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“Everything Should Be Made as Simple as Possible, But Not Simpler.”

Albert Einstein
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Abstract

Automatic surveillance of abnormal trading behaviours/patterns (ATPs) in capital
markets is essential to protect the capital of legitimate traders from price distortion
of finance assets. Detection of ATPs involves the finding of single (one trading or-
der with large trading volume and long cancellation time, e.g. several minutes) or
sequential (correlated multiple trading orders with small volume and short cancel-
lation time, e.g. milliseconds) anomalies in trading data. However, accurate and
timely identification of ATPs remains an open challenge due to high volume and
high frequency data as well as unlabelled data. In this research, we have investi-
gated anomaly detection approaches to address the challenges and filled the knowl-
edge gap through the following four contributions:

Firstly, we have performed a literature review and conducted a thorough bench-
mark evaluation on existing state-of-the-art anomaly detection algorithms (i.e. Ar-
tificial Neural Network- Auto Encoder, Isolation Forest, Local Outlier Factor (LOF),
Histogram-based Outlier Score (HBOS), Angle-based Outlier Detection (ABOD), Prin-
ciple Component Analysis (PCA) and K-Nearest Neighbors (KNN) ) using publicly
available datasets from different domains such as health and finance. The exper-
imental results show that Isolation Forest, HBOS and PCA are robust algorithms
in terms of both high detection performance (Area Under the ROC Curve (AUC) =
0.95) and low computational time for large dataset.

Secondly, as one of the major contributions of this research, we have proposed
a novel generic unsupervised anomaly detection model, which can be applied to
anomaly detection of both financial and non-financial datasets. The essence of the
proposed model consists in partitioning a bounded D-dimensional space (e.g. the
unit hyper-cube IP) by a sequence of random shapes, in which each data will be
trapped either inside or outside, followed by probabilistic modelling of a pattern

of falling inside or outside for a data point. Anomalous data which are rare and
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different from the rest of the dataset will be assigned a higher anomaly score.

Thirdly, to investigate the robustness of the proposed anomaly detection model,
we have performed a thorough sensitivity analysis under different hyper-parameters
settings (i.e. the number of random shapes, shape of random shapes, etc.) and dif-
ferent publicly available datasets. The results show that the model performance sta-
bilises as the number of random shapes increases. Furthermore, the shape of random
shapes could affect the performance of the algorithm which needs to be optimised
for a given dataset. Also, the results indicate that the algorithm’s computational time
increases linearly with the number of random shapes which shows the robustness
of the algorithm for detecting anomalies in a timely manner.

Finally, we have applied the proposed algorithm on real Bitcoin prices as a case
study and tested, evaluated and compared its performance with the benchmark
algorithms such as Auto Encoder, Isolation Forest, LOF, HBOS, ABOD, PCA and
KNN. The results show that the proposed algorithm achieves AUC = 0.94. Compar-
ing to the benchmark algorithms, it also outperforms the existing algorithms by 8.5

percent increase while having low computational time.



Acknowledgements

I would like to thank my PhD supervisors (Prof. Liangxiu Han, Prof. Kevin Albert-
son and Dr. Yi Cao) for their considerable time and efforts supporting me during
this PhD research. In addition, I would like to thank Manchester Metropolitan Uni-

versity (MMU) for providing funding for this research project.



\%1

Contents

Declaration of Authorship i
Abstract iii
Acknowledgements v
List of Figures ix
List of Tables xiii
List of Abbreviations XV
List of Symbols Xvi
1 Introduction 1
1.1 Motivation and Background . . . . ... ... ... . oo 0L 1

1.2 Research Challenges and Questions . . . ... .............. 4

1.3 Aimsand Objectives . . . .. ... ... ... .. ... .. .. ... 5

14 Contributions . .. ... ... .. ... .. o oo oo 6

1.5 ThesisStructure . . . .. ... ... ... . oo oo 7

2 Background 9
2.1 Abnormal Trading in Financial Markets . . . ... ... ... ...... 9
211 ExchangeMarkets . ... ... ... ... ... . 0 0L, 9

212 LimitOrderBook . . . . ... ... ... . ... . ... . ... 10

2.1.3 Manipulative (Abnormal) Trading Strategies . . . . . ... ... 11

2.2 Anomaly Detection Algorithms . . . .. .. ........... .. ... 13
2.2.1 C(lassification-based Anomaly Detection. . . . . ... ... ... 14

2.2.2  One-Class Anomaly Detection . . ... .............. 15



vii

2.2.3 Distance-based Anomaly Detection . ... ... ......... 17
224 Clustering-based Anomaly Detection . . ... ... ....... 19
2.2.5 Density-based Anomaly Detection . . . ... ... ... ..... 20
2.2.6 Depth-based Anomaly Detection . . . ... ............ 22
2.2.7 Angle-based Anomaly Detection . . . . .. ... ......... 22
2.2.8 Isolation-based Anomaly Detection . ... ... ......... 23
229 Model-based Anomaly Detection . . . . . ... ... ....... 25
2.3 Summary of the algorithmic studies for ATPs detection . . . ... ... 28
Anomaly Detection Benchmark Evaluation 30
31 datasets . . . . ... ... 30
3.2 EvaluationMetrics . . ... ... .. .. L oo 31
33 Experimentssetups . . ... . ... ... ... .. . 0 32
3.4 Resultsand Discussions . . ... ............ ... .. .. ... 33
Proposed Anomaly Detection Algorithm 38
41 Proposed Anomaly Detection Algorithm . . ... ... ... ...... 38
411 Random Shapes Generation . . . . ... ... ........... 43
412 BinaryEncoding . ........... .. ... ... ... ... 46
413 Bayesian Incremental Updating . . . ... ... .......... 48
414 Computing Anomaly Score . . . ... ..... .. ... .. ... 50

4.2 Utilising Minkowski Distance Function in the Algorithm as a Special

43 Lower and Upper Bounds for the Number of Required Random Shapes 52

44 Optimal Volume of Random Shapes . . ... ... ... ......... 57
Sensitivity Analysis of the Proposed Anomaly Detection Algorithm 59
51 ResearchQuestions . . . . . . . . . . . i it 59
52 EvaluationMetrics . . ... ... ... oo oo 60
53 Experimentssetups . . ... ... ... ... .o o oL 60

5.3.1 Experiment 1: Investigation of Shape of Random Shapes . . . . 60

5.3.2 Experiment 2: Investigation of Number of Random Shapes . . . 62

5.4 Results and DiscusSions . . . . . . v v v v v e e e e e 62



5.4.1 Results and Discussions Experiment1: . . ... ... ...... 62

5.4.2 Results and Discussions Experiment2: . . ... ......... 73

6 Abnormal Trading Detection and Evaluations 82
6.1 Methodology . ... .. .. ... ... .. .. .. ... .. . ... 82
6.1.1 Bitcoindataset . .. ... ..., .. .. . .. 0 L 82

6.1.2 Feature Extraction in Bitcoindata . . ... .. .. ..... ... 83

6.1.3 Bitcoin Data Statistical Analysis and Labelling . . . . ... ... 85

6.14 Evaluation Metrics . . . ... ... ... ... ... .. .. .. 87

6.1.5 Experiments Setups and Customisation of the proposed Algo-

rithm . . . . e 87

6.2 Resultsand Discussions . . . . . . . . . v i i e 88

7 Conclusions and Future Work 91
7.1 SummaryoftheThesis . . . ... ...... ... ... ... ... .. ..... 91

7.2 Future Work . . . . . . . . 92

A Python Code 95

A.1 Python Code Developed for the Proposed Anomaly Detection Algo-

A.2 Python Code Developed for Evaluation of Anomaly Detection Algo-

rithms and Sensitivity Analysis . . . ... ... .. ............ 99

Bibliography 121



List of Figures

3.1

3.2

3.3

34

4.1

4.2

4.3

44

AUC box plot of benchmark evaluation of existing anomaly detection
algorithms on the Breast Cancer dataset. . . . . . ... ... ... ....
Computation time (measured in seconds) box plot of benchmark eval-
uation of existing anomaly detection algorithms on the Breast Cancer
dataset. . . . . . ... e
AUC box plot of benchmark evaluation of existing anomaly detection
algorithms on the Credit Card dataset. Those benchmark algorithms
which are not shown on the figure either failed or took long time to
perform thus not completed, during the experiment. . . . . .. ... ..
Computation time (measured in seconds) box plot of benchmark eval-
uation of existing anomaly detection algorithms on the Credit Card
dataset. Those benchmark algorithms which are not shown on the
figure either failed or took long time to perform thus not completed,

during theexperiment. . . . . .. ... ... .. o o L

[ustration of five random shapes in green, normal data in blue circles
and abnormal data in red stars. Data points which are closer to each
other are more likely to be trapped by the same random shape.

Three random shapes s, s, and sz in the unit square (2D space). Each
random shape (topological object) partitions the space into Inside and
Outsidesub-spaces. . . . . ... ... ... .. .. ... . . ..
Three random shapes (circles) s1, s, and s3 in the unit square (2D
space). c and r represents the center and radius of each circle. Data
points are x1, X, and x3 with patterns 000, 011 and 100, respectively. . .
Different shapes corresponding to Manhattan (L = 1), Euclidean (L =
2) and Chebyshev (L = co) distance. . . . ... ... ... ........

X

41

47



4.5

51

52

53

54

55

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

[ustration of the unfilled sub-spaces (in red color) as a result of in-
sufficient number of shapes, which do not cover the whole space.
All data instances which fall inside of these unfilled sub-spaces, have
same binary pattern 0000. . .0 and may introduce bias in the anomaly

detection performance. . . . . ... ... . L o oo L 56

AUC box plot for sensitivity analysis of the proposed algorithm (H =
25,L = 1) on the Breast Cancer dataset. . ................. 63
AUC box plot for sensitivity analysis of the proposed algorithm (H =
100, L = 1) on the Breast Cancerdataset. . . . . . ... ... ....... 63
AUC box plot for sensitivity analysis of the proposed algorithm (H =
25,L = 2) on the Breast Cancer dataset. . ... .............. 64
AUC box plot for sensitivity analysis of the proposed algorithm (H =
100, L = 2) on the Breast Cancer dataset. . . . . ... ... ........ 64
AUC box plot for sensitivity analysis of the proposed algorithm (H =
25, L = o) on the Breast Cancer dataset. . . ... ... .......... 65
AUC box plot for sensitivity analysis of the proposed algorithm (H =
100, L = o0) on the Breast Cancer dataset. . . ... ... ......... 65
AUC box plot for sensitivity analysis of the proposed algorithm (H =
25,L = 1) on the Credit Card Fraud Detection dataset. . . . . . .. ... 66
AUC box plot for sensitivity analysis of the proposed algorithm (H =
100, L = 1) on the Credit Card Fraud Detection dataset. . . .. ... .. 66

AUC box plot for sensitivity analysis of the proposed algorithm (H =

25, L = 2) on the Credit Card Fraud Detection dataset. . . . . ... ... 67
AUC box plot for sensitivity analysis of the proposed algorithm (H =
100, L = 2) on the Credit Card Fraud Detection dataset. . . .. ... .. 67
AUC box plot for sensitivity analysis of the proposed algorithm (H =
25, L = o0) on the Credit Card Fraud Detection dataset. . . . ... ... 68
AUC box plot for sensitivity analysis of the proposed algorithm (H =
100, L = o0) on the Credit Card Fraud Detection dataset. . . ... ... 68
AUC box plot for sensitivity analysis of the proposed algorithm (H =

[5,5000], L = 1) on the Breast Cancer dataset. . . . ............ 73



5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

522

5.23

5.24

6.1

6.2

xi

Computation Time box plot for sensitivity analysis of the proposed
algorithm (H = [5,5000], L = 1) on the Breast Cancer dataset. . . . . . 74
AUC box plot for sensitivity analysis of the proposed algorithm (H =
[5,5000], L = 2) on the Breast Cancer dataset. . .. ............ 74
Computation Time box plot for sensitivity analysis of the proposed
algorithm (H = [5,5000], L = 2) on the Breast Cancer dataset. . . . . . 75
AUC box plot for sensitivity analysis of the proposed algorithm (H =
[5,5000], L = o0) on the Breast Cancer dataset.. . . . .. ......... 75
Computation Time box plot for sensitivity analysis of the proposed
algorithm (H = [5,5000], L = o) on the Breast Cancer dataset. . . . . . 76
AUC box plot for sensitivity analysis of the proposed algorithm (H =

[5,5000], L = 1) on the Credit Card Fraud Detection dataset. . ... . . 76
Computation Time box plot for sensitivity analysis of the proposed
algorithm (H = [5,5000], L = 1) on the Credit Card Fraud Detection
dataset. . . . . . .. e 77
AUC box plot for sensitivity analysis of the proposed algorithm (H =
[5,5000], L = 2) on the Credit Card Fraud Detectionset. . . . . ... .. 77
Computation Time box plot for sensitivity analysis of the proposed
algorithm (H = [5,5000], L = 2) on the Credit Card Fraud Detection
dataset. . . . . .. .. 78
AUC box plot for sensitivity analysis of the proposed algorithm (H =
[5,5000], L = o) on the Credit Card Fraud Detection dataset. . . . . . . 79
Computation Time box plot for sensitivity analysis of the proposed
algorithm (H = [5,5000], L = o0) on the Credit Card Fraud Detection

dataset. . . . . . . e 79

Left diagram: Density estimation on 1D encoded BTC data via PCA.
Right diagram: Anomaly Scores distribution based on relative densi-
ties. The data are 5000 samples from 2020/04/02. . .. ... ... ... 86
Left diagram: Density estimation on 1D encoded BTC data via PCA.
Right diagram: Anomaly Scores distribution based on relative densi-

ties. The data are 5000 samples from 2020/04/06. . .. ... ... ... 86



6.3

6.4

6.5

6.6

xii

AUC boxplot of proposed algorithm compared with benchmark algo-
rithms on Bitcoin data (02/04/2020). . . . . . . ... ... ... ..., 89
Computational time boxplot of proposed algorithm (Pouyan) com-
pared with benchmark algorithms on Bitcoin data (02/04/2020).. . . . 89
AUC boxplot of proposed algorithm compared with benchmark algo-
rithms on Bitcoin data (06/04/2020). . . . . ... ... ... .. ..... 90
Computational time boxplot of proposed algorithm (Pouyan) com-

pared with benchmark algorithms on Bitcoin data (06/04/2020).. . . . 90



List of Tables

2.1

3.1

51

52

5.3

Summary and comparison of the algorithmic studies for detection of

Summary table of anomaly detection benchmark evaluation. All num-
bers are rounded up to two decimal points. Values with NA label (not
applicable) correspond to the algorithms failure during the run time

due to large computational or memory requirements. . . . . ... ...

Summary table of sensitivity analysis (average AUC) for the proposed
algorithm on the Breast Cancer (BC) and Credit Card (CC) Fraud De-
tection datasets in Experiment 1 for H = 25. All numbers are rounded
up totwo decimal points. . . .. ... Lo o L o
Summary table of sensitivity analysis (average AUC) for the proposed
algorithm on the Breast Cancer (BC) and Credit Card (CC) Fraud De-
tection datasets in Experiment 1 for H = 100. All numbers are rounded
up totwodecimal points. . . ... ... L oo L o
Summary table of sensitivity analysis (average AUC and Average run
time) for the proposed algorithm on the Breast Cancer Dataset in Ex-
periment 2. All numbers are rounded up to two decimal points. We
fix the Min, = %(;L and Max, = %/L for different L = {1,2}. For
L = oo, we fix Min, = 0.5 and Max, = 1. Number of the shapes
increases from 5 to 5000 (H = {5, 10, 25, 50, 100, 500, 1000, 2500, 5000}).

xiii

37

81



Xiv

5.4 Summary table of sensitivity analysis (average AUC and Average run
time) for the proposed algorithm on the Credit Card Fraud Detection
dataset in Experiment 2. All numbers are rounded up to two decimal

points. We fix the Min, = L(;L and Max, = %/L for different L =

5
{1,2}. For L = oo, we fix Min, = 0.5 and Max, = 1. Number of the

shapes increases from 5 to 5000 (H = {5, 10, 25, 50, 100, 500, 1000, 2500, 5000}). 81

6.1 Extracted features of the Bitcoin trading data. A = 10 is chosen for

computing the features. . . . ... ... ... ... o oL 84



XV

List of Abbreviations

AD
ATPs
AUC
HBOS
KDE
KNN
LOF
ML
PCA
ROC

Anomaly Detection

Abnormal Trading Patterns

Area Under the ROC Curve
Histogram-based Outlier Score
Kernel Density Estimation
K-Nearest Neighbors

Local Outlier Factor

Machine Learning

Principle Component Analysis
Receiver Operator Characteristics



xvi

List of Symbols

Min,
Max,

Ph
T

&p

Number of dimensions of a dataset

d-th dimension of a dataset

Number of data instances in a train dataset

Number of data instances in a test dataset

The unit interval [0, 1]

a given train dataset

a given test dataset

index of a train data instance

index of a test data instance

i-th train data instance

j-th test data instance

a set of random shapes

an individual random shape

Volume h-th random shape

Expectation volume of random shapes

Fraction of volume h-th random shape which falls inside the cube
Expectation volume of all random shapes which fall inside the cube
Cumulative covered volume of random shapes after generating H shapes
Expectation (mean)

Natural logarithm

Number of random shapes

Index random shape

Centre h-th random shape

Radius h-th random shape

Lower bound for 7,

Upper bound for 7y,

Minkowski norm’s parameter

Posterior probability of observing a binary pattern of a data

Posterior probability of observing a data point as 1 (inside) based on the random shape s,
Posterior probability of observing a data point as 1 or 0 (inside or outside of random shape s;,)
Number of observed data points (+1) as 1 or 0 (inside or outside) based on the random shape s,
Number of data instances falling inside the random shape sy,

Vector to store and update all «,



XVil

Dedicated to my parents



Chapter 1

Introduction

This chapter introduces the overview of the thesis. Section 1.1 explains the moti-
vation and backgrounds regarding this PhD research, followed by research chal-
lenges and questions in Section 1.2. Next, aims and objective are included in Section
1.3. Contributions of this research are summarized in Section 1.4. Finally, the thesis

structure is provided in Section 1.5.

1.1 Motivation and Background

Monitoring and surveillance of financial markets where traders can buy and sell
financial assets (e.g. stock of a company), is an important problem. The reason is that
financial markets may be manipulated intentionally by criminals who apply certain
trading strategies (e.g. submitting large number of small-sized trading orders and
cancelling these orders in milliseconds) in order to gain illegal profit by distorting
the prices [1], [2]. As a result, legitimate traders may lose their capitals due to the
unfair price change.

Since the trading data generated by criminal activities may be generally rare,
different and abnormal compared with the majority normal trading data, anomaly
detection algorithms can be applied for the purpose of law enforcement [3] by au-
tomatically monitoring and flagging suspicious abnormal trading behaviours/pat-
terns (ATPs) in these markets. Automatic identification of ATPs is important as these
patterns may indicate a potential fraud and crime to be further investigated rapidly
by financial authorities [2], a task which can not be performed by humans since
analysing billions of trading data by humans to find ATPs is impossible in a timely

manner.
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Regulators such as US Securities and Exchange Commission (SEC) introduced
mechanisms (e.g. banning short selling for some period) to prevent market from
crashing and experiencing large price movements [4].

Also, financial authorities may utilise sophisticated automatic surveillance ap-
proaches for detecting ATPs. It is important to mention that the details of such ap-
proaches are not publicly disclosed due to the security and privacy reasons in the
financial domain. In other words, if the technical details of surveillance methods
utilised by financial authorities are disclosed to the public, criminals may take ad-
vantage of those technical details by changing their criminal behaviours to bypass
the surveillance methods.

Price manipulation as one of the most important type of Abnormal Trading Pat-
terns (ATPs) is classified into the following types according to one of the first studies

conducted in this field by Allen [5]:

* Information-based manipulation: Spreading false rumours in order to deceive

investors planning to buy or sell a certain stock.

* Action-based manipulation: Actions that create an imbalance in demand and

supply.

* Trade-based manipulation: Buying or selling a financial asset to create market

impact.

The focus of this PhD thesis is on detecting trade-based ATPs as a case study via
proposing a novel general-purpose anomaly detection algorithm. Therefore, the pro-
posed algorithm can also be applied in domains other than finance (e.g. health do-
main) to detect anomalies in the data. This general-purpose feature of the proposed
algorithm may enable it to be accepted and utilised by community of researchers and
practitioners in different fields and industries in addition to the financial domain.

The ATPs happen as consequence of real trading (transaction of buying and sell-
ing) of a financial asset (e.g. stock of a company). The problem of ATPs detection
(e.g. price manipulation detection in capital markets) can be converted into finding
single or sequential anomalies in trading orders data (e.g. price, volume and time of

the order) sent to the exchanges [1], [2].
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The existing computational researches in this field generally applied (or modi-
fied) existing anomaly detection methods on financial trading data to identify irreg-
ularities in the data automatically.

For instance, Logistic Regression (LR [6]), Support vector Machines (SVM) and
Artificial Neural Networks (ANN) were applied to daily stock prices to detect trade-
based manipulations [7]. In that study, ANN and SVM outperformed the logistic re-
gression. However, the supervised models in this study are not practical for utilisa-
tion in real-world scenarios as these require label information, which is not available
due to confidentiality and security issues in the financial domain.

Zhai et al. [2] developed a more robust hybrid model than previous studies
to detect single and sequential disruptive trading behaviours. First, the raw in-
put vector [price, volume, timestamp] of each limit order are transformed into a
three-dimensional feature vector to reduce the non-stationary properties of the orig-
inal data. One Class SVM (OCSVM) and Hidden Markov Model (HMM, see Sec-
tion 2.2.9 for more details regrading model-based anomaly detection) are utilised
to detect single-order and multi-order (sequential) disruptive trading behaviours,
respectively. In addition, the hybrid model uses a sliding window as an adaptive
mechanism to update the model parameters. Furthermore, the authors in [2] in-
jected artificial manipulation cases in four high liquid stocks on NASDAQ to test
the performance of the model. Although the hybrid model outperformed the bench-
mark models, it may not be suitable for practical real-time anomaly detection due to
the computational complexity of the model and the long time required for training
and/or testing phases of the algorithms.

Another algorithm developed in this field is based on Hidden Markov model
(HMM) is called Adaptive Hidden Markov with Anomaly states (AHMMAS) by
Cao et al. [1]. This algorithm utilizes four features based on wavelet transforma-
tion and gradients of high-frequency prices. This model outperformed the existing
benchmark models (K- Nearest neighbours and OCSVM), while the Area Under the
Receiver Operating Characteristic (ROC) curve (AUC) [8] was used as evaluation
metric. As the model does not update incrementally due to the computational com-
plexity for modelling the probability density function (PDF), it must wait until sig-

nificant changes are observed in data and then perform the updating action. This
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may reduce its performance for early detection of manipulation cases. A compre-
hensive literature review is provided in Section 2.2.

To the best of our knowledge, the major problems of the existing methods are:
1) most of the studies focused on supervised algorithms (see Table 2.1) as a solution
for this problem with an assumption that labelled datasets are available which is not
true. In fact, due to the security and confidentially reasons and the time-consuming
nature of hand labelling large amount of data by financial experts, real financial
trading data are not labelled. Therefore, such supervised algorithms are not practi-
cally suitable for solving this problem, and 2) computational complexity of existing
models (e.g. Neural Networks) requires long time for processing data and updat-
ing models’ parameters, which will introduce further delays in detecting ATPs. This
problem can lead to late detection of an abnormal pattern (e.g. price manipulation)
in financial markets, which will consequently lead to loosing the investments of le-
gitimate traders, if it is not detected rapidly.

High dimensionality and imbalance data, streaming processing, computational
complexity of existing methods and unavailability of labelled datasets for training
the algorithms are significant barriers to fully utilise anomaly detection algorithms
for real-world surveillance and monitoring systems in which the existing methods
fail to address. Therefore, a rapid unsupervised algorithm, which does not require
the label information (e.g. which trading data is normal or abnormal) and can detect

such ATPs rapidly and efficiently in real-world scenarios is needed to solve the issue.

1.2 Research Challenges and Questions

Designing an unsupervised algorithm for the task of detecting ATPs rapidly as men-
tioned above, is more efficient and appealing than reliance on the supervised algo-

rithms. However, designing an unsupervised algorithm is very challenging due to:

* Anunsupervised algorithm need not rely on label information to detect irregu-
larities in datasets. However, the algorithm must rely only on the data features

to learn the patterns of normality.
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* Large volume and high-velocity of trading data. Analysing large volume of

streaming trading data in near real-time requires a rapid algorithm.

In addition to the above items, as financial trading datasets are not usually la-
belled, evaluation of anomaly detection performance of an algorithm introduces an-
other major challenge. Therefore, we are interested to find potential answers for the

following research questions to address the above challenges:

¢ to design, develop, implement and propose a novel unsupervised anomaly
detection algorithm for general purpose applications (applicable on different

datasets including but not limited to financial/trading datasets).

* to determine appropriate hyper-parameters values so as to improve or max-

imise performance of the algorithm.
* to determine which features are required for detecting ATPs.
* to apply the proposed algorithm on financial trading data.

* to analyse financial trading data and label the dataset for evaluation purposes

and comparison with existing benchmark algorithms.

1.3 Aims and Objectives

In order to address the research challenges and questions explained in Section 1.2,
the aim of this PhD research will be to design, implement and evaluate a novel un-
supervised anomaly detection algorithm capable of detecting anomalies in both fi-
nancial and non-financial datasets (general purpose) in a timely manner. However,
the main focus will be on fast detection of trade-based Abnormal Trading Patterns
(ATPs) in financial markets as a case study.

The objectives will be to:

* Perform a thorough review of general anomaly detection algorithms for irregu-
lar trading patterns detection based on data-driven, computational approaches

in the literature.
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* Design a robust and computationally efficient unsupervised anomaly detec-

tion algorithm.

Analyse financial data and label the dataset.

Apply the proposed algorithm on the financial data.

Evaluate and compare the performance of the proposed algorithm with exist-

ing algorithms.

1.4 Contributions

The contributions of this PhD research are listed below:

* A literature review and benchmark evaluation on existing anomaly detection
algorithms such as Artificial Neural Network Auto Encoder, Isolation For-
est, Local outlier Factor (LOF), Histogram-based outlier Score (HBOS), Angle-
based Outlier Detection (ABOD), Principle Component Analysis (PCA) and
K-Nearest Neighbors (KNN). These algorithms evaluated via Area Under the
ROC Curve (AUC) and computational time on publicly labelled datasets from
different domains such as finance and health to investigate which one has a
combination of both high AUC and low computational time, thus serving as
a foundation for developing a new algorithm. The results show that Isolation
Forest, HBOS and PCA are robust algorithms in terms of high detection per-
formance (Area Under the ROC Curve (AUC) = 0.95) and low computational

time specially for large datasets.

* A novel unsupervised anomaly detection algorithm/model. The algorithm is
intuitively based on the idea of partitioning a bounded D-dimensional space
(e.g. the unit hyper-cube IP) by a sequence of random shapes, in which each
data will be trapped (isolated) either inside (encoded by 1) or outside (encoded
by 0). Such a partitioning scheme, encodes each data into a binary pattern (se-
quence of 0s and 1s). Under the fundamental assumption for all anomaly de-
tection algorithms that anomalous data (minority data) are rare and have dif-

ferent characteristics, the proposed algorithm learns the binary patterns by the
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probabilistic modelling approach and can distinguish anomalous data whose
binary patterns of trapping (inside or outside) based on the sequence of ran-
dom shapes is significantly different from rest of the dataset (normal data or
majority). Finally, the algorithm assigns an anomaly score for each data, which

indicates the degree to which it is anomalous.

* Sensitivity analysis of the proposed algorithm under different hyper-parameters
settings. We investigate the robustness of the proposed algorithm on pub-
licly available datasets and show that the performance of the algorithm will
stabilise as the number of random shapes increases. Furthermore, the shape
of random shapes can effect the performance of the algorithm which needs
to be optimised for a given dataset. Also, the results indicate that the al-
gorithm’s computational time increases linearly with the number of random
shapes which shows the robustness of the algorithm for detecting anomalies

in a timely manner.

* Application of the proposed anomaly detection algorithm to financial trad-
ing data. We applied the proposed algorithm on real Bitcoin prices as a case
study and tested, evaluated and compared the performance of the proposed
algorithm with the Auto Encoder, Isolation Forest, LOF, HBOS, ABOD, PCA
and KNN. The results show that the proposed algorithm achieves AUC = 0.94.
Comparing to the benchmark algorithms, it also outperforms the existing al-

gorithms by 8.5 percent increase while having low computational time.

1.5 Thesis Structure
The organisation of this thesis is as follows:

* Chapter 2 reviews literature regarding existing computational methods for de-
tecting Abnormal Trading Patterns (ATPs) in financial markets. Furthermore,
general anomaly detection algorithms in the machine learning field are re-
viewed as these algorithms provide the foundation for constructing algorithms

capable of detecting ATPs. The algorithms are categorised and classified based
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on their underlying assumptions and compared with each other in order to

identify strengths and weaknesses associated with each individual algorithm.

¢ In Chapter 3, publicly available datasets are utilised to compare the perfor-
mance of the existing anomaly detection algorithms in terms of AUC of anomaly
detection task and computational time. This chapter identifies the most robust
algorithm(s) with high AUC and low computational time in order to build a

theoretical foundation for proposing a new anomaly detection algorithm.

¢ Anovel anomaly detection algorithm is proposed in Chapter 4. The theoretical

foundations of the algorithm will also be described in that chapter.

* Sensitivity analysis of the hyper-parameters of the proposed algorithm is pro-

vided in Chapter 5.

¢ In Chapter 6, the proposed anomaly detection algorithm will be applied on real
Bitcoin trading data (which are publicly available) and its performances for
detecting ATPs is compared with benchmark anomaly detection algorithms.
We determine that the proposed algorithm performs better than existing algo-
rithms in terms of considering both AUC of outlier detection and computa-

tional time (measured in seconds).
¢ The thesis is concluded in Chapter 7.

* The Python code is provided in Appendix A.



Chapter 2

Background

This Chapter reviews the background and domain knowledge in financial trading.
It is essential to understand the fundamentals of exchange markets (Section 2.1.1)
and how limit order book (Section 2.1.2) works, in order to be able to design novel
anomaly detection algorithms in this field. Furthermore, understanding these con-
cepts facilitates understating how the process of manipulative trading tactics (Sec-
tion 2.1.3) works.

Since the problem of detecting ATPs is closely related to anomaly detection, and
the aim of this PhD (see 1.3) is to design and develop a novel general purpose unsu-
pervised anomaly detection algorithm, which can be applied on any dataset includ-
ing but not limited to financial data, we also review the general-purpose anomaly
detection algorithms in Section 2.2. In that section, we also address and review how
these algorithms have been modified /applied to financial data for ATPs detection.

Section 2.3 summarises and discuss the existing approaches for ATPs detection.

2.1 Abnormal Trading in Financial Markets

21.1 Exchange Markets

An Exchange market is a physical or virtual place, such as online platform, where de-
mand and supply sides of the market called buyers and sellers, respectively, interact
with each other in order to trade (exchange) an asset (e.g. stock of a company) [9].
There exist several markets such as stocks, Forex (Foreign Exchange), commodity,
cryptocurrency and energy markets, each one, offers traders certain types of assets

for trading. In addition, there exists derivative markets (e.g. options and futures



Chapter 2. Background 10

contracts), where the price of the asset is derived from an underlying spot price
(current market price of a financial asset) [10].

As aresult, nowadays traders have many diversified trading venues to trade and
invest on portfolio of assets in different markets. In addition, with the rise of high-
speed computer /networks, human traders and the whole manual trading processes
are being replaced with intelligent trading algorithms trading on behalf of humans
or corporations [11]. Such a combination of algorithmic trading with the ability to
buy or sell an asset in the fraction of a second has opened a new era of trading called
high-frequency trading (HFT) [12] which itself creates new opportunities, challenges

and problems.

2.1.2 Limit Order Book

According to [2], the exchanges (Where buyers and sellers exchange financial assets)
have a limit order book (LOB) for each asset (e.g. stock of a company), which is
a collection of the entire trading orders received by traders for that particular as-
set. If a trader wants to buy a financial asset at the current market price known as
spot price, he/she can submit a market order. Alternatively, the trader may want to
wait until the price reaches to a certain level before buying or selling the asset. In
that case, he/she can submit limit orders by specifying the desired price level and
amount of the asset to be bought or sold. Therefore, each limit order can be viewed
as an intention of a buyer (or seller) to buy (or sell) a certain amount of a partic-
ular asset at a certain price. The exchange keeps the record of non-executed limit
orders of buyers and sellers on buy (bid) and sell (ask) sides of the order book, re-
spectively and matches the orders, accordingly. The best bid price is the maximum
price among buyers (bid side of the LOB). Similarly, the best ask price is the mini-
mum price among the sellers (ask sides of the LOB). The difference between these
two values; Best AskPrice — BestBidPrice is called bid /ask spread.

Many traders who believe that bid and ask sides of the LOB are true reflections
of demand and supply may use the information provided in the LOB to predict the
future price movement and consequently initiate a trade. However, when manip-

ulators trade in the market, they may submit fake orders without any intention of
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executing that order as a means to influence the behaviour of other normal traders

[1].

2.1.3 Manipulative (Abnormal) Trading Strategies

Financial markets can be manipulated intentionally by traders who apply certain
trading strategies in order to gain illegal profit. As a result, other traders may lose
their capital. Furthermore, the image of investing in financial markets as a secure
and well-regulated place for investing may be destroyed. Therefore, detecting and
preventing the manipulators is a must for financial authorities.

Price manipulation as one of the most important type of Abnormal Trading Pat-
terns (ATPs) is classified into the following types according to one of the first studies

conducted in this field by Allen [5]:

¢ Information-based manipulation: Spreading false rumours in order to deceive

investors planning to buy or sell a certain stock.

¢ Action-based manipulation: Actions that create an imbalance in demand and

supply.

¢ Trade-based manipulation: Buying or selling a financial asset to create market

impact.

The focus of this PhD thesis is on detecting trade-based ATPs via anomaly detec-
tion algorithms. Such ATPs happen as consequence of real trading (transaction of
buying and selling) of a financial asset (e.g. stock of a company).

Although, there are various types of trade-based manipulation tactics, these strate-
gies are actually the same method in which, “non-bona fide” orders (fake orders
intended to deceive other investors and create false image of supply or demand,
e.g. large orders away from best Bid/Ask or sequential normal sized orders inside
Bid/Ask spread) are submitted to the exchange to influence the price upward or
downward. When the equity price is affected, the “non-bona fide” orders are can-
celled and the manipulators can gain profit due to the artificial price change caused
by executing their “bona fide” order on the other side of the order book [2].

The manipulation tactics and disruptive trading strategies can be implemented

via a single order or sequential (multiple) orders to delude other investors. Each of
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these techniques have some abnormal characteristics. For instance, sequential spoof-
ing orders (multiple fake low-volume trading orders being submitted within the best
bid-ask price range which are then being cancelled in short time intervals to change
best bid and ask prices) may create a saw shape in the Bid and Ask time series. An-
other important feature of sequential manipulation strategies is the cancellation time

of orders in short time intervals [2].
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2.2 Anomaly Detection Algorithms

The problem of abnormal trading patterns (ATPs) detection (e.g. price manipula-
tion detection in capital markets) can be converted into finding single or sequential
anomalies in trading data (e.g. price, volume and time of a trade). Therefore, it is
essential to review and understand what is meant by the term "anomaly" and how
an anomaly can be detected automatically. This section provides an overview of
anomaly detection definitions and general purpose anomaly detection algorithms
along with particular algorithms, which were modified/applied on financial data
for detection of ATPs. Anomalous data are rare (minority) data that deviate from
majority (normality) patterns [13], [14]. In this thesis, anomalies are defined as col-
lection of data points in a dataset, which are: 1) few (minority) and 2) different (hav-
ing distinguishable statistical characteristics) from the rest of data points. These two
features may separate anomalies from the majority of data points without the re-
quirement of labelling the data points in advance.

Anomaly detection has many applications such as credit card fraud detection,
network intrusion detection, loan application processing, fault detection, medical
condition monitoring, detecting abnormal images and so on [15]. The anomaly de-
tection algorithms can be classified into the following groups according to the avail-

ability of labelled datasets [13]:

¢ Supervised: When data are labelled (normal and abnormal data are flagged),
a classifier algorithm can be trained on a subset of data using these labels as
accurate outputs to learn the input-to-output mappings. The learnt model is

used to predict the output for a given additional data input.

¢ Semi-supervised: When partially labelled data are available or only one class
of data (e.g. just normal instances) are labelled, the algorithm learns the model
of normality to describe the labelled data. Any data point that deviates from

the model is flagged as an anomaly.

¢ Unsupervised: When data are not labelled (the algorithm does not know which

instance is normal or abnormal), the algorithm assumes that anomalous data
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are few and different from the rest of data. In other words, it learns the struc-
ture of a dataset by assuming that abnormal instances are differentiable from
normal ones (these two types of patterns differ in some statistically significant

fashion).

Due to security and confidentiality reasons, and the time consuming task of
hand-labelling data, many real-world datasets are not labelled. Therefore, unsu-
pervised anomaly detection algorithms are more popular than the supervised and
semi-supervised approaches.

A detailed review of existing anomaly detection algorithms can be found in [13]-
[15]. In the following sections, the principles of these algorithms are reviewed and

compared.

2.21 Classification-based Anomaly Detection

Classification-based anomaly detection includes supervised algorithms which re-
quire a training set of labelled data. They utilise this to learn the mapping from
input to output (labels) in a training phase [6]. Once trained, the algorithm classifies
data points into either normal class (0) or abnormal (1). Existing supervised ma-
chine learning algorithms such as Artificial Neural Networks (ANN) [6] and Sup-
port Vector Machines (SVM) [16] can be utilised for supervised anomaly detection.
The advantage of this approach is that, once the classifier is trained, it can predict
the anomaly label very fast for subsequent data. However, this type of method has

several drawbacks:

¢ Labelled data are needed to train the algorithm [13], which may not be avail-

able in real-world applications.

¢ Real-world datasets are very imbalanced (the proportion of abnormal instances
in the dataset is very low), which may introduce problems for existing classi-
fiers to differentiate the patterns of normality and abnormality without bias

[13].

Logistic Regression (LR [6]), SVM and ANN were applied to daily stock prices
to detect trade-based manipulations in Istanbul Stock Market [7]. In that study, dif-

ferences of daily price, trading volume and volatility of stocks in comparison with
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a market index (non-manipulated benchmark) were used as input features for the
algorithms. Although ANN and SVM outperformed the logistic regression, the re-
search was conducted only on daily prices with known manipulation cases (super-
vised learning) and did not consider the limit order data. Furthermore, the super-
vised algorithms are not adaptive and may not be able to detect high frequency ma-
nipulative trading strategies that evolve over time in an unsupervised environment
(the data in real application may not be labelled which is typical in capital markets).
In addition, the assumption of that paper that deviations of market variables from a
benchmark (e.g. market index) is an indicator of manipulation may not be true since
the deviations may have been originated from legitimate sources such as economic
events rather than being the result of price manipulations as explained in [2].
Leangarun et al. [17] applied ANN and a 2-dimensional Gaussian model (see
Section 2.2.5 for details regarding density-based anomaly detection) on intraday
trading data (price, volume and limit order book) of Amazon, Intel and Microsoft
stocks to detect pump-and-dump (large-volume trading orders, which are submit-
ted away from the best bid and ask prices to create a delusion of fake demand or
supply in the bid and ask sides of the LOB) and spoofing (multiple fake low-volume
trading orders being submitted within the best bid-ask price range which are then
being cancelled in short time intervals to change best bid and ask prices) manipu-
lations, respectively. Since the raw data were not labelled, the authors labelled the
data by creating binary rules based on their own assumptions of manipulation con-
ditions. Mean square error was utilised as a performance evaluation metric and they
claim their models were able to detect manipulations. The supervised ANN trained
on labelled data can only detect those specific type of manipulations determined by

the authors and not unseen patterns.

2.2.2 One-Class Anomaly Detection

One-class anomaly detection includes semi-supervised algorithms. In datasets con-
taining only one class (e.g. normal class), a One-class Support Vector Machine (OCSVM)
[18] learns the boundaries (hyper plains) of normal class against the centre of origin
via the application of kernel functions. Any data which falls inside the learnt bound-

ary is classified as normal, otherwise as abnormal. Although this semi-supervised
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method requires only one class to be labelled in the dataset, it still has the draw-
backs mentioned in the Section 2.2.1 regarding the supervised algorithms. There-
fore, these methods are less desirable than unsupervised approaches in anomaly
detection tasks.

V-detector algorithm [19] is another one-class (semi-supervised) anomaly detec-
tion algorithm based on finding anomalous regions of space given labelled normal
data. The algorithm divides the space into normal and abnormal sub-spaces based
on the assumption that the normal subspace includes hyper-spheres with the cen-
tres located at normal training data points. Any test data point that falls inside this
normal region is declared as normal, otherwise the data is identified as anomaly.
This algorithm is equivalent to one-class SVM to find the boundaries of the normal
samples. V-detector algorithm has the following drawbacks:

1) V-detector algorithm requires labelled normal training data to work prop-
erly. When the training data for V-detector is contaminated with abnormal data
(e.g. some of the data points in the training set are anomalies but are included in
the training data set thus are labelled incorrectly as normal data), the algorithm fails
to correctly identify test data points as anomaly, which are close to those incorrectly
labelled training data points because such test data points fall inside the normal
hyper-spheres. The reason is that the algorithm assumes that the training dataset
includes only normal data points and builds the normal sub-space based on this as-
sumption. In other words, contamination of training dataset with abnormal data
points may distort the true normal subspace to be learned by the algorithm, which
will create bias in the performance of the anomaly detection.

2) Hyper-spheres are generated data-dependent in V-detector algorithm based
on the nearest-neighbor distance of a random point to the normal samples, which is
not computationally efficient for big high-dimensional data.

3) if the distribution of normal samples changes over time (which is the case for
financial non-stationary time-series), hyper-spheres of V-detector algorithm need to
be regenerated every time (because the boundaries of normal samples changes and
previous shapes are no longer valid as anomaly detector). This is computationally
expensive.

4) V-detector only declares an anomaly label (no anomaly score), if a data point
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falls inside one of the detector hyper-spheres. For many real-world application, pro-
viding a label is not enough and data need to be ranked according to their anomaly
score.

Basically, the V-detector algorithm is trying to achieve what a Kernel Support
Vector Machine (SVM) achieves which is finding abnormal regions of space which
have boundary with sub-spaces, where are populated with normal data.

Zhai et al. [2] developed a more robust hybrid model than study performed
by [7] to detect single and sequential disruptive trading behaviours. First, the raw
input vector [price, volume, timestamp] of each limit order are transformed into a
three-dimensional feature vector to reduce the non-stationary properties of the orig-
inal data. One Class SVM (OCSVM) and Hidden Markov Model (HMM, see Section
2.2.9 for more details regrading model-based anomaly detection) are utilised to de-
tect single-order and multi-order (sequential) disruptive trading behaviours, respec-
tively. In addition, the hybrid model uses a sliding window as an adaptive mecha-
nism to update the model parameters. Furthermore, Zhai et al. [2] injected artificial
manipulation cases in four high liquid stocks on NASDAQ to test the performance
of the model. Although the hybrid model outperformed the benchmark models, it
may not be suitable for practical real-time anomaly detection due to the computa-
tional complexity of the model and the long time required for training and/or testing
phases of the algorithms. In addition, the fundamental structure of the hybrid model
does not change over time, although it has an adaptive mechanism. Therefore, the
hybrid model will not be able to detect evolutionary manipulative tactics and the
performance of the algorithm may decrease over time due to the static structure of

the model.

2.2.3 Distance-based Anomaly Detection

Distance-based anomaly detection algorithms are unsupervised methods based on
the general assumption that abnormal data in high-dimensional spaces are far away
from other data, that is, they differ significantly [14].

Mathematically, consider a D-dimensional dataset X = {x;}Y, with N data

instances, such that each data instance x; = [x;4]}_; is a D-dimensional vector.
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Distance-based algorithms use a distance (similarity) measure between any two D-
dimensional points x; and x;; i,j € {1,2,...,N}, denoted by Distance(x;,xj), to
compute how close the points are located to each other. Different similarity mea-
sures such as Minkowski [20] (Equation 2.1), Euclidean (Equation 2.1 with L = 2)
and Manhattan (Equation 2.1 with L = 1) can be utilised to measure the distance

[14].

D
Distance(x;, xj) = (Z E led\L)%. 2.1
d=1

Next, an anomaly score for any point x; € X is computed as the sum of its

distance to all the other points in the dataset as shown in

AnomalyScore(x;) = Y _ Distance(xi, xj). (2.2)

XX

Finally, all the points are ranked in a list from high to low anomaly scores and
points in the top of the list may be considered anomalies according to a certain
threshold, e.g. having an anomaly score falling in the top 5 percent. This general
algorithm has different versions based on which similarity measures are utilised.
In addition, instead of computing the sum of distances to all points in the dataset,
which is computationally very expensive, only k-nearest neighbours (points) of x;
may be considered for the calculation of the anomaly score. Alternatively, the dis-
tance of k-th neighbor of a given data point can be utilised as anomaly score[21] .
Moreover, the average or median of the distance of k-nearest neighbours of point
x; can be utilised for the computation of an anomaly score, which may improve the
performance of the algorithm [14], [22].

The advantage of distance-based anomaly detection algorithms is that they do
not need labelled data and are easy to implement as computer programs. How-
ever, their computational complexity increases quadratically with the size of dataset
(O(N?)) as the distance of any pairs of data must be computed [8], [13], [14]. This
time-consuming drawback makes it impractical to utilise distance-based algorithms
for large datasets due to the computational resource constraints.

As a result of curse of dimensionality [23]-[25], standard distance functions such

as Euclidean distance utilised in the anomaly detection algorithms, do not work well
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in high-dimensional data due to the 1) noise effect of irrelevant dimensional values
[26] and 2) distance concentration (data sparsity) of data points, which means most
of the pairwise distances are similar and not distinguishable.

Survey [27] reviews distance measures utilised in the literature of Network In-
trusion Detection and suggests that fractional [} distance functions are useful for
anomaly detection in high-dimensional datasets Particularly, [28] shows that 0.5 <
L <1 are useful for such settings. Aggarwarl et al. [29] proposes fractional distance
metrics as special case of Minkowsi metric with L < 1. They show that these frac-
tional metrics can improve the performance of algorithms in higher dimensions as
there will be more contrast between min and max distance of uniform points from a
target data point. In other words, using such metrics will results in more discrimi-

nation between pair-wise distances of data.

2.24 Clustering-based Anomaly Detection

Clustering algorithms are unsupervised machine learning algorithms that divide the
data into k groups or clusters based on the goal that similarity of the points within
a cluster should be maximized, while the similarity between points from different
clusters be minimized [14]. The most famous clustering algorithm, k-means [30]
initializes the centre of clusters (centroids) randomly as set C = {cr}lr{:l, then the

following two steps run alternately until a termination criterion is reached:
1. Assignment step: the points closest to each centroid are assigned to that cluster.

2. Update step: the average of points assigned to ¢, is computed as r-th updated

centroid [14].

This algorithm can have variety of versions such as computing the median in the
update step. This is called k-median clustering since the calculation of the mean is
sensitive to outliers while determination of the median is more robust to outliers.
Furthermore, this type of algorithm can be classified as hard clustering since every
point in the dataset is assigned to a cluster.

The assumption in the hard clustering-based algorithms is that, points which

are far away from centroids of clusters, are potential anomalies. For example, an
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anomaly score can be computed by the distance from each point to its cluster’s cen-
troid (or all the clusters’ centroids), or average or median distance of each point
to the points within its cluster. Alternatively, points in clusters with size below a
threshold are potential anomalies. Since the clustering algorithm is fast, integrating
it with distance-based approaches results in improvements in runtime.

In contrast to the hard clustering, soft clustering algorithms enable points to be
assigned to many clusters at the same time and it is possible that some points do
not belong to any cluster. These are classified as anomalies [14]. Q(x;,¢,), a real-
number in range 0 — 1 which quantifies the degree of membership of a point x; to
r-th cluster. The fuzzy k-means clustering algorithm [31] computes () for each point
in the dataset according to Equation 2.3 and then normalises the membership values
of each point to sum to one in the assignment step. Next, it updates the ()-weighted

centroid of the clusters.

1
exp (Distance(x;, ¢;)?)

Q<Xi/ Cl’) = (23)

The drawback of the clustering algorithms is the sensitivity to k and the initial-
ization of clusters, which can significantly change the performance of the anomaly
detection algorithm. Furthermore, the algorithms are not deterministic [14]. An-
other type of clustering algorithm which does not need k to be specified in advance
is agglomerative clustering [14] algorithm. With computational complexity O(N?),
it is based on the idea that first, small clusters are formed in datasets and then these
small clusters merge together (based on distance to centroids) to form bigger clusters

until a termination criterion is reached.

2.2.5 Density-based Anomaly Detection

The assumption behind the density-based anomaly detection algorithms (which are
unsupervised) is that data in less-dense areas of high-dimensional space, where the
number of data points per volume of space determines density, are more anomalous

than data located in denser regions [14]. Estimation of density can be performed by:

* Dividing the space into small sub-spaces (grids) and counting the number

of points in each grid. A histogram in one-dimension is an example of such
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density estimation. This simple and fast method (in low-dimensional spaces)
struggles in high-dimensional spaces due to the large number of grids, which
need to be investigated. Furthermore, this approach is sensitive to the size of
the grids. In addition, the density is estimated in discretised spaces and not in

continuous form.

* Assuming that data follow a specific type of distribution (e.g. Gaussian) and
estimating the parameters of the distribution based on the data. However, such

an assumption may not be true for the real-world datasets.

¢ Utilizing kernel functions [14] which are positive and symmetric functions
with integral of one from —oo to +o0, as similarity measures between points.
The distance of point x; from other points in the dataset is utilised as input of

the kernel function to estimate a continuous form of density around point x;.

Furthermore, density can be viewed as reversely proportional to distance of
points from each other. Points that are close to each other are located in denser
areas while far-apart points are located on sparse regions. This idea serves the basis
for a well-known algorithm called Local Outlier Factor (LOF) [32], which compares
local density of point x; with its k-nearest neighbours and can detect both local and
global anomalies in the dataset.

Leangarun et al. [17] applied a 2-dimensional Gaussian model on intraday trad-
ing data (price, volume and limit order book) of Amazon, Intel and Microsoft stocks
to detect pump-and-dump (large-volume trading orders, which are submitted away
from the best bid and ask prices to create a delusion of fake demand or supply in the
bid and ask sides of the LOB) and spoof-trading manipulations (multiple fake low-
volume trading orders being submitted within the best bid-ask price range which
are then being cancelled in short time intervals to change best bid and ask prices),
respectively. Since the raw data were not labelled, the authors labelled the data by
creating binary rules based on their own assumptions of manipulation conditions.
Mean square error was utilised as a performance evaluation metric and they claim
their models were able to detect manipulations. Matched volume and cancellation
volume of orders as two dimensions used in the 2D-Gaussian model and points

outside of 95 percent confidence interval are declared anomalous. The paper does
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not provide any justification regarding why the Gaussian distribution is suitable for

modelling the trading data.

2.2.6 Depth-based Anomaly Detection

The Depth-based unsupervised anomaly detection algorithm [33], [34] assumes data
are distributed like an Onion (layer by layer) in high-dimensional space. The algo-
rithm starts from the outer layer to determine which data are located there. Such
a process is recursively repeated layer by layer until all data points in the datasets
are assigned a layer number (depth from outer layer). Convex hull analysis [33] is
utilised to determine the layers in the algorithm to identify data points located in
the tail of the distribution of a dataset. Once such data points are removed from the
dataset, this process can be repeated sequentially until there is no data point left in
the dataset.

Data points which are located in the outer layers of the Onion are considered
more anomalous than data which are located in the dense inner layers. Therefore,
the depth can be utilised as an anomaly score for comparing the degree of anoma-
lousness of data points.

Although, the algorithm appears very easy to implement, it will be only capable
of finding anomalies located in the outer layers and sparse regions of space. These
data points are considered global extreme values of the dataset. However, local
anomalies, especially those which are trapped between dense clusters of data and
are in the middle layers, may not be detected properly.

The main fundamental problem with this algorithm lies in its assumption that
data have a single cluster that can be viewed as layer-by-layer shape. This is not
valid in real-word datasets as those datasets have multiple clusters located in differ-

ent regions’ of space.

2.2.7 Angle-based Anomaly Detection

The Angle-based unsupervised anomaly detection algorithm proposed by Kriegel
et. al. [35] discriminates outliers from normal data points based on computation of

angle rather than distances. With a dataset consisting of N data points, an angle is
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defined between any three data points forming a triangle. One of the vertices of the
triangle will be the data point to be classified as normal or abnormal, and the other
two vertices are chosen among a set of (N_l)zﬁ combinations corresponding to
choosing two points among the rest of the N — 1 data points [33].

The assumption behind this algorithm is that, the standard deviations of the an-
gles computed for each data point will be higher if such data is normal, while for
an abnormal data point, the standard deviation of the angles will be lower. There-
fore, the standard deviation of angles will be utilised as a measure for computing
anomaly score for each data point.

Such an algorithm can detect global extreme value anomalous data, which are
located in the tail of the data distribution (outer bound). However, it will have dif-
ficulty detecting abnormal data points which are local and located hidden between
and close to dense normal clusters since the standard deviation of angles will be
similar to the normal data points.

Another drawback of this algorithm is its computational cost which is cubic
(O(N?)). Therefore, it is not practical to utilise such an algorithm for processing

of large datasets.

2.2.8 Isolation-based Anomaly Detection

The Isolation-based unsupervised anomaly detection algorithm proposed by Lui et.
al. [36], [37] utilises a completely different approach in comparison with previously
mentioned anomaly detection algorithms.

In this algorithm, no distance metric or any density estimation is utilised. In-
stead, a concept called "Isolation" is proposed by the authors which is a computa-
tional mechanism for separating (isolating) normal data points from abnormal ones.
Such a mechanism involves construction of a random tree structure of data in which
each node corresponds to a random division (partitioning) of high-dimensional data
into two parts (sub-spaces). Practically, this can be achieved by selecting a random
axis-parallel hyper-plane. Those data which are located on the left or right of each
randomly-chosen plane, correspond to the left and right division of each node in the
tree. This formulation is applied on the data and the tree grows recursively, until

there will be one unique sample in the final leaf nodes.
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Once such a tree is constructed, the length of the path from the root node until
the leaf node for each data point will be utilised as a measure for computing the
anomaly score of that data which means less path length results in higher degree
of anomalousness. The assumption is that outliers will be trapped (isolated) sooner
and located more on the top parts of the tree, thus having shorter path length and
higher anomalous score than normal data, while normal data points will be trapped
in the bottom of the tree structure, thus having a longer path length and less anomaly
score than the anomalous data points.

Since the proposed tree structure is a random structure, there is a possibility
that some outliers are still located on the bottom of the tree leading to less accu-
rate anomaly detection results. To overcome this problem that just one tree may
not be sufficient for anomaly detection by this approach, the authors propose the
construction of an ensemble (forest) of trees. Such an ensemble approach involves
construction of set of random trees individually and then computing the average
(mean) path length for each data point to give a more accurate result.

Although, the ensemble of trees approach may outperform an algorithm based
on just one tree in terms of anomaly detection accuracy, it is more computationally
expensive than construction of a tree. To address this issue, a sub-samples of data
(rather than the whole dataset) during the construction of tree can be utilised to re-
duce the computational time. However, the number of sub-samples must be chosen
carefully depending on the dataset as very few sub-samples may not capture and
represent the true distribution of the data. Therefore, there might be a trade-off be-
tween accuracy and computation time.

Although, the Isolation Forest is among one of the robust anomaly detection al-
gorithms, since it utilises axis-parallel hyper-planes and linearly partitions the space
into hyper-rectangles, it will need large number of partitions for real-world non-
linear datasets in order to truly capture the intrinsic of the dataset, resulting in more
computational cost.

In the worst-case scenario, 2D number of hyper-planes (two hyper-planes for
each dimension) are needed for each outlier data point to be isolated from the rest of
data points. For instance, in two-dimensional and three-dimensional spaces, squares

and cubes are required corresponding to four lines and eight surfaces in such spaces,
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respectively. This issue may demand more memory and computational resources for

the algorithm to have a reasonable accuracy as the number of dimensions grow.

2.2.9 Model-based Anomaly Detection

In the model-based approach [14], [33], a model is constructed to describe the nor-
mal data. The assumption is that data that deviate from the model’s predictions
are anomalous. Alternatively, if model’s parameters change significantly during the
training phase, it can also be considered as abnormality. These deviations are quan-
tified by distance functions into anomaly score for a test data.

The models which can be supervised or unsupervised are classified as linear
and non-linear based on assumption whether data features have linear or non-linear
relationships [38]. In the linear version, a regression-based model or PCA-based
model [39] is constructed, which represent the linear low-dimensional hyper-plane
in which, the original data are projected. Large deviations (distances) from such
hyper-plane triggers anomaly detection algorithm. If the data have non-linear prop-
erties, linear models may fail to capture the curvature of data, thus non-linear mod-
els will be useful in such cases. For instance, Auto Encoder Neural Networks [40]
is a nonlinear algorithm, which can find the non-linear patterns in data. The Auto
Encoder (an architecture of neural networks) applies a series of non-linear transfor-
mations via hidden neural layers to encode the data to a low dimensional space and
then, decoding the low dimensional space back to the original space, in order to
reconstruct the data. Anomalous points are data, which have high reconstruction
error. The drawback of these algorithms is their high computation costs for training
such non-linear models. Survey [41] and [42] provided comprehensive review of
anomaly detection methods based on the neural networks.

The model-based approach for anomaly detection is also suitable to find anoma-
lous patterns in time series and sequence data. The problem here is how to con-
struct the model of an underlying data generating process. Such a generating pro-
cess is usually a probabilistic model (in contrast to previous deterministic models),
which describes how the data are generated or drawn from combination of un-
derlying probability distributions [43], [44]. For example, an Auto Regressive In-

tegrated Moving Average (ARIMA [45]) model can be constructed for continuous
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time-series. However, these models struggle with evolutionary data. So, for dy-
namic data, window-based approaches are utilised to retrain the model on each se-
quence time-intervals. This increases the computational complexity of the problem.
Alternatively, Markov Models can be used for modelling discrete sequences [6], [43].
These probabilistic models learn the conditional probabilities of the transitions from
one state (category) to another one and a less probable transition observed indicates
irregularity.

The advantage of model-based anomaly detection is its flexibility to model com-
plex data structures. The challenge is how to build and train a model that can cap-
ture, in a timely manner, not only the evolutionary nature of data but also the corre-
lations between features of data.

The hybrid model developed by Zhai et al. [2] detects single and sequential dis-
ruptive trading behaviours. First, the raw input vector [price, volume, timestamp]
of each limit order are transformed into a three-dimensional feature vector to re-
duce the non-stationary properties of the original data. One Class SVM (OCSVM,
see Section 2.2.2 for details regarding One-class anomaly detection) and Hidden
Markov Model (HMM) are utilised to detect single-order and multi-order (sequen-
tial) disruptive trading behaviours, respectively. In addition, the hybrid model uses
a sliding window as an adaptive mechanism to update the model parameters. Fur-
thermore, the authors in [2] injected artificial manipulation cases in four high lig-
uid stocks on NASDAQ to test the performance of the model. Although the hybrid
model outperformed the benchmark models, it may not be suitable for practical real-
time anomaly detection due to the computational complexity of the model and the
long time required for training and/or testing phases of the algorithms. In addition,
the fundamental structure of the hybrid model does not change over time, although
it has an adaptive mechanism. Therefore, the hybrid model will not be able to de-
tect evolutionary manipulative tactics and the performance of the algorithm may
decrease over time due to the static structure of the model.

Another model-based algorithm developed for ATPs detection based on HMM
is called Adaptive Hidden Markov with Anomaly states (AHMMAS) by Cao et al.
[1]. This algorithm utilises four features based on wavelet transformation and gradi-

ents of high-frequency prices. Hidden states of the AHMMAS correspond to normal



Chapter 2. Background 27

and manipulation states which are inferred by observations of prices as observation
states and a rolling window are also proposed to update the model only when the
statistic of data changes significantly as an adaptive mechanism. Seven stocks on
NASDAQ and London Stock Exchange along with simulated prices were selected
to test the algorithm. This model outperformed the existing benchmark models (K-
Nearest neighbours and OCSVM, see Sections 2.2.3 and 2.2.2 for details regarding
distance-based and one-class anomaly detection, respectively) while the Area Un-
der the Receiver Operating Characteristic (ROC) curve (AUC) [8] used as evaluation
metric. As the model does not update incrementally due to the computational com-
plexity for modelling the probability density function (PDF) of hidden states, it must
wait until significant changes are observed in data and then performs the updating
action. This may reduce its performance for early detection of manipulation cases.

Regression models have been developed to predict stock manipulations in Tehran
stock exchange [46]. First, stock companies are labelled to 1 (manipulated) and 0
(non-manipulated) by statistical tests. Then, the models regress dependent variable
(label 0 or 1) over independent variables such as the size of the company, ratio of
price to earnings (P/E), information clarity index (released daily by stock exchange),
and rank of stock liquidity (released daily by stock exchange). The model’s accu-
racy is reported to be 90 percent on self-labelled data. However, the input variables
are judgmental and the supervised methods are not suitable for unsupervised high-
frequency detection due to the computational complexity and static nature of such
regression models.

An Agent-based model (artificially simulated stock market) with a combination
of genetic programming (a computational method that mimics the evolutionary pro-
cesses in nature to solve optimization tasks [47]) has been utilised for price ma-
nipulation detection in the French stock market [48]. The model consists of 2000
simulated agents as traders whose trading rules (strategies) are evolved by genetic
programming while receiving information about the market and trying to maximize
their utility function (wealth). The dataset used in that paper includes daily prices
and volumes of trades regarding CAC40 index and two major companies within
the index. The author claims that deviation of forecasted prices of the model from

real prices is sign of manipulation and quantifies this by a metric called Forecast
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Directional Accuracy (FDA), the percentage that forecasted price aligns with real
directional price change. FDA below 50 percent represents an incorrect model pre-
diction which is a sign of manipulation. Based on this approach, the author indicates
the existence of disruptive trading behaviours in the French market. However, since
the data are not labelled, and also other economic factors may influence the prices,
this approach only indicates signs of manipulations and not the actual manipula-
tions. Furthermore, due to the computational complexity of genetic programming

approaches, this method is not suitable for real-time detection of manipulations.

2.3 Summary of the algorithmic studies for ATPs detection

Since the focus of this PhD research will be on fast detection of trade-based Ab-
normal Trading Patterns (ATPs) in financial markets as a case study, Table 2.1 sum-
marises and compares the existing algorithmic studies developed for ATP detection
purpose. Each method is categorised based on the required supervision, type of
anomaly detection approach and the run-time (corresponding to whole training and
test phases) to perform ATP detection. The table clarifies the identified issues which
motivated this study. The main identified issues are 1) high supervision and 2) high
run-time requirements for existing methods which prevent those algorithms to be
utilised for the propose of real-world ATP detection.

Most of the existing methods focused on supervised algorithms as an easy so-
lution for the problem of ATPs detection with an assumption that labelled datasets
are available which is not true. In fact, due to the security and confidentially reasons
and time-consuming of hand labelling large amount of data by financial experts, real
financial trading data are not labelled. In other words, we do not know which trade
is normal or abnormal in advance and a robust method is required for identifying
the abnormal trades. Therefore, such supervised algorithms are not practically suit-
able for solving this problem. Alternatively, an unsupervised algorithm which does
not require the label information (e.g. which trading data is normal or abnormal)
and can detect such ATPs rapidly and efficiently in real-world scenarios is needed

to solve the issue.
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In addition, large amount of trading data and its high-velocity requires fast al-
gorithms with low run-time capable of processing the data in a timely manner, a
requirement which most of the existing methods fail to address.

To date, the problem of detecting ATPs in a timely manner and unsupervised
fashion has remained a challenge due to the high-volume and high-velocity of trad-
ing data. Therefore, this research attempts to fill the gap by proposing a novel
general-purpose unsupervised algorithm (see Chapter 4), which can be applied on
both financial and non-financial data and is capable of detecting ATPs rapidly.

TABLE 2.1: Summary and comparison of the algorithmic studies for

detection of ATPs.
Approach Supervised | Semi- Unsupervised | Run-time References
supervised
Classification-based | LR, ANN, High [7], [46],
SVM, [49], [50],
KNN, [51], [1],
Decision [50], [52]
Trees
One-class-based OSVM High [2], [1], [52]
Density-based Gaussian High [17], 111
Model
Model-based HMM, High [2], [53],
Agent- [52], [17],
based [17], [1],
model, [54], [46],
Genetic [55], [49]
model,
Regression
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Chapter 3

Anomaly Detection Benchmark

Evaluation

This chapter compares the performance of existing popular anomaly detection al-
gorithms on public datasets in different industry sectors such as trading, finance
and health. Section 3.1 explains the details regarding the datasets, feature extraction
and further pre-processing steps before feeding the data to the machine learning al-
gorithms. Section 3.2 reviews the evaluation (performance) metrics utilised in the
computational experiments. Experiments setups are provided in the Section 3.3. Fi-

nally, results and discussions are included in Section 3.4.

3.1 datasets

In this study, we utilise publicly available labelled datasets such as Credit Card
Fraud Detection [56], [57], [58], [59], [60], [61] and Breast Cancer [62], [63], [8]. These
datasets have been labelled and feature extracted by experts in those fields and are
ready to be utilised by machine learning algorithms.

The Credit Card Fraud Detection is downloaded from [57]. It is a 30-dimensional
dataset (as input features) with 284,807 data samples. Each data sample is a credit
card transaction which is labelled as normal or fraudulent (abnormal) transaction.
492 of the data samples are associated with fraud. For the security and anonymity
reasons, the original features have been transferred by PCA algorithm so the data

cannot be linked to an individual person. The reasons for choosing this dataset are:
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1) its domain (fraud detection) is closely related to this PhD topic which is anomaly
detection in financial markets, and 2) it has a large number of data samples.

The Breast Cancer dataset is downloaded from [62]. The original Breast Can-
cer Wisconsin (Diagnostic) dataset [63] from UCI Machine Learning repository, were
prepared for the task of unsupervised anomaly detection by keeping only 10 anoma-
lies in the total 367 data samples [8]. The 30 input features are computed from medi-
cal images and each data sample is labelled as malignant (abnormal class) or benign
(normal class). We choose this dataset from a different domain from finance to also
evaluate the algorithms on non-financial data as we are interested in developing a

general-purpose algorithm applicable to both financial and non-financial datasets.

3.2 Evaluation Metrics

Characteristic Curve (ROC) [64] is a curve, which plots True Positive Rate and False
Positive Rate at various thresholds of a binary classifier[6], where:
TruePositives

TruePositiveRate = — . 3.1
TruePositives + FalseNegatives G1)

FalsePositives
FalsePositiveRate = 3.2
ALSerOSIOeRAte = olsePositives + TrueNegatives (3-2)

True Positives, False Negatives, False Positives and True Negatives are predic-
tions of a binary classifier (a classifier, which outputs positive label 1 and negative
label 0) that are correctly predicted as 1, mistakenly predicted as 0, mistakenly pre-
dicted as 1 and correctly predicted as 0, respectively.

We utilise Area Under the ROC Curve (AUC) as a metric to measure the anomaly
detection capability of the algorithms. This metric is widely used in the literature to
measure the performance of anomaly detection algorithms. AUC can intuitively
be interpreted as the probability of assigning a higher anomaly score to a random
given anomalous data sample than a randomly given normal data sample [8]. Such
a metric is bounded between 0 and 1, the higher the better the performance of the

anomaly detection in detecting the anomalous data samples.
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In addition, we measure the computation time (in seconds) of the anomaly de-

tection algorithms. Obviously, lower computation time is preferable.

3.3 Experiments setups

In this study, the goal will be to compare the performance of important existing
unsupervised anomaly detection algorithms such as Artificial Neural Network Au-
toEncoder[40], Isolation Forest [36], [37], ABOD [35], KNN [21], PCA[39], LoF[32]
and HBOS [65]. These benchmark algorithms are implemented by Zhao et. al. as a
Python package called pyod [66] which are utilised in this experiment.

Furthermore, the Python code developed for the benchmark evaluation is pro-
vided in Appendix A. The code is written on Google Colab [67], an online platform
provided by Google, where Python code can be written and run on the cloud. As a
result, the code can be efficiently run on the Google computing servers without the
requirement to install and run any packages on a local machine. When we run the
code on Google Colab, we just use CPU computing engine. The Python 3 Google
Compute Engine backend in Google Colab has 2vCPU Intel(R) Xeon(R) @ 2.2GHz,
13 GB RAM and 62 GB Disk.

First, we shuffled data with a static seed just for the random number genera-
tor for shuffling purpose. This enables the shuffling procedure to be reproducible.
Then, we scaled the data to range [0,1] by min-max approach in order to have all
dimensional values in the same range. Then, we utilised a 5-fold cross validation
approach [68] in which each dataset is divided into 5 parts, at each time one part
(fold) is the test set and the other 4 folds are training sets. Each time an algorithm
runs, the average of 5-folds are computed as a performance value for that run.

When we run the above 5-fold cross validation method on deterministic algo-
rithms (e.g. PCA), the evaluation results do not vary from one run to another run.
The reason is that the dataset is fixed (due to a static seed utilised for data shuffling
and cross validation) and the algorithm’s hyper-parameters are deterministic and do
not change from one run to another run. However, for the probabilistic algorithms
(e.g. Isolation Forest) which may have different hyper-parameters values during

initialisation and run time, the 5-fold cross validation can produce different results
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from one run to another. To capture and quantify this source of variation which
comes from the algorithm and not from the dataset, each algorithm will further be
run 10 times utilising the above-mentioned approach and at the end, the computed
performance metrics for 10 runs are averaged in order to have a final value of perfor-
mance metric. Such an approach also enables us to measure the standard deviation
of the algorithm’s performance during different run times. Idealistically, low devia-
tion is desirable.

It is important to bear in mind that since, all algorithms are unsupervised (not
requiring labelled data), by training and test sets, we refer to the learning phase for
the in-samples data and computing anomaly scores for out-of-samples data. In other
words, the individual algorithms do not use label information and it is only utilised
for computing the performances. Generally, we prefer algorithms with high AUC

and low computation time.

3.4 Results and Discussions

Figure 3.1 illustrates the AUC box-plot results on the Breast Cancer dataset. The X-
axis indicates the name of each algorithm and Y-axis shows the range (distribution)
as a box-plot of AUC. This range includes minimum, quartiles and the maximum
value of AUC for a particular algorithm. Furthermore, the mean () and standard
deviation ¢ of each range is depicted on the right side of each box-plot. The numbers
are rounded up to two decimal points. Most of the benchmark algorithms have
mean AUC around 0.98 except ABOD with mean AUC = 0.9. Therefore, most of
the benchmark algorithms performed well on this dataset. Furthermore, it can be
observed that the standard deviation of AUC for all algorithms are near zero. This
shows that when algorithms are re-run (re-initialised), they tend to have a same
performance over different runs which is desirable. Algorithms such as Isolation
Forest and Auto Encoder show a range performance rather than a exact performance
in comparison with other deterministic algorithms such as PCA.

Figure 3.2 illustrates the computational time (measured in seconds) box-plots for
bench mark algorithms. The X-axis indicates the name of each algorithm and Y-axis

shows the range (distribution) as a box-plot of time. This range includes minimum,
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quartiles and the maximum value of run time for a particular algorithm. As the size
of this dataset is small with only 366 data samples, the computational time of most
of the algorithms except Auto Encoder are low. For instance, the fastest one is PCA.

The AUC box-plots results rounded to two decimal points on the large dataset
in our experiment called Credit Card Fraud Detection are shown in Figure 3.3. Since
the size of this dataset is larger (with 284,807 data samples) than previous dataset,
many of the algorithms failed to complete the experiment due to large required
memory and computational resources, thus removed from the figure. Only Isola-
tion forest, HBOS and PCA could survive this experiment with mean AUC = 0.95.
In addition, it is observed that Isolation Forest produces a range rather than a exact
value due to its probabilistic nature.

As the numbers are rounded up to two decimal points, o = 0.0 is shown on di-
agrams for the algorithms. This either means the underlying algorithm is determin-
istic and not probabilistic (e.g., PCA) thus producing the same performances during
different run times, or the computed value for ¢ is very small insignificant number
(e.g., 0.001) which by rounding up to two decimal points equals zero. As explained
previously, to capture and quantify the source of variation which comes from algo-
rithms with probabilistic nature (e.g., isolation forest) and not from the dataset, each
algorithm will be run ten times in which each individual run includes 5-folds valida-
tion evaluation (average of AUC for 5-folds). Dataset and the corresponding 5-folds
are fixed during each run and the only thing that may change is the underlying al-
gorithm if it has a probabilistic nature. At the end, these ten AUC values are utilised
to compute final value of performance metric. ¢ shows the standard deviation of
these ten different runs and not 5-folds. Such an approach enables us to measure
the standard deviation of the probabilistic algorithms” performance during different
run time.

Figure 3.4 shows the computational time box-plot rounded to two decimal points
on the Credit Card Fraud Detection dataset. As mentioned before, only Isolation
Forest, HBOS and PCA survived this test and other algorithm removed from the
figure due to their run time failure. It can be observed that HBOS and PCA re-
quire lower mean and standard deviation computational time than Isolation Forest.

The reason for this is that Isolation Forest is an ensemble method, which consists
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of different computational trees, thus requiring more time than PCA and HBOS to

perform anomaly detection task.

The results of the experiments are summarised in Table 3.1. From these results,
we can conclude that Isolation Forest, HBOS and PCA are robust algorithms for the

task of unsupervised anomaly detection on large data.
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FIGURE 3.1: AUC box plot of benchmark evaluation of existing
anomaly detection algorithms on the Breast Cancer dataset.
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FIGURE 3.2: Computation time (measured in seconds) box plot of
benchmark evaluation of existing anomaly detection algorithms on
the Breast Cancer dataset.
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FIGURE 3.3: AUC box plot of benchmark evaluation of existing

anomaly detection algorithms on the Credit Card dataset. Those

benchmark algorithms which are not shown on the figure either failed

or took long time to perform thus not completed, during the experi-
ment.
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FIGURE 3.4: Computation time (measured in seconds) box plot of

benchmark evaluation of existing anomaly detection algorithms on

the Credit Card dataset. Those benchmark algorithms which are not

shown on the figure either failed or took long time to perform thus
not completed, during the experiment.
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TABLE 3.1: Summary table of anomaly detection benchmark evalua-
tion. All numbers are rounded up to two decimal points. Values with
NA label (not applicable) correspond to the algorithms failure during
the run time due to large computational or memory requirements.
Algorithm Average AUC on | Average Run | Average @ AUC | Average Run
Breast  Cancer | Time on Breast | on Credit Card | Time on Credit
Dataset Cancer Dataset Dataset Card Dataset
KNN 0.98 0.01 NA NA
Isolation Forest | 0.98 0.28 0.95 29.83
LOF 0.99 0.01 NA NA
ABOD 0.9 0.08 NA NA
HBOS 0.98 0.04 0.95 0.79
PCA 0.98 0.00 0.95 1.01
Autoencoder | 0.98 4.04 NA NA
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Chapter 4

Proposed Anomaly Detection

Algorithm

Detecting anomalies in a timely manner without the requirement to label the data by
humans in advance motivated proposing a novel unsupervised anomaly detection
algorithm. This new algorithm which is inspired from the fact that anomalies can
be isolated from the rest of data, is proposed in this chapter based on generating
random shapes data independently.

Since the algorithm is unsupervised, it does not require label information to dis-
tinguish data as normal or abnormal. Furthermore, the proposed algorithm can de-
tect anomalies rapidly which may have potential application in situations where
detection of anomalies in real-time is a requirement (e.g. real-time financial fraud
detection). Section 4.1 explains the general principles of the proposed algorithm.
Section 4.2 includes details regarding utilisation of Minkowski distance function in
the algorithm as a special case for processing of high-dimensional data. Next, the
lower and upper bounds mathematical formula for the number of required random
shapes in the algorithm are provided in Section 4.3, followed by some guidance re-

garding choosing hyper-parameters of the algorithm in Section 4.4.

4.1 Proposed Anomaly Detection Algorithm

Mathematically, consider a given D-dimensional dataset, which is split into train and
test sets X and A, respectively. The train set X = {x;} N | includes N data instances

(samples) such that, each data instance x; = [x; 4]}, is a D-dimensional row vector



Chapter 4. Proposed Anomaly Detection Algorithm 39

with dimensional values x; 4. Similarly, the test set X' = {x ]};\]:, , includes N’ data
instances (samples) such that, each data instance X i = [x},d] D | is a D-dimensional
row vector with dimensional values x;-, ;- We further assume that data are located
in the unit hyper-cube IP (I = [0,1]). Such an assumption is essential for having a
bounded high-dimensional space where 0 < x;; <1land 0 < x;,d <1.

The proposed unsupervised anomaly detection algorithm (see the pseudo-code
and Python code in Algorithm 1 and Appendix A.1, respectively) is intuitively based

on following steps:

e Partitioning a bounded high-dimensional space (e.g. the unit hyper-cube IP)
by a sequence of random shapes, in which each data will be trapped (isolated)
either inside (encoded by 1) or outside (encoded by 0). As shown in Figure
4.1 as an example, the shapes are generated completely random with different
sizes and locations, independently of each other as well as data. The shapes
can be expressed either by a user defined mathematical function or an algo-
rithm (called Draw in the pseudo-code), which describes the boundary prop-
erties of the shapes. It should be noted that shapes must be closely bounded
to divide the unit-hyper cube into inside and outside sub-spaces. More details

regarding generation of random shapes are explained in Section 4.1.1.

* Such a partitioning scheme, encodes each data into a binary pattern as a se-
quence of Os and 1s depending on whether the data falls outside or inside a
random shape. Section 4.1.2 includes more details regarding this binary en-

coding.

* Next, under the fundamental assumption for all anomaly detection algorithms
that anomalous data (minority data) are rare and have different characteristics,
the proposed algorithm learns the binary patterns by the probabilistic mod-
elling approach and can distinguish anomalous data whose binary patterns of
trapping (inside or outside) based on the sequence of random shapes is signif-
icantly different from rest of the dataset (normal data or majority). More detail

regarding how the algorithm learns from data is provided in Section 4.1.3.

* Finally, the algorithm computes the probability of observing a new test data

conditioned on previously observed binary patterns. Then, this probability
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is converted to an anomaly score for the data sample. This anomaly score,
which is a real-valued number indicates the degree to which the data sample is
anomalous (See section 4.1.4 for more details). Therefore, test data samples can
be ranked in a list via their corresponding anomaly scores, where anomalies
will be ranked on top of the list, while normal data samples will be assigned

low anomaly scores, thus ranked lower.

In fact, normal data points which are located closer to each other, are more
likely to be trapped by the same random shapes, thus having similar binary
patterns, while anomalous data will be trapped by different shapes and their
binary patterns will be different from the majority observed patterns. This
concept is shown by an example in Figure 4.1 in which, five random shapes (in
green) are generated. Normal data (in blue circles) and abnormal data (in red

stars) are trapped by different random shapes, respectively.
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0 \ /7
Abnormal Data Points 1

FIGURE 4.1: Illustration of five random shapes in green, normal data

in blue circles and abnormal data in red stars. Data points which are

closer to each other are more likely to be trapped by the same random
shape.
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Algorithm 1 General pseudo code of the proposed anomaly detection algorithm.

Require: Training dataset X = {x;}Y,, in which, each row x; = [x;4|? ; =
(xi1,Xi2,...,Xip) represents a training data sample in a D-dimensional unit
hyper-cube such that 0 < x; ; < 1.

Require: Test dataset X' = {x/]-}j]i , in which, each row xl]- = [x;.,d](?:l
(lel, x;,Z, ., x;/D) represents a test data sample (for which anomaly score will

be computed) in a D-dimensional unit hyper-cube such that 0 < x;-, s <L

Require: Number of Random Shapes H (user-defined)

Require: User-defined function/algorithm called Draw to draw (generate) a ran-
dom shape (closely bounded sub-space) in a D-dimensional space, which di-
vides the unit hyper-cube into two sub-spaces: inside and outside.

1: Initialise AnomalyScoreVector as a vector with size N’ in which, the j-th element

corresponds to the anomaly score for test sample X j-

2: Based on Draw, generate H random shapes with different random size and lo-
cations in the unit hyper-cube and store them in memory as set S = {s;, }/. ,.
Initialise vector A = [aq, a0, ..., ay]| = [ah]lljzl with size H in which, all «j, = 0.
fori =1to N do

forh =1to H do
if x; is inside the shape s, then
ap — 14wy,
end if
end for

10: end for

11: forj=1to N do

12:  Initialise 0 =1

13:  forh =1to H do

14: if x j is inside the shape s, then
15: 0+ 0% (1+ay)

16: else

17: 0 0x(1+N—ay)

18: end if

19:  end for

20:  AnomalyScoreVector|[j] < —Ln(6) + H * Ln(2 + N)
21: end for

22: return AnomalyScoreVector
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4.1.1 Random Shapes Generation

In the first step of the proposed algorithm, a set of random shapes S = {s,} | is
generated in random locations of the hyper-cube, independently of the data. H is a
user-defined parameter, which determines the number of the random shapes. Each
random shape s has a topology, which divides the hyper-cube into two sub-spaces:
inside and outside. Figure 4.2 illustrates an example of three random shapes s,
s> and s3, which are generated in the unit square (2D space) independent both of
the data and the previously-generated random shapes. From a very general point
of view, there are no restrictions on the shapes’ forms (topological properties) and
some shapes can even have shared sub-spaces with others, such as s; and s3 in the
Figure 4.2.

Once the shapes are created, these are fixed through the rest of the algorithm
and will be utilised for partitioning the space rapidly, which is essential for trapping
anomalies in sub-partitions of the space, where there will be less likelihood for a
normal data instance to fall in the same sub-spaces, where anomalies are located. In
addition, this novel approach enables the algorithm to trap anomalies in a single or
few shots, which is desirable from the computational point of view as shown in the
Figure 4.1

Since the proposed algorithm is for general purpose, there is no restriction on the
types of the random shapes to be generated. In fact, the shapes can be symmetric
(e.g. square, circle and etc), asymmetric (e.g. shapes generated by a user-defined
kernel function based on a specific application) or combination of both. The random
nature of shapes may enable the algorithm to partition the space efficiently and data
independently. However, this advantage may come with extra computational costs
for generating the random shapes.

Although, the random shapes can have any shape from a theoretical point of
view, for simplicity and efficiency of further computations, we assume that s;, =
(cp, 1) is a hyper-sphere (see an illustrative example in the Figure 4.3) with center
¢, ~ Uniform(0,1) and radius r, ~ Uniform(Min,, Max,) such that, Uniform(a,b)
is a uniform distribution, which generates random numbers between a and b. Min,

and Max, are user-defined parameters, which determine the range for minimum
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S1

Outside

0 1

FIGURE 4.2: Three random shapes s, s and s3 in the unit square (2D
space). Each random shape (topological object) partitions the space
into Inside and Outside sub-spaces.
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and maximum size of the random shapes that can be generated during this process,

respectively.

In Section 4.1.2, we explain the second step of the proposed algorithm on how to

utilise the above partitioning scheme after generating the random shapes.
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4.1.2 Binary Encoding

During the initialisation of the algorithm, H random shapes are generated and num-
bered sequentially and stored in memory as set S = {s; }}'_,. The orders of random
shapes are preserved during the training and testing as explained in Algorithm 1.
Next, binary encoding transforms real-value data features into sequences of 0s
and 1s, which will be efficient for data modelling. As explained in Section 4.1.1, each
random shape s;, divides the region in the hyper-cube into two sub-regions: inside
and outside of the shape. In practice, whether a data point lies within a shape will
be defined as a function of the distance of the datum from the centre of the shape.

Mathematically, we define

0 ; Distance(x;, c,) > 13,
Hash(x;,sy) = , 4.1)
1 ; Distance(x;, c;) < 1y,

as a binary hash function with an output 1 or 0, whether a train data instance x;
falls inside or outside of a random shape s;, respectively. In Equation 4.1, Distance(x;, ¢;,)
can be any distance metric, which computes the distance between a data instance x;
and the associated centre cj, of the random shape s, (see Section 4.2 for more details).
Similarly, replacing x; with x j in Equation 4.1 results in a new formula of the hash
function Hash(x j-sn) for a test data sample X i

In the second step, the algorithm applies the above encoding hash function on
each train and test data instances x;;i € {1,2,3,..., N} and x/]-,'j €{1,2,3,.. .,N’},
respectively with respect to the set of random shapes S to convert the real-value
features (dimensions) to binary using equation 4.1. This generates binary pattern
Pattern(x;) as shown in the Equation 4.2. Similarly, replacing x; with X j in this
equation results in a new equation of Pattern(x j) for test data sample X j- Figure

4.3 demonstrates this concept for three example data points in the 2D space.

Pattern(x;) = [Hash(x;,s1), Hash(x;,s2), ..., Hash(x;, sy)]- 4.2)

The rationale for this encoding scheme is that modeling the binary patterns of
data is mathematically and computationally more efficient than directly modelling

the probability distribution of original dataset in the high-dimensional space, as we
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will show. Furthermore, we can benefit from Bayesian conjugate properties which

facilitates modelling the data in an online fashion and has application in rapid data

analysis. This will be explained in more details in Section 4.1.3.

S1

(D
7/

S3

S2

x1

0

FIGURE 4.3: Three random shapes (circles) sq, sp and s3 in the unit
square (2D space). c and r represents the center and radius of each
circle. Data points are xj, x, and x3 with patterns 000, 011 and 100,

respectively.
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4.1.3 Bayesian Incremental Updating

Bayesian Incremental Updating provides a robust mathematical framework and com-
putationally efficient mechanism for probabilistic modelling of the binary patterns,
which is suitable for modelling data rapidly. Such a model is essential to distinguish
normal and abnormal patterns from each other.

In the third step, the algorithm computes the probability of observing a new pat-
tern Pattern(x j) of a test data sample conditioned on previously observed patterns
displayed by the training data. The intuition behind this is based on an assumption
that normal data have frequent and similar patterns to those observed in the train-
ing set, while abnormal patterns are significantly different from normal ones. Thus,
a high or low estimate of a specific pattern’s probability corresponds, respectively to
lower or higher degree of anomalousness of the test data instance.

In what follows, we describe how the algorithm utilises incremental Bayesian
modeling approach to compute this probability efficiently.

Mathematically, the posterior probability P of observing a binary pattern condi-
tioned on previously observed data and the sequence of random shapes defined in

the training phase can be written as product of probabilities thus:

H
P(Pattern(x/j)|previousPatterns) =11 Th(x/]'). (4.3)
=

In Equation 4.3, 7j,(x j) is defined as

/ Pn ;Hash(x, ,sp) =1
Th(x ]) = ,] ’ (44)
1—py ;Hash(xjs;) =0

in which, p, and 1 — pj, correspond to the posterior probability of observing 1 and
0 for the random shape s;, respectively. In other words, these probabilities model
the binary hashes by computing the chance of a new test data instance to be trapped
inside or outside of a particular random shape.

By utilising the Baye’s rule, we assume a prior Beta distribution Beta(1, 1) for py,
and a categorical likelihood, for generating 1 and 0 to model these binary hashes.
The reason for choosing the beta distribution as our prior is that it generates a ran-

dom number between 0 and 1, which can be interpreted as the probability of a test
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data being inside a random shape. Furthermore, such a prior distribution is con-
jugate with categorical likelihood. Therefore, the posterior distribution p; will be
again a Beta distribution and only the parameters needs to be updated incrementally
and stored in the computer memory. This Bayesian conjugacy is beneficial from the

computational point of view as shown in:

pn ~ Beta(1+ay, 1+ N —ay). (4.5)

«j, in Equation 4.5 determines the number of the observed training data points,
which fall inside the random shape s;,. This hyper parameter will be calculated for
each random shape in S, thus the algorithm generates a hyper-parameter vector A

as

A= [ocl,az,...,sz], (46)

which is updated incrementally as described above by observing training data points.
This online updating mechanism enables the algorithm efficiently to perform anomaly
detection rapidly.

From Equation 4.5, the expected probabilities of a test data point falling respec-

tively inside or outside of the h-th random shape can be derived

1+«
E(pn) = 5N (47)
1+N—«
E(1—pn) = TN}I (4.8)

By defining

) 1+ay ; Hash(xX i, sp,) = 1
0(x}) = / , (4.9)
1+N—way, ;Hash(xj,s,) =0

the expected value of the posterior probability P as shown in Equation 4.3 can

be written
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H
E(P(Pattern(xlj)\previousPatterns)) =E(J] Th(xl]‘))
h=1

H !/
= [T E(um(x))) (4.10)

h=1
_ IT,L60n(x )
2+N)"
Equation 4.10 is a fundamental equation in this algorithm, which calculates the
expected probability of observing a particular pattern. The lower is this number, the
more anomalous is the associated data point. This probability will be converted to

an anomaly score, as explained in the next Section 4.1.4.

414 Computing Anomaly Score

The anomaly score is a real-valued number which demonstrates the degree of abnor-
mality of a given data point. Such a score has application in ranking data points in a
list based on their associates anomaly score. Those data which appear on top of the
list are more anomalous than the others. This will ensure that relatively abnormal
data points that is, those with low probability of binary patterns, have a high corre-
sponding anomaly score. Such a scaling enables the algorithm to distinguish normal
from abnormal data efficiently. Furthermore, if such a real-valued number will be
greater than a user-specific threshold (depending on the application and dataset),
the corresponding data point can be declared as an anomaly.

In the final step of the anomaly detection algorithm, expected probability E(P)

(see Equation 4.10) is converted to an anomaly score via Equation 4.11.

T 0(x )

AnomalyScore(x ;) = —Ln(
I ] @+ N)F

)

= —Ln([T6u(x ) + Ln((2+ N)") (4.11)
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in which, Ln is the natural logarithm function. The reason for utilizing —Ln in the
above equation is to map probability values in range [0, 1] to positive real numbers
as

0< AnomalyScore(x/j) < +oco0. (4.12)

4.2 Utilising Minkowski Distance Function in the Algorithm

as a Special Case

Although, the proposed general algorithm can work with any distance function cor-
responding to different shapes based on the principles explained in Section 4.1, for
the purpose of practical implementation of the algorithm, we choose Distance(x;, cj,)
in Equation 4.1 to be the general family of Minkowski distance functions (/;, norms)

as shown in Equation 4.13.

D
Distance(x;i, ¢,) = (Z |xi g — ch,d]L)%. (4.13)
d=1

In Equation 4.13, L > 0 (corresponding to different shapes) and ¢, = [cj,4]5_; is
a D-dimensional vector with dimensional values ¢, 4. Similarly, replacing x; with x j
in this equation results in a new equation of Distance(x;-, c;) for test data sample x j-

Choosing different L in Equation 4.13 results in changing the shapes as follows:

e [ = 1: Manhattan distance
e [ = 2: Euclidean distance

¢ L = oo : Chebyshev distance

Figure 4.4 illustrates how different distance metrics make different shapes in a
two-dimensional unit square. Each shape includes all the points in the space with
distance equal to 1 from the origin 0. As L increases, the corresponding shape
reaches towards the boundaries of the unit square. The computational efficiency

of such distances can be one of the major reasons for choosing these distances.
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1

FIGURE 4.4: Different shapes corresponding to Manhattan (L = 1),
Euclidean (L = 2) and Chebyshev (L = o0) distance.

4.3 Lower and Upper Bounds for the Number of Required
Random Shapes

This section explains the theoretical upper and lower bounds for the number of re-
quired random shapes H, an important user-defined parameter of the algorithm
which is necessary in terms of algorithm efficiency and computing complexity.

We denote v;, as volume of the random shape s, and define 0;1 as portion of
vy, which falls inside the unit hyper-cube. The reason for that is some portion of a
shape may fall outside the unit hype-cube, thus it should be accounted in our for-
mulation. An example of this is shown in Figure 4.5, in which some shapes (circles)
are not completely inside the unit-square thus, the fraction of their volumes inside
the square are only considered.

Consider that the fractional volume of the first random shape is v;. We define Vg
as cumulative volume of the shapes, which occupy inside the unit hyper-cube (with

total volume one), after generating H random shapes. Therefore, in the beginning

Vi =0, (4.14)

When the second shape is generated,
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Vo = Vi +0s(1 = Vy) w1s)

= o +0p(1-2y),

In which, v,(1 — V) is the contribution of the second random shape by adding a
new uncovered space to the previous covered space V.

Generation of the third shape results in

V3=V, + Ué(l — Vz)
(4.16)

= Z’/1 ‘|‘U/2(1 - U,l) +03(1 =0 —0p(1 —19)),

In which, v3(1 — V3) is the contribution of the third random shape by adding a new
uncovered space to the previous covered space V;.

Therefore, the general recursive formula after generating H shapes will be

Vi = Vi1 +0g(1 —Vy_1). (4.17)

In order to extract a theoretical lower bound for H based on Equation 4.17, we

assume

v, =v = E(v,);h € {1,2,3,...,H}. (4.18)

such a simplification means that all shapes have same volume v equal to the
expectation (mean) random variables v,, which enables us to simplify Equation 4.17

to a geometric series as

Vy = 0 i (1- Z)/)h_l
h=1
1-a=)"! (4.19)
= Goa=oy)
—1-(1-o)"
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In Equation 4.19,0 < v < 1,500 < 1—9 < 1. In case the number of random

shapes H — oo, we have

lim Vg =1, (4.20)

H—oo

which proves the upper limit of H is infinity (as shown in inequality 4.21). This is
equivalent to covering the whole space, which is desirable from theoretical point of
view. Note that, as H — oo, the performance of the anomaly detection algorithm
will be improved. The reason is that as H — oo, the probability of having sub-spaces
which are outside all random shapes decreases. This phenomenon is illustrated in
Figure 4.5. The red area in the figure is the sub-space which is not covered by any
random shape. The lesser is the "uncovered" space, the greater is the performance
of the algorithm because data points (whether they are anomaly or normal), which
fall in this uncovered region, will be encoded to the same binary pattern, specifically
000...0, thus the algorithm can not differentiate them and may confuse normal and
abnormal data with each other.

Such a situation of uncovered sub-spaces must be avoided by choosing a large
value for H as much as the computational resources allow. Therefore, there is no

theoretical upper bound for the number of required random shapes, that

H < co. (4.21)

However, in practice, we cannot generate an infinite number of shapes. The
minimum number of the required random shapes (lower bound for H) is essential
from a computational point of view as, if H is chosen mistakenly below this lower
bound, there will be a high probability of having uncovered sub-spaces leading to
inaccurate results. In what follows, the mathematical descriptions of this problem is
provided.

As we require the shapes to cover the whole space (volume of the unit hype-cube)
as much as possible thus avoiding uncovered spaces as shown in Figure 4.5, math-
ematically we quantify this as a user-defined parameter 0 < CoveredVolume < 1,
which is the minimum desired fraction of the unit hype-cube’s volume to be cov-

ered by the shapes. Therefore, Equation 4.19 turns to
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'\ H
CoveredVolume <1—(1—v)
= (1— v,)H <1 — CoveredVolume
= Ln((1— v/)H) < Ln(1 — CoveredVolume) (4.22)

— H.Ln(1—10) < Ln(1 — CoveredVolume)

N Ln(1— Covered,Volume) <H
Ln(l—7")

since Ln(1—v') < 0.

Equation 4.22 determines the lower bound for the number of required random

shapes. From this Equation, we can infer two important facts:

1. As CoveredVolume increases and becomes closer to 1, the lower bound for H

increases, more shapes are required to cover the desired volume, requiring

more computational resources.

2. Alternatively, as the volume of each random shape increases, the fraction of its

volume which falls inside the cube represented by v’ increases, thus quantity

1 — 0 decreases, leading to less required number of shapes. However, there

are some constraints on the optimal volume of shapes which will be discussed

in more detail in Section 4.4.

This section provided the upper and lower bounds for H (number of random

shapes). These theoretical bounds can be utilised as a general guidance for setting

the required number of random shapes.
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FIGURE 4.5: Illustration of the unfilled sub-spaces (in red color) as

a result of insufficient number of shapes, which do not cover the

whole space. All data instances which fall inside of these unfilled

sub-spaces, have same binary pattern 0000...0 and may introduce
bias in the anomaly detection performance.
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4.4 Optimal Volume of Random Shapes

As we have seen, if the volume of random shapes v}, is too big or too small, the
proposed algorithm (see Section 4.1) may not work properly, due to the fact that
majority of data instances would fall inside or outside of all random shapes, respec-
tively, thus having a same binary pattern. This will reduce the effectiveness of the
algorithm in classifying data. As a result, there is a trade off between the random
shapes being too large and too small random shapes. This will be discussed in more
detail in this section.

Since the volume of each random shape v}, is directly affected by the radius
ry ~ Uniform(Min,, Max,) (see Section 4.1.1 for more explanation regarding how
the random shapes are generated), choosing appropriate Min, and Max; is crucial
for the algorithm to work effectively and efficiently.

Clearly, the distance between any two data points a, b located in the D-dimensional
unit hyper-cube cannot exceed the largest diagonal length corresponding to the dis-
tance between points (0,0,0,...,0) and (1,1,1,...,1). Since we choose L-norms for
the underlying distance function, (see section 4.2) the maximum diagonal length is

DL as shown in Equation 4.23.

Distance(a,b) < LengthDiagonal = DYL. (4.23)
8 8

Therefore, the upper bound for r;, can be found by
r, < DYL, (4.24)

Allowing a larger radius than Equation 4.24 results in large volumes, which de-
crease the performance of the algorithm. Therefore, it is recommended to choose
Min, and Max, below this upper bound. For instance, portions of this maximum
length such as

Dl/L
Max, = , (4.25)

and
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Dl/L

Mi;’lr - ﬁ, (4.26)

can be suggested as a general guidance regarding choosing these hyper-parameters
(the empirical justifications are provided in Chapter 5). This corresponds to a range
between 1/50 and half of the maximum length. For instance, half of the maximum
length can be associated with a hyper-sphere located in the center of the hyper-cube
while its surface passes the vertices of the hyper-cube. 1/50 of the maximum length
as a lower bound for radius of hyper-spheres may prevent an undesirable situation
where some shapes have radius near to zero, thus all data will fall outside of these
very small shapes, which waste computational and memory resources.

However, these general formulas and fractions are for recommendation only and
these need to be adjusted for each real-world dataset and application to find the
optimal hyper-parameters.

In the next chapter, we test the sensitivity of the proposed algorithm under dif-
ferent hyper-parameters settings to see the effect of these parameters on the perfor-

mance of the algorithm.
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Chapter 5

Sensitivity Analysis of the
Proposed Anomaly Detection

Algorithm

In this chapter, we utilise the publicly available labelled datasets such as Breast Can-
cer and Credit Card Fraud Detection datasets with 30 dimensions (D = 30) as men-
tioned in Chapter 3 for investigating the sensitivity of the proposed algorithm (see
Chapter 4) on its hyper-parameters.

In Section 5.1, the research questions regarding the sensitivity analysis are men-
tioned. Since the proposed algorithm is a probabilistic algorithm, we want to test,
how its performance varies, if we change the hyper-parameters. Then, Section 5.2
explains the evaluation metrics utilised for performance measurement of the algo-
rithm. Section 5.3 describes different experiment settings/designs for sensitivity
analysis purposes. Finally, the results and discussions of the sensitivity analysis are

provided in Section 5.4.
5.1 Research Questions

Particularly, we are interested to investigate the following research questions:

* How does the shape of random shapes (corresponding to utilising different
distance functions, e.g. different /; norms) affect the performance of the algo-

rithm?
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* What is the empirical optimal number of random shapes (H)? In other words,
how many random shapes are required to be generated in order to have a

stable performance?

¢ How do the upper and lower bounds for the size of random shapes (corre-
sponding to Max, and Min,, respectively) affect the performance of the algo-

rithm?

5.2 Evaluation Metrics

We utilise the same performance metrics as discussed in Section 3.2. Generally,
higher mean AUC, lower standard deviation of AUC, lower mean and standard

deviation of computation time are desirable.

5.3 Experiments setups

In order to answer the above questions, we design the following sensitivity analysis
experiments. The aim of each experiment is to understand the relationship between
the sensitivity of the algorithm’s performances and shape, number and size of the
random shapes.

We utilise the same settings mentioned in Section 3.3 which is scaling the data
in range [0,1] and using 5-fold cross validation method for splitting the data into
train and test sets. In addition, in the following experiments, we run the proposed
algorithm with different setups corresponding to varying one hyper-parameter and
fixing the rest hyper-parameters to see the effect of the varying parameter on the

algorithm’s performance.

5.3.1 Experiment 1: Investigation of Shape of Random Shapes

The purpose of this experiment is to investigate how the shape of random shapes
determined by utilising different distance measures, affects the performance of the
proposed algorithm. As mentioned in Section 4, the shape of random shape is di-

rectly related to the underlying distance function utilised in the algorithm. In other
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words, changing the distance function corresponds to changing the shape (topol-
ogy) of random shapes, thus changing the detection ability of the algorithm. Al-
though, there are many distance functions, here we focus on Minkowski family
Ip with L = {1(Manhattan),2(Euclidean), oo(Chebyshev)} to show the concept, as
these distances are computationally very efficient. Chebyshev distance is a type of
Minkowski distance function when L = oo [69].

In addition, the minimum radius of random shapes (Min,) and maximum radius
of random shapes (Max;) control the size of the shapes.

Therefore, we choose the combination settings from following sets and compute
the performance metrics for each set.

For Manhattan and Euclidean distances, we choose the hyper-parameters from
the combination of the following sets (since the range of distance values for any
given two points in the unit hyper-cube is in range [0, D'/], we adjust Min, and

Max, as portions of this range):

1. H= {25,100}
2. Min,= {0, 55, 2

Dl/L Dl/L Dl/L
3. Max,={=%—, %, =}

4. L= {1(Manhattan),2(Euclidean)}

For Chebyshev distance, we choose the hyper-parameters from the combination
of the following sets (since the range of distance values for any given two points in
the unit hyper-cube is in range [0, 1], we adjust Min, and Max, as portions of this

range):
1. H= {25,100}
2. Min,={0,0.25,0.5}
3. Max,={0.5,0.75,1}

4. L= {oo(Chebyshev)}
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5.3.2 [Experiment 2: Investigation of Number of Random Shapes

In the second sensitivity analysis experiment, we are interested in exploring the
effect of number of random shapes (generated by utilising different distance met-
rics) on the performance of the algorithm. Therefore, we fix the Min, = %;L and
Max, = %/L (rounding the numbers to 2 decimal points) for different L = {1,2}.
For L = oo, we fix Min, = 0.5 and Max, = 1 and increase number of the shapes

from 5 to 5000 (H = {5, 10, 25,50, 100, 500, 1000, 2500, 5000}) to see how the H affects

the performance and computational time of the proposed algorithm.

5.4 Results and Discussions

The results and discussions of the above sensitivity analysis experiments are ex-

plained individually below:

5.4.1 Results and Discussions Experiment 1:

In the first sensitivity analysis experiment, we changed the shape of random shapes
by utilising different distance metrics to see how it affects the performance of the
algorithm.

Figure 5.1 illustrates the AUC box-plot results on the Breast Cancer dataset. The
X-axis indicates the different parameter settings of the proposed algorithm (fixing
H = 25,L = 1 and changing Max, and Min,). The Y-axis shows the range (dis-
tribution) as a box-plot of AUC. This range includes minimum, quartiles and the
maximum value of AUC for each particular parameter setting. Furthermore, the
mean (¢) and standard deviation ¢ of each range is depicted on the right side of
each box-plot. It can be observed that Max, = 15 = % corresponding to half of
the maximum length diagonal in the 30-dimensional unit hyper-cube, tends to have
higher AUC than other parameter settings. Furthermore, the performance of the
algorithm is not sensitive on Min,.

Similarly, Figure 5.2 shows the AUC box plots for parameters settings (H =
100, L = 1 and changing Max, and Min,) on the Breast Cancer dataset. It can be

observed than the mean of AUC is increased, while standard deviation is decreased
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Average AUC on 5-fold

FIGURE 5.1: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = 1) on the Breast Cancer dataset.

in comparison with Figure 5.1. This observation points out that more number of

random shapes can increase the detection performance of the proposed algorithm.

Average AUC on 5-fold
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FIGURE 5.2: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = 1) on the Breast Cancer dataset.

Figure 5.3 illustrates the AUC box-plot results on the Breast Cancer dataset, fix-

ing H = 25,L = 2 and changing Max, and Min,. It can be observed that Max, =

2.74 corresponding to half of the maximum length diagonal in the 30-dimensional

unit hyper-cube, tends to have higher AUC than other parameter settings. Further-

more, the performance of the algorithm is not sensitive on Min,.

Similarly, Figure 5.4 shows the AUC box plots for parameters settings (H =

100, L = 2 and changing Max, and Min,) on the Breast Cancer dataset. It can be

observed that the mean of AUC is increased, while standard deviation is decreased
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FIGURE 5.3: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = 2) on the Breast Cancer dataset.

in comparison with Figure 5.3. This observation points out that more number of

random shapes can increase the detection performance of the proposed algorithm.
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FIGURE 5.4: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = 2) on the Breast Cancer dataset.

Figure 5.5 illustrates the AUC box-plot results on the Breast Cancer dataset, fix-
ing H = 25,L = o0 and changing Max, and Min,. It can be observed that Max, =1
corresponding to the maximum length diagonal in the 30-dimensional unit hyper-
cube, tends to have higher AUC than other parameter settings. Furthermore, the
performance of the algorithm is not sensitive on Min,.

Similarly, Figure 5.6 shows the AUC box plots for parameters settings (H =
100, L = oo and changing Max, and Min,) on the Breast Cancer dataset. It can be

observed that the mean of AUC is increased, while standard deviation is decreased



Chapter 5. Sensitivity Analysis of the Proposed Anomaly Detection Algorithm 65

s

Average AUC on 5-fold
a=
I
o
23

FIGURE 5.5: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25, L = o) on the Breast Cancer dataset.

in comparison with Figure 5.5. This observation points out that more number of

random shapes can increase the detection performance of the proposed algorithm.
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FIGURE 5.6: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100, L = co) on the Breast Cancer dataset.

Figure 5.7 illustrates the AUC box-plot results on the Credit Card Fraud Detec-
tion dataset, fixing H = 25,L = 1 and changing Max, and Min,. It can be observed
that Max, = 15 = % corresponding to half of the maximum length diagonal in the
30-dimensional unit hyper-cube, tends to have higher AUC than other parameter
settings. Furthermore, the performance of the algorithm is not sensitive on Min,.

Similarly, Figure 5.8 shows the AUC box plots for parameters settings (H =
100, L = 1 and changing Max, and Min,) on the Credit Card Fraud Detection dataset.

It can be observed than the mean of AUC is increased, while standard deviation is
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FIGURE 5.7: AUC box plot for sensitivity analysis of the proposed al-
gorithm (H = 25, L = 1) on the Credit Card Fraud Detection dataset.

decreased in comparison with Figure 5.7. This observation points out that more

number of random shapes can increase the detection performance of the proposed

algorithm.
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FIGURE 5.8: AUC box plot for sensitivity analysis of the proposed al-
gorithm (H = 100, L = 1) on the Credit Card Fraud Detection dataset.

Figure 5.9 illustrates the AUC box-plot results on the Credit Card Fraud Detec-
tion dataset, fixing H = 25, L = 2 and changing Max, and Min,. It can be observed
that Max, = 2.74 corresponding to half of the maximum length diagonal in the
30-dimensional unit hyper-cube, tends to have higher AUC than other parameter
settings. Furthermore, the performance of the algorithm is not sensitive on Min,.

Similarly, Figure 5.10 shows the AUC box plots for parameters settings (H =

100, L = 2 and changing Max, and Min,) on the Credit Card Fraud Detection dataset.
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FIGURE 5.9: AUC box plot for sensitivity analysis of the proposed al-
gorithm (H = 25, L = 2) on the Credit Card Fraud Detection dataset.

It can be observed than the mean of AUC is increased, while standard deviation is
decreased in comparison with Figure 5.9. This observation points out that more

number of random shapes can increase the detection performance of the proposed

algorithm.
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FIGURE 5.10: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100,L = 2) on the Credit Card Fraud Detection
dataset.

Figure 5.11 illustrates the AUC box-plot results on the Credit Card Fraud Detec-
tion set, fixing H = 25, L = oo and changing Max, and Min,. It can be observed that
Max, = 0.75, tends to have higher AUC than other parameter settings. Furthermore,

the performance of the algorithm is not sensitive on Min,.

Similarly, Figure 5.12 shows the AUC box plots for parameters settings (H =
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FIGURE 5.11: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 25,L = o0) on the Credit Card Fraud Detection
dataset.
100,L = oo and changing Max, and Min,) on the Credit Card Fraud Detection
dataset. It can be observed that the mean of AUC is increased, while standard de-

viation is decreased in comparison with Figure 5.11. This observation points out

that more number of random shapes can increase the detection performance of the

proposed algorithm.
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FIGURE 5.12: AUC box plot for sensitivity analysis of the proposed
algorithm (H = 100,L = oo0) on the Credit Card Fraud Detection
dataset.

Tables 5.1 and 5.2 summarise the results of Experiment 1. In summary, we can

observe and conclude the followings from the first experiment:

¢ Generally, Manhattan distance (L = 1) tends to have a robust performance in

this experiment.
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¢ The improvement of performance of the algorithm when lower Lsuchas L =1
is chosen rather than the standard Euclidean distance L = 2 is due to the higher
separability of the underlying distance functions in the high-dimensional space

than L = 2.

* Generally, the algorithm is more sensitive to varying Max, than Min,. The best
optimal performance is always observed for large portions of maximum length
diagonal of the unit hyper-cube. For example Max, = %/L corresponding to
the half of the maximum length of the diagonal of the D-dimensional hyper-
cube if Manhattan or Euclidean distances are chosen. If Chebyshev is chosen
as distance function, generally Max, near 0.75 tends to perform well on the
datasets. Choosing Max, above these numbers results in the volume of the
shapes, encompasses a large portion of the space, thus all the data points will
land inside and have the same binary pattern, which results in less capability of
the algorithm to distinguish normal data from abnormal ones. In addition, low
values for Max, lead to small shapes, which do not have any data points inside,
thus again the same problem of having similar binary patterns for most of the
data and less separability of them occurs, which results in poor performance.
Therefore, the optimal half of the length of the diagonal of the hyper cube as
Max, creates a balance between these two extreme situations and improves the

performance of the algorithm.
* H is independent of geometrical parameters such as L, Min, and Max,.

* Min, parameter is less sensitive than the Max,. It can also be chosen as 0,
however shapes with very small volume do not bring any separability power

to the algorithm.

e Finally, it should be noted that each dataset requires an specific geometri-
cal parameters (e.g. underlying distance function and minimum and maxi-
mum upper bounds for the size of random shapes) to be capable of 