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Abstract

Automatic surveillance of abnormal trading behaviours/patterns (ATPs) in capital

markets is essential to protect the capital of legitimate traders from price distortion

of finance assets. Detection of ATPs involves the finding of single (one trading or-

der with large trading volume and long cancellation time, e.g. several minutes) or

sequential (correlated multiple trading orders with small volume and short cancel-

lation time, e.g. milliseconds) anomalies in trading data. However, accurate and

timely identification of ATPs remains an open challenge due to high volume and

high frequency data as well as unlabelled data. In this research, we have investi-

gated anomaly detection approaches to address the challenges and filled the knowl-

edge gap through the following four contributions:

Firstly, we have performed a literature review and conducted a thorough bench-

mark evaluation on existing state-of-the-art anomaly detection algorithms (i.e. Ar-

tificial Neural Network- Auto Encoder, Isolation Forest, Local Outlier Factor (LOF),

Histogram-based Outlier Score (HBOS), Angle-based Outlier Detection (ABOD), Prin-

ciple Component Analysis (PCA) and K-Nearest Neighbors (KNN) ) using publicly

available datasets from different domains such as health and finance. The exper-

imental results show that Isolation Forest, HBOS and PCA are robust algorithms

in terms of both high detection performance (Area Under the ROC Curve (AUC) =

0.95) and low computational time for large dataset.

Secondly, as one of the major contributions of this research, we have proposed

a novel generic unsupervised anomaly detection model, which can be applied to

anomaly detection of both financial and non-financial datasets. The essence of the

proposed model consists in partitioning a bounded D-dimensional space (e.g. the

unit hyper-cube ID) by a sequence of random shapes, in which each data will be

trapped either inside or outside, followed by probabilistic modelling of a pattern

of falling inside or outside for a data point. Anomalous data which are rare and
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different from the rest of the dataset will be assigned a higher anomaly score.

Thirdly, to investigate the robustness of the proposed anomaly detection model,

we have performed a thorough sensitivity analysis under different hyper-parameters

settings (i.e. the number of random shapes, shape of random shapes, etc.) and dif-

ferent publicly available datasets. The results show that the model performance sta-

bilises as the number of random shapes increases. Furthermore, the shape of random

shapes could affect the performance of the algorithm which needs to be optimised

for a given dataset. Also, the results indicate that the algorithm’s computational time

increases linearly with the number of random shapes which shows the robustness

of the algorithm for detecting anomalies in a timely manner.

Finally, we have applied the proposed algorithm on real Bitcoin prices as a case

study and tested, evaluated and compared its performance with the benchmark

algorithms such as Auto Encoder, Isolation Forest, LOF, HBOS, ABOD, PCA and

KNN. The results show that the proposed algorithm achieves AUC = 0.94. Compar-

ing to the benchmark algorithms, it also outperforms the existing algorithms by 8.5

percent increase while having low computational time.
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Chapter 1

Introduction

This chapter introduces the overview of the thesis. Section 1.1 explains the moti-

vation and backgrounds regarding this PhD research, followed by research chal-

lenges and questions in Section 1.2. Next, aims and objective are included in Section

1.3. Contributions of this research are summarized in Section 1.4. Finally, the thesis

structure is provided in Section 1.5.

1.1 Motivation and Background

Monitoring and surveillance of financial markets where traders can buy and sell

financial assets (e.g. stock of a company), is an important problem. The reason is that

financial markets may be manipulated intentionally by criminals who apply certain

trading strategies (e.g. submitting large number of small-sized trading orders and

cancelling these orders in milliseconds) in order to gain illegal profit by distorting

the prices [1], [2]. As a result, legitimate traders may lose their capitals due to the

unfair price change.

Since the trading data generated by criminal activities may be generally rare,

different and abnormal compared with the majority normal trading data, anomaly

detection algorithms can be applied for the purpose of law enforcement [3] by au-

tomatically monitoring and flagging suspicious abnormal trading behaviours/pat-

terns (ATPs) in these markets. Automatic identification of ATPs is important as these

patterns may indicate a potential fraud and crime to be further investigated rapidly

by financial authorities [2], a task which can not be performed by humans since

analysing billions of trading data by humans to find ATPs is impossible in a timely

manner.
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Regulators such as US Securities and Exchange Commission (SEC) introduced

mechanisms (e.g. banning short selling for some period) to prevent market from

crashing and experiencing large price movements [4].

Also, financial authorities may utilise sophisticated automatic surveillance ap-

proaches for detecting ATPs. It is important to mention that the details of such ap-

proaches are not publicly disclosed due to the security and privacy reasons in the

financial domain. In other words, if the technical details of surveillance methods

utilised by financial authorities are disclosed to the public, criminals may take ad-

vantage of those technical details by changing their criminal behaviours to bypass

the surveillance methods.

Price manipulation as one of the most important type of Abnormal Trading Pat-

terns (ATPs) is classified into the following types according to one of the first studies

conducted in this field by Allen [5]:

• Information-based manipulation: Spreading false rumours in order to deceive

investors planning to buy or sell a certain stock.

• Action-based manipulation: Actions that create an imbalance in demand and

supply.

• Trade-based manipulation: Buying or selling a financial asset to create market

impact.

The focus of this PhD thesis is on detecting trade-based ATPs as a case study via

proposing a novel general-purpose anomaly detection algorithm. Therefore, the pro-

posed algorithm can also be applied in domains other than finance (e.g. health do-

main) to detect anomalies in the data. This general-purpose feature of the proposed

algorithm may enable it to be accepted and utilised by community of researchers and

practitioners in different fields and industries in addition to the financial domain.

The ATPs happen as consequence of real trading (transaction of buying and sell-

ing) of a financial asset (e.g. stock of a company). The problem of ATPs detection

(e.g. price manipulation detection in capital markets) can be converted into finding

single or sequential anomalies in trading orders data (e.g. price, volume and time of

the order) sent to the exchanges [1], [2].
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The existing computational researches in this field generally applied (or modi-

fied) existing anomaly detection methods on financial trading data to identify irreg-

ularities in the data automatically.

For instance, Logistic Regression (LR [6]), Support vector Machines (SVM) and

Artificial Neural Networks (ANN) were applied to daily stock prices to detect trade-

based manipulations [7]. In that study, ANN and SVM outperformed the logistic re-

gression. However, the supervised models in this study are not practical for utilisa-

tion in real-world scenarios as these require label information, which is not available

due to confidentiality and security issues in the financial domain.

Zhai et al. [2] developed a more robust hybrid model than previous studies

to detect single and sequential disruptive trading behaviours. First, the raw in-

put vector [price, volume, timestamp] of each limit order are transformed into a

three-dimensional feature vector to reduce the non-stationary properties of the orig-

inal data. One Class SVM (OCSVM) and Hidden Markov Model (HMM, see Sec-

tion 2.2.9 for more details regrading model-based anomaly detection) are utilised

to detect single-order and multi-order (sequential) disruptive trading behaviours,

respectively. In addition, the hybrid model uses a sliding window as an adaptive

mechanism to update the model parameters. Furthermore, the authors in [2] in-

jected artificial manipulation cases in four high liquid stocks on NASDAQ to test

the performance of the model. Although the hybrid model outperformed the bench-

mark models, it may not be suitable for practical real-time anomaly detection due to

the computational complexity of the model and the long time required for training

and/or testing phases of the algorithms.

Another algorithm developed in this field is based on Hidden Markov model

(HMM) is called Adaptive Hidden Markov with Anomaly states (AHMMAS) by

Cao et al. [1]. This algorithm utilizes four features based on wavelet transforma-

tion and gradients of high-frequency prices. This model outperformed the existing

benchmark models (K- Nearest neighbours and OCSVM), while the Area Under the

Receiver Operating Characteristic (ROC) curve (AUC) [8] was used as evaluation

metric. As the model does not update incrementally due to the computational com-

plexity for modelling the probability density function (PDF), it must wait until sig-

nificant changes are observed in data and then perform the updating action. This
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may reduce its performance for early detection of manipulation cases. A compre-

hensive literature review is provided in Section 2.2.

To the best of our knowledge, the major problems of the existing methods are:

1) most of the studies focused on supervised algorithms (see Table 2.1) as a solution

for this problem with an assumption that labelled datasets are available which is not

true. In fact, due to the security and confidentially reasons and the time-consuming

nature of hand labelling large amount of data by financial experts, real financial

trading data are not labelled. Therefore, such supervised algorithms are not practi-

cally suitable for solving this problem, and 2) computational complexity of existing

models (e.g. Neural Networks) requires long time for processing data and updat-

ing models’ parameters, which will introduce further delays in detecting ATPs. This

problem can lead to late detection of an abnormal pattern (e.g. price manipulation)

in financial markets, which will consequently lead to loosing the investments of le-

gitimate traders, if it is not detected rapidly.

High dimensionality and imbalance data, streaming processing, computational

complexity of existing methods and unavailability of labelled datasets for training

the algorithms are significant barriers to fully utilise anomaly detection algorithms

for real-world surveillance and monitoring systems in which the existing methods

fail to address. Therefore, a rapid unsupervised algorithm, which does not require

the label information (e.g. which trading data is normal or abnormal) and can detect

such ATPs rapidly and efficiently in real-world scenarios is needed to solve the issue.

1.2 Research Challenges and Questions

Designing an unsupervised algorithm for the task of detecting ATPs rapidly as men-

tioned above, is more efficient and appealing than reliance on the supervised algo-

rithms. However, designing an unsupervised algorithm is very challenging due to:

• An unsupervised algorithm need not rely on label information to detect irregu-

larities in datasets. However, the algorithm must rely only on the data features

to learn the patterns of normality.
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• Large volume and high-velocity of trading data. Analysing large volume of

streaming trading data in near real-time requires a rapid algorithm.

In addition to the above items, as financial trading datasets are not usually la-

belled, evaluation of anomaly detection performance of an algorithm introduces an-

other major challenge. Therefore, we are interested to find potential answers for the

following research questions to address the above challenges:

• to design, develop, implement and propose a novel unsupervised anomaly

detection algorithm for general purpose applications (applicable on different

datasets including but not limited to financial/trading datasets).

• to determine appropriate hyper-parameters values so as to improve or max-

imise performance of the algorithm.

• to determine which features are required for detecting ATPs.

• to apply the proposed algorithm on financial trading data.

• to analyse financial trading data and label the dataset for evaluation purposes

and comparison with existing benchmark algorithms.

1.3 Aims and Objectives

In order to address the research challenges and questions explained in Section 1.2,

the aim of this PhD research will be to design, implement and evaluate a novel un-

supervised anomaly detection algorithm capable of detecting anomalies in both fi-

nancial and non-financial datasets (general purpose) in a timely manner. However,

the main focus will be on fast detection of trade-based Abnormal Trading Patterns

(ATPs) in financial markets as a case study.

The objectives will be to:

• Perform a thorough review of general anomaly detection algorithms for irregu-

lar trading patterns detection based on data-driven, computational approaches

in the literature.
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• Design a robust and computationally efficient unsupervised anomaly detec-

tion algorithm.

• Analyse financial data and label the dataset.

• Apply the proposed algorithm on the financial data.

• Evaluate and compare the performance of the proposed algorithm with exist-

ing algorithms.

1.4 Contributions

The contributions of this PhD research are listed below:

• A literature review and benchmark evaluation on existing anomaly detection

algorithms such as Artificial Neural Network Auto Encoder, Isolation For-

est, Local outlier Factor (LOF), Histogram-based outlier Score (HBOS), Angle-

based Outlier Detection (ABOD), Principle Component Analysis (PCA) and

K-Nearest Neighbors (KNN). These algorithms evaluated via Area Under the

ROC Curve (AUC) and computational time on publicly labelled datasets from

different domains such as finance and health to investigate which one has a

combination of both high AUC and low computational time, thus serving as

a foundation for developing a new algorithm. The results show that Isolation

Forest, HBOS and PCA are robust algorithms in terms of high detection per-

formance (Area Under the ROC Curve (AUC) = 0.95) and low computational

time specially for large datasets.

• A novel unsupervised anomaly detection algorithm/model. The algorithm is

intuitively based on the idea of partitioning a bounded D-dimensional space

(e.g. the unit hyper-cube ID) by a sequence of random shapes, in which each

data will be trapped (isolated) either inside (encoded by 1) or outside (encoded

by 0). Such a partitioning scheme, encodes each data into a binary pattern (se-

quence of 0s and 1s). Under the fundamental assumption for all anomaly de-

tection algorithms that anomalous data (minority data) are rare and have dif-

ferent characteristics, the proposed algorithm learns the binary patterns by the
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probabilistic modelling approach and can distinguish anomalous data whose

binary patterns of trapping (inside or outside) based on the sequence of ran-

dom shapes is significantly different from rest of the dataset (normal data or

majority). Finally, the algorithm assigns an anomaly score for each data, which

indicates the degree to which it is anomalous.

• Sensitivity analysis of the proposed algorithm under different hyper-parameters

settings. We investigate the robustness of the proposed algorithm on pub-

licly available datasets and show that the performance of the algorithm will

stabilise as the number of random shapes increases. Furthermore, the shape

of random shapes can effect the performance of the algorithm which needs

to be optimised for a given dataset. Also, the results indicate that the al-

gorithm’s computational time increases linearly with the number of random

shapes which shows the robustness of the algorithm for detecting anomalies

in a timely manner.

• Application of the proposed anomaly detection algorithm to financial trad-

ing data. We applied the proposed algorithm on real Bitcoin prices as a case

study and tested, evaluated and compared the performance of the proposed

algorithm with the Auto Encoder, Isolation Forest, LOF, HBOS, ABOD, PCA

and KNN. The results show that the proposed algorithm achieves AUC = 0.94.

Comparing to the benchmark algorithms, it also outperforms the existing al-

gorithms by 8.5 percent increase while having low computational time.

1.5 Thesis Structure

The organisation of this thesis is as follows:

• Chapter 2 reviews literature regarding existing computational methods for de-

tecting Abnormal Trading Patterns (ATPs) in financial markets. Furthermore,

general anomaly detection algorithms in the machine learning field are re-

viewed as these algorithms provide the foundation for constructing algorithms

capable of detecting ATPs. The algorithms are categorised and classified based
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on their underlying assumptions and compared with each other in order to

identify strengths and weaknesses associated with each individual algorithm.

• In Chapter 3, publicly available datasets are utilised to compare the perfor-

mance of the existing anomaly detection algorithms in terms of AUC of anomaly

detection task and computational time. This chapter identifies the most robust

algorithm(s) with high AUC and low computational time in order to build a

theoretical foundation for proposing a new anomaly detection algorithm.

• A novel anomaly detection algorithm is proposed in Chapter 4. The theoretical

foundations of the algorithm will also be described in that chapter.

• Sensitivity analysis of the hyper-parameters of the proposed algorithm is pro-

vided in Chapter 5.

• In Chapter 6, the proposed anomaly detection algorithm will be applied on real

Bitcoin trading data (which are publicly available) and its performances for

detecting ATPs is compared with benchmark anomaly detection algorithms.

We determine that the proposed algorithm performs better than existing algo-

rithms in terms of considering both AUC of outlier detection and computa-

tional time (measured in seconds).

• The thesis is concluded in Chapter 7.

• The Python code is provided in Appendix A.
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Chapter 2

Background

This Chapter reviews the background and domain knowledge in financial trading.

It is essential to understand the fundamentals of exchange markets (Section 2.1.1)

and how limit order book (Section 2.1.2) works, in order to be able to design novel

anomaly detection algorithms in this field. Furthermore, understanding these con-

cepts facilitates understating how the process of manipulative trading tactics (Sec-

tion 2.1.3) works.

Since the problem of detecting ATPs is closely related to anomaly detection, and

the aim of this PhD (see 1.3) is to design and develop a novel general purpose unsu-

pervised anomaly detection algorithm, which can be applied on any dataset includ-

ing but not limited to financial data, we also review the general-purpose anomaly

detection algorithms in Section 2.2. In that section, we also address and review how

these algorithms have been modified/applied to financial data for ATPs detection.

Section 2.3 summarises and discuss the existing approaches for ATPs detection.

2.1 Abnormal Trading in Financial Markets

2.1.1 Exchange Markets

An Exchange market is a physical or virtual place, such as online platform, where de-

mand and supply sides of the market called buyers and sellers, respectively, interact

with each other in order to trade (exchange) an asset (e.g. stock of a company) [9].

There exist several markets such as stocks, Forex (Foreign Exchange), commodity,

cryptocurrency and energy markets, each one, offers traders certain types of assets

for trading. In addition, there exists derivative markets (e.g. options and futures
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contracts), where the price of the asset is derived from an underlying spot price

(current market price of a financial asset) [10].

As a result, nowadays traders have many diversified trading venues to trade and

invest on portfolio of assets in different markets. In addition, with the rise of high-

speed computer/networks, human traders and the whole manual trading processes

are being replaced with intelligent trading algorithms trading on behalf of humans

or corporations [11]. Such a combination of algorithmic trading with the ability to

buy or sell an asset in the fraction of a second has opened a new era of trading called

high-frequency trading (HFT) [12] which itself creates new opportunities, challenges

and problems.

2.1.2 Limit Order Book

According to [2], the exchanges (where buyers and sellers exchange financial assets)

have a limit order book (LOB) for each asset (e.g. stock of a company), which is

a collection of the entire trading orders received by traders for that particular as-

set. If a trader wants to buy a financial asset at the current market price known as

spot price, he/she can submit a market order. Alternatively, the trader may want to

wait until the price reaches to a certain level before buying or selling the asset. In

that case, he/she can submit limit orders by specifying the desired price level and

amount of the asset to be bought or sold. Therefore, each limit order can be viewed

as an intention of a buyer (or seller) to buy (or sell) a certain amount of a partic-

ular asset at a certain price. The exchange keeps the record of non-executed limit

orders of buyers and sellers on buy (bid) and sell (ask) sides of the order book, re-

spectively and matches the orders, accordingly. The best bid price is the maximum

price among buyers (bid side of the LOB). Similarly, the best ask price is the mini-

mum price among the sellers (ask sides of the LOB). The difference between these

two values; BestAskPrice− BestBidPrice is called bid/ask spread.

Many traders who believe that bid and ask sides of the LOB are true reflections

of demand and supply may use the information provided in the LOB to predict the

future price movement and consequently initiate a trade. However, when manip-

ulators trade in the market, they may submit fake orders without any intention of
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executing that order as a means to influence the behaviour of other normal traders

[1].

2.1.3 Manipulative (Abnormal) Trading Strategies

Financial markets can be manipulated intentionally by traders who apply certain

trading strategies in order to gain illegal profit. As a result, other traders may lose

their capital. Furthermore, the image of investing in financial markets as a secure

and well-regulated place for investing may be destroyed. Therefore, detecting and

preventing the manipulators is a must for financial authorities.

Price manipulation as one of the most important type of Abnormal Trading Pat-

terns (ATPs) is classified into the following types according to one of the first studies

conducted in this field by Allen [5]:

• Information-based manipulation: Spreading false rumours in order to deceive

investors planning to buy or sell a certain stock.

• Action-based manipulation: Actions that create an imbalance in demand and

supply.

• Trade-based manipulation: Buying or selling a financial asset to create market

impact.

The focus of this PhD thesis is on detecting trade-based ATPs via anomaly detec-

tion algorithms. Such ATPs happen as consequence of real trading (transaction of

buying and selling) of a financial asset (e.g. stock of a company).

Although, there are various types of trade-based manipulation tactics, these strate-

gies are actually the same method in which, “non-bona fide” orders (fake orders

intended to deceive other investors and create false image of supply or demand,

e.g. large orders away from best Bid/Ask or sequential normal sized orders inside

Bid/Ask spread) are submitted to the exchange to influence the price upward or

downward. When the equity price is affected, the “non-bona fide” orders are can-

celled and the manipulators can gain profit due to the artificial price change caused

by executing their “bona fide” order on the other side of the order book [2].

The manipulation tactics and disruptive trading strategies can be implemented

via a single order or sequential (multiple) orders to delude other investors. Each of
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these techniques have some abnormal characteristics. For instance, sequential spoof-

ing orders (multiple fake low-volume trading orders being submitted within the best

bid-ask price range which are then being cancelled in short time intervals to change

best bid and ask prices) may create a saw shape in the Bid and Ask time series. An-

other important feature of sequential manipulation strategies is the cancellation time

of orders in short time intervals [2].
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2.2 Anomaly Detection Algorithms

The problem of abnormal trading patterns (ATPs) detection (e.g. price manipula-

tion detection in capital markets) can be converted into finding single or sequential

anomalies in trading data (e.g. price, volume and time of a trade). Therefore, it is

essential to review and understand what is meant by the term "anomaly" and how

an anomaly can be detected automatically. This section provides an overview of

anomaly detection definitions and general purpose anomaly detection algorithms

along with particular algorithms, which were modified/applied on financial data

for detection of ATPs. Anomalous data are rare (minority) data that deviate from

majority (normality) patterns [13], [14]. In this thesis, anomalies are defined as col-

lection of data points in a dataset, which are: 1) few (minority) and 2) different (hav-

ing distinguishable statistical characteristics) from the rest of data points. These two

features may separate anomalies from the majority of data points without the re-

quirement of labelling the data points in advance.

Anomaly detection has many applications such as credit card fraud detection,

network intrusion detection, loan application processing, fault detection, medical

condition monitoring, detecting abnormal images and so on [15]. The anomaly de-

tection algorithms can be classified into the following groups according to the avail-

ability of labelled datasets [13]:

• Supervised: When data are labelled (normal and abnormal data are flagged),

a classifier algorithm can be trained on a subset of data using these labels as

accurate outputs to learn the input-to-output mappings. The learnt model is

used to predict the output for a given additional data input.

• Semi-supervised: When partially labelled data are available or only one class

of data (e.g. just normal instances) are labelled, the algorithm learns the model

of normality to describe the labelled data. Any data point that deviates from

the model is flagged as an anomaly.

• Unsupervised: When data are not labelled (the algorithm does not know which

instance is normal or abnormal), the algorithm assumes that anomalous data
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are few and different from the rest of data. In other words, it learns the struc-

ture of a dataset by assuming that abnormal instances are differentiable from

normal ones (these two types of patterns differ in some statistically significant

fashion).

Due to security and confidentiality reasons, and the time consuming task of

hand-labelling data, many real-world datasets are not labelled. Therefore, unsu-

pervised anomaly detection algorithms are more popular than the supervised and

semi-supervised approaches.

A detailed review of existing anomaly detection algorithms can be found in [13]–

[15]. In the following sections, the principles of these algorithms are reviewed and

compared.

2.2.1 Classification-based Anomaly Detection

Classification-based anomaly detection includes supervised algorithms which re-

quire a training set of labelled data. They utilise this to learn the mapping from

input to output (labels) in a training phase [6]. Once trained, the algorithm classifies

data points into either normal class (0) or abnormal (1). Existing supervised ma-

chine learning algorithms such as Artificial Neural Networks (ANN) [6] and Sup-

port Vector Machines (SVM) [16] can be utilised for supervised anomaly detection.

The advantage of this approach is that, once the classifier is trained, it can predict

the anomaly label very fast for subsequent data. However, this type of method has

several drawbacks:

• Labelled data are needed to train the algorithm [13], which may not be avail-

able in real-world applications.

• Real-world datasets are very imbalanced (the proportion of abnormal instances

in the dataset is very low), which may introduce problems for existing classi-

fiers to differentiate the patterns of normality and abnormality without bias

[13].

Logistic Regression (LR [6]), SVM and ANN were applied to daily stock prices

to detect trade-based manipulations in Istanbul Stock Market [7]. In that study, dif-

ferences of daily price, trading volume and volatility of stocks in comparison with



Chapter 2. Background 15

a market index (non-manipulated benchmark) were used as input features for the

algorithms. Although ANN and SVM outperformed the logistic regression, the re-

search was conducted only on daily prices with known manipulation cases (super-

vised learning) and did not consider the limit order data. Furthermore, the super-

vised algorithms are not adaptive and may not be able to detect high frequency ma-

nipulative trading strategies that evolve over time in an unsupervised environment

(the data in real application may not be labelled which is typical in capital markets).

In addition, the assumption of that paper that deviations of market variables from a

benchmark (e.g. market index) is an indicator of manipulation may not be true since

the deviations may have been originated from legitimate sources such as economic

events rather than being the result of price manipulations as explained in [2].

Leangarun et al. [17] applied ANN and a 2-dimensional Gaussian model (see

Section 2.2.5 for details regarding density-based anomaly detection) on intraday

trading data (price, volume and limit order book) of Amazon, Intel and Microsoft

stocks to detect pump-and-dump (large-volume trading orders, which are submit-

ted away from the best bid and ask prices to create a delusion of fake demand or

supply in the bid and ask sides of the LOB) and spoofing (multiple fake low-volume

trading orders being submitted within the best bid-ask price range which are then

being cancelled in short time intervals to change best bid and ask prices) manipu-

lations, respectively. Since the raw data were not labelled, the authors labelled the

data by creating binary rules based on their own assumptions of manipulation con-

ditions. Mean square error was utilised as a performance evaluation metric and they

claim their models were able to detect manipulations. The supervised ANN trained

on labelled data can only detect those specific type of manipulations determined by

the authors and not unseen patterns.

2.2.2 One-Class Anomaly Detection

One-class anomaly detection includes semi-supervised algorithms. In datasets con-

taining only one class (e.g. normal class), a One-class Support Vector Machine (OCSVM)

[18] learns the boundaries (hyper plains) of normal class against the centre of origin

via the application of kernel functions. Any data which falls inside the learnt bound-

ary is classified as normal, otherwise as abnormal. Although this semi-supervised
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method requires only one class to be labelled in the dataset, it still has the draw-

backs mentioned in the Section 2.2.1 regarding the supervised algorithms. There-

fore, these methods are less desirable than unsupervised approaches in anomaly

detection tasks.

V-detector algorithm [19] is another one-class (semi-supervised) anomaly detec-

tion algorithm based on finding anomalous regions of space given labelled normal

data. The algorithm divides the space into normal and abnormal sub-spaces based

on the assumption that the normal subspace includes hyper-spheres with the cen-

tres located at normal training data points. Any test data point that falls inside this

normal region is declared as normal, otherwise the data is identified as anomaly.

This algorithm is equivalent to one-class SVM to find the boundaries of the normal

samples. V-detector algorithm has the following drawbacks:

1) V-detector algorithm requires labelled normal training data to work prop-

erly. When the training data for V-detector is contaminated with abnormal data

(e.g. some of the data points in the training set are anomalies but are included in

the training data set thus are labelled incorrectly as normal data), the algorithm fails

to correctly identify test data points as anomaly, which are close to those incorrectly

labelled training data points because such test data points fall inside the normal

hyper-spheres. The reason is that the algorithm assumes that the training dataset

includes only normal data points and builds the normal sub-space based on this as-

sumption. In other words, contamination of training dataset with abnormal data

points may distort the true normal subspace to be learned by the algorithm, which

will create bias in the performance of the anomaly detection.

2) Hyper-spheres are generated data-dependent in V-detector algorithm based

on the nearest-neighbor distance of a random point to the normal samples, which is

not computationally efficient for big high-dimensional data.

3) if the distribution of normal samples changes over time (which is the case for

financial non-stationary time-series), hyper-spheres of V-detector algorithm need to

be regenerated every time (because the boundaries of normal samples changes and

previous shapes are no longer valid as anomaly detector). This is computationally

expensive.

4) V-detector only declares an anomaly label (no anomaly score), if a data point
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falls inside one of the detector hyper-spheres. For many real-world application, pro-

viding a label is not enough and data need to be ranked according to their anomaly

score.

Basically, the V-detector algorithm is trying to achieve what a Kernel Support

Vector Machine (SVM) achieves which is finding abnormal regions of space which

have boundary with sub-spaces, where are populated with normal data.

Zhai et al. [2] developed a more robust hybrid model than study performed

by [7] to detect single and sequential disruptive trading behaviours. First, the raw

input vector [price, volume, timestamp] of each limit order are transformed into a

three-dimensional feature vector to reduce the non-stationary properties of the orig-

inal data. One Class SVM (OCSVM) and Hidden Markov Model (HMM, see Section

2.2.9 for more details regrading model-based anomaly detection) are utilised to de-

tect single-order and multi-order (sequential) disruptive trading behaviours, respec-

tively. In addition, the hybrid model uses a sliding window as an adaptive mecha-

nism to update the model parameters. Furthermore, Zhai et al. [2] injected artificial

manipulation cases in four high liquid stocks on NASDAQ to test the performance

of the model. Although the hybrid model outperformed the benchmark models, it

may not be suitable for practical real-time anomaly detection due to the computa-

tional complexity of the model and the long time required for training and/or testing

phases of the algorithms. In addition, the fundamental structure of the hybrid model

does not change over time, although it has an adaptive mechanism. Therefore, the

hybrid model will not be able to detect evolutionary manipulative tactics and the

performance of the algorithm may decrease over time due to the static structure of

the model.

2.2.3 Distance-based Anomaly Detection

Distance-based anomaly detection algorithms are unsupervised methods based on

the general assumption that abnormal data in high-dimensional spaces are far away

from other data, that is, they differ significantly [14].

Mathematically, consider a D-dimensional dataset X = {xi}N
i=1 with N data

instances, such that each data instance xi = [xi,d]
D
d=1 is a D-dimensional vector.
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Distance-based algorithms use a distance (similarity) measure between any two D-

dimensional points xi and xj; i, j ∈ {1, 2, . . . , N}, denoted by Distance(xi, xj), to

compute how close the points are located to each other. Different similarity mea-

sures such as Minkowski [20] (Equation 2.1), Euclidean (Equation 2.1 with L = 2)

and Manhattan (Equation 2.1 with L = 1) can be utilised to measure the distance

[14].

Distance(xi, xj) = (
D

∑
d=1
|xi,d − xj,d|L)

1
L . (2.1)

Next, an anomaly score for any point xi ∈ X is computed as the sum of its

distance to all the other points in the dataset as shown in

AnomalyScore(xi) = ∑
xj∈X

Distance(xi, xj). (2.2)

Finally, all the points are ranked in a list from high to low anomaly scores and

points in the top of the list may be considered anomalies according to a certain

threshold, e.g. having an anomaly score falling in the top 5 percent. This general

algorithm has different versions based on which similarity measures are utilised.

In addition, instead of computing the sum of distances to all points in the dataset,

which is computationally very expensive, only k-nearest neighbours (points) of xi

may be considered for the calculation of the anomaly score. Alternatively, the dis-

tance of k-th neighbor of a given data point can be utilised as anomaly score[21] .

Moreover, the average or median of the distance of k-nearest neighbours of point

xi can be utilised for the computation of an anomaly score, which may improve the

performance of the algorithm [14], [22].

The advantage of distance-based anomaly detection algorithms is that they do

not need labelled data and are easy to implement as computer programs. How-

ever, their computational complexity increases quadratically with the size of dataset

(O(N2)) as the distance of any pairs of data must be computed [8], [13], [14]. This

time-consuming drawback makes it impractical to utilise distance-based algorithms

for large datasets due to the computational resource constraints.

As a result of curse of dimensionality [23]–[25], standard distance functions such

as Euclidean distance utilised in the anomaly detection algorithms, do not work well
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in high-dimensional data due to the 1) noise effect of irrelevant dimensional values

[26] and 2) distance concentration (data sparsity) of data points, which means most

of the pairwise distances are similar and not distinguishable.

Survey [27] reviews distance measures utilised in the literature of Network In-

trusion Detection and suggests that fractional lL distance functions are useful for

anomaly detection in high-dimensional datasets Particularly, [28] shows that 0.5 ≤

L ≤ 1 are useful for such settings. Aggarwarl et al. [29] proposes fractional distance

metrics as special case of Minkowsi metric with L ≤ 1. They show that these frac-

tional metrics can improve the performance of algorithms in higher dimensions as

there will be more contrast between min and max distance of uniform points from a

target data point. In other words, using such metrics will results in more discrimi-

nation between pair-wise distances of data.

2.2.4 Clustering-based Anomaly Detection

Clustering algorithms are unsupervised machine learning algorithms that divide the

data into k groups or clusters based on the goal that similarity of the points within

a cluster should be maximized, while the similarity between points from different

clusters be minimized [14]. The most famous clustering algorithm, k-means [30]

initializes the centre of clusters (centroids) randomly as set C = {cr}k
r=1, then the

following two steps run alternately until a termination criterion is reached:

1. Assignment step: the points closest to each centroid are assigned to that cluster.

2. Update step: the average of points assigned to cr is computed as r-th updated

centroid [14].

This algorithm can have variety of versions such as computing the median in the

update step. This is called k-median clustering since the calculation of the mean is

sensitive to outliers while determination of the median is more robust to outliers.

Furthermore, this type of algorithm can be classified as hard clustering since every

point in the dataset is assigned to a cluster.

The assumption in the hard clustering-based algorithms is that, points which

are far away from centroids of clusters, are potential anomalies. For example, an
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anomaly score can be computed by the distance from each point to its cluster’s cen-

troid (or all the clusters’ centroids), or average or median distance of each point

to the points within its cluster. Alternatively, points in clusters with size below a

threshold are potential anomalies. Since the clustering algorithm is fast, integrating

it with distance-based approaches results in improvements in runtime.

In contrast to the hard clustering, soft clustering algorithms enable points to be

assigned to many clusters at the same time and it is possible that some points do

not belong to any cluster. These are classified as anomalies [14]. Ω(xi, cr), a real-

number in range 0− 1 which quantifies the degree of membership of a point xi to

r-th cluster. The fuzzy k-means clustering algorithm [31] computes Ω for each point

in the dataset according to Equation 2.3 and then normalises the membership values

of each point to sum to one in the assignment step. Next, it updates the Ω-weighted

centroid of the clusters.

Ω(xi, cr) =
1

exp (Distance(xi, cr)2)
. (2.3)

The drawback of the clustering algorithms is the sensitivity to k and the initial-

ization of clusters, which can significantly change the performance of the anomaly

detection algorithm. Furthermore, the algorithms are not deterministic [14]. An-

other type of clustering algorithm which does not need k to be specified in advance

is agglomerative clustering [14] algorithm. With computational complexity O(N3),

it is based on the idea that first, small clusters are formed in datasets and then these

small clusters merge together (based on distance to centroids) to form bigger clusters

until a termination criterion is reached.

2.2.5 Density-based Anomaly Detection

The assumption behind the density-based anomaly detection algorithms (which are

unsupervised) is that data in less-dense areas of high-dimensional space, where the

number of data points per volume of space determines density, are more anomalous

than data located in denser regions [14]. Estimation of density can be performed by:

• Dividing the space into small sub-spaces (grids) and counting the number

of points in each grid. A histogram in one-dimension is an example of such
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density estimation. This simple and fast method (in low-dimensional spaces)

struggles in high-dimensional spaces due to the large number of grids, which

need to be investigated. Furthermore, this approach is sensitive to the size of

the grids. In addition, the density is estimated in discretised spaces and not in

continuous form.

• Assuming that data follow a specific type of distribution (e.g. Gaussian) and

estimating the parameters of the distribution based on the data. However, such

an assumption may not be true for the real-world datasets.

• Utilizing kernel functions [14] which are positive and symmetric functions

with integral of one from −∞ to +∞, as similarity measures between points.

The distance of point xi from other points in the dataset is utilised as input of

the kernel function to estimate a continuous form of density around point xi.

Furthermore, density can be viewed as reversely proportional to distance of

points from each other. Points that are close to each other are located in denser

areas while far-apart points are located on sparse regions. This idea serves the basis

for a well-known algorithm called Local Outlier Factor (LOF) [32], which compares

local density of point xi with its k-nearest neighbours and can detect both local and

global anomalies in the dataset.

Leangarun et al. [17] applied a 2-dimensional Gaussian model on intraday trad-

ing data (price, volume and limit order book) of Amazon, Intel and Microsoft stocks

to detect pump-and-dump (large-volume trading orders, which are submitted away

from the best bid and ask prices to create a delusion of fake demand or supply in the

bid and ask sides of the LOB) and spoof-trading manipulations (multiple fake low-

volume trading orders being submitted within the best bid-ask price range which

are then being cancelled in short time intervals to change best bid and ask prices),

respectively. Since the raw data were not labelled, the authors labelled the data by

creating binary rules based on their own assumptions of manipulation conditions.

Mean square error was utilised as a performance evaluation metric and they claim

their models were able to detect manipulations. Matched volume and cancellation

volume of orders as two dimensions used in the 2D-Gaussian model and points

outside of 95 percent confidence interval are declared anomalous. The paper does
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not provide any justification regarding why the Gaussian distribution is suitable for

modelling the trading data.

2.2.6 Depth-based Anomaly Detection

The Depth-based unsupervised anomaly detection algorithm [33], [34] assumes data

are distributed like an Onion (layer by layer) in high-dimensional space. The algo-

rithm starts from the outer layer to determine which data are located there. Such

a process is recursively repeated layer by layer until all data points in the datasets

are assigned a layer number (depth from outer layer). Convex hull analysis [33] is

utilised to determine the layers in the algorithm to identify data points located in

the tail of the distribution of a dataset. Once such data points are removed from the

dataset, this process can be repeated sequentially until there is no data point left in

the dataset.

Data points which are located in the outer layers of the Onion are considered

more anomalous than data which are located in the dense inner layers. Therefore,

the depth can be utilised as an anomaly score for comparing the degree of anoma-

lousness of data points.

Although, the algorithm appears very easy to implement, it will be only capable

of finding anomalies located in the outer layers and sparse regions of space. These

data points are considered global extreme values of the dataset. However, local

anomalies, especially those which are trapped between dense clusters of data and

are in the middle layers, may not be detected properly.

The main fundamental problem with this algorithm lies in its assumption that

data have a single cluster that can be viewed as layer-by-layer shape. This is not

valid in real-word datasets as those datasets have multiple clusters located in differ-

ent regions’ of space.

2.2.7 Angle-based Anomaly Detection

The Angle-based unsupervised anomaly detection algorithm proposed by Kriegel

et. al. [35] discriminates outliers from normal data points based on computation of

angle rather than distances. With a dataset consisting of N data points, an angle is
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defined between any three data points forming a triangle. One of the vertices of the

triangle will be the data point to be classified as normal or abnormal, and the other

two vertices are chosen among a set of (N−1)(N−2)
2 combinations corresponding to

choosing two points among the rest of the N − 1 data points [33].

The assumption behind this algorithm is that, the standard deviations of the an-

gles computed for each data point will be higher if such data is normal, while for

an abnormal data point, the standard deviation of the angles will be lower. There-

fore, the standard deviation of angles will be utilised as a measure for computing

anomaly score for each data point.

Such an algorithm can detect global extreme value anomalous data, which are

located in the tail of the data distribution (outer bound). However, it will have dif-

ficulty detecting abnormal data points which are local and located hidden between

and close to dense normal clusters since the standard deviation of angles will be

similar to the normal data points.

Another drawback of this algorithm is its computational cost which is cubic

(O(N3)). Therefore, it is not practical to utilise such an algorithm for processing

of large datasets.

2.2.8 Isolation-based Anomaly Detection

The Isolation-based unsupervised anomaly detection algorithm proposed by Lui et.

al. [36], [37] utilises a completely different approach in comparison with previously

mentioned anomaly detection algorithms.

In this algorithm, no distance metric or any density estimation is utilised. In-

stead, a concept called "Isolation" is proposed by the authors which is a computa-

tional mechanism for separating (isolating) normal data points from abnormal ones.

Such a mechanism involves construction of a random tree structure of data in which

each node corresponds to a random division (partitioning) of high-dimensional data

into two parts (sub-spaces). Practically, this can be achieved by selecting a random

axis-parallel hyper-plane. Those data which are located on the left or right of each

randomly-chosen plane, correspond to the left and right division of each node in the

tree. This formulation is applied on the data and the tree grows recursively, until

there will be one unique sample in the final leaf nodes.
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Once such a tree is constructed, the length of the path from the root node until

the leaf node for each data point will be utilised as a measure for computing the

anomaly score of that data which means less path length results in higher degree

of anomalousness. The assumption is that outliers will be trapped (isolated) sooner

and located more on the top parts of the tree, thus having shorter path length and

higher anomalous score than normal data, while normal data points will be trapped

in the bottom of the tree structure, thus having a longer path length and less anomaly

score than the anomalous data points.

Since the proposed tree structure is a random structure, there is a possibility

that some outliers are still located on the bottom of the tree leading to less accu-

rate anomaly detection results. To overcome this problem that just one tree may

not be sufficient for anomaly detection by this approach, the authors propose the

construction of an ensemble (forest) of trees. Such an ensemble approach involves

construction of set of random trees individually and then computing the average

(mean) path length for each data point to give a more accurate result.

Although, the ensemble of trees approach may outperform an algorithm based

on just one tree in terms of anomaly detection accuracy, it is more computationally

expensive than construction of a tree. To address this issue, a sub-samples of data

(rather than the whole dataset) during the construction of tree can be utilised to re-

duce the computational time. However, the number of sub-samples must be chosen

carefully depending on the dataset as very few sub-samples may not capture and

represent the true distribution of the data. Therefore, there might be a trade-off be-

tween accuracy and computation time.

Although, the Isolation Forest is among one of the robust anomaly detection al-

gorithms, since it utilises axis-parallel hyper-planes and linearly partitions the space

into hyper-rectangles, it will need large number of partitions for real-world non-

linear datasets in order to truly capture the intrinsic of the dataset, resulting in more

computational cost.

In the worst-case scenario, 2D number of hyper-planes (two hyper-planes for

each dimension) are needed for each outlier data point to be isolated from the rest of

data points. For instance, in two-dimensional and three-dimensional spaces, squares

and cubes are required corresponding to four lines and eight surfaces in such spaces,
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respectively. This issue may demand more memory and computational resources for

the algorithm to have a reasonable accuracy as the number of dimensions grow.

2.2.9 Model-based Anomaly Detection

In the model-based approach [14], [33], a model is constructed to describe the nor-

mal data. The assumption is that data that deviate from the model’s predictions

are anomalous. Alternatively, if model’s parameters change significantly during the

training phase, it can also be considered as abnormality. These deviations are quan-

tified by distance functions into anomaly score for a test data.

The models which can be supervised or unsupervised are classified as linear

and non-linear based on assumption whether data features have linear or non-linear

relationships [38]. In the linear version, a regression-based model or PCA-based

model [39] is constructed, which represent the linear low-dimensional hyper-plane

in which, the original data are projected. Large deviations (distances) from such

hyper-plane triggers anomaly detection algorithm. If the data have non-linear prop-

erties, linear models may fail to capture the curvature of data, thus non-linear mod-

els will be useful in such cases. For instance, Auto Encoder Neural Networks [40]

is a nonlinear algorithm, which can find the non-linear patterns in data. The Auto

Encoder (an architecture of neural networks) applies a series of non-linear transfor-

mations via hidden neural layers to encode the data to a low dimensional space and

then, decoding the low dimensional space back to the original space, in order to

reconstruct the data. Anomalous points are data, which have high reconstruction

error. The drawback of these algorithms is their high computation costs for training

such non-linear models. Survey [41] and [42] provided comprehensive review of

anomaly detection methods based on the neural networks.

The model-based approach for anomaly detection is also suitable to find anoma-

lous patterns in time series and sequence data. The problem here is how to con-

struct the model of an underlying data generating process. Such a generating pro-

cess is usually a probabilistic model (in contrast to previous deterministic models),

which describes how the data are generated or drawn from combination of un-

derlying probability distributions [43], [44]. For example, an Auto Regressive In-

tegrated Moving Average (ARIMA [45]) model can be constructed for continuous
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time-series. However, these models struggle with evolutionary data. So, for dy-

namic data, window-based approaches are utilised to retrain the model on each se-

quence time-intervals. This increases the computational complexity of the problem.

Alternatively, Markov Models can be used for modelling discrete sequences [6], [43].

These probabilistic models learn the conditional probabilities of the transitions from

one state (category) to another one and a less probable transition observed indicates

irregularity.

The advantage of model-based anomaly detection is its flexibility to model com-

plex data structures. The challenge is how to build and train a model that can cap-

ture, in a timely manner, not only the evolutionary nature of data but also the corre-

lations between features of data.

The hybrid model developed by Zhai et al. [2] detects single and sequential dis-

ruptive trading behaviours. First, the raw input vector [price, volume, timestamp]

of each limit order are transformed into a three-dimensional feature vector to re-

duce the non-stationary properties of the original data. One Class SVM (OCSVM,

see Section 2.2.2 for details regarding One-class anomaly detection) and Hidden

Markov Model (HMM) are utilised to detect single-order and multi-order (sequen-

tial) disruptive trading behaviours, respectively. In addition, the hybrid model uses

a sliding window as an adaptive mechanism to update the model parameters. Fur-

thermore, the authors in [2] injected artificial manipulation cases in four high liq-

uid stocks on NASDAQ to test the performance of the model. Although the hybrid

model outperformed the benchmark models, it may not be suitable for practical real-

time anomaly detection due to the computational complexity of the model and the

long time required for training and/or testing phases of the algorithms. In addition,

the fundamental structure of the hybrid model does not change over time, although

it has an adaptive mechanism. Therefore, the hybrid model will not be able to de-

tect evolutionary manipulative tactics and the performance of the algorithm may

decrease over time due to the static structure of the model.

Another model-based algorithm developed for ATPs detection based on HMM

is called Adaptive Hidden Markov with Anomaly states (AHMMAS) by Cao et al.

[1]. This algorithm utilises four features based on wavelet transformation and gradi-

ents of high-frequency prices. Hidden states of the AHMMAS correspond to normal
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and manipulation states which are inferred by observations of prices as observation

states and a rolling window are also proposed to update the model only when the

statistic of data changes significantly as an adaptive mechanism. Seven stocks on

NASDAQ and London Stock Exchange along with simulated prices were selected

to test the algorithm. This model outperformed the existing benchmark models (K-

Nearest neighbours and OCSVM, see Sections 2.2.3 and 2.2.2 for details regarding

distance-based and one-class anomaly detection, respectively) while the Area Un-

der the Receiver Operating Characteristic (ROC) curve (AUC) [8] used as evaluation

metric. As the model does not update incrementally due to the computational com-

plexity for modelling the probability density function (PDF) of hidden states, it must

wait until significant changes are observed in data and then performs the updating

action. This may reduce its performance for early detection of manipulation cases.

Regression models have been developed to predict stock manipulations in Tehran

stock exchange [46]. First, stock companies are labelled to 1 (manipulated) and 0

(non-manipulated) by statistical tests. Then, the models regress dependent variable

(label 0 or 1) over independent variables such as the size of the company, ratio of

price to earnings (P/E), information clarity index (released daily by stock exchange),

and rank of stock liquidity (released daily by stock exchange). The model’s accu-

racy is reported to be 90 percent on self-labelled data. However, the input variables

are judgmental and the supervised methods are not suitable for unsupervised high-

frequency detection due to the computational complexity and static nature of such

regression models.

An Agent-based model (artificially simulated stock market) with a combination

of genetic programming (a computational method that mimics the evolutionary pro-

cesses in nature to solve optimization tasks [47]) has been utilised for price ma-

nipulation detection in the French stock market [48]. The model consists of 2000

simulated agents as traders whose trading rules (strategies) are evolved by genetic

programming while receiving information about the market and trying to maximize

their utility function (wealth). The dataset used in that paper includes daily prices

and volumes of trades regarding CAC40 index and two major companies within

the index. The author claims that deviation of forecasted prices of the model from

real prices is sign of manipulation and quantifies this by a metric called Forecast
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Directional Accuracy (FDA), the percentage that forecasted price aligns with real

directional price change. FDA below 50 percent represents an incorrect model pre-

diction which is a sign of manipulation. Based on this approach, the author indicates

the existence of disruptive trading behaviours in the French market. However, since

the data are not labelled, and also other economic factors may influence the prices,

this approach only indicates signs of manipulations and not the actual manipula-

tions. Furthermore, due to the computational complexity of genetic programming

approaches, this method is not suitable for real-time detection of manipulations.

2.3 Summary of the algorithmic studies for ATPs detection

Since the focus of this PhD research will be on fast detection of trade-based Ab-

normal Trading Patterns (ATPs) in financial markets as a case study, Table 2.1 sum-

marises and compares the existing algorithmic studies developed for ATP detection

purpose. Each method is categorised based on the required supervision, type of

anomaly detection approach and the run-time (corresponding to whole training and

test phases) to perform ATP detection. The table clarifies the identified issues which

motivated this study. The main identified issues are 1) high supervision and 2) high

run-time requirements for existing methods which prevent those algorithms to be

utilised for the propose of real-world ATP detection.

Most of the existing methods focused on supervised algorithms as an easy so-

lution for the problem of ATPs detection with an assumption that labelled datasets

are available which is not true. In fact, due to the security and confidentially reasons

and time-consuming of hand labelling large amount of data by financial experts, real

financial trading data are not labelled. In other words, we do not know which trade

is normal or abnormal in advance and a robust method is required for identifying

the abnormal trades. Therefore, such supervised algorithms are not practically suit-

able for solving this problem. Alternatively, an unsupervised algorithm which does

not require the label information (e.g. which trading data is normal or abnormal)

and can detect such ATPs rapidly and efficiently in real-world scenarios is needed

to solve the issue.
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In addition, large amount of trading data and its high-velocity requires fast al-

gorithms with low run-time capable of processing the data in a timely manner, a

requirement which most of the existing methods fail to address.

To date, the problem of detecting ATPs in a timely manner and unsupervised

fashion has remained a challenge due to the high-volume and high-velocity of trad-

ing data. Therefore, this research attempts to fill the gap by proposing a novel

general-purpose unsupervised algorithm (see Chapter 4), which can be applied on

both financial and non-financial data and is capable of detecting ATPs rapidly.

TABLE 2.1: Summary and comparison of the algorithmic studies for
detection of ATPs.

Approach Supervised Semi-
supervised

Unsupervised Run-time References

Classification-based LR, ANN,
SVM,
KNN,
Decision
Trees

High [7], [46],
[49], [50],
[51], [1],
[50], [52]

One-class-based OSVM High [2], [1], [52]
Density-based Gaussian

Model
High [17], [1]

Model-based HMM,
Agent-
based
model,
Genetic
model,
Regression

High [2], [53],
[52], [17],
[17], [1],
[54], [46],
[55], [49]
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Chapter 3

Anomaly Detection Benchmark

Evaluation

This chapter compares the performance of existing popular anomaly detection al-

gorithms on public datasets in different industry sectors such as trading, finance

and health. Section 3.1 explains the details regarding the datasets, feature extraction

and further pre-processing steps before feeding the data to the machine learning al-

gorithms. Section 3.2 reviews the evaluation (performance) metrics utilised in the

computational experiments. Experiments setups are provided in the Section 3.3. Fi-

nally, results and discussions are included in Section 3.4.

3.1 datasets

In this study, we utilise publicly available labelled datasets such as Credit Card

Fraud Detection [56], [57], [58], [59], [60], [61] and Breast Cancer [62], [63], [8]. These

datasets have been labelled and feature extracted by experts in those fields and are

ready to be utilised by machine learning algorithms.

The Credit Card Fraud Detection is downloaded from [57]. It is a 30-dimensional

dataset (as input features) with 284,807 data samples. Each data sample is a credit

card transaction which is labelled as normal or fraudulent (abnormal) transaction.

492 of the data samples are associated with fraud. For the security and anonymity

reasons, the original features have been transferred by PCA algorithm so the data

cannot be linked to an individual person. The reasons for choosing this dataset are:
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1) its domain (fraud detection) is closely related to this PhD topic which is anomaly

detection in financial markets, and 2) it has a large number of data samples.

The Breast Cancer dataset is downloaded from [62]. The original Breast Can-

cer Wisconsin (Diagnostic) dataset [63] from UCI Machine Learning repository, were

prepared for the task of unsupervised anomaly detection by keeping only 10 anoma-

lies in the total 367 data samples [8]. The 30 input features are computed from medi-

cal images and each data sample is labelled as malignant (abnormal class) or benign

(normal class). We choose this dataset from a different domain from finance to also

evaluate the algorithms on non-financial data as we are interested in developing a

general-purpose algorithm applicable to both financial and non-financial datasets.

3.2 Evaluation Metrics

Characteristic Curve (ROC) [64] is a curve, which plots True Positive Rate and False

Positive Rate at various thresholds of a binary classifier[6], where:

TruePositiveRate =
TruePositives

TruePositives + FalseNegatives
(3.1)

FalsePositiveRate =
FalsePositives

FalsePositives + TrueNegatives
(3.2)

True Positives, False Negatives, False Positives and True Negatives are predic-

tions of a binary classifier (a classifier, which outputs positive label 1 and negative

label 0) that are correctly predicted as 1, mistakenly predicted as 0, mistakenly pre-

dicted as 1 and correctly predicted as 0, respectively.

We utilise Area Under the ROC Curve (AUC) as a metric to measure the anomaly

detection capability of the algorithms. This metric is widely used in the literature to

measure the performance of anomaly detection algorithms. AUC can intuitively

be interpreted as the probability of assigning a higher anomaly score to a random

given anomalous data sample than a randomly given normal data sample [8]. Such

a metric is bounded between 0 and 1, the higher the better the performance of the

anomaly detection in detecting the anomalous data samples.



Chapter 3. Anomaly Detection Benchmark Evaluation 32

In addition, we measure the computation time (in seconds) of the anomaly de-

tection algorithms. Obviously, lower computation time is preferable.

3.3 Experiments setups

In this study, the goal will be to compare the performance of important existing

unsupervised anomaly detection algorithms such as Artificial Neural Network Au-

toEncoder[40], Isolation Forest [36], [37], ABOD [35], KNN [21], PCA[39], LoF[32]

and HBOS [65]. These benchmark algorithms are implemented by Zhao et. al. as a

Python package called pyod [66] which are utilised in this experiment.

Furthermore, the Python code developed for the benchmark evaluation is pro-

vided in Appendix A. The code is written on Google Colab [67], an online platform

provided by Google, where Python code can be written and run on the cloud. As a

result, the code can be efficiently run on the Google computing servers without the

requirement to install and run any packages on a local machine. When we run the

code on Google Colab, we just use CPU computing engine. The Python 3 Google

Compute Engine backend in Google Colab has 2vCPU Intel(R) Xeon(R) @ 2.2GHz,

13 GB RAM and 62 GB Disk.

First, we shuffled data with a static seed just for the random number genera-

tor for shuffling purpose. This enables the shuffling procedure to be reproducible.

Then, we scaled the data to range [0, 1] by min-max approach in order to have all

dimensional values in the same range. Then, we utilised a 5-fold cross validation

approach [68] in which each dataset is divided into 5 parts, at each time one part

(fold) is the test set and the other 4 folds are training sets. Each time an algorithm

runs, the average of 5-folds are computed as a performance value for that run.

When we run the above 5-fold cross validation method on deterministic algo-

rithms (e.g. PCA), the evaluation results do not vary from one run to another run.

The reason is that the dataset is fixed (due to a static seed utilised for data shuffling

and cross validation) and the algorithm’s hyper-parameters are deterministic and do

not change from one run to another run. However, for the probabilistic algorithms

(e.g. Isolation Forest) which may have different hyper-parameters values during

initialisation and run time, the 5-fold cross validation can produce different results
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from one run to another. To capture and quantify this source of variation which

comes from the algorithm and not from the dataset, each algorithm will further be

run 10 times utilising the above-mentioned approach and at the end, the computed

performance metrics for 10 runs are averaged in order to have a final value of perfor-

mance metric. Such an approach also enables us to measure the standard deviation

of the algorithm’s performance during different run times. Idealistically, low devia-

tion is desirable.

It is important to bear in mind that since, all algorithms are unsupervised (not

requiring labelled data), by training and test sets, we refer to the learning phase for

the in-samples data and computing anomaly scores for out-of-samples data. In other

words, the individual algorithms do not use label information and it is only utilised

for computing the performances. Generally, we prefer algorithms with high AUC

and low computation time.

3.4 Results and Discussions

Figure 3.1 illustrates the AUC box-plot results on the Breast Cancer dataset. The X-

axis indicates the name of each algorithm and Y-axis shows the range (distribution)

as a box-plot of AUC. This range includes minimum, quartiles and the maximum

value of AUC for a particular algorithm. Furthermore, the mean (µ) and standard

deviation σ of each range is depicted on the right side of each box-plot. The numbers

are rounded up to two decimal points. Most of the benchmark algorithms have

mean AUC around 0.98 except ABOD with mean AUC = 0.9. Therefore, most of

the benchmark algorithms performed well on this dataset. Furthermore, it can be

observed that the standard deviation of AUC for all algorithms are near zero. This

shows that when algorithms are re-run (re-initialised), they tend to have a same

performance over different runs which is desirable. Algorithms such as Isolation

Forest and Auto Encoder show a range performance rather than a exact performance

in comparison with other deterministic algorithms such as PCA.

Figure 3.2 illustrates the computational time (measured in seconds) box-plots for

bench mark algorithms. The X-axis indicates the name of each algorithm and Y-axis

shows the range (distribution) as a box-plot of time. This range includes minimum,
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quartiles and the maximum value of run time for a particular algorithm. As the size

of this dataset is small with only 366 data samples, the computational time of most

of the algorithms except Auto Encoder are low. For instance, the fastest one is PCA.

The AUC box-plots results rounded to two decimal points on the large dataset

in our experiment called Credit Card Fraud Detection are shown in Figure 3.3. Since

the size of this dataset is larger (with 284,807 data samples) than previous dataset,

many of the algorithms failed to complete the experiment due to large required

memory and computational resources, thus removed from the figure. Only Isola-

tion forest, HBOS and PCA could survive this experiment with mean AUC = 0.95.

In addition, it is observed that Isolation Forest produces a range rather than a exact

value due to its probabilistic nature.

As the numbers are rounded up to two decimal points, σ = 0.0 is shown on di-

agrams for the algorithms. This either means the underlying algorithm is determin-

istic and not probabilistic (e.g., PCA) thus producing the same performances during

different run times, or the computed value for σ is very small insignificant number

(e.g., 0.001) which by rounding up to two decimal points equals zero. As explained

previously, to capture and quantify the source of variation which comes from algo-

rithms with probabilistic nature (e.g., isolation forest) and not from the dataset, each

algorithm will be run ten times in which each individual run includes 5-folds valida-

tion evaluation (average of AUC for 5-folds). Dataset and the corresponding 5-folds

are fixed during each run and the only thing that may change is the underlying al-

gorithm if it has a probabilistic nature. At the end, these ten AUC values are utilised

to compute final value of performance metric. σ shows the standard deviation of

these ten different runs and not 5-folds. Such an approach enables us to measure

the standard deviation of the probabilistic algorithms’ performance during different

run time.

Figure 3.4 shows the computational time box-plot rounded to two decimal points

on the Credit Card Fraud Detection dataset. As mentioned before, only Isolation

Forest, HBOS and PCA survived this test and other algorithm removed from the

figure due to their run time failure. It can be observed that HBOS and PCA re-

quire lower mean and standard deviation computational time than Isolation Forest.

The reason for this is that Isolation Forest is an ensemble method, which consists
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of different computational trees, thus requiring more time than PCA and HBOS to

perform anomaly detection task.

The results of the experiments are summarised in Table 3.1. From these results,

we can conclude that Isolation Forest, HBOS and PCA are robust algorithms for the

task of unsupervised anomaly detection on large data.

FIGURE 3.1: AUC box plot of benchmark evaluation of existing
anomaly detection algorithms on the Breast Cancer dataset.

FIGURE 3.2: Computation time (measured in seconds) box plot of
benchmark evaluation of existing anomaly detection algorithms on

the Breast Cancer dataset.
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FIGURE 3.3: AUC box plot of benchmark evaluation of existing
anomaly detection algorithms on the Credit Card dataset. Those
benchmark algorithms which are not shown on the figure either failed
or took long time to perform thus not completed, during the experi-

ment.

FIGURE 3.4: Computation time (measured in seconds) box plot of
benchmark evaluation of existing anomaly detection algorithms on
the Credit Card dataset. Those benchmark algorithms which are not
shown on the figure either failed or took long time to perform thus

not completed, during the experiment.
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TABLE 3.1: Summary table of anomaly detection benchmark evalua-
tion. All numbers are rounded up to two decimal points. Values with
NA label (not applicable) correspond to the algorithms failure during

the run time due to large computational or memory requirements.

Algorithm Average AUC on
Breast Cancer
Dataset

Average Run
Time on Breast
Cancer Dataset

Average AUC
on Credit Card
Dataset

Average Run
Time on Credit
Card Dataset

KNN 0.98 0.01 NA NA
Isolation Forest 0.98 0.28 0.95 29.83

LOF 0.99 0.01 NA NA
ABOD 0.9 0.08 NA NA
HBOS 0.98 0.04 0.95 0.79
PCA 0.98 0.00 0.95 1.01

Autoencoder 0.98 4.04 NA NA
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Chapter 4

Proposed Anomaly Detection

Algorithm

Detecting anomalies in a timely manner without the requirement to label the data by

humans in advance motivated proposing a novel unsupervised anomaly detection

algorithm. This new algorithm which is inspired from the fact that anomalies can

be isolated from the rest of data, is proposed in this chapter based on generating

random shapes data independently.

Since the algorithm is unsupervised, it does not require label information to dis-

tinguish data as normal or abnormal. Furthermore, the proposed algorithm can de-

tect anomalies rapidly which may have potential application in situations where

detection of anomalies in real-time is a requirement (e.g. real-time financial fraud

detection). Section 4.1 explains the general principles of the proposed algorithm.

Section 4.2 includes details regarding utilisation of Minkowski distance function in

the algorithm as a special case for processing of high-dimensional data. Next, the

lower and upper bounds mathematical formula for the number of required random

shapes in the algorithm are provided in Section 4.3, followed by some guidance re-

garding choosing hyper-parameters of the algorithm in Section 4.4.

4.1 Proposed Anomaly Detection Algorithm

Mathematically, consider a given D-dimensional dataset, which is split into train and

test sets X and X ′ , respectively. The train set X = {xi}N
i=1 includes N data instances

(samples) such that, each data instance xi = [xi,d]
D
d=1 is a D-dimensional row vector
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with dimensional values xi,d. Similarly, the test set X ′ = {x′ j}N′
j=1 includes N′ data

instances (samples) such that, each data instance x
′
j = [x

′
j,d]

D
d=1 is a D-dimensional

row vector with dimensional values x
′
j,d. We further assume that data are located

in the unit hyper-cube ID (I = [0, 1]). Such an assumption is essential for having a

bounded high-dimensional space where 0 ≤ xi,d ≤ 1 and 0 ≤ x
′
j,d ≤ 1.

The proposed unsupervised anomaly detection algorithm (see the pseudo-code

and Python code in Algorithm 1 and Appendix A.1, respectively) is intuitively based

on following steps:

• Partitioning a bounded high-dimensional space (e.g. the unit hyper-cube ID)

by a sequence of random shapes, in which each data will be trapped (isolated)

either inside (encoded by 1) or outside (encoded by 0). As shown in Figure

4.1 as an example, the shapes are generated completely random with different

sizes and locations, independently of each other as well as data. The shapes

can be expressed either by a user defined mathematical function or an algo-

rithm (called Draw in the pseudo-code), which describes the boundary prop-

erties of the shapes. It should be noted that shapes must be closely bounded

to divide the unit-hyper cube into inside and outside sub-spaces. More details

regarding generation of random shapes are explained in Section 4.1.1.

• Such a partitioning scheme, encodes each data into a binary pattern as a se-

quence of 0s and 1s depending on whether the data falls outside or inside a

random shape. Section 4.1.2 includes more details regarding this binary en-

coding.

• Next, under the fundamental assumption for all anomaly detection algorithms

that anomalous data (minority data) are rare and have different characteristics,

the proposed algorithm learns the binary patterns by the probabilistic mod-

elling approach and can distinguish anomalous data whose binary patterns of

trapping (inside or outside) based on the sequence of random shapes is signif-

icantly different from rest of the dataset (normal data or majority). More detail

regarding how the algorithm learns from data is provided in Section 4.1.3.

• Finally, the algorithm computes the probability of observing a new test data

conditioned on previously observed binary patterns. Then, this probability
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is converted to an anomaly score for the data sample. This anomaly score,

which is a real-valued number indicates the degree to which the data sample is

anomalous (See section 4.1.4 for more details). Therefore, test data samples can

be ranked in a list via their corresponding anomaly scores, where anomalies

will be ranked on top of the list, while normal data samples will be assigned

low anomaly scores, thus ranked lower.

In fact, normal data points which are located closer to each other, are more

likely to be trapped by the same random shapes, thus having similar binary

patterns, while anomalous data will be trapped by different shapes and their

binary patterns will be different from the majority observed patterns. This

concept is shown by an example in Figure 4.1 in which, five random shapes (in

green) are generated. Normal data (in blue circles) and abnormal data (in red

stars) are trapped by different random shapes, respectively.
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FIGURE 4.1: Illustration of five random shapes in green, normal data
in blue circles and abnormal data in red stars. Data points which are
closer to each other are more likely to be trapped by the same random

shape.
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Algorithm 1 General pseudo code of the proposed anomaly detection algorithm.

Require: Training dataset X = {xi}N
i=1, in which, each row xi = [xi,d]

D
d=1 =

(xi,1, xi,2, . . . , xi,D) represents a training data sample in a D-dimensional unit
hyper-cube such that 0 ≤ xi,d ≤ 1.

Require: Test dataset X ′ = {x′ j}N
′

j=1 in which, each row x
′
j = [x

′
j,d]

D
d=1 =

(x
′
j,1, x

′
j,2, . . . , x

′
j,D) represents a test data sample (for which anomaly score will

be computed) in a D-dimensional unit hyper-cube such that 0 ≤ x
′
j,d ≤ 1.

Require: Number of Random Shapes H (user-defined)
Require: User-defined function/algorithm called Draw to draw (generate) a ran-

dom shape (closely bounded sub-space) in a D-dimensional space, which di-
vides the unit hyper-cube into two sub-spaces: inside and outside.

1: Initialise AnomalyScoreVector as a vector with size N
′
in which, the j-th element

corresponds to the anomaly score for test sample x
′
j.

2: Based on Draw, generate H random shapes with different random size and lo-
cations in the unit hyper-cube and store them in memory as set S = {sh}H

h=1.
3: Initialise vector A = [α1, α2, . . . , αH ] = [αh]

H
h=1 with size H in which, all αh = 0.

4: for i = 1 to N do
5: for h = 1 to H do
6: if xi is inside the shape sh then
7: αh ← 1 + αh
8: end if
9: end for

10: end for
11: for j = 1 to N

′
do

12: Initialise θ = 1
13: for h = 1 to H do
14: if x

′
j is inside the shape sh then

15: θ ← θ ∗ (1 + αh)
16: else
17: θ ← θ ∗ (1 + N − αh)
18: end if
19: end for
20: AnomalyScoreVector[j]← −Ln(θ) + H ∗ Ln(2 + N)
21: end for
22: return AnomalyScoreVector
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4.1.1 Random Shapes Generation

In the first step of the proposed algorithm, a set of random shapes S = {sh}H
h=1 is

generated in random locations of the hyper-cube, independently of the data. H is a

user-defined parameter, which determines the number of the random shapes. Each

random shape sh has a topology, which divides the hyper-cube into two sub-spaces:

inside and outside. Figure 4.2 illustrates an example of three random shapes s1,

s2 and s3, which are generated in the unit square (2D space) independent both of

the data and the previously-generated random shapes. From a very general point

of view, there are no restrictions on the shapes’ forms (topological properties) and

some shapes can even have shared sub-spaces with others, such as s2 and s3 in the

Figure 4.2.

Once the shapes are created, these are fixed through the rest of the algorithm

and will be utilised for partitioning the space rapidly, which is essential for trapping

anomalies in sub-partitions of the space, where there will be less likelihood for a

normal data instance to fall in the same sub-spaces, where anomalies are located. In

addition, this novel approach enables the algorithm to trap anomalies in a single or

few shots, which is desirable from the computational point of view as shown in the

Figure 4.1

Since the proposed algorithm is for general purpose, there is no restriction on the

types of the random shapes to be generated. In fact, the shapes can be symmetric

(e.g. square, circle and etc), asymmetric (e.g. shapes generated by a user-defined

kernel function based on a specific application) or combination of both. The random

nature of shapes may enable the algorithm to partition the space efficiently and data

independently. However, this advantage may come with extra computational costs

for generating the random shapes.

Although, the random shapes can have any shape from a theoretical point of

view, for simplicity and efficiency of further computations, we assume that sh =

(ch, rh) is a hyper-sphere (see an illustrative example in the Figure 4.3) with center

ch ∼ Uni f orm(0, 1) and radius rh ∼ Uni f orm(Minr, Maxr) such that, Uni f orm(a, b)

is a uniform distribution, which generates random numbers between a and b. Minr

and Maxr are user-defined parameters, which determine the range for minimum
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FIGURE 4.2: Three random shapes s1, s2 and s3 in the unit square (2D
space). Each random shape (topological object) partitions the space

into Inside and Outside sub-spaces.
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and maximum size of the random shapes that can be generated during this process,

respectively.

In Section 4.1.2, we explain the second step of the proposed algorithm on how to

utilise the above partitioning scheme after generating the random shapes.
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4.1.2 Binary Encoding

During the initialisation of the algorithm, H random shapes are generated and num-

bered sequentially and stored in memory as set S = {sh}H
h=1. The orders of random

shapes are preserved during the training and testing as explained in Algorithm 1.

Next, binary encoding transforms real-value data features into sequences of 0s

and 1s, which will be efficient for data modelling. As explained in Section 4.1.1, each

random shape sh divides the region in the hyper-cube into two sub-regions: inside

and outside of the shape. In practice, whether a data point lies within a shape will

be defined as a function of the distance of the datum from the centre of the shape.

Mathematically, we define

Hash(xi, sh) =

 0 ; Distance(xi, ch) ≥ rh

1 ; Distance(xi, ch) < rh

 , (4.1)

as a binary hash function with an output 1 or 0, whether a train data instance xi

falls inside or outside of a random shape sh, respectively. In Equation 4.1, Distance(xi, ch)

can be any distance metric, which computes the distance between a data instance xi

and the associated centre ch of the random shape sh (see Section 4.2 for more details).

Similarly, replacing xi with x
′
j in Equation 4.1 results in a new formula of the hash

function Hash(x
′
j, sh) for a test data sample x

′
j.

In the second step, the algorithm applies the above encoding hash function on

each train and test data instances xi; i ∈ {1, 2, 3, . . . , N} and x
′
j; j ∈ {1, 2, 3, . . . , N

′},

respectively with respect to the set of random shapes S to convert the real-value

features (dimensions) to binary using equation 4.1. This generates binary pattern

Pattern(xi) as shown in the Equation 4.2. Similarly, replacing xi with x
′
j in this

equation results in a new equation of Pattern(x
′
j) for test data sample x

′
j. Figure

4.3 demonstrates this concept for three example data points in the 2D space.

Pattern(xi) = [Hash(xi, s1), Hash(xi, s2), . . . , Hash(xi, sH)]. (4.2)

The rationale for this encoding scheme is that modeling the binary patterns of

data is mathematically and computationally more efficient than directly modelling

the probability distribution of original dataset in the high-dimensional space, as we
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will show. Furthermore, we can benefit from Bayesian conjugate properties which

facilitates modelling the data in an online fashion and has application in rapid data

analysis. This will be explained in more details in Section 4.1.3.

FIGURE 4.3: Three random shapes (circles) s1, s2 and s3 in the unit
square (2D space). c and r represents the center and radius of each
circle. Data points are x1, x2 and x3 with patterns 000, 011 and 100,

respectively.
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4.1.3 Bayesian Incremental Updating

Bayesian Incremental Updating provides a robust mathematical framework and com-

putationally efficient mechanism for probabilistic modelling of the binary patterns,

which is suitable for modelling data rapidly. Such a model is essential to distinguish

normal and abnormal patterns from each other.

In the third step, the algorithm computes the probability of observing a new pat-

tern Pattern(x
′
j) of a test data sample conditioned on previously observed patterns

displayed by the training data. The intuition behind this is based on an assumption

that normal data have frequent and similar patterns to those observed in the train-

ing set, while abnormal patterns are significantly different from normal ones. Thus,

a high or low estimate of a specific pattern’s probability corresponds, respectively to

lower or higher degree of anomalousness of the test data instance.

In what follows, we describe how the algorithm utilises incremental Bayesian

modeling approach to compute this probability efficiently.

Mathematically, the posterior probability P of observing a binary pattern condi-

tioned on previously observed data and the sequence of random shapes defined in

the training phase can be written as product of probabilities thus:

P(Pattern(x
′
j)|previousPatterns) =

H

∏
h=1

τh(x
′
j). (4.3)

In Equation 4.3, τh(x
′
j) is defined as

τh(x
′
j) =

 ph ; Hash(x
′
j, sh) = 1

1− ph ; Hash(x
′
j, sh) = 0

 , (4.4)

in which, ph and 1− ph correspond to the posterior probability of observing 1 and

0 for the random shape sh, respectively. In other words, these probabilities model

the binary hashes by computing the chance of a new test data instance to be trapped

inside or outside of a particular random shape.

By utilising the Baye’s rule, we assume a prior Beta distribution Beta(1, 1) for ph

and a categorical likelihood, for generating 1 and 0 to model these binary hashes.

The reason for choosing the beta distribution as our prior is that it generates a ran-

dom number between 0 and 1, which can be interpreted as the probability of a test
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data being inside a random shape. Furthermore, such a prior distribution is con-

jugate with categorical likelihood. Therefore, the posterior distribution ph will be

again a Beta distribution and only the parameters needs to be updated incrementally

and stored in the computer memory. This Bayesian conjugacy is beneficial from the

computational point of view as shown in:

ph ∼ Beta(1 + αh, 1 + N − αh). (4.5)

αh in Equation 4.5 determines the number of the observed training data points,

which fall inside the random shape sh. This hyper parameter will be calculated for

each random shape in S , thus the algorithm generates a hyper-parameter vector A

as

A = [α1, α2, . . . , αH ], (4.6)

which is updated incrementally as described above by observing training data points.

This online updating mechanism enables the algorithm efficiently to perform anomaly

detection rapidly.

From Equation 4.5, the expected probabilities of a test data point falling respec-

tively inside or outside of the h-th random shape can be derived

E(ph) =
1 + αh

2 + N
. (4.7)

E(1− ph) =
1 + N − αh

2 + N
. (4.8)

By defining

θh(x
′
j) =

 1 + αh ; Hash(x
′
j, sh) = 1

1 + N − αh ; Hash(x
′
j, sh) = 0

 , (4.9)

the expected value of the posterior probability P as shown in Equation 4.3 can

be written
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E(P(Pattern(x
′
j)|previousPatterns)) = E(

H

∏
h=1

τh(x
′
j))

=
H

∏
h=1

E(τh(x
′
j))

=
∏H

h=1 θh(x
′
j)

(2 + N)H .

(4.10)

Equation 4.10 is a fundamental equation in this algorithm, which calculates the

expected probability of observing a particular pattern. The lower is this number, the

more anomalous is the associated data point. This probability will be converted to

an anomaly score, as explained in the next Section 4.1.4.

4.1.4 Computing Anomaly Score

The anomaly score is a real-valued number which demonstrates the degree of abnor-

mality of a given data point. Such a score has application in ranking data points in a

list based on their associates anomaly score. Those data which appear on top of the

list are more anomalous than the others. This will ensure that relatively abnormal

data points that is, those with low probability of binary patterns, have a high corre-

sponding anomaly score. Such a scaling enables the algorithm to distinguish normal

from abnormal data efficiently. Furthermore, if such a real-valued number will be

greater than a user-specific threshold (depending on the application and dataset),

the corresponding data point can be declared as an anomaly.

In the final step of the anomaly detection algorithm, expected probability E(P)

(see Equation 4.10) is converted to an anomaly score via Equation 4.11.

AnomalyScore(x
′
j) = −Ln(

∏H
h=1 θh(x

′
j)

(2 + N)H )

= −Ln(
H

∏
h=1

θh(x
′
j)) + Ln((2 + N)H)

= −
H

∑
h=1

Ln(θh(x
′
j)) + H.Ln(2 + N),

(4.11)



Chapter 4. Proposed Anomaly Detection Algorithm 51

in which, Ln is the natural logarithm function. The reason for utilizing −Ln in the

above equation is to map probability values in range [0, 1] to positive real numbers

as

0 < AnomalyScore(x
′
j) < +∞. (4.12)

4.2 Utilising Minkowski Distance Function in the Algorithm

as a Special Case

Although, the proposed general algorithm can work with any distance function cor-

responding to different shapes based on the principles explained in Section 4.1, for

the purpose of practical implementation of the algorithm, we choose Distance(xi, ch)

in Equation 4.1 to be the general family of Minkowski distance functions (lL norms)

as shown in Equation 4.13.

Distance(xi, ch) = (
D

∑
d=1
|xi,d − ch,d|L)

1
L . (4.13)

In Equation 4.13, L > 0 (corresponding to different shapes) and ch = [ch,d]
D
d=1 is

a D-dimensional vector with dimensional values ch,d. Similarly, replacing xi with x
′
j

in this equation results in a new equation of Distance(x
′
j, ch) for test data sample x

′
j.

Choosing different L in Equation 4.13 results in changing the shapes as follows:

• L = 1 : Manhattan distance

• L = 2 : Euclidean distance

• L = ∞ : Chebyshev distance

Figure 4.4 illustrates how different distance metrics make different shapes in a

two-dimensional unit square. Each shape includes all the points in the space with

distance equal to 1 from the origin 0. As L increases, the corresponding shape

reaches towards the boundaries of the unit square. The computational efficiency

of such distances can be one of the major reasons for choosing these distances.
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FIGURE 4.4: Different shapes corresponding to Manhattan (L = 1),
Euclidean (L = 2) and Chebyshev (L = ∞) distance.

4.3 Lower and Upper Bounds for the Number of Required

Random Shapes

This section explains the theoretical upper and lower bounds for the number of re-

quired random shapes H, an important user-defined parameter of the algorithm

which is necessary in terms of algorithm efficiency and computing complexity.

We denote vh as volume of the random shape sh and define v
′
h as portion of

vh, which falls inside the unit hyper-cube. The reason for that is some portion of a

shape may fall outside the unit hype-cube, thus it should be accounted in our for-

mulation. An example of this is shown in Figure 4.5, in which some shapes (circles)

are not completely inside the unit-square thus, the fraction of their volumes inside

the square are only considered.

Consider that the fractional volume of the first random shape is v
′
1. We define VH

as cumulative volume of the shapes, which occupy inside the unit hyper-cube (with

total volume one), after generating H random shapes. Therefore, in the beginning

V1 = v
′
1. (4.14)

When the second shape is generated,
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V2 = V1 + v
′
2(1− V1)

= v
′
1 + v

′
2(1− v

′
1),

(4.15)

In which, v
′
2(1− V1) is the contribution of the second random shape by adding a

new uncovered space to the previous covered space V1.

Generation of the third shape results in

V3 = V2 + v
′
3(1− V2)

= v
′
1 + v

′
2(1− v

′
1) + v

′
3(1− v

′
1 − v

′
2(1− v

′
1)),

(4.16)

In which, v
′
3(1− V2) is the contribution of the third random shape by adding a new

uncovered space to the previous covered space V2.

Therefore, the general recursive formula after generating H shapes will be

VH = VH−1 + v
′
H(1− VH−1). (4.17)

In order to extract a theoretical lower bound for H based on Equation 4.17, we

assume

v
′
h = v

′
= E(v

′
h); h ∈ {1, 2, 3, . . . , H}. (4.18)

such a simplification means that all shapes have same volume v
′

equal to the

expectation (mean) random variables v
′
h, which enables us to simplify Equation 4.17

to a geometric series as

VH = v
′

H

∑
h=1

(1− v
′
)

h−1

= v
′
(

1− (1− v
′
)

H

1− (1− v′)
)

= 1− (1− v
′
)

H
.

(4.19)
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In Equation 4.19, 0 ≤ v
′ ≤ 1, so 0 ≤ 1− v

′ ≤ 1. In case the number of random

shapes H → ∞, we have

lim
H→∞

VH = 1, (4.20)

which proves the upper limit of H is infinity (as shown in inequality 4.21). This is

equivalent to covering the whole space, which is desirable from theoretical point of

view. Note that, as H → ∞, the performance of the anomaly detection algorithm

will be improved. The reason is that as H → ∞, the probability of having sub-spaces

which are outside all random shapes decreases. This phenomenon is illustrated in

Figure 4.5. The red area in the figure is the sub-space which is not covered by any

random shape. The lesser is the "uncovered" space, the greater is the performance

of the algorithm because data points (whether they are anomaly or normal), which

fall in this uncovered region, will be encoded to the same binary pattern, specifically

000 . . . 0, thus the algorithm can not differentiate them and may confuse normal and

abnormal data with each other.

Such a situation of uncovered sub-spaces must be avoided by choosing a large

value for H as much as the computational resources allow. Therefore, there is no

theoretical upper bound for the number of required random shapes, that

H < ∞. (4.21)

However, in practice, we cannot generate an infinite number of shapes. The

minimum number of the required random shapes (lower bound for H) is essential

from a computational point of view as, if H is chosen mistakenly below this lower

bound, there will be a high probability of having uncovered sub-spaces leading to

inaccurate results. In what follows, the mathematical descriptions of this problem is

provided.

As we require the shapes to cover the whole space (volume of the unit hype-cube)

as much as possible thus avoiding uncovered spaces as shown in Figure 4.5, math-

ematically we quantify this as a user-defined parameter 0 ≤ CoveredVolume ≤ 1,

which is the minimum desired fraction of the unit hype-cube’s volume to be cov-

ered by the shapes. Therefore, Equation 4.19 turns to
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CoveredVolume ≤ 1− (1− v
′
)

H

=⇒ (1− v
′
)

H
≤ 1− CoveredVolume

=⇒ Ln((1− v
′
)

H
) ≤ Ln(1− CoveredVolume)

=⇒ H.Ln(1− v
′
) ≤ Ln(1− CoveredVolume)

=⇒ Ln(1− CoveredVolume)
Ln(1− v′)

≤ H,

(4.22)

since Ln(1− v
′
) ≤ 0.

Equation 4.22 determines the lower bound for the number of required random

shapes. From this Equation, we can infer two important facts:

1. As CoveredVolume increases and becomes closer to 1, the lower bound for H

increases, more shapes are required to cover the desired volume, requiring

more computational resources.

2. Alternatively, as the volume of each random shape increases, the fraction of its

volume which falls inside the cube represented by v
′

increases, thus quantity

1− v
′

decreases, leading to less required number of shapes. However, there

are some constraints on the optimal volume of shapes which will be discussed

in more detail in Section 4.4.

This section provided the upper and lower bounds for H (number of random

shapes). These theoretical bounds can be utilised as a general guidance for setting

the required number of random shapes.
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FIGURE 4.5: Illustration of the unfilled sub-spaces (in red color) as
a result of insufficient number of shapes, which do not cover the
whole space. All data instances which fall inside of these unfilled
sub-spaces, have same binary pattern 0000 . . . 0 and may introduce

bias in the anomaly detection performance.
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4.4 Optimal Volume of Random Shapes

As we have seen, if the volume of random shapes vh is too big or too small, the

proposed algorithm (see Section 4.1) may not work properly, due to the fact that

majority of data instances would fall inside or outside of all random shapes, respec-

tively, thus having a same binary pattern. This will reduce the effectiveness of the

algorithm in classifying data. As a result, there is a trade off between the random

shapes being too large and too small random shapes. This will be discussed in more

detail in this section.

Since the volume of each random shape vh is directly affected by the radius

rh ∼ Uni f orm(Minr, Maxr) (see Section 4.1.1 for more explanation regarding how

the random shapes are generated), choosing appropriate Minr and Maxr is crucial

for the algorithm to work effectively and efficiently.

Clearly, the distance between any two data points a, b located in the D-dimensional

unit hyper-cube cannot exceed the largest diagonal length corresponding to the dis-

tance between points (0, 0, 0, . . . , 0) and (1, 1, 1, . . . , 1). Since we choose L-norms for

the underlying distance function, (see section 4.2) the maximum diagonal length is

D1/L as shown in Equation 4.23.

Distance(a, b) ≤ LengthDiagonal = D1/L. (4.23)

Therefore, the upper bound for rh can be found by

rh ≤ D1/L. (4.24)

Allowing a larger radius than Equation 4.24 results in large volumes, which de-

crease the performance of the algorithm. Therefore, it is recommended to choose

Minr and Maxr below this upper bound. For instance, portions of this maximum

length such as

Maxr =
D1/L

2
, (4.25)

and
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Minr =
D1/L

50
, (4.26)

can be suggested as a general guidance regarding choosing these hyper-parameters

(the empirical justifications are provided in Chapter 5). This corresponds to a range

between 1/50 and half of the maximum length. For instance, half of the maximum

length can be associated with a hyper-sphere located in the center of the hyper-cube

while its surface passes the vertices of the hyper-cube. 1/50 of the maximum length

as a lower bound for radius of hyper-spheres may prevent an undesirable situation

where some shapes have radius near to zero, thus all data will fall outside of these

very small shapes, which waste computational and memory resources.

However, these general formulas and fractions are for recommendation only and

these need to be adjusted for each real-world dataset and application to find the

optimal hyper-parameters.

In the next chapter, we test the sensitivity of the proposed algorithm under dif-

ferent hyper-parameters settings to see the effect of these parameters on the perfor-

mance of the algorithm.
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Chapter 5

Sensitivity Analysis of the

Proposed Anomaly Detection

Algorithm

In this chapter, we utilise the publicly available labelled datasets such as Breast Can-

cer and Credit Card Fraud Detection datasets with 30 dimensions (D = 30) as men-

tioned in Chapter 3 for investigating the sensitivity of the proposed algorithm (see

Chapter 4) on its hyper-parameters.

In Section 5.1, the research questions regarding the sensitivity analysis are men-

tioned. Since the proposed algorithm is a probabilistic algorithm, we want to test,

how its performance varies, if we change the hyper-parameters. Then, Section 5.2

explains the evaluation metrics utilised for performance measurement of the algo-

rithm. Section 5.3 describes different experiment settings/designs for sensitivity

analysis purposes. Finally, the results and discussions of the sensitivity analysis are

provided in Section 5.4.

5.1 Research Questions

Particularly, we are interested to investigate the following research questions:

• How does the shape of random shapes (corresponding to utilising different

distance functions, e.g. different lL norms) affect the performance of the algo-

rithm?
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• What is the empirical optimal number of random shapes (H)? In other words,

how many random shapes are required to be generated in order to have a

stable performance?

• How do the upper and lower bounds for the size of random shapes (corre-

sponding to Maxr and Minr, respectively) affect the performance of the algo-

rithm?

5.2 Evaluation Metrics

We utilise the same performance metrics as discussed in Section 3.2. Generally,

higher mean AUC, lower standard deviation of AUC, lower mean and standard

deviation of computation time are desirable.

5.3 Experiments setups

In order to answer the above questions, we design the following sensitivity analysis

experiments. The aim of each experiment is to understand the relationship between

the sensitivity of the algorithm’s performances and shape, number and size of the

random shapes.

We utilise the same settings mentioned in Section 3.3 which is scaling the data

in range [0, 1] and using 5-fold cross validation method for splitting the data into

train and test sets. In addition, in the following experiments, we run the proposed

algorithm with different setups corresponding to varying one hyper-parameter and

fixing the rest hyper-parameters to see the effect of the varying parameter on the

algorithm’s performance.

5.3.1 Experiment 1: Investigation of Shape of Random Shapes

The purpose of this experiment is to investigate how the shape of random shapes

determined by utilising different distance measures, affects the performance of the

proposed algorithm. As mentioned in Section 4, the shape of random shape is di-

rectly related to the underlying distance function utilised in the algorithm. In other
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words, changing the distance function corresponds to changing the shape (topol-

ogy) of random shapes, thus changing the detection ability of the algorithm. Al-

though, there are many distance functions, here we focus on Minkowski family

lL with L = {1(Manhattan), 2(Euclidean), ∞(Chebyshev)} to show the concept, as

these distances are computationally very efficient. Chebyshev distance is a type of

Minkowski distance function when L = ∞ [69].

In addition, the minimum radius of random shapes (Minr) and maximum radius

of random shapes (Maxr) control the size of the shapes.

Therefore, we choose the combination settings from following sets and compute

the performance metrics for each set.

For Manhattan and Euclidean distances, we choose the hyper-parameters from

the combination of the following sets (since the range of distance values for any

given two points in the unit hyper-cube is in range [0, D1/L], we adjust Minr and

Maxr as portions of this range):

1. H= {25, 100}

2. Minr= {0, D1/L

50 , D1/L

10 }

3. Maxr= {D1/L

5 , D1/L

2 , D1/L

1 }

4. L= {1(Manhattan), 2(Euclidean)}

For Chebyshev distance, we choose the hyper-parameters from the combination

of the following sets (since the range of distance values for any given two points in

the unit hyper-cube is in range [0, 1], we adjust Minr and Maxr as portions of this

range):

1. H= {25, 100}

2. Minr= {0, 0.25, 0.5}

3. Maxr= {0.5, 0.75, 1}

4. L= {∞(Chebyshev)}
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5.3.2 Experiment 2: Investigation of Number of Random Shapes

In the second sensitivity analysis experiment, we are interested in exploring the

effect of number of random shapes (generated by utilising different distance met-

rics) on the performance of the algorithm. Therefore, we fix the Minr = D1/L

50 and

Maxr = D1/L

2 (rounding the numbers to 2 decimal points) for different L = {1, 2}.

For L = ∞, we fix Minr = 0.5 and Maxr = 1 and increase number of the shapes

from 5 to 5000 (H = {5, 10, 25, 50, 100, 500, 1000, 2500, 5000}) to see how the H affects

the performance and computational time of the proposed algorithm.

5.4 Results and Discussions

The results and discussions of the above sensitivity analysis experiments are ex-

plained individually below:

5.4.1 Results and Discussions Experiment 1:

In the first sensitivity analysis experiment, we changed the shape of random shapes

by utilising different distance metrics to see how it affects the performance of the

algorithm.

Figure 5.1 illustrates the AUC box-plot results on the Breast Cancer dataset. The

X-axis indicates the different parameter settings of the proposed algorithm (fixing

H = 25, L = 1 and changing Maxr and Minr). The Y-axis shows the range (dis-

tribution) as a box-plot of AUC. This range includes minimum, quartiles and the

maximum value of AUC for each particular parameter setting. Furthermore, the

mean (µ) and standard deviation σ of each range is depicted on the right side of

each box-plot. It can be observed that Maxr = 15 = 301

2 corresponding to half of

the maximum length diagonal in the 30-dimensional unit hyper-cube, tends to have

higher AUC than other parameter settings. Furthermore, the performance of the

algorithm is not sensitive on Minr.

Similarly, Figure 5.2 shows the AUC box plots for parameters settings (H =

100, L = 1 and changing Maxr and Minr) on the Breast Cancer dataset. It can be

observed than the mean of AUC is increased, while standard deviation is decreased
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FIGURE 5.1: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = 1) on the Breast Cancer dataset.

in comparison with Figure 5.1. This observation points out that more number of

random shapes can increase the detection performance of the proposed algorithm.

FIGURE 5.2: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = 1) on the Breast Cancer dataset.

Figure 5.3 illustrates the AUC box-plot results on the Breast Cancer dataset, fix-

ing H = 25, L = 2 and changing Maxr and Minr. It can be observed that Maxr =

2.74 corresponding to half of the maximum length diagonal in the 30-dimensional

unit hyper-cube, tends to have higher AUC than other parameter settings. Further-

more, the performance of the algorithm is not sensitive on Minr.

Similarly, Figure 5.4 shows the AUC box plots for parameters settings (H =

100, L = 2 and changing Maxr and Minr) on the Breast Cancer dataset. It can be

observed that the mean of AUC is increased, while standard deviation is decreased
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FIGURE 5.3: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = 2) on the Breast Cancer dataset.

in comparison with Figure 5.3. This observation points out that more number of

random shapes can increase the detection performance of the proposed algorithm.

FIGURE 5.4: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = 2) on the Breast Cancer dataset.

Figure 5.5 illustrates the AUC box-plot results on the Breast Cancer dataset, fix-

ing H = 25, L = ∞ and changing Maxr and Minr. It can be observed that Maxr = 1

corresponding to the maximum length diagonal in the 30-dimensional unit hyper-

cube, tends to have higher AUC than other parameter settings. Furthermore, the

performance of the algorithm is not sensitive on Minr.

Similarly, Figure 5.6 shows the AUC box plots for parameters settings (H =

100, L = ∞ and changing Maxr and Minr) on the Breast Cancer dataset. It can be

observed that the mean of AUC is increased, while standard deviation is decreased
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FIGURE 5.5: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = ∞) on the Breast Cancer dataset.

in comparison with Figure 5.5. This observation points out that more number of

random shapes can increase the detection performance of the proposed algorithm.

FIGURE 5.6: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = ∞) on the Breast Cancer dataset.

Figure 5.7 illustrates the AUC box-plot results on the Credit Card Fraud Detec-

tion dataset, fixing H = 25, L = 1 and changing Maxr and Minr. It can be observed

that Maxr = 15 = 301

2 corresponding to half of the maximum length diagonal in the

30-dimensional unit hyper-cube, tends to have higher AUC than other parameter

settings. Furthermore, the performance of the algorithm is not sensitive on Minr.

Similarly, Figure 5.8 shows the AUC box plots for parameters settings (H =

100, L = 1 and changing Maxr and Minr) on the Credit Card Fraud Detection dataset.

It can be observed than the mean of AUC is increased, while standard deviation is
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FIGURE 5.7: AUC box plot for sensitivity analysis of the proposed al-
gorithm (H = 25, L = 1) on the Credit Card Fraud Detection dataset.

decreased in comparison with Figure 5.7. This observation points out that more

number of random shapes can increase the detection performance of the proposed

algorithm.

FIGURE 5.8: AUC box plot for sensitivity analysis of the proposed al-
gorithm (H = 100, L = 1) on the Credit Card Fraud Detection dataset.

Figure 5.9 illustrates the AUC box-plot results on the Credit Card Fraud Detec-

tion dataset, fixing H = 25, L = 2 and changing Maxr and Minr. It can be observed

that Maxr = 2.74 corresponding to half of the maximum length diagonal in the

30-dimensional unit hyper-cube, tends to have higher AUC than other parameter

settings. Furthermore, the performance of the algorithm is not sensitive on Minr.

Similarly, Figure 5.10 shows the AUC box plots for parameters settings (H =

100, L = 2 and changing Maxr and Minr) on the Credit Card Fraud Detection dataset.
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FIGURE 5.9: AUC box plot for sensitivity analysis of the proposed al-
gorithm (H = 25, L = 2) on the Credit Card Fraud Detection dataset.

It can be observed than the mean of AUC is increased, while standard deviation is

decreased in comparison with Figure 5.9. This observation points out that more

number of random shapes can increase the detection performance of the proposed

algorithm.

FIGURE 5.10: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = 2) on the Credit Card Fraud Detection

dataset.

Figure 5.11 illustrates the AUC box-plot results on the Credit Card Fraud Detec-

tion set, fixing H = 25, L = ∞ and changing Maxr and Minr. It can be observed that

Maxr = 0.75, tends to have higher AUC than other parameter settings. Furthermore,

the performance of the algorithm is not sensitive on Minr.

Similarly, Figure 5.12 shows the AUC box plots for parameters settings (H =
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FIGURE 5.11: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = ∞) on the Credit Card Fraud Detection

dataset.

100, L = ∞ and changing Maxr and Minr) on the Credit Card Fraud Detection

dataset. It can be observed that the mean of AUC is increased, while standard de-

viation is decreased in comparison with Figure 5.11. This observation points out

that more number of random shapes can increase the detection performance of the

proposed algorithm.

FIGURE 5.12: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = ∞) on the Credit Card Fraud Detection

dataset.

Tables 5.1 and 5.2 summarise the results of Experiment 1. In summary, we can

observe and conclude the followings from the first experiment:

• Generally, Manhattan distance (L = 1) tends to have a robust performance in

this experiment.
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• The improvement of performance of the algorithm when lower L such as L = 1

is chosen rather than the standard Euclidean distance L = 2 is due to the higher

separability of the underlying distance functions in the high-dimensional space

than L = 2.

• Generally, the algorithm is more sensitive to varying Maxr than Minr. The best

optimal performance is always observed for large portions of maximum length

diagonal of the unit hyper-cube. For example Maxr = D1/L

2 corresponding to

the half of the maximum length of the diagonal of the D-dimensional hyper-

cube if Manhattan or Euclidean distances are chosen. If Chebyshev is chosen

as distance function, generally Maxr near 0.75 tends to perform well on the

datasets. Choosing Maxr above these numbers results in the volume of the

shapes, encompasses a large portion of the space, thus all the data points will

land inside and have the same binary pattern, which results in less capability of

the algorithm to distinguish normal data from abnormal ones. In addition, low

values for Maxr lead to small shapes, which do not have any data points inside,

thus again the same problem of having similar binary patterns for most of the

data and less separability of them occurs, which results in poor performance.

Therefore, the optimal half of the length of the diagonal of the hyper cube as

Maxr creates a balance between these two extreme situations and improves the

performance of the algorithm.

• H is independent of geometrical parameters such as L, Minr and Maxr.

• Minr parameter is less sensitive than the Maxr. It can also be chosen as 0,

however shapes with very small volume do not bring any separability power

to the algorithm.

• Finally, it should be noted that each dataset requires an specific geometri-

cal parameters (e.g. underlying distance function and minimum and maxi-

mum upper bounds for the size of random shapes) to be capable of extracting

patterns which needs optimisation for that particular dataset. Therefore, the

above mentioned items only provide a general (default) prescriptions on how

to choose a good starting value for geometric hyper-parameters and the user
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is not limited to only utilise Minkowski distances and other distances may be

suitable for different datasets.
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TABLE 5.1: Summary table of sensitivity analysis (average AUC) for
the proposed algorithm on the Breast Cancer (BC) and Credit Card
(CC) Fraud Detection datasets in Experiment 1 for H = 25. All num-

bers are rounded up to two decimal points.

Proposed Algorithm AUC on
BC; L =
1

AUC on
BC; L =
2

AUC on
BC; L =
∞

AUC on
CC; L =
1

AUC on
CC; L =
2

AUC on
CC; L =
∞

Minr = 0

Maxr =

{
D1/L

5 ; L = 1, 2
0.5 ; L = ∞

}
0.5 0.5 0.5 0.5 0.5 0.5

Minr = 0

Maxr =

{
D1/L

2 ; L = 1, 2
0.75 ; L = ∞

}
0.75 0.75 0.6 0.66 0.68 0.64

Minr = 0

Maxr =

{
D1/L

1 ; L = 1, 2
1 ; L = ∞

}
0.69 0.68 0.7 0.61 0.6 0.69

Minr =

{
D1/L

50 ; L = 1, 2
0.25 ; L = ∞

}

Maxr =

{
D1/L

5 ; L = 1, 2
0.5 ; L = ∞

} 0.51 0.5 0.5 0.5 0.5 0.5

Minr =

{
D1/L

50 ; L = 1, 2
0.25 ; L = ∞

}

Maxr =

{
D1/L

2 ; L = 1, 2
0.75 ; L = ∞

} 0.78 0.8 0.6 0.69 0.7 0.69

Minr =

{
D1/L

50 ; L = 1, 2
0.25 ; L = ∞

}

Maxr =

{
D1/L

1 ; L = 1, 2
1 ; L = ∞

} 0.67 0.67 0.77 0.62 0.62 0.7

Minr =

{
D1/L

10 ; L = 1, 2
0.5 ; L = ∞

}

Maxr =

{
D1/L

5 ; L = 1, 2
0.5 ; L = ∞

} 0.51 0.5 0.53 0.5 0.5 0.52

Minr =

{
D1/L

10 ; L = 1, 2
0.5 ; L = ∞

}

Maxr =

{
D1/L

2 ; L = 1, 2
0.75 ; L = ∞

} 0.81 0.8 0.66 0.73 0.71 0.78

Minr =

{
D1/L

10 ; L = 1, 2
0.5 ; L = ∞

}

Maxr =

{
D1/L

1 ; L = 1, 2
1 ; L = ∞

} 0.7 0.73 0.78 0.63 0.59 0.74
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TABLE 5.2: Summary table of sensitivity analysis (average AUC) for
the proposed algorithm on the Breast Cancer (BC) and Credit Card
(CC) Fraud Detection datasets in Experiment 1 for H = 100. All num-

bers are rounded up to two decimal points.

Proposed Algorithm AUC on
BC; L =
1

AUC on
BC; L =
2

AUC on
BC; L =
∞

AUC on
CC; L =
1

AUC on
CC; L =
2

AUC on
CC; L =
∞

Minr = 0

Maxr =

{
D1/L

5 ; L = 1, 2
0.5 ; L = ∞

}
0.5 0.5 0.5 0.5 0.5 0.5

Minr = 0

Maxr =

{
D1/L

2 ; L = 1, 2
0.75 ; L = ∞

}
0.9 0.88 0.67 0.84 0.84 0.8

Minr = 0

Maxr =

{
D1/L

1 ; L = 1, 2
1 ; L = ∞

}
0.85 0.83 0.86 0.77 0.77 0.82

Minr =

{
D1/L

50 ; L = 1, 2
0.25 ; L = ∞

}

Maxr =

{
D1/L

5 ; L = 1, 2
0.5 ; L = ∞

} 0.5 0.5 0.51 0.51 0.5 0.51

Minr =

{
D1/L

50 ; L = 1, 2
0.25 ; L = ∞

}

Maxr =

{
D1/L

2 ; L = 1, 2
0.75 ; L = ∞

} 0.9 0.9 0.69 0.82 0.82 0.85

Minr =

{
D1/L

50 ; L = 1, 2
0.25 ; L = ∞

}

Maxr =

{
D1/L

1 ; L = 1, 2
1 ; L = ∞

} 0.88 0.84 0.89 0.77 0.77 0.82

Minr =

{
D1/L

10 ; L = 1, 2
0.5 ; L = ∞

}

Maxr =

{
D1/L

5 ; L = 1, 2
0.5 ; L = ∞

} 0.5 0.5 0.54 0.51 0.5 0.54

Minr =

{
D1/L

10 ; L = 1, 2
0.5 ; L = ∞

}

Maxr =

{
D1/L

2 ; L = 1, 2
0.75 ; L = ∞

} 0.91 0.9 0.72 0.86 0.85 0.89

Minr =

{
D1/L

10 ; L = 1, 2
0.5 ; L = ∞

}

Maxr =

{
D1/L

1 ; L = 1, 2
1 ; L = ∞

} 0.87 0.87 0.87 0.76 0.75 0.85
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5.4.2 Results and Discussions Experiment 2:

The results of the second sensitivity analysis experiment in which, we increase the

number of random shapes to see how it affects the performance of the algorithm, are

shown and discussed below. The numbers are rounded up to two decimal points.

Figure 5.13 illustrates the AUC box-plot results on the Breast Cancer dataset. The

X-axis indicates the different parameter settings of the proposed algorithm (fixing

Minr = 0.6, Maxr = 15, L = 1 and increasing H from 5 - 5000). It can be observed

that as H increases, the mean AUC increases, while its standard deviation decreases,

meaning that performance of the anomaly detection becomes more stable and ro-

bust. Also, increasing the H more than 1000 is not required as the performance is

stabilised around this point. This pattern is also observed in the following diagrams.

FIGURE 5.13: AUC box plot for sensitivity analysis of the proposed
algorithm (H = [5, 5000], L = 1) on the Breast Cancer dataset.

Figure 5.14 illustrates the computational time box-plot results on the Breast Can-

cer dataset. The X-axis indicates the different parameter settings of the proposed

algorithm (fixing Minr = 0.6, Maxr = 15, L = 1 and increasing H from 5 - 5000). It

can be observed that as H increases, the mean time increases nearly linearly.

Figure 5.15 illustrates the AUC box-plot results on the Breast Cancer dataset. The

X-axis indicates the different parameter settings of the proposed algorithm (fixing

Minr = 0.6, Maxr = 15, L = 2 and increasing H from 5 - 5000). It can be observed

that as H increases, the mean AUC increases, while its standard deviation decreases,
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FIGURE 5.14: Computation Time box plot for sensitivity analysis of
the proposed algorithm (H = [5, 5000], L = 1) on the Breast Cancer

dataset.

meaning that performance of the anomaly detection becomes more stable and ro-

bust.

FIGURE 5.15: AUC box plot for sensitivity analysis of the proposed
algorithm (H = [5, 5000], L = 2) on the Breast Cancer dataset.

Figure 5.16 illustrates the computational time box-plot results on the Breast Can-

cer dataset. The X-axis indicates the different parameter settings of the proposed

algorithm (fixing Minr = 0.6, Maxr = 15, L = 2 and increasing H from 5 - 5000).

It can be observed that as H increases, the mean Time increases, while its standard

deviation decreases, meaning that performance of the anomaly detection becomes

more stable and robust.

Figure 5.17 illustrates the AUC box-plot results on the Breast Cancer dataset.
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FIGURE 5.16: Computation Time box plot for sensitivity analysis of
the proposed algorithm (H = [5, 5000], L = 2) on the Breast Cancer

dataset.

The X-axis indicates the different parameter settings of the proposed algorithm (fix-

ing Minr = 0.6, Maxr = 15, L = ∞ and increasing H from 5 - 5000). It can be

observed that as H increases, the mean AUC increases, while its standard deviation

decreases, meaning that performance of the anomaly detection becomes more stable

and robust.

FIGURE 5.17: AUC box plot for sensitivity analysis of the proposed
algorithm (H = [5, 5000], L = ∞) on the Breast Cancer dataset.

Figure 5.18 illustrates the computational time box-plot results on the Breast Can-

cer dataset. The X-axis indicates the different parameter settings of the proposed

algorithm (fixing Minr = 0.6, Maxr = 15, L = ∞ and increasing H from 5 - 5000). It

can be observed that as H increases, the mean time increases nearly linearly.
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FIGURE 5.18: Computation Time box plot for sensitivity analysis of
the proposed algorithm (H = [5, 5000], L = ∞) on the Breast Cancer

dataset.

Figure 5.19 illustrates the AUC box-plot results on the Credit Card Fraud Detec-

tion dataset. The X-axis indicates the different parameter settings of the proposed

algorithm (fixing Minr = 0.6, Maxr = 15, L = 1 and increasing H from 5 - 5000).

It can be observed that as H increases, the mean AUC increases, while its standard

deviation decreases, meaning that performance of the anomaly detection becomes

more stable and robust.

FIGURE 5.19: AUC box plot for sensitivity analysis of the proposed
algorithm (H = [5, 5000], L = 1) on the Credit Card Fraud Detection

dataset.

Figure 5.20 illustrates the computational time box-plot results on the Credit Card

Fraud Detection dataset. The X-axis indicates the different parameter settings of the

proposed algorithm (fixing Minr = 0.6, Maxr = 15, L = 1 and increasing H from 5 -
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5000). It can be observed that as H increases, the mean time increases nearly linearly.

FIGURE 5.20: Computation Time box plot for sensitivity analysis of
the proposed algorithm (H = [5, 5000], L = 1) on the Credit Card

Fraud Detection dataset.

Figure 5.21 illustrates the AUC box-plot results on the Credit Card Fraud Detec-

tion dataset. The X-axis indicates the different parameter settings of the proposed

algorithm (fixing Minr = 0.6, Maxr = 15, L = 2 and increasing H from 5 - 5000). The

Y-axis shows the range (distribution) as a box-plot of AUC. It can be observed that as

H increases, the mean AUC increases, while its standard deviation decreases, mean-

ing that performance of the anomaly detection becomes more stable and robust.

FIGURE 5.21: AUC box plot for sensitivity analysis of the proposed
algorithm (H = [5, 5000], L = 2) on the Credit Card Fraud Detection

set.

Figure 5.22 illustrates the computational time box-plot results on the Credit Card

Fraud Detection dataset. The X-axis indicates the different parameter settings of the
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proposed algorithm (fixing Minr = 0.6, Maxr = 15, L = 2 and increasing H from

5 - 5000). It can be observed that as H increases, the mean time increases, while its

standard deviation decreases, meaning that performance of the anomaly detection

becomes more stable and robust.

FIGURE 5.22: Computation Time box plot for sensitivity analysis of
the proposed algorithm (H = [5, 5000], L = 2) on the Credit Card

Fraud Detection dataset.

Figure 5.23 illustrates the AUC box-plot results on the Credit Card Fraud Detec-

tion dataset. The X-axis indicates the different parameter settings of the proposed

algorithm (fixing Minr = 0.6, Maxr = 15, L = ∞ and increasing H from 5 - 5000).

It can be observed that as H increases, the mean AUC increases, while its standard

deviation decreases, meaning that performance of the anomaly detection becomes

more stable and robust.

Figure 5.24 illustrates the computational time box-plot results on the Credit Card

Fraud Detection dataset. The X-axis indicates the different parameter settings of the

proposed algorithm (fixing Minr = 0.6, Maxr = 15, L = ∞ and increasing H from 5 -

5000). It can be observed that as H increases, the mean time increases nearly linearly.

Tables 5.3 and 5.4 summarise the results of the sensitivity analysis on the bench-

mark datasets. In summary, we can observe and conclude the followings from the

second experiment:

• As H increases, the performance of the algorithm (mean AUC) increases and

becomes more stable and robust (standard deviation of AUC decreases) at the
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FIGURE 5.23: AUC box plot for sensitivity analysis of the proposed
algorithm (H = [5, 5000], L = ∞) on the Credit Card Fraud Detection

dataset.

FIGURE 5.24: Computation Time box plot for sensitivity analysis of
the proposed algorithm (H = [5, 5000], L = ∞) on the Credit Card

Fraud Detection dataset.
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expense of the higher computational time. This is due to the fact that the cov-

ered volume of the shapes increases and more regions of the space will be

explored by the increasing number of shapes. Furthermore, the separability

power of the algorithm increases.

• The optimal H = 1000 is recommended for best performance (high mean AUC

and low standard deviation of AUC). Increasing H, above this point may im-

prove the performance of the algorithm a little further but more computation

time is needed. In other words, the performance is saturated around this num-

ber.

• Obviously, as number of random shapes increases, the computational time in-

creases. However, this increase remains linear as a function of the number of

random shapes (H). This is very beneficial for processing large datasets.

• On the Breast Cancer dataset, Manhattan distance performs better (mean AUC

= 0.94) than Chebyshev distance in terms of AUC, while Euclidean distance

performs well in terms of rapidity of computation.

The experiments 1 and 2 investigated the effect of independent variables called

shapes’ parameters and number of shapes, respectively. Generally, increasing the

number of random shapes improves the detection performance of the algorithm

while introducing more computational time. In addition, the shapes’ parameters

must be optimised for a specific dataset. Generally, the shape parameters must not

be chosen too small or too large to reduce the detection performance of the algo-

rithm.

Finally, we can conclude that the proposed unsupervised anomaly detection al-

gorithm is generic and able to identify anomalies in both financial and non-financial-

related datasets.
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TABLE 5.3: Summary table of sensitivity analysis (average AUC
and Average run time) for the proposed algorithm on the Breast
Cancer Dataset in Experiment 2. All numbers are rounded up to
two decimal points. We fix the Minr = D1/L

50 and Maxr = D1/L

2
for different L = {1, 2}. For L = ∞, we fix Minr = 0.5 and
Maxr = 1. Number of the shapes increases from 5 to 5000 (H =

{5, 10, 25, 50, 100, 500, 1000, 2500, 5000}).

Proposed Algorithm AUC
L = 1

Run
Time
L = 1

AUC
L = 2

Run
Time
L = 2

AUC
L = ∞

Run
Time
L = ∞

H = 5 0.63 0.00 0.59 0.00 0.59 0.00
H = 10 0.69 0.00 0.7 0.00 0.72 0.00
H = 25 0.77 0.00 0.8 0.00 0.82 0.00
H = 50 0.89 0.00 0.84 0.00 0.85 0.00
H = 100 0.91 0.00 0.89 0.00 0.89 0.00
H = 500 0.93 0.01 0.91 0.00 0.91 0.01

H = 1000 0.93 0.01 0.92 0.01 0.9 0.02
H = 2500 0.94 0.03 0.92 0.02 0.91 0.05
H = 5000 0.93 0.07 0.92 0.04 0.91 0.1

TABLE 5.4: Summary table of sensitivity analysis (average AUC and
Average run time) for the proposed algorithm on the Credit Card
Fraud Detection dataset in Experiment 2. All numbers are rounded
up to two decimal points. We fix the Minr = D1/L

50 and Maxr = D1/L

2
for different L = {1, 2}. For L = ∞, we fix Minr = 0.5 and
Maxr = 1. Number of the shapes increases from 5 to 5000 (H =

{5, 10, 25, 50, 100, 500, 1000, 2500, 5000}).

Proposed Algorithm AUC
L = 1

Run
Time
L = 1

AUC
L = 2

Run
Time
L = 2

AUC
L = ∞

Run
Time
L = ∞

H = 5 0.54 0.08 0.55 0.1 0.61 0.09
H = 10 0.61 0.13 0.56 0.18 0.64 0.15
H = 25 0.65 0.22 0.64 0.24 0.77 0.28
H = 50 0.76 0.44 0.78 0.5 0.79 0.57
H = 100 0.82 0.72 0.85 0.71 0.84 0.98
H = 500 0.91 3.12 0.91 2.17 0.87 4.34

H = 1000 0.93 6.03 0.92 4.04 0.88 8.67
H = 2500 0.94 15.42 0.93 9.87 0.89 22.21
H = 5000 0.94 44.7 0.93 26.39 0.89 58.46
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Chapter 6

Abnormal Trading Detection and

Evaluations

In this Chapter, we apply the proposed anomaly detection algorithm (see Chapter

4) on the Bitcoin [70] trading data and compare its performance with existing algo-

rithms. The aim of this chapter is to see how well the proposed algorithm is capable

of identifying real abnormal patterns in the Bitcoin data as a case study. Since the

data are not labelled and not feature extracted, we will pre-process the data, feature

extract and label the data by statistical analysis, which will be explained in more

detail in Section 6.1.

6.1 Methodology

6.1.1 Bitcoin dataset

The unlabelled Bitcoin data utilised in this study are Bitcoin trading data of the Bit-

Mex Exchange, one of the most liquid Bitcoin exchanges in the world with the 24-

hour, 30-day and 365-day volume of 4.93 billion, 80.77 billion and 1.27 trillion US

dollars, respectively [71].

The exchange has a limit order book just like a typical stock exchange which

enables traders and investors to buy and sell Bitcoin and other crypto-currencies.

Since the trading data (such as limit order book) of the BitMex are publicly available

and can be downloaded via the APIs provided by the exchange [72], the data are

very accessible and suitable for this research, in contrast to existing stock market
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data, which are hard to obtain and usually are not free (especially the limit order

book data).

We utilise bid/ask prices and bid/ask volumes of the Bitcoin limit order book

of the BitMex exchange in our experiments. The data for a specific trading day

are download from [72] automatically by our Python code, which we developed

in Google Colab, a free cloud platform provided by Google for writing Python code

online and performing the computation and machine learning tasks in Google com-

puting back-end engines. The reason for doing the computation on the cloud is the

large number of data instances in each trading data (over 4 million data in each day).

Therefore, cloud computing enables us to efficiently obtain and pre-process the data.

The features we extract from the data are discussed in Section 6.1.2. Since the

data are not labelled (we do not know in advance which data instance is normal

or abnormal), the data will be labelled with a robust statistical method which is

explained in more detail in Section 6.1.3.

6.1.2 Feature Extraction in Bitcoin data

Feature extraction is an important task before feeding the data into the machine

learning algorithms. It computes meaningful features (dimensions) from data, en-

abling machine learning algorithms for further distinguishing normal and abnormal

data based on the extracted features. In this research, we utilise 20 features from the

data which include 4 features as original data and 16 derived features from the orig-

inal features. Mathematically, consider a 20-dimensional dataset X = {xi}N
i=1 with

N = 5000 data samples from each trading day such as each data sample xi = [xi,d]
20
d=1

is a 20-dimensional vector with dimensional values xi,d.

The details of the features are provided in Table 6.1. The Bid and Ask prices and

sizes at different times are essential primary variables, which build the main time-

series data. The rest of features compute moving average and gradient-based fea-

tures derived from the original features to extract the movement and slope of main

variables during specific time intervals. The reason for choosing these 20 feature is

to extract variables which may aid the anomaly detection algorithms to distinguish

normal data from abnormal ones. Section 6.1.3, provides more details regarding

how these 20 features are utilised for labelling the data.
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TABLE 6.1: Extracted features of the Bitcoin trading data. λ = 10 is
chosen for computing the features.

Name Feature xi,d Description
Timei seconds passed after the first timestamp = timestampi − timestamp1

BidPricei i-th bid price
BidSizei i-th bid size (volume)

AskPricei i-th ask price
AskSizei i-th ask size (volume)

DeltaTimei Timei − Timei−1
DeltaBidPricei BidPricei − BidPricei−1
DeltaAskPricei AskPricei − AskPricei−1
DeltaBidSizei Bidsizei − BidSizei−1
DeltaAskSizei AskSizei − AskSizei−1
SpreadPricei AskPricei − BidPricei

RatioAskBidSizei
AskSizei
BidSizei

MovingAverageBidPriceλ
i

∑i
g=i−λ−1 BidPriceg

λ

MovingAverageAskPriceλ
i

∑i
g=i−λ−1 AskPriceg

λ

MovingAverageBidSizeλ
i

∑i
g=i−λ−1 BidSizeg

λ

MovingAverageAskSizeλ
i

∑i
g=i−λ−1 AskSizeg

λ

GradientBidPriceλ
i

BidPricei−MovingAverageBidPriceλ
i

Timei−Timei−λ−1

GradientBidSizeλ
i

BidSizei−MovingAverageBidSizeλ
i

Timei−Timei−λ−1

GradientAskPriceλ
i

AskPricei−MovingAverageAskPriceλ
i

Timei−Timei−λ−1

GradientAskSizeλ
i

AskSizei−MovingAverageAskSizeλ
i

Timei−Timei−λ−1
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6.1.3 Bitcoin Data Statistical Analysis and Labelling

As mentioned, BTC data are not labelled. In other words, we do not know in ad-

vance which data sample is normal or abnormal. Since labelling the dataset with

only one variable may introduce bias, full density estimation of 20 features must be

considered to include all the interactions between the features. However, accurate

density estimation in a 20-dimensional space is not possible due to large number of

features and curse of dimensionality. To bypass this issue, the dimensionality of the

dataset is first reduced and then, density estimation is performed on the reduced

space as a proxy method.

In order to label the data, first we reduce the dimensionality of data via PCA

[73] to one dimension, then the probability density function of the encoded data can

be estimated by a well known density estimation technique called Kernel Density

Estimation (KDE) [74]. Anomalies are located in the low density regions of the space.

The left diagrams in Figures 6.1 and 6.2 illustrate this concept.

To quantify the degree of anomalousness for each data sample, we define an

anomaly score for each data sample as the fraction of maximum density observed

by the KDE in the whole dataset (corresponding to the mode of the 1D probability

distribution) divided by individual data density (computed by the KDE). The right

diagrams in Figures 6.1 and 6.2 illustrate this concept.

Such a relative density of a data sample quantification acts as a normalisation

score in order to have a measure to rank data based on their degree of anomalous-

ness. Higher score corresponds to higher anomalousness. The distribution of such

anomaly score are shown in the right-hand diagrams of the following figures.

Finally, data samples in the top 1 percentile of the anomaly score distribution, are

labelled as 1 (positive class corresponding to anomaly samples) and the rest of data

are labelled as 0 (negative class or corresponding normal samples)

The Figures 6.1 and 6.2 illustrate the above process of how labeling the BTC

dataset works for samples from dates 2/4/2020 and 6/4/2020, respectively. As it is

shown in these figures, the distribution of BTC data changes dynamically over time

(see left diagram of each figure below). However, the anomaly scores distribution

(see right diagram of each figure below) show a general pattern in which, most of the
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data samples have low anomaly scores (corresponding to normal samples), while a

few have significantly large anomaly scores. These extreme values are outliers and

such data points can be separated by a percentile threshold 0.99 (corresponding to

the top 1 percent of data located in the right tail of the anomaly scores distribution).

FIGURE 6.1: Left diagram: Density estimation on 1D encoded BTC
data via PCA. Right diagram: Anomaly Scores distribution based on

relative densities. The data are 5000 samples from 2020/04/02.

FIGURE 6.2: Left diagram: Density estimation on 1D encoded BTC
data via PCA. Right diagram: Anomaly Scores distribution based on

relative densities. The data are 5000 samples from 2020/04/06.
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6.1.4 Evaluation Metrics

Same performance metrics as discussed in Section 3.2 are utilised in this study. Gen-

erally, higher mean AUC, lower standard deviation of AUC, lower mean and stan-

dard deviation of computation time are desirable.

6.1.5 Experiments Setups and Customisation of the proposed Algorithm

The experiment condition in this study is same as explained in Section 3.3. Please

refer to that section for detailed description of the experiment. The only difference

between this experiment and other experiments is the dataset, which is feature ex-

tracted and labelled as explained in Sections 6.1.2 and 6.1.3, respectively. As ex-

plained previously, the labelled dataset for each sample date contains 5000 samples

of which 1 percent (50 samples) are anomaly and the rest are normal.

Furthermore, we choose the proposed anomaly detection algorithm with hyper-

parameter settings H = 1000, MinR = 0.95, MaxR = 1, Distance = Chebyshev and

H = 1000, MinR = 10, MaxR = 10, Distance = Canberra for two samples dates

02/04/2020 and 06/04/2020, respectively. As explained and investigated in Chap-

ter 5 regarding hyper-parameters of the proposed algorithm, number of random

shapes H = 1000 is suitable for most of the datasets since increasing this number

will introduce more computational requirement. Furthermore, the shape parame-

ters are chosen so the resulting generated random shapes are neither too small nor

big to affect the performance of anomaly detection.

The Canberra distance [75], [76] is a weighted form of Manhattan distance [77]

and has been utilised for detecting computer intrusion [78]. It is defined as:

CanberraDistance(xi, xj) =
D

∑
d=1

|xi,d − xj,d|
|xi,d|+ |xj,d|

. (6.1)

Next, we compare the proposed algorithm with the existing bench mark algo-

rithms described in Section 3.3. The benchmark algorithms include KNN, Isolation

Forest, LOF, ABOD, HBOS, PCA and Autoencoder as explained in Section 3.3. The

hyper-parameters setting for these algorithms are same as previous experiments.

Generally, we are interested to see which algorithm has a high AUC and low com-

putational time.
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6.2 Results and Discussions

Figures 6.3 and 6.5 show AUC box-plots of the proposed anomaly detection algo-

rithm on 02/04/2020 and 06/04/2020, respectively. Each plot corresponds to the

AUC results for a specific date. The X-axis of each plot shows the name of each al-

gorithm and Y-axis demonstrates the AUC distribution shown via a box-plot. Since

some algorithms are deterministic and some are probabilistic, this range representa-

tion of performances including minimum, quartiles and maximum values facilitates

identifying robust anomaly detection algorithms. In addition, we show the mean

and standard deviation of each distribution next to its corresponding box-plot. From

these diagrams, we can observe that AUC of the proposed algorithm is higher than

the benchmark algorithms. For instance the proposed algorithm has a AUC = 0.903,

while the best bench mark algorithm on 06/04/2020 has AUC = 0.818. This signif-

icant 8.5 percent change demonstrates the robustness of the proposed algorithm in

terms of anomaly detection capability. Also, AUC around 0.94 is observed for the

proposed algorithm on 02/04/2020, which is higher than the performance of the

benchmark algorithms.

Figures 6.4 and 6.6 show Computational time (measured in seconds) box-plots

of the proposed anomaly detection algorithm on 02/04/2020 and 06/04/2020, re-

spectively. The X-axis of each plot shows the name of each algorithm and Y-axis

demonstrates the computational time distribution shown via a box-plot. As some

algorithms are deterministic and some are probabilistic, this range representation of

performances including minimum, quartiles and maximum values facilitates iden-

tifying robust anomaly detection algorithms. In addition, we show the mean and

standard deviation of each distribution next to its corresponding box-plot. From

these figures, we can observe that the computational time of the proposed algorithm

is generally lower than most of the benchmark algorithms.

The computational efficiency of the proposed algorithm is due to generating ran-

dom shapes data independently. Since the computational time of the algorithm in-

creases linearly with number of generated random shapes, enough random shapes

can perform the task of anomaly detection in a timely manner.
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Furthermore, the underlying anomaly detection mechanism of the proposed al-

gorithm which is based on converting data features into binary patterns of falling

inside or outside of the shapes and then, computing the probability of observing

such patterns, facilities the anomaly detection task.

Considering both anomaly detection performance and computational time, a re-

quirement for detecting ATPs in real-world cases rapidly, we can conclude that the

proposed unsupervised anomaly detection algorithm performs better than the ex-

isting algorithms on the BTC dataset. Thus, it can serve as a potential algorithm in

future for detecting ATPs in a timely manner.

FIGURE 6.3: AUC boxplot of proposed algorithm compared with
benchmark algorithms on Bitcoin data (02/04/2020).

FIGURE 6.4: Computational time boxplot of proposed algorithm
(Pouyan) compared with benchmark algorithms on Bitcoin data

(02/04/2020).
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FIGURE 6.5: AUC boxplot of proposed algorithm compared with
benchmark algorithms on Bitcoin data (06/04/2020).

FIGURE 6.6: Computational time boxplot of proposed algorithm
(Pouyan) compared with benchmark algorithms on Bitcoin data

(06/04/2020).
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Chapter 7

Conclusions and Future Work

7.1 Summary of the Thesis

Surveillance and monitoring of financial markets, where illegitimate high frequency

trading strategies may artificially distort the price of a financial asset for gaining il-

legal profit, is a key and challenging task to protect the legitimate traders which can

not be performed by humans due to the large size and high-velocity of trading data.

Alternatively, anomaly detection algorithms can automatically detect such abnor-

mal trading patterns (ATPs). However, designing and developing an unsupervised

algorithm capable of detecting such ATPs rapidly is a gap in the body of literature,

which this PhD research attempts to fill.

In this PhD thesis, a literature review and thorough benchmark evaluation on

existing anomaly detection algorithms such as Artificial Neural Network Auto En-

coder, Isolation Forest, Local outlier Factor (LOF), Histogram-based outlier Score

(HBOS), Angle-based Outlier Detection (ABOD), Principle Component Analysis (PCA)

and K-Nearest Neighbors (KNN) was performed. These algorithms evaluated via

Area Under the ROC Curve (AUC) and computational time on publicly labeled

datasets from different domains such as finance and health. The results show that

Isolation Forest, HBOS and PCA are robust algorithms in terms of high detection

performance (Area Under the ROC Curve (AUC) = 0.95) and low computational

time specially for large datasets.

Next, a novel unsupervised anomaly detection algorithm/model based on prob-

abilistic (random) partitioning of a high-dimensional space is proposed. The al-

gorithm is intuitively based on the idea of partitioning a bounded D-dimensional



Chapter 7. Conclusions and Future Work 92

space in the unit-hyper cube by a sequence of random shapes, in which each data

will be trapped (isolated) either inside (encoded by 1) or outside (encoded by 0).

Such a partitioning scheme, encodes each data into a binary pattern (sequence of 0s

and 1s). Under the fundamental assumption for all anomaly detection algorithms

that anomalous data (minority data) are rare and have different characteristics, the

proposed algorithm learns the binary patterns by the probabilistic modelling ap-

proach and can distinguish anomalous data whose binary patterns of trapping (in-

side or outside) based on the sequence of random shapes is significantly different

from rest of the dataset (normal data or majority). Finally, the algorithm assigns an

anomaly score for each data, which indicates the degree to which it is anomalous.

The proposed algorithm/model is generic, fast and robust. Not only can it be ap-

plied on financial data, but also can have applications in detecting anomalies rapidly

in datasets other than the financial domain.

Then, we performed sensitivity analysis of the proposed algorithm on publicly

available labeled datasets and show that the performance of the algorithm will sta-

bilise as the number of random shapes increases. Furthermore, the shape of random

shapes can affect the performance of the algorithm which needs to be optimised for

a given dataset. Also, the results indicate that the algorithm’s computational time

increases linearly with the number of random shapes which shows the robustness

of the algorithm for detecting anomalies in a timely manner.

Finally, we applied the proposed algorithm on Bitcoin trading data as a case

study and tested, evaluated and compared the performance of the proposed algo-

rithm with the Auto Encoder, Isolation Forest, LOF, HBOS, ABOD, PCA and KNN.

The results show that the proposed algorithm achieves AUC = 0.94. Comparing to

the benchmark algorithms, it also outperforms the existing algorithms by 8.5 percent

increase while having low computational time.

7.2 Future Work

Future work may include investigation and study of how ensembles of the proposed

algorithm with different hyper-parameter settings can affect and possibly boost the



Chapter 7. Conclusions and Future Work 93

performance of the proposed algorithm. Utilising different shapes and even design-

ing an algorithm to generate random shapes arbitrarily may be worth the future

investigations. Specially, non-symmetrical shapes which are generated by another

algorithm may occupy the high-dimensional unit hyper-cube completely random,

thus exploring the space differently from symmetrical shapes.

In addition, the random shapes which are generated data independently can be

modified to be generated data dependently. In other words, the algorithm can pro-

duce the shapes depending on a given dataset’s properties such as the location of

the data points in the high-dimensional space. This may improve the anomaly de-

tection performance of the algorithm but at higher computational cost since the data

properties may be first analysed, before generating the shapes.

For processing of large data streams in real-time, the algorithm can be modified

to have a training window in which, the algorithm learns and updates itself just by

the data points within the window and not the whole training dataset. Once a new

test data point arrives, its corresponding anomaly score will be computed and the

test data point can be included as part of the training window. The length of the

window can be further adjusted to have a dynamic and adaptive algorithm which

can be flexible when the underlying data distribution changes over time.

Another further research path may include applying parallel and distributed

computing strategies to speed up the algorithm. For instance, the data can be di-

vided into smaller size datasets, which can be processed individually in parallel

on multiple computing engines, and later the computational results can be merged

together to form the final result. This can significantly increase the speed of the

algorithm and will be suitable for processing big data.

Furthermore, financial authorities may investigate how to practically utilise this

algorithm for creating a real-time surveillance system capable of automatic moni-

toring and flagging abnormal trading patterns (e.g. price manipulations) tactics in

the financial markets in order to protect the capital of legitimate traders without any

delay. The proposed algorithm can be incorporated in financial exchanges for the

purpose of law enforcement, by analysing billions of trading data in real-time and

identifying and highlighting abnormal and suspicious activities. The flagged trades

by the algorithm, can be further investigated by financial authorities. Furthermore,
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the algorithm’s signal can trigger other automatic surveillance systems to take ac-

tion and prevent the suspicious traders from trading in the market in order to stop a

potential crime.

Another application of the proposed algorithm can be detecting fraudulent bank

accounts associated with criminal activities such as money laundering. Since, bil-

lions of bank transactions cannot be monitored by humans in real-time, the algo-

rithm can be incorporated in the surveillance systems of the banks to detect and

prevent suspicious accounts from transferring illegal money to other accounts.

It is worth highlighting that the algorithm is not limited to be applied on finan-

cial datasets. It can be applied on non-financial datasets as well. For instance, the

medical and health related data of a patient can be monitored and analysed by the

algorithm in real-time to identify an abnormal pattern in the health status of the

patient rapidly.
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Appendix A

Python Code

This Chapter provides the Python(3+) code developed in this PhD research:

• The Python code developed for the proposed anomaly detection algorithm is

provided in Section A.1.

• Section A.2 includes the Python code developed for sensitivity analysis of the

proposed algorithm and comparison of different benchmark anomaly detec-

tion algorithms with each other and proposed algorithm.

The code is written on the Google Colab [67], an online platform provided by

Google, where Python code can be written and run on the cloud. As a result, the

following code can be efficiently run on the Google computing servers without the

requirement to install and run any packages on a local machine. In order for the

code to run properly, the input datasets must be uploaded and stored on the cloud

(Google Drive) and it needs to be mounted so the google computing server can have

access to the input datasets online. Furthermore, path name files in the code for

loading input datasets needs to a appropriately adjusted according to where the

datasets are located on the Google Drive, before running the code.

The major open source Python libraries utilised in the following code include

pyod [66], numpy [79], [80], pandas [81], [82], sklearn [83], [84], and matplotlib [85].

A.1 Python Code Developed for the Proposed Anomaly De-

tection Algorithm

The Python code developed for the proposed unsupervised algorithm in Chapter 4

are provided below as a Python function called PouyanAnomalyDetector. To find
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anomalies in any given dataset, the data needs to be scaled in range [0, 1] and then,

splitted into train and test sets. The label information is not required, since the al-

gorithm is unsupervised, it learns from training set and then, predicts the anomaly

score for each sample in the test set. Higher anomaly score represents higher degree

of anomalous for a given test sample, a real-value number by which, test samples

can be ranked.

1 # p r o p o s e d anomaly d e t e c t i o n a l g o r i t h m

2

3 ’ ’ ’

4 A l l R i g h t s R e s e r v e d

5 Author / d e v e l o p e r : POUYAN DINARVAND

6 ’ ’ ’

7

8 # i m p o r t s l i b r a r i e s

9 import numpy as np

10 from sk learn . metr i cs import p a i r w i s e _ d i s t a n c e s

11

12 def PouyanAnomalyDetector ( t r a i n _ s e t , t e s t _ s e t , n_hash = 100 ,

13 min_r = 0 . 0 1 , max_r = 1 , metr ic= ’ manhattan ’ , p = 1 ,

14 n_jobs = None ) :

15 ’ ’ ’

16 − o ut pu t : g e n e r a t e s anomaly s c o r e s f o r t e s t _ s e t a s d i c t i o n a r y

17 { ’ a n o m a l y _ s c o r e s ’ : [ anomaly s c o r e f o r t e s t d a t a 1 ,

18 anomaly s c o r e f o r t e s t d a t a 2 , . . . ] }

19 − Note 1 : t r a i n and t e s t d a t a must have same d i m e n s i o n s and be

20 in t h e [ 0 , 1 ] i n t e r v a l ( d a t a must be in t h e u n i t

21 hyper −cube )

22 − Note 2 : p a i r w i s e _ d i s t a n c e s f u n c t i o n can be w r i t t e n f o r a

23 c u s t o m i s e d d i s t a n c e f u n c t i o n r e p r e s e n t i n g a

24 s p e c i f i c geometry o f random s h a p e s

25 − i n p u t s :
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26 − t r a i n _ s e t , t e s t _ s e t = t r a i n i n g / t e s t d a t a s e t s a s numpy

27 a r r a y [ [ d a t a sample 1 ] , [ d a t a sample 2 ] , [ . . . ] , . . . ] ,

28 e a c h row c o r r e s p o n d s t o a d a t a sample

29 − n_hash = i n t e g e r number o f h a s h e s ( random s h a p e s ) t o

30 o b t a i n b i n a r y c o d e s o f e a c h d a t a sample

31 − min_r , max_r = minimum r a d i u s and maximum r a d i u s

32 ( f l o a t numbers ) f o r g e n e r a t i n g a random number

33 f rom uni form ( min_r , max_r ) d i s t r i b u t i o n as a

34 t h r e s h o l d random v a r i a b l e f o r b i n a r y h a s h i n g

35 − m e t r i c = s t r i n g name d i s t a n c e f u n c t i o n e . g . ’ minkowski ’ ,

36 ’ e u c l i d e a n ’ , ’ c h e b y s h e v ’ ; which d e t e r m i n e s

37 t h e geometry o f random s h a p e s

38 − p = number f o r Lp norm when t h e m e t r i c = ’ minkowski ’ .

39 e . g : => p=2 => E u c l i d e a n d i s t a n c e ,

40 p=1 => Manhattan d i s t a n c e ,

41 − n _ j o b s =None : computing p a i r −wis e d i s t a n c e on p a r a l l e l j o b s

42 ( −1 u s e s a l l c o r e s )

43 ’ ’ ’

44

45 n_dim = t r a i n _ s e t . shape [ 1 ]

46 # random a r r a y with s i z e = n_hash * n_dim as random p o i n t s u n i f o r m l y

47 # g e n e r a t e d w i t h i n t h e u n i t hyper cube

48 random_points_array = np . random . uniform ( 0 , 1 , s i z e = ( n_hash , n_dim ) )

49

50 #1D random p o i n t s u n i f o r m l y g e n e r a t e d be tween min_r and max_r as

51 #random t h r e s h o l d s f o r h a s h i n g

52 random_r = np . random . uniform ( min_r , max_r , n_hash )

53

54

55 # hash t r a i n i n g d a t a

56 i f ( metr ic == ’ minkowski ’ ) :
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57 my_hash_train_set = p a i r w i s e _ d i s t a n c e s (X = t r a i n _ s e t ,

58 Y = random_points_array , metr ic=metric , p = p ,

59 n_jobs = n_jobs ) <= random_r

60 e lse :

61 my_hash_train_set = p a i r w i s e _ d i s t a n c e s (X = t r a i n _ s e t ,

62 Y = random_points_array , metr ic=metric ,

63 n_jobs = n_jobs ) <= random_r

64

65 # u pd a t e a l p h a hyper − p a r a m e t e r s

66 # a l p h a one ( i n s i d e )

67 alphas_one = 1 + my_hash_train_set . sum( a x i s = 0)

68

69 alphas_zero = np . copy (2 + t r a i n _ s e t . shape [ 0 ] − alphas_one )

70

71 # compute − l o g a l p h a s

72 log_alphas_one = −np . log ( alphas_one )

73 log_alphas_zero = −np . log ( alphas_zero )

74

75 # c l e a r memory

76 del my_hash_train_set , alphas_one , alphas_zero

77

78 # hash t e s t d a t a

79 i f ( metr ic == ’ minkowski ’ ) :

80 my_hash_test_set = p a i r w i s e _ d i s t a n c e s (X = t e s t _ s e t ,

81 Y = random_points_array , metr ic=metric , p = p ,

82 n_jobs = n_jobs ) <= random_r

83 e lse :

84 my_hash_test_set = p a i r w i s e _ d i s t a n c e s (X = t e s t _ s e t ,

85 Y = random_points_array , metr ic=metric ,

86 n_jobs = n_jobs ) <= random_r

87



Appendix A. Python Code 99

88 # compute anomaly s c o r e s f o r t h e t e s t s e t

89 anomaly_scores = np . dot ( my_hash_test_set , log_alphas_one . T ) +

90 np . dot (~ my_hash_test_set , log_alphas_zero . T )

91

92 return { ’ anomaly_scores ’ : anomaly_scores +

93 ( n_hash * np . log (2 + t r a i n _ s e t . shape [ 0 ] ) ) }

A.2 Python Code Developed for Evaluation of Anomaly De-

tection Algorithms and Sensitivity Analysis

The following Python code developed for the purpose of evaluation of anomaly de-

tection algorithms and performing sensitivity analysis on the proposed algorithm.

Please note that the python function A.1 must be loaded before running the follow-

ing code. The code must be run on the Google Colab. In order for the code to run

properly, the user input parameters for running the experiment and path name files

must be adjusted depending on where the datasets (as csv file) are stored. The code

evaluates different algorithms (or the proposed algorithm with different parameter

settings) and outputs the AUC and computational time. The results are also saved

as csv files and shown/plotted as png files. The path name, where the results should

be saved, must also be adjusted in the code depending on where the user prefers to

store the output files.

1

2 ’ ’ ’

3 − A l l R i g h t s R e s e r v e d

4 − Author / d e v e l o p e r : POUYAN DINARVAND

5 ’ ’ ’

6

7 # mount d r i v e t o be a b l e t o l o a d d a t a s e t s from Goog l e d r i v e

8 from google . colab import drive

9 drive . mount ( ’/gdrive ’ )

10
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11 print ( ’ mounting completed . ’ )

12

13 #−−−−−−−−−−−−− Imports −−−−−−−−−−−−−−−−−

14

15 ! pip i n s t a l l pyod

16 import pandas as pd

17 import numpy as np

18 import m a t p l o t l i b . pyplot as p l t

19 from sk learn . metr i cs import p a i r w i s e _ d i s t a n c e s

20 from sk learn . metr i cs import roc_auc_score

21 from sk learn . model_se lect ion import t r a i n _ t e s t _ s p l i t

22 from sk learn . model_se lect ion import S t r a t i f i e d K F o l d

23 from pyod . models . knn import KNN

24 from pyod . models . i f o r e s t import I F o r e s t

25 from pyod . models . l o f import LOF

26 from pyod . models . abod import ABOD

27 from pyod . models . hbos import HBOS

28 from pyod . models . pca import PCA

29 from pyod . models . auto_encoder import AutoEncoder

30 from time import time

31

32 # s e n s i t i v i t y a n a l y s i s p a r a m e t e r s o f

33 # p r o p o s e d anomaly d e t e c t i o n a l g o r i t h m

34

35 l ist_name_pouyan_algorithms = [ ]

36 n_hash= [ ] # number o f random s h a p e s

37 min_r = [ ]

38 max_r = [ ]

39 metr ic = [ ] # name o f d i s t a n c e f u n c t i o n as s t r i n g

40 n_jobs = [ ] # number o f j o b s

41 p = [ ] # L norm in t h e t h e s i s
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42

43 # ! ! ! i n c l u d e numbers in l i s t s [ . . . . ] o f For l o o p s

44 # t o s e t t h e e x p e r i m e n t p a r a m e t e r s r e a d y

45 # f o r s e n s i t i v i t y a n a l y s i s

46 for nh in [ 1 0 0 0 ] : # number o f h a s h e s ( random s h a p e s )

47 for minr in [ 0 . 6 ] : # Min R

48 for maxr in [ 1 5 ] : # Max R

49 # e . g . ’ minkowski ’ , ’ manhattan ’ ,

50 # ’ c a n b e r r a ’ , ’ e u c l i d e a n ’ , ’ c h e b y s h e v ’ ,

51 for mtr in [ ’ manhattan ’ ] :

52 # None f o r s m a l l d a t a s e t s , −1 f o r

53 # l a r g e d a t a s e t s u s e s a l l cpu c o r e s

54 # ( f o r m u l t i # p r o c e s s i n g )

55 for njb in [ None ] :

56 for ppp in [ 1 ] :

57

58 i f ( mtr == ’ minkowski ’ ) :

59 l ist_name_pouyan_algorithms . append (

60 ’pouyan_H ’+ s t r ( nh)+ ’_MNR’+ s t r ( minr )+

61 ’_MXR ’+ s t r ( maxr)+ ’_M ’+ s t r ( mtr )+ ’ _L ’+

62 s t r ( ppp)+ ’ _ J ’+ s t r ( n jb ) )

63 n_hash . append ( nh )

64 min_r . append ( minr )

65 max_r . append ( maxr )

66 metr ic . append ( mtr )

67 p . append ( ppp )

68 n_jobs . append ( njb )

69

70 e lse :

71 l ist_name_pouyan_algorithms . append (

72 ’pouyan_H ’+ s t r ( nh)+ ’_MNR’+ s t r ( minr )+
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73 ’_MXR ’+ s t r ( maxr)+ ’_M ’+ s t r ( mtr )+ ’ _ J ’+

74 s t r ( n jb ) )

75 n_hash . append ( nh )

76 min_r . append ( minr )

77 max_r . append ( maxr )

78 metr ic . append ( mtr )

79 p . append ( 0 )

80 n_jobs . append ( njb )

81 break

82

83 # @ t i t l e −−−−−−−−−−−−− User I n p u t s −−−−−−−−−−−−−

84

85 #@markdown > Enter e x p e r i m e n t d e t a i l s :

86

87 #@markdown Number o f e x p e r i m e n t s :

88 num_experiments = 10 #@param { t y p e : " i n t e g e r " }

89

90 #@markdown n− f o l d :

91 n_fold = 5 #@param { t y p e : " i n t e g e r " }

92 #@markdown Random s e e d i n t e g e r f o r s h u f f l i n g d a t a :

93 random_seed_integer = 123456789 #@param { t y p e : "number " }

94

95 #@markdown Name o f t h e i n p u t c s v f i l e :

96 name_data =

97 " BTC_date20200406_start_index_data1500000_moving_average10_max_num_

98 fake_anomaly0_num_real_data1000000_prob_fake_abnormal0_

99 time1590938691_NEW_Labeled_by_PCA_KDE_threshold_percentile_99_

100 N_5000 " #@param [" c r e d i t c a r d " ," b r e a s t −c a n c e r − u n s u p e r v i s e d −ad " ,

101 " BTC_date20200402_start_index_data1000000_moving_average10_max_

102 num_fake_anomaly0_num_real_data1000000_prob_fake_abnormal0_

103 time1590861495_NEW_Labeled_by_PCA_KDE_threshold_percentile_99_N_5000 " , " BTC_date20200406_start_index_data1500000_moving_average10_
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104 max_num_fake_anomaly0_num_real_data1000000_prob_fake_abnormal0_

105 time1590938691_NEW_Labeled_by_PCA_KDE_threshold_percentile_99_

106 N_5000 " ] { allow −input : t rue }

107

108

109 #@markdown Save p e r f o r m a n c e r e s u l t s :

110 s a v e _ r e s u l t s _ g r a d u a l l y = Fa l se #@param { t y p e : " b o o l e a n "}

111 s a v e _ r e s u l t s _ a s _ c s v = True #@param { t y p e : " b o o l e a n "}

112

113 #@markdown Save and show p e r f o r m a n c e p l o t s :

114 save_plo ts = True #@param { t y p e : " b o o l e a n "}

115 #@markdown how many d i c i m a l p o i n t s t o round numbers on p l o t s :

116 round_my_numbers_decimals = 3 #@param { t y p e : " i n t e g e r " }

117

118 #@markdown >Show l o g e a c h a l g o r i t h m

119 verbose_each_algo = Fa lse #@param { t y p e : " b o o l e a n "}

120 # ################ Pouyan Algor i thm ######################

121 #@markdown > Pouyan anomaly d e t e c t i o n a l g o r i t h m p a r a m e t e r s :

122

123 #@markdown Run Pouyan a l g o r i t h m ( s ) :

124 pouyan_yes = True #@param { t y p e : " b o o l e a n "}

125

126 #@markdown Manually i n s e r t l i s t in f o r m a t [ . , . , . , ] f o r

127 # p a r a m e t e r s o f Pouyan ’ s a l g o r i t h m s ( i f F a l s e , d e f u a l t

128 # p a r a m e t e r s l i s t s w i l l be used ) :

129 i n s e r t _ p a r a m e t e r s _ s e n s i t i v i t y _ m a n u a l l y = Fa l se #@param

130 { type : " boolean " }

131

132

133 i f ( i n s e r t _ p a r a m e t e r s _ s e n s i t i v i t y _ m a n u a l l y ) :

134 #@markdown L i s t name pouyan a l g o r i t h m s in f o r m a t
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135 # ’pouyan_HXXXX_minRXXX_maxRXXX_M−XXXXXXXXX’

136 l ist_name_pouyan_algorithms = [ ’ pouyan_H1000_minR−

137 1_maxR−1_M−eucl idean ’ , ’ pouyan_H1000_minR−1_

138 maxR−1_M−manhattan ’ , ’ pouyan_H1000_minR0 . 0 1 _

139 maxR0 . 5_M− b r a y c u r t i s ’ ] #@param

140 #@markdown L i s t Number o f h a s h e s :

141 n_hash = [ 1 0 0 0 , 1 0 0 0 , 1 0 0 0 ] #@param

142

143 #@markdown L i s t Min R f o r g e n e r a t i n g random t h r e s h o l d

144 # f o r h a s h i n g ( i f −1 i s chosen , th en min_r = s q r t ( number

145 # o f d a t a d i m e n s i o n s ) / 5 0 ) :

146 min_r = [ −1 , −1 ,0 .01 ] #@param

147 #@markdown L i s t Max R f o r g e n e r a t i n g random t h r e s h o l d

148 # f o r h a s h i n g ( i f −1 i s chosen , th en max_r = s q r t ( number

149 # o f d a t a d i m e n s i o n s ) / 2 ) :

150 max_r = [ −1 , −1 ,0 .5 ] #@param

151 #@markdown L i s t D i s t a n c e m e t r i c f o r h a s h i n g :

152 metr ic =[ ’ eucl idean ’ , ’ manhattan ’ , ’ b r a y c u r t i s ’ ] #@param

153 #@markdown L i s t p−norm :

154 p=[2 , 1 , None ] #@param

155 #@markdown L i s t Number o f p a r a l l e l c o r e s f o r s p e e d i n g up

156 # t h e a l g o r i t h m ( i f −1 i s chosen , a l l a v a l i a b l e c o r e s a r e

157 # used ) :

158 n_jobs = [ None , None , None ] #@param

159 # ######################################################

160

161 #@markdown > Run and compare benchmark anomaly

162 # d e t e c t i o n a l g o r i t h m s :

163 run_benchmark_algo = True #@param { t y p e : " b o o l e a n "}

164

165 #@markdown Choose benchmark a l g o r i t h m s :
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166 knn_yes = True #@param { t y p e : " b o o l e a n "}

167 i s o l a t i o n _ f o r e s t _ y e s = True #@param { t y p e : " b o o l e a n "}

168 l o f _ y e s = True #@param { t y p e : " b o o l e a n "}

169 abod_yes = True #@param { t y p e : " b o o l e a n "}

170 hbos_yes = True #@param { t y p e : " b o o l e a n "}

171 pca_yes = True #@param { t y p e : " b o o l e a n "}

172 autoencoder_yes = True #@param { t y p e : " b o o l e a n "}

173 #@markdown −−−

174

175 l ist_names_anm_algos = [ ]

176

177

178 i f ( pouyan_yes ) :

179 for item in l ist_name_pouyan_algorithms :

180 l ist_names_anm_algos . append ( s t r ( item ) )

181

182 i f ( run_benchmark_algo ) :

183 i f ( knn_yes ) :

184 l ist_names_anm_algos . append ( ’ knn ’ )

185 i f ( i s o l a t i o n _ f o r e s t _ y e s ) :

186 l ist_names_anm_algos . append ( ’ i s o l a t i o n _ f o r e s t ’ )

187 i f ( l o f _ y e s ) :

188 l ist_names_anm_algos . append ( ’ l o f ’ )

189 i f ( abod_yes ) :

190 l ist_names_anm_algos . append ( ’ abod ’ )

191 i f ( hbos_yes ) :

192 l ist_names_anm_algos . append ( ’ hbos ’ )

193 i f ( pca_yes ) :

194 l ist_names_anm_algos . append ( ’ pca ’ )

195 i f ( autoencoder_yes ) :

196 l ist_names_anm_algos . append ( ’ autoencoder ’ )
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197

198

199

200

201 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Data −−−−−−−−−−−−−−−−−−−

202

203 # Note : change path − f i l e name a c c o r d i n g on where you s t o r e

204 # d a t a s e t s a s c s v f i l e s in t h e Goog l e Drive

205 # Note : do not change t h e name o f f i l e s

206 data = pd . read_csv ( "/gdrive/My Drive/python/anomaly d e t e c t i o n

207 /data/"+name_data+" . csv " )

208

209

210 # BTC d a t a s e t name msut s t a r t e d with ’BTC ’

211 i f ( name_data [ 0 : 3 ] == "BTC" ) :

212

213 y = np . copy ( data [ ’ l a b e l ’ ] . values ) # l a b e l s

214 # d e l e t e i r r e l e v a n t columns from d a t a f r a m e

215 del data [ ’Unnamed : 0 ’ ] , data [ ’ l a b e l ’ ]

216 X = data . values # g e t f e a t u r e s

217

218 # s c a l e X in range [ 0 , 1 ]

219 X = (X − X . min ( a x i s = 0 ) ) / (X . max ( a x i s = 0) −

220 X . min ( a x i s = 0 ) )

221

222

223

224 e l i f ( name_data == " c r e d i t c a r d " ) :

225

226 y = np . copy ( data [ ’ Class ’ ] . values ) # l a b e l s

227 # d e l e t e i r r e l e v a n t columns from d a t a f r a m e
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228 del data [ ’ Class ’ ]

229 X = data . values # g e t f e a t u r e s

230

231 # s c a l e X in range [ 0 , 1 ]

232 X = (X − X . min ( a x i s = 0 ) ) / (X . max ( a x i s = 0) −

233 X . min ( a x i s = 0 ) )

234

235

236

237 # o t h e r d a t a s e t s

238 e lse :

239 X = data . values [ : , 0 : − 1 ]

240 y = data . values [ : , data . shape [ 1 ] − 1]

241 # change l a b e l s ’ n ’ and o ’ t o 0 = normal and 1 =

242 # abnormal r e s p e c t i v e l y

243 y = np . where ( y == ’n ’ , 0 , 1 )

244

245 # s c a l e X in range [ 0 , 1 ]

246 X = (X − X . min ( a x i s = 0 ) ) / (X . max ( a x i s = 0) −

247 X . min ( a x i s = 0 ) )

248

249 print ( ’name d a t a s e t : ’ , name_data )

250 print ( ’number of a l l data = ’ + s t r (X . shape [ 0 ] ) )

251 print ( ’number of dimensions = ’ + s t r (X . shape [ 1 ] ) )

252

253

254

255

256 #−−−−−−−−−−−−−−−− Model −−−−−−−−−−−−−−−−−−−−−−−−−

257

258 # i n i t i a l i z e t h e d i c t i o n a r y t o s t o r e p e r f o r m a n c e
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259 # m e t r i c s f o r e a c h a l g o r i t h m

260 output_dic = { ’ experiment_id ’ : [ ] }

261 for algo in l ist_names_anm_algos :

262 # auc s c o r e a t e a c h e x p e r i m e n t

263 output_dic [ algo+ ’ _auc ’ ] = [ ]

264 # c o m p u t a t i o n t ime a t e a c h e x p e r i m e n t

265 output_dic [ algo+ ’ _time ’ ] = [ ]

266

267

268 num_dim = X . shape [ 1 ]

269

270 # max_r and min_r l i s t s h o u l d have e q u a l l e n g t h s

271 # r e p l a c e −1 by t h e d e f a u l t s v a l u e s

272 i f ( pouyan_yes ) :

273 for i in np . arange ( len ( max_r ) ) :

274 i f ( metr ic [ i ] == ’ minkowski ’ ) :

275 i f ( max_r [ i ] == −1) :

276 max_r [ i ] = round ( np . power (num_dim ,

277 1/p [ i ] ) / 2 , 2 )

278 i f ( min_r [ i ] == −1) :

279 min_r [ i ] = round ( np . power (num_dim ,

280 1/p [ i ] ) / 5 0 , 2 )

281

282 e l i f ( metr ic [ i ] == ’ manhattan ’ ) :

283 i f ( max_r [ i ] == −1) :

284 max_r [ i ] = round ( f l o a t (num_dim) / 2 , 2 )

285 i f ( min_r [ i ] == −1) :

286 min_r [ i ] = round ( f l o a t (num_dim) / 5 0 , 2 )

287

288

289 e l i f ( metr ic [ i ] == ’ chebyshev ’ ) :
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290 i f ( max_r [ i ] == −1) :

291 max_r [ i ] = 1

292 i f ( min_r [ i ] == −1) :

293 min_r [ i ] = 0 . 5

294

295 e lse : # f o r o t h e r m e t r i c s

296 i f ( max_r [ i ] == −1) :

297 max_r [ i ] = round ( np . s q r t (num_dim) / 2 , 2 )

298 i f ( min_r [ i ] == −1) :

299 min_r [ i ] = round ( np . s q r t (num_dim) / 5 0 , 2 )

300

301

302 # n− f o l d c r o s s v a l i d a t i o n ( S t r a t i f i e d v e r s i o n f o r

303 # hav ing b a l a n c e d d a t a p a r t i t i o n s )

304 kf = S t r a t i f i e d K F o l d ( n _ s p l i t s =n_fold , s h u f f l e =True ,

305 random_state=random_seed_integer )

306

307

308 i f ( len ( name_data ) >=20) : # s h o r t e n l a r g e name s t r i n g

309 name_data = name_data [ 0 : 2 0 ]

310

311 for n in range ( 0 , num_experiments ) :

312

313 output_dic [ ’ experiment_id ’ ] . append ( n+1)

314 print ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )

315 print ( ’>>> Num Experiment : ’ + s t r ( n + 1) )

316

317 # c o u n t e r t o s e e how many pouyan a l g o r i t h m s have

318 # been run in t h e r e c e n t e x p e r i m e n t

319 counter_pouyan_algorithms = 0

320
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321 for algo in l ist_names_anm_algos :

322

323 i f ( verbose_each_algo ) :

324 print ( ’ Algorithm ’ + algo + ’ i s performing

325 anomaly d e t e c t i o n task . . . ’ )

326 algo_ok = True # a l g o r i t h m p e r f o r m e d ok

327 t r y :

328 i f ( algo [ 0 : 6 ] == ’ pouyan ’ ) :

329 # j u s t f o r c o m p a t i b i l i t y i s s u e s

330 anm = ’ pouyan ’

331 counter_pouyan_algorithms +=1

332 e l i f ( algo == ’ knn ’ ) :

333 anm = KNN( )

334 e l i f ( algo == ’ i s o l a t i o n _ f o r e s t ’ ) :

335 anm = I F o r e s t ( )

336 e l i f ( algo == ’ l o f ’ ) :

337 anm = LOF ( )

338 e l i f ( algo == ’ abod ’ ) :

339 anm = ABOD( )

340 e l i f ( algo == ’ hbos ’ ) :

341 anm = HBOS( )

342 e l i f ( algo == ’ pca ’ ) :

343 anm = PCA( )

344 e l i f ( algo == ’ autoencoder ’ ) :

345 # min number o f d i m e n s i o n s

346 # s h o u l d be >= 10

347 anm = AutoEncoder ( hidden_neurons =

348 [ 8 , 4 , 4 , 8 ] , verbose =0)

349

350 except Exception as e :

351 print ( ’ Error : ’ + s t r ( e ) )
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352 algo_ok = Fa lse

353

354 # f i t t h e model

355 # AUC on e a c h n− f o l d t e s t s e t s

356 a u c _ v a l i d a t i o n _ l i s t = [ ]

357 # computa ion t ime on e a c h n− f o l d t e s t s e t s

358 t i m e _ v a l i d a t i o n _ l i s t = [ ]

359

360 for t ra in_ index , t e s t _ i n d e x in kf . s p l i t (X , y ) :

361

362 X_train , X _te s t = X[ t r a i n _ i n d e x ] ,

363 X[ t e s t _ i n d e x ]

364

365 y_tra in , y _ t e s t = y [ t r a i n _ i n d e x ] ,

366 y [ t e s t _ i n d e x ]

367

368 i f ( algo_ok ) :

369 t r y :

370 # compute anomaly s c o r e s f o r

371 # my a l g o r i t h m

372 i f ( algo [ 0 : 6 ] == ’ pouyan ’ ) :

373 t 1 = time ( )

374 y _ t e s t _ s c o r e s = PouyanAnomalyDetector (

375 t r a i n _ s e t = np . copy ( X_tra in ) ,

376 t e s t _ s e t = np . copy ( X _te s t ) ,

377 n_hash = n_hash [

378 counter_pouyan_algorithms

379 − 1 ] , min_r = min_r [

380 counter_pouyan_algorithms

381 − 1 ] , max_r = max_r [

382 counter_pouyan_algorithms
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383 − 1 ] , metr ic=metr ic [

384 counter_pouyan_algorithms

385 − 1 ] , p = p [

386 counter_pouyan_algorithms − 1 ] ,

387 n_jobs = n_jobs [

388 counter_pouyan_algorithms −

389 1 ] ) [ ’ anomaly_scores ’ ] # o u t l i e r s c o r e s

390 t 2 = time ( )

391

392 # compute anomaly s c o r e s f o r t h e

393 # r e s t o f benchmark a l g o r i t h m s

394 e lse :

395 t 1 = time ( )

396 anm . f i t ( np . copy ( X_tra in ) )

397 y _ t e s t _ s c o r e s =

398 anm . d e c i s i o n _ f u n c t i o n (

399 np . copy ( X_ te s t ) ) # o u t l i e r s c o r e s

400 t 2 = time ( )

401

402

403 except Exception as e :

404 print ( ’ Error : ’ + s t r ( e ) )

405 algo_ok = Fa lse

406

407

408 i f ( algo_ok ) :

409 # auc s c o r e a t e a c h e x p e r i m e n t

410 a u c _ v a l i d a t i o n _ l i s t . append (

411 roc_auc_score ( y_ tes t ,

412 y _ t e s t _ s c o r e s ) )

413
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414 # c o m p u t a t i o n t ime a t e a c h e x p e r i m e n t

415 t i m e _ v a l i d a t i o n _ l i s t . append (

416 t 2 − t1 )

417

418 # compute p e r f o r m a n c e m e t r i c s :

419 # a v e r a g e AUC and Computat ion t ime ( t r a i n + t e s t )

420 # on n− f o l d CV

421 i f ( algo_ok ) :

422 output_dic [ algo+ ’ _auc ’ ] . append ( np . mean(

423 a u c _ v a l i d a t i o n _ l i s t ) )

424 output_dic [ algo+ ’ _time ’ ] . append ( np . mean(

425 t i m e _ v a l i d a t i o n _ l i s t ) )

426 del anm, y _ t e s t _ s c o r e s # c l e a r memory

427 e lse :

428 output_dic [ algo+ ’ _auc ’ ] . append ( 0 ) # f a i l e d

429 output_dic [ algo+ ’ _time ’ ] . append ( np . I n f ) # f a i l e d

430

431 # s a v e r e s u l t s a s c s v g r a d u a l l y in c a s e

432 # t h e c o m p u t a t i o n t i m e o u t

433 s t r ing_ index_t ime = " _n_exp_ " + s t r ( num_experiments )

434 + " _ fo lds_ "+ s t r ( n_fold ) +" _ "+ s t r ( i n t ( time ( ) ) )

435

436 # p r i n t ( o u t p u t _ d i c )

437 i f ( s a v e _ r e s u l t s _ a s _ c s v == True ) :

438 i f ( s a v e _ r e s u l t s _ g r a d u a l l y == True or n ==

439 num_experiments − 1 ) :

440 # Note : change path −name f i l e a c c o r d i n g

441 # t o where you want t o s a v e r e s u l t s a s c s v

442 pd . DataFrame ( output_dic ) . to_csv ( "/gdrive/

443 My Drive/python/anomaly d e t e c t i o n /data/

444 r e s u l t s /"+name_data + s t r ing_ index_t ime
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445 + " . csv " )

446

447 # s a v e and show summary s t a t i s t i c s ou t pu t

448

449 l i s t_name_col_auc = [ ]

450 l i s t_name_col_ t ime = [ ]

451 for algo in l ist_names_anm_algos :

452 l i s t_name_col_auc . append ( algo+ ’ _auc ’ )

453 l i s t_name_col_ t ime . append ( algo+ ’ _time ’ )

454

455 d f _ o u t p u t _ s t a t s = pd . DataFrame ( output_dic )

456 df_output_s ta ts_auc = d f _ o u t p u t _ s t a t s [ l i s t_name_col_auc ]

457 df_output_s ta t s_ t ime = d f _ o u t p u t _ s t a t s [ l i s t_name_col_ t ime ]

458

459 df_output_s ta ts_auc = df_output_s ta ts_auc . descr ibe ( )

460 df_output_s ta ts_auc = df_output_s ta ts_auc . T

461

462 df_output_s ta t s_ t ime = df_output_s ta t s_ t ime . descr ibe ( )

463 df_output_s ta t s_ t ime = df_output_s ta t s_ t ime . T

464

465 i f ( s a v e _ r e s u l t s _ a s _ c s v == True ) :

466 # Note : change path −name f i l e a c c o r d i n g t o

467 # where you want t o s a v e r e s u l t s a s c s v

468 df_output_s ta ts_auc . to_csv ( "/gdrive/My Drive/

469 python/anomaly d e t e c t i o n /data/ r e s u l t s /"+

470 name_data + st r ing_ index_t ime + " _AUC_stats . csv " )

471 df_output_s ta t s_ t ime . to_csv ( "/gdrive/My Drive/python/

472 anomaly d e t e c t i o n /data/ r e s u l t s /"+name_data +

473 s t r ing_ index_t ime + " _Time_stats . csv " )

474

475 print ( ’ * * * * * * * * * * * Top Summary S t a t i s t i c s AUC Resul t s
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476 ( sor ted from max to min ) * * * * * * * * * * * * * * * * ’ )

477 print ( df_output_s ta ts_auc . s o r t _ v a l u e s ( by = ’mean ’ ,

478 ascending=Fa lse ) [ [ ’mean ’ ] ] )

479

480 print ( ’ * * * * * * * * * * * Top Summary S t a t i s t i c s Time Resul t s

481 ( sor ted from min to max) * * * * * * * * * * * * * * * * ’ )

482 print ( d f_output_s ta t s_ t ime . s o r t _ v a l u e s ( by = ’mean ’ ,

483 ascending=True ) [ [ ’mean ’ ] ] )

484

485 print ( ’ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ’ )

486

487 # −−−−−−−−−−−−−−− show r e s u l t s −−−−−−−−−−−−−−−−

488 i f ( save_plo ts ) :

489 t r y :

490 # f i g u r e l i n e p l o t r e s u l t s AUC/ c o m p u t a t i o n t ime

491 p l t . f i g u r e ( "Anomaly d e t e c t i o n on data " +

492 name_data , f i g s i z e = ( 2 0 , 1 0 ) )

493 p l t . t i t l e ( "Anomaly d e t e c t i o n on data "+ name_data

494 + " num_data− " + s t r ( data . shape [ 0 ] ) + "num_dim : "

495 + s t r ( data . shape [ 1 ] ) )

496 # AUC p l o t

497 p l t . subplot ( 2 , 1 , 1 )

498 for algo in l ist_names_anm_algos :

499 p l t . p l o t ( output_dic [ ’ experiment_id ’ ] ,

500 output_dic [ algo+ ’ _auc ’ ] , marker = ’ o ’ ,

501 l a b e l = algo + ’ ( ’ + s t r ( round ( np . mean(

502 output_dic [ algo+ ’ _auc ’ ] ) ,

503 round_my_numbers_decimals ) ) + ’ , ’+ s t r (

504 round ( np . s td ( output_dic [ algo+

505 ’ _auc ’ ] ) , round_my_numbers_decimals ) ) +

506 ’ ) ’ )
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507 p l t . x l a b e l ( ’ # Experiment ’ )

508 p l t . y l a b e l ( ’ # Average AUC on ’+ s t r ( n_fold ) +

509 ’− fo ld ’ )

510 p l t . legend ( l o c = ’ bes t ’ )

511

512 # t ime p l o t

513 p l t . subplot ( 2 , 1 , 2 )

514 for algo in l ist_names_anm_algos :

515 p l t . p l o t ( output_dic [ ’ experiment_id ’ ] ,

516 output_dic [ algo+ ’ _time ’ ] , marker =

517 ’ o ’ , l a b e l = algo + ’ ( ’ + s t r (

518 round ( np . mean( output_dic [ algo+

519 ’ _time ’ ] ) , round_my_numbers_decimals ) )

520 + ’ , ’+ s t r ( round ( np . s td (

521 output_dic [ algo+ ’ _time ’ ] ) ,

522 round_my_numbers_decimals ) ) + ’ ) ’ )

523 p l t . x l a b e l ( ’ # Experiment ’ )

524 p l t . y l a b e l ( ’ # Average Time ( sec ) on ’+

525 s t r ( n_fold ) + ’−fo ld ’ )

526 p l t . legend ( l o c = ’ bes t ’ )

527

528 # s a v e image as png

529 i f ( save_plo ts ) :

530 # Note : change path −name f i l e a c c o r d i n g

531 # t o where you want t h e p l o t t o be s a v e d

532 # as png f i l e

533 p l t . s a v e f i g ( "/gdrive/My Drive/python/

534 anomaly d e t e c t i o n /data/ r e s u l t s /"+

535 name_data + st r ing_ index_t ime +

536 " _ l i n e p l o t . png " )

537
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538 p l t . show ( )

539 p l t . c l o s e ( )

540 print ( ’ Line p l o t of performance r e s u l t s

541 p l o t t e d . ’ )

542

543 except Exception as e :

544 print ( ’ Error : ’ + s t r ( e ) )

545

546 t r y :

547 # 1) f i g u r e box p l o t r e s u l t s AUC

548 p l t . f i g u r e ( "AUC Anomaly d e t e c t i o n on data " +

549 name_data , f i g s i z e = ( 3 3 , 1 5 ) )

550

551 # AUC p l o t

552 posi t ion_box = 1

553 for algo in l ist_names_anm_algos :

554 bxpt = p l t . boxplot ( output_dic [ algo+ ’ _auc ’ ] ,

555 meanline = True , showmeans= True , v e r t=

556 True , autorange= True , s h o w f l i e r s= False ,

557 p o s i t i o n s = [ posi t ion_box ] ) # , l a b e l s =

558 algo + ’ ( ’ + s t r ( round ( np . mean(

559 output_dic [ algo+ ’ _auc ’ ] ) , 2 ) ) + ’ , ’+

560 s t r ( round ( np . s td ( output_dic [ algo+ ’ _auc ’ ] ) ,

561 2 ) ) + ’ ) ’ )

562 x_bxpt , y_bxpt =

563 bxpt [ ’ means ’ ] [ 0 ] . get_xydata ( ) [ 1 ]

564 p l t . annotate ( ’ \u03BC = ’ + s t r (

565 round ( np . mean( output_dic [ algo+ ’ _auc ’ ] ) ,

566 round_my_numbers_decimals ) ) + ’\n \u03C3 =

567 ’+ s t r ( round ( np . s td ( output_dic [ algo+ ’ _auc ’ ] ) ,

568 round_my_numbers_decimals ) ) , xy =
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569 ( x_bxpt , y_bxpt ) , f o n t s i z e = 20)

570 posi t ion_box += 1

571

572 p l t . x t i c k s ( np . arange ( 1 , posi t ion_box ) ,

573 l ist_names_anm_algos , r o t a t i o n = 15 ,

574 f o n t s i z e = 15)

575 p l t . y t i c k s ( f o n t s i z e = 15)

576 p l t . y l a b e l ( ’ Average AUC on ’+ s t r ( n_fold ) +

577 ’− fo ld ’ , f o n t s i z e = 30)

578

579 # s a v e image as png

580 i f ( save_plo ts ) :

581 # Note : change path −name f i l e a c c o r d i n g

582 # t o where you want t h e p l o t t o be s a v e d

583 # as png f i l e

584 p l t . s a v e f i g ( "/gdrive/My Drive/python/

585 anomaly d e t e c t i o n /data/ r e s u l t s /"+

586 name_data + st r ing_ index_t ime +

587 " _AUC_boxplot . png " )

588

589 del bxpt

590 p l t . show ( )

591 p l t . c l o s e ( )

592 print ( ’ Box p l o t of AUC r e s u l t s p l o t t e d . ’ )

593

594 except Exception as e :

595 print ( ’ Error : ’ + s t r ( e ) )

596

597 t r y :

598

599 # 2) f i g u r e box p l o t r e s u l t s t ime
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600 p l t . f i g u r e ( " Time Anomaly d e t e c t i o n on data "

601 + name_data , f i g s i z e = ( 3 3 , 1 5 ) )

602

603 # t ime p l o t

604 posi t ion_box = 1

605 for algo in l ist_names_anm_algos :

606 bxpt = p l t . boxplot ( output_dic [ algo+ ’ _time ’ ] ,

607 meanline = True , showmeans= True ,

608 v e r t= True , autorange= True , s h o w f l i e r s=

609 False , p o s i t i o n s = [ posi t ion_box ] ) # , l a b e l s

610 = algo + ’ ( ’ + s t r ( round ( np . mean(

611 output_dic [ algo+ ’ _auc ’ ] ) , 2 ) ) + ’ , ’+

612 s t r ( round ( np . s td ( output_dic [ algo+

613 ’ _time ’ ] ) , 2 ) ) + ’ ) ’ )

614 x_bxpt , y_bxpt =

615 bxpt [ ’ means ’ ] [ 0 ] . get_xydata ( ) [ 1 ]

616 p l t . annotate ( ’ \u03BC = ’ + s t r ( round (

617 np . mean( output_dic [ algo+ ’ _time ’ ] ) ,

618 round_my_numbers_decimals ) ) +

619 ’\n \u03C3 = ’+ s t r ( round ( np . s td (

620 output_dic [ algo+ ’ _time ’ ] ) ,

621 round_my_numbers_decimals ) ) ,

622 xy = ( x_bxpt , y_bxpt ) , f o n t s i z e =

623 20) # , f o n t s i z e =

624 i n t (70/ len ( l ist_names_anm_algos ) )

625 posi t ion_box += 1

626

627 p l t . x t i c k s ( np . arange ( 1 , posi t ion_box ) ,

628 l ist_names_anm_algos , r o t a t i o n = 15 ,

629 f o n t s i z e = 15)

630 p l t . y t i c k s ( f o n t s i z e = 15)
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631 p l t . y l a b e l ( ’ Average Time ( sec ) on ’+

632 s t r ( n_fold ) + ’−fo ld ’ , f o n t s i z e = 30)

633

634 # s a v e image as png

635 i f ( save_plo ts ) :

636 # Note : change path −name f i l e a c c o r d i n g

637 # t o where you want t h e p l o t t o be s a v e d

638 # as png f i l e

639 p l t . s a v e f i g ( "/gdrive/My Drive/python/

640 anomaly d e t e c t i o n /data/ r e s u l t s /"+

641 name_data + st r ing_ index_t ime +

642 " _Time_boxplot . png " )

643

644 del bxpt

645 p l t . show ( )

646 p l t . c l o s e ( )

647 print ( ’ Box p l o t of Computation time r e s u l t s

648 p l o t t e d . ’ )

649

650 except Exception as e :

651 print ( ’ Error : ’ + s t r ( e ) )

652

653 # −−−−−−−−−−−−−−−−−−−−−−−−−−− c l e a r memory

654 del data , X , y , X_train , X_test , y_tra in , y _ t e s t
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