
Gupta, D and Bhatia, MPS and Kumar, A (2021) Resolving data overload
and latency issues in multivariate time-series IoMT data for mental health
monitoring. IEEE Sensors Journal, 21 (22). pp. 25421-25428. ISSN 1530-
437X

Downloaded from: https://e-space.mmu.ac.uk/629490/

Version: Accepted Version

Publisher: Institute of Electrical and Electronics Engineers

DOI: https://doi.org/10.1109/JSEN.2021.3095853

Please cite the published version

https://e-space.mmu.ac.uk

https://e-space.mmu.ac.uk/629490/
https://doi.org/10.1109/JSEN.2021.3095853
https://e-space.mmu.ac.uk


Gupta, D and Bhatia, MPS and Kumar, A (2021) Resolving Data Overload
and Latency Issues in Multivariate Time-Series IoMT Data for Mental Health
Monitoring. IEEE Sensors Journal, 21 (22). pp. 25421-25428. ISSN 1530-
437X

Downloaded from: https://e-space.mmu.ac.uk/629490/

Version: ["content_typename_Published version" not defined]

DOI: https://doi.org/10.1109/JSEN.2021.3095853

Please cite the published version

https://e-space.mmu.ac.uk

https://e-space.mmu.ac.uk/629490/
https://doi.org/10.1109/JSEN.2021.3095853
https://e-space.mmu.ac.uk


IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 1 

XXXX-XXXX © XXXX IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

 

Abstract— Pervasive healthcare services have evolved substantially in the 

recent years with IoMT rapidly changing the pace and scale of healthcare 

delivery.  A promising application of IoMT is to fetch patterns of mental 

behaviour symptomatology based on bio-signals and transfer it to the 

corresponding hospital or psychologist for remote monitoring. But the data 

volume & performance, device diversity & interoperability, hacking & 

unauthorized use and acceptance & adoption barriers still restrain the practical 

and competent use of these devices. This research presents a plausible solution to 

surmount the data overload and processing latency in real-time sensory data 

collected through wearable devices for mental health monitoring. We propose a 

modified k-medoid data clustering technique based on time-frame restricted 

intra-cluster similarity calculations to obtain a summarized version of the original 

benchmark WESAD dataset for which the degree of information lost is minimum. 

A CNN is then trained on this summarized dataset for classification of mental 

state into the baseline, stress and amusement categories. The results show a significant reduction in the average execution time by 

34% with a comparable accuracy to the original dataset, thus offering prompt real-time healthcare analytics.  

 

Index Terms— Clustering, CNN, IoMT, k-medoids, Mental State  

 

 

I.  Introduction 

RTIFICAL intelligence (AI), Internet of Medical Things 

(IoMT) and big data analytics have revitalized the 

healthcare industry with an evident paradigm shift from the 

‘reactive healthcare’ to the ‘proactive patient care’. The 

applications range from the rudimentary chronic morbid 

disease management (diabetes, asthma, heart disease, etc.) to 

remote-assisted living (tele-health), wellness and preventive 

care (lifestyle assessment), remote intervention and improved 

drug management. Patients use medical devices, monitoring 

tools, wearables, and other sensors collectively referred to as 

the IoMT, that can transmit signals to other devices via the 

internet and cloud services [1, 2]. It is imperative to 

synthesize, process, analyze, visualize and integrate this 

massive amount of sensory data to generate value and insights 

for chronic disease management and patient care needs. 

Typically, the acquired data is transmitted over the network to 

the cloud for storage & analytics. This data received in near 

real-time allows doctors and caregivers to monitor an array of 

vitals, dynamically manage treatment plans, and conduct a 
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consult or intervention over a webcam. Further, the data 

supports predictive analytics, allowing doctors to increase 

their accuracy of diagnoses by detecting emerging health 

patterns much faster. Thus, by leveraging the data that IoMT 

devices collect, AI is proving useful in enabling real-time 

remote measurement, analysis of patient data, enhancing 

effectiveness of care and decreasing the overall costs [3]. A 

promising application of IoMT is to fetch patterns of mental 

behaviour symptomatology based on bio-signals and transfer it 

to the corresponding hospital or psychologist for remote 

monitoring [4, 5]. The primary use of AI in mental healthcare 

includes: 

• Early detection, flagging risks, and prediction 

• AI-based chatbots to help patients 24/7 

Mental health monitoring is more challenging than the 

physical health monitoring because firstly, human psychology 

varies dynamically; secondly, it is difficult to fetch the 

patterns of mental behavior; thirdly, behavioural 

symptomatology of mental illness may be visible at a later 

stage and lastly people with disturbed mental health are 

constantly in denial of the illness and have associated fears of 

cultural and social stigma. The use of smart algorithms for 

IoMT data analytics may provide psychiatrists and therapists 

with valuable insights which may help faster diagnosis and 

targeted treatment plans for mental well-being [6, 7].  

According to a recent report by Deloitte, the IoMT market 

is expected to be worth $158.1 billion by 2022 [8], but a few 

key challenges are standing in the way of its continued 

growth. These include the network-driven, data-driven, 
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device-driven and user-drives issues as given in fig.1. 

 

 
Fig.1. Challenges in IoMT adoption 

 

• Network-driven issues: The large volume of data 

transmitted can strain the network resulting in bottlenecks 

[9]. Healthcare applications can’t tolerate latency and 

require significant bandwidth for ingesting data. While 

integrating IoT into the healthcare industry, it is 

mandatory that the devices be movable and with a 

guaranteed continuous connectivity. But this is 

interrupted due to the irregular physical environments. 

• Data-driven issues: IoMT devices record tons of data and 

utilize it to gain vital insights. However, the volume of 

data is so colossal that gaining insights from it is turning 

out very challenging for practitioners and ultimately 

affects the efficacy of decision-making. Moreover, this 

concern is rising as more devices are connected which 

record more and more data making data overload a 

primary issue. Also, while AI technologies are 

extraordinarily powerful, adoption of these algorithms 

in healthcare has been slow because doctors and 

regulators cannot verify the results making data use, 

data provenance, interpretability and explainability a 

rising concern. Further, healthcare data may contain 

sensitive attribute values which may lead to identify 

disclosure. Ensuring informational privacy (secrecy, 

confidentiality, data protection, or anonymity) of 

healthcare data is imperative for ensuring quality of 

care, enhanced autonomy, and preventing economic 

harm, embarrassment, and discrimination [10]. Lastly, 

although there are vast amounts of data in the healthcare 

sector, this data is often very fragmented and dispersed. 

By collecting information through sensors, integrating 

such information on a single platform, and visually 

presenting it through a smart healthcare command 

centre, healthcare staff can quickly acquire meaningful 

information that enables them to improve the quality 

and efficiency of healthcare services. Thus, data 

overload, lack of explainability, privacy, data 

integration & visualization are the key data-driven 

concerns. 

• Device-driven issues: Data formats and communication 

protocols may be different for larger devices. This can 

significantly increase the time it takes for these devices to 

integrate with existing IoMT devices. Lack of 

standardization in terms of definitions of devices, data 

format and communication protocols affects data 

interchange and interoperability impeding the expediency 

and effectiveness of IoMT [2]. 

• User-driven issues: Unaffordability is one of the key user 

concerns where the cost of IoMT is higher for patients. 

Another major concern is that the patients may not be 

comfortable with regular sharing of their health 

information or may be technologically challenged. 

At its core, the IoMT are equipped with state-of-the- art 

sensors that have the ability to record and transfer vital 

healthcare data thus enhancing the competence of healthcare 

delivery and ensuring improved patient outcomes [11]. But 

quite clearly, the data management systems must cater to the 

phenomenal volume, variety and velocity of data which may 

need huge storage and make analytical, process and retrieval 

operations cumbersome and time-consuming. Though the 

recent advancements in 5G wireless technology and edge 

computing enable connected devices to process data closer to 

where it is created, it may partially improve the response time 

[12]. Still the overwhelming amount of data can create havoc 

and the healthcare practitioners might miss on some important 

information. To resolve this problem, a plausible solution is to 

condense/ summarize the dataset such that it’s still an 

informative version of the entire dataset [13]. This research 

uses the k-medoid clustering [14, 15] to obtain the condensed 

version of the original dataset for which the degree of 

information lost is minimum and then trains a convolution 

neural network (CNN) on the summarized data set for 

diagnostic classification. This would help resolve the data 

overload issue. Though k-medoid suffers from scalability 

issues, the intra-cluster similarity calculations have been 

restricted using a time-frame window mitigating the 

computational cost. The condensed data eventually decreases 

the processing latency and delivers prompt real-time analytics.  

We consider the publicly available WESAD (Wearable 

Stress and Affect Detection) dataset [16], which contains bio-

signal data of 15 subjects measured through two IoMT 

devices, namely RespiBAN and Empatica E4 for a period of 2 

hours. The multivariate time-series data consists of 12 bio-

signals: electrocardiogram (ECG), electromyogram (EMG), 

body temperature (TEMP), respiration (RESP), blood volume 

pressure (BVP), electrodermal activity (EDA) and three axis 

acceleration (ACC). ECG, EDA, and EMG are analog time-

series data and to analyze continuous time-series data it is 

fragmented into finite intervals. For example, to identify the 

mental state of an individual, the time-series data in the 

benchmark WESAD dataset is broken at an interval of 1 

second with the sliding window of 0.25 seconds, as the effect 

of a stimulus can occur over a short interval of 2 seconds. The 

conversion of analog data to discrete values makes a total of 

63000000 instances just for a period of 2 hours in this dataset. 
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This huge amount of data is not easy to analyze for any 

medical practitioner even for a few patients on a daily basis. 

By using k-medoid cluster analysis, summary can be 

generated as it partitions n-observations into k-clusters in 

which each observation belongs to the cluster with the closest 

medoid. The original WESAD data is initially transformed by 

converting the analog bio-signals into discrete values and 

further into numeric values. Clustering is then used to generate 

the centroid for each cluster and these centroids now 

characterize the summarized WESAD dataset. Finally, CNN is 

trained using this summarized WESAD data containing k-

medoids, to predict the mental state of an individual into three 

categories as stress, amusement or baseline. Thus, the primary 

contributions of this research are:  

i. A solution to surmount data overload and processing 

latency in real-time sensory data for mental health 

monitoring. 

ii. To assess the efficiency of a deep learning model trained 

using the summarized version for mental state 

prediction. 

Learning algorithms offer unprecedented insights into 

diagnostics, care processes, treatment variability, and patient 

outcomes [17, 18].   Pertinent studies to resolve various IoMT 

issues are available. Fadlullah et al. [19] identified that 

network and computational congestion problems may impact 

the real-time analytics of the healthcare data and proposed a 

deep learning based IoT edge analytics approach to support 

intelligent healthcare for residential users. Chen et al. [20] 

proffered a cognitive computation based smart healthcare 

system on the edge to resolve the multimodality, latency and 

resource issues. In 2020, Alfarraj and Tolba [21] introduced a 

responsive model for effectively handling IoMT data 

regardless of the time factor. In 2021, Goswami et al. [22] 

proposed a method for efficient power utilization for remote 

health monitoring.  

Recent studies on mental health monitoring using WESAD 

dataset have reported the use of various machine learning and 

deep learning algorithms [23-26]. In 2021, Sharma et al. [27] 

proposed a model for computational intelligence on the edge. 

The authors reportedly summarized the dataset using an 

optimized fuzzy C-means clustering algorithm to finally train 

a deep hierarchical model for affective state detection in the 

WESAD data. 

The next section outlines the details of the proposed model 

followed by the results and discussion in section 3. Finally, the 

conclusion and future work is given in the last section. 

II. THE PROPOSED MODEL FOR FAST PREDICTIVE 

ANALYTICS  

A CNN based deep learning model is put forward which 

facilitates predictive analytics of mental health to detect and 

monitor disturbed mental states. The model is trained using a 

summarized [26] version of the original IoMT dataset created 

using cluster analysis, which directly curbs the data overload 

issue and simultaneously reduces the processing time and 

consequent decision latency. Fig.2 depicts the architecture of 

the proposed model. 

The proposed fast analytical model for detecting the mental 

state of an individual consists of the following two 

architectural components: 

• K-medoid clustering technique for summarized dataset 

• CNN trained using summarized dataset to detect the 

mental state 

 

 

 
Fig.2. Architecture of proposed model 
 

Clustering is counted amongst the key unsupervised 

learning techniques. Clustering of multivariate time-series data 

is specifically useful in exploratory data analysis and summary 

generation as it groups objects into several clusters by 

measuring the similarity between objects through distance and 

identifies the characteristics of each cluster [28]. Typically 

categorized as partition-based, density-based, grid-based 

hierarchical and model-based clustering techniques [29], each 

of these has its pros and cons while being used for clustering 

of time-series data. Though hierarchical clustering is a strong 

contender owing to its visualization capabilities and with no 

prerequisite of cluster initialization, it suffers due to its 

quadratic complexity and lack in scalability. Alternatively, the 

partition-based clustering techniques such as k-means and k-

medoids (partitioning around medoid, PAM) are faster.  

In this research, we use the k-medoids cluster analysis for 

data reduction. The ‘K-Medoids Clustering’ combines the k-

Means and the medoid shift algorithms aiming to partition n-

observations into k clusters in which each observation belongs 

to the cluster with the closest medoid. That is, instead of 

taking the mean value of the object in a cluster as a reference 

point, medoids can be used, which is the most centrally 

located object in a cluster. The medoid of a finite data set is a 

data point (one of the observations) from this set, whose 

average dissimilarity to all data points is minimal. It offers an 

improvement on the k-means clustering, in terms of execution 

time and non- sensitivity to outliers or noise. It is effective as 

it does not depend on the order in which data points are 
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examined. Moreover, the cluster center is part of the dataset, 

unlike k-means where the cluster center is gravity based.   

 
Algorithm 1: K-medoid 

Input: WESAD dataset-D, number of clusters-k 

Output: Medoids M 

1: Arbitrary choose k object as initial medoids  

2: Assign each remaining object to nearest medoids  

3: Calculate objective function: the sum of dissimilarities of all 

objects to their nearest medoid 

4: Randomly select a non-medoid object, Oramdom 

5: If objective function improved. 

6: Swapping O and Oramdom 

7: Compute Total Cost of swapping 

8: Repeat (3-7) Until no change 

 

The second component of the proposed model uses a CNN 

to predict the mental state of an individual into three 

categories, namely stress, amusement and baseline for real-

time monitoring. CNN is a neural network with a sequence of 

convolutional layers (often with a pooling step) and then 

followed by one or more fully connected layers. A 

convolutional layer has a number of filters that does 

convolutional operation [31]. CNN is faster to train as 

convolutions can be done in parallel, thus utilizing full 

advantage of GPU parallelism. The functionalities of each 

layer in CNN is as follows: 

• Convolution layer: computes the output of neurons that are 

connected to local regions in the input, each computing a 

dot product between their weights and a small region they 

are connected to in the input volume. The convolution 

layer’s parameters consist of a set of learnable filters  

• RELU layer: applies an element-wise activation function, 

such as the max (0, x) thresholding at zero. This leaves 

the size of the volume unchanged.  

• Pooling layer: performs a down sampling operation along 

the spatial dimensions (width, height). Its function is to 

progressively reduce the spatial size of the representation 

to reduce the amount of parameters and computation in 

the network. The pooling layer often uses the Max 

operation to down-sample the previous layers feature 

map. 

• Fully-connected (FC) layer: Fully connected layers are the 

normal flat feed-forward neural network layers and may 

have a non-linear activation function or a Softmax 

activation in order to predict classes. The FC layer 

basically computes the class scores, resulting in volume 

of size [1x1xN], where each of the N numbers correspond 

to a class score, such as among the N categories.   

Both the clustering operation and the predictive model have 

been trained on a system with a 2.7 GHz Intel core i5 

processor with 16GB RAM over the WESAD dataset. The 

WESAD data was collected by Schmidt et al. in 2018 [16] at 

the University of Siegen, Germany for analysing the affective 

state of 17 individuals by monitoring their physiological 

changes through various biomarkers collected through 

Empatica E4 (wrist-worn) and RespiBAN (chest-worn) 

devices in a controlled lab environment for a period of 2 

hours. The final data for only 15 subjects was made publically 

available with entries of 2 subjects considered as invalid. 

WESAD tracks the bio-signals like ECG, EDA, and EMG for 

determining the stress levels which are analog signals and for 

training a deep learning model this time-series analog data is 

discretized by breaking the data at finite intervals. Each 

subject after discretization has 40 lakh instances 

approximately, as the time-series data is broken into a finite 

interval of 1 second with 0.25 second as the sliding window to 

monitor the change [32].  

In general, clustering is used to identify different types of 

instances available, i.e. to categorize the instances using 

unsupervised learning techniques. Clustering groups the 

entities of similar nature together, but in time-series data 

especially in healthcare, even with similar instances, data 

cannot be grouped together, as the context in terms of pre and 

post condition have an effect on the data. Therefore, to resolve 

this constraint the K-medoid clustering algorithm has been 

modified to accomplish the cluster generation for a particular 

time frame only. In a basic K-medoid clustering algorithm, K 

data points are chosen at the beginning, and then clusters are 

formed by analyzing the similarity with rest of the data with 

these k- medoids and after calculating the similarity with each 

medoid, the point is assigned to the nearest medoid. Once all 

the data has been categorized into k-partitions, the medoid 

(centralized) point of each partition is varied from the same 

partition iteratively until all the points have been chosen once 

as the medoid point, and then the optimized clusters are 

provided as the output. There are two issues with this basic 

approach: 

• In each iteration, the similarity is calculated again with each 

instance in the dataset, for large datasets like WESAD, 

calculating similarity with 40 lakh entries for a single 

subject in each iteration is a tedious and time-consuming 

task.  

• A person can have identical bio-signals at different time 

instance, for example, a person sitting on a chair is in 

baseline state, on receiving a work assignment, and while 

performing the task his physiological state changes, but 

once the task is over and the person relaxes again, he again 

goes into the baseline state, that is the person has identical 

bio-signals pre and post the task. In basic k-medoid 

clustering technique, the states pre and post the task will be 

put under the same cluster based on their similarity without 

taking the time-constraint into account.  

Therefore, the modified K-medoid clustering algorithm has 

been used, in which rather than calculating the similarity 

function with all the data points, in each iteration, the 

similarity of the medoid is calculated with only 80 data points 

before the medoid and 80 points after the medoid in the 

continuous data, ensuring that no two-time varied instances 

should be clubbed together. Thus, to resolve the data overload 

issue in real-time IoMT data processing, we reduce the size of 

the data by performing clustering on this time-series data and 

the centroid of a cluster is used for analysis rather than every 

instance of the cluster. 

As per the observation made by Siirtola in 2019 [23], the 

‘affect’ perceived depends upon the time window taken. The 

use of these time segments (windows) capture more 

discriminative information for the same input signal. Affective 

states are typically short and need a time window of seconds. 
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But analysing every single second of data may not be effective 

and therefore we consider the window size of 3 seconds to 

detect any physiological change in the body and maintain the 

uniformity of our experiment. The base hypothesis for 

identifying the optimal clusters for data reduction is 

empirically analysed for performance accuracy using varying 

time window. Based on this analysis, to initialize the model, 

2400 clusters for WESAD (2 hours => 7200 seconds) are 

used, and 200 extra cluster points are chosen for any outlier or 

frequent change in the body. As in real-time analysis the 

clustering process will be performed for streaming data, 

waiting for upcoming data can be ruinous in certain scenarios 

and therefore the optimized segment of 3 second was chosen 

for time coherence. This 3 second time segment cannot be 

generalized for every health condition prediction model. 

III. RESULTS & DISCUSSION 

Various bio-signals measure different physiological 

changes in the body and each indicates some sort of 

psychological or emotional affect a person is experiencing. 

That is, to understand the current mental state of a person each 

bio-signal plays an important role. The bio-signals in the 

WESAD dataset are: 

• RespiBAN: Electrocardiogram (ECG), Electromyogram 

(EMG), Body Temperature (TEMP), Respiration 

(RESP), Blood Volume Pressure (BVP), Electrodermal 

Activity (EDA), Three Axis Acceleration (ACC) 

• Empatica E4: Body Temperature (TEMP), Blood 

Volume Pressure (BVP), Electrodermal Activity (EDA), 

Three Axis Acceleration (ACC) 

As observed from the work carried by different researchers 

on WESAD, each person acts differently even under similar 

circumstances and their bodies show different physiological 

changes for stress, amusement, depression and for neutral 

state. Therefore, the model should be accustomed as per the 

individual. To train the model for each individual, the 

prediction model was implemented separately on each 

individual. Each individual has around 40, 00000 instances 

for two hours with 12 different bio-signals. The data was 

initially summarized by clustering using the modified K-

medoid approach and after generating the clusters, the 

mediod point of each cluster was chosen as a representative 

for each cluster. In K-medoid the number of clusters and the 

initial medoid point of the cluster has to be provided. In 

execution, k was provided as 2600, first medoid was 

initialized with the 80th instance, afterwards every 120th 

instance was chosen as the next medoid point. During 

execution, the similarity of each medoid point was 

calculated only with 80 before instances and 80 post 

instances, a total of 200 iterations were performed, by setting 

the terminating condition, to avoid falling in the local 

optima. Table 1 and table 2 depict the original WESAD and 

the summarized WESAD data of subject 5. 

The reduced dataset was then split into a 70:30 ratio for 

training and testing the deep-learning model, with 4-cross fold 

validation. Each subject was trained and tested individually, 

before and after summarizing the data. To analyze the 

effectiveness of the proposed model, the model is evaluated 

using accuracy and execution time, to understand the 

reduction in decision-latency time. Fig.3 and Fig.4 show the 

comparison of pre- and post-summarization on predicting the 

mental state of a person using CNN in terms of accuracy and 

execution time (in seconds) respectively. 

 

 
Fig. 3. Model accuracy using original and summarized WESAD 

 

 

 
 

Fig. 4. Model accuracy using original and summarized WESAD  

 

To handle the data overload issue and to fasten the 

processing time, the features (bio-signals) can also be reduced. 

As experimented by Schmidt et al. in 2018 [16] & Siirtola in 

2019 [23], by clubbing different bio-signals for WESAD it 

was observed that a subset of bio-signals can predict the 

mental state with close accuracy as to considering all the bio-

signals. To test the hypothesis, rather than sub-selecting the 

bio-signals to predict the mental state on WESAD data, we 

experimented by taking the bio-signals from each device 

individually. 4 bio-signals measured by both the devices are 

common and training a deep neural network on the identical 

result generated by two different devices is a waste of the 

processing power and increases the computational power.  

Fig. 5 and fig. 6 shows the accuracy and execution time of 

the model on complete WESAD data, on only Empatica E4 

data of each subject, and on only RespiBAN data of each 

subject respectively. It was observed that Empatica E4 has 

predicted the state better in comparison to RespiBAN with 

81.77 and 80.57 accuracy respectively, but both have 

performed poorly in comparison to complete WESAD data 

which resulted in 85.37 accuracy. 
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TABLE 1.  
ORIGINAL WESAD DATA OF SUBJECT 5 

 Empatica E4 RespiBAN 

Time BVP EDA ACC-

A 

ACC-

B 

ACC-

C 

HR IBI TEMP ECG EDA EMG TEMP ACC-

X 

ACC-

Y 

ACC-

Z 

RESP 

0 0 0 0 5 63 60 0.85941 27.61 31600 9942 32567 26.533 37303 32479 31367 34015 

0 0 0.40031 0 5 63 60.5 0.85941 27.61 31636 9923 32739 26.542 37291 32495 31377 34015 

1 0 0.47577 0 5 63 60 0.85941 27.61 31709 9954 32850 26.551 37287 32497 31364 34015 

1 0 0.486 0 5 63 59.75 0.96879 27.61 31763 9925 32672 26.549 37279 32487 31342 34025 

1 0 0.48856 0 5 63 59.8 0.96879 27.59 31810 9955 32867 26.539 37273 32489 31373 34049 

2 0 0.48984 -1 5 63 60.67 0.90629 27.59 31881 9971 32661 26.534 37282 32485 31367 34039 

2 0 0.48984 -1 5 63 61.43 0.95317 27.59 31982 9927 32693 26.555 37269 32488 31365 34036 

2 0 0.48856 0 5 63 62.12 0.85941 27.59 32140 9955 32783 26.565 37271 32487 31356 34039 

3 0 0.486 0 5 63 62.67 0.75003 27.59 32267 9929 32828 26.578 37268 32490 31357 34055 

3 0 0.48344 0 5 63 63.1 0.84379 27.59 32415 9937 32553 26.549 37267 32491 31355 33822 

3 0 0.48856 0 5 63 63.45 0.82816 27.59 32439 10005 32757 26.549 37277 32485 31340 34049 

4 0.01 0.48984 0 5 63 63.75 0.76566 27.59 32401 9939 32788 26.539 37292 32475 31335 34069 

 
TABLE 2. 

SUMMARIZED ORIGINAL WESAD DATA OF SUBJECT 5 
  

Empatica E4 RespiBAN 

Cluster Time BVP EDA ACC-

A 

ACC-

B 

ACC-

C 

HR IBI TEMP ECG EDA EMG TEMP ACC-

X 

ACC-

Y 

ACC-

Z 

RESP 

C1 1 0 0.39 -0.167 5 63 60.1 0.90369 27.6 31733 9945 32726 26.541 37286 32489 31365 34026 

C2 4 0.002 0.488 -0.167 5 63 62.8 0.83337 27.59 32274 9949 32734 26.556 37274 32486 31351 34012 

C3 7 -0.02 0.491 -0.667 4.8333 62.833 64.8 0.83077 27.57 31955 9942 32775 26.561 37279 32478 31343 34049 

C4 10 0.875 0.49 0.1667 5.5 62.833 65.4 0.90629 27.57 32053 9959 32725 26.549 37270 32485 31357 34021 

 
Fig. 5. Accuracy using WESAD vs. individual wearable data  

Although, the model can perform better by choosing a 

subset of combined features of the two devices. To evaluate 

the efficiency of the proposed data reduction strategy, the 

improved k-medoid clustering algorithm has been used and 

evaluated on Empatica E4 and RespiBAN data separately too. 

Table 3, summarizes the accuracy and execution time for all 

the 3 datasets for pre- and post- summarization.  

 
Fig. 6. Execution time using WESAD vs. individual wearable data  

 

Fig. 7 and fig. 8 represents graphically the comparison of 

accuracy and execution time for all the scenarios, that is, 

original WESAD, summarized WESAD, Empatica E4, 

summarized Empatica E4, RespiBAN and summarized 

RespiBAN. 

 
TABLE 3.  

SUBJECT-WISE ACCURACY AND EXECUTION TIME 

Subjects WESAD Summarized WESAD Empatica E4 Summarized 

Empatica E4 

RespiBAN Summarized 

RespiBAN 

Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time 

S1 89.71 1.23 87.94 0.48 88.19 1.07 87.21 0.39 86.31 1.12 84.97 0.38 

S2 93.54 1.19 90.71 0.44 91.37 1.08 90.29 0.36 87.59 1.09 85.49 0.34 

S3 87.67 1.18 83.54 0.41 82.68 1.01 83.21 0.33 84.96 1.14 81.65 0.38 

S4 91.49 1.21 87.39 0.42 87.19 1.05 83.47 0.35 89.73 1.13 88.71 0.36 

S5 73.87 1.34 69.89 0.51 74.21 1.11 69.34 0.38 66.81 1.14 65.32 0.39 
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Fig. 7. Accuracy comparison for all scenarios 

 
Fig. 8. Execution time comparison for all scenarios 

 

As evident from the results, the summarization technique 

used has reduced the average execution time by 34%, whereas 

the accuracy has declined only by 0.98% for all the three 

scenarios. In real-time healthcare, this can reduce the decision 

latency time for critical medical services and provide an 

accurate detection of the current mental health condition of an 

individual. As a solution to mitigate the risk associated with 

the minor reduction in accuracy, the model can be trained 

using original (non-summarized) data and while analyzing the 

health condition in real-time to avoid the latency in decision 

making, the k-medoid clustering can be used for summarizing 

the continuous incoming data. Also, as the model is currently 

trained on only 2 hours of bio-signals data, to achieve better 

accuracy data can be collected for a longer period of time. 

Further, as smart healthcare services in real-time need high 

precision, as inefficiency can result in a loss of life, therefore, 

to increase the effectiveness/accuracy of prediction of health 

analysis in real-time, each feature can be trained explicitly 

with computationally less expensive and well-learned models. 

IV. CONCLUSION 

This work substantiates that integrating stakeholders within 

the pervasive healthcare paradigm which include practitioners, 

patients, processes, and connected medical devices along with 

the use of disruptive technologies like AI, blockchain, and 

robotics can improve the diagnostic methods and increase the 

quality of patient care. Although IoMT devices facilitate 

disease prevention, fitness promotion, and remote intervention 

in emergency situations, the overwhelming amount of data 

make timelines and decision-making difficult for medical 

experts. In this research, a CNN model was trained using a 

summarized version of the original IoMT based mental health 

WESAD dataset. We used the k-medoid technique for cluster 

analysis to create the summarized version of the WESAD 

dataset, but as k-medoid suffers from scalability issues we 

restricted the intra-cluster similarity calculations using a time-

frame window and mitigated the computational cost. 

Evidently the data clustering technique reduced the average 

execution time.   

As possible future direction, we intend to work on other 

data-driven issues pertaining to IoMT, especially as the 

devices and data are highly vulnerable to cybersecurity risks. 

Moreover, healthcare diagnostic models are critical for human 

life and need proper justification and ‘context’ to the 

diagnosis. Explainable AI can be used for data interpretability 

and improving human understanding, for determining the 

justifiability of the decision made by the machine, introducing 

trust and reducing bias in healthcare decision making.   
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