [269]. Of course other functional forms are possible. We adopt equation (3.1) as it is

both analytically workable and biologically plausible; similar energy to fitness mappings have been

used to model American gray jays Perisoreus canadensis [271].

An individual bird’s energetic intake, E, depends on both it’s behaviour and it’s spatial location

on the saltmarsh. We let E be the product of foraging intensity ϕ and quality of prey q. Using

data from [265] which provides a site specific spatial map for the average densities of Orchestia,

Spaeroma and Hydrobia, we find the average quality of prey items, q(d) (in kJ) as a decreasing

function of distance from (predatory) cover d. The relationship between q and d is found by

calculating, for each distance from cover d, the abundance of each prey item along with it’s average

size and length. Using methods from Speakman [272], Goss-Custard [197] and Zwartds & Bloomert

[273] the weight of each prey item measured in “Ash free dry mass” is transformed into calorific

content. The average quality of an individual prey item follows the form

q(d) = 0.105− (0.032(−40.038 + d))√
1 + (−40.038 + d)2

. (3.2)

E(q(d), ϕi) is applied to represent energy intake, where ϕi is the number of swallows for vigilant

(i = C) and non-vigilant (i = D) birds per minute. On average, we assume that vigilant birds

make 4 swallows per minute yielding EC = 4× 60× q(d), and non-vigilant birds make 6 swallows

per minute meaning ED = 6× 60× q(d) [123]. The parameter k of equation (3.1) is inferred using

that energy assimilation in redshank is around 7.5×BMR (Basal Metabolic Rate) [198].

How metabolic costs affect fitness

The point at which a bird’s energy intake equals its metabolic exertion is represented by the point

of inflection of equation (3.1). Solving

∂2Ψ

∂E2
=

8E6k8(7k8 − 9E8)

(E8 + k8)3
= 0 (3.3)
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we find k = 3
1
4 × 7−

1
8 ×E when a birds energetic needs are balanced. Therefore metabolic costs of

a bird in kJ h−1 are expressed as a multiple of E. Using methods from Speakman [272] we apply

mc = 3.6(2.29− 0.7333 ln(T ) + 0.0123(M)) (3.4)

to determine the energetic costs in kJ h−1 for foraging bird. Here, T represents the temperature

(degrees) and M represents the bird’s mass (in grams). Estimates of around 100 are appropriate

in redshank [272].

Energetic needs are balanced when E = mc, i.e., when metabolic exertion equals energetic

intake. Therefore substituting equation (3.4) into E = mc, and then into k we calculate metabolic

exertion for given temperatures T̄ and mass M̄ :

k =3
1
4 × 7−

1
8 × E (3.5a)

=3
1
4 × 7−

1
8 ×mc = 3

1
4 × 7−

1
8 × 3.6(2.29− 0.7333 ln(T̄ ) + 0.0123(M̄)) (3.5b)

On average birds feed for 7.5 hours each day on the saltmarsh, however energy is also exerted at

rest and whilst not foraging. To account for this we multiply their hourly metabolic costs by 24/7.5.

Parametrising the evasion function g(x, n)

We assume that the probability that the flock evades a predator attack depends on a disjoint

probability union of attack failure resulting from predator confusion, and the effects of vigilance.

As such, evasion takes on the additive functional form given by equation (2.1). Confusion effects are

modulated by flock size and vigilance effects are modulated by the proportion of vigilant birds. We

apply g(x, n) = p1n/(k1 + n) + p2x/(k2 + x) with 0 < p2, k2 < 1, 0 < p1, k1 to describe the evasion

function where confusion effects are modulated by the n-dependent parameter p1 and collective

vigilance effects are controlled by p2.

The probability of evading a predator also depends on how far from predator concealing cover,

d, the flock feeds [25]. We use p1 = A1(1−λ1eα1d) and p2 = A2(n)(1+λ2e
α2d) where eX = exp(X)

is the exponential function, such that

g(x, n, d) =
A1(1− λ1e

α1d)n

k1 + n
+
A2(n)(1− λ2e

α2d)x

k2 + x
(3.6)

In redshank, overall collective (flock) vigilance is known to increase at a decreasing rate with

additional individual vigilance [18]. Predator attack success asymptotes for flocks of sizes of 40

plus birds [25]. If all individuals are non-vigilant; x = 0, the first term in equation (3.6) describes

the probability that the flock evades attack as a function of the confusion effects of flock size,

and distance from cover only. In this case, the probability that the entire flock escapes capture

plateaus for flocks of sizes larger than 20 birds and for distances greater than 30m from cover [151].

Otherwise if 0 < x < 1 then the probability of evasion increases with the proportion of vigilant

birds x, flock size n and distance from cover d.
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Table 3.1: Evasion parameters

Parameter values

A1 A2(n) λ1 λ2 k1 k2 α1 α2

1.1 1− 1.1n
1.6n+2 0.30 0.22 10 0.24 -0.05 -0.05

The parameter A2(n) captures how the effects of confusion and collective vigilance interact to

produce overall probability of evasion. The relative magnitudes of effect that each collective detec-

tion and confusion have on overall flock evasion, depend on flock size. In larger flocks, confusion of

the predator plays a dominant role in procuring safety for flock members through failed predator

attacks [18, 25]. As such, in larger flocks we expect the n-dependent effects of confusion to dom-

inate equation (3.6). In smaller flocks, the predator is unlikely to become confused and through

the effects of collective vigilance, early detection offers the best probability of flock evasion [25].

We expect the relative magnitude of x-dependent effects to increase as flock size decreases. We use

A2(n) to reflect how the magnitude of effects of vigilance and confusion change with flock size, and

(1 − λ2e
α2d)x/(k2 + x) captures how overall collective detection increases with the proportion of

vigilant birds x [18].

In line with previous research [25, 206, 207] equation (3.6) plateaus at 1 for both increases in

flock size and distance from cover. To ensure that the probability of evasion is bounded by the

closed unit interval, we define equation (3.6) to be piecewise continuous, such that g(x, n, d) :=

1 ∀d̄, n̄, x̄ : g(x̄, n̄, d̄) > 1 with parameter values given in Table 3.1. A full derivation of the evasion

function is given in Appendix B.1

Parametrising ϵ

We are guided that birds with high rates of vigilance have only small advantages over birds with

low rates of vigilance through early escape response [266]. As such we expect ϵ to be negative but

of small magnitude. To find an appropriate value, we use the following findings: non-vigilant birds

respond to a predator attack on average 0.07 seconds slower than their vigilant counterparts [255].

On average, birds feed between 10-20 meters to cover. Sparrowhawk fly at an average speed of

25m s−1. With these factors in mind, an approximate benefit of being vigilant over non-vigilant is

a 1.75 meter head start in escaping through an earlier response.

Redshank frequently fed less than 10m (meters) from the sparrowhawk in the study and for

a reasonable chance of success, the sparrowhawk needs to be within a 15m proximity of the flock

[255]. We propose that a upon an attack, a distance of 12m between flock and the sparrowhawk is

a conservative estimate. As such, vigilant birds are 1.75/12 = 0.15 times less likely to be targeted.

We apply ϵ = −0.15.

3.3 Predictions

The parametrisation of section 3.2.2 captures a trade-off between feeding and vigilance: the more

a bird feeds the greater its energetic reserves, but the more susceptible to predation the bird is. In

relation to the mathematical model, this trade-off reflects a situation in which δ, ϵ < 0 (see case 4

in Fig 2.1, section 2.2). The parametrised model combines the three key anti-predation effects of
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collective vigilance, dilution and confusion. Vigilance effects dominate the x-dependent component

p2 of the evasion function (3.6): the probability that any flock member is attacked depends on the

population frequency of vigilant birds, which translates to the expected number of vigilant birds in

a flock. As such, by setting p2 := 0 we can effectively remove the effects of collective vigilance from

the model. The effects of an unequal dilution of risk between flock members are modulated by the

ϵ parameter: by setting ϵ := 0 we remove the fitness advantage of adopting a vigilant behaviour

relative to adopting a non-vigilant behaviour through preferential predator targeting. Confusion

effects are controlled by the n-dependent parameter p1 of equation (3.6): confusion effects increase

with flock size. By setting p1 := 0 we remove confusion effects from the model.

In this section, we produce theoretical predictions of different model configurations. Each model

configuration is defined by the removal of any one of these three anti-predation effects. We give

predictions for the “full model” i.e., when all three effects are included, and reduced models, for

which an effect is independently removed (as explained above). In doing so we aim to discover

which combination of anti-predation effects considered by the model are required to qualitatively

predict the anti-predator behaviours in redshank (predictions are to be qualitatively compared to

the observational data (see section 3.4).

The subsequent analysis utilises the following mathematical equivalence, which is applied to

the model results of section 2.3.1 and 2.3.3: a polymorphic population with respective frequencies

q and 1 − q adopting (pure) vigilant and non-vigilant behaviours is equivalent to a monomorphic

population in which all individuals adopt the vigilant behaviour with probability q and non-vigilant

behaviour with probability 1−q (explained in the introduction section 1.1.5 or [35, 43, 60]). Hence,

the population states predicted by the model, i.e., frequencies x ∈ [0, 1] of vigilant birds are

equivalent to the probability that any randomly chosen bird is vigilant. We leverage this result to

predict the expected number of vigilant birds, nx, within in a flock of size n.

3.3.1 Prediction 1: vigilance decreases with flock size

The full model predicts that as flock size increases, the frequency of vigilant birds in the population

will decrease. This prediction is equivalent to a decrease in the probability that any focal bird within

a flock is vigilant with increases in the flock size, as illustrated in Fig 3.1 and Fig 3.2. In each

figure, panels (i)-(iv) respectively show model predictions for the full model (i), and models with

removed unequal dilution of risk (ii), vigilance (iii) and confusion (iv).

When the effects of dilution are removed from the model, the model predicts little (when µ > 0)

to no (when µ = 0) variation in the probability that a bird is vigilant with changes in flock size.

When µ = 0, for all flock sizes the model predicts birds to be non-vigilant with probability one, and

when µ << 1, the model predicts birds to have a very high probability of choosing the non-vigilant

behaviour. We explain this as follows: by removing the effects of (unequal) dilution, we model

the risk dilution of all birds as the pure inverse of flock size. By choosing to be vigilant, birds do

not receive any advantageous safety benefits relative to choosing to be non-vigilant. In this case,

the only differences in fitness between the vigilance behaviours occur through differing foraging

benefits, which favour those birds choosing the non-vigilant behaviour.

When confusion effects are removed from the model (Fig 3.1 and Fig 3.2 panels (iv)), the

model predicts that a bird will be vigilant with probability one (for µ = 0), or nearly one (for
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µ > 0), regardless of flock size. By removing confusion effects from the model, we remove flock

size effects in our modelling of the predator evasion function (equation 3.6). This has two effects.

First, for all flock sizes, there is a decrease in the probability of predator evasion. Given that all

birds experience an increase in the probability of attack, any focal bird experiences an increased

magnitude of dilution effects on it’s fitness. Since choosing the vigilant behaviour yields birds a

relative dilution advantage, the model predicts a greater probability for birds to be vigilant. Second,

without group size effects, the probability of evasion only changes with changes in the number of

vigilant flock members. This results in a relative increase in the magnitude of the (positive) effect

that vigilance has on predator evasion, and thereby, on fitness.

When vigilance effects are removed, the model predictions are subtly different when we account

for behavioural exploration compared to pure imitation. When µ > 0 the predicted probability

that a bird is vigilant decreases with flock size, but at a more gradual rate than the full model

(see Fig 3.2 panel (iii)). By removing the effects of vigilance, with all other parameters equal, the

model predicts a lower probability that the flock evades attack. This has the effect to increase

the relative magnitude of dilution effects on individual fitness. Since vigilant bird’s have a relative

advantage through the dilution effect, the increase in the magnitude of dilution effects acts to

increase the fitness of vigilant birds relative to non-vigilant birds. Hence, the model predicts a

shifting out of the probability that any bird is vigilant, for given flock size class (comparing panels

(i) to (iii)). Contrastingly, when we assume zero behavioural exploration (µ = 0), there is a region

of bi-stability in the population state. This corresponds to birds being vigilant with probability zero

or one, depending on their initial behaviour. The range of flock sizes where the model predicts that

either of two configurations describe the probability that a bird is vigilant (see Fig 3.1 panel (iii))

reflects a clear trade-off for individual birds: flock size is not sufficiently large for safety through

numbers to select for a bird to be non-vigilant with probability one, yet flock size is not sufficiently

small such that a bird prioritises vigilance. For sufficiently small flocks this model configuration

predict birds to be vigilant, and in sufficiently large flocks, non-vigilant.
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Figure 3.1: Model predictions for the probability a bird is vigilant given flock size,
when µ = 0. Each curve gives the probability that a focal bird is vigilant given flock
size, and each panel (i)-(iv) shows model predictions when including different anti-
predation effects. (i): the full model. (ii): the model predictions with dilution effects
removed. (iii): predictions when vigilance effects are removed, and (iv): the model

predictions when confusion effects are removed.
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Figure 3.2: Model predictions for the probability a bird is vigilant given flock
size, when µ = 0.001. Each panel shows the model predictions when different anti-
predation effects are included. (i): the full model. (ii): the model predictions with
dilution effects removed. (iii): predictions when vigilance effects are removed, and

(iv): the model predictions when confusion effects are removed.

To capture the model prediction of a mixture of vigilant and non-vigilant behaviours, we apply

the mean and variation of inter-scan intervals within flocks of given sizes. To do this, we use the
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marginal density function with variable distance to cover (see section 3.3.4). The intuition is that

as the frequency of vigilant birds decreases with flock size, the average inter-scan interval should

increase, and in cases where the model predicts a mixture of vigilant and non-vigilant birds, one

would expect a higher variation in the inter-scan intervals within a flock.

Let ζv represent the inter-scan interval of a vigilant bird, and ζnv as the inter-scan interval for

a non-vigilant bird. Inferring parameters of ζv = 1 and ζnv = 10 as suitable values from [123], we

apply

x̃(d) := x̂(d) · ζv + (1− x̂(d)) · ζnv. (3.7)

Using equations 3.14, the average inter-scan interval within a flock is

mean[ζ] = E[x̃(d)] = E[x̂(d)] · ζv + (1− E[x̂(d)]) · ζnv (3.8)

and using equations 3.15, the variation between inter-scan intervals within a flock is

Var[ζ] = Var[x̃(d)] = (ζv − ζnv)2 ·Var[x̂(d)] (3.9)

where we use R− = 1 and R+ = 60 as a general average, since 85 percent of attacks in our data

analysis (see next section) occurred within 60m from cover (dataset from [202]).

Fig 3.3 shows the theoretical model predictions for mean inter-scan interval in the flock, and the

variation between individual birds’ inter-scan intervals, given flock size. We average the inter-scan

interval means and variances over flock size class (which are specified by the data the inter-scan

intervals of individual birds). The full model predicts qualitatively similar results for the cases of

µ = 0 and µ > 0: that mean inter-scan interval (blue bars) monotonically increases with flock

size, and that variation between flock members’ inter-scan intervals (black error bars) peaks for

mid-sized flocks as shown in Fig 3.3a and Fig 3.3b. This prediction of the mathematical model

can be explained as follows: the frequency of vigilant birds is predicted to decrease with flock

size. For each increase in flock size, respectively fewer vigilant birds, and more non-vigilant birds

are predicted in the flock. An increasing mean inter-scan interval is in this sense indicative of a

decreasing proportion of vigilant birds with increasing flock size: flock members prioritise feeding

and spend longer times between vigilant scans. A high variance of inter-scan intervals is indicative

of multiple vigilant and non-vigilant birds within the flock: some birds prioritise vigilance and

some prioritise feeding. The full model therefore predicts that small flocks encourage birds to be

vigilant (low mean and low variance of inter-scan interval), mid-sized flocks promote a mixture

of vigilant and non-vigilant birds (mid sized mean, large variance of inter-scan interval) and large

flocks encourage birds to be non-vigilant (high mean, no variance of inter-scan interval).

The model’s qualitative predictions in cases when the effects of vigilance, dilution and confusion

are removed are shown in Fig 3.3c and Fig 3.3d. When dilution effects are removed, in the case of

µ = 0 the model predicts no change in the mean inter-scan interval with flock size (green bars in

Fig 3.3c), and when µ > 0, the model predicts that mean inter-scan interval is virtually invariant

with flock size changes (green bars in Fig 3.3d). If vigilant birds do not receive a favourable dilution

experience, then choosing to be non-vigilant always yields a greater fitness. The model predicts

that all (when µ = 0) or nearly all (µ > 0) birds choose the non-vigilant behaviour. The effects
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of unequal dilution are necessary for the model to predict a mixture of vigilant and non-vigilant

behaviours, and thus the model predicts no variation in inter-scan intervals under pure behavioural

imitation, and practically zero variation when µ > 0 (errors over the green bars in Fig 3.3c,Fig

3.3d).

When the effects of confusion are removed we find that in the model with behavioural explo-

ration (µ > 0), there is a very gentle U-shaped relationship between mean inter-scan interval and

flock size (red bars of Fig 3.3d). Whereas, without behavioural exploration, the model predicts

that for all flocks of size greater than five, the mean inter-scan interval is invariant with flock size

(red bars Fig 3.3c). Without group size effects, for each flock size, individual birds experience

a greater probability of attack and an increase in mortality risk. The increased risk encourages

birds to choose the vigilant behaviour in two ways. First, an increase in the relative importance of

dilution effects favours those individuals adopting the vigilant behaviour, as explained previously

through the unequal dilution of risk. At the same time, when group size effects are removed the

probability of predator evasion decreases, and only depends on the number of vigilant birds. The

relative influence that vigilance effects have on survival increase, and as such, birds have an in-

creased propensity to be vigilant. In the respective cases of µ > 0 and µ = 0, birds are predicted to

be vigilant with very high probabilities or probability one, and there is zero to very little variation

in inter-scan interval.

If the effects of vigilance are removed (blue bars in Fig 3.3c and Fig 3.3d), the effect of random

behavioural exploration produces qualitatively differing model predictions. When µ > 0, the model

predicts mean inter-scan interval to monotonically increase Fig 3.3c, but at a lower rate than the

full model. We find that compared to the full model, increases in inter-scan interval are shifted out

to larger flock sizes. The gradual increase in mean inter-scan interval is accompanied by a peak in

variation of individual inter-scan intervals within the flock, for flocks of between 36−40 birds. This

prediction is because for this flock size class, the model expect the greatest mixture of vigilant and

non-vigilant birds. Without exploration (µ = 0), the model predicts a constant inter-scan interval

representative of entire flocks adopting the vigilant behaviour for all flock size classes, except for

flock size classes of 55 − 60 at which the mean inter-scan interval is characterised by flocks being

entirely composed of non-vigilant birds.
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Figure 3.3: The model prediction for the mean and the variation of individual bird’s
inter-scan intervals. (A),(B): The full model. Blue bars show the mean predicted
inter-scan interval and black error bars centred on the mean inter-scan interval show
mean plus or minus the predicted standard deviation of inter-scan intervals within
the flock. (A): Without exploration and (B): with exploration rate of µ = 0.001.
(C),(D): Model predictions when anti-predation effects are removed. Blue, green and
red bars respectively show the mean inter-scan interval when the effects of vigilance,
dilution and confusion are removed. Black error bars show standard deviation. (C):

Without exploration and (D): with µ = 0.001

3.3.2 Prediction 2: vigilance decreases with temperature

We expect that in environments which exacerbate state dependent metabolic demands experienced

by the birds, the proportion of vigilant birds should decrease. In particular, the model is able to

predict how for any given flock size, the proportion of vigilant birds should change according to

differing temperatures. As the proportion of vigilant birds feeds back into the probability that the

flock evades the predator (equation 3.6) the model predicts differing probabilities of capture as a

function of the climate. For this prediction we apply the full model which includes all three key

anti-predation effects.

The effect of temperature on a bird’s state is modelled by applying the γi functions with different

parameter values of k, derived using equation (3.5) from section 3.2.2. Changes in the parameter

k reflects differing metabolic expenditures. We use kwarm to model metabolic demands during high

temperatures, and kcold reflect the effects of low temperatures. The parameters kwarm and kcold are
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found by taking average temperatures in the data analysis, for which attack recordings are grouped

into temperature classes (see section 3.4.3). Model predictions are based on the average flock size

in each of the flock size classes that the data is grouped into, and an average distance from cover

in each of the flock size classes.

The model predicts that the proportion of vigilant birds in a flock should increase with increasing

temperatures; Fig 3.4. At lower temperatures and increased metabolic demands, for fixed flock sizes

we expect the proportion of non-vigilant individuals to increase; Fig 3.4a and Fig 3.4c respectively

for the models without and with exploration. This result is robust for a range of flock sizes. For

decreases in metabolic demands the model predicts increases in the proportion of vigilant birds for

fixed flock size; Fig 3.4b and Fig 3.4d.
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Figure 3.4: Model predictions for the proportion of vigilant birds as dependent on
metabolic demands. (A),(B): without behavioural exploration and (C),(D): with be-
havioural exploration. (A),(C): The predicted proportion of vigilant birds given flock
size at low average monthly temperatures of 4.2 degrees; birds face high metabolic
costs, and (B),(D): the predicted proportion of vigilant birds during high average
monthly temperatures of 6.2 degrees; birds face low metabolic costs. The shifting out
from (A),(C) to (B),(D) illustrates a decrease in foraging behaviour with increasing

temperatures.
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By informing the evasion function (3.6) with the predicted frequency (proportion) of vigilant

birds x, the model predicts a probability that a flock member is captured Fig 3.5. When µ = 0,

the model predicts that for a range of flocks sizes, the probability that at least one flock member

is captured by a predator is higher given low temperatures than given high temperatures; Fig

3.5a. When behavioural exploration (µ > 0) is included in the model, the qualitative prediction is

similar, except in this case, flocks are never comprised of all vigilant or non-vigilant birds and as

such capture probabilities do not reach the same extrema; Fig 3.5b.

In both cases of µ = 0 and µ > 0, at around flock sizes of 16-20 birds and given high temper-

atures, the model predicts that the probability of capture is at a minimum. Whereas given low

temperatures, for the same flock sizes the model predicts a maximum probability of capture. We

explain this result using the critical group sizes n1 and n2 (see section 2.3.1). We see that n1 ≈ 16

and n2 ≈ 9 in Fig 3.4a and Fig 3.4c) where flocks of size less than n2 are entirely vigilant and flocks

of size greater than n1 size are entirely non-vigilant.

When the temperature is low there is a relatively steeper decrease in the proportion of vigilant

birds between flock sizes n2 and n1 Fig 3.4a and Fig 3.4c. Since the model is parametrised such that

vigilance effects dominate the predator evasion function for small flock sizes, there is a corresponding

significant increase in the probability of capture within these flocks (blue bars increasing in Fig

3.5a and Fig 3.5b). For flocks of size greater than n1 the model predicts no vigilant birds in the

flock and the evasion function (equation 3.6) is independent of x. The only factor affecting the

probability of capture in these flocks is flock size, which is parametrised to have a negative effect.

As such, for flocks of size greater than n1, the probability of capture is decreasing with increasing

flock size. Overall, given low temperatures the resulting effect is for the probability of capture to

increase and then decrease.

For high temperatures the model predicts a more gradual decrease in the proportion of vigilant

birds with flock size (see Fig 3.4b and Fig 3.4d). In this case n1 ≈ 37 and n2 ≈ 18. While flock

size is less than n2, flocks are entirely vigilant, and the only factor affecting the probability of

capture is flock size: as flock size increases the probability of capture decreases (initially red bars

are decreasing in Fig 3.5a and Fig 3.5b). For flock sizes greater than n2 and less than n1, there

is a relatively greater proportion of vigilant birds (compared to lower temperatures) within the

flock (compare Fig 3.4b to Fig 3.4a). For this range of flock sizes, a relatively greater proportion

of vigilant birds within the flock combined with the effects of flock size have the overall effect to

minimise the probability of capture (see flock size class “16-20” in Fig 3.5a and “11-15” in Fig

3.5b). For increases in flock size between flocks of around 20 birds to n1, the model predicts the

number of vigilant flock members to be decreasing with flock size (as shown in both Fig 3.4b and

Fig 3.4d), which has a positive effect on the probability of capture. For the same range of flock

sizes, the models predicts the reduction in the probability of capture resulting from confusion effects

– the flock size dependent effects – to become saturating. The overall effect over this range of flock

sizes, is for the probability of capture to be gradually increasing with flock size. For flocks of sizes

greater than n1 there are no vigilant birds in the flock. The only factor affecting the probability of

capture within these flocks is flock size, which has a negative effect, and the probability of capture

is decreasing with flock size. Hence, for high temperatures the model predicts the probability of

capture to have a cubic type structure: decreasing, then increasing, and finally decreasing.
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Figure 3.5: Model prediction for the probability that a bird is captured depending
on temperature. Bars show the theoretical model’s prediction for the probability that
a flock member is captured. (A): Model without exploration. For a range of flock sizes
(approximately between 5 and 41 birds), the model predicts a higher probability of
capture for lower temperatures. (B): Including behavioural exploration. For all flock
sizes, the model predicts that the probability of capture is higher for low temperatures.

The contrasting minima and maxima of the probability of capture are more pronounced for

the model without behavioural exploration. In this model, for flock size roughly between 9 to

16 birds during cold months (Fig 3.4a), and 18 to 37 birds during warm months (Fig 3.4b), we

find a predicted a mixture of vigilant and non-vigilant birds. The expected proportion of vigilant

birds transitions from one to zero with increasing flock size, and as such the evasion function is

fitted with respective maxima and minima of group vigilance effects. When there the frequency of

vigilant birds is maximum, (equal to one), the probability of capture is minimised with respect to

collective detection. This is predicted during the warm temperatures as shown by the red bars in

Fig 3.5a. When the frequency of vigilant birds is minimum, i.e., zero, the probability of capture

is maximised with respect to collective detection, as shown by the blue bars in Fig 3.5a reflecting

model predictions for low temperatures.

In contrast, the model with behavioural exploration never predicts a flock of entirely vigilant

or non-vigilant birds due to the birds’ recurrent random sampling of behaviours (Fig 3.4c and Fig

3.4d). As such, as flock size increases the predicted frequency of vigilant birds transitions from

a state in which nearly all are vigilant to one in which nearly all are non-vigilant. Importantly,

because µ > 0, flocks are never predicted entirely vigilant or non-vigilant. This prediction is

reflected in the probability of capture never being minimum for the high temperatures (red bars

Fig 3.5b), or maximum for the low temperatures (blue bars Fig 3.5b), with respect to collective

detection, since the expected number of vigilant or non-vigilant birds within the flock is never equal

to flock size.
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3.3.3 Prediction 3: vigilance decreases with increases in distance to cover

The full model predicts that the probability that an individual bird is vigilant, and equivalently the

overall number of vigilant birds in a flock, should decrease with increases in distance from cover for

fixed flock size Fig 3.6. As both flocks sizes increases and distance from cover increases, we expect

the probability that a focal bird is vigilant to decrease.

In cases without behavioural exploration (µ = 0) the model predicts the following: for suffi-

ciently large flocks, and even at distances very near cover, birds will be non-vigilant with probability

one, as shown by the upper left white region (where x = 0) of panel (i) in Fig 3.6. The white region

defined here shows distance to cover flock size combinations for which the model predicts that birds

are non-vigilant with probability one; flocks are composed of entirely non-vigilant birds. In between

the upper and lower white regions, the model predicts an expected flock composition containing

both vigilant and non-vigilant birds. The relative proportions of vigilant and non-vigilant birds

characterising the flock composition are respectively predicted to decrease and increase, as either

distance from cover of flock size increases.

When an exploration rate is included the model (µ > 0) predicts birds to non-vigilant with a

very high probability but never probability one, as illustrated by the colour legend in panel (ii) of

Fig 3.6. In this case, flocks are predicted to always feature a mixed composition of vigilant and

non-vigilant birds, but the same qualitative finding that the vigilant proportion decreases with flock

size and distance holds.
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Figure 3.6: The model predictions for the probability, x, that an individual redshank
is vigilant, given flock size and distance from cover. The same legend scale gives the
probability that an individual bird is vigilant given (d, n) combinations in each figure.
(i): Without exploration. The top right white region shows distance to cover and
flock size combinations for which the model predicts that a bird is vigilant with
probability zero, and the bottom left white region shows a probability of one. (ii):
With exploration µ = 0.001 the absorbing probabilities of x = 0, 1 are no longer valid.

A horizontal cross section in Fig 3.6 shows the full model prediction of how individual vigilance

changes with distance from cover, for a flock of fixed size. Considering an average sized flock of
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size 30, Fig 3.7 show the predictions of different model configurations, respectively for µ = 0 and

µ > 0.
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Figure 3.7: Theoretical predictions of the probability that an individual bird is vig-
ilant changes with distance from cover. Each panel shows the theoretical predictions
regarding how the probability that an individual bird is vigilant should change with
distance from cover. Panel (i) shows the full model; (ii) shows the model without
unequal dilution of risk; (iii) shows the model without vigilance, and (iv) shows the

model without confusion effects. (Left) for µ = 0; (right) for µ > 0.

Fig 3.7 provides a good description of how we would expect vigilance to change with distance

from cover, assuming that there are no concomitant changes in flock size. However, over the

range of distances from cover, flock size may vary. To capture the possibility of differing flock

sizes occurring at different distance to cover, we introduce the joint probability density function
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to find the mean inter-scan intervals over specific distance classes. We divide the distance range

R = R1, R2, R3, ..., R6 with Ri increments of 10 meters. We then use a series of probability densities,

ψi(x̂(n, d)), each integrated over the whole range of flock sizes n ∈ Q = [1, 60], and over each d ∈ Ri:

ψi(x̂(n, d)) :=
1

Ni
x̂(n, d) where Ni =

∫
Ri

∫
Q
x̂(n, d)dndd (3.10)

which provides the mean and variation of inter-scan interval in each distance interval Ri, and over

all flock sizes.

The predictions of the full model are shown in Fig 3.8 where blue bars show mean inter-scan

interval and error bars give one way standard deviation (i.e., mean + sd). The model predicts that

the average inter-scan interval peaks for flock sizes of around 31-40 birds. For flock sizes larger

than this threshold there is a significant decrease in the model predicted mean inter-scan interval.

Comparison with Fig 3.6 helps explain this finding. At around 40 meters from cover, the model

predicts a significant decrease in the probability that a focal bird will be vigilant: individuals are

predicted to be non-vigilant with probability near to one for all distances greater. For any given

flock size, the model would predict a significant drop in the expected proportion of vigilant birds,

as distance to cover increases past the threshold. However, over all possible flock sizes, the model

predicts that the mean proportion of vigilant birds should gradually increase, corresponding to an

decrease in the mean inter-scan interval.
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Figure 3.8: Mean and variation in the inter-scan intervals within flocks for increases
in distance to cover. Blue bars show mean inter-scan interval, and black errors show
mean inter-scan interval + standard deviation of inter-scan intervals. (A): The full
model without behavioural exploration. (B): The full model with an exploration rate

of µ = 0.001.

3.3.4 General model analysis

Some of the predictions just made utilise an equivalence between the (population) state x̂(n, d) of

the theoretical model and the probability that a bird is vigilant, given flock size n and distance to
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cover d. We introduce the joint probability density function

ψ(x̂(n, d)) =
1

N
x̂(n, d) (3.11)

where

N =

∫
Q

∫
R
x̂(n, d)dddn (3.12)

is the appropriate normalisation constant using the domain D = (n, d) ∈ Q × R. We find the

marginal density functions ψ(x̂(n)) and ψ(x̂(d)) by respective integration over all d ∈ R and

n ∈ Q:

ψ(x̂(n)) =

∫
R
ψ(x̂(n; d))dd and ψ(x̂(d)) =

∫
Q
ψ(x̂(n; d))dn. (3.13)

Here, the distance boundaries R− and R+ are inferred from previous studies [207]. The flock size

boundaries are given by Q− and Q+ can be inferred from [25].

Using such methods, the expected value for the mean proportion of vigilant birds over either d

or n can be found by either of the marginal densities

E[x̂(d)] =

∫
d∈R

x̂(d)ψ(x̂(d))dd or (3.14a)

E[x̂(n)] =

∫
n∈Q

x̂(n)ψ(x̂(n))dn (3.14b)

and the variance of the proportion of vigilant birds given by

Var[x̂(d)] =

∫
d∈R

ψ(x̂(d))
(
x̂(d)− E(x̂(d))

)2
dd or

Var[x̂(n)] =

∫
n∈Q

ψ(x̂(n))
(
x̂(n)− E(x̂(n))

)2
dn (3.15a)

3.4 Data

We analyse trends in observational data on redshank, and qualitatively compare to the predictions

of the theoretical model. All data analysed for the purpose of comparison of model predictions

is separate from other observational studies used to inform the model. The data was supplied

by W. Cresswell and comprises information on redshank foraging over several winters. Redshank

vulnerability to predation from sparrowhawks with respect to group size and position, as well as

to predator concealing cover was assessed by observing attacks and kills. Time spent foraging or

scanning for predators in redshank was also recorded. The study area consisted of saltmarsh habitat

adjacent to mudflats and woodlands at Tynninghame Estuary, East Lothian, Scotland, U.K (see

[267] for a more details).

Predation data were collected using the methods in [274]. Data were collected between Septem-

ber to early March 1989-1992 and 2001-2006. Sparrowhawk and peregrine falcon, Falco peregrinus,

attacks were recorded during observation periods. There were sparrowhawk attacks recorded on

288 separate days over 8 winters with mean± standard error = 2.5±0.3 attacks per day. Peregrine

attacks were recorded on 102 separate days over 8 winters with mean± standard error = 1.7± 0.3
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attacks per day. Over the 16 year period of the study, it is likely that numerous different predators

were involved in attacks.

Attacks were defined as fast flights of the raptor towards a single redshank within a flock.

Attacks were categorised as surprise versus pursuit. In a surprise attack, the raptor was obscured

from the view of the redshank that it attacked, using visual cover to conceal some part of the attack.

Usually, this occurred via the raptor using the adjacent woodland habitat. Pursuit (or “open” in

[151]) attacks occurred when the raptor initiated attack in full view of the redshank it targeted.

Usually such attacks happened when the redshank had already begun an escape response.

A kill was defined a when a raptor captured a redshank. For each kill, the flock size and distance

from predator-concealing cover was estimated. A flock was defined as a congregation of 1-100 birds,

for which the maximum distance from one bird to its nearest neighbour was less than 25 meters. In

nearly all cases flocks were composed of the single species redshank, although on occasion flocks of

size 30 or more birds contained a single bird of another species. The presence of other species was

ignored in data collection on flock size, and the attacks were not recorded if the other species was

targeted by the raptor. Distance to cover was estimated using regularly spaced markers around the

edge of the saltmarsh. In total we used 642 attacks for which there were 107 captures. Capture

rates are calculated over flock size classes as the total number of captures divided by the total

number of attacks.

Foraging data were collected between December 2004 and February 2005, and from November

2005 to February 2006 at the same location. Observations of foraging redshank were conducted on

the edge of the saltmarsh. Prey consisted of Orchestia and birds faced competition for food due

to temporal depressions of prey availability. Video analysis was used to infer birds’ distances from

predators, position within the flock, number of prey consumed and proportion of time scanning for

predators. See Sansom et al. [202] for full details on data collection. In total 159 observations on 21

different individual birds was conducted in the first winter period (2004-2005), and 160 observations

on 25 individuals during the second winter (2005-2006).

Vigilance behaviour was defined using head-up versus head-down position. During the analysis,

a bird was scored as vigilant if its head was above the horizontal body line and non-vigilant if its

head was below the horizontal body line. Searching an probing for the Orchestia, a cryptic prey,

was considered mutually exclusive with vigilance behaviour. We use the proportion of time spend a

bird spent in a “head-up” position defined by the proportion of heads-up per second per individual

bird, as one measure of vigilance. The inter-scan interval (inter-scan interval) of a bird, defined as

the time spent between scanning bouts per individual bird, is used as another measure of vigilance.

3.4.1 Data analysis methods

Subsequent analysis applies the techniques of Bayesian regression. Details of the statistical analysis

used in each section of the results are detailed in the following subsections. For all analysis, we

report the posterior mean coefficients and the 95% credible interval (CI) around these coefficients.

Credible intervals not overlapping 0 demonstrate 95% confidence that the mean of the coefficient is

different from 0. All regression analysis is carried out using the brms package of R software [275].

The methods apply a Markov Chain Monte Carlo (MCMC) algorithm implemented in stan [276]

via the brms package [277]. We checked that all models reached convergence of coefficients, absence
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of divergent transitions, and good mixture of chains and effective sample sizes in the “bulk” and

the tails of the distribution.

3.4.2 Predictions 1 & 3: data analysis

The theoretical model predictions 1 & 3 as presented in respective sections 3.3.1 and 3.3.3 are both

assessed using the existing foraging dataset introduced in section 3.4. We conduct all relevant new

data analysis relating to these predictions in this section.

Predictions 1 & 3: investigating how the proportion of time individuals spend vigilant

changes with flock size and distance from cover

New analysis is conducted to assess the effects of flock size and distance from cover on the proportion

of time individual birds spend head-up. Because we are dealing with a proportion which we cannot

express as a sample of binary outcomes, we adopt a Beta regression [278]. That is, we assume that

the proportion of time a bird spends head-up follows a beta distribution. For further details of the

Beta regression see section B.2 of appendix B or [278].

Our theoretical model predicted that individual redshank vigilance depended on flock size and

distance from cover (see section 3.3.1). As such, we model the proportion of time a bird spends

vigilant (p.vig) to depend on flock size (Flock size) and distance from cover (Distance from cover)

using a Bayesian Beta multilevel regression model, defined by

p.vigi ∼B(ui, ϕi) (3.16a)

logit(ui) =β0,bird IDi
+ β1Flock sizei + β2Distance from coveri (3.16b)

β0,bird ID ∼N (β0, σ) (3.16c)

β0 ∼N (0, 0.25) (3.16d)

σ ∼Exponential(1) (3.16e)

β1 ∼N (−0.01, 0.01) (3.16f)

β2 ∼N (−0.01, 0.01) (3.16g)

where β0,bird ID is a random intercept (group level effect) for each recorded bird, included to account

for repeated observations of the same bird. Posterior checks indicate that the inclusion of a random

slope for each bird ID did not improve the model fit, and as such we do not assume non-independence

between the effects that flock size and distance have on each recorded bird. We do assume that each

recorded bird may exhibit a unique intercept, reflecting variations between the proportion of time

birds’ spend vigilant. The random intercepts are drawn from a population distribution defined in

line (3.16d). We set the prior for β0 with the assumption that birds spend approximately half of

the time head-down, and allow for variation; line (3.16d). The average population variation in the

proportion of time birds spend vigilant, from one recorded bird to another is captured by σ in line

(3.16e). Here, we use the exponential distribution as a weakly regularizing prior to estimate the

variation across recorded birds (bird ID). The predicted effect that flock size has on the proportion

of time a bird spends vigilant is defined by β1, and the effect that distance from cover has on the

proportion of time a bird spends vigilant is defined by β2. We set prior distributions of β1 and
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β2 in respective lines (3.16f) and (3.16g) to reflect our assumptions that the proportion of time a

bird spends vigilant should generally decrease with flock size and distance from cover. Here, we

also allow for possible positive relationships between the dependent variable and each regressor.

The prior for ϕ is left uninformed. We ensured that all relationships predicted by the priors were

reasonable on the (link function) untransformed scale, (i.e., the prior predicted proportion of time

head-up remained bounded between zero and one) using the “rethinking” package in R [275, 279].

The model was fitted over a total of 292 observations, with 42 different recorded birds (bird IDs).

We conducted posterior predictive checks using the bayesplot package in R [275, 280], and checked

for convergence of the MCMC algorithm implemented in stan [276] for each coefficient by checking

that the effective sample sizes, R̂ = 1, and by checking trace plots of the Markov chains.

Results of model (3.16) are summarised in Table 3.2 and illustrated in Fig 3.9. The posterior

predicted distribution of β1 has mean = -0.017 ± 0.003 (95% CI [−0.02,−0.01]), indicating that

the proportion of time an individual bird spends vigilant (head-up) decreases with increasing flock

size; Fig 3.9a. We find the sharpest declines in individual vigilance occur in smaller sized flocks.

At average distance from cover (45.1 meters ± 22.1), with an increase in flock size from 1 to 10

we find a predicted decrease in the proportion of time a bird spends vigilant of 3.27% (95% CI,

[1.85, 4.84]); when flock size increases from 11 to 20 we find a predicted decrease in the proportion

of time a bird spends vigilant of 3.03% (95% CI, [1.76, 4.39]); and when flock size increases from 21

to 30 birds, we find a predicted 2.78 % (CI, [1.67, 3.91]) decrease. Whereas, for increases in flock

size from 61 to 70 birds we find a posterior predicted 1.76% (95% CI, [1.30, 2.11]) decrease in the

proportion of time a bird spends vigilant.

The posterior predicted distribution of β2 has mean = 0.009 ± 0.002, (95% CI [0.005, 0.011]).

This finding indicates that the proportion of time an individual spends vigilant increases with

increasing distance from cover. The size of the effect that distance from cover has on the proportion

of time a bird spends vigilant is relatively uniform over all distances from cover. We find that for

an average sized flock (22 birds ± 13), an increase in distance from cover from 1 to 10 meters is

predicted to result in an 1.26% (95% CI [0.77, 1.61]) increase in the proportion of time an individual

spends vigilant. When distance from cover increases from 11 to 20 meters we find a predicted

increase of 1.34% (95% CI [0.8, 1.83]), and when distance from cover increases from 21 to 30 meters

we find a predicted increase of 1.42% (95% CI [0.82, 1.98]) in the proportion of time a bird spends

head-up. At greater distances from cover the size of effect is similar: increasing distance from 51 to

60 meters results in a predicted 1.66% (95% CI [0.89, 2.48]) increase in the proportion of time an

individual is vigilant, and increasing from 61 to 70 meters we predict a 1.74% (95% CI [0.91, 2.61])

increase.

We see from Table 3.2 that the error term of the intercept coefficient (second level residual

standard deviation) is estimated to be 0.24 (95% CI [0.08, 0.41]) indicating deviation between the

random intercepts; Fig 3.10.
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Table 3.2: Assessing the beta regression of equation (3.16)

Regression results for equation (3.16)

95 % Credible interval (CI)

Coefficient Estimate Estimate error CIlower CIupper R̂

Group level effects

σ(β0) 0.24 0.08 0.08 0.41 1

Population level effects with logit link function for ui

β0 0.25 0.15 0.19 0.29 1

β1 -0.02 0.00 -0.02 -0.01 1

β2 0.01 0.00 0.00 0.01 1

Family parameters with identity link function for ϕ.

ϕ 7.02 0.52 6.15 8.29 1

Overall, with regards to how the proportion of time a bird spends vigilant changes with flock

size, model (3.16) provides support for the full theoretical model predictions (including vigilance,

dilution and confusion effects) of section 3.3.1; see panels (i) in Fig 3.1 and Fig 3.2. We also find

support for the reduced theoretical model in which the effects of vigilance are removed (see panels

(ii) of Fig 3.1 and Fig 3.2). The data analysis does not support either of the theoretical models in

which dilution or confusion effects are removed. When considering how the proportion of time a

bird spends vigilant changes with distance from cover, the results of model (3.16) do not support

our theoretical model predictions (see Fig 3.7).
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Figure 3.9: Posterior predicted mean (± 95% CI) proportion of time birds spend
vigilant (Post. mean p.vig), depending on flock size and distance from cover. Plotted
are predictions based on posterior predictive checks generating draws from the random
effects distributions of model (3.16), using out of sample birds. (A): The posterior
predicted proportion of time a bird spends vigilant (blue) ± 95% CI (shaded) with
changes in flock size. (B): The posterior predicted proportion of time a bird spends

vigilant (blue) ± 95% CI (shaded) with changes in distance from cover.
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Figure 3.10: Random effects in model (3.16). Plotted are the posterior predicted
deviations from the population intercept (points) ± 95% CI (error bars) of each
recorded bird (bird ID). Red error bars show 95% CIs not overlapping zero. Blue
bars overlap zero. Black dotted verticals show zero. With 95% credibility, four birds

exhibit an intercept different from the population mean.

Prediction 1 & 3: investigating the variation between, and mean of, inter-scan intervals

given flock size and distance from cover.

In section 3.3.1 the theoretical model predicts that the average inter-scan interval in a flock should

increase with flock size, and that variation in the birds’ inter-scan intervals should be lowest in

small and large flocks, and highest in mid-sized flocks. For a simple qualitative comparison of

this theoretical prediction to the data, we bin the data into “flock size classes” from 1 to 60 birds

with increments of 5 birds. Summary statistics show that mean inter-scan interval increases with

flock size class, and that the most pronounced variation between birds’ inter-scan interval occurs

in mid-sized flock size classes; Fig 3.11a and Fig 3.11b. These findings qualitatively support the

predictions of the full model (see Fig 3.3a and Fig 3.3b), and the model configuration with the

effects of vigilance removed (see the blue bars of Fig 3.3c and Fig 3.3d).

In section 3.3.3 the theoretical model predicts a relationship between the average inter-scan

interval over a range of distances from cover, as well as the variation in inter-scan intervals in this

range. For a simple qualitative comparison, we bin the data into “distance classes” from 1 to 60+

meters from cover, with increments 10 meters from cover. Summary statistics show that average

inter-scan interval, as well as variation in inter-scan intervals, is relatively invariant with increasing

distance class; Fig 3.11c and Fig 3.11d. These findings do not qualitatively support the theoretical

model predictions (see Fig 3.8a and Fig 3.8b).
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Figure 3.11: Summary statistics of inter-scan interval (ISI). (A): Blue bars show
the average inter-scan interval for each flock size class. Red error bars show standard
deviations and black error bars how the standard error. Sample sizes for each flock
size class are indicated by the numbers above the bars. (B): Box-plot illustrating
the quartiles of the inter-scan intervals with different flock size class. We see the
largest inter-quartile range for flock size class 26-30. Outliers occur greater than
the maximum for nearly all flock size classes. We also see that the median inter-
scan interval tends to increase with flock size class. (C): Bar plot showing the mean
(blue bars), and variation of (black standard error, and red standard deviation bars)
inter-scan interval with distance class. Sample sizes over each bar. (D): Box-plot
illustrating the quartiles of the inter-scan intervals with different distance from cover
class. We see that the median inter-scan interval is similar across distance classes.

More robustly, we consider a Bayesian regression. We seek to assess whether the independent

variables of flock size (Flock size) or distance from cover (Distance from cover) affect inter-scan
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interval (ISI). The distribution of bird inter-scan intervals in the data is positively skewed (exhibits

a large right tail). We find normally distributed residuals from a linear model with a log-transformed

dependent variable; inter-scan interval, and above mentioned independent variables. As such, we

regress the dependent variable of log(ISI). To assess the potential affects that flock size or distance

from cover have on inter-scan interval, we model the mean of inter-scan interval ui using a Gaussian

model of the form

log(ISIi) ∼N (ui, σi) (3.17a)

ui =β0,bird IDi
+ β1Flock sizei + β2Distance from coveri+ (3.17b)

β3Flock sizeiDistance from coveri (3.17c)

β0,bird ID ∼N (β0, ρ) (3.17d)

β0 ∼Log-Normal(0.15, 0.25) (3.17e)

ρ ∼Exponential(1) (3.17f)

β1 ∼N (0.01, 0.01) (3.17g)

β2 ∼N (0.01, 0.01) (3.17h)

where we include β0,bird ID as a random intercept to account for pseudo-replication. The prior

distribution of inter-scan interval intercept β0 is defined by a log-normal distribution to ensure

that the average length of time between scans remains strictly positive. We choose the log-normal

distribution to have a mean, which upon exponentiating, constitutes what we consider to a be

good estimate of the average length of time between scans, and set standard deviation to allow for

considerable variation in inter-scan interval, while ensuring the variable is bounded by the minimum

and maximum observed values. We assume a weakly regularizing prior to estimate the variation

between the recorded birds’ inter-scan intervals, given by ρ in line (3.17f). The respective effects of

flock size and distance from cover on the mean inter-scan interval are described by the β1 and β2

terms. We assume that both flock size and distance to cover have weak positive effects on inter-scan

interval, and as such define respective priors for β1 in line (3.17g) and β2 in line (3.17h). Through

the coefficient β3 we investigate whether either of the effects that flock size or distance from cover

have on inter-scan interval, depend on the value of the other regressor. In other words, we check

whether the effect that flock size has on inter-scan interval may vary with different distances from

the predator, or whether the effect that distance from the predator has on inter-scan interval may

vary depending on the flock size. The prior for β3 is uninformed. All priors which we defined are

checked using the rethinking package [279] in R [275].

The theoretical model predicts an upside down U-shaped relationship between the variation of

inter-scan intervals within a flock, and flock size, as well as a nonlinear relationship between the

variation of inter-scan intervals and distance from cover. As such, we are interested in a potentially

nonlinear relationship between both predictors and the standard deviation of inter-scan interval.

We regress the standard deviation according to

σi ∼N (αi, ξ) (3.18a)

αi =a0 + a1f1(Flock sizei,Distance from coveri) (3.18b)
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where f1 is a bivariate tensor spline [281] which is included to model possible nonlinear effects that

flock size and distance from cover have on standard deviation of inter-scan interval. The priors

for the coefficients a0, a1 are uninformed. Interpreting the coefficient a1 is difficult. We emphasise

that we only consider the nonlinear relationship described above for a qualitative comparison to

the theoretical predictions of section 3.3.1 (see Fig 3.3a and Fig 3.3b). The model (3.17)-(3.18)

was fitted over 293 observations of recorded inter-scan interval, with 42 different bird IDs. We

conducted posterior predictive checks using the bayesplot package in R [275, 280], and checked for

convergence of the MCMC algorithm implemented in stan [276] by checking that R̂ = 1 and by

visualising trace plots of the Markov chains.

The results of model (3.17)-(3.18) predict that inter-scan interval increases with increasing flock

size; Fig 3.12a. The predicted posterior distribution of β1 has mean = 0.012 ± error 0.006 (95% CI

[0.0005, 0.024]). We find the predicted posterior distribution of β2 has mean = -0.005 ± error 0.003

(95% CI [−0.012, 0.0003]). As β2 has a 95% probability of falling within a range that overlaps zero,

we cannot rule out the possibility that distance from cover has no effect on inter-scan interval; Fig

3.12b.

The potentially nonlinear effects that flock size and distance from cover have on the predicted

standard deviation of inter-scan interval, defined by the coefficient of the fitted bivariate tensor

spline cannot be easily interpreted; we therefore describe the output of the model graphically. We

illustrate how the predicted posterior standard deviation changes with flock size; Fig 3.12c, and

with distance from cover; Fig 3.12d. In Fig 3.12c we see a relatively flat relationship between the

posterior predicted standard deviation of inter-scan interval and flock size. In Fig 3.12d we see

a slight concave upward and downward shaped relationship between posterior predicted standard

deviation of inter-scan interval, and distance from cover. These results do not qualitatively support

the theoretical model predictions.
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Figure 3.12: The posterior predicted (± 95% CI) mean (Post. mean) and standard
deviation (Std. dev.) of inter-scan interval (ISI) predicted in model (3.17-3.18). To
create the plots we conducted posterior predictive checks by generating data using
draws of the random effects distributions with out of sample birds. (A): The posterior
predicted inter-scan interval (blue line) ± 95% CI (shaded), with changes in flock size.
(B): The posterior predicted inter-scan interval (blue line) ± 95% CI (shaded) with
changes in distance from cover. (C): The posterior predicted standard deviation (solid
black line) of inter-scan intervals with 95% CI (shaded), depending on flock size. (D):
The posterior predicted standard deviation (solid black line) of inter-scan intervals

with 95% CI (shaded), depending on distance from cover.

In Fig 3.13 we see the effect of β3 through illustrating how distance from cover and flock size

interact in their effects on inter-scan interval. In Fig 3.13b we see that for an average sized flock (22

birds), increases in distance from cover have positive effects on the mean of the posterior distribution

of β1. The marginal effect here indicates that flocks further from cover are predicted to exhibit a
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greater increase in mean inter-scan interval with an increase in flock size, when compared to flocks

nearer to cover. In Fig 3.13a we see that at the distance from cover (43 meters), an increase in

flock size is predicted to have a positive effect on the mean of the posterior distribution describing

β2.
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Figure 3.13: Marginal effects of the interaction coefficient, β3, of model (3.17). The
plots are created by predictive posterior checks generating draws from the random
effects distribution with out of sample birds. Both (A) and (B) illustrate the posterior
predicted distributions describing marginal effects, with black dots showing the pre-
dicted mean marginal effect and horizontal bars showing 95% CI. The black dashed
lines illustrate zero effects. (A): The marginal effect that flock size has on the mean
of the posterior distribution of β2. (B): The marginal effects of distance from cover
on β1. We see that the further from cover a flock is situated, the greater the increase

in mean inter-scan interval with increasing flock size.

Overall, the results of Bayesian model (3.17)-(3.18) provide support for the theoretical prediction

that inter-scan interval should increase with flock size. The results of the Bayesian analyses do

not support the theoretical prediction that inter-scan interval should increase with an increase in

distance from cover. The results presented here are not consistent with the theoretically predicted

relationship between variation in inter-scan interval and flock size, nor do the results support the

theoretical prediction regarding variation in inter-scan interval and distance from cover.

As shown in Fig 3.13a, the predicted effect that an increase in distance from cover has on

inter-scan interval, varies depending on flock size. If flock size covaries with distance from cover,

then distance from cover may not causally affect individual vigilance in redshank (as was found in

model (3.16)). Instead, changes in flock size (which are known to influence vigilance [18]) may be

the factor which affects individual vigilance in redshank. It is therefore of interest to check whether

there is a relationship between flock size and distance from cover. To see whether distance from

the predator has an effect on flock size we adopt a negative binomial regression (see section B.3 of

appendix B for further details). We model flock size (Flock size) to depend on distance from cover
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(Distance from cover) through the Bayesian Negative Binomial model defined by

Flock sizei ∼NB(ui, ϕi) (3.19a)

log(ui) =β0 + β1Distance from coveri (3.19b)

β0 ∼Log-Normal(1.1, 0.1) (3.19c)

β1 ∼N (0, 0.001) (3.19d)

with shape parameter ϕ given an uninformed (flat) prior, and defined by the identity link function.

We choose the prior for β0 because we assume an average sized flock should be of around 20 birds

in size on the (link function) untransformed scale. Through our choice of a log-normal prior here,

we allow variation in flock size, but ensure flock size remains non-negative. We choose the prior for

β1 as we have no reason to suspect a relationship between flock size and distance from cover. As

such, we allow for either a positive or negative relationship, so long as the prior predicted changes

in flock size (with distance from cover) do not result in flock size exceeding the maximum observed

flock size in the data. The model was fitted over 292 observations of flock size and distance from

cover combinations. We conducted posterior predictive checks using the bayesplot package in R

[275, 280], and checked for convergence in the MCMC algorithm implemented in stan [276] by

checking that R̂ = 1 and by visualising trace plots of the Markov chains.

Results of model (3.19) indicate that flocks tend to be of smaller size when foraging further

from cover; Fig 3.14. We find that the posterior distribution of β1 has mean= -0.006 ± 0.0018

(95% CI [−0.01,−0.003]), indicating that an increase in distance from cover has a negative effect

on flock size. As distance from cover increases, we find the following predicted decreases in flock

size: from 10 meters to 20 meters mean decrease = 1.54 ± error 1.86 (95% CI [2.25, 9.54]) birds;

from 20 to 30 meters mean decrease = 1.43± error 0.49 (95% CI [0.57, 2.48]) birds, and for 30 to

40 meters mean decrease = 1.36± error 0.44 (95% CI [0.56, 2.26]) birds.
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Figure 3.14: Predicted changes in flock size with distance from cover using the
results of (3.19). Plotted is the posterior predicted mean (Post. mean) flock size (blue
line) ± 95% CI (shaded) found by generating draws from the posterior distribution.
We find a predicted decrease in flock size with an increase in distance from cover, as

explained in text.

3.4.3 Prediction 2: data analysis

Prediction 2 of the theoretical model is assessed using the predation data set (described in section

3.4). Here, we conduct new analysis on this existing data set to assess whether temperature has an

effect on the number of successful captures made, and the probability of a capture. We categorise

observations of predator attacks into warm months (Oct, Nov, Dec 1989; Jan, Feb, Mar, Sep, Oct,

Nov, Dec 1990; Oct, Nov, Dec 2001 and Jan, Feb, Oct, Dec 2002: N = 237 observations, mean

temperature, ⟨T ⟩ = 6.17± 2.17) and cold months (Jan, Feb, Dec 1991 and Jan, Feb, Mar 1992: N

=134 observations, mean temperature, ⟨T ⟩ = 4.32± 0.78).
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Table 3.3: The proportion of captures across different temperatures

Proportion of captures over warm and cold months

Flock size class Sample size; N Average temp; T Proportion of captures; Propcap

Warm Months; overall weighted average ⟨T⟩ = 6.17

1-5 N =56 T=5.6 Propcap=0.161

6-10 N =26 T=6.5 Propcap=0.154

11-15 N=23 T=5.4 Propcap=0.217

16-20 N=22 T=6.1 Propcap=0.136

21-25 N=21 T=6.9 Propcap=0.000

26-30 N=18 T=6.8 Propcap=0.056

31-35 N=11 T=6.7 Propcap=0.000

36-40 N=13 T=6.7 Propcap=0.077

41-45 N=13 T=6.0 Propcap=0.077

46-50 N=12 T=6.8 Propcap=0.167

51-55 N=10 T=6.2 Propcap=0.100

56-60 N=12 T=6.5 Propcap=0.083

Cold Months; overall weighted average ⟨T⟩ = 4.32

1-5 N =35 T=4.2 Propcap=0.400

6-10 N =22 T=3.8 Propcap=0.318

11-15 N=11 T=4.3 Propcap=0.364

16-20 N=11 T=3.9 Propcap=0.273

21-25 N=13 T=4.5 Propcap=0.000

26-30 N=6 T=4.6 Propcap=0.333

31-35 N=14 T=4.2 Propcap=0.143

36-40 N=8 T=4.1 Propcap=0.250

41-45 N=5 T=4.0 Propcap=0.200

46-50 N=3 T=4.3 Propcap=0.333

51-55 N=5 T=4.0 Propcap=0.000

56-60 N=1 T=4.3 Propcap=0.000

A simple summary of the influence that temperature has on the proportion of successful attacks

is given in Table 3.3. The table shows the proportion of successful captures made by the predator

with flock size class, over the different temperature classes. Visualising these summary statistics

indicates a broad and general increase in the proportion of captures during the colder climactic

conditions; Fig 3.15. For comparison with model’s theoretical predictions see Fig 3.5a and Fig 3.5b.
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Figure 3.15: Observed proportions of birds captured given flock size, during warm
and cold months. Data from Table 3.3. Warm months average temperature 6.2

degrees and cold months average temperature of 4.3 degrees.

Here we consider a Bayesian regression model with binary dependent variable; capture success

“cap”. Values of cap = 1 indicate a successful predator attack (the redshank is killed) and cap = 0

indicate a failed attack (the redshank is not killed). Temperature class is defined as a binary

categorical variable; either “high” (reflecting warm months) or “low” (reflecting cold months).

Assuming that temperatue class is the only factor which effects the probability of a capture, we

apply a simple intercept only model where probability that a bird is captured, pi, is given by

capi ∼Binom(ni = 1, pi) (3.20a)

logit(pi) =α+ βTemp Classi (3.20b)

α ∼N (−0.5, 0.25) (3.20c)

β2 ∼N (−0.01, 0.01) (3.20d)

with Temp Class = 0 used to indicate the high temperature class, and Temp Class = 1 used to

indicate the low temperature class. Here, α corresponds to a average probability of capture given

the high temperature class (i.e., Temp Class = 0), and α+β the average probability of capture given

the low temperature class (i.e., Temp Class = 1). We set the prior for α to reflect our assumptions

that the probability of a capture should be less than 0.5, and allow for variation. We leave prior

for β uninformed so that temperature can have a positive or negative effect on the probability of

capture. Posterior predictive checks were conducted using the bayesplot package in R [275, 280].

We checked for convergence in the MCMC algorithm implemented in stan by visualising trace plots

of the Markov chains.

Results of the model (3.20) indicate that without consideration of any other factors which may

influence the probability of a capture, there is a greater probability of capture during the colder

climactic conditions; Fig 3.16. We find that the predicted mean probability of capture is 15.8%

(95% CI [7.8, 24.2]) higher for the low temperature class, compared to the high temperature class.
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Figure 3.16: The posterior predicted probability of a capture depending only on
temperature class. The plot is based on posterior predictive checks, conducted by
generating data using draws from the posterior distribution. We see in blue the pre-
dicted posterior distribution of the probability of capture during the low temperature
class, and in pink the predicted posterior distribution for the high temperature class.
Points correspond to the posterior mean predicted probabilities of captures, and and

error bars show 95% CI.

In greater detail, we theoretically expect that the probability of a capture should decrease with

an increase in flock size, and decrease with an increase in temperature (see Fig 3.5a and Fig 3.5b).

We additionally expect the probability of a successful capture to decrease with increasing distance

from cover, as it is known that the majority of attacks come from an ambush predator which is

most successful initiating an attack near a flock [25]. As such, we model the probability that a bird

is captured pi to depend on all three variables: flocks size, distance from cover, and temperature.

We model the probability of a successful attack pi using a Bayesian model of the form

capi ∼Binom(ni = 1, pi) (3.21a)

logit(pi) =α+ νiFlock sizei + β2Temp Classi (3.21b)

+ τiDistance from coveri (3.21c)

νi =β1 + β3Temp Classi (3.21d)

τi =β4 + β5Temp Classi (3.21e)

α ∼N (−0.5, 0.25) (3.21f)

β1 ∼N (−0.01, 0.01) (3.21g)

β4 ∼N (−0.01, 0.01) (3.21h)

where Temp Class = 0 indicates the high temperature class, and Temp Class = 1 indicates the

low temperature class. Again, α corresponds to a average probability of capture given the high

temperature class (i.e., Temp Class = 0), and α + β2 the average probability of capture given the

low temperature class (i.e., Temp Class = 1). In this model flock size effects are also conditional
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temperature class, defined by ν. The expression β1Flock sizei + β3Flock sizeiTemp Classi predicts

the effect that flock size has on the probability of a capture through β1 for the high temperature

class (Temp Class = 0) and through β1 + β3 for the low temperature class. This allows us to

compare the predicted posterior slope describing the relationship between capture probability and

flock size, across temperature class. We assume that the probability of a capture decreases with

flock size, and set the prior of β1 to reflect this in line (3.21g). Model (3.21) indicates that the slope

describing the relationship between the probability of capture and distance from cover from cover

may vary across temperature class, as described by τ . The model predicts a mean of the posterior

distribution describing the relationship between the probability of capture and distance from cover,

β4, when temperature class is high, i.e., the categorical variable of Temp Class = 0. For the low

temperature class the effect that distance from cover has on the probability of a capture is given by

β4 + β5. The expression τ allows us to check whether the effects of distance from cover confound

the relationship between capture success, flock size and temperature class. If distance from cover

does not confound the results we expect the slopes to be relatively uniform across temperature

classes, i.e., the effect of the coefficient β5 to be small with a 95% CI overlapping zero. We assume

that the probability of capture should decrease with increasing distance from cover, and set the

prior for β4 accordingly in line (3.21h). We leave the prior for β2 flat so that temperature can

have a positive or negative effect on the probability of capture. The prior for β3 is left flat so

that temperature can have a positive or negative effect on the slope describing the change in the

probability of capture with flock size, and we leave β5 flat so that temperature can increase or

decrease the rate at which the probability of capture changes with distance from cover. All of

priors which we set were checked using the rethinking package [279] implemented in R [275]. We

conducted posterior predictive checks using the bayesplot package in R [275, 280], and checked for

convergence in the MCMC algorithm implemented in stan [276] by checking that R̂ = 1 and by

visualising trace plots of the Markov chains.

The posterior predicted marginal effects that temperature class has on the probability of capture

from model (3.21) are shown in Fig 3.17a. For an average sized flock of 25 birds, at average distance

from cover of 31 meters, we find a predicted 14.58 % (95% CI [2.75, 27.22]) increase in the probability

of a capture during colder climactic conditions. At 95% probability, we find that an increase in flock

size is predicted to decrease the probability of a capture only in the low temperature class; β1 (post.

mean = -0.01 (95% CI [−0.04, 0.01])) and β1 + β3 (post mean = -0.05 (95% CI [−0.09,−0.02]));

Fig 3.17b. We see the differences in the effects that an increase in flock size has on the probability

of capture across temperature class, by comparing the posterior predicted distributions of β1 and

β1 + β3; Fig 3.18a. As flocks become sufficiently large the effects that an increase in flock size has

on probability of capture are small across both temperature classes; Fig 3.17c and Fig 3.17b. In Fig

3.17c we see a bi-modal posterior distributions describing the marginal effects of flock size on the

probability of capture for small to mid sized flocks. The two peaks reflect two slope coefficients of

β1 and β1+β3. For larger flock sizes (see Flock size = 75 in Fig 3.17c) the distribution is uni-modal.

This result supports the theoretical model prediction that capture probability should equalise over

temperature classes as flocks become larger (see flock size greater than 40 birds in Fig 3.5a and Fig

3.5b). The posterior distributions of ν indicate that during colder months, there is on average a

sharper decline in the probability of capture as flock size increases; Fig 3.18a.
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Figure 3.17: The marginal effects on the posterior predicted probability of a capture
(p.cap), depending on (A) temperature class (B) flock size, and the marginal effects
on the predicted probability of capture for (D) an average sized flock at varying dis-
tances from cover, and (C) an average distance from cover, with varying flock sizes.
Plots (B),(C) and (D) are from posterior predictive checks, conducted by generating
data using draws from the posterior distribution. Plot (A) is produced by calcu-
lating marginal effects. (A): Predicted posterior mean probability of capture (post.
mean p.cap) for high and low temperature classes, based on an average sized flock
and average distance from cover. Points correspond to the posterior mean predicted
probabilities of captures, and and error bars show 95% CI. (B): The changes in the
predicted mean probability of capture (lines) ± 95% CI (shaded) with increasing flock
size, for each temperature class. (C) and (D) show distributions of the marginal effects
(on the probability of a capture) as flock size and distance from cover increase. Black
dots show posterior means, bars show 95% CI, and the black dashed lines describe
zero effects. (C): The marginal effect on the probability of capture, given average
distance from cover, for increases in flock size. (D): The marginal effect on the prob-

ability of capture, given average flock size, for increases in distance from cover.
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Figure 3.18: The posterior distributions of ν and τ of equation (3.21). The blue
distributions show the predicted posteriors during the low temperature class. The
pink shows the posterior distribution for the high temperature class. Respective
posterior means are shown by the coloured dots, and 95% CI by horizontal bars. (A):
The predicted posterior distributions of the coefficients β1+β3 (blue; low temperature
class) and β1 (pink; high temperature class), describing decreases in the probability
of a capture with increasing flock size. We see that the distribution and mean of
distribution are shifted left during the low temperature class. This shows a sharper
decrease in the probability of capture with flock size, for the low temperature class.
(B): Predicted effects on the probability of capture with changes in distance from cover
are relatively uniform over temperature class. We see that the predicted distribution
of β4+β5 (blue; low temperature class) is similar to β4 (pink; high temperature class),
as are the means. We expect the effects of distance from cover on the probability of

capture to be similar over each temperature class.

During warm months birds fed on average at 16.1 meters from cover (d̄ = 16.1, σ = 9.5, N = 237)

compared to 17.7 meters from cover during cold months (d̄ = 17.7, σ = 8.3, N = 134). Distance from

cover therefore should not confound the results. Nonetheless, a potentially confounding relationship

between flock size and distance from cover for either of the temperature classes, is captured by τ .

The predicted effects that distance from cover has on the probability of a capture are defined

through the coefficient β4 during warmer months, and through β4 + β5 during colder months. We

find that for both temperature classes, an increase in distance from cover is predicted to decrease the

probability of a capture; the posterior distribution of β4 has mean = -0.05 (95% CI [−0.11,−0.01])

and the posterior distribution of β4 + β5 has mean = -0.06 (95% CI [−0.12,−0.02]). We see that

the effects that distance from cover has on the probability of capture appear uniform; Fig 3.19,

as reflected by the similar posterior distributions describing the respective coefficients; Fig 3.18b.

In Fig 3.17d we see that the posterior distributions describing the marginal effects that distance

from cover has on the probability of capture are unimodal, except for around distances of 30m.

This demonstrates that the effect that distance from cover has on capture probability is similar

across temperature class. At 30m from cover, we see from Fig 3.19 that the slopes described

by β4 and β4 + β5 appear to differ by the most, explaining the bi-modal shape of the posterior
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distribution at this distance as illustrated in Fig 3.17d. At 95% credibility, we cannot claim that

the relationship between capture probability and distance from cover differs across temperature

class. As the credible intervals of β4 and β4 + β5 overlap we cannot rule out that the possibility

that there is no difference in the effects that distance from cover has on the probability of capture,

across temperature class. At 10 meters from cover it is 3.04% (95% CI [−16.50, 11.39]) probable

that the effects that distance from cover has on capture probability differ across temperature class.

At 20 meters from cover it is 4.18% (95% CI [−26.42, 17.35]) probable, and at 30 meters from

cover it is 4.61% (95% CI [−31.81, 18.75]) probable. At each of 10,20 and 30 meters from cover,

the posterior predicted probability that the slopes differ exhibits a wide 95% CI overlapping zero.

Given that all successful captures occurred within 30 meters from cover, we therefore do not expect

distance from cover to act as a confounding variable in the relationship between temperature class,

flock size, and the probability that an individual bird is killed.
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Figure 3.19: The predicted relationship between the probability of a capture and
distance from cover, over each temperature class. Predictions are made from posterior
predictive checks generating draws from the posterior distribution of model (3.21).
The blue line describes the posterior predicted probability of capture (95% CI shaded)
with changes in distance from cover for the low temperature class. The effect is defined
by the mean of the distribution of β4 + β5. The pink line represents the predicted
probability of a capture (95% CI shaded) given the high temperature class, with effect
defined by β4. The slopes are similar, suggesting that the decrease in the probability
of capture with increasing distance from cover is not affected by temperature class.

Without identifying any other confounding factors, we conclude that the results of this section

are qualitatively consistent with the predictions made by the theoretical model: that there is an

increase in the probability of a capture during harsher climactic conditions.

3.5 Discussion

In this chapter we have compared the theoretical results of the model of chapter 2 to the vigilance

behaviour of the wading bird redshank. We qualitatively assess the theoretical predictions of the

model relating to how individual vigilance should change with group size, environmental conditions,
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and perceived level of threat. By conducting new data analysis, we show that the theoretical model

is able to qualitatively predict the anti-predator behaviours of redshank when all three principal

anti-predation effects of collective vigilance, dilution and confusion, are modelled in concert, and

when the effects of vigilance (collective detection) are removed. When accounting for all three

principal effects, two of the three theoretical predictions are supported by data analysis: vigilance

decreases with both flock size and with decreases in energetic state. The model prediction that

vigilance should decrease with distance from cover is not empirically supported. Here, we provide

an explanation for why this is the case, and argue that despite the lack of empirical support, the

model prediction is still theoretically grounded.

3.5.1 Vigilance decreases with flock size

The theoretical model presented in section 3.2.1 and parametrised in section 3.2.2, predicts that

individual vigilance in redshank should decrease with increasing flock size. Our data analysis

indicates that individual vigilance in redshank decreases with an increase in flock size. The majority

of field studies also find decreases in vigilance with increasing group size [2, 127, 146]. An important

aspect of our theoretical prediction is based on the assumption of an unequal dilution of risk between

vigilant and non vigilant birds. We explain this as follows: in small flocks, vigilant redshank

react quicker and are less likely to be targeted, relative to non-vigilant individuals. Vigilant birds

experience a significant fitness advantage through a preferable dilution of risk. In larger flocks,

having many neighbours offers all individuals sufficient safety. Residing in a larger flock therefore

decreases the relative magnitude of the effects that risk dilution exert on individual survivorship.

With increasing flock size, the relative advantage of early detection (and vigilance) decreases.

The mathematical model that we present also predicts (by a mixed state of vigilant and non-

vigilant birds) variation in the vigilance behaviours between individual redshank, for a range of

flock sizes. In a summary analysis of the data we find most pronounced variation between the

vigilance behaviours’ of birds in mid-sized flocks; Fig 3.11a. Comparing the standard error terms

of Fig 3.11a to the model predictions shown in Fig 3.3, we see a qualitatively similar pattern: small

flocks contain little variation in vigilance levels, mid-sized flocks contain the highest variation in

vigilance levels, and large flocks contain little variation in vigilance levels. We interpret this result

as indicative of small flocks being predominantly composed of vigilant birds (low inter-scan interval,

low variation of inter-scan intervals), mid-sized flocks containing a mixture of the vigilant and non-

vigilant behaviours (mid inter-scan interval, high variation of inter-scan intervals), and large flocks

being predominantly non-vigilant (high inter-scan interval, low variation of inter-scan intervals), as

was predicted by the model. This result should be taken with caution due to smaller sample sizes

in the smaller and larger flock size classes of the data. In applying a Bayesian analysis (see Fig

3.12c), we do not find a predicted relationship between standard deviation of inter-scan intervals

and flock size which is qualitatively consistent with the theoretical model predictions. Overall,

we interpret the results of the data analysis as very tentative support for the model prediction:

mid-sized flocks contain the greatest mixture of two distinct behavioural phenotypes; one which

prioritises vigilance, and the other which prioritises feeding.

The mixed vigilance flock predicted by the mathematical model is explained as follows: in

mid-sized flocks, we model fitness benefits arising through both early detection (since flock size is
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not too large) favouring the vigilant behaviour, and through foraging gains favouring non-vigilant

behaviour. Mid-sized flocks are not large enough for risk dilution to offer sufficient safety for all

birds: individuals which choose to be vigilant receive a significant relative fitness benefit through

early detection, i.e., unequal dilution. At the same time, mid-sized flocks are not small enough for

the fitness benefit of unequal dilution to be sufficient for all birds to choose the vigilant behaviour.

Thus, some birds prioritise feeding, while others prioritise vigilance. Previous observational studies

have noted that the relative magnitudes that the effects of collective detection and dilution effects

have on predation risk, change with group size [31, 136, 146, 227]). Here we present an explicit

theoretical framework which explains how, depending on group size, the magnitude of effect that

each anti-predation mechanism has on predation risk varies. As such, we show how changes in the

relative efficacies of the anti-predation effects, can predict changes in prey behaviour with changes

in group size.

Through analysis of sections 3.3.1 and 3.4.2 the research presented here provides support for

the hypothesis that collective vigilance, dilution and confusion effects are complementary anti-

predation effects operating together to select for anti-predator behaviours in grouping individuals.

We demonstrate that theoretically excluding either of the effects of unequal risk dilution or confusion

results in theoretical predictions which the data are qualitatively less consistent with. In a similar

theoretical grounding, Dehn [31] attempted to distinguish the importance of group vigilance and

dilution effects. He found a good fit for a model in which non-vigilant individuals contribute

to lowering individual risk through dilution effects, but not through vigilance. Dehn’s conclusions

support our findings that both of the effects of dilution and vigilance may be important in explaining

vigilance behaviours in groups: dilution producing the dominant effect in larger group sizes, and

vigilance effects dominating in smaller group sizes. When the effects of vigilance in the form of

collective detection are not considered in our theoretical model, we still theoretically predict that

an increase in flock size will a negative effect on the probability that an individual bird is vigilant;

panels (iii) of Fig 3.1 and Fig 3.2. This prediction is qualitatively supported by the data; Fig

3.9a. Applying the theoretical model leads to a possible hypothesis that collective detection may

not explain the observed decrease in individual vigilance in redshank with increasing flock size, as

was found in the data. The negative group size effect associated with redshank vigilance could

be explained by alternative mechanisms. Our model shows that with an increase in flock size, the

effects of an inequitably shared safety in numbers (unequal dilution effect) and a lower probability

of predator attack success (confusion effect) are sufficient to explain the reduction in individual

vigilance. Moreover, we show that it is important to also theoretically consider confusion effects.

When removing the effects of confusion, the theoretical model predicts an individual bird to have

a very high propensity to be vigilant, and that vigilance is unaffected by changes in flock size (see

panel (iv) of Fig 3.1 or Fig 3.2). This prediction is not supported by the data. Confusion effects are

likely to reduce the need for individual vigilance in groups due to multiple group members reducing

the predators ability to pick any one target [117, 170]. Our model predicts a higher probability for

individual vigilance without such group size effects.

The qualitative similarities between the theoretical predictions of our model and the data should

be taken with some caution. Several confounding factors are thought to moderate the effect of group

size on vigilance. Perhaps the most studied confounding variable in the study of group vigilance is
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food density. Foragers often aggregate in areas of high food density, and therefore food density could

have a positive effect on group size. In particular, in redshank, feeding and vigilance are largely

exclusive. In this case, a reduction in vigilance with group size could reflect the direct influence

of food density on vigilance, rather than group size on vigilance. The parametrised theoretical

model attempts to capture a direct relationship between food density and spatial location through

using food quality as a function of distance from the predator (section 3.2.2). However, we do not

consider the possibility that food density affects group size, i.e., areas of high food quality attract

larger flocks.

3.5.2 Vigilance decreases with increased energetic needs

The model we present is able to capture complex state dependent effects on an individual’s be-

haviour. By parametrising the benefits function (equation 3.1) with a fitness currency of energetic

uptake rate [250, 262] the theoretical model is sensitive to the effects that harsher environmental

conditions have on a bird’s metabolic demands.

For a range of flock sizes the theoretical model predicts that an individual bird will be vigilant

with a lower probability. Because the probability that a bird is vigilant x, translates to an expected

number of vigilant flock members, nx, equation (3.6) gives a probability that no flock member is

attacked. The model predicts that any flock member will be vigilant with a lower probability

in low temperatures, compared to high temperatures. This results in a greater probability that

any flock member is captured in harsher climatic conditions. Our data analysis largely supports

this prediction. We find a higher predicted mean capture rate during the low temperature class

of averaged monthly temperatures; Fig 3.17a. Under more demanding metabolic conditions, to

avoid starvation redshank are forced to prioritise feeding [204]. Increased time head-down increases

the ability of the sparrowhawk to initiate an attack undetected. The result is a greater number

of captures within any given flock. Results of the data analysis also show a steeper decrease in

the probability of capture with flock size for the low temperature class; Fig 3.17b. This finding

indicates that vigilance effects are most important in small flocks facing harsh climactic conditions.

In small flocks, confusion effects do not significantly affect the raptors ability to make a kill [25], and

dilution effects do not affect the probability that a capture is made. It would seem that the sharp

reduction in the probability of capture predicted in the data analysis, is explained by the effects

of collective detection. Given that low temperatures force birds to spend lengthy time periods

head-down, any additional pair of eyes joining the flock may be extremely valuable in increasing

the flocks ability to detect a predator. In contrast, in climactic conditions which subject redshank

to less severe metabolic demands, i.e., at higher temperatures, birds do not have to forage with the

same intensity. While birds do not spend relatively as much time head-down, they are less reliant

on the vigilance of others’, and additional vigilance to the flock is less valuable. Our finding that

the reduction in capture rate during milder climactic conditions is less steep than during harsher

climates indicates that vigilance effects are state dependent.

Other studies have examined the effects that energetic state have on individual vigilance by

considering time constraints on foraging [62, 200]. For example, McNamara & Houston [32] included

metabolic constraints in their model of vigilance, and in doing so found a better qualitative fit to

the data of Pulliam [49]. In many grouping species the risk of starvation cannot be discussed
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separately from vigilance, and predation risk. Foraging with metabolic constraints will therefore

have significant implications for vigilance, and more general anti-predator behaviours. The simple

reality that each biological problem will have it’s own complex relationship between energetic state

and predation risk makes it difficult to produce a simple model to encapsulate these effects. In

this research, we show that the broad theoretical model of chapter 2 is able to reduce to a specific

species dependent problem and capture state dependent effects. Further research on the effects of

state on behaviour will be valuable to the field.

3.5.3 How vigilance changes with distance to predatory concealing cover

In line with the expectation that individual vigilance should increase with predation risk, our

theoretical model predicts that the probability an individual redshank is vigilant decreases with

increasing distances from the predator. In particular we predict that for any fixed flock size, the

vigilance rate of a bird increases with an increase in distance from cover. This model prediction

is not qualitatively reflected in the observational data. Our analysis of the data shows a slight

increase in vigilance with increasing distance from cover (see Fig 3.9b).

One possible explanation why the theoretical model fails to capture the relationship between

distance to cover and individual vigilance draws from the confounding variable of flock size [18,

136, 191]. Our data analysis showed that at a signifiant level, flocks which feed further from cover

tend to be smaller than flocks that feed nearer cover (see Fig 3.14). While flock size decreases with

increasing distance from cover, individual vigilance could be a sensitive reactive response to both

flock size and spatial location. In smaller flocks, a reduction in the dilution of risk increases the

need for (and benefit of) individual vigilance [25, 116]. Even at greater distances from the predator,

due to the smaller flock sizes, individual birds within the flock may still be at considerable risk.

Therefore, as flocks forage further from cover, there are two compensatory effects at work which

modulate an individual bird’s predation risk: a reduction in safety through a reduction in flock

size, and an increase in safety through an increase in distance to cover. If the overall effect is

an increase in predation risk, then individual birds may compensate for the increased risk by

maintaining or increasing their vigilance levels. Alternatively, it might only be flock size that

influences the vigilance behaviour in redshank without any causal relationship between vigilance

and distance from cover. Vigilance is most valuable when near the predator (<30 meters). Within

this spatial range, flock size decreases with increases in distance from cover. Decreases in flock

size are predicted, and shown in this system (see Fig 3.9a), to result in an increase in individual

vigilance.

A different hypothesis is that competition between flock members may increase as flocks become

larger, resulting in a greater need for individual birds to invest in time spent feeding. If there is a

decrease in prey availability with an increase in flock size, then individual birds are subject to lower

intake rates in larger flocks. A lower intake rate could have the effect to encourage an individual

bird to increase it’s foraging intensity and potentially decrease it’s vigilance [146]. With respect to

redshank, this is very possible. Given that vigilance and feeding are largely exclusive, one could

expect that an increase in foraging intensity directly results in a lower rate of vigilance for an

individual bird. However, it has been previously shown in the system that there is no significant

relationship between flock size and intake rate in the birds [202].
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Other studies have found that vigilance decreases with increasing distance from predatory cover.

For example, Beauchamp [282], using pecking rate as a measure of vigilance, found that semi-

palmated sandpipers decrease their pecking rate when further from cover. Beauchamp concluded

that pecking success rate decreased nearer to cover, and that the increase in pecking rate (and

decrease in vigilance) nearer cover could be due to less food availability near the predator. Food

availability could be a possible factor which helps explain the models failure to capture the relation-

ship between vigilance and distance from cover. A dependency between food density and distance

was explicitly parametrised in section 3.2.2.

It could well be that the discrepancy between the theoretical model prediction and the data

analysis is a simple case of the biological problem being more complex than the mathematical

approximation. The fundamental reason for which we argue this is due to the presence of another

raptor on the site location [266]. Redshank face a constant rate of attacks from peregrine falcons,

regardless of proximity to cover [23]. In the theoretical model, despite equation 3.6 being well suited

function to describe flock evasion under a sparrowhawk attack (see [206] or [207] for justification of

this), the function does not account for peregrine attacks. The peregrine threat changes a redshanks

perception of risk over all distances from cover. Peregrines attack from all distances. In this light,

our model parametrisation is almost certain to overestimate the significance of the reduction in

predation risk experienced by redshank, as flocks forage further from cover.

A subtle change in the parametrisation of theoretical model could account for peregrine attacks.

Given that sparrowhawks only attack flocks within the 30m from cover boundary, the evasion

function (equation 3.6) could be re-parametrised as piecewise continuous with distance from cover.

In such a regime, the effects of vigilance and confusion would both control the probability of flock

evasion along with distance from cover while d < 30. Whereas for d ≥ 30 the probability of evasion

would be independent of distance from cover (peregrines attack from all spatial locations) and

relatively unaffected by vigilance effects (since vigilance is not an appropriate defence against the

peregrine); the only dominant effect controlling evasion would be group size (confusion effects). On

this line of reasoning, the model would capture how the relative effects of group size and vigilance

are sensitive to spatial location when influencing vigilance behaviours in redshank. As such, for

d ≥ 30 the model would predict that a reduction in group size only has the effect to increase the

importance of unequal dilution effects, which favour vigilant behaviours. If flock size decreases with

increasing distance to cover, this would explain why individual vigilance increases.

The explanation we provide here emphasises the theoretical motivation of our modelling: anti-

predation effects in the form of vigilance, confusion and dilution are intertwined and must be

considered to operate interdependently. If the only predator is a peregrine then (collective) vigilance

in redshank is a less effective defence strategy. The importance of the effects of group size (confusion

effects) on predator evasion increase relative to vigilance. While flock size is the dominant factor

determining the probability that any individual is targeted, changes in flock size result in substantial

changes in individual per-capita risk. This results in an increase in the importance of risk dilution.

While sparrowhawks are the prominent predator, vigilance is always an effective anti-predator

strategy because collective vigilance in redshank can generally provide protection for the entire

flock. The effects of unequal dilution are only significant in small flocks which are less likely to

detect the predator.
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3.5.4 Concluding remarks

Overall, when used to make specific predictions in a real biological system, the model of chapter 2

has received mixed empirical support. We have demonstrated that our general theoretical model can

be applied to a specific system and correctly predict key relationships between prey behaviour and

predation risk. Our qualitative analysis to the data demonstrate the importance of considering all

three anti-predation effects when predicting the behaviours in prey groups. Previous experimental

studies have shown that at least two of the principal anti-predation effects may interact when

influencing the behavioural choices of group members, although these studies tend to be on specific

species [31, 146]. A general and widely applicable theory is lacking. To our knowledge, this is

the first time that a broad theoretical framework, able to predict the anti-predator behavioural

responses in groups as the result of three interacting prominent anti-predation effects, has been

compared to observational data. By capturing the trade-off between preferable risk dilution and

unfavourable foraging returns that arise from a group member’s behaviour [31, 146, 263], our model

provides a general framework to explain the behaviours for a wide range of grouping species. We

conclude that the model of chapter 2 provides an important step in understanding the anti-predator

behavioural decisions for wide ranging grouping animals.
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Chapter 4

The adaptive dynamics of

anti-predator strategies

Abstract

Many grouping animals demonstrate highly flexible behaviours when responding to preda-

tors. In this chapter we analyse the continuous extension of the model presented in chapter

2. We focus on a foraging-predation trade-off given by case 4 of Table 2.1, here defined by

continuous smooth functions relating strategic investment to individual payoff. Subsequently,

conditions are clarified under which the mixed strategy and the continuous strategy interpre-

tation of flexible behaviour produce the same behavioural outcomes, and when not. Through

our analysis of a continuous strategy, we show that there are three qualitatively distinct pos-

sibilities which characterise the behaviours emerging from groups. We clarify when all group

members choose an extremal behaviour, an intermediate behaviour, and when behaviours

within the group become differentiated. Our key findings are threefold. First, we show that

a richer array of behaviours emerge in groups when an individual’s experience of predation

risk and foraging gains continuously varies with its strategy. We show that when individuals

experience binary levels of predation risk and foraging gains with continuously varying prob-

abilities, fewer behavioural outcomes are possible. Second, we show how simple properties

of payoff functions that define the above mentioned trade-off govern the continuous strategy

dynamics. Third, we show how there is a subtle but important difference in behavioural

diversity within groups that result from mixed and continuous strategies. Overall, we show

how a simple mathematical model can reproduce highly flexible and complex anti-predator

behaviours in groups of prey.

4.1 Introduction

In chapter 2 a model is presented that predicts the strategic behaviours of individuals within groups

of prey, subject to predation. The model of chapter 2 assumes that group members have a fixed

and discrete choice of strategies. Anti-predator behaviours in foraging groups are however most

likely to be highly flexible [4, 27, 219], and liable to continually change with predation pressures
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and foraging demands [18, 32, 46] (and see the results presented in section 3.4.1 of chapter 3).

Flexible behaviours may be better captured by a continuous strategy. In this chapter, we build on

the theoretical approach of chapter 2 in the mutual modelling of multiple anti-predation effects and

grouping benefits, but allow individuals to flexibly choose and adjust their pro-active anti-predator

behaviours.

Adaptive dynamics, introduced in section 1.3, provides a powerful set of techniques to model

changes in continuous strategies. Despite traditionally being applied to study the slow evolution of

quantitatively fixed traits, adaptive dynamics can model biological problems on faster timescales

(see the Introduction section 1.3 or [60, 103, 112, 283]). Here, we apply adaptive dynamics to model

the anti-predator behaviours that emerge in groups of prey. In lieu of the binary choice of strategy

presented in chapter 2; “to contribute towards anti-predator activities” or not, here we consider

a continuous strategy of “contribution investment” into anti-predator activities. For example, a

continuous strategy could be an individual’s investment effort into predator detection [32, 49, 188],

the amount of energy it spends on raising alarm calls [59] or its contribution towards coordinated

motion [179].

In contrast to the continuous strategy modelled under adaptive dynamics, behavioural flexibility

can also be considered in the sense of a discrete strategy space [41]. Using the discrete strategy

space, one can approximate flexible behaviours by assuming that individuals “probabilistically”

adopt a particular fixed behaviour, i.e., the mixed strategy [35]. The model of chapter 2 may be

interpreted in the sense of mixed strategies: with some probability, individuals invest all (contribute

and play C) or nothing (do not contribute and play D) into anti-predator activities. Here, we refer

to this mixed strategy as the “contribution probability”. The contribution probability and the

contribution investment thus provide two different mechanisms for modelling flexible anti-predator

behaviours. Both interpretations of strategy are used to reflect the behaviours in groups of prey (for

example see [59] for the “probability” to raise alarm calls, or [32] for “investment” into vigilance).

Nonetheless, how the predicted behaviours emerging from groups under each mechanism possibly

differ is unclear.

The key research tasks of this chapter are (i) to find “how much” effort group members should

choose to invest into anti-predator behaviours, and (ii) to show that by allowing groups members a

flexible effort level, we see qualitatively different behaviours compared to when individuals can only

invest all or no effort with flexible probabilities. We aim to compare the contribution probability

(presented in chapter 2) and the contribution investment (analysed in subsequent sections) mech-

anisms. To achieve these tasks we focus on case 4 of the trade-off Table 2.1, chapter 2, whereby

the more an individual invests into an anti-predator strategy the more that individual experiences

both reductions in its per-capita predation risk and in its general grouping benefits. Such foraging-

predation trade-off’s are common in groups of prey [18, 31, 284]. We analyse a range of possible

different qualitative structures that reflect this trade-off. The respective emerging behavioural dy-

namics are analysed and compared to the results of chapter 2. We show which trade-off structures

result in a qualitative equivalence between the mixed strategy of chapter 2, and the continuous

strategy of this chapter. Importantly, we aim to show which structures do not produce qualita-

tively similar results, and the consequences for group members. We explore a range of possible
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qualitatively different behavioural outcomes and hope to provide a purely mathematical explana-

tion of the anti-predator behavioural phenotypes in groups, as well as how, and why, groups can

come to exhibit distinct behavioural phenotypes.

4.2 Methods

We consider a population of size N . Within the population, individuals interact in randomly formed

groups of size n. Each individual adopts a one-dimensional strategy z from a continuous space

S = [0, 1]. As explained above, under the contribution investment, z is a measure of an individual’s

investment into anti-predator activities. Minimal (or “defector”) investment corresponds to a

strategy value of 0, and maximum (or “cooperative”) investment corresponds to a strategy value

of 1. Alternatively, when interpreted as a contribution probability, z indicates the probability that

the individual invests 1, and otherwise 0. For comparison of the results of this chapter to the results

of chapter 2 we note that the strategies C and D therein respectively correspond to investing 1

and 0 here. Each strategy, zi ∈ S has a population frequency given by xi(t) ∈ P = [0, 1] at time t.

Within the population we assume that there exist M ≥ 1 distinct strategies at any one time. The

state of the population is characterised by the strategy vector z = (z1, z2, ..., zM ) ∈ SM and the

frequency vector x = (x1, x2, ..., xM ) ∈ PM , where
∑M

i xi = 1.

The strategies that we consider are purely behavioural. As such, we provide the following ra-

tional for our use of adaptive dynamics. Initially, we assume that all individuals in the population

choose some strategy in S. Occasionally, a novel strategy appears in the population. We assume

that novel strategies come into existence through individuals “exploring” their strategic choices.

Exploration can be interpreted as an individual’s propensity to randomly alter their strategy [40],

sample alternative actions [21], or learn new behaviours not already exhibited in the population.

We do not need to specify. What is of importance in the model is the emergence of a novel strategy.

After an exploration event, a negligibly small section of the population adopt the novel strategy. If

the novel strategy has an advantage over the existing resident strategy, then it spreads through the

population (for example through imitation [60, 61]); if not the resident strategy remains dominant.

The model therefore involves three distinct processes, each operating on a distinct timescale. First,

on the very short “interaction” timescale individuals choose their preferred level of strategic invest-

ment which defines payoff. We assume that the population reaches a dynamic equilibrium in which

all members choose some strategic level of investment. Second, on the intermediate “ecological”

timescale we consider how upon an exploration event, the relative frequencies of a rare novel (or

invader) strategy and the resident strategy (or strategies) in the population change via competitive

interactions. The respective payoffs of each strategy determine whether either strategy tends to

fixation. Finally, on the slowest “exploration” timescale, exploration events are assumed to occur

infrequently. This ensures that contests between the previous resident and invader strategy are

resolved before the next exploration event, i.e., before the next novel strategy appears.
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4.2.1 Ecological dynamics

In this section we outline how competitive interactions between strategies in the population result

in a dynamic equilibrium. We apply a continuous time ordinary differential equation of the form

ẋi = xi
(
G(zi; z;x)− Ḡ

)
i = 1, , , ρ (4.1)

to describe the success of any strategy zi, i.e., the growth rate of xi, in a population of ρ competing

strategies. Here, G(zi; z;x) is the G-function [73, 74, 79] (and see the Introduction section 1.1.6)

associated with the population. The dynamics of equation (4.1) reach equilibrium on the interme-

diate ecological timescale, which we assume almost always occurs before any new novel strategy can

enter the population. All strategy values, zi, in the population are therefore viewed as constants.

We denote the mean payoff in the population as Ḡ =
∑ρ

i=1 xiG(zi; z;x).

For simplicity we assume that there are initially two strategies in the population; z = (z1, z2)

and x = (x1, 1−x1) with z2 is arbitrarily close to z1. We henceforth refer to z1 as the resident and

z2 the invader. Equation (4.1) admits two trivial hyperbolic equilibria: x̂1 = 0 and x̂1 = 1. There

may also be interior solutions x̂int1 ∈ (0, 1). When x̂1 = 1 we have that

G(z1; z; x̂)− Ḡ =

G(z1; z1, z2; 1, 0)− Ḡ = 0 (4.2a)

and on the occasion that we consider an initially dimorphic resident population characterised by

x̂int1 ∈ (0, 1), we have

G(z1; z; x̂)− Ḡ =

G(z1; z1, z2; x̂
int
1 , 1− x̂int1 )− Ḡ = 0. (4.3a)

Since the strategies do not change on the ecological timescale, equations (4.2) and (4.3) are equiv-

alent to the replicator dynamics of chapter 2.

Payoff

Payoffs are based on equations (2.4) of section 2.2, chapter 2, but with a continuously varying level

of strategic investment replacing the binary strategy choice. We apply the following G-function to

describe the payoff for a focal group member with investment level y:

G(y; z;x) =

γ(y)︸︷︷︸
Foraging benefits

{
g(y; z;x)︸ ︷︷ ︸
Evasion

+(1− g(y; z;x))

[
(nxy − 1)(1 + ϵ(y)) +

∑ρ
j=1 nxj(1 + ϵ(zj))∑ρ

j=1 nxj(1 + ϵ(zj))︸ ︷︷ ︸
Risk dilution

]}
(4.4a)

where xy is the frequency of strategy y in the population characterised by z and x.

In line with equations (2.4), section 2.2 of chapter 2, the function g(y; z;x) reflects the probabil-

ity that the whole group evades the predator. We denote the term of equation (4.4a) under-braced
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“Risk dilution” by D(y; z;x). The idea here essentially reflects the assumption of an unequal di-

lution of risk as presented in chapter 2. However, in this chapter targeting risk no longer depends

simply on the relative frequencies of “cooperators” and “defectors” (see chapter 2). Instead we use

ϵ(zi) to ascribe a unique relative risk of dilution to each continuous level of investment (strategy)

zi. The function D(y; z;x) captures how a focal group member’s relative dilution of risk depends

on its strategy as well as all of the other strategies present in the group, i.e., the expected group

composition. Mirroring chapter 2, the γ(zi) terms describe the foraging benefits a focal individual

experiences as a continuous function of its strategic investment zi.

Henceforth, we explicitly consider the payoff structure presented in chapter 2, Case 4 of Fig

2.1. Such a payoff structure is characterised by ϵ′(y) ≤ 0 and γ′(y) ≤ 0. For comparison between

the contribution probability and contribution investment we set ϵ(1) = ϵ and ϵ(0) = 0 as well as

γ(1) = γC and γ(0) = γD.

4.2.2 Adaptive dynamics

In this section we are interested in changes of the distribution of the investment strategies in the

population on the exploration timescale. The investment strategy distribution over the population

changes by imitation of the successful strategies, where every now and then a novel strategy en-

ters the population and competes. We apply the adaptive dynamics [77, 103] to formalise these

sequential resident-invader competitions. We begin with a monomorphic resident population with

strategy z1. Upon an exploration event, consider that a very small fraction ξ in the population

adopt a novel strategy y. The invasion fitness of the novel strategy (see the Introduction section

1.3.3) in the resident population defined by x̂res1 = 1 is derived from equation (4.2), or equally the

standard replicator equation:

ξ̇ = ξ(1− ξ)
(
G(y; z1; 1)−G(z1; z1; 1)

)
. (4.5)

The invasion fitness can be expressed as

lim
ξ→0

ξ̇

ξ
= G(y; z1; 1)−G(z1; z1; 1). (4.6)

When x̂res1 = 1 we define

λ : R[0,1] × R[0,1] → R+ (4.7a)

λ(z1, y) : =

 G(y; z1; 1)−G(z1; z1; 1), for 0 ≤ y, z1 ≤ 1

0, for 1 < y, z1 or 0 > y, z1
(4.7b)

as the “monomorphic” invasion fitness [60, 61, 81]. Equation (4.7) is appropriate in the case of one

resident strategy being challenged by one novel strategy, i.e., model (4.2) when y = z2. In this case

the invasion fitness is defined by the single eigenvalue of the monomorphic population equilibrium.

Therefore the sign of λ(z1, y)|y=z2 determines invasibility: if λ > 0 the population is liable to be

invaded. Clearly, λ(z1, z1) = 0. In cases where the novel strategy enters a polymorphic population
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with respective strategies z = (z1, ..., zxρ) and frequencies x = (x1, ..., xρ), we define the invasion

fitness by λ(z, y) = G(y; z;x)− Ḡ.

While the resident population is monomorphic, the adaptive dynamics of z1 are fully determined

by the selection gradient D(z1) = ∂yλ(z1, y)|y=z1 . We identify singular strategies ẑx as potential

outcomes for z1. In this research we classify singular strategies as evolutionary stable strategies (ESS

or ESS-stable) in the sense of Maynard Smith [35], convergence stable (CS) [101], and continuously

stable strategies (CSS) [285] (see conditions 1.57b and 1.62; Introduction section 1.3.5). Invasion

analyses of the monomorphic adaptive dynamics are illustrated by pairwise invasibility plots (PIPs)

and we provide simulations of invasion events by utilising the G-function. This approach allows

us to simultaneously analyse both strategy and population dynamics [74] through the following

system of equations

żi =
∂

∂y
λ(z, y)|y=zi (4.8a)

ẋi =xi(G(zi; z;x)− Ḡ) , i = 1, ..., ρ (4.8b)

Equations (4.8) produce the same limiting behaviour as the adaptive dynamics in monomorphic

populations, and also provide a differential equation which captures branching phenomena [80, 81].

Implicitly we assume a separation of timescales, but we do not explicitly show this in the subsequent

invasion simulations.

4.3 Analysis in monomorphic populations

Two complementary approaches can be used to study the interpretation of a flexible anti-predator

strategy. The replicator dynamics of chapter 2 model the contribution probability. The approach

of this chapter (as outlined in section 4.2.2) focuses on the contribution investment. Under the

contribution probability an individual’s strategy z = (z, 1 − z) is a probability (distribution) to

invest 1 (or 0). Under the contribution investment, z is a continuous level of investment. To see

how the results of each approach might differ it is useful to compare the respective gradients of

selection and fitness functions. Henceforth we consider a monomorphic population with strategy

defined by z.

4.3.1 A comparison of selection gradients

Under the contribution probability the invasion fitness of a novel strategy y is

θ(z, y) := yfC(z) + (1− y)fD(z)−
(
zfC(z) + (1− z)fD(z)

)
. (4.9)

where fC(z) ≡ G(1; 1, 0; z, 1 − z) and fD(z) ≡ G(0; 1, 0; z, 1 − z) are respectively the cooperative

and defector strategies of chapter 2. One finds that equation (4.9) leads to the selection gradient:

∂

∂y
θ(z, y) = fC(z)− fD(z) (4.10a)

= δg(z) + δ(1− g(z))
{
DC −DD} (4.10b)
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where DC ,D are defined by equations (2.3), section 2.2 of chapter 2. It is well known from the

Bishop Cannings theorem [42] (see also [286, 287]) that any ESS ẑ resulting from equation (4.10)

is neutral to invasion. Convergence stability corresponds directly to the asymptotic stability of ẑ.

Given case 4 of Table 2.1 we find the following conditions:

∂2

∂y2
θ(z, y)

∣∣∣∣
y=z=ẑ

= 0 (ESS neutral) (4.11a)[
∂2

∂z2
θ − ∂2

∂y2
θ

]∣∣∣∣
y=z=ẑ

= ϵ(1− g(ẑ)) + (1 + ϵẑ)g′(ẑ) > 0 (CS). (4.11b)

Condition (4.11a) ensures that under the probabilistic interpretation of strategy, branching cannot

occur. If g(z) is a constant then condition (4.11b) shows that any interior solution must repel

all nearby strategies (recall ϵ < 0 in the case 4 of Table 2.1). Indeed, we show this to be the

case when p1 = 0 in section 2.3.1. Strategies diverge to the boundaries of 0 and 1. While g(z) is

monotonic increasing, it is possible for a singular strategy to be attracting (convergence stable).

Conditions (4.11a)-(4.11b) characterise a singular strategy ẑ, and thereby the behaviours of group

members, in one of two ways; if ẑ is not convergence stable then all group members will invest 1

with a probability equal to either zero or one, alternatively if ẑ is convergence stable then all group

members will invest 1 with a probability defined by ẑ.

Contrastingly, under the contribution investment the invasion fitness of novel strategy y in a

monomorphic resident population adopting z is defined by equation (4.7). In this case, the selection

gradient is given by equation (4.8a). In a monomorphic population we use ∂yλ(z, y) = ∂yG(y; z; 1)

which produces non-trivial ESS and CS conditions.

In general, the adaptive dynamics of two distinct scalar strategies y and z with respective

invasion fitnesses S(z, y) and S(y, z) can be characterised by four possible different outcomes: (i)

S(y, z) < 0 and S(z, y) < 0, (ii) S(y, z) > 0 and S(z, y) < 0, (iii) S(y, z) < 0 and S(z, y) > 0

and (iv) S(y, z) > 0 and S(z, y) > 0. Cases (i)-(iv) respectively correspond to bi-stability, z

dominating, y dominating, and co-existence. Condition (4.11a) ensures that only cases (i) and

(ii) can be observed under the contribution probability. Whereas, all four possible scenarios are

possible under the contribution investment.

4.3.2 A comparison of fitness

Differences in the selection gradients (4.10) and (4.8a) are attributable to how we view a strategy

to influence fitness. The invasion fitness of a probabilistic strategy, equation (4.9), treats a group

member’s experience of risk dilution as a sum of two constants. From equations (2.3) in chapter

2, we see that with a probability y the group member experiences a risk dilution of DC and with

probability 1 − y it experiences DD (where the extensive variable j is replaced by the intensive

variable z). As such, as an individual alters its strategy y (here defined as the probability of

investing 1), the changes in the dilution of risk it experiences are constant:

DC −DD = − ϵ

n(1 + ϵz)
(4.12)

regardless of the individuals initial probability to invest 1.
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The invasion fitness of the contribution investment strategy, equation (4.7) treats an individual’s

experience of risk dilution as a continuous function of its strategic investment. As a focal group

member alters its investment level, the change in dilution risk it experiences is characterised by

∂

∂y
D(y, z, 1) = − ϵ′(y)

n(1 + ϵ(z))
. (4.13)

Naturally, it is of interest to compare the changes in risk dilution an individual experiences with

changes in strategy, for each interpretation of strategy. Only when ϵ(y) is linear in y does equality

between equations (4.12) and (4.13) hold. Similarly, γ′(y) and δ = γC − γD are only equal when

γ(y) is linear in y. Even when the functions of γ(z) and ϵ(z) do reflect the constants used in fC

and fD, the resulting selection gradients differ (see equation C.2 of appendix C.1). When nonlinear

terms are used in equation (4.4a) these differences become more pronounced.

4.4 Results

As explained in section 4.3.2, the choice of functional forms of γ(z) and ϵ(z) distinguish the continu-

ous investment strategy dynamics from the (discrete) mixed strategy dynamics of the contribution

probability. In this section we analyse how the choice of such functions affect the dynamics of

the continuous investment strategy, and provide explicit examples of the adaptive dynamics of the

contribution investment. For each choice of functions, we compare the results to the contribu-

tion probability interpretation of strategy as presented in chapter 2. The results presented here

exhibit all four qualitatively distinct outcomes of the adaptive dynamics. Each different outcome

encapsulates a different structure of the trade-off between foraging and risk dilution.

We start with the simplest of assumptions in which ϵ(z) and γ(z) are linear, and the probability

of group evasion is a constant. This case, analysed in section 4.4.1 will be used as a reference. We

then respectively relax each assumption in turn. The functional choices in sections 4.4.1-4.4.3 all

consider a constant probability of group evasion. We know that the replicator dynamics of the

probability investment yield no stable interior solution (see equation 2.13 of section section 2.3.1,

chapter 2). In such cases, the functional choices of ϵ(z) and γ(z) specify the adaptive dynamics

of the contribution investment. Analysis of models 4.4.1-4.4.3 show that combinations γ(z) and

ϵ(z) with different properties are able to produce 3 qualitatively distinct outcomes. We see that

singular strategies may be neither ESS nor CS, ESS but not CS, and both ESS and CS.

In sections 4.4.4-4.4.5 we consider cases where the probability of group evasion depends on

the strategic choices of group members. In this case, the probability of group evasion reflects a

production function of a public good. The probability that the predator’s attack fails depends on

each group member’s investment into anti-predator defences, but benefits the whole group equally.

We know from section 2.3.1, chapter 2 that a monotonic increasing, concave choice of g(x) can result

in a pure strategy polymorphism (i.e., a frequency x4 invest 1; and 1 − x4 invest 0). This finding

is equivalent to a mixed strategy monomorphism, and can be interpreted as a convergence stable

intermediate probability of adopting the maximum investment strategy. All individuals display the
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same probability (less than 1; greater than 0) to invest 1. The results presented in sections 4.4.4-

4.4.5 show how the adaptive dynamics of a continuous investment strategy relate to the findings

presented in chapter 2.

4.4.1 Case 1: All functional choices are linear

In this case, individual benefits from grouping decrease linearly and individual benefits in risk

dilution increase linearly with investment. We note here that in the case of linear γ(z) and ϵ(z) at

the boundaries of strategy space, θ(z, y)|y=0 = λ(z, y)|y=0 and θ(z, y)|y=1 = λ(z, y)|y=1. Moreover,

because θ(z, y) is linear in y and λ(z, y) is strictly concave for y ∈ (0, 1) we see that the invasion

fitness of a novel contribution investment strategy is always greater than the invasion fitness of a

novel contribution probability strategy.

Application: linear choices of γ(z) and ϵ(z) and constant g(y; z;x) = p0

Consider that an exploration event results in a novel strategy y appearing in the population playing

z1. A condition is imposed on the novel strategy’s region of feasibility through the requirement that

its dilution experience (probability that the individual is targeted) remains strictly non-negative.

The requirement is met by the imposition of a minimum group size; n̄ = (1− ϵy)/(1− ϵz1) which

groups must be greater or equal to. In practise, n̄ ≈ 1 since we only consider novel y strategies

deviating slightly from z1, and limy→z1 n̄ = 1. Using equation (C.5) (see appendix C.2) the invasion

fitness of y is positive if

n(1 + ϵz1)− (1− p0)

{
1 +

ϵγD
δ

+ ϵ(y + z1)

}
< 0. (4.14)

Expression (4.14) defines a line such that

L : y =
n− (1− p0)

(1− p0)
z1 −

(1− p0)(1 +
ϵγD
δ )− n

ϵ(1− p0)

Singular strategies of the adaptive dynamics are found by solving the intersection between L and

the principle diagonal z1 = y. We find one singular strategy given by

ẑx =
ϵγD(1− p0) + δ(1− n− p0)

ϵδ(n− 2 + 2p0)
. (4.15)

Regimes for which ẑx ∈ (0, 1) are outlined in appendix C.2.1. The conditions of evolutionary (C.6)

and convergence (C.7) stability simplify due to the zero second order derivatives of γ(z) and ϵ(z).

From condition (C.6) we see that ẑx ∈ (0, 1) is an ESS while −ϵδ/(γD + δẑx) < 0. Using (C.7) we

see that ẑx is CS when δ/γD > ϵ. From appendix C.2.1 one sees that the CS condition ensures

ẑx /∈ (0, 1) for n ≥ 2. All physical singular strategies are evolutionary stable repellers.

Invasion simulations governed by the differential equations (4.8), shown in Fig 4.2 illustrate the

dynamics of two arbitrary strategies, z1 and z2, initially co-existing at an approximately monomor-

phic population. Note that our choice of z1, z2 is purely to illustrate the use of the G-function in

describing the strategy dynamics: the invasion simulation would produce the same result if we only
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Figure 4.1: a): The singular strategy ẑx is ESS but not CS. Grey regions indicate
strategy combinations for which the invasion fitness λ(z1, y) > 0, i.e., the y strategy
can invade. White regions show strategy combinations for which the invader cannot
invade (all subsequent PIPs follow this colour scheme). The intersection of the prin-
cipal diagonal and the zero contour of λ(z1, y) > 0 gives ẑx. White regions directly
above and below ẑx indicate that the strategy is an ESS. White regions above ẑx on
the right, and below ẑx on the left indicate the solution is not CS. Parameter values:

γC = 0.82, γD = 0.97, ϵ = −0.95, p0 = 0.1, n = 16

consider one strategy z1 in the resident population. While both strategies z1 and z2 lie below the

repeller ẑx (blue dashed) then both converge to 0 in concert (A) of Fig 4.2. If both strategies lie

above ẑx, then both converge to 1 in concert (not plotted). The singular strategy of the contribution

probability (i.e., x3 of section 2.3.1) is shown by the grey dashed line. Note that x3 is a probability.

We see that x3 is not convergence stable, and is evolutionary neutral. Both singular strategies ẑx

and x3 act to separate the basins of attraction of the respective strategies of 0 and 1. The adaptive

landscape changes with changes in the investment strategy; (B) of Fig 4.2. In each panel of (B)

the invasion fitness of a novel strategy y is plotted against the resident population at an ecological

equilibrium. The strategies move in the direction of positive fitness, i.e., “uphill”, quite similar to

the landscape envisaged by Wright [13], albeit here on a behavioural timescale. While z1, z2 < ẑx

co-existing in the (approximately) monomorphic population, both strategies move in the direction

proportional to increases in fitness, which results in them converging in tandem to 0 (see panel

“t=15”).

Viewing strategy as the probability to invest 1, if all individuals initially exhibit a probability

less than x3, then the outcome is for all to invest 1 with a probability 0. This outcome is equivalent

to the outcome of the contribution investment where the initial strategy in the resident population

is less than ẑx. It is possible for the outcomes of the contribution probability and the contribution

investment to differ. We see differences in the strategy dynamics when initial strategies in the

resident population are contained within the region of phase space defined by the differences in ẑx

and x3; (A) of Fig 4.2 and Fig 4.3. For example consider a monomorphic resident population with

strategy z1, contained in this region (between the blue and grey dashed lines). While z1 is viewed
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Figure 4.2: An invasion simulation. The interior singular strategy of the investment,
ẑx, is shown by the blue dashed line. The grey dashed line indicates the interior
singular strategy of the contribution probability interpretation. (A): Starting with
two strategies z1 (blue) and z2 (maroon) with z1, z2 < ẑx (we use z2 = ẑx−0.02, z1 =
ẑx − 0.01), both strategies converge to the zero investment strategy in tandem. (B):
The adaptive landscape. Blue dots correspond to strategy z1 and the maroon to z2.
Each panel shows the adaptive landscape at time t. Parameter values same as Fig
4.1. In all subsequent invasion simulation plots, stabilities of singular strategies are
illustrated as follows: solid (dashed) for CS (for not CS), an ESS is shown blue, not

an ESS red, and ESS neutral grey.

as a mixed (probability) strategy then the outcome is for all group members to invest 1 with a

probability 1. Whereas if z1 is a continuous investment strategy then all group members invest

0. The difference in ẑx and x3 governs the differences in these behavioural outcomes, and can be

explained by comparing equations (C.1) and (C.2) of appendix C.1.

The derivatives of ϵ(z) and γ(z) condition the outcome of the investment strategy. If

ϵ′(z) = ϵ < −δ(1− n− p0)

γD(1− p0)
(4.16)

then ẑx < 0 in which case all strategies converge to 1, whereas if

γ′(z) = δ <
ϵγD(1− p0)

n− 1 + p0 + ϵ(n− 2 + 2p0)
(4.17)

then ẑx > 1 and all strategies converge to 0. The singular strategy ẑx passes through the boundaries

of phase space via transcritical bifurcations. While physical, the partial derivatives of ẑx indicate

how the investment levels of group members change with model parameters. We find ∂ϵẑx > 0

meaning that the basin of attraction of 1 increases with |ϵ|; Fig 4.3c. We see this because for

any given investment level, an increase in the slope ϵ = ϵ′(y) increases the probability that any

focal individual is not targeted by the predator. Investing 1 becomes relatively more beneficial.
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Similarly, we find that the basin of attraction of 0 increases with increasing |δ|; Fig 4.3b. As |δ|
is increased, foraging benefits decrease at a greater rate, with increases in strategy investment.

Investing 0 becomes relatively more beneficial. We find that increases in group size increase the

basin of attraction of the 0 investment level (∂nẑx > 0); Fig 4.3a. Similar negative group size

effects are found for example in models of vigilance [32]. Lastly, we find that as p0 increases there

is an increase in the basin of attraction of 0; Fig 4.3d. An increase in p0 results in all group

members experiencing a reduction in predation risk. In this case, group members are able to

decrease strategic investment while maintaining the same relative risk profile.

These results found in this example reflect a case in which it is better for all group members

to invest all or nothing into anti-predator activities. These findings mirror the results of chapter 2

where individuals are viewed to play either strategy C (invest 1) or D (invest 0) with probability

1, depending on initial strategy. When there is no singular solution in (0, 1), the contribution

probability and the contribution investment mechanisms give rise to precisely the same dynamical

outcomes. In each interpretation of strategy we find the same extremal strategy monomorphic

population. As such, all group members invest 0 or 1 regardless as to whether it be by them

probabilistically choosing an extremal investment level, or flexible altering their investment level.

While there does exist an interior singular strategy it’s quite possible for the outcomes of the

respective dynamics to differ; Fig 4.3. Deviations between ẑx and x3 quantify the differences. We

expect such differences to only occur in a small region of parameter space, due to the similarities

between the singular strategies (compare ẑx defined in equation (4.15) to the fixed point x3 defined

in equation (2.13), section 2.3.1 of chapter 2).

4.4.2 Case 2: Changes in foraging benefits are nonlinear

Here, we assume that the benefits of not being an explicit predator target increase linearly with in-

creasing strategic investment, and that foraging benefits are some nonlinear function of investment.

For example, foraging rewards may be convex decreasing with investment if intake rate is associated

with a Holling type II functional response with foraging intensity [191]. By increasing effort into

activities such as watching for predators (decreasing foraging rate), one would expect saturating

decreases in foraging benefits with respect to increases in anti-predator strategy investment.

In this case we see that λ(z, y) is affected by the properties of γ(z). Using conditions (C.6) and

(C.7) we see that a singular strategy ẑx is an ESS if

γ
′′
(z) <

2ϵγ′(z)(1− p0)

(n− 1 + p0)(1 + ϵz)
(4.18)

and is CS if

γ
′′
(z) <

(1− p0)ϵ
(
γ(z)ϵ− (1− ϵz)γ′(z)

)
(1− ϵz)2(p0 + n− 1)

(4.19)

when z = ẑx. The RHS of condition (4.18) is always positive and so it is possible for both convex

and concave (and sigmoid) functional choices of γ(z) to give rise to evolutionary stable strategies.

The RHS of condition (4.19) is positive when

ϵ

1 + ϵz
<
γ′(z)

γ(z)
(4.20)
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Figure 4.3: In plots solid (dashed) lines indicate convergence stable (unstable),
and blue (red) lines indicate evolutionary stable (unstable) singular strategies. Grey
lines indicate evolutionary neutral strategies. All subsequent phase portraits follow
this scheme. In each plot we compare the ESS-stable ẑx (blue) and ESS-neutral
x3 (grey). (A): The solution ẑx increases with group size which increases basin of
attraction of the zero investment strategy. (B): As |δ| increases the basin of attraction
of zero investment strategy increases. (C): The basin of attraction for the maximum
investment strategy increases with increasing |ϵ|. (D): The solution ẑx decreases
with p0 resulting in a increase in the basin of attraction of the minimum investment
strategy. General parameter values same as in Fig 4.1, with respective free variables

removed in each plot.
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and negative otherwise. We see that if γ(y) is convex on y ∈ (0, 1) at the singular strategy value,

and condition (4.20) does not hold, then the singular strategy cannot be attracting. Conversely,

while γ(y) is concave at the singular strategy value then the singular strategy is CS when (4.20)

holds. Conditions (4.18)-(4.19) ensure that branching cannot occur (the RHS of 4.19 is strictly less

than the RHS of 4.18).

Application: γ(z) = γD − δ(k+1)z/(k+ z), linear choice of ϵ(z) and constant g(y; z;x) = p0

While the resident population is monomorphic, a novel strategy y is able to invade if

n(1 + ϵz1)− (1− p0)

{
1 + ϵ

(
γD(k + z1)(k + y) + δ(k + 1)

(
k(z1 + y) + z1y

)
δ(k + 1)k

)}
≶ 0 for y ≶ z1 .

(4.21)

Setting y = z1, equation (4.21) defines a conic,

C1 :
(
ϵ(γD + δ(k + 1))(p0 − 1)

)
z21 −

(
ϵk(2(γD + δ(k + 1))(1− p0)− δ(k + 1)n)

)
z1 (4.22a)

−
(
(1− p0)k(δ(k + 1)− ϵγDk) + δ(k + 1)kn

)
There can be at most one root of (4.21) in the interval (0, 1). To see this we apply Budan’s theorem.

Let νi(z1) be the number of sign changes in the sequence of coefficients of C1(z1+ i). The quadratic

coefficients of C1(z1 + 0) and C1(z1 + 1) are precisely the same, and linear coefficients are both

strictly positive. The sequence of coefficients of C1(z1 + 1) and C1(z1) share at least one out of

two potential sign changes. Let R[0,1) be the number of roots of C1(z1) in [0, 1). The quantity

ν0(z1) − ν1(z1) − R[0,1) must be a non-negative even integer. From this we see that there is at

most one root of C1 in the unit interval. We define this singular strategy as ẑ+x . Full details of the

singular strategies can be found in appendix C.2.

From condition (4.18) the singular strategy is an ESS if

−ϵ(k − kp0) + n+ p0 − 1

ϵn
< ẑ+x < 1. (4.23)

Due to our choice of γ(z) we know that ẑ+x cannot be CS (see condition 4.20). There are therefore

only two possible stability outcomes for the convergence unstable singular strategy. Either ẑ+x is an

ESS; Fig 4.4a. Alternatively, ẑ+x is not an ESS; Fig 4.4b. While ẑ+x is not an ESS it can be invaded

on either side by nearby strategies y. In either of the just mentioned cases of evolutionary stability,

ẑ+x is not convergence stable, and all local strategies diverge to either of 0 or 1, depending on

whether the strategy values are greater or less than ẑ+x i.e., which basin of attraction the strategies

lie in.

For the convergence unstable and evolutionary stable singular strategy depicted in Fig 4.4a,

an invasion simulation of a novel strategy entering the population is shown by Fig 4.5. Initially,

two virtually indistinguishable arbitrary strategies z1 ≈ z2 co-exist within the (approximately

monomorphic) population. As ẑ+ is not CS it acts as a repeller. If z1, z2 > ẑ+x then both strategies

converge to 1 (not plotted) whereas if z1, z2 < ẑ+x then both strategies converge to 0; (A) of Fig 4.5.

Because the two strategies never deviate far from each other, the population remains approximately
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Figure 4.4: PIPs. Singular strategies shown in intersections of the principle diagonal
and zero contours. (A): Example where the singular strategy is an ESS but not CS.
Directly above and below ẑ+, white regions indicate that y > ẑ+x and y < ẑ+x cannot
invade ẑ+x , i.e, the solution is ESS . (B): The strategy ẑ+x is neither ESS nor CS. Grey
regions above and below the singular strategy indicate that it is vulnerable to invasion
from above and below. Parameter values: γC = 3.2γD = 4, k = 8, ϵ = −0.99, p0 =
0.1, n = 10 for (A) and γC = 4.3, γD = 4.6, k = 0.5, ϵ = −0.85, p0 = 0.45, n = 20 in

(B).

monomorphic. Both z1 and z2 maintain a positive frequency. We see that each strategy climbs the

adaptive landscape moving in the direction of the positive invasion fitness, λ(z, y); (B) of Fig 4.5.

In the alternate case where ẑ+x is neither CS nor an ESS (depicted in Fig 4.4b), two strategies

z1 ≈ z2 co-existing in an approximately monomorphic population simultaneously converge to either

1 if z1, z2 > ẑ+x , or to 0 if z1, z2 < ẑ+x (neither plotted). If the resident population is dimorphic prior

to invasion, with x̂1 ∈ (0, 1) frequency of z1 and 1− x̂1 frequency of z2 such that z2 < ẑ+x < z1, then

the strategies z1 and z2 respectively diverge to 1 and 0; (A) in Fig 4.6. We see that z1 becomes

dominant and the frequency of strategy z2 goes to zero. For this outcome, the resident strategies

must be sufficiently distinct so that they cannot co-exist at the hyperbolically stable ecological

equilibrium of x̂1 = 1 (if this latter holds then both residents converge to the same strategy). The

changing adaptive landscape shows a fitness valley develops between the strategies; (B) of Fig 4.6.

As such, the strategies undergo bi-directional change with ż2 < 0 and ż1 > 0. At each exploration

event, the strategies move in directions proportional to increases in fitness, however, we see that

because the adaptive landscape is constantly changing, even though z2 moves in the direction of

increasing fitness (i.e., uphill), it ends at a fitness minima; panel (t=5). Hence, the frequency of z2

goes to zero.

The results found in this example clearly indicate a selective pressure for group members to pri-

oritise either of maximum strategic investment, or no investment. These findings are in agreement

with the results of chapter 2 wherein individuals choose the maximum investment strategy (i.e.,

play C) with a probability zero or one. The payoff structure of the game, defined by the explicit
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Figure 4.5: Invasion simulations. Here ẑ+x (blue dashed line) is an ESS but not

CS and x
(p1=0)
3 (grey dashed) is not CS. (A): Starting with a resident population

composed of two co-existing very similar strategies z1 = ẑ+x −0.01 and z2 = ẑ+x −0.02,
both strategies converge to 0. (B): The adaptive landscape. Each strategy changes
in a direction defined by the positive invasion fitness, λ. Parameter values: γC =

3.2γD = 4, k = 8, ϵ = −0.99, p0 = 0.1, n = 10.

choice of γ′′(z) > 0, reflects a situation in which the greatest payoff is achieved by investing either

all or nothing into anti-predator activities. If an individual invests zero, it maximises its foraging

rewards; if it invests one then it maximises its relative probability of not being targeted. Group

members are unable to balance the trade-off between foraging and predation by a compromising

behaviour in between investing all or nothing into anti-predator activities.

4.4.3 Case 3: Changes in relative individual risk dilution are nonlinear

Here, we assume that the foraging benefits which group members receive decrease linearly with

strategy investment, while the ϵ(z) functions (describing the probability that a focal with strategy

z is a predator target) are nonlinear.

The stability of a candidate singular strategy depends on the form of ϵ(z). Using conditions

(C.6) and (C.7) we see that a singular strategy ẑx is evolutionary stable if

ϵ′′(z) > − 2δϵ′(z)

γD + δz
(4.24)

and is convergence stable if

ϵ′′(z) > ϵ′(z)

(
δ

δz + γD
+

ϵ′(z)

1 + ϵ(z)

)
(4.25)
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Figure 4.6: Invasion simulations. Here ẑ+x (red dashed line), is neither an ESS nor

CS and x
(p1=0)
3 (grey dashed) is not CS. (A): Starting with an initially dimorphic

population with z1 > ẑ+x > z2, the strategies diverge to 1 and 0. (B): The adaptive
landscape. We see that the strategies of z1 and z2 move in direction of increasing
fitness. This leads z1 to 1, and z2 to 0. Eventually, (t = 5), strategy z2 lies at a local
fitness minima, and its frequency tends to zero (as shown in (A)). Parameter values:

γC = 4.3, γD = 4.6, k = 0.5, ϵ = −0.85, p0 = 0.45, n = 20.
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when z = ẑ. From condition (4.24) one sees that if ϵ(z) is convex on [0, 1] at ẑ, then the singular

strategy will be an ESS. By (4.25) we see that while ϵ(z) is concave at ẑ, the singular strategy

cannot be CS. We see that branching cannot occur because convergence stability requires that ϵ(z)

be convex, which also guarantees un-invasibility (ESS).

Application: ϵ(z) = ϵ(k + 1)z/(k + z), linear choice of γ(z) and constant g(y; z;x) = p0

While the resident population is at an ecologically stable equilibrium x1 = 1, a novel strategy y

can invade if

1− 1− p0
n

−
(1− p0)

(
ϵk(1 + k)(γD + δy)

)
δn(k + y)(k + z1 + ϵ(1 + k)z1)

≶ 0 for y ≶ z1 . (4.26)

Setting the novel and resident strategies equal, equation (4.26) defines a conic C2:

C2 :
(
δ(1 + ϵ+ ϵk)n(n− 1 + p0)

)
z21 +

(
δkn

(
2(n− 1 + p0) + ϵ(1 + k)(n− 2 + 2p0)

))
z1+(

kn
(
γDϵ(1 + k)(p0 − 1) + δk(n− 1 + p0)

))
(4.27a)

In the appendix we show that there can exist at most one singular strategy in the open unit interval

at any one time. In certain parameter regimes we find a singular strategy that is CS and an ESS, ẑ+x

(physicality depends on two values of group size given in appendix C.2.3 due to space constraints).

By inspecting condition (4.24) we know that ẑ+x is an ESS, due to the property of ϵ′′(z) > 0. From

condition (4.25) we see that ẑ+x is CS if

0 < ẑ+x < min

{
− γD

δ
−

√
(δk + γD)(δk − ϵγD + γD)

δ2(1− ϵ)
, 1

}
. (4.28)

depending on the values of ϵ and k. Direct calculations show that ẑ+x is CS whenever it exists

in (0, 1). In other parameter regimes we find an evolutionary stable, but not convergence stable

singular strategy ẑ−x .

Fig 4.7 illustrates how an invasion event might occur through a PIP. The grey regions above

left and below right ẑ+x indicate that it is CS; the white regions directly above and below indicate

that it is an ESS. A monomorphic resident population with strategy z1 ̸= ẑ+x can be invaded by

y while y > z1 and z1 < ẑ+x or y < z1 for z1 > ẑ+x ; Fig 4.7a. The Mutual invasibility plot (MIP)

is a superposition of the PIP and its reflection in the principal diagonal; Fig 4.7b. To the right

of ẑ+x there is a “+” below the diagonal and a “-” above: the local fitness gradient from above

points towards ẑ+x . Left of the singular strategy there is a “+” above the diagonal and a “-” below:

the local fitness gradient from below also points towards ẑ+x . Two transcritical bifurcation curves

which are drawn as dashed curves. The maroon dashed curve shows strategy values for a zero

valued invasion fitness of a invader strategy with zero frequency, and the blue dashed curve shows

the same for a zero sized frequency resident strategy. The two curves intersect at ẑ+x . Plotted also

are the nullclines (zero isoclines) of the selection gradient evaluated for the resident strategy (blue

solid) and the invader strategy (maroon solid). The arrows indicate the direction of small strategy

changes. Notice that at ẑ+x , either side of the principle diagonal are regions of unstable co-existence.

This prevents branching occurring as neither strategy can maintain a stable frequency when not
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Figure 4.7: (A): PIP. The singular strategy ẑ+x is CS and an ESS. (B): MIP. There
is no mutual invasibility. The “+” show regions where the invader strategy can
invade and replace the resident, and the “-” describes regions of strategy space for
which the resident cannot be invaded. The dashed curves show the transcritical
bifurcations, and solid lines the nullclines of the selection gradient (maroon for resident
and blue for invader). Arrows show the direction of strategy changes. Parameter

values: γC = 6.51, γD = 6.82, ϵ = −0.54, k = 0.62, p0 = 0.1, n = 12

equal to the singular strategy. Once the singular strategy is reached, no further changes in strategy

occur.

When present in (0, 1), the singular strategy defines the investment level of all group members.

Starting with two similar strategies z1, z2, we see that both converge in tandem to ẑ+x . As the

strategies do not deviate far from each other, the population remains approximately monomorphic

and the strategies can co-exist; (A) of Fig 4.8. The dynamic outcome for the investment strat-

egy is considerably different from the contribution probability strategy. The singular strategy of

the contribution probability x3 (grey dashed) acts to separate the basins of attraction of the CS

probabilities of 0 and 1. The outcome is that all group members either invest all (if their initial

probability of investing all is greater than x3) or none (if their initial probability is less than x3).

For no regions of phase space do the outcomes of the contribution probability and the contribution

investment mechanisms coincide.

The location of the singular strategy in phase space defines the unique investment level of all

group members. We see that if ẑ+x > 1 and condition (4.28) is satisfied (i.e., the first term of

the minimum is greater than ẑ+x ), then all group members adopt 1. If ẑ+x < 0 then all group

members adopt 0. Varying model parameters alters the location of ẑx in phase space. We find

that an increase in group size results in a decrease in the investment level of all group members

(∂nẑ
+
x < 0); Fig 4.9a. For examples of this group size effect see [136, 188]. We find that ∂ϵẑ

+
x < 0;

Fig 4.9b. Increasing |ϵ| results in a greater magnitude of decrease in the relative probability that an

individual is targeted as it invests in strategy. We see ∂δ ẑ
+
x > 0; Fig 4.9c. Increasing |δ| increases

the cost of investment into the strategy. Finally, we see that increasing k increases ẑ+x ; Fig 4.9d.

The smaller the value of k the sharper the increase in the relative safety of risk dilution, with
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Figure 4.8: Invasion simulation. (A): Strategy and frequency dynamics. Starting
with z1 = 0.1 and z2 = 0.01 both strategies converge in tandem to the CS solution
ẑ+x ≈ 0.59 (blue solid line). The unstable interior fixed point of the contribution prob-
ability x3 is plotted as a grey dashed line. Both strategies change in concert, neither
deviating far from the other. As such z1 and z2 are able to co-exist at monomorphic
ecological equilibrium, each with positive frequency. (B): The adaptive landscape.

Parameter values: γC = 6.51, γD = 6.82, ϵ = −0.54, k = 0.62, p0 = 0.1, n = 12.
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Figure 4.9: Bifurcation diagrams. As in other figures, solid lines show convergence
stable strategies, dashed show non convergence stable outcomes, blue and red re-
spectively show ESS-stable and ESS-unstable strategies. (A): The interior singular
strategy ẑ+x decreases with group size n, (B): increases with the increases in the mag-
nitude of the unequal dilution of risk, |ϵ|, and (C): decreases with increases in the
magnitude of the decrease in foraging benefits, |δ. (D): The singular strategy ẑ+x

increases with k, as explained in text.

increasing strategic investment. If k << 1 then an individual experiences almost all the fitness

benefits from the unequal dilution of risk, while investing little into anti-predator activities. For

increasing values of k, greater investments into strategy are required to maintain risk profile. While

k is very large, the increases in safety through dilution are approximately linear, and functionally,

our choice of ϵ(z) approximates the choice used in the example of section 4.4.1. In such cases, we

find a value of k at which the singular strategy ẑ−x bifurcates into phase space and closely resembles

the singular strategy of example in 4.4.1.

Unlike the examples of sections 4.4.1-4.4.2, the results presented here show that a unique inter-

mediate level of strategic investment is adopted by all group members. A convex decreasing choice

of ϵ(z) allows individuals to reap a mixture of the fitness benefits gained through foraging and

through dilution of risk. We note that linear or concave decreasing choices of ϵ(z) would not have
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allowed for this (see condition 4.25). Rather than opting to maximise the fitness benefits of “either”

foraging rewards or dilution of risk (as was the case of examples 4.4.1-4.4.2), group members are

able to balance this trade-off using a flexible strategy. This result is at contrast to the results found

when individuals are allowed to adopt the maximum investment with a flexible probability (anal-

ysed in 2). In the case of chapter 2, depending on their initial behaviours, individuals always adopt

the zero or maximum investment strategy. Here, we have compared an interpretation whereby with

a probability equal to its strategy an individual experiences one of two constant probabilities of

being explicitly targeted by the predator, to an interpretation whereby an individual’s experience

of risk dilution continually changes with its strategy. We have shown that a continuous mapping

between individual strategy and the dilution effect dramatically changes the expected composition

of behaviours within a group.

4.4.4 Case 4: A nonlinear evasion function

In this subsection we consider that the strategic behaviours within the group contribute to a

probability of group evasion. We introduce an averaging of strategy within the group; rg(y, z). In

a population of ρ strategies at an ecological equilibrium, the expected strategic contribution in a

group of size n is
∑ρ

j=1 xjzj . If we consider a potential novel strategy which contributes y ∈ S,

then the average contribution in the group is defined by

rg(y, z) =
1

n

[
ay + (n− a)

ρ∑
j=1

xjzj

]
. (4.29)

Here, the factor a effectively scales novel strategy contribution to the average behaviour within the

group. If a = 0 then the novel strategy does not influence the average group behaviour, whereas if

a = 1 the contribution of the novel strategy is equal to the contribution of all other group members.

To describe the probability of group evasion given a monomorphic population with strategy

z (i.e., ρ = 1 in equation 4.29), we use g(y, z) = h
(
rg(y, z)

)
where h(x) is monotonic increasing,

bounded by 0 and 1. In the limiting case of a = 0 we write g(z). In this case the conditions for

evolutionary stability are the same as in cases 1-4 above (since g(z), independent of y and is treated

as a constant in the selection gradient). Otherwise, while a ̸= 0, ϵ(z) and γ(z) are linear, we see

that the condition for ẑ to be an ESS becomes(
2δϵ(1− g(y, z)) + 2(δ + γDϵ+ 2δϵy)gy(y, z) + (γD + δy)(1 + ϵy)gyy(y, z)

)∣∣∣
y=z=ẑ

< 0 (4.30)

(where we use notation gy(y, z) for the partial derivative of g w.r.t y). The first two terms of (4.30)

are negative. From this we see that if h′′(x) ≤ 0 when evaluated at ẑ, then ẑ is an ESS. In this

case, we see no qualitatively new dynamical behaviour; the outcome of the adaptive dynamics is

covered in one of the models presented in sections 4.4.1-4.4.3.

Application: Linear choices of γ(z) and ϵ(z) and g(y; z;x) = p0 + p1rg(y, z)/(k1 + rg(y, z))

In this example, we assume that the probability of group evasion is saturating, with a domain given

by an averaged group behaviour. The expression for invasion fitness is omitted for space. Singular
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Figure 4.10: PIPs for the model with (A): a = 1 and (B): a = 0. In both PIPs we
see that ẑ−x is a CSS, whereas ẑ+x is an ESS but is not CS. For comparison of results,
parameter values are the same as in Fig 2.2a of chapter 2: γD = 1.92, γC = 1.9, n =

25, ϵ = −0.75, p0 = 0.3, p1 = 0.6, k1 = 0.1

strategies are the roots of the cubic:

C3 :δϵn(n+ 2(p0 + p1 − 1))z31+

δn(n− 1 + p0 + 2ϵk1(n− 2 + 2p0)) + δ(n+ ϵ(k1 + 2k1n))p1 + γDϵn(p0 + p1− 1)z21+

k1(γDϵ(p1 + n(2p0 + p1 − 2)) + δ(p1 + n(2(n− 1 + p0) + ϵk1(n+ 2p0 − 2) + p1)))z1+

k1(δk1n(n− 1 + p0) + γD(p1 − ϵk1n(1− p0)))

We find at most two roots, ẑ+x and ẑ−x , can co-exist within (0, 1). From condition (4.30) we see

that the singular strategies are always evolutionary stable. Convergence stability is determined by

direct calculation.

Fig 4.10 provides PIPs for the respective cases of a = 1 and a = 0. In each case, two singular

strategies, ẑ−x and ẑ+x . The singular strategy ẑ−x is continuously stable (CSS), while ẑ+x is ESS

but not CS. The singular strategies of the contribution investment found here closely resemble

the singular strategies of the contribution probability; the interior fixed points x3 and x4 found in

section 2.3.1 of chapter 2 (see Fig 2.2a). Note that x3 and x4 are neutrally evolutionary stable,

but that x4 is CS while x3 is not. Viewed as an individual’s strategy, x4 is the probability that

the individual invests 1, while x3 determines the region of attraction of this probability, depending

on the individual’s initial behaviour. The adaptive dynamics of the continuos investment strategy

result in all group members adopting an intermediate level of strategic investment defined by ẑ−x .

Whereas, under the contribution probability, all individuals exhibit a probability, x4 ≈ ẑ−x , to

choose the maximum level of investment.

While a = 0 the novel strategy y does not affect the probability that the group evades attack. In

this case, with a monomorphic population the evasion function used here is identical to the one used
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Figure 4.11: Comparison of the singular strategies of the contribution investment;
ẑ+x (blue dashed) and ẑ−x (solid blue), and the singular strategies of the contribution
probability; x4 (solid grey) and x3 (grey dashed). Increasing a novel strategy’s ability
to contribute (a) towards group evasion increases overall anti-predator investment
within the group. When a = 0 the strategic investment level of a novel strategy
does not influence the probability of group escape; g(z). When a > 0 we use g(y, z).
For comparison of results, parameter values are the same as in Fig 2.2a; chapter 2:

γC = 1.9, γD = 1.92, ϵ = −0.75, n = 25, p0 = 0.3, p1 = 0.6, k1 = 0.1.

in section 2.3.1 of 2 (but with an argument of investment level in place of the probability to invest

1). As such, ẑ−x (blue solid line) is indistinguishable from x4 (solid grey) and ẑ+x (blue dashed)

is in near perfect agreement with x3 (grey dashed); Fig 4.11. When a > 0 there is additional

incentive for a novel strategy to invest. We find that the intermediate investment level defined by

ẑ−x increases with a. Concomitantly, we see that ẑ+x decreases with a. This latter finding effectively

lowers the threshold (initial investment level of group members) for the maximum investment level

to be adopted.

It might appear that the behavioural outcomes in groups under the contribution investment

and the contribution probability mechanisms are similar. The underlying interpretation of strategy,

however, explains how the outcomes are different. While strategy is viewed probabilistically, with

the precise same intermediate probabilities x4 and 1− x4, all individuals in the population respec-

tively adopt either of the 1 or 0 investment levels. The resultant monomorphic mixed strategy

population is equivalent to a polymorphic population in which a frequency x4 invest 1 and 1− x4

invest 0. The upshot is that an expected nx4 group members choose investment level 1 while an

expected n(1 − x4) choose 0. In contrast, viewing strategy as a continuous investment level, all

individuals choose some intermediate strategy.

Here, we highlight these differences explained above by allowing the introduction of novel

investment strategies, into the polymorphic population defined by the contribution probability

mechanism. We show that the extremal strategies both converge to the unique intermediate

level of investment, defined by the singular strategy of the contribution investment. Such a pro-

cess has been termed “merging” [60]. In the polymorphic population with investment strategies
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Figure 4.12: (A): The population is initially dimorphic with respective strategies
zC = 1 and zD = 0 and frequencies x4 and 1 − x4. Both strategies, in tandem,
converge to the singular strategy of the contribution investment, z−x . Each strategy
maintains a positive population frequency, up to the point where the strategies are
equal, at which the frequencies remain constant. (B): The adaptive landscape. Novel
strategies y < zC and y > zD invade the population: the directional changes in

strategy are defined by the invasion fitness evaluated at zC and zD.

z = (zC , zD) = (1, 0) and frequencies x = (x4, 1− x4), the invasion fitness of a novel strategy y is

λ(z, y) = G(y; z;x)− Ḡ) = G(y; zC , zD;x4, 1− x4)− Ḡ) (4.32)

where Ḡ = x4G(zC ; z;x)+(1−x4)G(zD; z;x). The adaptive dynamics are given by the two selection

gradients for the respective strategies zC and zD;

żC =
∂

∂y
λ(z, y)|y=zC (4.33a)

żD =
∂

∂y
λ(z, y)|y=zD (4.33b)

Both zC (blue) and zD (maroon) converge to the singular strategy of the contribution invest-

ment; (A) in Fig 4.12. The singular strategy z−x resides at a maxima of the adaptive landscape;

panel “t=1000”, and is an ESS once the population is monomorphic. While the population is

dimorphic we see that the strategies of 1 and 0 lie at local minima of the invasion fitness; (B) of

Fig 4.12. Changes in strategies are governed by żC < 0 and żD > 0, up to the point at which

zC = zD = z−x . The population has transformed from a mixed strategy monomorphism (equivalent

to a pure strategy polymorphism) to a monomorphism consisting of the precise same intermediate

continuous strategy.

The results presented in this example demonstrate the differences between groups in which
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Figure 4.13: The PIP for the adaptive dynamics. Singular strategy ẑ−x is CS but
not an ESS, and ẑ+x is neither an ESS nor CS.

individuals adopt a flexible level of investment into anti-predator activities (the contribution in-

vestment) and groups in which individuals adopt a fixed level of investment (equal to 1) with a

flexible probability (the contribution probability). The adaptive dynamics of the continuous in-

vestment lead the population away from a polymorphic state of fixed extremal investment levels,

to a monomorphic state of intermediate investment.

4.4.5 Case 5: A nonlinear evasion function, and a nonlinear choice of ϵ(z) or

γ(z)

We finally move on to consider an evasion function as described by h
(
rg(y, z)

)
and nonlinear foraging

or risk dilution functions. In general, deriving any meaningful expressions for the conditions of ESS

and CS is not possible. We present a case whereby ϵ(z) is linear, and focus on the properties of

γ(z). It can be shown that the combination of such functional choices results in a combination of

conditions for which a singular strategy may be CS but not an ESS.

Application: linear ϵ(z), γ(z) = γD + δ(k0 + 1)z/(k0 + z) and g(y; z;x) = p0 + p1rg(y, z)/(k1 +

rg(y, z))

In this example, we assume that a novel strategy does affect the average behaviour in the group

(i.e., a = 1 in equation 4.29). With these payoffs, singular strategies are the roots of the a forth

degree polynomial given in appendix C.2.4. We find at most two positive solutions ẑ−x and ẑ+x .

For a range of parameters we find ẑ−x is CS but not an ESS; Fig 4.13. We also find cases where

ẑ−x is continuously stable (not visualised through PIPs). While ẑ−x is CS but not an ESS, invasion

of novel strategies leads the resident population of strategies to a global minimum of the adaptive

landscape. The minima is referred to as a branching point of the adaptive dynamics [101]. At the

branching point, two distinct strategies emerge and are able to co-exist in a so called protected

polymorphism [79].
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Figure 4.14: Invasion simulation. (A): Starting with z1 (blue) and z2 (maroon),
the trajectories of the mean field canonical equation of adaptive dynamics (black
dot-dashed curve) and the G-function are in perfect agreement up to the singular
strategy ẑ−x . Once the population of strategies reaches ẑ−x novel strategies are able to
invade on either side and the population splits into two distinct strategy branches; z1
adopts a high investment level while z2 a low level. After branching the strategies are
able to co-exist in a protected polymorphism. We see that z1 and z2 maintain non-
zero frequencies. (B): The adaptive landscape. Between ‘’t=500” and“t=600” a gulf
opens between z1 and z2. Each strategy climbs the adaptive landscape in direction
proportional to increases in fitness: the z1 increases in value while z2 decreases. The

result is bi-directional changes in strategy.

A numerical simulation illustrating how equations (4.8) emulate the branching process, is shown

in Fig 4.14. We start with two similar strategies z1 and z2 able to co-exist in an approximately

monomorphic population. Both strategies converge to the ẑ−x . Once the singular strategy is reached,

we see that the strategies diverge into two respective branches; z1 begins to increase in value and z2

begins to decrease in value; panel (A) in Fig 4.14. After the two strategies are sufficiently distinct,

the monomorphic invasion fitness (equation 4.7) fails. We apply λ(z, y) to emulate the branching

process; panel (B) in Fig 4.14. Changes in strategy are governed by ż1 = ∂yλ(z, y)|y=z1 > 0 and

ż2 = ∂yλ(z, y)|y=z2 < 0. Eventually, we see that both of the extremal strategies of 1 (maximum)

or 0 (minimum) investment into anti-predator activities co-exist within the group.

Group size is generally considered as an important factor in explaining the anti-predation be-

haviour of its members. Here, bifurcation analysis indicates that group size (n) considerably affects

the strategies of group members; Fig 4.15. Two transcritical bifurcations at (n−, 1) and (n+, 0)

define the region for which ẑ−x ∈ (0, 1); panel (A) of Fig 4.15. A bifurcation at n∗ results in a

change in the evolutionary stability of ẑ−x . In smaller sized groups (n− < n < n∗) we see that ẑ−x

is continuously stable. Whereas, in larger groups (n∗ < n < n+), we find that ẑ−x is a branching

point. The stability change in the singular strategy can be explained by changes in the adaptive

landscape. In cases where n < n∗, the singular strategy ẑ−x is a local maxima of the adaptive
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Figure 4.15: (A): Bifurcation diagram. At (n+, 0) and (n−, 1), ẑ
−
x leaves phase space

respectively passing through 0 and 1. For n > n+, the 0 investment level is a CSS,
and for n < n−, 1 is a CSS. When present, the singular strategy loses evolutionary
stability at n∗ ≈ 14. While n− < n < n∗, ẑ−x is a CSS. When n∗ < n < n+, ẑ

−
x is a

branching point. (B): Numerical simulations confirm the transition depicted in (A).
In panel n = 10, the singular strategy is continuously stable and z1 and z2 converge
to it. In panels n = 15 to n = 30 we see that z1 and z2 respectively diverge into two

distinct solution branches.

landscape, at ẑ−x becomes an inflection point of the adaptive landscape, and for n∗ < n, ẑ−x is a

local minima; Fig 4.16.

We see that ẑ−x decreases with n; (A) in Fig 4.15. Decreasing anti-predator investment with

group size is to be expected: in smaller groups, the magnitude of the effect that unequal dilution of

risk exerts on individual survivorship is more pronounced. It is then relatively more beneficial for

group members to invest into anti-predator activities. As group size increases, each group member

experiences a smaller probability of being targeted regardless of strategy. The unequal dilution

effect exerts relatively smaller individual fitness benefits with increasing strategy investment. It is

then relatively less beneficial to invest into anti-predator activities. What is not expected is the

way in which the transition in investment occurs. As group size becomes larger than n∗, the group

becomes behaviourally differentiated. There is no longer one unique strategy within the group

which best balances the trade-off between foraging benefits and predation risk. Instead, group

members are better off investing more, or less, than ẑ−x .

The main result of this example, illustrated in Fig 4.14 is a so-called ESS-coalition [80]. By

definition of the ESS-coalition, an individual’s payoff is the same when using either investment

strategy of 0 or 1. However, the payoff an individual receives when using each respective strategy

is comprised by a different combination of costs and benefits. The 0 investment strategy subjects a

group member to the greatest foraging benefits. Whereas the 1 investment strategy subjects a group

member to the lowest predation risk. The ESS-coalition relates directly to the results of chapter 2.

In chapter 2 we find a monomorphic population in which all individuals invest 1 with a probability
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Figure 4.16: The adaptive landscape changes with group size, illustrating how ẑ−x
becomes a branching point. In each panel ẑ−x is shown by the solid point. We see
that while n < n∗, the singular strategy is a local maxima of the adaptive landscape
and is therefore an ESS (blue). When n = n∗, the singular strategy is an inflection
point and is ESS-neutral (grey). When n∗ < n, the singular strategy is a minima of

the adaptive landscape and is not an ESS (red).

x4, equally valid interpreted as a polymorphic population in which a frequency x4 invest 1 and 1−x4
invest 0. The example shown in this section (see Fig 4.14) predicts a polymorphic population in

which x1 invest 1 and 1−x1 invest 0, with the frequency of x1 determined by equation (4.8b). There

is however a subtle difference in these outcomes. When an individual invests 1 with a probability

x4 and (0 with probability 1 − x4) it demonstrates a non-consistent propensity to prioritise anti-

predator activities; it randomly chooses a behaviour with a fixed probability. Hence, the mixed

strategy interpretation of chapter 2 results in a random proportion x4 whom invest 1. Whereas,

upon a branching point of the contribution investment strategy, a fixed proportion of individuals

consistently invest 1 and a fixed proportion of individuals consistently invest 0. Our results clearly

indicate that two distinct behavioural phenotypes can emerge from group interactions. However,

depending on how we interpret strategy, each phenotype may be consistently or non-consistently

expressed.

4.5 Discussion

In this chapter we have studied the continuous extension of the model presented in chapter 2. We

have analysed how allowing gradual change in anti-predator investment can lead to outcomes that

qualitatively differ from discrete anti-predator strategies analysed therein. We have also shown

when the two interpretations of strategy lead to the same (qualitative) outcomes. We focus on

situations whereby group members are subjected to a foraging-predation trade-off; case 4 of Table

2.1. Considering the investment strategy, we develop a series of models which capture different

qualitative structures of this trade-off. Each distinct structure is defined by functional choices which

reflect the relationship between individual strategy and survivorship. We show that the choices

of function govern the dynamical outcomes of the investment strategy, and thereby de-macerate

the qualitative similarities and differences of the contribution probability and the contribution

investment. To analyse changes in the investment strategy we apply the G-function, pioneered by

Brown and Vincent [73].
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Our results are broadly defined by our assumptions of how strategies within a group affect

survivorship. Cases are considered where (i) the probability that the group eludes the predator is

independent of the behaviours within the group. We also consider (ii) that the behaviours within

the group contribute to some probability of a failed attack, i.e., the group evades. The probability

of group evasion reflects a production function of a public good; individual survivorship probability

(through failed attack) depends on the respective amounts of anti-predator investment made by

group members, but is equal amongst all. In case (i) we find that all group members adopt the

same investment level into anti-predator activities. Contrastingly, in case (ii) we find that it is

possible for the individual behaviours within the group to become differentiated. In all examples,

we contrast these findings to the discrete version of the game.

The first example which we present (section 4.4.1) adopts a linear structure to reflect case 4

of Table 2.1. Biologically, one expects such a trade-off in situations where group members’ intake

rates are described by a Holling type I functional response, e.g., decrease linearly with investment

into vigilance. Increasing investment into anti-predator activities is known to improve the ability

of a group member to appropriately respond to a predator. For example, the more effort into

anti-predator vigilance an individual invests, the sooner it detects and reacts to a predator [255]. It

is difficult to establish a linear relationship between an individual’s anti-predator investment and

its per-capita dilution of risk [145]. Yet, it is in general impossible to argue that any relationship

universally describes the two quantities. If ϵ(y) is characterised by a linear form then our results

demonstrate that the behaviour of all individuals in the group can be uniquely determined by a

convergence unstable singular strategy. We provide conditions on individual dilution of risk and for-

aging gains which uniquely determine their anti-predator investment behaviours. Our results here

indicate that investment into anti-predator behaviours decrease with increasing group size (through

an increase in the basin of attraction of the zero investment strategy). This finding is generally sup-

ported throughout the wider theoretical and empirical literature on vigilance behaviours in groups

of prey [18, 49, 55, 136, 191].

Interestingly, the results of this example mirror the results found in chapter 2. We see a quali-

tative equivalence between the outcomes of the continuous and mixed strategy dynamics because

the invasion fitness of a mixed strategy (contribution probability) is linear in y, and the G-function

adopts a linear choice of γ(y) and ϵ(y). The only difference in the results presented here and

those of chapter 2 occurs due to differences in the selection gradients of each interpretation of

strategy (see appendix C.1). We note that in most parameter regimes the singular strategy of

the contribution investment mechanism closely resembles the singular strategy of the contribution

probability mechanism (see x
(p1=0)
3 defined in equation (2.13) of section 2.3.1). As such, in most

cases we would expect the behaviours in groups to be the same, regardless of whether we interpret

strategy as continuous investment into anti-predator activities or the probability to invest all into

anti-predator activities.

The second example presented in section 4.4.2 considers the case where an individual’s foraging

gains follow a convex decreasing relationship with investment into anti-predator activities. We keep

the assumption that individual risk dilution decreases linearly with investment. In this case, each

additional amount of anti-predator investment is less costly with respect to foraging gains than

the last. We see qualitatively similar results compared to the example in section 4.4.1: all group
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members invest either maximum or minimum effort into the anti-predator strategy, depending on

the location of a convergence unstable singular strategy in phase space. We shown that the results

of this example are symptomatic of our choice of γ(y), and that a more general consideration of a

nonlinear relationship between foraging and strategy investment can allow for a range of behaviours

to characterise a group. For example, while foraging benefits are concave decreasing with strategic

investment, it is possible for a continuously stable strategic investment level. In this case, all group

members would choose some intermediate amount of effort into anti-predator activities.

In the third example (section 4.4.3) we consider that as an individual increases its investment

into the anti-predator strategy, its relative conspicuousness decreases in a saturating manner. De-

creases in foraging gains with strategic investment are assumed linear. Here, we find that a unique

intermediate level of strategic investment (a convergence stable, evolutionary stable interior singu-

lar strategy) can potentially characterise the anti-predator behaviours of all group members. The

results of this example reflect the expectations that selection pressure on anti-predator behaviours

decreases with increases in group size. We find that the intermediate investment level adopted by

the group decreases with group size. Anti-predator vigilance is theoretically predicted to follow

a similar pattern [32, 49]. In line with our results, numerous observational studies have shown

that investment into vigilance decreases with increases in group size [127, 191]. We also reflect

on how other parameters affect the investment strategy adopted by group members. For example,

by increasing the magnitude of the parameter ϵ we increase an individual’s relative fitness ben-

efits through its experience of an unequal risk dilution, as that individual increases its strategy

investment. As such, selection favours a greater investment into anti-predator activities, and the

entire group becomes characterised by a behavioural phenotype with greater preference to prioritise

anti-predator activities.

The results presented in section 4.4.3 contrast the results presented in chapter 2. To approximate

flexibility in behaviour, the model of chapter 2 presents an interpretation of a mixed strategy: an

individual invests maximum effort (contributes) with a probability x (i.e., plays strategy C) and

invests no effort (does not contribute) with a probability 1 − x (i.e., plays D). While the mixed

strategy x
(p1=0)
3 (see equation (2.13), section 2.3.1) is not convergence stable, the only possible

outcomes of the model in chapter 2 are pure strategy monomorphisms. All individuals invest all

or nothing into anti-predator activities. On the other hand, while the adaptive dynamics of the

investment strategy yield a convergence stable, evolutionary singular strategy within (0, 1) we see

that all individuals find some intermediate level of investment into anti-predator activities. The

adaptive dynamics of the contribution probability and the contribution investment are considerably

different.

In the example of section 4.4.4 we move to consider a probability of group evasion which depends

on the behaviours within the group. We maintain the simplest of assumptions that changes in

individual foraging benefits and dilution risk are linear with strategic investment. Results show that

an intermediate level of anti-predator investment (a continuously stable interior singular strategy)

can describe the behaviours within the group. This finding directly relates to the results of section

2.3.1, chapter 2. In this payoff regime, the findings of section 2.3.1 are interpreted as all group

members choosing the maximum investment strategy with a probability x4 ∈ (0, 1); Fig 2.2a. We see

that the singular strategy of the contribution investment is in near perfect agreement with x4 when
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the novel strategy is unable to affect the probability of group evasion; Fig 4.11. Such similarities

in singular strategy might lead one to conclude similarities between the outcomes of this chapter

and the discrete game of chapter 2. The underlying interpretation of strategy explains why this is

not so. The outcome of the discrete strategy game is equivalent to a polymorphic population in

which a frequency x4 invest maximum, and 1− x4 invest minimum effort. Here, we show that this

polymorphic population is structurally unstable. By allowing novel investment strategies to enter

a group composed of the two extremal investment strategies, we see that all group members end

up choosing a unique intermediate investment level. This behavioural transition indicates why it

is important to consider a flexible behaviour, rather than a fixed behaviour played with a flexible

probability. Provided that the degree of the investment strategy can continuously vary, our findings

show that anti-predator behaviours cannot be restricted to a discrete choice of options. Indeed,

individuals within groups do flexibly alter their responses to predators depending on environment.

For example, the proportion of time grouping individuals spend vigilant is known to vary according

to perceived predator threat level [18, 288], as well as climactic conditions (see chapter 3). In

predator inspection, the proximity to a predator which group members approach can change with

environmental riskiness [289]. Some grouping species fine tune their nearest neighbour distances

depending on foraging demands and predation risk [162].

In section 4.4.5 we provide an example in which a group becomes behaviourally differentiated.

We see that some group members show a propensity to invest all into anti-predator activities.

Other group members exhibit a propensity to invest nothing. Interestingly, in this example we

see that the two factors which determine individual survivorship; the probability of group evasion

and the probability of targeting given failed evasion, can define a critical group size at which the

behavioural split occurs; Fig 4.15. This critical group size reflects an inflection point of the adaptive

landscape; Fig 4.16. Groups smaller than this critical size exhibit all group members choosing the

same intermediate investment level (a continuously stable singular strategy; a local maxima of the

adaptive landscape), groups larger exhibit two distinct phenotypes.

The split in behavioural types of section 4.4.5 results from a branching point of the contribution

investment strategy. An alternative way to generate a mixture of behaviours is the mixed strategy

of chapter 2. The mixed strategy results in an expected proportion x4 of the group to invest all, and

1−x4 to invest nothing. The results which we present here therefore indicate that there are two ways

in which a group may come to exhibit two distinct anti-predator behavioural phenotypes. Either

(i) a branching point of the adaptive dynamics of the investment strategy leads to a diversification

from an initially homogenous group, to a mix where a fixed proportion consistently invest more and

a fixed proportion consistently invest less. Or (ii) a convergence stable interior fixed point of the

contribution probability strategy leads an initially homogenous group to a mix where all individuals

randomly choose to invest all or nothing, with a fixed probability between zero and one. The former

case generates consistent differences in individual behaviours, the latter case yields non-consistent

differences in individual behaviours.
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Concluding remarks

In this research we show that grouping individuals can exhibit a variety of highly flexible be-

havioural responses when subjected to a foraging predation trade-off. We demonstrate that dif-

ferent behavioural outcomes emerging from groups can be explained by a simple mathematical

analysis of how an individual’s behaviour affects its dilution risk and its foraging benefits. We show

that different structures between risk dilution and foraging gains can directly explain the different

behaviours within the group. Depending on the trade-off structure, we identify cases in which all

group members choose minimal or maximal levels of effort in their anti-predator strategies, where

all group members choose an intermediate level of effort in their anti-predator behaviour, and when

the trade-off results in two distinct anti-predator behaviours both existing within the group. Each

distinct behavioural outcome is explained in simple mathematical terms. Given that a wide range of

group living species have to balance predation risk with foraging needs, the results of this research

contribute to the understanding of anti-predator behavioural decisions in many grouping species.
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Chapter 5

Conclusion

The results presented in this thesis concern the questions of how grouping animals subjected to

predation adjust their choices of anti-predator behaviours. In the research, it is demonstrated that

the three principal anti-predation effects of collective vigilance, risk dilution and confusion of the

predator, play a considerable role in influencing these responses. Two alternative approaches to

modelling the anti-predator behaviours within groups are applied. Analytical results concerning

deterministic evolutionary game theory, for which group members can choose from a discrete set of

behaviours, are given. Also through an analytical approach, the current research presents results

which characterise the choices of grouping individuals that can flexibly choose from a continuum

of behaviours. In both respective approaches, to understand the behaviours of group members,

a core assumption of the present research is that the principal anti-predation effects may act

complementary, co-dependently or compensatory when exerting pressures on the expression of

phenotypes within prey groups.

In the first part of this thesis, grouping individuals are given a choice between contributing to-

wards overall group safety, or not. Chapter 2 presents an array of qualitatively distinct behavioural

dynamics from interactions within groups. Each distinct behavioural outcome depends on both the

influence and the magnitude, of each principal anti-predation effect. By analytically investigating

how anti-predation effects concomitantly influence the behavioural choice of a group member, this

research provides new dynamical insights into the behaviours emanating from groups. No prior

theoretical synthesis has incorporated all three anti-predation effects. The results presented here

contribute to the existing knowledge of anti-predator behaviours within groups.

A particular contribution of chapter 2 is that the research provides a novel way of modelling

an individual’s risk dilution to depend on its strategic behaviour. From the hypothesis of unequal

risk dilution, a trade-off (Fig 2.1) in individual predation risk and non-predation grouping benefits

naturally emerges. To our knowledge this trade-off has not previously been theoretically explored.

Through analysing qualitatively different structures of the trade-off, this research contributes to the

understanding of how the behaviours of grouping individuals change. In particular, the research

presented offers explanations as to how individual behaviours might change in different ways with

factors previously assumed to have specific directional effects. Discrete game theoretical models

studying anti-predator behaviours in groups tend to find a negative group size effect with either

the frequency (of) or the probability that an individual contributes towards overall group safety

(sometimes referred to as “cooperative” behaviour [63, 251]). The results of chapter 2 demonstrate

that the negative group size effect is not universal but rather emblematic of a specific structure
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in the trade-off identified (see Cases of Fig 2.1). Moreover, the research presented here provides

results which demonstrate a less documented positive group size effect [136, 191].

The significance of considering behavioural mutations has also been highlighted. Random be-

havioural decisions are often overlooked in discrete strategy games (for example see [49, 55, 251].

Generally, individuals (and certainly animals) possess propensities to randomly explore their be-

havioural options [21, 40]. Such random effects are likely to affect the behavioural dynamics. The

results presented in chapter 2 show that when considering small rates of behavioural exploration,

one finds qualitatively similar results to the case of pure behavioural imitation. Conversely, when

an individual has a high probability to randomly choose its behaviour, the population is always

characterised by a more equitable split between behavioural phenotypes. A possible issue when

not considering behavioural exploration (i.e., under pure imitation) is that in the absence of at

least one exemplar of a certain behaviour (i.e., the population is at an absorbing state x = 0 or

x = 1), there is no mechanism for behaviour to spread. Through considering exploration and a well

mixed population, the results presented here ensure that group members can always observe, and

subsequently choose a better performing behaviour. Through allowing recurrent behavioural muta-

tions to affect anti-predator behaviour in groups, the present research provides a more biologically

realistic contribution to models within the field.

Overall chapter 2 provides a new theoretical grounding which presents and explains how interac-

tive pressures exerted by risk dilution, vigilance and confusion effects, result in specific behaviours

emerging from the group. The model presented provides a mathematically concise explanation for

these findings.

Chapter 3 qualitatively compares the theoretical results of chapter 2 to a real group living

species subject to the principal anti-predation effects. Contributions of this section are made by

providing qualitative evidence which supports the theoretical core of this research: that the three

principal anti-predation effects are mutually interconnected. The data analysis presented in chap-

ter 3 highlights the importance of this rational by demonstrating that theoretical predictions of

behavioural phenotypes in groups are only appropriate when considering multiple anti-predation

effects. Theoretical predictions corresponding to reduced models are made and compared to the

full model (including all three anti-predation effects), and the observational data. The research

presented here demonstrates that only when considering at lest two of the three principal anti-

predation effects can grouping behaviours be predicted. This component of the research illustrates

the relative importance of each anti-predation effect on group behaviour, and in particular, demon-

strates the importance of an unequal dilution effect. A negative group size effect is theoretically

predicted from the trade-off Fig 2.1 and empirically observed. This result supports the modelling

approach, and justifies the use of ϵ.

Perhaps the most significant contribution of chapter 3 is that the research presented therein

confirms the applicability of the theoretical framework of chapter 2. In this thesis, the theoretical

models presented, are, unlike previous models e.g., Pulliam [130], not species specific, and instead

intend to be broad enough to capture a wide range of group living species. The analysis presented

in chapter 3 shows that when applied to an abstract choice or prey group, the theoretical results

presented in this thesis are reflected in wild groups.

In most grouping animals, anti-predator behaviours are not limited to a discrete and finite set.
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More realistically, group members can demonstrate flexible and continuously adjustable responses to

predators [32, 46, 49]. Most previous models studying flexible anti-predator behaviours in groups of

prey have applied to a static concept of an ESS to a continuous strategy [35]. A static interpretation

leads to questions of whether the theoretically predicted ESS behaviours are actually attainable

(and are often not reflected by data – see Pulliam [49] for example). Other models studying anti-

predator behaviour in prey groups have applied a discrete strategy space, i.e., the mixed strategy,

to approximate flexible behaviour [59]. This approach leads to the question of how well a flexible

behaviour can be approximated by individuals probabilistically choosing from a set of discrete

and fixed actions. In chapter 4 we present the adaptive dynamics of anti-predator behaviours

within groups. We replace the static Maynard Smith [35] interpretation of an ESS with a dynamic

interpretation. In the dynamic sense, behaviours within the group are occasionally challenged by

novel behaviours. We also replace the notion of a flexible behaviour as a mixed strategy, and use a

continuously adjustable strategy. The latter part of this research thesis answers the following key

questions: how does an appropriately scaled anti-predator behaviour within groups change with

time? Is the behaviour resistant to invasion? and can the behaviour invade similar behaviours?

Analytic expressions are provided which quantify the behavioural dynamics.

Building on from theoretical construct of the first section of this thesis, chapter 4 identifies

how a group member’s investment into a flexible anti-predation behaviour affects both its foraging

abilities and it’s predation risk. Through analysing different structures of one case of this trade-off

(functionally equivalent to Fig 2.1), this section of research contributes by providing analytical con-

ditions for qualitatively distinct behavioural dynamics in groups. Comparisons are made between

the resulting strategic choices when group members free to choose a continuous behaviour, and the

case where group members face a discrete behavioural choice. Depending on the structure of the

trade-off, equivalences and differences between the discrete and continuous strategy outcomes are

identified and explained. The research explains when all group members choose the same discrete

behaviour (pure strategy), when all group members choose a behaviour not accessible through a

discrete consideration of strategy, and when a group becomes behaviourally differentiated; some

group members choose one of the (pure) discrete behaviours, while other group members do not.

The results of this research show that when individuals flexibly choose behaviours in response to

predation, one can expect different behavioural choices within the group compared to when group

members have an “either or” choice.

The research presented within this thesis is limited in the sense that we only consider anti-

predator behaviours that are defined by how they affect predator detection and evasion. For

instance, individuals may choose to prioritise an anti-predator strategy, or individuals may choose

to prioritise foraging. There is a third option which we do not consider: individuals may choose to

leave the group. In reality, groups may disband seasonally [18, 122] or due to conflicting behaviours

within the group [4]. Future development of the present research would consider a so-called “loner”

strategy [57]. Tentative investigation (not shown presently) with a similar structural trade-off

described in this research, indicates that the dilution effect plays a dominant role in the behavioural

dynamical outcomes. In the absence of a dilution effect, the three strategy analogue of the present

research produces a rock-paper-scissors type game, characterised by a heteroclinic cycle. When all

individuals choose to prioritise the anti-predator behaviour, all individuals receive greatest safety
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(and thereby fitness). Yet, there is always an incentive for an individual to rely upon the anti-

predator behaviours of others and increase feeding. As such, all group members choose to prioritise

foraging. Eventually, no group members choose the anti-predator behaviour and all group members

are subject to maximum predation risk. Individuals receive a more preferable risk profile by leaving

the group, and therefore choose the loner strategy. Each individual in a collection of loners receives

a less favourable risk profile than it would in a group where all choose anti-predator behaviour.

The group reforms with all individuals choosing the pro-active anti-predator behaviour. The cycle

repeats. Interestingly, the introduction of a dilution effect to such a game substantially changes the

dynamics. With pure dilution, the strategy that prioritises foraging is always a viable behaviour,

and when the magnitude of the dilution effect on fitness is small, the dynamics are characterised

by limit cycles.

With the methods presented in this thesis, we aim to understand more about the behavioural de-

cisions made by grouping animals when threatened with a predator. Increasing this understanding

will have wide implications for models of predator-prey interactions and population dynamics.
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Appendix A

A.1 The Kramers-Moyal Expansion

A Kramers-Moyal expansion is applied to approximate a continuos probability density function

p(x, t) for large N . Let p(x, t) denote the probability density function of the frequency of the C.

We rescale time such that t = τ/N , set x = mj/N so that p(x, t) = NP τ (j) and

p

(
x, t+

1

N

)
− p(x, t) =p

(
x− 1

N
, t

)
T+(x− 1

N
)+ (A.1a)

p

(
x+

1

N
, t

)
T−(x+

1

N
)− p(x, t)T−(x)− p(x, t)T+(x) (A.1b)

The transition probabilities and probability densities are approximated by a taylor series in x and

t;

p

(
x, t+

1

N

)
≈ p(x, t) +

∂

∂t
p(x, t)

1

N
+

1

2!

∂2

∂t2
p(x, t)

1

N2
+ ... (A.2a)

p

(
x± 1

N
, t

)
≈ p(x, t)± ∂

∂x
p(x, t)

1

N
+

1

2!

∂2

∂x2
p(x, t)

1

N2
(A.2b)

T±(x± 1

N
) ≈ T±(x)± ∂

∂x
T±(x)

1

N
+

1

2!

∂2

∂x2
T±(x)

1

N2
± ... (A.2c)

Substituting the expressions of lines A.2a, A.2b, A.2c into equation A.1 we obtain(
p(x, t) +

∂

∂t
p(x, t)

1

N
+

1

2!

∂2

∂t2
p(x, t)

1

N2
+ ...

)
− p(x, t) ≈(

p(x, t)− ∂

∂x
p(x, t)

1
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∂2

∂x2
p(x, t)

1

N2

)(
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∂x
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1

N
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1

2!

∂2

∂x2
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1

N2
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∂
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1

N
+

1
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∂x2
p(x, t)

1

N2

)(
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∂

∂x
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1

N
+

1

2!

∂2

∂x2
T−(x)

1

N2

)
−

p(x, t)T−(x)− p(x, t)T+(x).
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Truncating at terms of order higher than 1/N2 in the above expression we find

∂

∂t
p(x, t)

1

N
≈

1

2

∂2

∂x2

(
T+(x) + T−(x)

N2

)
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1

2

(
T+(x) + T−(x)

)
∂2

∂x2

(
1

N2
p(x, t)

)
+

∂

∂x

(
1

N
p(x, t)

)
∂

∂x

(
T+(x) + T−(x)

N

)
+ (A.4a)

∂

∂x

(
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N

)
p(x, t) +

(
T−(x)− T+(x)
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∂
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(
1

N
p(x, t)

)
(A.4b)

and applying the Chain rule to lines A.4a and A.4b we find that

1

2

∂2

∂x2
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N2

)
=
1
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1
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∂
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(
1
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∂

∂x

(
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N

)
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∂

∂x

(
p(x, t)
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N

)
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∂
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(
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+(
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1
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Equation A.1 becomes

∂

∂t
p(x, t)

1

N
≈ ∂

∂x

(
p(x, t)

T−(x)− T+(x)

N

)
+

1

2

∂2

∂x2

(
p(x, t)

T+(x) + T−(x)

N2

)
(A.7)

which can be written as the diffusion approximation of the one step process;

∂

∂t
p(x, t) = − ∂

∂x

[
A(x, t)p(x, t)

]
+

1

2

∂2

∂x2
[
B2(x, t)p(x, t)

]
(A.8)

with drift and diffusion terms A(x, t) and B2(x, t) respectively given by

A(x, t) = T+(x)− T−(x)

B2(x, t) =
1

N
(T+(x) + T−(x))

A.2 The van Kampen approach

The Van Kampen expansion is an intuitive way of deriving the Fokker-Planck equation in that it

indicates that the deterministic drift coefficient should be scaled differently from the fluctuating

diffusion coefficient. Essentially the average movement should be of greater significance and of a
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greater order than the random fluctuations. As such, we introduce the van Kampen ansatz [84]

i = Nx(τ) +
√
Nξ (A.10)

so that i/N = x(τ)+N− 1
2 ξ. Here x(τ) is the non-fluctuating varibale of the system and is of order

N . The variable ξ is the fluctuating varibale with order N
1
2 . By introducing the shift operators

E±f(n) = f(n± 1) and writing t rather than τ the master equation can be written

dP t(i)

dt
= (1− E+)P t(i)T+(i) + (1− E−)P t(i)T−(i) (A.11)

Writing the distribution of ξ(t) according to the probability density function p(ξ, t) = P t(Nx(t)+√
Nξ), it follows that we have

dP t(i)

dt
=
∂p(ξ, t)

∂ξ

dξ

dt
+N

1
2
∂p(ξ, t)

∂ξ

dξ

dt
=
∂p(ξ, t)

dt
−N

1
2
∂p(ξ, t)

∂ξ

dx(t)

dt
(A.12)

The master equation reads

∂p(ξ, t)

dt
−N

1
2
∂p(ξ, t)

∂ξ

dx(t)

dt
=(1− E+)p(ξ, t)T+(Nx(t) +N

1
2 ξ)+

(1− E−)p(ξ, t)T−(Nx(t) +N
1
2 ξ) (A.13a)

The transition rates can be expanded as a taylor series of y = N
1
2 ξ according to

T±(xN +N
1
2 ξ) ≈ NT±(x) +

∂

∂x
T±(x)ξ

√
N + · · · (A.14a)

and the shift operators by

E± − 1 = ± 1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2
+ · · · (A.15)

It follows that by substituting the A.15 and A.14a into equation A.13a we have
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−N

1
2
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= (A.16a)
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(A.16b)

The terms of order N
1
2 give the macroscopic (deterministic) equation for the system:

dx(t)

dt
= T+(x)− T−(x) (A.17)

Collecting terms in order of N0 we obtain

∂p(ξ, t)

∂ξ
= − ∂

∂x

(
T+(x)− T−(x)

)
∂

∂ξ
ξp(ξ, t) +

1

2

(
T+(x) + T−(x)

)
∂2

∂ξ2
p(ξ, t) (A.18)
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By substituting z = N− 1
2 ξ + x(t) we obtain the Fokker-Planck equation

∂

∂t
p(x, t) = − ∂

∂x

(
A(x, t)p(x, t)

)
+

1

2

∂2

∂x2
(
B2(x, t)p(x, t)

)
(A.19)

A.3 Model Analysis

A.3.1 Investigating state shifts with parameters for δ, ϵ < 0

As we have demonstrated in the main text the movement of the key determining values – the values

of n which determine the positions of the transcritical bifurcations in the system – that enable

ecological statements to be made from the mathematics. Therefore in this and the subsequent

section we have determined the sign of the partial derivatives of n1 and n2 with respect to the

physical parameters.

We find that for n1

∂n1
∂ϵ

=
γC(1− p0)

δ
< 0 ,

∂n1
∂p0

= −(δ + ϵγC)

δ
< 0 ,

∂n1
∂γC

= −ϵγD(1− p0)

δ2
> 0 (A.20)

For n2 we find that

∂n2
∂γC

= −
ϵγD

(
(1 + k)(1− p0)− p1

)
δ2(1 + ϵ)(1 + k)

= −

−ve︷︸︸︷
ϵγD

( +ve︷ ︸︸ ︷
1− p0 − p1 + k − kp0

)
δ2(1 + ϵ)(1 + k)︸ ︷︷ ︸

+ve

> 0

∂n2
∂ϵ

=
γD
(
(1 + k)(1− p0)− p1

)
δ(1 + ϵ)2(1 + k))

=

+ve︷︸︸︷
γD

( +ve︷ ︸︸ ︷
1− p0 − p1 + k − kp0

)
δ(1 + ϵ)2(1 + k)︸ ︷︷ ︸

−ve

< 0

∂n2
∂p1

= − δ + ϵγC
δ(1 + ϵ)(1 + k)

< 0

∂n2
∂p0

= − δ + ϵγC
δ(1 + ϵ)

< 0

∂n2
∂k

=
(δ + ϵγC)p1

δ(1 + ϵ)(1 + k)2
=

−ve︷ ︸︸ ︷
(δ + ϵγC)p1

δ(1 + ϵ)(1 + k)2︸ ︷︷ ︸
−ve

> 0 (A.21a)

Investigating state shifts with model parameters for δ, ϵ > 0

Since the signs of δ and ϵ are reversed, the values n1 and n2 move in the opposite direction of travel

with other parameters as compared with above:

∂n1
∂ϵ

> 0 ,
∂n1
∂p0

< 0 ,
∂n1
∂γC

< 0 (equivalently
∂n1
∂γD

> 0) (A.22)



A.3. Model Analysis 181

For n2 changes with all parameters follow;

∂n2
∂p1

< 0 ,
∂n2
∂p0

< 0 ,
∂n2
∂k

> 0 ,
∂n2
∂ϵ

> 0 and
∂n2
∂γD

> 0 (equivalently
∂n2
∂γC

< 0) (A.23)

A.3.2 Considering different the evasion function g(n, x) = p0n
k1+n

+ p1x
k2+x

We solve the new dynamical system

ẋ = x(1− x)

{
(δ + ϵβs1)

[
nk2(1− p0) + k1k2 − x(n(p1 + p0 − 1) + k1(1− p1))

]
n(k1 + n)(k2 + x)(1 + ϵx)

−

δ
[
n(k1k2 + nk2) + nx(k1 + ϵk1k2 + n+ ϵnk2) + ϵnx2(k1 + n)

]
n(k1 + n)(k2 + x)(1 + ϵx)

}
= 0 (A.24a)

to once again find 4 fixed points for the system; x1 = 0, x2 = 1 and two quadratic solutions x3 and

x4. For ease of reading we write x3 and x4 such that

x3 =
1

2δϵn(k1 + n)

{
A+

√
B + C2

}
x4 =

1

2δϵn(k1 + n)

{
A−

√
B + C2

}
where

A =(δ + ϵγC)(k1(1− n− p1 − ϵk2n)− n(n− 1 + ϵk2n+ p0 + p1))+

ϵγC(k1(n+ ϵk2n) + n(n+ ϵk2n))

B =4δϵk2n(n+ k1)
[
(δ + ϵγC)((1− n)(n+ k1)− np0) + ϵγC(n(n+ k1))

]
C =(δ + γC)(k1(1− n− ϵk2n− p1)− n(n− 1 + ϵk2n+ p0 + p1))+

ϵγC(k1(n+ ϵk2n) + n(n+ ϵk2n))

We work on the case δ, ϵ < 0 to find new critical group sizes that determine the stability of

x∗ = x1, x2, x3, x4 (for the case δ, ϵ > 0 we simply find a reversal in the sign of the one-dimensional

Jacobian).

Three new critical group sizes are found with the new system;

n1 =
(δ + ϵγC)(1− p0) + k1γC +

√
(δ + ϵγC)2(1− 2p0 + p20) + (δ + ϵγC)(2k1δ + 2k1δp0) + (k1δ)2

2δ

n2 =
(δ + ϵγC)((1 + k2)(1− k1 − p0)− p1) + ϵk1(1 + k2)γD +

√
(δ + ϵγC)2Γ + (δ + ϵγC)Ψ−Θ

2δ(1 + ϵ)(1 + k2)

where

Γ = (k21(1 + k2)
2 + 2k1(1 + k2)(1 + k2 + p0 + k2p0 − p1) + ((1 + k2)(−1 + p0) + p1)

2)

Ψ = 2γDϵk1(1 + k2)((1 + k2)(1 + k1 + p0)− p1)

Θ = ϵ2k21(1 + k2)
2γ2D.
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and n3 which is omitted but available upon request.

We find that x1 is stable if and only if

λ1 =
(δ + ϵγC)((−1 + n)(k1 + n) + np0)− n(k1 + n)ϵγC

n(k1 + n)
< 0 ⇐⇒

n2δ + n((p0 − 1)(δ + γC) + k1δ)− k1(δ + γC) < 0 ⇐⇒

n >n1

The equilibrium x2 is stable if and only if

λ2 =
γD(1 + k2)((k1 + n)(n− 1 + ϵn) + np0) + γD(k1 + n)p1

(1 + ϵ)(1 + k2)n(k1 + n)
−

γC(1 + ϵ)[(1 + k2)((n− 1)(k1 + n) + np0) + (k1 + n)p1]

(1 + ϵ)(1 + k2)n(k1 + n)
< 0 ⇐⇒

− n2(δ(1 + ϵ+ k2 + ϵk2)) + n((δ + ϵγC)(1− p0 + k2 − k2p0 − p1)− δ(k1 + ϵk1 + k1k2 − k1p1))

+ (δ + ϵγC)(k1 + k1k2 − k1p1) < 0

Using the quadratic formula where by definition

a = δ(1 + ϵ)(1 + k2) < 0 and c = (δ + ϵγC)(k1 + k1k2 − k1p1) < 0 and n > 0 we must have

b = ((δ + ϵγC)(1− p0 + k2 − k2p0 − p1)− δ(k1 + ϵk1 + k1k2 − k1p1)) > 0.

Then

an2 + bn+ c = 0 ⇐⇒ n =
−b±

√
b2 − 4ac

2a
∴ λ2 < 0 ⇐⇒ an2 + bn+ c < 0 ⇐⇒

n <
−b+

√
b2 − 4ac

2a
for positive values of n. Thus it follows that

n < n2

(A.29a)

A.3.3 Investigating state shifts with model parameters for δ, ϵ < 0

We find that as we vary our model parameters, the values n1 and n2 which determine the behaviour

of a given sized group change.

We find that n1 changes with γC , γD, ϵ, p0 and k1. This is found by taking the partial derivative

of n1 with respect to each parameter; Recall that δ, ϵ < 0 and p0, p1, k2 ∈ (0, 1) and k1 > 0.

For ∂ϵn1 we see:

∂n1
∂ϵ

=
2γC(1− p0)

4δ
+

2γC
[
δ((p0 − 1)2 + k1(p0 + 1)) + ϵγC(p0 − 1)2

]
4δ2
√

(δ(1+k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20
δ2

< 0 (A.30a)

where
2γC(1− p0)

4δ
< 0 and

2γC
[
δ((p0 − 1)2 + k1(p0 + 1)) + ϵγC(p0 − 1)2

]
< 0

which makes the overall expression less than 0 (A.30b)
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We find for ∂p0n1:

∂n1
∂p0

= −(δ + ϵγC)

2δ
+

2(δ + ϵγC)(δ(k1 − 1 + p0) + ϵγC(p0 − 1))

4δ2
√

(δ(1+k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20
δ2

< 0 (A.31a)

where − (δ + ϵγC)

2δ
< 0 and

2(δ + ϵγC)(δ(k1 − 1 + p0) + ϵγC(p0 − 1)) = 2

+ve︷ ︸︸ ︷
((p0 − 1)(δ + ϵγC)− δk1)

−ve︷ ︸︸ ︷
(δ + ϵγC) < 0

which makes the overall expression less than 0 (A.31b)

We find for ∂k1n1:

∂n1
∂k1

=
1

2

[
− 1 +

2δ[(δ + ϵγC)p0 + δ(1 + k1) + ϵγC ]

δ2
√

(δ(1+k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20
δ2

]
> 0 (A.32a)

Since expression A.32a may be written as

1

2

[
− 1 +

δ(1 + k1 + p0) + ϵγC(1 + p0)

δ

√
(δ(1+k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20

δ2

]
(A.33)

we simply consider the second term in the square brackets:

δ(1+k1+p0)
δ + ϵγC(1+p0)

δ√
(δ(1+k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20

δ2

(A.34)

where
+ve︷ ︸︸ ︷

δ(1 + k1 + p0)

δ
+

+ve︷ ︸︸ ︷
ϵγC(1 + p0)

δ
> 0

Squaring both the numerator (Num2) and denominator (Den2) we see that

Num2 =

[
δ(1 + k1 + p0)

δ
+
ϵγC(1 + p0)

δ

]2
=

1

δ2

[
δ2(1 + k1 + p0)

2︸ ︷︷ ︸
A

+2δϵγC(1 + p0)(1 + k1 + p0)︸ ︷︷ ︸
B

+ ϵ2γ2C(1 + p0)︸ ︷︷ ︸
C

]
(A.35a)

and

Den2 =
(δ(1 + k1)− ϵγC)

2 − 2(δ + ϵγC)(δ(1− k1) + ϵγC)p0 + (δ + ϵγC)
2p20

δ2
=

1

δ2

[
δ2(1 + k1 − p0)

2︸ ︷︷ ︸
A′

+2δϵγC((1 + p0)(1 + k1 + p0)− 2(1 + k1)− 4p0)︸ ︷︷ ︸
B′

+ ϵ2γ2C(1− p0)︸ ︷︷ ︸
C′

]
(A.36a)
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Comparing the terms in lines A.35a and A.36a term by term it is obvious that A > A′, B > B′, C >

C ′ and therefore[
δ(1 + k1 + p0)

δ
+
ϵγC(1 + p0)

δ

]2
>

(δ(1 + k1)− ϵγC)
2 − 2(δ + ϵγC)(δ(1− k1) + ϵγC)p0 + (δ + ϵγC)

2p20
δ2

meaning that
δ(1 + k1 + p0) + ϵγC(1 + p0)

δ

√
(δ(1+k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20

δ2

> 1

Therefore, the expression A.32a must be greater than 0 meaning that the expression A.34 is nec-

essarily positive.

∂n1
∂γC

=
1

2δ3

[
δ2(1− k1 − p0 + ϵ(1− p0)) + δ(δ(k1 + p0 − 1) + ϵγC(p0 − 1))+

ϵγD
[
− δ((p0 − 1)2 + k1(1 + p0))− ϵγC(p0 − 1)2

]√
δ(−1−k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20

δ2

]
> 0 (A.38a)

Looking at the first term in the brackets of A.38a we have

δ2(1− k1 − p0 + ϵ(1− p0)) + δ(δ(k1 + p0 − 1) + ϵγC(p0 − 1)) =

δ2(1− k1 − p0 + ϵ(1− p0) + k1 + p0 − 1) + δϵγC(p0 − 1) =

δ2ϵ(1− p0)− δϵγC(1− p0) =

+ve︷ ︸︸ ︷
(1− p0)

−ve︷ ︸︸ ︷
δ(δϵ− ϵγC) < 0

meaning that
δ2(1− k1 − p0 + ϵ(1− p0)) + δ(δ(k1 + p0 − 1) + ϵγC(p0 − 1)

2δ3
> 0

Looking at the second term within the brackets of A.38a we have

−ve︷︸︸︷
ϵγD

[ +ve︷ ︸︸ ︷
−δ((p0 − 1)2 + k1(1 + p0))−(

−ve︷ ︸︸ ︷
ϵγC(p0 − 1)2)

]
< 0

and since 2δ3
√
δ(−1− k1)− ϵγC)2 − 2(δ + ϵγC)(δ(1− k1) + ϵγC)p0 + (δ + ϵγC)2p20

δ2
< 0

we have that
ϵγD

[
− δ((p0 − 1)2 + k1(1 + p0))− ϵγC(p0 − 1)2

]
2δ3
√

δ(−1−k1)−ϵγC)2−2(δ+ϵγC)(δ(1−k1)+ϵγC)p0+(δ+ϵγC)2p20
δ2

> 0

which makes the overall expression of A.38a greater than 0

We find that n2 changes with all parameters. The unwieldy nature of expressions do not enrich

the content of this thesis, and we show only the signs of the partial derivatives. Upon request

a written up pdf document is available to read further calculations, and (or) also a mathematica

file is free upon request. To illustrate the unwieldy nature of these partials, the least complex to

analyse is
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∂n2
∂p1

=
1

4δ2(1 + ϵ)2(1 + k2)2

{
− 2δ(1 + ϵ)(δ + ϵγC)(1 + k2)−

δ(1 + ϵ)(1 + k2)√
(δ + ϵγC)2Γ + (δ + ϵγC)Ψ−Θ

× (A.39a)

2(δ + ϵγC)
[
δ((1 + k2)(1− p0 + k1(1 + ϵ))− p1) + ϵγC((1 + k2)(1− p0)− p1)

]√
(δ + ϵγC)2Γ + (δ + ϵγC)Ψ−Θ

}

Looking at the first term in the large curly brackets we find

+ve︷ ︸︸ ︷
(−2δ)

+ve︷ ︸︸ ︷
(1 + ϵ)

−ve︷ ︸︸ ︷
(δ + ϵγC)

+ve︷ ︸︸ ︷
(1 + k2) < 0

Looking at the second term inside the curly brackets we find

−ve︷ ︸︸ ︷
2(δ + ϵγC)

−ve︷ ︸︸ ︷
δ(1 + ϵ)(1 + k2) > 0 and inside the square brackets the term

δ((1 + k2)(1− p0 + k1(1 + ϵ))− p1) = δ
[ +ve︷ ︸︸ ︷
k1(ϵ(1 + k2) + (1 + k2))+

+ve︷ ︸︸ ︷
(1− p0 − p1)+

+ve︷ ︸︸ ︷
k2(1− p0)

]
< 0

and ϵγC((1 + k2)(1− p0)− p1) =

−ve︷︸︸︷
ϵγC (

+ve︷ ︸︸ ︷
(1− p0 − p1)+

+ve︷ ︸︸ ︷
k2(1− p0)) < 0

Therefore the whole expression becomes

+ve︷ ︸︸ ︷
1

4δ2(1 + ϵ)2(1 + k2)2

{ −ve︷ ︸︸ ︷
−2δ(1 + ϵ)(δ + ϵγC)(1 + k2)−

+ve︷ ︸︸ ︷
2(δ + ϵγC)δ(1 + ϵ)(1 + k2)

[[ −ve︷ ︸︸ ︷
δ((1 + k2)(1− p0 + k1(1 + ϵ))− p1)+

−ve︷ ︸︸ ︷
ϵγC((1 + k2)(1− p0)− p1)

]]
√

(δ + ϵγC)2Γ + (δ + ϵγC)Ψ−Θ

}
< 0

Seek the accompanying files for details of the following partial derivatives

∂n2
∂p0

< 0,
∂n2
∂k1

> 0,
∂n2
∂ϵ

< 0,
∂n2
∂k2

> 0,
∂n2
∂γD

< 0 (A.41)

Stability for δ, ϵ < 0

The fixed point x3 is never stable when δ, ϵ < 0.

We find that x4 is stable if and only if n3 < n < n1, or n2 < n < n1 depending on our parameter

values.
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A.4 Considering a multiplicative evasion function: p0n
k1+n

(1 + p1x
k2+x

)

By applying this evasion function, the dynamical system becomes

ẋ = x(1− x)

{
γC

(
n+ ϵ

( np0p1x
(k1+n)(k2+x) +

np0
k1+n + nx− 1

)
+ np0p1x

(k1+n)(k2+x) +
np0
k1+n − 1

)
n(1 + ϵx)

+

γD
(
γD − (ϵnx+ np0p1x

(k1+n)(k2+x) +
np0
k1+n + n)

)
n(1 + ϵx)

}
(A.42a)

which we solve to find the quadratic solutions x3 and x4;

x3 =
γC(k1 + n)(e(k2n− 1) + n− 1)− γC(ϵ+ 1)np0p1 + γD(k1 + n)(ek2n+ n− 1) + γDnp0p1

2ϵnδ(k1 + n)
+√

((k1 + n)(−nδ(ek2 + 1) + γCϵ+ δ)− np0p1(γCϵ+ δ))2 +K
2ϵnδ(k1 + n)

and

x4 =
γC(k1 + n)(e(k2n− 1) + n− 1)− γC(ϵ+ 1)np0p1 + γD(k1 + n)(ϵk2n+ n− 1) + γDnp0p1

2ϵnδ(k1 + n)
−√

((k1 + n)(−nδ(ek2 + 1) + γCϵ+ δ)− np0p1(γCϵ+ δ))2 +K
2ϵnδ(k1 + n)

(A.44a)

where

K = 4ek2nδ(k1 + n)2(γC(e− n+ 1) + γD(n− 1)). (A.45)

The critical group sizes n1 and n2 become;

n1 =
1

2

(
+
γD(k1 + p0 − 1)− γC(ϵ(p0 − 1) + k1 + p0 − 1)

δ
+√

−2p0(γCϵ+ δ)(γC(ϵ− k1 + 1) + γD(k1 − 1)) +H+ p20(γCϵ+ δ)2

δ2

)

and

n2 =
1

2

(
a0 −

1√
a1 − a2 + a3

)
(A.47)

where

H = (−γC(ϵ+ k1 + 1) + γDk1 + γD)
2 (A.48)
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and

a0 =
γD((ϵ+ 1)k1(k2 + 1) + k2(p0 − 1) + p0p1 + p0 − 1)

(ϵ+ 1)(k2 + 1)δ

a1 =
γ2C
(
ϵ+ 1)2(k21(k2 + 1)2 + 2k1(k2 + 1)(k2p0 + k2 + p0p1 + p0 + 1) + (k2(p0 − 1) + p0p1 + p0 − 1)2)

(ϵ+ 1)2(k2 + 1)2δ2

a2 =
2γCγD(ϵ+ 1)

(ϵ+ 1)2(k2 + 1)2δ2

(
(ϵ+ 1)k21(k2 + 1)2 + (ϵ+ 2)k1(k2 + 1)(k2p0 + k2 + p0p1 + p0 + 1)

(ϵ+ 1)2(k2 + 1)2δ2
+

(k2(p0 − 1) + p0p1 + p0 − 1)2

(ϵ+ 1)2(k2 + 1)2δ2

)

a3 =
γ2D

(
(ϵ+ 1)2k21(k2 + 1)2 + 2(ϵ+ 1)k1(k2 + 1)(k2p0 + k2 + p0p1 + p0 + 1)

(ϵ+ 1)2(k2 + 1)2δ2
+

(k2(p0 − 1) + p0p1 + p0 − 1)2
)

(ϵ+ 1)2(k2 + 1)2δ2

The value n3 is not written algebraically here due to it’s length and complexity, but can be found

in a separate Mathematica file upon request. Due to the length of these expressions we do not give

all of calculations of the partial derivatives (but are available on request), however, we do show

a structural equivalence to the other models. As can be seen in that n1 clearly does not depend

on p1, k2 and thus selfish groups are unaffected by the cooperative aspect of evasion. Whereas n2

clearly does have a dependence on p1, k2 and is modulated by cooperative behaviour in the evasion

function.

∂n1
∂p0

< 0
∂n1
∂k1

> 0
∂n1
∂ϵ

< 0
∂n1
∂γD

< 0

∂n2
∂p0

< 0
∂n2
∂p1

< 0
∂n2
∂k1

> 0
∂n2
∂ϵ

< 0
∂n2
∂k2

> 0
∂n2
∂γD

< 0 (A.50a)

A.4.1 Stability for δ, ϵ < 0

The fixed point x3 is never stable when δ, ϵ < 0.

We find that x4 is stable if and only if n3 < n < n1, or n2 < n < n1 depending on our parameter

values.
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Appendix B

B.1 Parameterising the evasion fucnction g(n, x)

We make a series of assumptions supported by empirical data in order to parametrise the predator

evasion function used in equation 3.6. First, the effect of group size on the probability of predator

detection is saturating in redshank, and plateaus for flocks of around 20 birds [25]. To capture

this we choose k1 = 10 so that as a flock reaches a size of 20 birds, there are little increases in the

probability of evasion with further increases in flock size.

We apply the critical group sizes of n1 and n2 given in section 2.3.1 chapter 2, as functions of

model parameters. Using these critical group sizes we use the model predicted vigilance composition

of a flock and infer key parameters using previous research on redshank attacks. The theoretical

model predicts that a flock of size than n2 will be entirely vigilant, and flocks of size greater than

n1 will be entirely non-vigilant. As n1 = n1(d) is a function of distance, and n2 = n2(d, n) is a

function of distance and flock size, for any distance to cover, we can predict the vigilant state of

the flock.

The model results predict that for d→ 40, n→ 50, that max{n1(40)} = 10 and that max{n2(40, 50)} =

7. We assume that when d → 40, n → 50 (since a flock of size 50 is greater than n1(40) = 10),

there will be no vigilant birds (x = 0). In this case, the probability of evasion for a theoretical

non-vigilant flock of size 50 birds at 40 meters from cover, is 0.93 [207]. Therefore we use Equation

3.6 with x = 0, n = 50 and d = 40 such that

A150

10 + 50
= 0.93 (B.1)

suggesting that A1 = 1.1.

Second, we assume that if d→ 40, n→ 50 and x = 1 then the probability of evasion is near to

1. This follows from observed studies in which an exponential fit to attack data gives a flock of size

50 birds at 40 meters from cover and our assumption that vigilant flocks have a greater chance of

evading the predator than non-vigilant flocks. We make the simplifying assumption that

A1n

k1 + n
+
A2(n)

k2 + 1
= 1 (B.2)

We take A2(n) = (1−Λ(n))(k2+1) where Λ(n) monotonically decreases with n. This captures

the observation that as group size increases confusion and group size effects become more influential

in evasion meaning that additional anti-predation gains from the frequency of vigilant individuals

decrease [18, 151]. That is, as n becomes larger the significance of the effects on evasion from p1(n)
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decrease. A way in which to model this without over-complicating the parameter fit is to apply

Λ(n) = A1(
n

κ1 + nκ2
) (B.3)

meaning that A2(n) = (1−A1(
n

κ1+nκ2
))(k2 + 1).

Third, we assume that if birds are sufficiently away from cover (i.e. over 30 meters) [25, 207]

then the chance of evasion plateaus. In this scenario, because min{n2(30, 1)} = 8 we assume that a

solitary bird is vigilant with probability one (x = 1). At a sufficient distance from cover we expect

the probability of evasion for a solitary vigilant bird be [207]

A1

11
+

(
1−A1

[
1

κ1 + κ2

])
= 0.6 (B.4)

such that κ1 + κ2 = 2.2

Fourth, we assume that when d→ 0, n = 1 and then any individual is vigilant with probability

one (x = 1) because of such close proximity to cover. To this end, we expect the probability

of evasion for a solitary vigilant bird at cover to reflect previous research [207]: we propose a

probability of evasion of 0.46 should reflect a solitary vigilant bird at cover. As such

A1(1− λ1)

11
+

(
1−A1

[
1

κ1 + κ2

])
)(1− λ2) = 0.46 (B.5)

Fifth, as d→ 0 and n→ 1 if a solitary bird is non-vigilant, then it’s only chance of survival is by

a failed attack (possibly due to confusion effects). Non-vigilant birds are on average 0.07 seconds

slower to react than vigilant birds. Given that sparrowhawks fly at a speed of 25m/s we find that

this translates to allow a predator about 1.75m closer to non-vigilant redshank as compared to

vigilant birds [255]. Vigilant birds have a 1.75m distance advantage over non-vigilant ones, which

between 0 and 1m to cover, we assume can make non-vigilant birds up to 7 times more likely to be

targeted. Therefore, we assume that solitary non-vigilant birds approximately have a 0.46
7 ≈ 0.07

probability of evasion at cover. Therefore when n→ 1, d→ 0, x→ 0 we have

1.1(1− λ1)

11
= 0.07 (B.6)

meaning λ1 = 0.30.

We obtain λ2 by substituting back into Equation B.5. As the probability of evasion for a solitary

vigilant redshank at cover should match observed empirical data on attack success rates, we find

1.1(1− 0.3)

11
+ (1− 1.1(

1

2.2
))(1− λ2) = 0.46 (B.7)

again using data and functional forms from [207]. It follows that λ2 = 0.22

To fit κ1 and κ2 we examine the changing influence that vigilance has upon evasion as flock size

increases. This approach is inferred via observations, but the precise nature of how the frequency

of vigilant birds in a flock affects evasion as flock size varies will be somewhat ambiguous. We use

the fact that at cover if a solitary bird is not vigilant then it has a 1.1(1−0.3)
11 = 0.07 probability of

escape. If the bird is vigilant this increases to 0.46. Using n2(1, n) from the critical group sizes
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of section 2.3.1 we find min{n2(1, 20)} = 25. Thus, for a flock of size n = 25 < n2 we predict all

birds to be vigilant with probability one, when the flock is located at predatory concealing cover.

Using observational attack success data we assume a vigilant flock of size 25 birds a 0.65 chance of

evasion at cover. Conversely, if the flock is non-vigilant, because detection asymptotes with flocks

of size 20, we only expect the flock to have a probability 0.63 of escape. Therefore we require a

mapping such that

Λ(1) = 1.1(
1

κ1 + 1κ2
)(1− 0.22) = 0.46− 1.1(1− 0.3)

11
(B.8a)

Λ(50) = 1.1(
25

κ1 + 25κ2
)(1− 0.22) = 0.65− 1.1(1− 0.3)

36
(B.8b)

⇐⇒ (B.8c)

0.45 =
1

κ1 + 1κ2
(B.8d)

0.63 =
25

κ1 + 25κ2
(B.8e)

⇐⇒ (B.8f)

κ2 = 1.56 ≈ 1.6 (B.8g)

It follows that κ1 = 2 and κ2 = 1.6.

Finally to fit the parameter k2 we backward infer the response of an expected mixed vigilance

flock for a given attack. The mixed population state x4 is stable and physical for n ∈ [n2, n1], which

occurs for certain values of d and n. We find that min{n1(10)} = 32 and that max{n2(10, 25)} = 18

for d̄ = 10 and n̄ = 25. In this case, our model predicts the flock to have an expected composition

defined by x4. Using the parameter values of n̄ = 25, d̄ = 10 we apply x4 to the evasion function

such that

P (d̄, n̄, x) =
A1(1− λ1e

α1d̄)n̄

k1 + n̄
+
A2(n)(1− λ2e

α2d̄)x∗4
k2 + x∗4

= 0.72 (B.9)

where 0.72 shows an estimate of the probability of evasion found in observed studies for a flock of size

25 at 10 meters to cover [207]. Our evasion function should reflect the actual response for a flock and

therefore reflect observational data. Using x4 as a function of k2 we apply P (10, 15, x4(k2)
∗) = 0.72

[207] to obtain k2 = 0.24.

B.2 The Beta regression model

The beta regression is based on a parametrisation of the beta density using

f(Y |a, b) = Y (a−1)(1− Y )(b−1)

B(a, b)
, 0 < Y < 1 (B.10)

where the beta function is defined by B(x, y) = Γ(x)Γ(y)/Γ(x + y), Γ(.) is the gamma function,

and a and b are shape parameters that enter the model according to the transformations:

a = u · ϕ and b = (1− u) · ϕ
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Using gL1 as a link function for ui, the specification of the shape parameters becomes, E[Y ] = ui =

g−1
L1 (Xβ) where X are the predictor variables and β are coefficients associated with each predictor.

One also has that var[Y ] = u(1 − u)/(1 + ϕ). Here, ϕ is the precision parameter; for fixed u, the

larger ϕ the smaller the variance of Y , so ϕ−1 is a dispersion parameter.

B.3 Negative Binomial regression

The negative binomial distribution can be derived as a Poisson distribution with gamma distributed

noise variable, where the dependent follows a Poisson distribution: Y ∼ Poisson(θ). To accom-

modate for overdispersion one assumes that θ ∼ gamma(r, p/(1 − p) where r and p are shape

parameters. The distribution function is defined by

f(Y |r, p) = Γ(Y + r)

Y !Γ(r)
· (1− p)rpY = NB(r, p) (B.11)

with the mean and shape parameters given by the parametrisation:

r = ϕ and u =
ϕ(1− p)

p
(B.12)

such that E[Y ] = u and Var[Y ] = u(1 + u/ϕ).
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C.1 A comparison of selection gradients

In a monomorphic population with strategy z, the selection gradient for the contribution probability

strategy (equation 4.10 in text) is

δg(z) + δ(1− g(z))

(
−ϵ

n(1 + ϵz)

)
. (C.1)

The selection gradient for the contribution investment depends on cases of g(y, z) and γ(y). If

g(y, z) is independent of y (i.e., a constant or function of the resident strategy alone), then the

selection gradient for the investment strategy is

γ′(y)
(
g(z) + (1− g(z))D(y; z; 1)

)
+ γ(y, z)(1− g(z))

∂

∂y
D(y; z; 1). (C.2)

When the novel strategy affects the probability of group evasion we find the selection gradient for

the contribution investment is

γ′(y)
(
g(z) + (1− g(z))D(y; z; 1)

)
(C.3a)

+ γ(y)
( ∂
∂y

D(y; z; 1)(1− g(y, z)) + (1−D(y; z; 1))
∂

∂y
g(y, z)

)
(C.3b)

For comparison of the above selection gradients, recall that D(y; z; 1) = −ϵ(y)/(n(1 + ϵ(z)) in

equations (C.2-C.3).
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C.2 General Model analysis: constant evasion and linear γ and ϵ

With the G-function payoff of equation 4.4a, (asymptotic) stability of the ecological dynamics is

given by the sign of

f ′(x1) = (1− x1)
∂

∂x1

(
x1
(
γ(z1)− γ(z2)

)
− x1(1− p0)

n(1 + x1ϵ(z1) + (1− x1)ϵ(z2))

((
γ(z1)− γ(z2)

)
+ ϵ(z1)γ(z1)− ϵ(z2)γ(z2)

))

+
∂

∂x1
(1− x1)

(
x1
(
γ(z1)− γ(z2)

)
− x1(1− p0)

n(1 + x1ϵ(z1) + (1− x1)ϵ(z2))

((
γ(z1)− γ(z2)

)
+ ϵ(z1)γ(z1)− ϵ(z2)γ(z2)

))
. (C.4a)

If equation C.4a is negative the population-dynamic fixed point x1 is stable.

The monomorphic invasion fitness given by equation (4.7) is positive if

(
γ(z1)− γ(y)

)
− (1− p0)

n(1 + ϵ(z1))

{(
γ(z1)− γ(y)

)
+ ϵ(z1)γ(z1)− ϵ(y)γ(y)

}
< 0. (C.5)

We find that the requirement for evolutionary stability of a singular strategy ẑx to be

ϵ′′(z) >
γ′′(z)(1 + ϵ(z))(n− 1 + p0)− 2ϵ′(z)γ′(z)(1− p0)

γ(z)(1− p0)
(C.6)

and convergence stability requires that

ϵ′′(z) > ϵ′(z)

(
ϵ′(z)

1 + ϵ(z)
− γ′(z)

γ(z)

)
+
γ′′(z)(1 + ϵ(z))(n− 1 + p0)

2γ(z)(1− p0)
(C.7)

whenz = ẑx

C.2.1 Model 1 analysis

The physicality of the candidate singular strategy is conditional on values of the group size n. For

1 > zx1 > 0 either of the following cases must be satisfied:

Case A : If ϵ <
δ

γD
then either n <

(δ + ϵγD)(1− p0)

δ
:= n1 or n >

(1− p0)(δ(2ϵ− 1)− ϵγD)

δ(ϵ− 1)
:= n2

Case B : If ϵ >
δ

γD
then either n < n2 or n > n1 (C.8a)

depending on the value of p0.
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C.2.2 Model 2 analysis

Ths singular solutions are given by

ẑ+x =
ϵk
(
δn− 2(δ − γD)(1− p0)

)
2ϵ(δ − γD)(1− p0)

+√
δϵk
(
4(δ − γD)(p0 − 1)2(ϵk − 1) + 4(δ − γD)(p0 − 1)(ϵk − 1)n+ δϵkn2

)
2ϵ(δ − γD)(1− p0)

ẑ−x =
ϵk
(
δn− 2(δ − γD)(1− p0)

)
2ϵ(δ − γD)(1− p0)

−√
δϵk
(
4(δ − γD)(p0 − 1)2(ϵk − 1) + 4(δ − γD)(p0 − 1)(ϵk − 1)n+ δϵkn2

)
2ϵ(δ − γD)(1− p0)

The physicality of the solutions depend on two critical group sizes:

n1 =
(1− p0)(δ + ϵγDk)

δ

n2 =
(1− p0)(δ(ϵ− k + 2ϵk)− ϵγD(1 + k)2)

δ(ϵ− 1)k
(C.10a)

If 0 < δ < γD then for the singular solution to be physical (in (0, 1)), the condition of 2 < n < n2

must be satisfied. Whereas when (1 + k)γD > δ > γD the condition of n1 < n < n2 is required.

The ESS condition (C.6) becomes

2δk

(k + y)3
<

2(1− p0)δkϵ

(k + y)2(1− ϵy)(p0 + n− 1)
⇐⇒

1

k + y
<

ϵ(1− p0)

(1− ϵy)(p0 + n− 1)
⇐⇒ y >

n+ p0(1 + ϵk)− ϵk − 1

nϵ

Hence, when physical, a singular strategy ẑx is evolutionary stable if and only if

n+ p0(1 + ϵk)− ϵk − 1

nϵ
< ẑx < 1 (C.12)

Convergence stablility is determined condition (C.7), which is checked directly using

γ
′
(y) <

(1− p0)γ(y)ϵ
′
(y)2 − (1− p0 − n)

(
1 + ϵ(y)

)2
γ

′′
(y)

(1− p0)
(
1 + ϵ(y)

)
ϵ′(y)

(C.13)

at y = ẑx.
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C.2.3 Model 3 analysis

We use the Sturm sequence q0(z1), q1(z1), q2(z1), where q0(z1) := q(z1), q1(z1) := q′(z1) and qi(z1) :=

−qi−2(z1)/qi−1(z1) to deduce the number of roots of (4.27) in the open unit interval. One finds

q1(z1) =δn(2k(n− 1 + p0) + ϵk(1 + k)(n− 2 + 2p0) + 2(1 + ϵ+ ϵk)(n− 1 + p0)z1) (C.14a)

q2(z1) =
1

4
ϵk(k + 1)n

(
4γD(1− p0) + δk

(
ϵ(k + 1)n2

(ek + ϵ+ 1)(n+ p0 − 1)
+ 4p0

)
− 4δk

)
(C.14b)

q3(z1) =0. (C.14c)

We denote the sign sequence Σl = {qi(l)} for i = 1, 2, 3 and l = 0, 1. Let αl be the number

of sign changes of Σl. Direct calculation show that for all possible parameter regimes we find

max{αl} = 1, l = 0, 1. The number of roots between zero and one is given by α0−α1. Hence, there

can be only one singular strategy physical.

Singular strategies are the roots of equation (4.27):

ẑ+x =
δk
(
2(p0 + n− 1)− ϵ(2p0 + n− 2)

)
2δ(ϵ− 1)(p0 + n− 1)

+√
δϵk
(
4(ϵ− 1)(p0 − 1)n(δk + γD) + 4(ϵ− 1)(p0 − 1)2(δk + γD) + δϵkn2

)
2δ(ϵ− 1)(p0 + n− 1)

ẑ−x =
δk
(
2(p0 + n− 1)− ϵ(2p0 + n− 2)

)
2δ(ϵ− 1)(p0 + n− 1)

−√
δϵk
(
4(ϵ− 1)(p0 − 1)n(δk + γD) + 4(ϵ− 1)(p0 − 1)2(δk + γD) + δϵkn2

)
2δ(ϵ− 1)(p0 + n− 1)

.

Direct calculation shows that ẑ−x is always negative; analysis in text shows that ẑ+x is the only

possible solution in (0, 1).

Two values of n condition the singular strategies physicality. The singular strategy is positive

if n < n1, but is only lies between zero and one when n ∈ (max{2, n2}, n1) where n1 and n2 are

given by

n1 =
(1− p0)(δk + ϵγD)

δk

n2 =
(p0 − 1)(γDk − ϵ+ δ(ϵ+ 2ϵk − (1 + k)2)

δ(1 + k − ϵ)(1 + k)
(C.16a)
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C.2.4 Model 5 analysis

Singular strategies are the roots of

C5 =w0 + w1z1 + w2z
2
1 + w3 + z31 + w4z

4
1 : (C.17a)

w0 =k0k1

(
− γC(1 + k0)k1n(n− 1 + p0)+ (C.17b)

γDk1n
(
n− 1 + p0 + k0(ϵ+ n− 1 + p0 − ϵp0)

)
− γDk0p1

)
(C.17c)

w1 =k0k1

(
γD

(
(k0 + 1)n2(ϵk1 + 2) + 2n(p0 − 1)(ϵk0(k1 − 1) + k0 + 1)+ (C.17d)

np1(−ϵk0 + k0 + 1) + p1(−ϵk0 + k0 − 1)

)
− (C.17e)

γC(k0 + 1)(n(ϵk1(n+ 2p0 − 2) + 2(n+ p0 − 1) + p1) + p1)

)
(C.17f)

w2 =γDk0

(
n(p0 − 1)

(
ϵk0(4k1 − 1) + ϵk21 + k0 + 1

)
+ (k0 + 1)n2(2ϵk1 + 1)+ (C.17g)

np1(ϵk0(2k1 − 1) + k0 + 1) + k1p1(ϵ(k0 − 1) + 1)

)
− (C.17h)

γC(k0 + 1)(k0n(2ϵk1(n+ 2p0 − 2)+ (C.17i)

n+ p0 − 1) + k0p1(e(2k1n+ k1) + n) + k1(ϵk1n(p0 − 1) + p1)) (C.17j)

w3 =ϵ

(
− γC(1 + k0)

(
k0n(n+ 2(p0 + p1 − 1)) + k1(p1 + n(2p0 + p1 − 2))

)
+ (C.17k)

γDk0(n
2 + k0n(n+ 2(p0 + p1 − 1)) + k1(p1 + n(2p0 + p1 − 2)))

)
(C.17l)

w4 =ϵ(γDk0 − γC(1 + k0))n(p0 + p1 − 1) (C.17m)
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