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Abstract

Facial inpainting is a difficult problem due to the complex structural pat-

terns of a face image. Using irregular hole masks to generate contextu-

alised features in a face image is becoming increasingly important in image

inpainting. Existing methods generate images using deep learning mod-

els, but aberrations persist. The reason for this is that key operations are

required for feature information dissemination, such as feature extraction

mechanisms, feature propagation, and feature regularizers, are frequently

overlooked or ignored during the design stage. A comprehensive review

is conducted to examine existing methods and identify the research gaps

that serve as the foundation for this thesis.

The aim of this thesis is to develop novel facial inpainting algorithms

with the capability of extracting contextualised features. First, Symmetric

Skip Connection Wasserstein GAN (SWGAN) is proposed to inpaint high-

resolution face images that are perceptually consistent with the rest of the

image. Second, a perceptual adversarial Network (RMNet) is proposed to

include feature extraction and feature propagation mechanisms that target

missing regions while preserving visible ones. Third, a foreground-guided

facial inpainting method is proposed with occlusion reasoning capability,

which guides the model toward learning contextualised feature extraction

and propagation while maintaining fidelity. Fourth, V-LinkNet is pro-

posed that takes into account of the critical operations for information

dissemination. Additionally, a standard protocol is introduced to prevent

potential biases in performance evaluation of facial inpainting algorithms.

The experimental results show V-LinkNet achieved the best results with

SSIM of 0.96 on the standard protocol. In conclusion, generating fa-

cial images with contextualised features is important to achieve realistic

results in inpainted regions. Additionally, it is critical to consider the

standard procedure while comparing different approaches. Finally, this

thesis outlines the new insights and future directions of image inpainting.



Acknowledgements

The fulfilment of this work over the last three years, created in this thesis is

a result of help I have received from my support unit of Image Metrics Ltd

and Visual Computing Lab at The Manchester Metropolitan University.

First of all I would thank Prof. Moi Hoon Yap, Dr Kevin Walker, Dr

Vincent Drouard and Dr Connah Kendrick for their immense support in

the field of machine learning and computer vision with generative models

in particular.

To my family, I express my heartfelt gratitude for always believing in me,

even when I did not believe in myself. The people who have always been

there for me when I needed them and who have always encouraged me

to think optimistically are my father, Rev Ilaja Jam, my mother, Susan

Jam, my daughter, Esther Roberts and my lovely friend Dr Cynthia Sirri,

who has always been supportive and encouraging, and who has assisted

me in improving my listening skills and attention to detail. I would like

to thank my friends for always being there for me when I needed advice

during the highs and lows of my life, especially Chiakom Patricia Ngoin,

Dr Tom Agyme, Dr Irene Ambang and Dr Derick Yongabi. I would want

to express my gratitude to the E121 Visual Computing Lab team, par-

ticularly Jhan Alarifi, Xulu Yao, Chuin Hong Yap, Dr Richa Agarwal,

and Dr Manu Goyal. To the technical staff, I’d like to express my grati-

tude to everyone at Specialist Computer Sciences MMU, particularly Jay

Woods and Anthony Walls, for constantly assisting me when my computer

had difficulties. I am grateful to The Royal Society for providing a PhD

studentship and Image Metrics Ltd for hosting me, which allowed me to

complete this thesis and gain valuable industry experience.



Contents

1 Introduction and Overview 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.9 Summary of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Traditional Image Inpainting Techniques . . . . . . . . . . . . . . . . 17

2.2.1 Exemplar-based texture synthesis . . . . . . . . . . . . . . . . 19

2.2.2 Exemplar-based structure synthesis . . . . . . . . . . . . . . . 20

2.2.3 Diffusion-based methods . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Sparse representation methods . . . . . . . . . . . . . . . . . . 25

2.2.5 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Deep Learning methods . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 31

2.3.2 Generative Adversarial Network . . . . . . . . . . . . . . . . . 31

2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Nvidia Mask Dataset . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Quick Draw Irregular Mask Dataset . . . . . . . . . . . . . . . 46

2.4.3 Caltech Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.4 Places2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

i



2.4.5 Paris Street View . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.6 CelebA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.7 CelebA-HQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.8 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.9 PASCAL Visual Object Classification (PASCAL VOC) . . . . 49

2.5 Performance metrics for image inpainting algorithms . . . . . . . . . 50

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Research Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Preliminaries, Background Techniques and Intuition 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Preliminary Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Learning to Generate Synthetic Data . . . . . . . . . . . . . . . . . . 61

3.3.1 Supervised Learning: . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 CNN Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Dilated Convolution . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Skip Connections . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.5 Unsupervised Learning: . . . . . . . . . . . . . . . . . . . . . . 68

3.3.6 Siamese Network . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Batch Normalization (BN) . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 The use of Wasserstein Distance as a GAN loss function . . . . . . . 74

3.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Symmetric Skip Connection Wasserstein GAN for High-Resolution

Facial Inpainting 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Connection to Related Work . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ii



4.5.1 Qualitative Comparisons . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Quantitative Comparisons . . . . . . . . . . . . . . . . . . . . 85

4.6 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 RMNet: A Perceptual Adversarial Network for Facial Image In-

painting 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Connection to related work . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2.1 Generator Loss Function . . . . . . . . . . . . . . . . 94

5.3.2.2 Discriminator Loss Function . . . . . . . . . . . . . . 95

5.3.3 Reverse Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . 98

5.5.2 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . 98

5.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Foreground-Guided Facial Inpainting with Fidelity Preservation 104

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Connection to Related Work . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Training and Experiments . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 Training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.2 Method Comparison . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6.1 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 113

6.6.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 113

iii



6.7 Semantic Inpainting with Fidelity Preservation . . . . . . . . . . . . . 115

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 V-LinkNet: Learning Contextual Inpainting Across Latent Space of

Generative Adversarial Network 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Connection to Related Work . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.1 Attention Transfer . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.2 Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2 V-LinkNet Architecture . . . . . . . . . . . . . . . . . . . . . 123

7.3.3 Recursive Residual Transition Layer . . . . . . . . . . . . . . . 124

7.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Feature Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.2 Latent space feature-aware gradient loss . . . . . . . . . . . . 126

7.4.2.1 Generator Loss . . . . . . . . . . . . . . . . . . . . . 127

7.4.2.2 Discriminator Loss . . . . . . . . . . . . . . . . . . . 128

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.2.1 Standard Protocol Testing Dataset . . . . . . . . . . 129

7.5.2.2 Training Datasets . . . . . . . . . . . . . . . . . . . . 130

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6.1 Baseline model Comparison . . . . . . . . . . . . . . . . . . . 131

7.6.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 133

7.7 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7.1 Recursive Residual Transition Layer . . . . . . . . . . . . . . . 135

7.7.2 Latent space feature loss combined with edge-based gradient loss136

7.7.3 Quantitative evaluation of the standardized protocol test sets

for celebA-HQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.8 Propagating High Level Features . . . . . . . . . . . . . . . . . . . . 137

7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iv



8 Conclusion 139

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Comparative Performance for all Methods . . . . . . . . . . . . . . . 141

8.3 Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A Network Configuration 149

A.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B Application of Facial Inpainting 157

B.1 Image Inpainting Prototype . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 159

v



List of Figures

1.1 Example showing poor inpainting of the portrait of Jesus Christ. [63] 2

1.2 Cognitive resonance and data understanding of the human brain, which

is similar to Ogiela et al. [149]. . . . . . . . . . . . . . . . . . . . . . 3

1.3 Encoder-decoder architecture. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Hand inpainting performed by an artist. Image courtesy of [192]. . . . 15

2.2 Inpainting on CelebA-Dataset image using the traditional method of

inpainting by Bertalmio et al. [17]. Techniques under traditional in-

painting methods are limited in terms of mask size, accuracy and some-

times efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Image synthesis by Efros et al. [50] (a) Original texture (b) Synthesized

texture from random patches. (c) Results of pixel-difference computed

by the Sum of Square Differences (SSD) (d) A fully synthesised texture

output with seam carving restoring similar visual appearance. Image

courtesy of [107]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Hierarchical representation of image inpainting techniques in two main

categories: Traditional Methods (the past) and Deep Learning Meth-

ods (the present). There are three sub-categories for Traditional Meth-

ods: Exemplar-based texture synthesis, Exemplar-based structure syn-

thesis Diffusion-based, Sparse representation and Hybrid methods. Deep

Learning Methods are sub-categorised into CNNs and GANs. . . . . . 17

2.5 Image inpainting process in Exemplar-based inpainting task adopted

from [40]. (a) The original image with contours showing source and

target regions. (b) shows the chosen filled patch based on high pixel

priority. (c) shows the most likely candidates for filling the patch. (d)

shows best matching patch selected from candidate patch and copied

to its occupied position. . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.6 An example GAN block. The generator input (z) is sampled from a

random noise vector and the Discriminator input (x) is sampled from

real data distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Inpainting task on CelebA-HQ Dataset [98] shows the performance of

deep learning methods. The slightly thicker mask obtained from Nvidia

Mask Dataset [124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 An overview of encoder-decoder architecture; a backbone of some in-

painting networks. For example, an encoder-decoder framework used

by [87] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 An overview of U-Net combined without any attention layer as de-

scribed in some state-of-the-art methods. This U-Net is similar to

[216] without the shift-connection layer. . . . . . . . . . . . . . . . . . 35

2.10 Examples of binary masks from Nvidia Mask Dataset [7]. . . . . . . . 46

2.11 Mask Dataset [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.12 Caltech Dataset [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.13 Places2 Dataset [241]. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.14 Paris street view Dataset [45]. . . . . . . . . . . . . . . . . . . . . . . 48

2.15 CelebA-HQ Dataset [98]. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16 ImageNet Dataset [106]. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.17 PASCAL VOC Dataset [53]. . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Examples from MNIST test dataset [43]. . . . . . . . . . . . . . . . . 60

3.2 The GAN framework composing of a generator and discriminator. The

generator input is random noise vector and the generated samples are

fake synthetic samples. The discriminator takes both real and fake

samples to judge whether they are real or fake. . . . . . . . . . . . . . 62

3.3 Supervised machine learning. . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Visualisation of simple CNN. The layers are stacked in the format

presented on here. The fully connected layer in our proposed models

are removed. Please see chapters 4,5,6 and 7 for full details of our

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



3.5 An overview of the systematic operation of dilated convolution with

the expansion of receptive field without loss in resolution. (a) is has a

dilation rate of 1 showing each element with a receptive field of 3× 3.

(b) shows a receptive field of 7× 7 based on rd = 2. (c) has a receptive

field of 15×15 on rd = 4. The accretion of receptive field is in linearity

with the parameters. [225] . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Illustration of dilated convolution process. Convolving a 3 × 3 kernel

over a 7× 7 input with a dilation factor of 2 (i.e., i = 7, k = 3, dr = 2,

s = 1 and p = 0) [48]. The accretion of receptive field is in linearity

with the parameters [225]. A 5× 5 kernel will have the same receptive

field view as over a 7× 7 input at dilation rate=2 whilst only using 9

parameters over a 512× 512 input. . . . . . . . . . . . . . . . . . . . 66

3.7 Illustration of skip connection between blocks. . . . . . . . . . . . . . 67

3.8 Unsupervised machine learning. . . . . . . . . . . . . . . . . . . . . . 68

3.9 Siamese Network.The function d is used to tell how similar or different

the two faces are.The latent encoding of the fully connected layers are

denoted f(x1) and f(x2) which are good representations for the two

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.10 Loss variation depending on number of layers and position of activa-

tion function within the model.(a) BN is before the activation. Note

that in the second experiment, (b) the BN layer is stacked below the

activation function. BN momentum set at 0.8 (c) Two convolution lay-

ers. BN momentum set at 0.8 (d) four convolution layers with default

parameters of BN. categorical cross entropy . . . . . . . . . . . . . . 71

3.11 Comparison of accuracy between activation functions (ReLU, ELU,

LeakyReLU) (a) BN is before the activation. Note that in the second

experiment, (b) the BN layer is stacked below the activation function.

BN momentum set at 0.8 (c) Two convolution layers. BN momentum

set at 0.8 (d) four convolution layers with default parameters of BN. . 71

viii



3.12 Comparison of losses on between activation functions (ReLU, ELU,

LeakyReLU). Note that in the second experiment, (b) the BN layer is

stacked below the activation function. BN momentum set at 0.8 (c)

Two convolution layers. BN momentum set at 0.8 (d) four convolution

layers with default parameters of BN. A good evaluation is expected

to have a constant curve of the losses lower across all activation func-

tions for all transformed samples with a corresponding high accuracy

in performance of the model. . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 First row are images from CelebA-HQ [98]. Second row shows the

segmentation masks of face and hair regions from CelebAMask-HQ

[115] used as our foreground masks in Chapter 6. The skin region

without hair indicates the subject’s hair is short or has no hair. The

third row is the mask dataset from [84] used as masking method for

training the models in the contribution chapters . . . . . . . . . . . . 76

4.1 Images showing some issues by existing methods [152, 137]: (a) Poor

performance on holes with arbitrary sizes; (b) Lack of edge-preserving

technique; (c) Blurry artefacts; and (d) Poor performance on high-

resolution images and image completion with mask at the border region. 79

4.2 S-WGAN framework. The dilated convolution and deconvolution with

the element-wise sum of feature maps (skip connection) combined with

a Wasserstein network. The skip connections in the diagram ensure

local pixel-level accuracy of the feature details to be retained. . . . . 81

4.3 Process of input generation: a) CelebA-HQ image; b) Binary mask

image [84]; and c) Corresponding masked image (input image). . . . . 84

4.4 Qualitative comparison of our proposed SWGAN with the state-of-

the-art methods on CelebA-HQ: (a) Input masked-image; (b) CE

[152]; (c) PC [124]; (d) WGAN; (e) SWGAN (proposed method);

and (f) Ground-truth image. . . . . . . . . . . . . . . . . . . . . . . . 85

ix



4.5 Qualitative comparison of results using different architectures [94] on

CelebA-HQ [98]. (a) Input masked image (b) Inpainted image by

WGAN (c) Improved WGAN with skip connections (WGAN-S) (d) Im-

proved WGAN with skip connection and dilated convolution (WGANSD)

(e) Complete network with Lp (f) Ground-Truth image. The yellow box

indicates the region where other models failed to inpaint successfully

completely. This region in (e) shows the effectiveness of Lp on the

inpainted image. (Zoom for best view) . . . . . . . . . . . . . . . . . 86

4.6 Qualitative comparison of results using different architectures with the

perceptual loss [94] on CelebA-HQ [98]. (a) Input masked image; (b)

inpainted image by WGAN; (c) Improved WGAN with skip connection;

(d) improved WGAN with skip connection and dilated convolution (e)

Complete network with Lp; (f) The ground-Truth image. (Zoom to see

differences between (d) and (e)) . . . . . . . . . . . . . . . . . . . . . 87

4.7 Qualitative evaluation of different architectures with perceptual loss

[94] on CelebA-HQ [98] and Nvidia Mask. (a) Input masked image;

(b) Inpainted image by WGAN; (c) Improved WGAN with skip con-

nection; (d) Improved WGAN with skip connection and dilated con-

volution; (e) Complete network with Lp; (f) The ground-Truth image.

(Zoom to see differences between (d) and (e)). . . . . . . . . . . . . . 88

5.1 An overview of RMNet architecture at training showing the spatial

preserving operation and reverse-masking mechanism. . . . . . . . . . 93

5.2 Illustration of partial convolution (left) and gated convolution (middle)

and Reverse-masking (right). This illustration shows the differences

between reverse masking compared to PC [124] and GC [227] . . . . . 96

5.3 Visual comparison of the inpainted results by CE, PConv, GC and

RMNet on CelebA-HQ [124] where Quick Draw dataset [84] is used

as masking method using mask hole-to-image ratios [0.01,0.6]. . . . . 97

5.4 Results of image inpainting using RMNet-0.4 on CelebA-HQ Dataset

[124] with Nvidia Mask dataset [124] used as masks, where images in

column (a) are the masked-image generated using the Nvidia Mask

dataset [124]; images in column (b) are the results of inpainting by our

proposed method; and images in column (c) are the ground-truth. . . 98

x



5.5 Results of image inpainting using RMNet-0.4 on Places2 [241] and

Paris Street View [45], where images in column (a) are the masked-

image generated using the Quick-Draw dataset [84]; images in column

(b) are the results of inpainting by our proposed method; and images

in column (c) are the ground-truth. . . . . . . . . . . . . . . . . . . . 99

5.6 Visual results on ablation study where (a) is the input masked image

(b) results of the RMNet-base model without `rm. As loss on this

model, `2 and binary-cross-entropy are used. (c) RMNet with `rm loss

at with weight application of 0.1 (d) RMNet with full `V P (φ) with

λ=0.4 on Quick-Draw [84] as masking method. . . . . . . . . . . . . . 101

6.1 Inpainted images from the proposed model presented in this chapter

showing semantic understanding with contextualised features. . . . . 105

6.2 Our proposed foreground-guided image inpainting framework with sym-

metric chain of convolutional and deconvolutional features. The fore-

ground segmentation mask and masked image are the inputs to the

network and parameters of the loss functions. . . . . . . . . . . . . . 109

6.3 Qualitative comparison of our proposed model (e) with the state-of-

the-art methods on CelebA-HQ, using the Quick-Draw binary mask

dataset by Iskakov et al. [84] as masking method: (a) Input masked-

image; (b) CE [152]; (c) PC [124]; (d) GC; (e) Proposed; and (f)

Ground-truth image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Qualitative comparison segmented Foreground Inpainted regions of our

proposed method with the state-of-the-art methods on CelebA-HQ,

using the Quick-Draw binary mask dataset by Iskakov et al. [84] as

masking method: (a) Input masked-image; (b) CE [152]; (c) PC

[124]; (d) GC; (e) Ours; and (f) Ground-truth image. . . . . . . . . 115

6.5 Qualitative comparison of our proposed model with the state-of-the-art

methods on CelebA-HQ, using the Quick-Draw binary mask dataset by

Iskakov et al. [84] as masking method: (a) Input masked-image; (b)

CE [152]; (c) PC [124]; (d) GC; (e) Proposed; and (f) Ground-truth

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Illustration of inpainted results with one mask on different faces.Note

the changes in SSIM value for different faces with the same mask. . . 119

7.2 Inpainted images for the same image, different masks show different

performance. See SSIM values on the inpainted images. . . . . . . . . 120

xi



7.3 Overview of our proposed architecture during training. The proposed

feature fusion refinement block passes refined features to learnable up-

sample layers within the decoder (DθE(·)). The connected residual

pooling refinement unit is further illustrated in 7.3.3. See section 7.5.1

for detailed implementation. . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Illustration of connected residual pooling. This unit utilizes maxpool-

ing with pool-size of 2× 2 and ElU activation function as gating. The

connected residual network uses dilated convolutions for refinement. . 125

7.5 Examples of our standardized protocol. (a) MaskDataset1 [0.001,0.6]

M1 [84] (b)MaskDataset2 [0.001,0.1] M2 (c)MaskDataset3 [0.1,0.3]

M3 (d) MaskDataset4 [0.3,0.4] M4 (e) MaskDataset5 [0.5,0.6] M5

(f)MaskDataset6 [0.1,0.4] M6. Note that M2 to M6 are from the

Nvidia Mask dataset [124] . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 Results showing inpainted images using V-LinkNet on Places2 Dataset

with MaskDataset1 of our standardized test set ranging from [0.1-0.6],

where images in column (a) are the masked-image generated using the

Quick-Draw Mask dataset [84]; images in column (b) are the results of

inpainting by our proposed method; and images in column (c) are the

ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Visual results showing inpainted images using V-LinkNet on Paris

Street View Dataset with MaskDataset2 of our standardized test set,

where images in column (a) are the masked-image; images in column

(b) are the results of inpainting by our proposed method; and images

in column (c) are the ground-truth. . . . . . . . . . . . . . . . . . . . 132

7.8 Visual comparison of the inpainted results by our models Ours, CE,

PC, GC and RM on CelebA-HQ [124] where MaskDataset1 is used

as masking method with mask hole-to-image ratios [0.01,0.6]. . . . . . 133

7.9 For ablation study, the inpainted results are compared by variations

of the models VN1, VN2, on CelebA-HQ [124] where MaskDataset1

from our standardized set is used as masking method with mask hole-

to-image ratios [0.01,0.6]. . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



8.1 Visual summary of the performances by all the models proposed in this

thesis based on the standardised testing protocol: (a) Input masked-

image; (b) Chapter 4 (CH4); (c) Chapter 5 (CH5); (d) Chapter 6

(CH6); (e)Chapter 7 (CH7); and (f) Ground-truth image. (Zoom to

see changes.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Optional caption for list of figures 5-8 . . . . . . . . . . . . . . . . . . 151

A.2 Optional caption for list of figures 5-8 . . . . . . . . . . . . . . . . . . 152

A.3 Optional caption for list of figures 5-8 . . . . . . . . . . . . . . . . . . 153

A.4 Optional caption for list of figures 5-8 . . . . . . . . . . . . . . . . . . 154

A.5 Optional caption for list of figures 5-8 . . . . . . . . . . . . . . . . . . 155

A.6 Optional caption for list of figures 5-8 . . . . . . . . . . . . . . . . . . 156

B.1 Application for Facial Inpainting. An interactive tool designed to show-

case the capability of our model to inpaint images online. . . . . . . . 158

xiii



Chapter 1

Introduction and Overview

In this chapter, the background, motivation, problem statement, aim and objectives

are introduced to highlight key aspects that led to the development of this thesis. Also

included in this chapter are the contributions and organisation of the thesis.

————————————————————————

1.1 Introduction

Image inpainting is a widely researched topic in computer vision. The origin of

inpainting came from an artistic process to conserve artwork (paintings) for historic

purposes. This has evolved over the years due to the growing need of archiving digital

images needing high quality restoration methods. With many techniques proposed,

inpainting is an intriguing topic in research due to its impressive interpolation of

pixels during the restoration process of an image. Inpainting originated from artistic

conservation of paintings, which is based on the visual perception of the artist. Thus

it is important to have a preliminary understanding of the Human Visual System

(HSV). This is because the HVS is a useful tool in artistic work and visual perception

of an image.

An image is a vast amount of pixels combined to form texture and structure to

depict a visual perception of something. It can be recreated and stored in digital

and non-digital format. The HVS has a good processing unit (cortex) that can re-

member and update images with natural eye movements as interpolation to complete

an image [44]. It uses cognitive processes; a system that infers the nature of hidden

structures given visible ones. With this in mind, it is clear that the cortex can inter-

pret visual data in order to provide perception and create memories based on context
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and prior knowledge.. This perceptual ability in humans was put to use by artists

in the past to restore damaged images from museums, churches, libraries and archive

collections. In this way the artist would imagine semantic content based on overall

scene, ensure texture and structural continuity of lines between regions of undam-

aged and damaged pixels with visually realistic content. To support this, a study by

Figure 1.1: Example showing poor inpainting of the portrait of Jesus Christ. [63]

Ikkai et al. [83] and DiCarlo et al. [44] indicate that the dorsal visual stream guides

the eyes towards spatial attention and movement task. However, using the artistic

approach to restore images, often brought about substantial variations in details by

various artist if given the same task, causing disagreements across the globe and poor

restoration. For example the restoration of a damaged painting shown on Figure 1.1.

Researchers achieved a breakthrough in image inpainting with the introduction of

digital photography by developing computational techniques that are now regarded

state-of-the-art. These algorithms are introduced and described in detail in Chap-

ter 2. However, limitations persist across different methods, which may be the result

of failures in the design stage to understand that inpainting is about information

dissemination, feature extraction, and propagation. Another drawback might be the

lack of a standardised testing protocol to guide research along a specified path, which

will aid in the establishment of a benchmark for evaluating these algorithms rather

than random mask application on images by different models. To shed more light on

the key method that led to the design of all techniques proposed in this thesis, it is

sufficient to introduce the encoder-decoder in comparison to the HVS.

1.2 Background

Many computer vision algorithms are based on cognitive processes in the human brain

that analyse and interpret various types of data. The use of artificial neural networks

based on neurons in computer data analysis was intended to mimic human cognitive
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processes. According to Ogiela et al. [149], the stages in the human cognitive pro-

cess are data analysis, features, data understanding, expectations, and knowledge.

Despite the fact that neural networks attempt to mimic the brain by using mathe-

matical frameworks to learn high-dimensional data representation, the human brain

outperforms neural networks.

Figure 1.2: Cognitive resonance and data understanding of the human brain, which
is similar to Ogiela et al. [149].

The Figure 1.2 depicts the analysis occurring in the brain as data is captured,

analysed, and interpreted to generate expected outcomes using knowledge-based prop-

erties. The patterns defined in the knowledge-based properties must satisfy the set

of expected outcomes. Based on this concept, it is obvious that given an image with

missing information, a human can draw or complete the missing information of these

regions to create an image that, when compared to the original image, is semanti-

cally consistent. Similarly, in the past, artists would restore degraded or damaged

paintings. Since the beginning of the twentieth century, this has taken a digital

turn, evolving from traditional inpainting methods to deep learning methods. How-

ever, the latter has emerged as the state-of-the-art restoration technique, employing

convolutional neural networks within an encoder-decoder network to capture high-

dimensional data abstractions based on image understanding for reconstruction best

learned end-to-end. This network is not limited to images and can be extended to

other data types. Figure 1.3 depicts an encoder-decoder for comparable understand-

ing with cognition resonance in humans. The structure is comparable in that the

features shown on Figure 1.2 correspond to the encoder, expectations correspond to

the decoder, and data comprehension corresponds to compressed representations. In

Figure 1.3, the encoder captures context (features) from an input image into latent

feature representations, and the decoder reconstructs these features into an expected

outcome; in the case of image inpainting, this is the generated missing content.
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Figure 1.3: Encoder-decoder architecture.

The development of digital tools with image manipulation capability, as well as the

evolution of computers in the twentieth century, has encouraged users to appreciate

image editing, such as restoration, and the application of on-screen visual display and

special effects to images. As a result, digital image inpainting (henceforth inpainting)

has evolved into a state-of-the-art restoration technique. In a computer vision and

graphics context, inpainting is a method that interpolates neighbouring pixels to

reconstruct damaged, or defective, portions of an image with no discernible difference

when compared to the rest of the image. On an image, these damaged portions/areas

(masked-regions) are a collection of unconnected pixels surrounded by a collection

of known adjacent pixels. The inpainting method uses known-information to fill

the damage portions during the reconstruction of a damaged image (image with

disconnected pixels). The goal of image inpainting is to produce realistic results

that are coherent or consistent with surrounding contextual information.

Traditional inpainting methods accomplished this primarily by matching or copy-

ing background patches into missing regions. This was mostly accomplished by filling

in the targeted patches with patch similarities from the local background regions.

Some inpainting algorithms in this category use diffusion-based approaches, which

are limited to narrow-hole (mask) regions, whereas another patch-based method [13]

based on fast nearest neighbour field can fill-in larger masks regions. These methods,

however, failed due to non-repetitive patterns on images and frequently generated

verbatim copies. The most advanced methods are generative models like Variational

Autoencoders (VAE) and Generative Adversarial Networks (GAN). Convolutional

Neural Networks (CNNs) are used in these methods to hallucinate missing parts of

an image using an encoder-decoder framework to learn and reconstruct features of the

masked-image. Because of their fast inference, speed, and performance on high reso-

lution images, generative models have become the best stage performing algorithm,

attracting enormous amounts of research in this area of study.
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1.3 Motivation

The breakthrough in computational methods in the 21st century spawned countless

research in the area of image inpainting. The state-of-the-art techniques already

exists, but visual perception differs from person to person and the continuous de-

velopment of inpainting techniques is much needed to improve research in this area

(more details in Chapter 2). There is a need for inpainted images with contextualised

features of targeted regions in coherency with the entire image. Inpainting techniques

that fall under learning based methods learn by hallucinating missing contents from

images in a data driven manner [152]. Learning-based methods struggle to handle

high-resolution images due to training difficulty, memory occupancy (which causes

the GPU to slow), and a lack of high-resolution training data. As a result, there is

still room for research to develop models that can address these limitations, allow-

ing for training with GPU/NPU (Graphics Processing Unit/ Neural Processing Unit)

devices to generate missing pixels with contextualised features.

1.4 Problem Statement

According to existing studies [209, 152, 52] in computer vision, inpainting is a learn-

ing problem that can be handled by encoding high-level features to a reconstructed

output that is highly comparable to the input. Attempts were made to tackle the

problem using traditional approaches [50, 18], however these methods encountered

problems when dealing with complex textural and structural representations. In the

case of GANs, the inpainting job is thought to have two components: an input source

and a target image. The generated image is acquired by learning from the target

image in the first scenario. The source image is often composed of a mask and an

image, or a mask and an image that have been merged to form a single input. Because

of the intricate nature of its characteristics, which can be easily noticed by humans,

generating realistic face images with GANs is not a simple operation to do. One issue

is the difficulty of the binary mask. In the literature, various types of masks have been

identified, including square masks, irregular masks, masks at border and non-border

regions [152, 137]. However, this is consistently ignored during the algorithm’s design

phase. Because neural networks learn relevant information by sliding a kernel across

an image, the type of mask is important. As a result, a square mask will be consistent

and in specific positions the majority of the time, making the network’s job easier.

On the other hand, an irregular mask will be applied to the entire image, making
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feature capture more difficult. A mask at the border region, as well as large missing

textural patches, will make learning more difficult, resulting in an additional network

challenge. As a result, it is critical to consider this when designing a network that

can withstand any mask type. Failures may also occur depending on how the mask

is applied to the image (failing to use an input image with normalised floating point

representations). Information propagation is also important because the decoder re-

quires it for high-quality reconstruction. Designing a model with efficient propagation

mechanisms, either within the model or as a loss function, is thus advantageous to

any inpainting GAN model.

This is due to the fact that the mask can be either square or irregular in shape,

and the shape of the mask is very dependent on how it is applied on the image (failing

to use an input image with normalised floating point representations).

1.5 Research Questions

In this thesis, GANs will be used to research into contextual-aware facial inpainting.

In addition, methods for facial inpainting will be proposed, and the results will be

evaluated and compared to the state-of-the-art methods. Three research questions

will be addressed in this thesis:

• How do GANs grasp the context of high-resolution images in image inpainting?

• How can GANs comprehend the context of fidelity preservation image inpaint-

ing?

• How can GANs understand the latent space of irregular hole-regions in image

inpainting?

1.6 Aim and Objectives

The aim of this research is to design novel facial image inpainting methods using

GANs. The proposed method will capture contextual information to fill in missing

contents of an image in a data-driven manner with contextualised features. The

objectives are as follows:

• To conduct an informed study on the state-of-the-art algorithms of image in-

painting, nested with comparative study of these techniques on facial images.
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• To develop new deep learning architectures for image inpainting based on Gen-

erative adversarial networks (GANs).

• To propose new approaches to facial inpainting with capability of occlusion

reasoning that can preserve fidelity of attributes even with large hole-to-image

ratios.

• To identify potential biases in performance evaluation and conduct empirical

study to compare the performance of the inpainting algorithms.

1.7 Thesis Contributions

The contributions of this thesis are newly designed methods to inpaint facial images

and images of high quality with realistic features on the damaged regions. Inpainting

high resolution images with fidelity preservation and contextualised features of a facial

image are the main challenges to inpainting. Many algorithms have been proposed

but there still persists some artefacts that are generated either due to failures in

feature transfer or mask sizes being too large, thus leaving the model with totally no

information. Other reasons for such failures are poor performances on images with

masks at border regions, lack of edge preservation due to arbitrary masks sizes and

poor performances on large irregular masks. In addition to this, the generated content

of the masked regions comes from the interpolation of more than one possibility in

latent space. It is challenging to reconstruct images with contextualised features

because of such reasons. However, the state of the art models in face generation are

GAN based, and have a high reputation for generating realistic images [98, 99, 100].

The application of GANs in inpainting is still closely studied and research is ongoing.

Newly proposed inpainting GAN based models have changed the way the convolution

layers are stacked. Many methods have applied different techniques to handle the

mask during training. These methods have addressed most of these challenges with

high-end contributions to the research community in image inpainting. To that end,

this thesis adds the following contributions to the already existing methods. This

thesis’ main contributions are:

• A novel inpainting method namely Symmetric Skip Connection Wasserstein

GAN for High resolution facial Image inpainting (SWGAN), is proposed to

handle high-resolution images based on a new combination loss function that

can preserve colour and luminance. Best performance was achieved as shown

in Section 4.6 of chapter 4 [PUB2].
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• A novel inpainting method namely RMNet, reverse masking, is proposed to

explore only the missing pixels during back-propagation with the help of a

reverse masking loss directly propagating gradients via a concatenated mask.

The network architecture is presented in Section 5.3 of Chapter 5 [PUB3].

• A novel foreground-guided method is proposed based on a foreground loss

model, where a segmented foreground mask is a feature representation of the

face, thus assisting the network with occlusion reasoning of disentangle features.

See Chapter 6 [PUB4].

• A novel feature representation method V-LinkNet capable of transferring high-

level features to the decoder. A feature based loss function based on dual

encoder and recursive residual pooling unit is proposed to assist the model

during learning. See Chapter 7.

1.8 Thesis Organisation

The first part of this thesis presents the background to inpainting and highlights

the concept of an encoder-decoder network, comparable cognitive reasoning of visual

perception in humans in relation to image inpainting.

• Chapter 2 presents a comprehensive review of past and present image inpainting

state of the art methods.

– Section 2.1 introduces the chapter with an overview of image inpainting

and how it started.

– Section 2.2 presents traditional approaches to image inpainting represented

in a hierarchical format illustrating different categories. These techniques

are divided into five sub-categories, i.e. Exemplar-based texture synthesis,

exemplar-based structure synthesis, Diffusion-based, Sparse representation

and Hybrid methods each ending in conclusion with their limitations.

– Section 2.3 presents deep learning approaches which includes convolutional

neural networks and generative adversarial network methods to image in-

painting.

– Section 2.4 presents the datasets which is a key component to designing

a generative neural network model. This section also provides a table

showing an overview of the loss function and the dataset used for the

state-of-the-art methods detailed in this thesis.
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– Section 2.5 presents the popular evaluation metrics used in image inpaint-

ing.

– Section 2.6 presents the strengths and weaknesses of inpainting methods

to provide new insights in the field.

– Section 2.7 presents potential future works to address the challenges raised

during research. Some but not all of these findings led to the proposed

solutions presented in this thesis.

– Section 2.8 is the summary of this chapter.

• Chapter 3 presents the research techniques and intuition that led to the devel-

opment of the proposed methods presented in this thesis..

• Chapter 4 presents the Symmetric skip connection Wasserstein GAN for High

resolution facial inpainting (SWGAN). This method a high resolution image

inpainting method that uses a new combination Wasserstein-Perceptual loss

function with colour preservation to optimise the end-to-end network.

– Section 4.1 introduces the chapter and provides an overview of high reso-

lution image inpainting algorithm.

– Section 4.2 presents the connection to the relevant literature that inspired

the work presented in this chapter.

– Section 4.3 presents the architecture for the proposed inpainting solver and

provides details of the design with reasons that led to the achieved model.

Additionally this section describes the experimental steps and the loss

functions used by the model during learning. Furthermore, quantitative

measures show that our proposed SWGAN achieves the best Structure

Similarity Index Measure (SSIM) of 0.94.

– Section 4.5 presents the state of the art baseline comparison methods and

the qualitative and quantitative evaluations from our model compared to

state of the art.

– Section 4.6 presents the experiments conducted to demonstrate the effec-

tiveness of each component of the proposed design.

– Section 4.7 is the discussion of the proposed method, the observation and

findings to open the gap for an improved method.
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– Section 4.8 is the summary of this chapter and how it is related to the next

chapter.

• Chapter 5 presents the RMNet, a perceptual adversarial network for facial image

inpainting. This is a novel approach proposed that uses a reverse mask operator

to address the limitation associated with blending missing pixels with the visible

ones.

– Section 5.1 introduces the chapter and provides an overview of the inpaint-

ing algorithm proposed in this chapter.

– Section 5.2 connects the literature and techniques that inspired the design

of the RMNet.

– Section 5.3 presents the RMNet architecture and describes how the re-

verse mask operator transfers the reverse masked image to the end of the

encoder-decoder network leaving only valid pixels to be inpainted. Addi-

tionally, this section introduces the new loss function computed in feature

space to target only valid pixels combined with adversarial training. Fur-

thermore, the reverse mask mechanism is compared to the state-of-the-art

[124, 227] to demonstrate differences in novelty.

– Section 5.4 describes the implementation and the parameters used during

the experiments.

– Section 5.5 presents the based comparison methods and displays the qual-

itative and quantitative results of the model.

– Section 5.6 discusses our findings based on observation from the design

stage to the experiments and results of the model proposed in this chapter.

– Section 5.7 is the summary of this chapter and how it is related to the next

chapter.

• Chapter 6 presents Foreground-guided Facial Inpainting with fidelity Preserva-

tion (FGAN), a facial inpainting model designed to preserve fidelity. It is a step

towards preserving realism of facial features, though a very challenging task due

to the subtle texture in key facial features that are not easy to predict.

– Section 6.1 introduces the method with insights of what led to the proposed

solution of this chapter.
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– Section 6.2 is a connection of relevant literature that links this chapter to

the inpainting techniques that inspired the design of the proposed solution.

– Section 6.3 shows the design of our model’s architecture and outlines a

detailed implementation. Included in this section is the newly proposed

foreground loss, implemented to optimize our model.

– Section 6.4 introduces the loss functions used during training.

– Section 6.5 discuses the datasets used and provides details of the experi-

ments. Also included in this Section 6.5, are comparable descriptions of

our method with the state-of-the-art [152, 124, 227], followed by the model

parameters during training and the quantitative evaluation.

– Section 6.6 shows qualitative and quantitative results based on the in-

painted regions. Also, more details on our findings and discussion of our

model compared to the methods are highlighted in this section.

– Section 6.7 presents our findings and discussion on the importance of pre-

serving foreground features of the face on an image.

– Section 6.8 is the summary of this chapter and how it is related to the next

chapter.

• Chapter 7 presents a facial inpainting model designed to highlight high-level

features for high quality predictions. It is a step towards generating realistic

facial features, by introducing recursive maxpooling units connected with resid-

ual convolutions to merge two features from different encoders based on the

morphological concept to erode low-level features, thus highlighting high-level

features within the transition layer.

– Section 7.1 introduces the chapter and provides reasons that led to the

design of the proposed V-LinkNet model.

– Section 7.2 links the chapter to related work that inspired the design of

the model proposed in this chapter.

– Section 7.3 shows the design of the full V-LinkNet model. The components

of the model are explained in detail within this section.

– Section 7.4 introduces the losses used to optimise the model.

– Section 7.5 discusses the implementation and experiment parameters. This

section also introduces the datasets as a standardised protocol for the

evaluation of image inpainting algorithms.
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– Section 7.6 shows the qualitative and quantitative outcomes based on stan-

dardised protocol compared to the state of the art.

– Section 7.7 presents the findings of different components of the model pre-

sented in this chapter and displays quantitative evaluations on the stan-

dardized protocol to demonstrate disparities in inpainting results.

– Section 7.8 is a discussion section based on the proposed solution.

– Section 7.9 is the summary of this chapter.

• Chapter 8 presents our findings, future works and conclusion for this thesis.

1.9 Summary of Publications

This thesis is based on the information included in the following publications:

The contents of Chapter 2 appears in:

• [PUB1]: A comprehensive review of past and present image inpainting methods:

Jam, J., Kendrick, C., Walker, K., Drouard, V., Hsu, J.G.S. and Yap, M.H.,

2020. A comprehensive review of past and present image inpainting methods.

Computer Vision and Image Understanding, p.103147.

The content of Chapter 4 appears in:

• [PUB2]: Symmetric Skip Connection Wasserstein GAN for High-resolution Fa-

cial Image Inpainting: Jam, J.; Kendrick, C.; Drouard, V.; Walker, K.; Hsu,

G. and Yap, M. (2021). Symmetric Skip Connection Wasserstein GAN for

High-resolution Facial Image Inpainting. In Proceedings of the 16th Interna-

tional Joint Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications - Volume 4: VISAPP, ISBN 978-989-758-488-6; ISSN

2184-4321, pages 35-44. DOI: 10.5220/0010188700350044

The content of Chapter 5 appears in:

• [PUB3]: RMNet: A Perceptual Adversarial Network for Image Inpainting: Jam,

J., Kendrick, C., Drouard, V., Walker, K., Hsu, G.S. and Yap, M.H., 2021. R-

mnet: A perceptual adversarial network for image inpainting. In Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp.

2714-2723).

The content of Chapter 6 appears in:
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• [PUB4]: Foreground-guided Facial Inpainting with Fidelity Preservation: Jam

J., Kendrick C., Drouard V., Walker K., Yap M.H. (2021) Foreground-Guided

Facial Inpainting with Fidelity Preservation. In: Tsapatsoulis N., Panayides A.,

Theocharides T., Lanitis A., Pattichis C., Vento M. (eds) Computer Analysis

of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science, vol

13053. Springer, Cham.

Open Source Contribution: The code and experiment developed for models on

this thesis can be found in the following GitHub repositories:

• RMNet: A keras implementation of RMNet presented in Chapter 5.
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Chapter 2

Literature Review

This chapter provides background information for this thesis. It presents image meth-

ods for both past and present techniques, as well as a summary of their strengths and

limitations. It also categorises past and present techniques in a hierarchical structure

for clarity, and it outlines the challenges with recommended guidance for future im-

provement and development. In subsequent chapters, a related context highlights the

base literature relevant to the proposed algorithm. In subsequent chapters, we include

a related context to form the base literature relevant to the proposed algorithm. This

chapter appears in Computer Vision and Image Understanding Volume 203, February

2021 as “A comprehensive review of past and present image inpainting methods”.

————————————————————————

2.1 Introduction

Image inpainting originated from an ancient technique performed by artists to restore

damaged paintings or photographs with small defects such as scratches, cracks, dust

and spots to maintain its quality to as close to the original as possible. Figure 2.1

shows inpainting performed by hand.

The evolution of computers in the 20th century, its frequent daily use and the de-

velopment of digital tools with image manipulation capability, has encouraged users

to appreciate image editing, e.g. restoration, and the application of on-screen visual

display and special effects to images. As a result image inpainting (henceforth in-

painting) has become a state-of-the-art restoration technique. In a computer vision

and graphics context, inpainting is a method that interpolates neighbouring pixels

to reconstruct damaged, or defective, portions of an image without any noticeable
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Figure 2.1: Hand inpainting performed by an artist. Image courtesy of [192].

change on the restored regions when visually compared with the rest of the image.

These damaged portions/areas of an image are a set of unconnected pixels surrounded

by a set of known adjacent pixels. During the reconstruction of disconnected pixels,

the inpainting method uses known-information to fill unknown regions (disconnected

pixels).

In this regard, Efros and Bertalmio are considered the pioneers [150, 19, 199] in

this field and for advancing the research in texture synthesis and pixel interpolation

respectively. In 1999, Efros et al. [50] proposed an advanced computational interpo-

lation of pixels using Markov modelling. This novel concept is based on self-similarity

to estimate a pixel value at the centre of a patch to synthesis a texture. This approach

using image patches for texture synthesis, has largely influenced the success in de-

veloping image processing algorithms [23, 189, 25]. The method is a non-parametric

approach to image synthesis, using an exemplar image as a source, and where pixel

values are selected one pixel at a time. In this process, the chosen pixel merges and

blends-in with the neighbourhood of the already synthesised output image.

In 2000, Bertalmio et al. [17] pioneered the introduction of a novel geometry-

attentive approach for the interpolation of pixels on images. This novel method

is based on Partial Differential Equations (PDE) and diffusion as a technique to

propagate local features from surrounding regions into the damaged areas. PDE use

isophotes (level lines with the same intensity on the surrounding area), e.g. Figure 2.2

shows the use of PDE for inpainting. The white mask regions denote the part or region

to be filled-in, and the rest of the image is the source of propagated features. However,

this technique is limited to small masks (unknown) regions. Then, in 2001, Efros et

al. [49] introduced a stitching technique, known as quilting, that synthesised a smaller

patch of an image to a more substantial textured outcome of the same texture and
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Figure 2.2: Inpainting on CelebA-Dataset image using the traditional method of
inpainting by Bertalmio et al. [17]. Techniques under traditional inpainting methods
are limited in terms of mask size, accuracy and sometimes efficiency.

structure of the initial image. This technique performs texture transfer on an initial

seed (texture) through different stages, as shown in Figure 2.3.

Figure 2.3: Image synthesis by Efros et al. [50] (a) Original texture (b) Synthesized
texture from random patches. (c) Results of pixel-difference computed by the Sum of
Square Differences (SSD) (d) A fully synthesised texture output with seam carving
restoring similar visual appearance. Image courtesy of [107].

These pioneering works [50, 17], then considered to be state-of-the-art, caught the

attention of the community [209, 21, 177, 92, 46, 40, 180, 36, 246, 109, 215, 64, 108, 26,

41, 72, 14, 4, 1, 52, 51, 186, 127, 93, 144] to further the research of these, “traditional”

inpainting methods. Although these methods are reviewed in other literature, e.g.

by Guillemot et al. [66] and Qureshi et al. [155], their scope is limited to traditional

methods only. Yet, despite the advancements of these methods in the last decade,

inpainting continues to remain a very challenging problem in computer vision. The

purpose of this review is to bridge the gap in the previous literature [66, 155] and to

include traditional and deep learning methods for the state-of-the-art algorithms. It

should be noted that the few techniques reviewed here are just a handful of selected

methods from inpainting techniques already in use. These methods are selected and
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summarised under different categories to illustrate the transition from traditional

to the now state-of-the-art deep learning methods. Included as a summary under

each category are the challenges and limitations of these techniques. Furthermore,

the significance of datasets is considered, which include commonly used performance

metrics as well as performance evaluations useful for inpainting methods. Figure 2.4

shows a hierarchical representation of the various categories of inpainting in their

respective groups.

Figure 2.4: Hierarchical representation of image inpainting techniques in two main
categories: Traditional Methods (the past) and Deep Learning Methods (the present).
There are three sub-categories for Traditional Methods: Exemplar-based texture syn-
thesis, Exemplar-based structure synthesis Diffusion-based, Sparse representation and
Hybrid methods. Deep Learning Methods are sub-categorised into CNNs and GANs.

2.2 Traditional Image Inpainting Techniques

Since the evolution of digital technology, computer vision has experienced enormous

research in transformations on images such as image-stitching [188], morphing [60],

image swapping [30], registration [140], denoising [23] and inpainting [50]. Image

inpainting experienced enormous amounts of research with considerable attention in

the last few years, as researchers try to develop algorithms that are robust with less

computational complexity. Various optimisation techniques are proposed to enhance

the capability of these algorithms to handle more complex image structures. Because
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images are a visual representation in texture and structure, the image properties

(patterns, corners, edges and changes in brightness) affect the performance of an

inpainting algorithm. To understand the concept of inpainting in its fullness, texture

and structure are defined in terms of image composition.

A texture is a visual pattern on an infinite 2-D plane with a stationary distribu-

tion at some scale [50]. This pattern refers to the feel (smooth, rough) of the image

surface. Textures are either regular (repeated texels) or stochastic (imprecise texels)

and can be synthesised based on the assumption that the sample is large and uniform

with known statistics of regular patterns [156]. A geometric texture of an image is

the entire representation as a texture based on statistical details of which a small

patch is sufficiently a representative [110]. In textural inpainting, the available data

considered for the inpainting task are exemplar textures. Textural inpainting uses

statistical knowledge of patterns due to its stationary distribution of missing regions

and known parts of the image, commonly modelled by Markov Random Fields (MRF)

[50].

The structure of an image is a visual object constructed by distinct parts (global

contour information) of the image texture [18]. The geometric structure of an image

is a representation of composition and structure. During inpainting, the geometric

structure has a low dimensionality representation in subspace. That is, the coordi-

nates of the inpainted region are exact representations of the subspace and do not

exceed its dimension. This is because it must satisfy the coordinate vertices of the

image representation before decomposition to yield an approximate representation

of the parent structure. With this technique, the target region does not exceed the

parent structure, and the outcome is a good representation of the global context. In

structural inpainting, taking account the nature of the smoothness in the missing

regions and the boundary conditions is a precondition and which uses either isotropic

diffusion or anisotropic diffusion to propagate boundary data in the isotropic direc-

tion [17]. The main categories of traditional methods of inpainting put forward in

this review are as follows:

• Exemplar-based texture synthesis methods

• Exemplar-based structure synthesis methods

• Diffusion-based methods

• Sparse representation methods

• Hybrid methods
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2.2.1 Exemplar-based texture synthesis

Exemplar-based texture synthesis methods are based on distance measuring tools and

aim to generate new visually similar texture images from an input source whilst not

being an exact copy of the input.

As already mentioned in Section 2.1, the Efros et al. [50] method laid the ground-

work for exemplar-based texture synthesis. This method uses MRF modelling to

locate pixel distribution and a new texture is formed in the unknown target region

by querying existing texture to find blocks of similar pixels. This modelling process

captures all neighbouring pixels to grow a new texture by synthesising the initial seed

one pixel at a time. The process is iterative and uses a patch with known pixel values

from a known patch of the previous step. The limitations are discontinuities, un-

wanted growings that do not respect statistics of a texture, thus causing the texture

not to have uniformity.

Efros et al. [49] also used samples from a textured seed to form a similar patch

with different dimension via quilting. This technique densely samples square patches

from the initial seed, to assemble a single row of pixels in an order that forms the

final image. To achieve this, the next patch to quilt into the image comes from a set

of candidate patches. This method uses SSD to compute scores between the patches

obtained from the patch overlap region to the left and above the patch in the quilted

image. The limitation of this method is the enforcement of random patch selection,

which may misalign with the rest of the texture and eventually form cascades on

subsequent patch alignments. Also, due to disruptive coarse textures, smoothness is

not often achieved because the patch size does not always complement the texture

coarseness.

Le Meur et al. [112] used non-parametric patch sampling [50] to synthesize a coarse

version as an input low resolution image for inpainting. The proposed solution is to

use K-Nearest Neighbour (KNN), K-coherence candidate SSD and the Battacharya

distance [24] metrics for priority selection of matches at different scales across a

multi-resolution of selected patterns from the input low-resolution image. This allows

the inpainting process to be less sensitive to noise and work with more enhanced

oriented structures in the image. The authors use KNN to perform inpainting at

coarse level, and apply single-image super-resolution to recover high-frequency details

of the missing area from the inpainted low-resolution image. Therefore this technique

reduces noise sensitivity and computational complexity allowing the algorithm to

focus on the extraction of dominant orientations of textural image structures. This

method can handle inpainting by filling in missing areas using different parameter
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settings to influence the patch size to better handle textures. A limitation is the

speed during inpainting and quality of the resultant image, which highly depends on

the selection approach for high-resolution patches from the dictionary based on the

user (parameter setting).

In summary, exemplar-based texture synthesis methods are well-known to produce

similar texture as the resultant image. These methods also preserve local textures and

are capable of synthesising discontinuous textures. Exemplar-based texture synthesis

exploit image statistics and assign a priority pixel based on surrounding similarity

to inpaint a region on an image. Exemplar-based texture synthesis can produce a

texture with perceptual similarity to the input sample. Methods in this category

can synthesis small textures and rearrange neighbouring pixels in a consistent way,

however, they can grow meaningless textures and verbatim copies. Another limitation

of these methods is that the synthesised texture can have an unnatural feel due to

limited samples in the data region caused by limited pattern similarity. Also noted

is its inability to yield high quality results for highly structured examples.

2.2.2 Exemplar-based structure synthesis

Methods use statistical constraints to sample texture patch-wise instead of pixel-

by-pixel, thus resulting in faster synthesis and realistic results with regular patterns.

Under this category, image inpainting is structure consistent with the resultant image

generated randomly with statistical constraints. Lou et al. [135] described exemplar-

based structural synthesis as a search in the source image for a cluster of similar pixel

patches to fill up missing pixels.

Criminisi et al. [40] proposed a filling order approach that is isophote-oriented.

This technique is dependent on priority filling order of pixel values on structure contin-

uation which favours the action of filling joints in the direction of incoming structures.

The process starts by assigning pixels at the edge of the target region as priority pix-

els. Texture synthesis is performed during stage two of the process by replicating

information from a source region in blocks based on the priority value that was ini-

tially assigned to each central pixel. Figure 2.5 illustrates the propagation of linear

structures during the inpainting process from (a) to (d). Experimental observations

shows adaptations to changes in structure due to its isophote preserving properties

while propagating best match. The algorithm can handle both texture and structure

during inpainting. However, it cannot handle curved structures, and its high depen-

dence on priority pixel value may cause accidental priority pixel dropping, yielding

visual inconsistencies on the inpainted region.
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Figure 2.5: Image inpainting process in Exemplar-based inpainting task adopted
from [40]. (a) The original image with contours showing source and target regions.
(b) shows the chosen filled patch based on high pixel priority. (c) shows the most
likely candidates for filling the patch. (d) shows best matching patch selected from
candidate patch and copied to its occupied position.

Barnes et al. [13] motivated by Ashikhim [10], Sun et al. [187] and Simakov et al.

[182], used Nearest Neighbour Fields (NNF) and proposed a fast randomised algo-

rithm (PatchMatch). This method finds patches via random sampling with the help

of prior information of random fields using NNF defined on a possible patch location.

The process is iterative, and uses pixel propagation based on natural coherence where

the randomly selected candidate uses adjacent pixels to improve a nearest neighbour

search for new candidates. The advantage of this method offers is the fine-scale con-

trol to output pixels with the desired colour and restores both structure and texture

simultaneously. It avoids dense computation in finding patch similarity because it

applies arbitrary distance metrics which enabled local interactions as a constraint

for completion. Furthermore, it performs well on images with texture and structure

and large missing regions but limited in performance as it incurs additional memory

overhead to store current best distance.

Ružić et al. [169] proposed to use textural descriptors to model and facilitate

the search for candidate patches. This method splits the image according to context,

thereby restricting the search for candidate patches to matching context. With the

use of MRF as a prior to encode knowledge about consistency of neighbouring patches,

the selection of candidate patches is accelerated based on contextual features with

improved performance. This technique adaptively selects patches with more than half

of the missing pixels in top-down procedure based on homogeneity in context. Thus,

applying this technique, is an advantage because fixed patch sizes can be used even

when missing pixels are not dominant. However, despite the improved performance

it still faces challenges when shifting patches into unknown regions on images with
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complex scenes due to failures in translations associated with MRF-based methods

[218].

Wang et al. [198] used a space varying update strategy powered by Fast Fourier

transform for full image search. The base technique uses a standard deviation-based

patch matching criterion and confidence term, that evaluates the spatial distribution

of patches to measure the amount of reliable information surrounding the priority

point against a known-priority point. This technique reduces the fast dropping effect

seen in [40] and takes the distribution of patch differences into account. By elimi-

nating fast priority estimation, a full search is achieved for better and agile matching

results leading to improved visual consistency. The fill-in approach propagates linear

structures surrounding the damaged area into the hole. These linear structures impose

image constraints that influence the performance of exemplar-based texture synthesis

efficiently and qualitatively. Also, this algorithm imposes a practical matching crite-

rion of the region and priority function with high confidence in pixel and structure

information. This method performs well in inpainting, but experiences discontinuities

based on the coefficient value applied to adjust the weight on the standard deviation

during the inpainting task.

Liu et al. [127] proposed to use multi-resolution for priority patch selection on

high resolution images to complete an inpainting task. This method [127] uses similar

patch selection to compute multiple candidate patches based on colour, gradients

and boundaries. In this technique, the authors assumed that high-resolution imges

are susceptible to high-frequency information (complex textures and noise) when

extracting information around edges. The technique uses Structure Similarity Index

Measure (SSIM) to select reasonable candidate patches and graph cut technique when

filling the target region with the selected patch. To select a suitable candidate patch,

the SSIM value of the known region is calculated to aid in selecting the best candidate

patch. Using graph cut technolgy introduces smoothing, thus eliminating blockiness

associated on the inpainted regions. The use of colour, gradients and boundary terms

blends patchs well with improved inpainting effect. However, to obtain best results,

the algorithm relies on the sample patch size to be manually selected, which may vary

from user to user, thus may yield poor results.

In summary, methods in this exemplar-based structure synthesis category use sim-

ilar patches from a known neighbourhood to recover the texture and structure of a

missing region. This is based on learned pixel similarity by sampling texture sample

from known parts of the image. The source patch is consistent with the geometric
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structure to fill in targeted regions during an inpainting task [25]. Furthermore, meth-

ods in this category overwrite missing pixels with corresponding pixels from patch to

shrink the hole and update priorities. Also, limitations associated with speed, accu-

racy of texture (meaningless growing), and accurate propagation of linear structures

are handled. Some limitations are lack of reasonable results when attempting to syn-

thesis regions with no existence of similar pixels. Other limitations noted are failures

in curved structures and depth ambiguity.

2.2.3 Diffusion-based methods

Methods in this category propagate image content smoothly from boundary regions

into the interior of the missing region.

Bertalmio et al. [17] proposed to use isophotes and diffusion process (Laplacian)

to propagate pixels automatically. This enables a simultaneous fill of missing regions

in any direction with no limitation of the region to be inpainted. To achieve this,

a smoothness estimator is introduced during computation and the propagated infor-

mation is along the isophotes direction. Also, a time-varying estimator along the

isophote direction determines the spatial change based on a discretization gradient

vector. This algorithm is efficient on images with small cracks due to anisotropic dif-

fusion, but leads to a blurring effect with slightly bigger mask regions. It is limited in

the reconstruction of large textured regions or images with multiple damaged areas.

Oliveira et al. [160] introduced a fast approach that uses a diffusion kernel (gaus-

sian) with considerations based on the tolerance of blur areas by human vision on

regions with high contrast edges. The algorithm is mainly user specified as it in-

volves repeated convolutions with a gaussian. This process involves computing a

weighted average of neighbouring pixels when convolving an image with the gaussian

kernel, which is equivalent to isotropic diffusion. That is, using a linear heat equa-

tion (isotropic diffusion) as diffusion barriers (two pixel-wide line segment) to handle

edge re-connection. However, the results introduce some blur without user-entered

diffusion barriers due to the low pass linear filtering suppressing high frequencies.

Also, if the mask used is not exact on the region to be inpainted, false information

propagates into the inpainted area. This algorithm only works well on filling locally

small missing areas.

Tschumperlé [194] proposed a trace-based PDE as a regularization technique on

multi-valued (multiple colour channels) images. This method is tensor-driven PDE

based on heat flow constraints on integral curves to preserve curvature on images.

By using this technique, isophote diffusion is minimised in all directions, yielding a
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low pass filter that suppresses high frequencies on the image. This process allows

smoothing with edge preservation on curved edges. The capability of PDE to control

geometrical features usually supports variational principles [54, 28]. Hence the use of

the gaussian kernel on tensors to define orientation and strength of diffusion will fail

to preserve curved structures. This method shows high performance on images with

narrow damaged regions and small occlusions. The poor performance of this method

is observed when filling large areas as it often results to image blur if the target region

is large.

Daribo et al. [42] motivated by Criminisi et al. [40], proposed to use a depth

aided texture (depth map) that considers background pixels as high priority over

foreground pixels on an image during an inpainting task. This method [42] uses the

depth map for image-based rendering to fill holes caused by disocclusion. Also, the

distance measure of the depth minimises patch search with the same depth level.

The depth map is smooth and disoccluded regions are easily verified. A smoothing

strategy on the depth map correct deformities in disoccluded regions by correcting

edges. This solves the problem of disocclusion occurrences, edge inconsistencies and

overly smoothness during the process. However, this smoothing process is adaptive

according to surrounding scene structures. Local smoothing of depth maps and edge

correction are simultaneous during the inpainting process. Due to texture-less nature

of depth maps, the assumption of a “virtual” image plane is where the depth map

projects to perform the hole filling. This inpainting algorithm performs well on video

inpainting tasks. However, this method lacks spatial and temporal stability and

sometimes lead to more errors on the foreground depth map. This algorithm requires

an iterative implementation of numerical methods, which has slow rendering speed,

thus making it less robust on still images.

Le Meur et al. [111] used exemplar-based with PDE technique to compute patch

priority on structure tensors to fill in missing regions. The main objective to employ

PDE is to propagate information in in the direction of isophote lines to continue

geometric and photometric information as described by Bertalmio et al. [17]. Li et al.

[119] used PDE combined with smoothness constraints as regularisation technique to

propagate local information. These constraints force the algorithm to follow directions

given by local structure and are regularised iteratively, thus resulting in a sequence

of continuous smooth image. Hence information showing a local pixel on an image

contour propagates smoothness along contour direction and not across boundaries,

thus addressing the limitations of previous methods [17, 16, 18]. Pixels located on

uniform surfaces will spread smoothness in all direction. Based on this finding, using
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isophotes (line of constant intensity) alongside PDEs leads to an inpainted image with

a continuous evolution in structure. It has shown great success on textured images

with scratches/smaller gaps but poor results on large gap regions. The disadvantage

of these methods is computational cost due to slow or prolonged arrival of structures

at border regions.

Sridevi et al. [186] proposed to use fractional-order derivative (integer-order

derivative) with Discrete Fourier Transform (DFT) for inpainting task. The authors

[186] used this method to achieve a good trade-off between the restored region and

edge preservation, and also because DFT are easy to implement. Using fractional

order derivative, pixel level on the whole image is considered instead of just con-

sidering neighbouring pixel values. The technique employs fractional-order nonlinear

diffusion model (difference curvature driven [34]) to handle gap regions and fractional-

order variational model for denoising and de-blurring of the image. The advantage of

this method is its ability to preserve edges during an image restoration task. Also, it

ies effective in eliminating noise and blur without affecting the edges. The disadvan-

tage of this model is that it relies on user interaction for manual selection of fractional

order, which may lead to poor results on the inpainted region.

In summary, methods in this category push good pixels from boundary into the

gap region, filling in altered pixels to set a colour similar to or the same as the source

region. They are suitable for inpainting with scratches, straight lines curves and

edges. However they turn to blur large textured regions due to prolonged arrival of

pixels to fill in gap regions. Therefore it is not well suited for textured images with

large gaps/regions. Also, the iterative implementation of numerical methods that will

eventually render it slow. Therefore this algorithm is not robust on still images.

2.2.4 Sparse representation methods

The sparse-based methods assume that images contain natural signals that admit a

sparse decomposition over a redundant dictionary leading to efficient algorithms that

can handle sources of such data [141].

Inspired by Shih et al. [181], Chang et al. [29] proposed to use colour space in

facial images to correct facial images which are overly-exposed in digital photography.

This method uses multi-resolution [181], to consider level details in a suitable colour

space for layer separation and fusion layer during an inpainting task. This process

exploits the characteristics and level-by-level features of the image and segments the

skin region on facial image. The multi-resolution technique uses mean colour (av-

erage of a group of pixel colours) and neighbouring pixels to perform an inpainting
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task based on the percentage of damaged pixels. A sliding window, based technique is

utilised to select bright spots (reflection artefacts) on the face. Based on this method,

there is evidence that a considerable pixel variation contains detailed shapes of an

image which supports the claim by Shih et al. [181], for a multi-resolution inpainting

strategy. However, this algorithm is highly effective on facial images with high accu-

racy, but cannot generalize well on other images. It is used to correct facial images

with too much light exposure in digital photography. Although, this algorithm is

highly effective and accurate on facial images, it has not been tested on natural scene

images.

Kawai et al. [101] proposed an approach that examines two sample textures by

considering the change in brightness and spatial locality of texture patterns. Energy

minimisation is the key technique to this method because initial values are assigned to

missing regions and targeted regions completed by minimising the energy function.

This technique also checks the data region for image patterns, and uses a sliding

window to match fixed pixels on that region. The preceding step uses a central pixel

of the window overlapping the expanded area and the missing region fills-in with

the reference pixel inwardly during inpainting. The energy function is the weighted

SSD representing the pattern similarity in conjunction with the change in brightness

and the similarity difference representing the spatial locality. This method allows a

change in intensity with spatial locality as a constraint during inpainting, but shows

poor performance when single weight coefficient is used.

Shen et al. [175] proposed to use the sparse representation of image signals over

a redundant dictionary with the assumption that the image is thinly distributed on

the basis of wavelets. This method relies on discrete cosine transform to build a re-

dundant dictionary of patch observations. The inpainting task performs sequential

computation iteratively over these sparse representations, completing every uncom-

pleted patch at the boundary of the target region. In this method, the user is allowed

to specify the area to be inpainted, which eliminates the problem of finding the corre-

sponding input signal to the corrupted area of the known pixel specified by the user.

The image is inpainted inwardly from the boundary of the targeted region with the

priority pixel given the most probable chance. At each iteration, the pixel closest

to the target filling region, has the maximum priority since the patch is the current

iteration centred at the boundary of the target region. Overall, the algorithm recovers

incomplete image signals with each signal corresponding to a patch, and the target

region is filled based on the patches for each sparse patch representation.
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He et al. [74] used a dual-phase algorithm (Thiele’s rational interpolation function

and Newton-Theile’s function) for adaptive inpainting. This method uses continued

fractions to update pixel intensity during the reconstruction of damaged portions

based on the surrounding pixel information of known regions along the target region.

That is, if the damaged pixel points are vertical, the selected points for interpolation

of pixels are in the horizontal direction. The masked image is scanned line by line

to locate and adopt information of known pixel points to perform interpolation of

pixel intensity. The first phase repairs the damage and the second phase refines the

restored image to closely resemble the original image. This second phase updates the

intensity of all the damaged pixels in the reconstructed image by using the masked

image to locate damaged positions originally corresponding to the previous damaged

repaired regions. Whilst this method performs well, its limitation is that the damaged

pixels need to be in the vertical direction.

In summary methods in this category assume that the known and unknown re-

gions share similar sparse representation. Also, another assumption is the images are

represented in sparse linear combination as a complete dictionary which can be adap-

tively updated to target inferred pixels. Methods in this category help to improve

the visual quality of the image.

2.2.5 Hybrid methods

The continued success of exemplar-based texture synthesis and exemplar-based struc-

ture synthesis methods in inpainting tasks, has motivated researchers to explore the

combined capabilities of these methods. Where some are suitable for small gaps, or

structures with curvatures and edges, others work best with texture restoration. For

this reason, combining two methods to handle images with composite structures and

texture has become an area of great interest in inpainting.

Bertalmio et al. [18] used PDE to determine synthesis ordering [17] and texture

synthesis by Efros et al. [50] to recover geometrical structures and small textured

regions. This method decomposes an image into texture and structure layers for

inpainting. After decomposition, the energy function for texture synthesis is applied

to the texture layer and diffusion-based method for inpainting applied to the structure

layer. This method breaks down the inpainting into two. It uses the diffusion based

technique in Bertalmio et al. [17] in the structure layer and adds synthesised textures

derived by using Efros et al. [50] method to the in-filled region. The energy function

utilised in patch stitching minimises the seam area during the inpainting task. The

energy function measures self-similarity, coherence and diffusion with each measure
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Table 2.1: Analysis of the state-of-the-art traditional methods on image inpainting.

Category Advantage(s) Disadvantage(s) Prior(s) Application(s)

Exemplar-based texture
synthesis[50, 49, 182,
112]

Preserves artefacts, No occurrence
of blur.

Failures in the reconstruction of
large textured regions or images
with multiple damaged areas.

Smoothness. Image restora-
tion,

editing,

disocclusion.
&

concealment
Preserves both structural and tex-
tural information, Used in wire-
less transmission for lost block re-
transmissions.

Can lead to repetitive patterns.

Exemplar-based Struc-
ture synthesis[17, 13,
169, 127]

Performs better during inpainting of
large textured regions.

Inpainted task is copy/paste fashion
with almost verbatim copies.

It is time consuming and exhaustive
for methods in this category to gen-
erate different candidate patches.

Can mix several verbatim copies
with distinctive overlaps.

Priority as-
signment.

Best patch
selection.

Image restora-
tion,

editing,

disocclusion.
&

concealment.
Restores texture, structure and
colour.

Incurs additional memory overhead
to store the current best distance.

Diffusion-based Meth-
ods [17, 16, 176, 177,
128, 66, 119]

It generates good results when fill-
ing in small or gap regions.

Preserves edge information.

Suitable for completing lines and
curves.

Does not produce verbatim copies in
the synthesized textured region.

Maintains the structure of the in-
painted region.

Fails to inpaint large textured re-
gions, resulting in blurry artefacts
on image.

Smoothness Image restora-
tion

Sparse representation
Methods [181, 141, 29,
101, 175, 74]

Inpaints facial images with high ex-
posure to light.

Allows change in light intensity.

May not work well on natural scene
images.

. On image reconstruction,the dam-
ages pixels must be in the vertical
direction.

Colour
space,

self-
similarity &
sparsity.

Image restora-
tion

Hybrid Inpainting[231,
66, 198]

Preserves edge and restores smooth-
ness. Impressive results on the lin-
ear structure of the image improve
the speed.

Computational complexity with no
guarantee in convergence.

Smoothness,
Similarity
& Sparsity.

Image restora-
tion,

editing,

disocclusion.
&

concealment

having a role during the corresponding mapping of pixels. The similarity between the

patch of central filling pixel and the known pixel of the source region of the image

is computed by self-similarity measure. A discrete Laplacian equation calculates the

corresponding map of the image region to be inpainted for diffusion. This method

overcomes the limitation by diffusion-based methods which causes overly smooth

outcomes. The method is computationally expensive and fails in some cases of large

missing structures.

Allène et al. [5] used a combination of variational [49]and statistical [17] methods

to propose a graph-based approach based on the concept of progressive stitching.

This technique uses MRF-based cost function to find similarity of the existing image

and patches that are needed as well as the measure of the boundary to the inpainted
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region. The concept of progressive stitching consists of a selection of pixel values, cor-

responding to selected patches from possible image patches that best approximates

the original data. The technique of Allène et al. [5] uses MRF-based cost function

to find similarity of the existing image and patches that are needed as well as the

measure of the boundary to the inpainted region. To achieve this, they introduced

constraints to minimise the distance between chosen patches and existing data to cap-

ture properties of the area surrounding the missing content. With these constraints,

multiple candidate patches are then superimposed over the target region, forging a

multi-source label solvable by graphs to perform inpainting. However, because dis-

continuities are created during the stitching of selected patches, local smoothness on

the final texture is not always achieved. This method also incurs a computational

cost due to the particular attention required for selecting the right patches, to best

approximate the corresponding pixels.

Zhang et al. [231] proposed an algorithm that decomposes an image into structure

and texture using wavelet transform with the aim being to capture the image texture

and structures without loss of information with wavelet transform. In structural

propagation, the patches copied are specified by missing structures of the unknown

regions and are in the same direction of similar curves in the known area. The use of

curvature driven diffusion also applies to structural reconstruction, while exemplar-

based texture synthesis is the fill-in process during textural reconstruction. The

two inpainted components are combined into a plausible outcome with similarity

compared to the input image. However, this method is computationally demanding

for large fill regions.

Ghorai et al. [58] proposed to use patch selection and refinement method based

on joint filtering alongside a modified MRF to enhance optimal patch assignment to

perform an inpainting task. This technique uses subspace clustering to select target

patches from boundary regions into groups, which are refined via joint patch filtering

to capture patterns and remove artefacts. The selected patches are targeted in se-

quential order from the interior regions based on neighbouring patches from candidate

patches along the boundary regions. The subgroup of similar patches are merged into

larger groups, alongside ensuring deselection of any patch that is too different from

the boundary patch. However, despite a faster patch selection in reduced search space

compared to global patch selection by other methods, the limitation is in the cost of

group formation and grouping of each target patches. Quantitative evaluations using

PSNR showed the algorithm’s best at 29.7db for regular-shaped mask and 24.23db

for irregular-shaped mask.
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In summary, methods in this category can remove text overlays, fill in regions

with complex textures and structures. It is noted to handle discontinuity in boundary

regions and blur, and produce images with local coherency in visual quality. Despite

the excellent results, methods in this category still perform poorly in some disocclusion

and object removal task. Also, there is no guarantee in convergence and they cannot

be applied to error concealment applications due to time constraints (computationally

expensive).

2.2.6 Summary

Some of the inpainting methods described above are summarised in Table 2.1. These

have shown great success in nearest neighbour searching, i.e. using patches or pixels

to synthesise images. However, the challenge to inpainting is maintaining a realistic

structure and texture in the output image. For example, traditional methods at-

tempt to fill in missing pixels using image patches from existing regions or use the

diffusion mechanism to propagate pixels into a hole region from high pixel similarity

areas. Whilst, these methods can propagate vivid textures for background-inpainting,

they often failed to capture high-level semantics, yielding non-realistic images with

repetitive patterns. Moreover, these methods do not yield plausible outcomes for in-

painting tasks on complex mask regions such as a face or objects with non-repetitive

structures. Generally, and despite their success in generating high-frequency seamless

textures, they continue to fail in the generation of structures that are globally consis-

tent. However, the advent of the generative neural network, inpainting algorithms can

be taught to learn meaningful and high-level semantics which have proven to generate

coherent structures for missing regions. This is discussed in the next section.

2.3 Deep Learning methods

In more recent research, the use of Convolutional Neural Network (CNN) [56, 116, 196]

and Generative Adversarial Network (GAN) [152, 217, 223] have become the state-of-

the-art methods used to perform image inpainting task. These methods use CNN as a

feature extraction method through the process of convolution to capture abstractions.

The use of CNN combined with adversarial training [62] has produced excellent results

on inpainting task, with perceptual similarity to the original image. It is advantageous

to use CNN combined with GAN because a CNN has an encoder that is used as

a feature extractor to capture high dimensional data abstractions; and a decoder
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that reconstructs these learnable features in an end-to-end fashion, while the GAN

enhances the sharpness of the image [152].

The performance of algorithms in this category depends on the datasets used.

Datasets are valuable in research as it consists of ground-truth images and information

[161]. Different types of datasets have been used to train and test image inpainting

algorithms. These datasets are made up of images with diverse textural and structural

information, which mainly test the robustness of the algorithms to learn different

image features.

2.3.1 Convolutional Neural Networks

Jain et al. [86] pioneered the use of CNN to inpainting, by framing the computational

task within a statistical framework of regression rather than density estimation. The

authors used an image denoising task which was formulated with parameter learning

for back propagation. The image denoising thus becomes the learning problem in

the CNN with noise integrated clean images during training. However, this method

is restricted to greyscale (one colour channel) images, removal of “salt and pepper”

noise, whilst also requiring substantial computation cost. The method of Jain et al

[86] was improved by Xie et al. [212], who proposed combining sparse coding and

deep neural networks as a denoising auto-encoder, to handle inpainting of inconsistent

localities of corrupted pixels. The use of sparse coding and deep neural network

overcame the limitation of computational cost, and eliminated noisy pixels supplied

to the algorithm as the regions required for inpainting. However, the use of stacked

sparse denoising auto-encoders strongly relying on supervised training and can only

handle images with small denoising tasks, such as the reconstruction of images with

controlled procedural pixel corruption.

2.3.2 Generative Adversarial Network

GANs refers to a two model framework of unsupervised learning algorithms that

estimate adversarial processing. Inpainting methods using the GAN process aim at

generating a conditional image for high-level recognition, based on low pixel synthesis

formulated into a convolutional network (encoder-decoder). The trained adversarial

network enhances coherency between generated and original pixels. For example,

Figure 2.6 shows the GAN framework for estimating generative models via adversarial

networks. GANs were first proposed by Goodfellow et al. [62], as a two model

network; the generative and discriminative model. The generative model (generator)
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of the neural network captures data as a random input noise and transforms into

a fake image, intending it to look like the real image from the training set. The

discriminative model (discriminator) tries to distinguish this generated image from

the training set, by estimating the probability that it came from the training set rather

than from the generative model. Equation 2.1 shows optimisation of the loss during

the combined training of the discriminator (D) and generator (G) network, where z

is sampled from a prior distribution pz and x is the sample from pdata distribution.

G maps the random vector z and D discriminates between images generated from G

and real images x sampled from pz [6].

Figure 2.6: An example GAN block. The generator input (z) is sampled from a
random noise vector and the Discriminator input (x) is sampled from real data dis-
tribution

min
G

max
D

V (D,G) = Ex∼Pdata(x)[log(D(x)]+

Ez∼Pz(z)[log(1−D(G(z)))] (2.1)

However, the difficulty during the training process increases uncertainty, and the

generator can improve, leading to a vanishing gradient of the discriminator, thus

making it difficult to converge. Figure 2.7 shows an inpainting by deep learning

method.

For simplicity and readability deep learning based algorithms are categorised here

based on how efficient each network is to the key properties necessary when consider-

ing designing a deep learning model. These are feature extraction, feature propagation

and feature attention. Note that each model is assigned under a category where it

performs best. Table 2.2 shows a summary of the deep learning methods, models,

description, the loss function and datasets used for evaluation.

Feature Extraction methods, style transfer, Feature attention, and Feature prop-

agation are all categories for the state of the art deep learning inpainting models.
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Figure 2.7: Inpainting task on CelebA-HQ Dataset [98] shows the performance of
deep learning methods. The slightly thicker mask obtained from Nvidia Mask Dataset
[124].

These are the many properties of inpainting, and each model has been assigned to a

category that corresponds to the proposed method’s main contribution.

Feature Extraction

Pathak et al. [152], pioneered adversarial training [62], an end-to-end network

based on CNN [76, 15, 106], to predict the missing content of an arbitrary image

region conditioned on its surroundings with realistic output. This technique captures

semantic visual structures aided by `2 reconstruction and adversarial loss. The `2

loss is capture the overall structure of the missing region with regards to context and

coherency, but tends to average the multiple modes in prediction. Introducing adver-

sarial loss [62] enables the network to predict more realistically by picking particular

patterns from the distribution. Overall, performance evaluations using PSNR show

that adversarial training with reconstruction loss, yields higher PSNR value of 18.58

with [45] compared to 14.70 & 12.79 obtained by Hays et al. [70] model, suggesting a

more accurate pixel inference of missing content to the entire image. It is, however,

limited to small image sizes of low resolution due to training with regards to `2 loss.

It also lacks spatial support with more substantial inputs, and often produces images

with considerable amounts of implausible results that are overly-smooth (blurry) and

which lack edge preservation. Furthermore, the discriminator focuses on the missing

region and does not take into account the global context of the image. Thus, this

method cannot guarantee structural cohesion nor a harmonious texture between the

inpainted region and the image context.

Iizuka et al. [82], motivated by Pathak et al. [152], proposed the use of dilated

convolutions [225], as part of the encoder-decoder, combined with two discriminators.

Dilated convolutions increase the input area of each layer without loss of resolution
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or parameter accretion. The use of dilated convolutions increases the receptive fields

for neurons at the output, thus replacing the channel-wise fully connected layer in

[152]. The global discriminator for assessing the entire coherency of the reconstructed

image and a local discriminator assesses the area of the completed region to ensure

consistency within the entire image. The input to the global discriminator is a 256×
256 resolution image, while the input to the local discriminator is 128 × 128 on the

centre of the completed region. The authors used subjective evaluation reporting

77% approval rating on naturalness of inpainted images against the state-of-the-art

[13, 152] and 96.5% for ground-truth images. However, this method fails to capture

long-ranged textural information (limited to image completion with mask at border

region) and relies heavily on post processing using fast matching [190] and Poisson

blending [154].

Figure 2.8: An overview of encoder-decoder architecture; a backbone of some inpaint-
ing networks. For example, an encoder-decoder framework used by [87]

In a different study, Yan et al. [216] used the U-Net [163] to introduce a shift-

connection layer combined with guidance loss to inpaint images using deep feature

rearrangement. The shift-connection layer handles images with sharp structures and

fine texture details. The technique concatenates the encoder feature of the first con-

volutional layer to serve as an estimator of the missing parts on the last decoder layer

after the fully connected layer. This approach uses a guidance loss function, `1 loss

and adversarial loss to obtain photo-realistic textures. The guidance loss implemented

based on the shift-connection layer, uses SSD on concatenated features of first convo-

lutional layer of encoder and features of last convolutional layer of decoder. The end

recovery used the encoded features to approximate the missing portion based on the

ground-truth. Overall, the performance evaluation scored high values quantitatively
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and are shown in Table 2.4. However, this method may experience poor performance

due to the parameter value of the guidance loss chosen to perform the shift operation.

A limitation is that a smaller parameter value may lead to a more extensive feature

map size that will increase computational time to 400ms per image. Also, a more

substantial parameter value may lead to a more modest feature map, leading to a loss

in image detail information. Thus, the best trade-off reported a computational time

of 80ms per image, compared to 40ms per image which results to a generated image

with less texture and coarse details. Although their shift-connection implementation

of the U-Net structure has shown excellent results, it struggles in terms of efficiency

and computational speed due to network parameters that do not make it suitable for

most applications.

Figure 2.9: An overview of U-Net combined without any attention layer as described
in some state-of-the-art methods. This U-Net is similar to [216] without the shift-
connection layer.

Huang et al. [79], motivated by Goodfollow et al. [62], Mirza et al. [143] and

Ronneberger et al. [162], studied the network structure of the encoder-decoder and in-

troduced padding and pooling operations to avoid edge disappearance. The proposed

completion network uses adversarial training with a new loss function based on SSIM

and `2 loss. SSIM loss works as an authentication mechanism on the reconstructed

image to improve the structure and texture. This method also introduced the use of a

mini-batch discriminator to optimise training, thus increasing diversity of the gener-

ated sample. This loss enables photo-realistic images which are further judged by the

adversarial network to obtain the output as close as possible to the original image.

The in-house dataset dataset contains 2015 images for authentic street images by

Huang et al.[79]. The images are 256× 256 with a variety of situations such as foggy,

rainy, day and night. The mask is rectangular, with various sizes randomly generated

and applied to the image. The randomly generated binary masks are applied to the

35



images and randomly shuffled with 80% used for training and 20% for testing. The

data distribution is similar for both training, and test sets for the filling task handled

in various situations. Both qualitative and quantitative evaluations carried out on

the in-house dataset shows this algorithm performs with good results, scoring `2 (

8.99), PSNR (39.63 ) and SSIM (0.97) values, compared to Pathak et al. [152] (11.02,

37.36 & 0.95).

Style Transfer

Yang et al. [217] used style transfer [94, 196, 116] to propose a multi-scale neural

patch synthesis approach combined with adversarial loss. Yang et al. [217] used the

context-encoder [152] to captures image content, texture and to preserve contextual

structures, thus producing images with high-frequency detail. The style transfer net-

work ensures the context-encoder predicts the global content with the local patch

similarity of the predicted region. A texture network, pre-trained on image classifica-

tion, takes the output image of the prediction network as an input. The architecture

uses a local texture loss function computed VGG19 [183], pre-trained on ImageNet

and a “holistic” loss based on `2. The joint loss function is `2-norm and the tex-

ture term (loss function) computed on extracted feature maps from feature layers

(relu3 and relu4) of the VGG19 block. Quantitative results based on Paris Street

View [45] shown in Table 2.4, show that inpainted images performed better com-

pared to the state-of-the-art [152, 59]. However, the proposed algorithm suffers some

limitations with the content and texture networks failing to guarantee correct image

structure, blurry images whilst being computationally expensive with high-resolution

images (taking longer to inpaint). Another limitation is the difficulty in hallucinating

suitable texture for larger irregular mask regions since it is designed for rectangular

holes.

Zheng et al. [239] proposed to use a two stage probabilistic distribution frame-

work, combined with an attention layer (short+long term-based), both using GANs

for image inpainting task. The first network uses a Variational Autoencoders-based

model to reconstruct an image based on prior distribution of missing parts given

the ground-truth. The second network uses a conditional completion coupled with

information obtained from the first network to predict the missing regions based on

the visible pixels. The short and long term layers are used to improve appearance

and consistency by measuring the distance between related features of both encoders

and decoders of the two networks. However, both frameworks sample from a prob-

abilistic distribution of the masked image with ground-truth visible pixels, and the

complement of the masked image with ground-truth missing regions (the reverse of
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the masked image). To achieve this, a conditional variational autoencoder is em-

ployed to estimate the parametric distribution in latent space, where sampling is

possible. Therefore, a lower bound conditional log-likelihood is the probability of

observed training data given the deep network parameters that generate the missing

data. To optimise both networks, two L1-Norm based reconstruction loss of which

one is geared towards reconstructing the entire image and the other focused on valid

(visible) pixels combined with adversarial loss are employed. For evaluations, quan-

titative comparisons with the state-of-the-art Iizuka et al. [82] and Yu et al. [226]

showed the model’s superiority based on `1 (12.91), PSNR (20.10), Total Variational

(TV) Loss (12.18). For IS [184], the model’s performance rate was 24.90 conducted on

20000 test images from ImageNet [168] using 128×128 centre binary mask. However,

the authors state that evaluations were carried out based on a selection of samples

since the goal was not to achieve a single solution. Zhao et al. [238] used three

network modules namely; a conditional encoder module, manifold projection module

and generation module combined with cross semantic attention for image inpaint-

ing. The authors used a jointed probability distribution analysis to come up with a

hypothesis to solve the inpainting task. That is, given that a set of reconstructed

images generated from a set of masked-images is expressed as conditional probability

distribution, then the set of masked-images is expressed as marginal probability dis-

tribution, then the training data is a joint probability distribution. This means that

in an image inpainting task, finding the conditional probability distribution depends

on the marginal probability distribution and joint probability distribution. Therefore

borrowing information from the ground-truth (training data) by traversing an image

completion space is in a sense using marginal and joint probability distribution to

obtain conditional probability distribution. The architecture is a dual encoder net-

work with different inputs, where one branch takes an instance image (ground-truth)

and the other a masked-image to perform a one-to-one mapping in the same low-

dimensional space in order to reconstruct an image. Within this network, are a set of

instance images (ground-truth) corresponding to the masked-image used for guidance

during training. The network uses cross-space translation to learn one-to-one map-

pings between the instance image and the masked-image. Therefore, the two spaces

(instance and conditional completion) are associated in one latent space by one-to-one

mapping, where the instance images corresponding to the mapped restored images

have the same representation in low dimensional space. To optimise the network,

a conditional constraint loss handles appearance and perceptual features extracted

from VGG16 [94] using the `1 as base. Both appearance and feature loss use the
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instance and masked image expressed as a function of the network and the mask.

Other losses used are the KL divergence, reconstruction and ongoing adversarial loss.

The cross semantic attention layer uses 1× 1 convolutions to transform feature maps

obtained by instance and masked images to evaluate cross attention before adding

them to feed the decoder. Comparative evaluations were carried out using the base-

line models Pathak et al. [152], Yu et al. [226], Liu et al. [126], Ren et al. [159],

Song et al. [185], Yan et al. [216], Sohn et al. [184], Zhu et al. [245] and Zheng et al.

[239]. Quantitatively, the performance on 1000 CelebA-HQ images using centre mask

of size 128×128 were better than the state-of-the-art and are shown in Table 2.4. The

limitation of this network is that there is a possibility to suffer from mode collapse

(i.e poor diversity in generated images) during training if trained in an unsupervised

manner. Figure 2.8 is a typical encoder decoder network with ongoing adversarial

loss for image inpainting.

Feature Attention

Yeh et al. [223] used the model architecture from Radford et al. [157] and in-

troduced a spatial attention mechanism that searches for encodings of the corrupted

image in latent space to recover the lost area based on the surrounding image features

as reference; thus, with this encoding, the generator reconstructs the original image.

This algorithm uses context loss (`1-norm) and adversarial loss information to search

for closest encoding on the trained generative model regardless of the structure (mask)

of the missing content. The context loss is a “weighted context” considered close to

the corrupted pixel region while the prior loss corrects unrealistic images. Iterative

optimisation of the objective function is through back-propagation in combination

with prior and context losses. The algorithm scored high PSNR values (22.8, 33.0

& 18.9) compared to PSNR (20.6, 24.1 & 16.1) using Pathak et al. [152] across the

various datasets for this method as shown in Table 2.2. However, despite excellent

performance, the algorithm struggles with misalignment on images and some failures

in finding “closest” encoding to the corrupted image in latent space. This may be as

a result of the difficulty in training GANs, which can lead to poor data distribution

capture increasing its inability to handle high resolution or complex scene images.

Yu et al. [226] introduced a coarse-to-fine network and used the contextual at-

tention module by Iizuka et al. [82] to design their network. This model uses co-

sine similarity to learn the relationship between background and foreground feature

patches. The contextual attention module is redesigned to use dilated convolutions

and the model optimised using a reconstruction loss and two Wasserstein GAN losses

by Arjovsky et al. [9] and Gulrajani et al. [67]. The two-stage model produces
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a roughly restored intermediate image with filled predictions and refines this result

using a refinement network designed with dilated convolutions. The contextual at-

tention module includes spatial propagation layers to encourage spatial coherency

and fuse attention scores for more realistic outcomes. The contextual layers refine

the image and alienate the idea of Poisson blending in [82]. The final reconstruction

performing convolutions on foreground patches and background patches relies on the

attention score for each pixel value, obtained using Softmax. These are then propa-

gated channel-wise to reconstruct layer. The quantitative performance are reported

on rectangular mask only and are shown in Table 2.4. However, despite great results,

it also lacks fine textural details and inconsistencies with the background pixel-wise

on high resolution images.

Zeng et al. [228] used the U-Net (Ronneberger et al. [163]) and proposed a

network that learns high-level semantic features from region affinity to fill in missing

regions in a pyramid fashion. The authors introduced a cross-layer attention and

pyramid filling mechanisms in each layer, referred to as Attention Transfer Network

(ATN) with each layer being derived from region affinity between patches. The ATN

transfers relevant features outside missing regions and makes use of softmax and cosine

similarity between patches inside/outside missing regions extracted from patches.

With softmax applied, the attention scores obtained are used as the valid pixel to fill

in the missing region. A multi-scale decoder using dilated convolutions at different

rates acts as a refiner during the filling-in of missing regions. The loss function used is

`1 loss combined with GAN loss [62] for realistic images. Masks sizes of 32×32, 64×64

and 128× 128 are used for the evaluation of this method. Overall, and based on the

qualitative evaluations by the authors, high quality images are obtained with smaller

non-border size masks. Also included in the evaluation analysis are random mask

used for visual comparison . The overall performance using non-border mask sizes of

128× 128 show good results compared with the state of the art [13, 82, 124, 217] as

shown in Table 2.4. Also, the authors do not show detailed results for images with

border mask regions.

Zhou et al. [243] used the U-Net architecture to learn facial textures at multiple

scales with help of seven discriminators. The proposed method uses a Dual Spatial

Attention (DSA), that learns correlations between facial textures based on two inputs

(masked-image and ground-truth image) to obtain attention scores for foreground and

background pixels for reconstruction. The attention layer is applied to multiple layers

within the decoder, with foreground attention scores from softmax layer, acting as

direct supervision to the inpainted regions. Within this layer, the masked regions
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are the foreground and the unmasked region is the background. The DSA works has

foreground-background cross-attention and foreground self-attention units within its

module. The first unit uses the mask to segment the input feature into foreground

and background features and uses 1×1 convolutions to rebuilt the original foreground

features based on correlations with background features. The second unit is similar,

without the foreground features taken into consideration. The attention maps are

learned from the ground-truth to ensure high quality filling of missing regions during

training. Four discriminators ensure realistic features of the left-eye, right-eye, nose

and mouth. The other discriminators are the global and local discriminators that look

ensure consistency on the entire image and local masked region. The authors used

facial landmarks to locate the eyes, nose and mouth. These locations are cropped

using a mask with fixed size corresponding to the landmarks. This model uses the `1

and perceptual loss [94] to optimise the generator combined with ongoing adversarial

loss based on the PatchGAN discriminator [85]. Segments of the face (eye, nose,

mouth) are cropped and each passed through a discriminator to authenticate its gen-

erated features. Qualitative and Quantitative evaluations compared the effectiveness

of the model with the state-of-the-art [13, 226, 239, 228, 227]. Quantitatively, the

`1, PSNR, SSIM and Learned Perceptual Image Patch Similarity (LPIPS) [233] were

used and shown in Table 2.4. The advantage of this network is that it uses ground-

truth as a direct supervision to obtain high fidelity features for the masked regions

on the input masked-image. The limitation of this model is that if learned attention

is insufficient or not accurate, poor quality filling will result in the generated image

due to unsuitable features filling in the missing regions.

Feature Propagation

Liu et al.[124] used the U-Net [163, 85] and replaced convolutions with partial con-

volutional in inpainting task. The partial convolutional operation has an automatic

mask update step. The re-normalized masked-convolutions operations focus on valid

pixels, followed by an automatic mask generation to the next layer as a forward pass.

The loss functions used to handle pixel-reconstruction accuracy of the hole region are,

`1 loss, perceptual loss [55] and style-loss. The mask updating step is non-learnable

and with a fixed convolutional layer with a kernel size that matches that of the partial

convolutional operation with weight initialised to 1 and no bias layer. The partial

convolution layer, with automatic mask-update mechanism, undergoes a sufficient

number of continuous updates to remove any masking on the unmask value in return

for accurate feature maps. The comparative evaluation against the state-of-the-art
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Barnes et al. [13], Iizuka et al. [82], Yu et al. [226], using a binary mask of hole-to-

image area ratio of [0.5,0.6]. The performance evaluation of this method [133] by the

authors compared to the state-of-the-art showed high PSNR and SSIM values for all

mask sizes. This method suffers from the reliance on initial hole values, that causes

the algorithm to produce images that lack plausible output texture. Also, it struggles

with sparsely structured images and binary masks with larger hole-to-image-ratio.

This is because neurons with receptive fields cover valid or invalid pixels at different

spatial locations. The invalid pixels disappear following the rule-based mask layer

by layer leading to some missing information in deeper layers that may be needed to

synthesis pixels in mask regions.

Wang et al. [202] introduced a Laplacian-pyramid based GAN to inpainting.

Using a modified ResNet block by He et al. [73], the aim is to propagate high-

frequency details from the surrounding to predict precise missing information while

eliminating colour discrepancy. The modified ResNet block, implemented with dilated

convolutions, implies a larger receptive field with batch normalisation layers and

rectified linear unit for speed convergence. The Wang et al. [202] introduced a

combined representation learning with reconstruction and residual learning in the

generator network to extract predicted missing regions and therefore combine features

of low middle level of fine layers. The generator model captures the image content and

compresses it to a latent representation. These are feature extraction progressively

predict missing regions while the residual learning phase learns the difference between

visible colour similarities of predicted pixels and surrounding pixels. The loss function

uses trained-VGG model to extract features and uses feature space, combined with

pixel-wise and adversarial loss to learn photo-realistic images, therefore maintaining

the natural artefacts of the original image while completing the missing region. The

masks used are rectangular and of size 128 × 128, and are randomly positioned on

the input image. The Wang et al. [202] method achieved the best performance scores

compared to [152, 82, 122, 226, 131, 223]. This model performed particularly well

with regularly shaped binary mask, but was not experimented with irregularly shaped

mask. Also, the model output had colour discrepancies, hence the model cannot be

generalised to natural scene inpainting.

Li et al. [120], proposed the use of visual features and structures to restore or

inpaint missing parts of an image. This model introduces a visual reconstruction layer

to the U-Net [163] combined with partial convolutions [124], and a bottleneck resid-

ual block. The encoder uses upper bound additional visual reconstruction layers to

estimate the edges of the missing structure before passing these to partial convolution
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layers. Within the decoder are lower-bound additional visual reconstruction and con-

volution feature reconstruction layers. The visual reconstruction layers entangle the

reconstruction of visual structures and features of an image . The masks regions are

progressively filled-in with meaningful content based on the reconstructed edges and

the input image. The use of Patch-GAN discriminator [85] with slight adjustments

to include spectral normalisation controls the generalisation error. The network is

end-to-end with detailed generation of restored missing structure assisted by adver-

sarial loss combined with loss functions from [124]. It should be noted that parameter

fine-tuning is required before training the network. Across all hole-to-image ratios

used during the evaluation, the network had a slight edge in performance compared

with the state-of-the-art [145, 124]. The results for 10%-30% hole-to-image ratio are

shown on Table 2.4. However, it is time consuming for the visual reconstruction layers

to learn structural parts, thus increasing the time to filter out unwanted structures

not needed for image reconstruction.

Yu et al.[227] used gated convolutions combined with contextual attention layer

and Spectral-normalized Markovian Discriminator (SN-PatchGAN) for inpainting

task. The backbone of the network is an encoder-decoder stacked with gated con-

volutions, contextual attention layers and a refinement unit of dilated convolutions.

Gated convolutions allows the network to learn soft mask from input data. Within

these convolutions are processes that learn features from input data progressively for

each channel. At each spatial location the prediction of missing pixels are condi-

tioned on the valid pixels in the input image. During the process, each gating block

produces two outputs that go through different activation mechanisms producing gat-

ing values and learned features. The contextual attention layer enables the network

to capture long-ranged features from distant spatial locations. This is assisted by

dilated convolution blocks used as refining mechanisms within the network. The dis-

criminator as part of the combined network, outputs a 3D-shape feature based on

three inputs (image, mask and guidance channel). Based on the report by Yu et al

[227], the performance of this algorithm as shown in Table 2.4 is better with free-form

mask than rectangular mask, though the sizes of the masks are not detailed in their

report. However, gated convolutions will perform better with free-form than rectan-

gular masks, which limits the algorithms performance to generalize larger masks or

large images with hole-to-image ratio. Additionally, with gated convolutions, correla-

tion between valid features is not guaranteed and may lead to colour discrepancies on

the completed image. Furthermore, this network is computationally expensive due to
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the gating within convolutions and the three stage network which has to be trained

end-to-end.

Liu et al. [126] proposed the use of semantic relevance between hole and non-hole

regions for effective prediction of the hole, aided by a contextual structure preserv-

ing mechanism known as Coherent Semantic Attention Layer (CSAL). The design

is a two stage network based on the U-Net [163], with ongoing adversarial training.

The CSAL is an embedding within the refinement block of the two-step U-Net ar-

chitecture, implemented to elevate the quality of reconstructed images. A proposed

consistency loss is used, combined with feature patch and patch discriminator [85]

to improve stability during training and maintain the natural statistics of the image

details. The consistency loss computes the error between corresponding CSAL layers

of the encoder-decoder block and VGG features. The feature and patch discriminator

combined introduces ongoing adversarial training, based on the relativistic average

adversarial loss [95]. The patch discriminator evaluates the pixels values on the final

output compared to the input image. Introduced within the consistency loss is the

reconstruction loss (`1), as a constraint to assist the model in learning meaningful

parameters that can approximate the ground-truth image. Note, these results shown

in Table 2.4 are based on a hole-to-mask ratio of 10%-20%. However, despite the high

performance of this algorithm, the CSAL may fail due to the nature of the network.

That is, if the network is too deep or too shallow, loss of information may occur

leading to increased time overhead.

Yi et al. [224] modified gated convolutions [227] into light-weight model and

introduced high-frequency residuals to generate rich and detailed textures for high

resolution images. Motivated by the size of images captured by mobile phone cameras,

the authors proposed a contextual residual aggregation mechanism that borrows con-

texts, features and residuals. The scores computed are between patches inside/outside

the missing region within a specific region that has high affinity of similar patches.

Gated convolutions are modified into depth-separable, pixel-wise and single-channel

variants. Depth-separable uses depth-wise convolutions followed by 1 × 1 convolu-

tions as a gating mechanism. Pixel-wise uses 1×1 convolutions as gating mechanism.

Single-channel broadcast a single mask to all channels as a hard mask, similar to par-

tial convolutions [124]. The network is a two-stage network that uses single-channel

for all layers in a coarse-network and depth-separable or pixel-wise in the refinement

network. The loss function is a reconstruction loss based on `1 in the generator and

adversarial loss. The qualitative results gives a high-visual quality of the images com-

pared to the state-of-the-art [82, 226, 227, 228, 124]. In quantitative analysis, there
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is not a significant effect in the measurement compared to the state-of-the-art. From

the table of result presented by the authors, it is observed that four performance

evaluation metrics are used in addition with a time factor as a measure to rate the

algorithms performance. Different resolutions on the places2 [240] dataset were com-

pared against the state-of-the-art, with higher resolution images of size 1024 × 1024

the algorithm performed overall best with a time difference of -696ms. The results

on Table 2.4 shows the results for 1024 × 1024 image sizes. The algorithm induced

a large effect on high resolution images, proving its ability to generate high-quality

contents for missing regions such images. However, with the poor performance in low

resolution images, this area of studies still remain a challenge.

Li et al. [121] proposed a recurrent learning approach, where feature maps are

inferred in shared recurrent units. The approach uses partial convolutions [124] to

identify target regions and use the output as input to an encoder-decoder generator

with skip connections. The mask updating mechanism within partial convolutions

is exploited during each recurrence as a prerequisite to identify the target regions

for subsequent recurrences. Within this network, encoded features undergo a series

of recurrence to maximise inference capability to obtain high-quality features during

an inpainting task. This means that the hole regions shrink with each recurrence

until a high-quality feature is achieved. The mean of the various feature outputs of

the network is the final output the decoder. The authors also proposed an attention

layer that uses prior knowledge of background pixels to assist the model to obtain best

patches at different occurrences that are consistent with the predicted regions and the

image. The authors used perceptual and style loss [94] formulated using feature maps

from iith pooling layer extracted from VGG-16 network. Other loss functions used

calculate the `1 of unmasked and masked regions respectively as valid and hole loss.

Quantitative evaluations were conducted compared to the state-of-the-art approaches

[239, 124, 227, 145, 120] and are shown in Table 2.4. The limitation of this method

is that some boundary artefacts may occur due to inconsistencies with feature maps

posing as shadow-like regions during feature merging process.

In summary, the use of deep learning methods in inpainting produces plausible

results when compared to the original image. However, the limitation thus far by the

state-of-the-art is the failure in reporting appropriate analysis of results. So far, the

best evaluation and analysis of results is by Liu et al. [124], Nazeri et al. [145], Xie

et al. [211] and Li et al. [120]. These authors provide details of the various hole-to-

image ratios used for qualitative and quantitative evaluation. For example, Liu et al.

[124] report details of non-border mask and mask at border regions across evaluation
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Table 2.2: Summary of reviewed literature on deep learning methods in image in-
painting.

Method Model Description Loss function Dataset

[86] CNN Auto encoder. Formulated for image denoising and
extended to image inpainting.

Reconstruction loss. In-house 100 greyscale images
[86]

[212] CNN Sparse coding and deep neural networks as a denois-
ing auto-encoder and extended to image inpainting.

Reconstruction loss. In-house images [212]

[152] GAN Encoder-decoder architecture as the generator and
Discriminator network. For example Figure 2.8

`2 reconstruction, Adversarial
loss.

Paris Street View [152, 45],
ImageNet [168, 167], PASCAL
VOC2007 [53]

[82] GAN Encoder-decoder generator with a refinement net-
work based on dilated convolutions combined with
Global and local discriminators.

weighted `2 Adversarial loss Places2 [241], ImageNet [168],
CMP Facade [195].

[217] GAN Uses style transfer network and context-encoder to
ensure Multi-scale neural patch synthesis to preserve
contextual structure with local patch similarity on
images with high-frequency details.

Adversarial loss, `2-based tex-
ture loss computed with fea-
tures from VGG19.

Paris Street View [152, 45] and
ImageNet [168].

[223] GAN Searches latent space encodings assisted by spatial
attention mechanism to reconstruct the original im-
age.

Weighted context `1 based
loss and Adversarial loss.

CelebA [133, 132], SVHN [223],
Standford Cars [223].

[226] GAN A two stage model network (encoder-decoder) that
uses cosine similarity assisted by contextual attention
layers, redesigned to use dilated convolutions

Reconstruction loss and two
Wasserstein GAN losses.

CelebA [133, 132], CelebA-
HQ [98], DTD [226], ImageNet
[168] and Places2 [241].

[124] GAN A U-NET architecture, that uses partial convolutions
instead of normal convolutions.

Perceptual loss, style loss, ad-
versarial loss.

CelebA [133, 132], CelebA-HQ
[98], Places2 [241] and Ima-
geNet [168].

[216] GAN Uses a U-NET architecture to introduction Shift con-
nection layer to transfer fine texture details. For ex-
ample Figure 2.9

Guidance loss, `1 and adver-
sarial loss.

Paris Street View [152, 45] and
Places2 [241].

[203] GAN A Laplacian pyramid GAN, reconstruction and resid-
ual learning in generator.

VGG-Feature loss, Adversar-
ial loss.

CelebA [133, 132] and Paris
Street View [152, 45].

[79] GAN Introduced padding and pooling operations in an
Encoder-decoder, to avoid edge disappearance. The
model also uses a mini-batch discriminator for real-
istic photo completion.

`2-based SSIM loss and Ad-
versarial loss.

In-house dataset containing
2015 images [79].

[228] GAN A U-NET architecture that uses a cross-layer atten-
tion and pyramid filling mechanism.

`2 and Adversarial loss. Facade, DTD [239], CelebA-
HQ [98] and Places2 [241].

[120] GAN U-NET, visual reconstruction layers, residual block,
partial convolutions , patch discriminator.

Perceptual loss, style loss, ad-
versarial loss.

Places2, Paris Street View [152,
45] and CelebA [133, 132].

[227] GAN Gated convolutions, contextual attention layer and
SN-PatchGAN

Pixel-wise reconstruction loss
(`1) and adversarial loss.

Places2 [241].

[126] GAN A two-stage network that uses Coherent semantic at-
tention layer that preserves the spatial structure of
the image within the refinement network.

Consistency loss (`2), feature
loss (VGG) and adversarial
loss.

CelebA [133, 132], Places2
[241] and Paris Street View
[152, 45].

[87] GAN An encoder-decoder network that uses a reverse
masking mechanism to enforce prediction only on
missing pixel regions with contextualised features on
the unmasked regions, to improve the quality of the
inpainted image.

Reversed-mask loss (`2-base),
feature loss (VGG) and adver-
sarial loss (WGAN).

CelebA-HQ, Places2 [241] and
Paris Street View [152, 45].

[238] GAN A trio-network network that uses joint probability
distribution combined with a cross-semantic atten-
tion layer

conditional constraint loss
(`2-base), feature loss (VGG)
using `1-base and adversarial
loss (WGAN).

CelebA-HQ [98], Places2 [241]
and Paris Street View [152, 45].

[243] GAN A U-Net architecture that uses a dual spatial atten-
tion layer

`1, feature loss (VGG) and ad-
versarial loss (PatchGAN).

Flickr-Faces [102].

metrics compared with the state-of-the-art. This provides the reader with a true

picture of the performance of the algorithm. However, with the details of various

mask sizes and mask regions provided by this author [124], the training dataset is

not publicly available. Also, on a subjective evaluation, the authors used a wider

audience compared to Li et al. [120], and Yu et al. [227] to judge the quality of the

images. Additionally, randomised missing data (random mask) is more difficult to
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learn compared to missing data in a central region of an image. The difficulty for an

algorithm to capture semantic information for images with masks at border regions

and preserve edges still remain challenging. For example, Liu et al. [124] and Yu

et al. [227] introduced algorithms that uses masks to infer missing pixels compared

to all other methods. In terms of quantitative evaluations, report by [223] point out

that quantitative results do not have a true representation for different methods.

2.4 Datasets

With the wider use of deep learning in present inpainting research, the data and the

masks are two essential components to train and evaluate the performance of the

methods. The following discuss some popular mask datasets and image datasets in

image inpainting.

2.4.1 Nvidia Mask Dataset

The Nvidia Mask dataset proposed by Liu et at. [124], Figure 2.10 has six categories

of masks of different hole-to-image ratios. This dataset contains 55,116 training masks

and 24,866 testing mask, and of 512× 512 resolution.

Figure 2.10: Examples of binary masks from Nvidia Mask Dataset [7].

2.4.2 Quick Draw Irregular Mask Dataset

The quick draw mask dataset proposed by Iskakov et al. [84], Figure 2.11 contains

50,000 train and 10,000 test masks. The samples are of size 512× 512 resolution and

used for image inpainting task [84, 88].

2.4.3 Caltech Faces

Caltech Faces [7], Figure 2.12 is a sample from the Caltech dataset, containing 450

face images, from 27 different people, at 896× 592 resolution in JPEG format under

different lighting conditions, expressions and background.
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Figure 2.11: Mask Dataset [84].

Figure 2.12: Caltech Dataset [7].

2.4.4 Places2

Places2 is designed following the principles of HVS [240, 241] containing images of

diverse scenery used for high-level visual understanding task. Consisting of more

than 10 million images and containing more than 400 unique scene categories, it has

5,000 to 30,000 training images consistent with real-world occurrences. It is used for

learning in-depth scene features using CNN for various scene recognition task, e.g.

Figure 2.13.

Figure 2.13: Places2 Dataset [241].

2.4.5 Paris Street View

Doersch et al. [45] developed the Paris Street View dataset from Google Street View

[65, 8] to examine which specific algorithms would work on a computational geo-

graphic task, and therefore enable automatic location of geoinformation features for

a particular place or city. The images are distinctive and geographically informative,
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being based on a variety of architectural correspondences and geospatial scales (sum-

marised appearance on one specific scale) of different cities from around the world.

Two perspectives of images of 936× 537 resolution are scraped automatically from a

dense sampling of panoramas [65]. Approximately 10,000 images per city were down-

loaded from 12 cities across the world, with a focus on Paris and suburban areas. A

sample of the dataset is shown in Figure 2.14.

Figure 2.14: Paris street view Dataset [45].

2.4.6 CelebA

CelebFaces Attributes Dataset (CelebA) is a collection of 202,599 facial images of

celebrities [133, 132] containing 10,177 identities, five landmark locations and each

with 40 binary attribute annotations cropped to size 178× 218 resolution as of 2015.

This dataset makes it an appropriate test set for facial image synthesis [178] since

there are considerable pose variations and background clutter associated with the

database alongside a broad diversity and rich annotations.

2.4.7 CelebA-HQ

The CelebA-HQ dataset, developed by Karras et al. [98] is developed from the from

the CelebA dataset consisting of 30,000 high-quality images images of 1024 × 1024,

512 × 512 and 128 × 128 resolution. The original image resolution in the CelebA

dataset varied from 43×55 to 6732×8984 with various backgrounds and processed by

different image quality measures to ensure the image is on the central region [98]. To

obtain the high-quality images for the CelebA-HQ, each JPEG image was processed

using two pre-trained neural networks. The authors then used the model proposed

by Mao et al. [142] to remove JPEG image artefacts which was combined with an

adversarially-trained 4x super-resolution network for high-resolution images similar

to that in [114]. Padding and filtering were applied to extend the dimension of the

images. The authors then used facial landmark annotations included in the original

CelebA dataset to orientate and crop the images. The 202,599 subjects in the dataset
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were processed and analysed, resulting in the best 1024× 1024 resolution image, and

sorted to estimate the best quality images to select 30,000 images. To obtain the rest

of the image sizes, the GitHub repository resizing tool by [98] is implemented. For

example, Figure 2.15 shows a sample from the dataset.

Figure 2.15: CelebA-HQ Dataset [98].

2.4.8 ImageNet

The ImageNet Large scale visual recognition challenge (ILSVRC) has collated mil-

lions of images classifying hundreds of different object categories [168, 167]. It is large

ground-truth annotated dataset of images put together for object recognition, detec-

tion and classification for the comparison of state-of-the-art algorithms for computer

vision accuracy with human accuracy. It contains over 10,000 categories with more

than 8 million images of variable resolution [106], e.g. Figure 2.16 show samples from

three classes.

Figure 2.16: ImageNet Dataset [106].

2.4.9 PASCAL Visual Object Classification (PASCAL VOC)

The PASCAL VOC visual object classes consists of two components: a publicly avail-

able and an annual competition datasets (PASCAL VOC2005, PASCAL VOC2007,

PASCAL VOC20012). Established in 2005, it provides a standardised dataset closest

to ILSVRC for object detection, image classification, object segmentation, person lay-

out and action classification [53] for the annual competition. As of 2010, the PASCAL
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VOC dataset has a total of 19,737 for 20 object categories organised into train, vali-

dation and test sets; Figure 2.17 shows a sample taken from three different categories

of this dataset.

Figure 2.17: PASCAL VOC Dataset [53].

Table 2.3: Datasets used in Image Inpainting.

Datasets Total Images Purpose Resolution

Nvidia Mask [124] 79,982 masks 512× 512
Quick Draw Mask [84] 60,000 masks 512× 512
Caltech Faces[7] 450 Various 896× 592
Places2 [241] 30,000 Urban Variable
Paris street view[45] 14,900 Urban 936× 537
CelebA[131, 133] 202,599 Various 178× 218
CelebA-HQ [98] 30,000 Inpainting 1024× 1024
ImageNet [168] >8 Million Classification Variable
PASCAL VOC[53] 14,974 Classification Variable

In summary, the challenges to developing applications rely on the mathematical

equations, optimisation parameters and dataset used to test the robustness. Table 2.3

shows a summary of the popular datasets used by researchers for the evaluation of

inpainting algorithms.

2.5 Performance metrics for image inpainting al-

gorithms

To ease readability, it is good to first highlight the performance metrics to quanti-

tatively evaluate the performance of the state-of-the-art methods. This is because

inpainting algorithms generate images which are distorted or show changes in ap-

pearance. To evaluate the performance of these algorithms, different performance

metrics are used to quantify the generated images. Methods, based on the highly

developed Human visual system (HVS), have mostly used qualitative questionnaire
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evaluation to extract structural context without need for a large dataset, making this

both time consuming and costly. However, some authors use both qualitative and

quantitative performance metrics with most commonly used being `1 (Mean Absolute

Error), `2 (Mean Square Error), Peak signal to Noise Ratio (PSNR) and Structure

Similarity Index Measure (SSIM). These tools measure the perception of an image

to quantify the quality of the error between the distorted pixels of the reconstructed

image and the (original) reference image. Other evaluation metrics (Visual infor-

mation fidelity [174], universal quality index [206], inception score [171], Multi-scale

SSIM [208],Frechet inception distance [75] and LPIPS [233]) have been reported in

literature, however, the focus is mainly on the most used ones in this review. The

quantitative measure, or score, of the generated image need change only by a few

pixels to validate the effectiveness of an algorithm. Given the ground-truth image

and inpainted image, `1 is the total value of the absolute difference between the pixel

values of the predicted image and the actual pixel values of the ground-truth image.

`1(x,y) =
1

N

N∑
i=1

|xi − yi| (2.2)

In Equation 2.2, `1 gives an overview of the average error for a predicted image. A low

computed `1 indicates that the quality of the image is good [134]. In Equation 2.3,

`2 averages the squared intensity difference between the reference image and the

reconstructed image [69].

`2(x,y) =
1

N

N∑
i=1

(xi − yi)2 (2.3)

However, the error in Equation 2.3 may not match the perceived visual quality of the

image.

PSNR is the ratio of the maximum possible value (power signal) to the power

of distorting noise that affects the representation of quality based on two images

(reconstructed/original) of the same kind.

PSNR = 20log10
(MAXI)

2

√
MSE

(2.4)

Equation 2.4 computes PSNR (dB), well known for assessing the quality of noisy

images [77], and an approximate value of 48dB is considered good [12]. The higher

the PSNR value, the better the quality of the reconstructed/generated image.

The SSIM [207] has become a good correlator for quality perception that discounts

aspects of an image not important to the HVS. The SSIM models three factors (loss
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of correlation, luminance distortion and contrast distortion) of two images based on

neighbouring and corresponding pixels. Given the input signals (x,y), SSIM computes

the combination of luminance, contrast and structure to output a similarity measure

expressed in Equation 2.5;

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µx2 + µy2 + C1)(σx2 + σy2 + C2)
(2.5)

where C1 and C2 are constants. This method assesses the quality of the image based

on the degradation of structural information of the reconstructed image. However, the

above quality measures quantify the image whereas subjective assessments depends

on the HVS to extract the structural information of the image. This method is, again,

both time-consuming and costly.

Fréchet Inception Distance (FID) [75] measures the quality of reconstructed im-

ages by computing the distance between two distributions (ground-truth and gener-

ated image). The metric quantifies the quality of generated samples by embedding

features to a specific layer of the Inception Net [75, 171] feature space. Based on the

assumption that the embedding layer is a continuous multivariate Gaussian, the mean

and the covariance are measured for both the ground-truth and generated image. The

distance between these two Gaussians is expressed in Equation 2.6;

FID(x, y) = ||µx − µy||2 + Tr(Σx + Σy − 2(ΣxΣy)
1/2) (2.6)

where the means and covariance matrices of the ground-truth and generated image

distributions are given by µx,Σx and µy,Σy. A lower FID score means that the quality

of the reconstructed image is close to the ground-truth indicating better. Also, the

FID score is consistent with human judgement and robust to noise [75, 138], which

makes it a good metric for images generated by inpainting algorithms. The limitation

with this method is that it lacks the capability to detect overfitting.

2.6 Discussion

In this review, it is observed that inpainting remains an important, yet challenging,

research area in computer vision. Another observation is that traditional approaches

[18, 5, 231, 74, 58] can handle textural and structural target regions, and are suit-

able for disocclusion or object removal. A further observation and point to note is

that inpainting methods in this category (traditional inpainting methods) use various

techniques e.g. [17, 13, 119, 128] and have shown exceptional performance in linear

structures using diffusion. However, some methods e.g. [49, 182] in this category
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Table 2.4: Summary of quantitative results of some deep learning methods for image
inpainting on Places2 [240, 241], CelebA-HQ [98] and Paris Street View [45] datasets.
The performance evaluation vary from method to method and are approximated to 2
decimal places. The results included are for distortions (image-to-mask ratio) between
10%-20% on image sizes 256× 256. † Lower is better. ] Higher is better.

Method Mask Type / Image Places2 CelebA-HQ Paris Street View

Image-to-mask
Ratio

Size MAE†MSE† FID† PSNR]SSIM]IS ] MAE†MSE† FID† PSNR]SSIM]IS ] MAE†MSE† FID† PSNR]SSIM]IS ]

[152] Square —- —- —- —- —- —- —- —- —- —- —- —- 0.10 0.23 —- 17.59 —- —-

[217] Square (64×64) 128 ×
128

—- —- —- —- —- —- —- —- —- —- —- —- 10.01 2.21 —- 18.00 —- —-

[226] Irregular (10%-
20%)

256 ×
256

8.6 2.1 —- 18.91 —- —- —- —- —- —- —- —-

[124] Irregular (10%-
20%)

256 ×
256

0.49 —- —- 33.75 0.94 0.05 —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (30%-
40%)

256 ×
256

—- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (40%-
50%)

256 ×
256

—- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (50%-
60%)

256 ×
256

—- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —-

[216] Irregular (10%-
20%)

256 ×
256

—- —- —- —- —- —- —- —- —- —- —- —- —- 0.02 —- 26.51 0.90 —-

[202] Square (128 ×
128)

256 ×
256

—- —- —- —- —- —- —- —- —- 23.45 0.86 —- —- —- —- —- —- —-

[228] Square (128 ×
128)

256 ×
256

9.94 —- 15.19 —- —- 50.51 —- —- —- —- —-

[120] Irregular (10%-
20%)

256 ×
256

0.012 —- —- 28.87 0.95 —- —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (20%-
30%)

256 ×
256

0.022 —- —- 25.66 0.91 —- —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (30%-
40%)

256 ×
256

0.033 —- —- 23.46 0.86 —- —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (40%-
50%)

256 ×
256

0.046 —- —- 21.74 0.79 —- —- —- —- —- —- —- —- —- —- —- —- —-

Irregular (50%-
60%)

256 ×
256

0.068 —- —- 19.51 0.67 —- —- —- —- —- —- —- —- —- —- —- —- —-

[227] Irregular (10%-
20%)

512 ×
512

9.1 1.6 —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —-

Square 512 ×
512

8.6 2.0 —- —- —- —- —- —- —- —- —- —- —- —- —- —- —- —-

[126] Irregular (10%-
20%)

256 ×
256

—- —- —- —- —- —- 0.72 0.04 —- 34.69 0.98 —- —- —- —- —- —- —-

Irregular (20%-
30%)

256 ×
256

—- —- —- —- —- —- 0.94 0.07 —- 32.58 0.98 —- —- —- —- —- —- —-

Irregular (30%-
40%)

256 ×
256

—- —- —- —- —- —- 2.18 0.37 —- 25.32 0.92 —- —- —- —- —- —- —-

Irregular (40%-
50%)

256 ×
256

—- —- —- —- —- —- 2.85 0.44 —- 24.14 0.88 —- —- —- —- —- —- —-

Square (32×32) 256 ×
256

0.01 —- —- 27.75 0.93 1.83 0.27 —- 26.54 0.93 —- —- —- —- —- —- —-

[121] Irregular (10%-
20%)

256 ×
256

0.014 —- —- 27.75 0.93 —- 0.007 —- —- 33.56 0.98 —- 0.011 —- —- 31.71 0.95 —-

Irregular (30%-
40%)

256 ×
256

0.038 —- —- 22.63 0.81 —- 0.02 —- —- 27.76 0.93 —- 0.027 —- —- 26.44 0.86 —-

Irregular (50%-
60%)

256 ×
256

0.076 —- —- 18.92 0.59 —- 0.047 —- —- 22.88 0.81 —- 0.054 —- —- 22.40 0.68 —-

[243] Square (128 ×
128)

256 ×
256

—- —- —- —- —- —- 1.46 —- —- 26.36 0.91 —- —- —- —- —- —- —-

[224] Square (128 ×
128)

512 ×
512

5.43 —- 4.89 —- —- 17.72 —- —- —- —- —- —- —- —- —- —- —- —-

Square (128 ×
128)

1024 ×
1024

5.43 —- 4.89 —- —- 17.72 —- —- —- —- —- —- —- —- —- —- —- —-

Square (128 ×
128)

2048 ×
2048

5.49 —- 4.89 —- —- 17.85 —- —- —- —- —- —- —- —- —- —- —- —-

Square (128 ×
128)

4096 ×
4096

5.50 —- 4.890 —- —- 17.81 —- —- —- —- —- —- —- —- —- —- —- —-

[87] Irregular (10%-
60%)

256 ×
256

0.27 —- 4.47 39.66 0.93 —- 0.31 —- 3.09 40.40 0.94 —- 0.33 —- 17.64 39.55 0.91 —-

[238] Irregular (10%-
20%)

256 ×
256

—- —- —- —- —- —- 1.51 —- —- 26.38 0.88 3.01 —- —- —- —- —- —-

perform poorly on mask regions along curves and edges. In contrast, some methods

e.g.[17, 13] handled such regions with plausible outcomes, but are slower and can only

perform inpainting on single images. A number of these [17, 160, 194] methods pro-

duce good results in propagating linear structure using diffusion, but also introduced
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blur into the target region, making them unsuitable for highly textured images with

large missing regions. These methods whilst showing excellent performance have a

shortcoming of preserving image realism.

Datasets, e.g. [45, 131, 98], which often contain thousands or millions of im-

ages, are crucial to deep learning methods and enable an algorithm to learn features

and complete target regions to produce semantically plausible outcomes. The wide

diversity in the complexity of structural and textural information of images has a

significant impact on the results. To test the robustness of an algorithm, a com-

plex dataset is a requirement since it provides a model with multitude of patterns

(sophisticated features) to learn and output plausible satisfactory results. Further-

more, deep learning methods e.g [152, 82, 124, 226, 227, 79] have produced plausible

outcomes in inpainting when compared to the original image, due to their ability

to extract features in an end-to-end fashion. However, the weakness encountered is

the difficulty in reproducibility across papers. Generally, most authors do not ap-

pear to share their code and therefore meaningful comparison is both made difficult

and is not progressive. A fair comparison between the deep learning techniques is

challenging due to the lack of a dedicated and standardised benchmarking system.

Such as system would allow newer models to be compared against an accepted set of

models acting as the baseline. A further observation is that not all proposed algo-

rithms using similar parameters use the same dataset for training and testing. Also,

most algorithms do not disclose parameter fine-tuning, data-preprocessing steps and

complexity of the model, and for codes made publicly available, not all are complete.

This definitely leads to poor evaluation of different codes if all the information is not

available, which may or may not be robust, making it harder to obtain a progressive

trajectory in research direction. Additionally, hardware is a hindering/limiting factor

in the progress of newly proposed algorithms in this field. However, a good inpainting

algorithm should have qualities which, in addition to robustness, also embody high

performance with low computational cost.

Computational analysis is a key factor that needs addressing in detail to support

the quality of an inpainting algorithm. This will aid the reader to understand the

quality of different methods based on some factors such as; running time, training

speed, inference time and training time as mention, also highlighted by [52]. To

this effect, it will be advantageous for future works to consider the type of mask

used (difficulty in terms of image-to-hole ratio), the dataset, the image sizes and the

type of GPU machine used as reported by Liu et al. [126] to perform computational

analysis. Table 2.5 shows a summary of methods that have some form of record
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Table 2.5: Summary of the type of GPU and record on experimental details for
evaluation computational time by some deep learning image inpainting methods. Note
that the record on this table has been extracted from the proposed method and are
not based on our evaluation.

Method Type of GPU & computational analysis Image res-
olution

Batch
size

Dataset

Pathak et al. [152] The training time took 100,000 iterations is 14
hours.

256× 256 —- Paris Street
View [152]

Iizuka et al. [82] The training took 500,000 iterations on a single
machine with four K80 GPU took two months.
Also,further evaluations using GeForce TITAN X
GPU reports a drop in computational time to
0.141s per 512× 512 image. 0.141s per image

512× 512 96 ImageNet [168]

Yu et al. [226] Initial reported time was 11,520 GPU hrs on K80.
Improved training time to 120GPU hrs using GTX
1080TI. The full model runs at 0.2s per frame

512× 512 —- Places2 [241]

Yang et al. [217] The time taken to fill in 256×256 hole on an image
size of 512 × 512 using a TITAN X GPU which is
slower compared to Pathak et al. [152]. It takes
1 minute for a single image as reported by the au-
thors.

512× 512 —- CelebA
[133, 132]

Liu et al. [124] The network inference time is 0.029s using NVIDIA
V100 GPU (16GB), regardless on the mask-to-
image ratio on the image.

512× 512 6 CelebA-HQ [98]

Yan et al. [216] IT takes one day on a TITAN X Pascal i.e. 24
hours for 30 epochs.

256× 256 1 Paris Street
View [152]

Huang et al. [79] GeForce GTX 1070Ti 256× 256 4 In-house road
images. [79]

Zeng et al. [228] The model runs at 0.19s per frame on a TITAN V
GPU.

256× 256 —- CelebA-HQ [98]

Li et al. [120] The training time is 3 days using RTX 2080TI 11G
GPU for CelebA and two weeks for Places2 [241].

256× 256 5 CelebA
[133, 132]

Places2 [241]

Yu et al. [227] During testing, it takes 0.21 secs per image using
NVIDIA(R) Tesla(R) V100 GPU.

512× 512 — CelebA-HQ [98]

Liu et al. [126] It takes 9, 5 and 2 days for Places2 [241], CelebA,
and Paris Street View using NVIDIA 1080TI
GPU(11GB). Overall inference time is 0.82s per im-
age.

256× 256 1 Places2 [241]

CelebA
[133, 132]

Paris Street
View [152].

Yi et al. [224] Trained using two NVIDIA GTX 1080TI GPU. 512× 512 8 CelebA-HQ [98].

Places2 [241].

Zheng et al. [239] —- 256× 256 1 CelebA
[133, 132]

Zhao et al. [238] It takes 500,000 iterations to train the model. 256× 256 8 CelebA-HQ [98]

Zhou et al. [243] It takes 4 days to train using NVIDIA TITAN Xp
(12GB).

256× 256 16 CelebA-HQ [98]

with regards to computational analysis. This is not in full detail because it does not

have all the relevant information that can determine the best algorithm. However,

it will be important to provide the full specifications of the machine, measure in

terms of the number of epochs, batch size, training data, and provide information on

dataset preprocessing. Other methods [152, 216, 124] have reported some training

time. Another analysis measure to consider is the time taken to compute the metric

score based on a single image resolution. Despite the great success of deep learning
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methods, there are still drawbacks in terms of computational complexity and failures

in preserving image realism.

2.7 Research Direction

Image inpainting, from traditional to deep learning methods, has achieved immense,

and continued, success. A comprehensive review for a range of methods from the

perspective of the algorithm (it’s development and how it is used) for inpainting

tasks, datasets, performance evaluation and limitations of the methods are presented

in this chapter. It is observed that the poor(er) performance of traditional methods

on images with more extensive binary mask and facial images due to complexity

in features on the image. Remedying this limitation, deep learning methods have

developed to become state-of-the-art, showing great success on images containing

intricate patterns, but also with shortcomings. This thesis will focus on the following

gaps identified in this literature:

• The inpainting process in GANs is challenging. This could be due to the network

design being used as part of the generator or discriminator. Pathak et al.[152]

pioneered the use of GAN in image inpainting to generate realistic images. The

channel-wise fully connected layer, which they proposed, is intended to propa-

gate information to the decoding layers. However, flaws such as blurry artefacts

and failures with high-resolution images were observed. This has been addressed

in research by introducing skip connections [216] to fuse features extracted from

encoder layers with those of decoding layers. This method, however, necessi-

tates careful consideration of computational resources, and there is still room

for improvement in this area.

• Another factor to consider is the loss. Different losses compute gradients in

different ways, which affects backpropagation performance in various ways. It

makes no difference how good a loss is; what matters is the combination and

how it is used during training. Feature losses have already been used to solve

blurry artefacts and overly smooth edges on generated images. However, a more

effective technique for using features as a loss model has been introduced in the

contribution chapters of this thesis, demonstrating that there is always room

for improvement.
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• The techniques and applications of the inpainting algorithms proposed in the

literature vary; while some [226] have introduced layers to address the inpaint-

ing problem, there are still limitations. To generate high-quality images, the

inpainting algorithm must be capable of extracting subtle and high-level fea-

tures while also transferring these features to the decoding layers. An attempt

to address this gap in Chapter 7 by introducing a module to highlight high-level

features with good transition to the decoding layers.

Research on image inpainting using deep learning has witnessed good progress in

recent years. Many datasets and the masks region for inpainting were generated but

lack of standardisation. Some potential works to advance the field of inpainted are

outlined below:

• Datasets. To track and determine which model is the state-of-the-art in in-

painting, and curtail the propagation of weak baselines into research, standard-

ized training and testing datasets of images and masks, should be established.

• Algorithms. To enable reproducibility of the work, there is need for the trans-

parency of the experiments by reporting the number of epochs and parameters

for each method. This will allow future work to benchmarking against the base-

line models. Current algorithms train on specific dataset and only work on the

data with similar nature. Future work should explore a generalisable algorithms

that can work on any image type.

• Necessity of standardised performance metrics. There are no standard-

ised metrics to evaluate the performance of the algorithms. A recommendation

will be for future research to report `1, `2, PSNR and SSIM as these metrics

reflect different aspects of the performance.

• Human Visual System. The human visual system should be taken into

consideration in more subjective evaluations to evaluate the perceptual quality

of inpainted regions. For example, this can be in the form of Mean opinion

score or measuring direct gaze information by direct bearing and the subjective

rating of the observer.

Finally, deep learning methods have proven to be extremely powerful when compared

to traditional methods. It is expected that research efforts to propose novel inpainting

algorithms will increase in this area of study in the future.
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2.8 Summary

As previously said, deep learning approaches have shown to be highly effective when

compared to older inpainting methods. It is expected that research efforts in this

area of study will continue to develop in the future, since it is a steadily expanding

field with a large number of research studies offering various approaches to image in-

painting. To generate realistic high-resolution face images, the work presented in this

thesis will primarily focus on overcoming the limitations identified in this chapter. As

a result, the ideas and approaches that are important in the field of GANs to com-

plete this demanding task successfully are carefully considered. The primary focus

will be on the generation of synthetic faces through the inpainting of masked images

using the deep learning approach. However, the proposed models will be extended

to inpainting on natural scene images in order to generalise them and demonstrate

their robustness in inpainting. The preliminaries, ideas, and procedures that served

as the foundation for the models that you will learn about in the subsequent chapters

will be discussed in the following chapter 3. To summarise, the research community

in painting should embrace more rigorous and improved practices in terms of repro-

ducibility, assessment, and computing complexity reduction in order to attain more

efficacy.
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Chapter 3

Preliminaries, Background
Techniques and Intuition

This chapter describes the preliminary steps, background information, theory and tech-

niques that led to the design of the proposed algorithms in the contribution chapters.

Furthermore, it helps the reader have a better grasp of what is going on behind the

scenes of the proposed models.

————————————————————————

3.1 Introduction

Our assumptions include prior knowledge of deep learning algorithms that utilise

adversarial training techniques (GAN) [62]. In a wide range of significant machine

learning and computer vision techniques, generative models are a critical component.

Recently, generative models have been increasingly popular for inferring the statisti-

cal structure of high-dimensional data, which may be used to generate many types

of fake data, including realistic images, movies, and audio signals, among others.

These models are currently being investigated for semi-supervised and representation

learning [157, 171] conditional GAN [148], text-to-image synthesis [158], image super-

resolution [114, 204], sketch-to-image [137], inpainting [152, 124], image enhancement

[230], style transfer [57, 94], image-to-image translation [85, 244], amongst other ap-

plications. GANs [62] are vastly studied type of generative models in computer vision

tasks because of their superiority in producing high-quality images. During this study,

several GAN algorithms were investigated, both in terms of network design phases

and network architecture.
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3.2 Preliminary Research

First, facial inpainting methods are investigated in detail from Chapter 2, with our

main focus on the network design and architecture.

This section provides an understanding of the preliminary considerations that

lead to the choice on how the models proposed in this thesis are designed. The

contributions of this thesis are designed to focus on end-to-end learning using GANs,

based on the original introduction to inpainting by Pathak et al. [152], and to build

on that foundation. As previously said, the model [152] is the first to use GANs to

generated realistic inpainted images, and it is also the most widely known inpainting

method in this area of research. A variety of optimization theories based on the

context-encoder [152] and prior inpainting models have been applied in this study.

This research, however, did not stop with the study of inpainting GAN models; it

also investigated the foundations of various architectures in order to gain a thorough

understanding of the methodologies used within CNN layers. Because inpainting is

a process of restoring damaged pixels, it is important to consider designing a deep

learning model capable of generating the missing regions in a way that is consistent

with the rest of the image while retaining the realism of the original.

It was observed throughout our research that various models stack their networks

in a different way and utilise different parameters to obtain the best possible outcomes.

This is a significant finding. I delve a little further into the convolution block of a

CNN model, using the MNIST dataset [113] shown on Figure 3.1 to help us through

the design process. This chapter provides an optimization view of common activation

Figure 3.1: Examples from MNIST test dataset [43].
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functions used by deep learning models using the MNIST dataset. It also investigated

the batch normalisation layer within the convolution and tested various parameter

settings. It then investigates the effect of layer pooling in greater depth, and apply

the findings to one of the proposed approaches in order to improve its contribution.

Before proceeding with the experimental analysis, a brief review of some cutting-edge

methods used in machine intelligence performance for the generation of synthetic data

is provided. It will look at three designs that served as inspiration for the design of

the proposed contributions to this thesis, which will be discussed further below.

3.3 Learning to Generate Synthetic Data

Machine learning refers to a variety of techniques that use a dataset to make intelligent

predictions [146]. A excellent example of one type of technique is a predictive model,

in which a well-designed algorithm is trained to generate predictions using sampled

data, i.e. data having a known link between the input and output. Predictions are

made here by utilising new data for which the output is unknown [22]. Another

example of machine learning are generative models [104]. As already mentioned in

Chapter 1 and 2, generative models are a critical component of machine learning and

computer vision techniques. There are two major kinds of generative models: explicit

and implicit methods. The former class presupposes access to the model likelihood

function, whereas the later class generates data via a sampling method. Explicit

models include variational auto-encoders (VAEs) and PixelCNN whereas GANs(as

shown on Figure 3.2) are examples of implicit generative models. Typically, explicit

models are trained via maximization of a lower bound or likelihood. Using a param-

eterized model distribution Q, GANs attempt to approximate a data distribution P .

They do it by optimising two adversarial networks concurrently: a generator and a

discriminator. The generator G through training learns to generate images that are

near to the real data distribution from a random noise vector. The discriminator D

role is to differentiate properly between the generated images and the ground-truth

images from the data distribution. Empirically, the training procedure in GANs is a

minmax game with two players and can be summed up with the objective function

below;

min
G

max
D
V (D,G) = Ex Pr [logD(x)]− Ez Pg [log(1−D(G(z)))]

where x is real data distribution from ground-truth data Pr and z is the noise vec-

tor, Pg is generated data distribution sampled from a uniform or Gaussian distribu-

tion. GANs have demonstrated a remarkable capacity for generating realistic high-
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resolution images [98]. For this reason, many variants of GANs have been introduced

to target specific task. GANs is the state-of-the-art method for predicting the facial

appearances at all stages (baby, young and old) on a facial image [235, 11, 221]. All

of these designs use compressed data in latent space to achieve a desired outcome

based on a hypothesis. The postulation is that in a defined latent space, there are

Figure 3.2: The GAN framework composing of a generator and discriminator. The
generator input is random noise vector and the generated samples are fake synthetic
samples. The discriminator takes both real and fake samples to judge whether they
are real or fake.

possibilities within the designed model where a specific series of tensor operations

map input to output data either in a supervised or unsupervised manner. Therefore

it is possible to perform challenging tasks using guidance from signal feedback using

data to learn useful representations to obtain an expected outcome. This explains

why it is possible to perform challenging tasks that could have only been done by hu-

mans using guidance from a feedback signal (e.g. A painter, hand painting a drawing

from a reference image or deteriorated painting). The problem most methods have

is that the cost function needs to be manually specified or fine-tuned during training

to achieve the desired outcome. This makes it very difficult for latent representa-

tions because it can either slow down learning or result in exploding gradients. As

a result, caution must be exercised during the network’s design phase. However, the

handler and the task determine the network’s design, which can be either supervised

or unsupervised learning.
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Figure 3.3: Supervised machine learning.

3.3.1 Supervised Learning:

As the name implies, supervised machine learning (as shown on Figure 3.3) involves

training a model using a set of input data that already has been linked with the cor-

rect output [146]. The algorithm makes predictions based on the training dataset and

it is corrected by the desired output data or label. A label refers to a tag attached to

each example in a dataset. This tag now becomes the answer the algorithm should

produce on its own. E.g a labelled data of air-planes will tell the algorithm which

images were Concord, Boeing, etc. If the algorithm is shown an image, it compels

the model to compare with the training set to predict the correct label. In image

classification, regression and image inpainting tasks supervised machine learning is

increasingly often employed. In classification, an algorithm predicts a discrete value,

that identifies a member of particular class from an input data. i.e from a dataset, of

class animal, each animal has a label, e.g elephant, lion, zebra etc. So the algorithm

correctly classifies the images into their different classes. Regression problems are

continuous data i.e. given a value x, provide the expected value of the y variable. In

inpainting task, the input image is a masked image and the reconstruction task is to

train the algorithm to generate images with predictions of the missing regions that

match the ground-truth counterparts and the entire image. The pioneer approach to

inpainting was by [86] who employed autoencoders to solve the inpainting problem

as already mentioned in Chapter 2. Autoencoders use stacked CNN layers to extract

relevant features needed for image reconstruction. Deep learning models, which as the
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name implies mean more layers of CNN blocks employ the same technique within the

generator and some combined with a discriminative model to complete an inpainting

task. In addition, the convolutional operation is explained, and some relevant tech-

niques that are critical to the design of our models are explored in Chapters 4, 5, 6, 7.

Furthermore, all techniques are not included here because they are unrelated to the

contribution of this thesis. This is not to say that other techniques not mentioned

here are irrelevant or ineffective in inpainting.

3.3.2 CNN Layers

Deep learning methods use convolutional operations for feature extraction through

the process of convolution within a CNN block as shown on Figure 3.4. A convolution

is a mathematical filtering operation that maps features based on two functions, with

a third function as an expression of how the shape of one modifies the other. The

convolutional operation is capable of computing a multidimensional array of input

data using a multidimensional array of parameters. This is accomplished by the

use of a kernel that implements an infinite summation over a finite number of array

members. This is achieved as the Convolutional layers convert these three pieces

information as tensors. That is the input tensor, filter tensor and the output tensor

as shown on Equation 3.3.2.

S(i, j) = (I ∗K)(i, j) =
+∞∑
m

+∞∑
n

I(m,n)K(i−m, j − n)

where S is convolution operation, I is a 2D image and K is the filter (kernel). The

convolution operation does not use linear operations on the whole image at once

but selects small sections of the image to condense and detect patterns. As a result

different types of patterns are detected based on the type of kernel used. Thus the

reason for this preliminary work as the purpose of this thesis is to inpaint missing

portions with contextual information which is perceptually consistent with the entire

image. Another importance of this study is the parameter accretion in deep generative

models. For example the size of the kernel matters and the total number of filters to

be learned in each convolution operation combined with other parameters (stride and

padding size) decide the model weight which is critical to computational resources.

It is important to consider the convolutional operation parameters stride and

padding while constructing image inpainting methods. As a result, the stride param-

eter defines how many pixels the filter will slide across during each pass. The filter

will move one pixel at a time if stride is set to 1. When stride equals 0, the filter
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Figure 3.4: Visualisation of simple CNN. The layers are stacked in the format pre-
sented on here. The fully connected layer in our proposed models are removed. Please
see chapters 4,5,6 and 7 for full details of our models.

does not move at all, resulting in an error. Padding, on the other hand, is employed

to cushion the input volume all round the border in order to control the output vol-

ume’s size. Thus, zero padding will pad zeros around the output volume’s boundary,

providing for greater control over the output volume’s size.

3.3.3 Dilated Convolution

The dilated convolution operation was introduced by [225] as a modified kernel of the

convolution operation. The dilation operation supports exponential expansion of the

receptive field without loss in resolution and without parameter accretion. Based on

the modification, the receptive field are set to grow exponentially while the number

of parameters grow linearly. For more detail refer to the original work by Yu et al.

[225].

Figure. 3.5 shows an illustration of dilated convolution. The yellow dots indicate

the dilation rate and the green area is the receptive field at various sizes based on the

dilation rate (rd).

Figure 3.6 shows the process of dilated convolution. Dilated convolutions [225],

combined with skip connections, are critical to the design of the contribution chapters

of this thesis as:

• It broadens the receptive fields to capture more contextual information without

parameter accretion and computational complexity, which are preserved and

transferred by skip connections to corresponding deconvolution layers.
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Figure 3.5: An overview of the systematic operation of dilated convolution with the
expansion of receptive field without loss in resolution. (a) is has a dilation rate of 1
showing each element with a receptive field of 3 × 3. (b) shows a receptive field of
7 × 7 based on rd = 2. (c) has a receptive field of 15 × 15 on rd = 4. The accretion
of receptive field is in linearity with the parameters. [225]

• It detects fine details and maintains high-resolution feature maps, and achieves

end-to-end feature learning with a better local minimum (high restoration per-

formance).

• It has shown considerable improvement of accuracy in segmentation task [225,

31, 32].

Figure 3.6: Illustration of dilated convolution process. Convolving a 3 × 3 kernel
over a 7 × 7 input with a dilation factor of 2 (i.e., i = 7, k = 3, dr = 2, s = 1 and
p = 0) [48]. The accretion of receptive field is in linearity with the parameters [225].
A 5× 5 kernel will have the same receptive field view as over a 7× 7 input at dilation
rate=2 whilst only using 9 parameters over a 512× 512 input.

Because the goal is to achieve realistic results on high resolution images, dilated

convolutions are investigated and incorporated into the design of proposed models in

the contribution chapters 4, 5, 6, 7. This, however, is easily accomplished if a function

is included that can preserve some features and transfer them to corresponding layers

within the network.

3.3.4 Skip Connections

Many deep learning methods [163, 73, 216, 166, 78, 47, 117] use skip connections. Skip

connections (Figure 3.7) as the name implies is an implementation within the network
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Figure 3.7: Illustration of skip connection between blocks.

that skips some layers to feed the output of one layer as input to the next layer. Skip

connections are commonly used in Encoder-Decoder architectures, and they assist

the model in generating near accurate results by transferring appearance information

from shallow layers of the encoder to the corresponding deeper layer of the decoder

(generator). The UNet is the most widely used Encoder-Decoder architecture, and

the LinkNet is also widely used. The manner in which these structures combine the

appearance of information from the encoder layers with that of the decoder layers

differs slightly. In the case of the U-Net, incoming features (from the encoder) are

concatenated in the decoder layer. LinkNet, on the other hand, performs addition. As

a result, LinkNet structures require fewer operations in a single forward pass and are

significantly faster during training than U-Net structures. Skip connections stepped

into deep learning models as a result of vanishing gradient problem. The vanishing

gradient problem results from when the training loss stops decreasing when it is a

long way from the desired value. The vanishing gradient problem may occur from the

backpropagation algorithm (loss). The backpropagation algorithms’ goal is to assist

the model during learning by optimizing a number of parameters iteratively with re-

spect to the training loss function. The loss function is usually defined based on the

problem to solve and it is the quantitative measure of the distance between two ten-

sors [166, 2]. These tensors can be a representation of an image, label or translated

text or numbers depending on the task. Thus backpropagation helps to gradually

minimize the loss as it updates the weights of the network. Backpropagation calcu-

lates the gradient in the loss function by using the chain rule to compute the with

respect to a neural network parameter. Skip connections provide an alternative path
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to backpropagation. According to recent approaches [238, 229], skip connections are

additional paths that benefit network convergence. There are two ways to use skip

connections; either via addition or concatenation. The alternative path to backprop-

agation with skip connection via addition is to use the identity function by simply

adding a vector. Thus the identity function preserves the gradient as the layers go

deeper. The alternative of skip connections is by concatenation of previous feature

maps. This is usually because of the low-level information that is shared between the

input and output. Thus passing this information using a concatenated feature map of

the previous layer ensures maximum information flow between layers of the network.

There are two types of skip connections via addition namely long skip connections

and short skip connections. Short skip connections are feature map additions within

consecutive convolution layers that have no impact on the input dimension. A good

example of short skip connections are proposed in ResNet [73]. Long skip connec-

tions are associated with encoder-decoder frameworks, such as U-Net [163]. With

this type of feature map addition, the global information is preserved while the local

information provides intuition to the model in the form of image patch details (e.g in

the case of inpainting). Based on research in 2, it is observed that skip connections

provide uninterrupted gradient flow between convolution layers and enables feature

reusability.

3.3.5 Unsupervised Learning:

Figure 3.8: Unsupervised machine learning.

In this type of learning problem, the algorithm is presented with input data with

no instructions on what to do as illustrated on Figure 3.8. However, two independent

sets of data with no paired example of the data can be translated to a corresponding

output. This means that a collection of examples from the training set have no desired

outcome or correct answer. This is where the neural network automatically extracts

useful features to analyse and produce structural information or data similar to the
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structure represented on the input data. For example the use of autoencoders to

compress input data into code and recreate the input from summarized code in latent

space. This makes training difficult but more applicable in real life scenarios.

3.3.6 Siamese Network

Figure 3.9: Siamese Network.The function d is used to tell how similar or different
the two faces are.The latent encoding of the fully connected layers are denoted f(x1)
and f(x2) which are good representations for the two images.

Learning similarity metric from data is well known in computer vision [38, 71, 139].

Figure 3.9 shows similarity learning between two encoders based on a contrastive loss

function. This type of model can be used for recognition or verification of applications.

Traditional approaches use discriminative techniques in neural networks or support

vector machines for classification of a number of categories from a known training

sample. However, these methods have a limitation which is their inability to handle

samples with large categories, thus making it unsuitable for applications with very

large categories.

3.4 Preliminary Experiments

3.4.1 Batch Normalization (BN)

In previous approaches for facial manipulation algorithms, Batch Normalization (hence-

forth BN) is introduced within the hidden layers to normalize the input layer, thus

making sure the hidden layer is on the same scale. This proved to speed up learning
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during training [152]. Another advantage for using BN is that it tackles the mean

and variance for each feature during training. In a more recent approach to image

inpainting, Facial attribute manipulation, it is observed that BN are not part of the

implementation. An explanation for this is that noise introduced by BN layers reduced

the performance of the model [105]. To address this, most of these methods[238, 243]

have used Instance Normalization or not introduced BN at all. However, it is observed

that BN layers if introduced after the activation layer is harmful during training. Also,

another observation was that the negative impact on BN on the performance of the

model is during testing not training when introduced after the activation layers. BN

layers deteriorate colour coherency [82] during testing, hence should be used in the

upper convolutional layers to reduce computational load. The slow-moving statistics

in BN layers can cause the output of each layer to shift slightly during evaluation, thus

making the output to be slightly different. This problem is handled by modifying the

momentum parameter of BN layers to allow for running statistics to catch-up with

batch statistics. Also, a regularization technique is utilized to scale the parameters

in BN layers to correct small mismatch in statistics so that are not amplified by BN

layers.

3.4.2 Activation Functions

GANs are best described as optimization problems. This means that GANs are

designed with the capability to find the optimal or best mathematical solution to

a task. For better optimization of neural networks, one would require an explicit

closed-formed solution to constrain the weights of the network during training.

• NoBN: One convolutional layer with maxpooling, fully connected layer and no

BN.

• WBN: Two convolution layers with BN, momentum=0.8. Note Activation

function is before BN layer

• AABN: Activation function after BN with two layered convolution. momentum=0.8

• FAABN: Full model with activation after BN. Default values of BN are used

within three layers of convolution, and maxpooling in between.

• BN=0.8: Full model with activation after BN. BN momentum=0.8 and three

layers of convolution, and maxpooling in between.

70



(a) NoBN (b) WBN (c) AABN (d) FAABN (e) BN=0.8

Figure 3.10: Loss variation depending on number of layers and position of activation
function within the model.(a) BN is before the activation. Note that in the second
experiment, (b) the BN layer is stacked below the activation function. BN momentum
set at 0.8 (c) Two convolution layers. BN momentum set at 0.8 (d) four convolution
layers with default parameters of BN. categorical cross entropy

The goal of this section is not to learn or rediscover existing activation functions but

to provide an inside to the decisions that led to the design of the algorithms proposed

in subsequent chapters. An activation function can be described as a transfer function

that determines the output node of a convolution layer or neural network in values

ranging between [0,1] or [-1,1], based on a weight sum of the input [97, 3, 173]. That

is, it limits the output of a neuron by squashing the amplitude values between 0

and 1 or -1 and 1. Activation functions are either linear or non-linear functions.

However, different parameters have been used within some functions based on the

study conducted on activation functions with the MNIST dataset. I have follow

similar method as in [153] to have a guide on what to expect. The experiment

conducted here is an integration of the first three traditional convolution layers mostly

used by Facial Inpainting algorithms, combined with the traditional fully connected

layer to solve the MNIST problem. Figure 3.11 shows that test accuracy of the

(a) NoBN (b) WBN (c) AABN (d) FAABN (e) BN=0.8

Figure 3.11: Comparison of accuracy between activation functions (ReLU, ELU,
LeakyReLU) (a) BN is before the activation. Note that in the second experiment, (b)
the BN layer is stacked below the activation function. BN momentum set at 0.8 (c)
Two convolution layers. BN momentum set at 0.8 (d) four convolution layers with
default parameters of BN.

MNIST. With a full model as in (d) with default parameters of BN, an accuracy of
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0.99 is achieved. With fewer layers and BN=0.8 the accuracy is slightly lower. With

changes to BN momentum=0.8, the test accuracy is 0.99 though not very stable

as compared to the (d). The results obtained show very marginal improvement on

the different activation functions. The main point of the comparison is to illustrate

how these layers can be stacked within our proposed networks to assist with efficient

propagation of the weights through the layers. Examples of activation functions

mostly used by Facial manipulation algorithms are ReLU, ELU, LeakyReLU [39, 147].

For example, SoftMax is specifically used as the output of the fully connected layer

and varied LeakyReLU(alpha=0.2) and changes to BN layer between experiments as

well. As the experiments continue, the convolutional layers are increased to observe

the performance of the model. The choice depends on the task and how the algorithm

designer have stacked the network. This is usually based on what they want to achieve

in the convolutional output or what optimization they do during training. Based

on our experiments, some hyperparamters (value used to control the experiment)

are used within the convolution layers and stack in a way that could change the

activation function during training. These network variants are trained with the

different activation functions mentioned here and used the history generated by each

is used to plot its accuracy over epochs. Figure 3.12 shows that test loss results are

similar for the first two experiments. There is a slight error in fourth experiment in

(d). This may be due to the default parameters of BN used. In (e) and (c) the same

BN parameter is used but increase the convolution layers in (e).

(a) NoBN (b) WBN (c) AABN (d) FAABN (e) BN=0.8

Figure 3.12: Comparison of losses on between activation functions (ReLU, ELU,
LeakyReLU). Note that in the second experiment, (b) the BN layer is stacked below
the activation function. BN momentum set at 0.8 (c) Two convolution layers. BN
momentum set at 0.8 (d) four convolution layers with default parameters of BN. A
good evaluation is expected to have a constant curve of the losses lower across all
activation functions for all transformed samples with a corresponding high accuracy
in performance of the model.

72



3.4.3 Objective functions

One of the hardest task for deep learning based models is to find a suitable objective

learning function needed to backpropagate the weights in order to find an optimal

solution. This is because the neural networks can be highly confident even when it

is wrong. In this sense, an objective function is computed with model parameters as

arguments to evaluate and return a number. By computing this function, the model

finds the values of these parameters that either maximize or minimize the returned

number. Consider the model parameters to be weights; the purpose of the algorithm

designer is to employ an objective function capable of effectively exploring the latent

space with a range of potential values that can steer the model to an optimal solution.

At each stage of the network during training, the weights needs correction to indicate

to the model how far it is from the results. Hence the importance of the objective

function which provides the basics and formal specification of the problem. With

most GAN task, the goal is to minimize the error. Hence when minimizing, the

term loss function, or error function [61]. As previously described, the objective

function is determined by the problem formulation, thus in the case of our study,

the objective function is termed loss function. For facial manipulation algorithms a

suitable content loss function is needed to assist the model during training. This is

because the model needs to gear towards perceptual similarity. In image inpainting,

large hole region need filling-in and needs a much deeper semantic understanding

of the image, hence a reconstruction loss is needed. This is because during back

propagation, weights need to be updated properly to allow the model to learn from

nearby pixels. Thus, when training a model, it is important to provide the model

with statistical understanding of the image so that it can learn to generate plausible

hypothesis for the missing regions. Hence the introduction of GANs to inpainting

by Pathak et al. [152]. With GANs, the reconstruction loss captures structural and

contextual information about the missing region, whilst the adversarial loss selects

specific modes from the distribution to provide realistic results. This will provide the

model the ability to be able to synthesize images with high-level features. For more

details on the loss functions used in this thesis, see subsequent chapters.
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3.5 The use of Wasserstein Distance as a GAN loss

function

In the field of generative models, the log-likelihood (or, more precisely, Kullback-

Leibler divergence) has been considered the gold standard in the training of GANs

[62, 193, 20]. It assesses the likelihood of the real data occurring under the generated

distribution on a number of samples (N) taken from the data set. Mathematically,

this can be represented as L = 1
N

∑
i logPmodel(Xi). Because it is not possible to esti-

mate likelihood in higher dimensions, generated samples can be utilized to estimate

anything about a model’s log-likelihood in one dimension. A model with maximum

likelihood (zero KL divergence) is thought to yield flawless samples. However, the

log-likelihood is very intuitive but its stability has been questioned by [191]. The au-

thors showed that, the probability does not tell anything about the sample’s quality.

In other words, sample quality and log-likelihood are unrelated. That is a models’s

log-likelihood might be bad while producing outstanding samples and vice versa. A

more detailed proof can be seen in [191], where a mixture of Gaussian distribution

training on images will generate amazing samples but have poor log-likelihood. Fur-

thermore, if the GAN discriminator operates as predicted, the gradient of the loss

functions begins to decrease and finally approaches zero. As a result, the model has

difficulty updating the process loss, resulting in sluggish training and the model be-

ing stuck. Another possibility is that the discriminator behaved poorly, resulting in

erroneous feedback to the generator and leading the loss function to not correctly

represent reality.

GANs struggled to find an objective function that could better evaluate the train-

ing process. However, a good evaluation measure was needed, and the Wasserstein

Distance [9] was sought to solve it. The Jensen-Shannon divergence optimised in

GANs is not continuous with respect to the generator parameters, as proven by [9]

when the model distribution and data distribution have disjoint supports. Instead,

they recommended that the Earth Mover distance or Wasserstein-1 distance be used

as a substitute. The Wasserstein critic [9] was proposed to estimate the Wasserstein

distance between real and generated data distributions. The Wasserstein distance

(Earth Mover’s Distance (EMD) is the minimal mass displacement required to change

one distribution to another [20]. Empirically, the WGAN shows improved stability

during optimization of a neural network. The approximation is on the norm of the

discriminator (critic) with clipped weights considered to have bounded derivatives
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based on a Lipschitz continous function. It can be derived using the equation below.

W (Pr, Pg)αmax
f

Ex Pr [f(x)]− Ez Pg [f(z)], (3.1)

where f : RD− > R is the Lipschitz continous function, f is the neural network, Pr

is the real data distribution and Pg is the generated data distribution. To be more

elaborate, a dual formulation by [9] based on discriminator D and Generator G

min
G

max
D
V (D,G) = Ex Pr [D(x)]− Ez Pg [D(G(z))]

where D is set on 1-Lipschitz function and z is the noise vector. The Wasserstein dis-

tance computes the statistical similarity between local patches derived from Laplacian

pyramid representations of real and generated images [98, 99]. The advantage of the

Wasserstein GAN is that it solves the problem of both overfitting and mode collapse.

Thus, provided the generator remembers the training set, the trained critic would

be able to distinguish the generated samples from the real ones. Furthermore, when

two distributions do not overlap, it does not saturate. The distance that separates

the samples and the data demonstrates how simple it is for the critic to differentiate

between the samples and the data. When computing the base distance in an appro-

priate feature space, the Wasserstein distance is a reliable metric. The high sample

and time complexity of this distance is a significant limitation to the WGAN model.

3.6 Datasets

In this section, the datasets used for the contribution chapters are introduced. All the

contributions of this thesis are evaluated qualitatively and quantitatively against the

state of the art methods. The most commonly used publicly available datasets for fa-

cial image inpainting are the CelebA [131] and CelebA-HQ [98]. To create a damaged

image or images with missing regions, a binary mask must be applied on the image to

simulate the damage. Usually this is done by an external dataset or function to create

these masks regions. In this thesis, an external dataset namely Quick Draw Mask

dataset [84]. To utilize semantic segmentation mask, the CelebAMask-HQ dataset

proposed by Lee et al. [115] is considered for one of the models in the contribution

chapters. Our experiment focuses on high-resolution face images and irregular binary

masks. The benchmark dataset for high-resolution face images is CelebA-HQ dataset

[98], which was curated from the CelebA dataset [133]. Figure 3.13 shows a few sam-

ples from the CelebA-HQ dataset. In this thesis’ experiments, high-resolution images

from the CelebA-HQ dataset [98] were resized to 256 × 256. For masking method,
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Figure 3.13: First row are images from CelebA-HQ [98]. Second row shows the
segmentation masks of face and hair regions from CelebAMask-HQ [115] used as our
foreground masks in Chapter 6. The skin region without hair indicates the subject’s
hair is short or has no hair. The third row is the mask dataset from [84] used as
masking method for training the models in the contribution chapters

the Quick-Draw irregular mask dataset proposed by Iskakov et al. [84] which has up

to 50000 binary masks samples for training with hole-to-image ratios ranging from

[0.01, 0.60] are used. Both the masks and the images are resized and merged to-

gether by matrix operations to obtain an input masked image. The CelebAMask-HQ

dataset is used for the extraction of foreground segmentation masks to compute the

loss function for our model. The semantic segmentation maps are fined-grained mask

annotations of all the facial attributes including the skin and cloth making up 19

labels. This dataset is used in the case of the model proposed in Chapter 6, but only

the skin and hair regions are extracted to form the foreground mask. Figure 3.13

shows the foreground regions of drawn from the CelebAMask-HQ dataset.

The Places2 [241] dataset contains more than 10 million images with more than

400 unique scene categories with 5,000 to 30,000 train images. The training and

testing sets are split based on the state-of-the-art [152] and trained our network to

understand scene category. The Paris Street View has 14,900 training images and

100 validation images, with the same testing set as described in the state-of-the-art

[152] for the experiments.
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3.7 Summary

This section compares the various techniques that are critical to the proposed con-

tributions in the following chapters. The parameters that comprise the CNN layer

depicted in Figure 3.4 were investigated. To learn how activation functions behave,

different experiments were carried out by stacking the convolution layers with dif-

ferent parameters. It has been discovered that a neural network may require more

parameters within the convolution layer, and that the results are influenced by where

the activation is stacked. Another finding is that small parameter values are required

to tune the neural network. Furthermore, depending on the algorithm designer and

the task at hand, different activation functions can be applied in each feature map

during neural network training. So far, from Chapter 2 to the present, measures

introduced for GAN inpainting algorithms have been investigated. Techniques were

also investigated to aid in the design of the models proposed in this thesis. However,

the best way to design these algorithms remains an unsolved problem in this field

of study. As a result, our proposed solutions are designed to be open to criticism

and fair comparisons in order to improve and develop new GAN inpainting models.

Finally, the datasets used to run the experiments in this thesis’ contribution chapters

have been discussed. It is important to emphasise that the lack of a universal metric

for evaluating GANs has hampered the elimination of weak baselines. A proposed

protocol in Chapter 6 could, however, contribute to a universal empirical evaluation

technique for GAN inpainting models. The chapter that follows will describe the first

contribution to the research in this thesis, and subsequent contributions will build on

this work to demonstrate gradual improvement to the inpainting problem throughout

all stages of this research.
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Chapter 4

Symmetric Skip Connection
Wasserstein GAN for
High-Resolution Facial Inpainting

This chapter describes SWGAN, a high-resolution face inpainting network architec-

ture. An architecture (encoder-decoder) that incorporates dilated convolutions with

skip connections at multiple levels and is trainable end-to-end with a Wasserstein

discriminator as a deep network. The feature extractor (encoder) extracts abstrac-

tions from the masked image to learn end-to-end mappings. The learned abstractions

are used in the decoder to reassemble high-resolution images as generated output. In

addition, dilated convolutions and skip connections are investigated to demonstrate

how they complement each other in inpainting. This chapter appears in Symmetric

Skip connection Wasserstein GAN for High Resolution Facial Inpainting

VISAPP 2021.

————————————————————————

4.1 Introduction

This chapter focuses on high resolution facial image inpainting. Instead of improv-

ing on traditional inpainting methods that deploy PDEs to interpolate neighbouring

pixels for patch transfer or diffusion, the approach with GANs is considered. A per-

ceptual objective learning function is contrained to target the pixel values during op-

timisation. The state-of-the-art facial image inpainting methods achieved promising

results but face realism preservation remains a challenge. This is due to limitations,
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such as failures in preserving edges and blurry artefacts. To overcome these limita-

tions, the Symmetric Skip Connection Wasserstein Generative Adversarial Network

(S-WGAN) for high-resolution facial image inpainting algorithm is proposed. The

architecture is an encoder-decoder with convolutional blocks, linked by skip connec-

tions. The encoder is a feature extractor that captures data abstractions of an input

image to learn an end-to-end mapping from an input (binary masked image) to the

ground-truth. The decoder uses learned abstractions to reconstruct the image. With

skip connections, S-WGAN transfers image details to the decoder. Also, skip con-

nections ensures high quality local optimum and enables the model converges faster

with deeper networks, thus making them easy to train in consequence to achieving

high restoration performance. Additionally, a Wasserstein-Perceptual loss function to

preserve colour and maintain realism on a reconstructed image is introduced to min-

imise the error between the real and reconstructed image. This model is evaluated and

compared with the state-of-the-art methods on CelebA-HQ dataset. Our results show

S-WGAN produces sharper and more realistic images when visually compared with

other methods. The quantitative measures show our proposed S-WGAN achieves the

best Structure Similarity Index Measure (SSIM) of 0.94. However, these approaches

often fail to produce images with plausible visual semantics. With the evolution in

research, deep learning-based methods [152, 124, 82, 226, 216, 217, 151] encode the

semantic context of an image into feature space and fill in missing pixels on images

by hallucinations [217] through the use of generative neural network. Although deep

Figure 4.1: Images showing some issues by existing methods [152, 137]: (a) Poor
performance on holes with arbitrary sizes; (b) Lack of edge-preserving technique;
(c) Blurry artefacts; and (d) Poor performance on high-resolution images and image
completion with mask at the border region.

learning approaches achieve excellent performance in facial inpainting, there are some

limitations of state of the art as illustrated in Figure 4.1. These are cases, where

Figure 4.1(a) shows poor performance on holes with arbitrary sizes; Figure 4.1(b)

illustrates the lack of edge-preserving using the existing technique; Figure 4.1(c) de-

picts the blurry artefacts; and Figure 4.1(d) demonstrates the poor performance on

high-resolution images and image completion with mask at border region.
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To correctly predict missing parts of a face and preserve its realism, the S-WGAN

has the following contributions:

• A newly designed framework with Wasserstein Generative Adversarial Network

(WGAN) that uses symmetric skip connection to preserve image details.

• A newly defined combination loss function based on RGB and feature space.

• Experiment results show that the new combination loss trained with the S-

WGAN model outperforms state-of-the-art algorithms..

4.2 Connection to Related Work

The closest to this proposed method is context-encoder approach by [152] and the

inpainting algorithm in [82]. The context-encoder is designed to learn from context in-

spired by the introduction of the encoder-decoder framework with adversarial training

[152]. The context-encoder uses an AlexNet [81] encoder with `2-loss and adversarial

loss. However, despite the achievement of impressive inpainting results, this model

still struggles with blurry artefacts, poor performances on masks of arbitrary struc-

tures, failures in edge preservation and poor performance on high-resolution images.

This is because the context-encoder focuses on feature representation for inpainting

and does not take into consideration these feature representations when differenti-

ating real and fake inpaintings. The method introduced in [82] uses the concept of

the context-encoder with structural changes to the encoder network designed to in-

clude dilated convolutions to expand the view of the receptive fields to capture more

contextual information. The authors [82] also introduced two discriminators that

differentiate localised inpainted regions of the generated and compared to its real

counterpart, and the global fake and real regions.

4.3 Proposed Method

Our proposed model uses skip connections with dilated convolution across the net-

work, to perform image inpainting. Because convolutions view missing pixels and

valid pixels as one pixel level during inpainting, the important concept is to collect

more contextual information. Furthermore, since most earlier studies on inpainting

presume that missing parts are regular (e.g., a central mask or numerous rectangular

holes), the convolutions as they glide across may readily remember specific windows
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for filling in missing pixels. As a result, the present design addresses this issue, de-

spite the fact that it is just one level of pixel information. This is accomplished by

conditioning the current convolution to capture large amounts of contextual informa-

tion and using skip connections to retain valid pixels for corresponding mask regions

during backpropagation. The architecture and loss function of S-WGAN model are

discussed in the following sections.

4.3.1 Architecture

Figure 4.2: S-WGAN framework. The dilated convolution and deconvolution with
the element-wise sum of feature maps (skip connection) combined with a Wasserstein
network. The skip connections in the diagram ensure local pixel-level accuracy of the
feature details to be retained.

Generator (Gθ) The effectiveness of feature encoding is improved by having an

encoder of ten-convolutional layers, with a kernel size of 5 and dilation rate of 2,

designed to match the size of the output image. This technique enables our model to

learn larger spatial filters and help reduce volume [165]. Each block of convolution in

exception of the final layer has Leaky ReLU activation and max-pooling operation of

pool size 2×2. A dropout regularisation with a probability value of 0.25 is applied in

the 4th and final layer of the encoder. The dropout layer randomly disconnects nodes

and adjust the weights to propagate information to the decoder without overfitting.

Decoder The decoder are five blocks of deconvolutional layers, with learnable up-

sampling layers that recover image details using the same kernel size and dilation rate

of the generator. The corresponding feature maps in the decoder are asymmetrically

linked by element-wise skip connections to reach an optimum size. The final layer

in the decoder is Tanh activation. Following the procedure mentioned in Chapter 3,

dilated convolution is expressed based on network input. Using Equation 4.1, this
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equation can be stated in terms of the mask, the input image, and the dilation ratio.

I ′(m,n) =
M∑
i=1

N∑
j=1

MI(m+ dri, n+ drj) ∗ ω(i,j) (4.1)

where I ′(m,n) is the output feature map of the dilated convolution from the input

masked image MI , M is the binary mask and Igt is the groundtruth image, the filter

ω(i,j) and the convolutional operator ∗. The dilation rate parameter (dr) reverts to

normal when dr = 1.

It is advantageous to use dilated convolution compared to using typical convolu-

tional layers combined with pooling. The reason for this is that a small kernel size of

k × k can enlarge into k + (k − 1)(dr − 1) based on the dilated stride dr, thus allow-

ing a flexible receptive field of fine-detail contextual information while maintaining

high-quality resolution.

The inpainting solver Gθ may result in predictions Gθ(ẑ) of the missing region,

that may be reasonable or ill-posed. As part of our network, Dθ adopted from [9]

is used to provide improved stability and enhanced discrimination for photo-realistic

images. With ongoing adversarial training, the discriminator is unable to distinguish

real data from fake ones. Equation 4.2 shows the reconstruction of the image during

training from Gθ:

IR = Igt �M + (1−M)�Gθ(ẑ) (4.2)

where IR is the reconstructed image, Igt is the ground-truth, Gθ(ẑ) is the predictions,

� is the element-wise multiplication and M is the binary mask, represented in 0 and

1. In our case 0 is the context of the entire image and 1 is the missing regions.

Equation 4.3 adopted from [9] refers to the Wasserstein discriminator.

max
D

VWGAN = Ex∼pr [(Dθ(I)]− Ez∼pz [D(Gθ(IR))] (4.3)

where D is the discriminator and Pr is real data distribution. G is the generator of

our network and Pz is the distribution.

4.3.2 Loss Function

Perceptual loss Instead of using the typical `2-loss function used in [152], a new

combination of loss functions (luminance (Ll) and feature loss) are used. Pixel-wise

reconstruction and feature space loss are not new to inpainting [223, 226, 94]. The

luminance guided Ll is defined based on the `1-loss so as to compute the loss using a

range of constant pixel values in the RGB space. This preserves colour and luminance
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and does not over penalise large errors [236]. To adjust our perceptual loss, the Ll

is used thus minimising any error >1. Also, the Ll allows better evaluation of the

predictions to match the ground-truth. More specifically, the luminance loss (Ll) is

based on `1 and expressed as follows:

Ll = ||K � (xi − ẑi)||11 (4.4)

where i is the pixel index with xi and ẑi as pixel values of the ground-truth and

the predictions, constraint by a constant K. Our feature loss Lf is a feature based

`2-loss, rather than being computed directly on the image the loss is computed in a

feature space. To achieve this, the pre-trained VGG-16 model trained on ImageNet

[106] is adopted and used as a feature extractor in our loss function. To be more

specific the output of block3-conv3 is used for this model to generate image feature.

The `2 the base that computes the loss function, which is the same as the perceptual

loss proposed in [94]. The advantage of using feature space is that a particular filter

determines the extraction of feature maps, from low-level to high-level sophisticated

features. To reconstruct quality images, the loss function is computed with feature

maps determined by block3-conv3, resized to the same size as masks and generated

images. The reason is that using another output for example block4-conv4 or block5-

conv5 will result in poor quality, as the network starts to expand the view at these

layers due to more filters used. Our feature loss is expressed as follows:

Lf = ||φi[MI ]− φi[IR]||22 (4.5)

where MI is the input image, IR is the reconstructed image and N is dimensions

obtained from φ feature maps with high-level representational abstractions extracted

from the third block convolution layer. By combining Ll and Lf the following equation

is obtained:

Lp = Ll + Lf (4.6)

By using Lp the model learns to produce finer details in the predicted features and

output without any blurry artefacts. Also, the Wasserstein loss (Lw) improves con-

vergence in GANs by computing its the mean difference between two images. Fi-

nally the entire model trains end-to-end with back-propagation and uses the global

Wasserstein-perceptual loss function (Lwp) defined in Equation 4.7, to optimise Gθ

and Dθ to learn reasonable predictions. Our goal is to reconstruct an image IR from

MI by training the generator Gθ to learn and preserve image details.

Lwp = Lw + Lp (4.7)
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4.4 Experiment

For this model, the Keras library with TensorFlow backend is used to implement and

design the network. With the choice of the dataset, the experiment settings of state

of the art [124] is considered and the CelebA-HQ dataset split into 27,000 images

for training and 3,000 images for testing. Normalised floating-point representation

Figure 4.3: Process of input generation: a) CelebA-HQ image; b) Binary mask image
[84]; and c) Corresponding masked image (input image).

is implemented during preprocessing on the image to set the intensity values of the

pixels in the range [-1,1] and applied to the mask on the image to obtain our input, as

shown in Figure 4.3. Pretrained weights from VGG-16 are initialized to compute our

loss function. A learning rate of 10−4 in Gθ and 10−12 in Dθ is used and optimise the

training process using the Adam optimiser [103]. The Quadro P6000 GPU machine

is used to train these models. According to the hardware conditions, a batch-size of

5 in each epoch for input images with shape 512×512×3 is considered so as to avoid

memory problems. It takes 0.193 seconds to predict missing pixels of any size created

by binary mask on an image and ten days to train 100 epochs.

4.5 Results

This section evaluates the inpainting methods qualitatively and quantitatively.

4.5.1 Qualitative Comparisons

Consider the importance of visual and semantic coherence; a qualitative comparison

of our test dataset is conducted. First, is the WGAN implemention approach with Lf

and Lw. It is observed that an induced pattern and pitiable colour on the images, as

shown in Figure 4.4(d). Furthermore, dilated convolution, skip connections combined

with end-to-end training using Lwp are introduced to handle the induced pattern and

match the luminance of the original images. This model is compared with three

popular methods:
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(a) Input (b) CE (c) PC (d) WGAN (e) SWGAN (f) GT

Figure 4.4: Qualitative comparison of our proposed SWGAN with the state-of-the-
art methods on CelebA-HQ: (a) Input masked-image; (b) CE [152]; (c) PC [124];
(d) WGAN; (e) SWGAN (proposed method); and (f) Ground-truth image.

• CE: Context-Encoder method [152].

• PC: Image Inpainting for irregular holes using partial convolutions [124].

• WGAN: Wasserstein GAN method with perceptual loss.

The SWGAN model is compared to the state of the art on CelebA-HQ 512× 512

test dataset and the results are shown in Figure 4.4. Based on visual inspection,

Figure 4.4(b) illustrates blurry generated by the CE method [152]. On the other

hand, PC [124] generates clear images but with residues of the binary mask left on the

images as shown in Figure 5.4(c). WGAN induced pattern and low-contrast images,

shown in Figure 4.4(d). Overall, our proposed SWGAN, as shown in Figure 4.4(e),

produced the best visual results when compared to the ground-truth in Figure 4.4(f).

4.5.2 Quantitative Comparisons

To evaluate the performance quantitatively, some popular image quality metrics such

as MAE, MSE, Peak Signal to Noise Ratio (PSNR), and SSIM are used. Table 4.1

compares our experiment results to the state of the art [152, 124] for image inpainting,

with our S-WGAN in bold. For MSE and MAE, the lower the value, the better

the image quality. MSE measures the average squared intensity difference of pixels

while MAE measures the magnitude of error between the ground-truth image and the

reconstructed image. Conversely, for PSNR and SSIM, the higher the value, the closer

85



Table 4.1: Quantitative comparison of various performance assessment metrics on
3,000 test images from the CelebA-HQ dataset. † Lower is better. ] Higher is better.

Performance Assessment
Method Author MSE † MAE † PSNR ] SSIM ]
WGAN 3562.13 87.03 13.50 0.56
CE Pathak et al. [152] 133.481 129.30 27.71 0.76
PC Liu et al. [124] 124.62 105.94 28.82 0.90
S-WGAN Proposed 81.03 66.09 29.87 0.94

the image quality to the ground-truth. Based on observation from Table 4.1, S-WGAN

achieves lower MAE, MSE, higher PSNR and higher SSIM values in comparison

with CE [152] and PC [124], which suggests that SWGAN provide more accurate

predictions than the state-of-the-art inpainting algorithm.

4.6 Ablation Study

Experiments on the CelebA-HQ dataset are carried out to justify the SWGAN frame-

work and verify the efficacy of Lp, and the results for the various adjustments of the

SWGAN model are displayed. Firstly, investigations are conducted on the WGAN

(a) Input (b) (c) (d) (e) (f) GT

Figure 4.5: Qualitative comparison of results using different architectures [94] on
CelebA-HQ [98]. (a) Input masked image (b) Inpainted image by WGAN (c) Im-
proved WGAN with skip connections (WGAN-S) (d) Improved WGAN with skip
connection and dilated convolution (WGANSD) (e) Complete network with Lp (f)
Ground-Truth image. The yellow box indicates the region where other models failed
to inpaint successfully completely. This region in (e) shows the effectiveness of Lp on
the inpainted image. (Zoom for best view)

and WGAN with skip connection (WGAN-S) using the Lf , and observed a slight im-

provement in texture and structure of the reconstructed masked regions of the images.

Figure 4.5 (b) and (c) show changes influenced by skip connections. It is observed

that visually and quantitatively, the WGAN-S performs better than WGAN model

but not satisfactory as shown in the first part of Table 4.2. Secondly, an improved

the WGAN-S model is implemented with dilated convolutions to each block, and ad-

ditional convolution layers to obtain our WGANSD model. This model (WGANSD)
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(a) Input (b) (c) (d) (e) (f) GT

Figure 4.6: Qualitative comparison of results using different architectures with the
perceptual loss [94] on CelebA-HQ [98]. (a) Input masked image; (b) inpainted im-
age by WGAN; (c) Improved WGAN with skip connection; (d) improved WGAN
with skip connection and dilated convolution (e) Complete network with Lp; (f) The
ground-Truth image. (Zoom to see differences between (d) and (e))

Table 4.2: Quantitative difference of results based on different architectures (WGAN),
WGAN-S, WGANSD with Lf , and S-WGAN trained with Lp. † Lower is better. ]
Higher is better.

Performance Assessment
Method Author MSE † MAE † PSNR ] SSIM ]
WGAN 3562.13 87.03 13.50 0.56
WGAN-S 151.4 69.59 27.01 0.87
WGANSD 145.82 65.15 29.26 0.92
S-WGAN 81.03 66.09 29.87 0.94

is trained with the Lf and the S-WGAN model trained with our new combined loss

function. It is observed that during training with the Lf the results are improved

slightly, but not satisfactorily. To verify the differences of these models, a qualitative

and quantitative evaluation is conducted. Visually, within the yellow rectangle on

Figure 4.5 comparing columns (d) and (e), the S-WGAN result in column (e) im-

proved with significantly enhanced local detail when compared with column (d) and

the original on column (f). Also, in quantitative evaluation shown in Table 4.2, it is

observed that S-WGAN trained end-to-end with Lwp predicts reasonable outputs with

finer details. Also, more qualitatively results are shown in Figure 4.6 to demonstrate

that S-WGAN generates images with contextualised features.

To validate our SWGANs’ representational ability generalised to other masks other

than the mask used for training this model, the various architectures of the proposed

model are used to conduct experiments during the study. The Nvidia Mask [124] as

the masking method used and the results are shown in Figure 4.7.
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(a) Input (b) (c) (d) (e) (f) GT

Figure 4.7: Qualitative evaluation of different architectures with perceptual loss
[94] on CelebA-HQ [98] and Nvidia Mask. (a) Input masked image; (b) Inpainted
image by WGAN; (c) Improved WGAN with skip connection; (d) Improved WGAN
with skip connection and dilated convolution; (e) Complete network with Lp; (f) The
ground-Truth image. (Zoom to see differences between (d) and (e)).

4.7 Discussion

Our proposed S-WGAN with dilated convolution and skip connections trained end-to-

end with Wasserstein-perceptual loss function outperforms the state-of-the-art. Our

model can learn the end-to-end mapping of input images from a large-scale dataset

to predict missing pixels of the binary masks regions on the image. Our S-WGAN

automatically learns and identifies missing pixels from the input and encodes them as

feature representations, to be reconstructed in the decoder. Skip connections help to

transfer image details forwardly and find local minimum by backward propagation.

Our experiments show the benefit of skip connection combined with Wasserstein-

perceptual loss for image inpainting. The results of the proposed method are visually

compared with state of the art [152, 124] in Figure 4.4. To verify the effectiveness of

this network, more experiments are carried out with regular convolutions and used

the Lf . It is observed that the generated images had checkerboard artefacts with

pitiable visual similarity compared to the original image, as shown in Figure 4.4(d).

Skip connections with dilated convolution and our new loss function were introduced,

and obtained improved results that are semantically reasonable with contextualised

features in all aspects.

Compared to existing methods, the generator of our S-WGAN learns specific

structures in natural images by minimising Lp with an enhanced hallucinating ability

powered by symmetric skip connections. Based on Figure 4.4, our SWGAN can handle

irregularly shaped binary masks without any blurry artefacts and has shown edge-

preserving and mask completion at border regions on the output images. Additionally,
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using the Wasserstein discriminator enables the overall network to perform better.

This boosts the experimental performance of our network to achieve state-of-the-art

results in inpainting task on high-resolution images.

One limitation is a consistent practice of other inpainting methods in the prepro-

cessing step. Most preprocessing ignores the fact that the image has to be converted

into normalised floating points representations and an inverse-normalisation on the

output image, which contributes to the colour discrepancies on the output image,

that leads to expensive post-processing. This has been resolved by using SWGAN

with a new combination of the loss function that preserves colour and image detail.

4.8 Summary

This chapter proposed SWGAN, a new network to generate images that are seman-

tically and visually plausible with contextualised features of face. This has been

achieved by a novel network structure that can widen the receptive field in each block

to capture more information and forward to the corresponding deconvolutional blocks.

In addition, a newly combined loss function based on luminance and feature space is

presented, together with Wasserstein loss. The network was able to generate high-

resolution images from input covered with arbitrary binary masks shape and achieved

a better performance when compared to the state-of-the-art methods. The proposed

network has shown the effectiveness of skip connections with dilated convolutions as

a capture and refining mechanism of contextual information combined with WGAN.

However, in the real-world, it is unlikely that the missing region is of square holes.

Therefore, the next chapter will discuss a novel algorithms specifically designed to

inpaint irregular holes, such as coarse and fine wrinkles extracted from wrinkle de-

tectors [222]. This chapter will also target irregular hole inpainting on natural scene

images.
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Chapter 5

RMNet: A Perceptual Adversarial
Network for Facial Image
Inpainting

In this chapter, a reverse mask mechanism and a reverse mask objective loss function

are proposed to target only missing regions. This technique achieves contextualised

features for missing regions by transferring non-corrupt image features to the end of

convolution and reversing the mask during convolutions to target only missing regions.

During backpropagation, the reverse mask loss assists the network by ensuring that

the network layers are updated with gradients that target more of the missing parts,

forcing the convolutions to make better predictions. As a result, the network constrains

convolutions to predict only missing regions, reducing computing complexity while

maintaining perceptual realism. The reverse mask loss is used as an approximation

function to target reverse inpainting of masked regions, with back propagated errors

and hints of conserved regions for better learning representation. The contents of

this chapter are published in RMNet: A perceptual adversarial network for

image inpainting WACV 2021

————————————————————————

5.1 Introduction

This chapter considers specifically targeting the missing or damaged areas for in-

painting while preserving the visible regions. The fundamental task of an inpainting

algorithm is to fill in the missing regions with plausible information which are con-

sistent with the boundary regions of the hole and the rest of the image. For most
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existing algorithms, it is a critical problem to solve, as transition between known and

unknown regions are not naturally plausible to the naked eye. However, great progress

is underway in image completion task since the proposed Partial Convolutions (PC)

[124] and Gated Convolutions GC [227] set the benchmark to target irregular missing

regions. These networks achieved great results, but to highlight some limitation still

exist. With PC, each partial convolution layer has a mask which if re-normalised

focuses on valid pixels and an automatic mask update for the next layer. The process

in partial convolution layers takes in both the image and mask to produce features

with a slightly filled mask. With more partial convolution layers, the mask region

gets smaller and smaller, which can be harmful to the model performance. With

GC, each convolution block produces two outputs (consider the first output to be A

and and the second output B). Each output passes through different convolutional

filters, with one through a gating block. In this process, output-A goes through an

activation mechanism, while output-B goes through Sigmoid function with gating

values between zeros and ones. RMNet forces the convolutions to subtract the non-

corrupt areas through the reverse masking mechanism ensuring final predictions of

the missing regions, with the help of the reverse mask loss. At the loss level, in the

forward pass, the error between latent distributions of real and generated data are

computed as squared difference as oppose to `1-base mask loss used in [124, 68] which

calculates absolute difference. Using the `2-base reverse mask loss penalises more sig-

nificant errors due to squared difference, making it suitable to handle masks of any

size. Therefore, the error computed with the reverse mask loss forces the network via

the backward pass to focus on the predictions of the missing regions yielding more

plausible outcomes. Within the model are constrained layers with matrix operations

namely spatial preserving operation and reverse masking operator. Unlike other net-

works where the mask is not concatenated at the output, our concatenated mask

output allows the reverse mask loss to gain access into the network. This allows easy

backpropagation access to individual layers enabling rich feature capture.

5.2 Connection to related work

Inpainting irregular or free-form mask plays an important part in image inpainting.

Although it is not an easy task to achieve, it is still an ongoing research and there are

room for improvement. A pioneer work to targeted hole regions for image inpainting

is the PC proposed by [124]. A follow-up method GC [227] introduced gating mech-

anisms. The method in GC allows the network to have a learnable dynamic position
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and feature selection for each layer. The proposed method in [211] reused PC and

introduced reversed and forward attention mechanism which allows the model to have

a bidirectional attention learning on the feature maps. Instead of the hard-mask up-

dating step, the authors modified the activation function for mask updating step. In

addition to that, the authors introduced an asymmetric Gaussian shaped activation

function for the attention map.

5.3 Proposed Framework

The RMNet is introduced in this section as a novel approach for solving image in-

painting tasks. A Wasserstein Generative Adversarial Network (WGAN) is used as

the foundation. A novel reverse masking operator that compels the model to tar-

get missing pixels is proposed using the encoding-decoding architecture of WGAN

networks. This operator enables the network to restore the hidden part of an image

while preserving the visible portion. In addition, a new loss function, reverse masking

loss, is built around this reverse masking operator to minimise the error between the

missing portions of the generated image and the ground truth.

5.3.1 Network Architecture

As mentioned previously in Section 5.3, RMNet is build using a GAN as base ar-

chitecture. GANs have been previously used in image inpainting as they are able to

generate missing pixels, unfortunately this often leads to the introduction of blurri-

ness and/or artefact effects. The proposed models [124, 68, 227] attempted to solve

this problem by employing partial convolution and gated convolutions. While these

two approaches aim to target more efficiently missing pixels it is observed that they

do not fully reduced the aberrations. Our aim through the reverse masking operator

is to better target the missing region in the image while keeping visible pixels intact.

First, is to define some generic terminology that will be used through the rest of

the chapter. The source image is defined as Igt, the mask as M and the reversed

masked Mr = 1−M . The masked input image MI is obtained as follows:

MI = Igt �M (5.1)

where � is the element wise multiplication operator.

Our network architecture is designed to have a generator (Gθ) and a Wasserstein

Discriminator (Dθ). Our generator is designed with convolutional and deconvolutional

(learnable up-sampling ) layers. The convolutional layers encode features in latent
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Figure 5.1: An overview of RMNet architecture at training showing the spatial pre-
serving operation and reverse-masking mechanism.

space during convolution. These layers are blocks of convolution with filter size of 64

and the kernel size set to 5 × 5 with a dilation rate of 2 and Leaky-ReLU, α=0.2.

Similar to Chapter 4 dilated convolutions are included to widen the receptive field

to capture fine details and textural information. The convolutional feature maps

obtained in each layer are the input to the next layer after rectification and pooling.

Maxpooling is used to reduce variance and computational complexity by extracting

important features like edges, and keep only the most present features. Include in the

learnable up-sampling layers, reflection padding on a kernel size that is divisible by the

stride (K-size=4, stride=2), and bilinear interpolation to resize the image, setting the

up-sampling to a high-resolution, and through a Tanh function output layer. The goal

of setting up the decoder in this way is to ensure that any checker-board artefacts [164]

associated with the inpainted regions on the output image are cleaned and consistent

with details outside the region. This technique is equivalent to sub-pixel convolution

achieved in [179]. Specifically the WGAN adopted from [9] that uses the Earth-Mover

distance, is used as part of our network to compare generated and real distributions

of high-dimensional data. The generator will generate a reasonable reconstruction

Gθ(ẑ). Using the reversed masked operator Mr is obtained and combined with Gθ(ẑ)

to generate the predicted masked area of the image:

IMpred = Gθ(ẑ)�Mr (5.2)

The overall architecture is shown in Figure 5.1. By using this approach, our model

predicts only regions with missing pixels which are consistent with surrounding pixels

close to border regions of the original image. This results in high-quality reconstructed
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images that match the natural texture and structure of the original images that are

visually plausible with contextualised features.

5.3.2 Loss Function

5.3.2.1 Generator Loss Function

The generator loss function LG is implemented to evaluate two aspects of the predicted

image: the quality of missing pixels area, and the whole image perceptual quality.

Building LG around these two metrics will ensure that the generator produces accu-

rate missing pixels that they will blend nicely with the visible pixels. State-of-the-art

methods [57, 94, 124, 126, 68] contribute to style transfer and image inpainting have

used feature space instead of pixel space to optimize network. Using feature space en-

courages adversarial training to generate images with similar features, thus achieving

more realistic results. Our new combination of loss function is computed based on fea-

ture space. This is achieved by utilizing pre-trained weights from the VGG19 model

trained on ImageNet [106]. Features are extracted from block3-conv3 to compute the

loss function using MSE [152] as our base. Instead of using pixel-wise representations,

the extracted features are used to compute the squared difference applied to the input

and output of the loss model as the perceptual loss (Lp), which is similar to [94], as

in equation 5.3:

Lp =
1

κ

∑
i∈φ

||φi[Igt]− φi[IR]||22 (5.3)

where κ is the size of φ (output from block3-conv3 of VGG19), φi[Igt] is the feature

obtained by running the forward pass of VGG19 using Igt as input and φi[IR] is the

feature obtained by running the forward pass on the output of the generator Gθ.

The reversed mask-loss (Lrm) is defined on the same bases as MSE, but targeting

only valid features created by the mask region for reconstruction. The reversed mask

loss compares the squared difference for corresponding pixels specific for regions cre-

ated by the mask on the image and the reconstructed pixels of the masked-image. The

reversed mask (Mr) and the original image (Igt) are computed together via matrix

operands to obtain Lrm, where

Lrm =
1

κ

∑
i∈φ

||φi[IMpred]− φi[I �Mr]||22 (5.4)

Finally by linearly combining Lp and Lrm the generator loss function is expressed as

follows:

LG = (1− λ)Lp + λLrm, (5.5)
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where λ ∈ [0 1], to allow an optimal evaluation of features by minimising the error

on the missing region to match predictions comparable to the ground-truth.

5.3.2.2 Discriminator Loss Function

Since the network is trained with Wasserstein distance loss function (Lw), it is ex-

pressed in this equation 5.6 as:

Lw = EIgt∼Px [Dθ(Igt)]− EIR∼Pz [Dθ(IR)] (5.6)

Here the first term is the probability of real data distribution and the second term is

the generated data distribution.

5.3.3 Reverse Mask

The advantages of this approach are discussed here using reverse mask operator com-

pared to PC and GC, two approaches previously used for image inpainting. All three

methods are summarized in Figure 5.2. The process in partial convolution layers takes

in both the image and mask to produce features with a slightly filled mask. Each par-

tial convolutional layer has a mask which if re-normalised focuses on valid pixels and

an automatic mask update for the next layer. With more partial convolution layers,

the mask region gets smaller and smaller, which can disappear in deeper layers and

revert all mask values to ones. With gated convolutions, the convolutions automati-

cally learn soft mask from data, extracting features according to mask regions. Each

convolution block learns dynamic features for each channel at each spatial location

and pass it through different filters. In this process, the output features goes through

an activation mechanism (ReLU) while gating values (between zeros and ones) goes

through Sigmoid function. The gating values show learnable features with semantic

segmentation and highlighted mask regions as a sketch in separate channels to gen-

erate inpainting results. This network requires a substantial amount of CPU/GPU

memory to run the gating scheme. Our proposed reverse mask forces the convolutions

to subtract the non-corrupt areas through the reverse masking mechanism ensuring

final predictions of the missing regions, with the help of the reverse mask loss, forcing

the network via the backward pass to focus on the predictions of the missing regions

yielding more plausible outcomes.
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Figure 5.2: Illustration of partial convolution (left) and gated convolution (middle)
and Reverse-masking (right). This illustration shows the differences between reverse
masking compared to PC [124] and GC [227]

5.4 Experiment

Similar to previous chapter 4, the Keras library with TensorFlow backend is used to

implement the proposed model of this chapter. The of datasets matches the state of

the art [124, 126, 152, 126] with similar experimental settings. All images and masks

are resized using OpenCV library interpolation function INTER_AREA to 256×256×3

and 256 × 256 × 1 respectively. For optimization, the Adam optimizer [103] with

learning rate of 10−4, β = 0.9 for Gθ and 10−12, β = 0.9 for Dθ is used. The model is

trained with a batch size of 5 on NVIDIA Quadro P6000 GPU machine, on Places2

and Paris Street View. The NVIDIA GeForce GTX 1080 Ti Dual GPU machine

is used for training the CelebA-HQ dataset high-resolution images. It takes 0.193

seconds to predict missing pixels of any size created by binary mask on an image, and

7 days to train 100 epochs of 27,000 high-resolution images.

5.4.1 Training Datasets

• CelebA-HQ [99]: A dataset curated from CelebA [131] containing 30000 high

quality images of 1024 × 1024, 512 × 512 and 128 × 128 resolutions based on

previous Chapter 4.

• Paris Street View [45]: This dataset contains 14,900 training images and a

test set of 100 images collected from Paris street views. The main focus of the

dataset is the buildings of the city and very important in geo-location task.

• Places2 [241]: A dataset containing over 1 million images from 365 scenery

from places. It is suitable for model learning and understanding of diverse
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(a) Input (b) CE (c) PConv (d) GC (e) RMNet (f) GT

Figure 5.3: Visual comparison of the inpainted results by CE, PConv, GC and
RMNet on CelebA-HQ [124] where Quick Draw dataset [84] is used as masking
method using mask hole-to-image ratios [0.01,0.6].

complex natural scenery. The following scene categories were chosen: butte,

canyon, field, synagogue, tundra, and valley (in that order) as per [216]. In each

category, there are 5,000 training images, 900 test images, and 100 validation

images. Our model is trained on the training set and evaluated on the validation

set.

5.5 Results

To evaluate the performance of the proposed method, the RMNet is compared with

three other methods on the same settings for image size, irregular holes and datasets.

These experiments include

• CE: Context-Encoder [152]

• PC: Partial Convolutions [124]

• GC: Free-Form image inpainting with Gated Convolutions [227]

• RMNet-0.1: RMNet using Lrm when λ= 0.1, our proposed method.

• RMNet-0.4: RMNet using Lrm when λ= 0.4, our proposed method.
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Input Inpaint GT Input Inpaint GT

Figure 5.4: Results of image inpainting using RMNet-0.4 on CelebA-HQ Dataset [124]
with Nvidia Mask dataset [124] used as masks, where images in column (a) are the
masked-image generated using the Nvidia Mask dataset [124]; images in column (b)
are the results of inpainting by our proposed method; and images in column (c) are
the ground-truth.

5.5.1 Qualitative Comparison

Experiments are conducted based on similar implementations by [124, 152] and pre-

trained model for the state of the art [227] and compared our results.

For Places2 dataset, 10,000 images are randomly selected for the training samples

to match [152] and the same number of test samples are used to evaluate the model.

The results are shown on Figure 5.6. For CelebA-HQ, the downloaded pre-trained

models for the state of the art [227] are used on the testing set and compared the

results obtained using the proposed model on the same test set and masking method.

Based on visual comparison, the proposed model shows realistic and coherent output

images. Observing from Figure 5.6, other models fail to yield images with structural

and textural content as the images are either blurry or fail due to the image-to-hole

ratio increase with arbitrary mask.

5.5.2 Quantitative Comparison

To statistically understand the inpainting performance, the quantitative performance

of the proposed model is compared with the state of the art methods using four classic

metrics: Frechet Inception Distance (FID) by Heusel et al. [75], Mean Absolute Error

(MAE), Peak Signal to Noise Ratio (PSNR), and SSIM [207]. The FID measures the
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Input Inpaint GT Input Inpaint GT

Figure 5.5: Results of image inpainting using RMNet-0.4 on Places2 [241] and Paris
Street View [45], where images in column (a) are the masked-image generated using
the Quick-Draw dataset [84]; images in column (b) are the results of inpainting by
our proposed method; and images in column (c) are the ground-truth.

Table 5.1: Results from CelebA-HQ test dataset, where Quick Draw dataset by
Iskakov et al. [84] is used as masking method with mask hole-to-image ratios range
between [0.01,0.6]. † Lower is better. ] Higher is better.

Performance Assessment
Method Author FID † MAE † PSNR ] SSIM ]

RMNet-0.1 Ours 26.95 33.40 38.46 0.88
CE Pathak et al. [152] 29.96 123.54 32.61 0.69
PConv Liu et al. [124] 15.86 98.01 33.03 0.81
GC Yu et al. [227] 4.29 43.10 39.69 0.92
RMNet-0.4 Proposed 3.09 31.91 40.40 0.94

quality of reconstructed images by calculating the distance between feature vectors

of ground-truth image and reconstructed images. The other metrics (MAE, PSNR,

SSIM) evaluate at pixel and perceptual levels respectively. The results in Table 5.3

are evaluated based on masks with various test hole-to-image area ratios ranging from

[0.01,0.6], on a test set of 3000 images from the CelebA-HQ.

Table 5.2: The inpainting results of RMNet-0.4 on Paris Street View and Places2,
where Quick Draw dataset by Iskakov et al.[84] is used as masking method with mask
hole-to-image ratios range between [0.01,0.6]. † Lower is better. ] Higher is better.

Performance Assessment
Dataset Method FID† MAE † PSNR ] SSIM ]
Paris Street View RMNet-0.4 17.64 33.81 39.55 0.91
Places2 RMNet-0.4 4.47 27.77 39.66 0.93

A lower FID score indicates that the reconstructed images are close to the ground-
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truth. A similar judgement quantifies the MAE, though it measures the magnitude

in pixel error between the ground-truth and reconstructed images. For PSNR and

SSIM, higher values indicate good quality images closer to the ground-truth image.

Looking at the results in Table 5.1, our model achieves better performances than

other state-of-the-art methods.

To generalise our model, further inference were conducted using the Nvidia Mask

dataset [124] on the CelebA-HQ dataset. The results are shown in Figure 5.4. Note

that these masks were not used during training of RMNet. It for testing only to

demonstrate our model superiority and robustness across mask. Further experiments

are conducted on Paris Street View and Places2 to generalize the model to inpaint

natural scene imaegs. Masks of the same sizes [0.01,0.6] are randomly selected during

testing. Results can be seen on Table 5.2 and Figure 5.5, which shows our model is

able to generalize to various inpainting tasks and not just face inpainting.

5.5.3 Ablation Study

The effectiveness of reversed mask loss is investigated, and experiments conducted

at different λ and compare its performance using hole-to-image area ratios between

[0.01, 0.6]. The λ= 0, 0.1, 0.3, 0.4, 0.5 are used on reversed mask loss for different

experiments with the same settings. The results are shown in Table 5.3. When λ=0

the model has no access to the reversed mask to compute the loss function, it is

observed that the mask residue is left on the image as shown on Figure 5.6. Based

on the output images, although the spatial information of the image is preserved,

the convolutional inpainted regions need assistance to minimise the loss between

the mask and the reverse mask loss during prediction. For a start, a small value

of λ=0.1 is used. It is observed that the results get better but with obtain poor

performance visually. That is, the pixels in the mask region did not blend properly

with the surrounding pixels, leaving the image with inconsistencies in texture. Further

experiments with λ= 0.3, 0.4, 0.5 and carried out and subjective evaluations using

FID, MAE, PSNR and SSIM are recorded. With λ= 0.4, the best balanced is stroke

and generated images demonstrated the best results with no further improvement by

increasing the value of λ. The mask as input to the CNN allows the network to learn

the size of the corrupted region. The bigger the mask, the longer it takes to achieve

perceptual similarity. This is because the region grows bigger and the network takes

longer due to a smaller proportion of the loss covering the entire image to ensure the

inpainted region is semantically consistent with the rest of the image.

100



Table 5.3: Results from Paris Street View and Places2 using Quick Draw dataset by
Iskakov et al. [84] as masking method with mask hole-to-image ratios [0.01,0.6]. †
Lower is better. ] Higher is better.

Performance Assessment
Lrm weight FID† MAE † PSNR ] SSIM ]
λ=0.1, RMNet-0.1 26.95 33.40 38.46 0.88
λ=0.3, RMNet-0.3 4.14 31.57 40.20 0.93
λ=0.4, RMNet-0.4 3.09 31.91 40.40 0.94
λ=0.5, RMNet-0.5 4.14 31.0 40.0 0.93

(a) Masked (b) λ = 0 (c) λ = 0.1 (d) λ = 0.4 (e) GT

Figure 5.6: Visual results on ablation study where (a) is the input masked image
(b) results of the RMNet-base model without `rm. As loss on this model, `2 and
binary-cross-entropy are used. (c) RMNet with `rm loss at with weight application of
0.1 (d) RMNet with full `V P (φ) with λ=0.4 on Quick-Draw [84] as masking method.
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5.6 Discussion

The ability to generalize good performance on machine learning algorithms based on

end-to-end mapping of real data distribution to unseen data, is vital to the learning

outcome by various models. In image inpainting, algorithms based on generative net-

works, predict missing regions following a real data distribution from a large dataset.

Typical approaches predict these hidden regions by applying an encoding-decoding

process to the image, where the missing regions are defined usually by a binary mask.

The encoding process will produce a high dimensional feature representation of the

image where the missing information has been recovered, while the decoding process

will generate the original image, i.e. the input image without missing information.

Generally the learning procedure of the model parameters is performed by solv-

ing a loss function minimization. Often, the model parameters are learned using a

forward-backward process. In the forward pass the loss function calculates an error be-

tween latent distribution of real and generated data. The loss is then back-propagated

into the model to update the parameters weight (backward pass).

The ability of our model to identify the missing regions of the input image is

essentially assisted by our reverse mask loss, that will force the network to primarily

focus on the prediction of the missing regions. The reverse mask loss combined with

the perceptual loss and the preserved spatial information within the network, will

ensure accurate prediction of missing regions while keeping the general structure of

the image and high resolution details.

A practice of existing inpainting GAN is the requirement to apply the mask on

an image to obtain a composite image (masked-image), which in turn share the same

pixel level. Additionally, when using irregular masks, these regions to be inpainted

can be seen by the algorithm as a square bounding box that contains both visible

and missing pixels, which can cause the GAN to generate images that can contain

structural and textural artefacts.

To overcome this issue, the usual approach is modified to have two inputs to the

model, during the training, the image and its associated binary mask. This allows us

to have access to the mask, at the end of our encoding/decoding network, through

the spatial preserving operation and gives us the ability to compute the following,

that will be used during the loss computation:

• A reversed mask applied to the output image.

• Use a spatial preserving operation to get the original masked-image.
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• Use matrix operands to add the reversed mask image back on the masked-image.

By using this method of internal masking and restoring, our network can inpaint

only the required features while maintaining the original image structure and texture

with high level of details. Our network shows better achievement, when compared

to state-of-the-art methods, numerically and visually, where the output image are

visually closer to the original image than other approaches.

Overall, this technique demonstrates that by combining global (perceptual) and

particular (reverse mask) loss, superior results may be obtained, overcoming the re-

striction of having a model trained simply using global loss.

5.7 Summary

This chapter proposed a novel approach using reverse masking combined with Wasser-

stein GAN to perform image inpainting task on various binary mask shapes and

sizes. Our model targets missing pixels and reconstructs an image with structural

and textural consistency. This model also demonstrates plausible generated contents

of missing regions of the generated image on high resolution images while preserving

image details. Through the experimental results, it has been demonstrated that the

model trained alongside reverse matrix operands of the mask is beneficial to image

inpainting. In addition, the proposed model when compared with the state-of-the-art

methods can obtain competitive results. Nonetheless, this model still faces challenges

in generating subtle textural features of the facial image or generating images of high

quality with fidelity preservation of features such as make-up and facial expression (see

Appendix A. The next chapter describes a model with semantic capability reasoning

of the later features.
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Chapter 6

Foreground-Guided Facial
Inpainting with Fidelity
Preservation

In this chapter, a semantic segmentation mask is used within the network to enforce

learning and ensure that the generated regions have meaningful contextual predic-

tions. The network can efficiently infer important face features by using a semantic

segmentation mask. To provide occlusion reasoning to the model, the objective learn-

ing function is computed with the segmentation mask of the skin region of the face,

which updates weights in the generator with numerical hints in the form of gradients

to make more plausible predictions. It is proved that the model can preserve a facial

expression as well as additional important facial attributes by employing the segmen-

tation mask as a loss. In addition, further studies are being undertaken on the facial

regions to establish the model’s superiority over current methodologies in this area.

————————————————————————

6.1 Introduction

Facial image inpainting, with high-fidelity preservation, is a very challenging task.

As already mention in Chapter 1, the highly developed visual system of humans will

easily detect an incorrectly predicted region of the face. Thus a face with a predicted

region that is not coherent with the rest of the image will be classed as invalid or

determined as fake. However, this does not mean that previous inpainting algorithms

have not performed well. The outstanding performance of the works in Chapter 4,
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5 and the state of the art [152, 137, 227] are acknowledged; but there is more room

for improvement to design models that can capture and preserve the subtle textures

of key facial features without totally changing the identity of the subject. Further-

more, existing methods mentioned in Chapter 2 try to represent subjective quality

by applying the SSIM metric, which evaluates the degree of structural similarity be-

tween the generated image and the original image.Another reliable approach used in

literature is applying the PSNR metric which quantifies the reconstruction quality of

the generated image to the ground truth image. Unfortunately, inpainting results are

best determined by human perception, indicating that there is a strong evidence that

visual quality of the blended inpainted regions with their surrounding is more impor-

tant qualitative than the quantitative performance. Based on these facts, the design

the proposed framework in this chapter that is capable of extracting and transferring

facial features using convolutional neural network (CNN) layers. Specifically, it is

design with a new loss function with semantic capability reasoning of facial expres-

sions, natural and unnatural features (make-up). Experiments using the CelebA-HQ

dataset demonstrate high-fidelity preservation of facial components compared to the

state-of-the-art methods.

Input Inpaint GT Input Inpaint GT

Figure 6.1: Inpainted images from the proposed model presented in this chapter
showing semantic understanding with contextualised features.

6.2 Connection to Related Work

More recent approaches [238, 243, 125] are the use deep learning based methods to

handle images with high complexity in terms of structure and texture. For example

[238] extracts style from different images to guide the model to learn how to generate

more plausible contextual information of missing regions. The approach [243] is de-

signed to learn mapping of features extracted from an input masked image in latent
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space to the ground-truth in an end-to-end fashion. In this approach [125] the CNN

model hallucinates high-quality textural and structural information that can fill in the

missing contents by training a large scale dataset in a data-driven manner. The CNN

model is known in literature to predict and understand an image structure without

an explicit modelling of structures during the learning process [214]. Though it has

shown high understanding of the image structure there are still difficulties in solving

problems with masks of arbitrary sizes and producing a contextualised features of

the inpainted regions. An example is seen in Figure 6.3 where the state-of-the-art

[152, 90, 124] presented failures with arbitrary masks regions where the inpainted

image is either overly smooth or left with mask residues. However, these failures can

be caused by substantial image-to-mask hole variations or the complexity of the back-

ground. Another good example of deep learning based methods is proposed in [227]

and popularly known as Gated convolutions (GC). This method generates images

with less artefacts compared to the aforementioned methods. The reason other meth-

ods perform better than others possibly, due to the poor stability of convolutional

features during learning and inference. Hence the aforementioned GC [227] may have

have a better performance due to its ability to learn soft mask during convolutions as

opposed to Partial Convolutions (PC) [124] which updates hard mask. The problem

is because convolutional kernels are usually inconsistent when capturing information

from irregular masked images due to the unpredictable nature of the inputs. How-

ever, there is still ongoing research on learning based methods [238, 229, 221, 11]

with remarkable improvements proposed yearly as it is with our newly proposed so-

lution to facial inpainting, which is presented in this chapter. Based on the study

in Chapter 2, several limitations (which have already been mentioned in the named

Chapter) are associated with training these methods. One of the reasons is that there

are no accurate baseline measurement of techniques in this category. Thus, there is

no standard parameters (learning rate, batch size, GPU) and design implementation

for comparison. Most measurements have been based on quantitative values for SSIM

and PSNR which do not really tie with the qualitative evaluation (visual compari-

son). However, quantitative valuations are still very important tools to measure these

algorithms but the question is “Does the audience appreciate the visual quality or

the quantitative valuations?” or “Are these methods using the same baseline param-

eters?” and “ Are the preservation of key facial features with fidelity preservation

met?”. Another limitation is the improper utilisation of foreground regions within

attention layers/units to better infer missing content on the image. A further limita-

tion is that the hole-region on background is within the same pixel level with the rest
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of the image which makes it harder for learning based methods differentiate a small

overlap. Moreover, it is not easy for convolutional layers to propagate features from

one area of the feature map to another. This is because during convolutions, the con-

volutional layers find it difficult to connect all locations within a feature map [152].

This problem is ongoing and numerous solutions have been attempted. For exam-

ple [152] tried to solve the problem by introducing fully-connected layers to directly

connect all activation. Other models [124, 226, 227, 228, 238, 243, 89, 214, 129] have

used different techniques with [124] introducing partial convolutions with hard mask

updating and [227], gated convolutions with soft mask learning [227]. For this rea-

sons, this chapter describes the proposed foreground guided image inpainting network

specifically designed to capture and preserve key facial components. Our objective is

to design and implement a network that has the capability to preserve the relevant

features of the face with respect to various expressions and non-natural attributes as

seen in Figure 6.1. To instantiate the design, the assumption is that the foreground

pixels reflect the background ones, which are readily available for disentanglement in

latent space and are masked within the input image by the binary mask regions. The

authors in [214] used a foreground completion module to pass detected foreground

contours of the masked (corrupted) image to perform an initial completion map of the

foreground contours. The network uses the predicted contours as guide to perform

the inpainting task. The key point to consider from our assumption is that the fore-

ground segmentation mask serves a representation of the disentangled pixels of the

background regions in latent space. Thus using the mask manifold [130] will enable

the CNN layers to propagate features with respect to facial attributes (natural and

non-natural), pose and shapes. Refer to Figure 6.1 showing inpainted images from

our model with contextualised features.

Semantic scene understanding is an integral part of image inpainting because the

hallucination of pixels to recover the damaged regions requires a semantic understand-

ing of the global structure to the region to be inpainted. The semantic segmentation

map of a face can well represent the foreground of the image, where the binary mask

is applied to create the damaged region. During hand inpainting, the painter takes

into consideration the background pixels and tries to semantically draw a silhouette

structure outlining the boundaries before colouring and linking the colour end-nodes

or strokes to complete the damaged pixels, thus ensuring consistency with the entire

image. Naturally, it is intuitive to consider that an occluded face will normally have

two eye spots, a nose and a mouth. Based on this assumption, one can conclude that
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occlusion reasoning can improve the ability of CNNs to better estimate or hallucinate

missing pixels regions created by the binary mask.

The authors [172] proposed to use a modified version of PSPNet [237] to conduct

semantic foreground inpainting task. The network is designed to take two inputs

(masked image and mask) based on a two pipeline encoder-decoder network where

the reconstructed images are semantics and depth for visible and occluded pixels.

To ensure supervision, the authors designed the model to generated fake random

foreground masks, which are applied on the input together with the real foreground

masks during training. This method is only limited to inpainting with semantic mask

and depth maps. Also, the two stage network makes it sub-optimal compared to a

single pipeline in terms of efficiency. [136] introduced a max-pooling module and used

semantic scene without foreground objects to conduct an inpainting task. The max-

pooling module which designed to fit within the ResNet [73] encoder blocks takes an

intermediate feature map, a foreground segmentation mask and binary mask as input

to output an inpainted feature map. The module pools the foreground segmentation

and binary mask simultaneously and compares their features with the previous mask

to index updated pixels within the current iteration. The new patch is forwarded and

merged with the input feature which is passed through more convolution blocks before

feeding into the decoder. Note that extra max-pooling is operation is performed on

the foreground mask before feeding the max-pooling module. One limitation of these

modules is that sharing features between models can improve efficiency but degrade

performance. [115] created the CelebAMask-HQ segmentation mask dataset as key

intermediate representation of facial attributes and proposed a model that can flexibly

manipulate these attributes with fidelity preservation. However, because GANs use

a discriminator as the examiner, a direct supervision of an occluded region will not

be possible if the ground-truth regions behind the binary mask are not available.

Based on this assumption, this model is designed with a discriminator that will judge

the occluded regions to ensure that the inpainted region is realistic and semantically

consistent with contextualised features. Based on these findings, the model is designed

to use foreground segmentation masks as loss model. This model differs from the other

models [172, 214, 136] in that the binary masks are applied on the foreground masks,

and passed through convolutions. The CelebAMask-HQ segmentation mask dataset

[115] is used as foreground mask dataset. The following describes our proposed facial

inpainting framework that uses foreground mask and a new loss function that uses

the foreground mask to ensure image fidelity.
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6.3 Architecture

Figure 6.2: Our proposed foreground-guided image inpainting framework with sym-
metric chain of convolutional and deconvolutional features. The foreground segmen-
tation mask and masked image are the inputs to the network and parameters of the
loss functions.

The design of our proposed network has an encoder-decoder, as the generator

(Gθ) and a discriminator (Dθ), to achieve realistic results. The encoder architecture

is based on [88] with the exception of the foreground segmentation mask (henceforth,

foreground mask) and masked image as input. During training, the foreground mask

is kept in tacked and does not pass through convolutions. The foreground mask

is used within the generator as an access mechanism for the loss to better average

pixels during backward pass. The masked image is downsampled to allow the net-

work to learn latent representations of facial feature maps with weak supervision

from the foreground mask. A symmetric chain of convolutional and deconvolutional

features are instroduced, where key components of feature maps without corruption

extracted during convolutions are preserved, and added within the decoder. The

encoder has 10 convolutional and 5 deconvolutional blocks each containing filters

[64, 128, 256, 512, 1024]. Within the encoder, maxpooling operations are used to ex-

tract high level feature maps. For each block before the final layer, LeakyReLU

activation and batch normalization are implemented at the encoder and decoder,

where ReLU is used only within upsampling blocks to speed up the reconstruction

process and LeakyReLU is more balanced and enables the network learn faster.

During this study, it was clear that for a much deeper understanding of the scene, it

is important to design the network to synthesis high-level features over large spatial

extents. Hence the reason why the features are symmetrically linked between the

convolution and deconvolutional to enable the decoder to fill in large areas of scene

with hints from surrounding. With this type of approach, the decoder will understand
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the context of the image and produce plausible predictions of the missing parts with

contextualised features. However, this cannot be achieved without a loss function.

The loss function is proposed to reduce the burden on the network and help to train

better. The generator loss is introduced to minimises the error between the predictions

and ground-truth taking into consideration the foreground mask as guide.

6.4 Loss Function

To train this model, a new loss function that takes into consideration of the fore-

ground pixels to minimise the error between the generated and ground-truth images

is implemented. The new loss function that uses face segmentation, is based on the

L2 because one of its properties allows an understanding of the overall structure of

the missing regions in relation to context. However, despite the great ability to allow

capture of structure in terms of context, a pixel wise version will lead to blurry arte-

facts. This is avoided by computing the loss with foreground mask combined with a

context-foreground loss (Lcf ) that uses the L1 base to preserve its colour and lumi-

nance with a substantial evaluations of the predictions matching the ground-truth.

For a better understanding, the loss functions used within the generator is expressed

as follows:

Lcf =
1

NIgt

||MF � (MI − IR)||11 (6.1)

Lf =
1

NIgt

||MF � (Igt − IR)||22 (6.2)

where MI is the input, IR is the predicted output and NIgt is the number of elements

in Igt in the shape height (H), width (W ) and channel (C), i.e. NIgt = H ∗W ∗ C
and � is the element-wise multiplication of the foreground mask MF with IR and Igt.

These losses ensure preservation of luminance when computing the absolute difference

between ground-truth image (Igt) and the predicted image (IR).

Lpf =
1

NIgt

||MF � [φi(MI)− φiIR)]||22 (6.3)

where φi is the feature map of the iith layer of pre-trained VGG16 model. The LpF
uses the MF and intermediate features from a fixed VGG16 model to compute the

L2 distance between ground-truth and predicted images.

Lp =
1

NIgt

||(φi[MI ]− φi[IR])||22 (6.4)
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where φ is the VGG16 model function to extract high-level features to compute the

loss function. The perceptual loss compares the distance between the generated and

ground-truth images using pre-trained activation maps of the VGG-16 model. It is a

feature level penalty that penalizes the results to ensure the results are perceptually

similar to the ground-truth. The generator loss is defined as:

Ltotal = (1− λ)(lf + Lfp + Lcf ) + λ(Lp) (6.5)

where λ are coefficients, the total loss minimizes the error between predictions and

the ground-truth image. The while the discriminator loss measures how realistic the

predictions from the generator are compared to the ground-truth.

For the discriminator, the Wasserstein GAN (WGAN) approach is adopted to

measure the distance between predictions and the ground-truth.

max
D

VWGAN = Ex∼pr [(Dθ(Igt)]− Ez∼pz [D(Gθ(IR))] (6.6)

Equation 6.6 refers to the WGAN loss based on distributions of Igt (real) data and

Ipred (generated) data.

6.5 Training and Experiments

6.5.1 Training Datasets

• CelebA-HQ [99] from Chapters 4 and 5.

• CelebA-HQ-Mask shown in Chapter 3.

6.5.2 Method Comparison

Our proposed method compares quantitatively and qualitatively with the state-of-

the-art methods.

• Context encoder-decoder framework (CE) [152] introduced the channel-

wise fully connected layer to solve the convolutional layer limitation associated

with failures in direct connection of all locations within a specific feature map.

The channel-wise fully connected layer is designed to directly link all activation;

thus enabling propagation of information within the activation of a feature map.

• Partial Convolution (PC) [124] introduced convolutions with mask updating

to alleviate the transfer of feature for irregular masks regions within convolu-

tions.
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• Gated Convolution (GC) [227] introduced gating mechanism that learns soft

mask within convolutions to ease the transfer of features within convolutions.

It is different from PC in that the irregular mask is learned whereas in former,

hard mask is updated in each step.

• Proposed introduces semantic reasoning of features using a foreground mask

within the network as a loss model. The key aspect here is that the foreground

mask represents disentangled pixels of attribute features of the face. Thus

semantic reasoning assists the convolutional layers to hallucinate pixels with

fidelity preservation.

6.5.3 Implementation

This model is trained with the generator and discriminator loss defined in section 6.4

to solve the inpainting task posed by the missing regions created by the binary mask

on the input image. The architecture is similar to the proposed in 4 but with different

losses and applied loss weights (coefficients) to the generator loss. Our intention was

to ensure that during training, the generator is punished more by increasing its loss

weight of the foreground loss to learn structural and textural features to have an over-

all understanding of the semantic nature of the face region. Our proposed foreground

loss further emphasizes the consistency of the predictions by feeding the generator

via backward pass with a penalty on the background pixels using the foreground

pixels. The Keras library with Tensorflow-backend is used for the implementation

and training of the model end-to-end. The choice of dataset follows the experimental

settings of the previous chapter and by the state-of-the-art method [124] to split our

data into 27K train and 3K test images. The images are normalized as per 4; setting

the pixel intensities of all input images in the range [-1,1]. Our model is trained for

100 epochs with a learning rate of 10−4 in G(z) and 10−12 in D(x) using the Adam

optimizer [103]. Our hardware condition limited us to a batch-size of 5 because of

the deep nature of the network. The NVIDIA P6000 GPU is used to conduct the full

experiment from training to inference.

6.6 Results and Discussion

Previous research [152, 124, 91] used quantitative results to rank the performance of

facial image inpainting. Here the performances are evaluated on predicted images,

predicted face and hair regions only and the qualitative results.
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Table 6.1: Quantitative comparison of various performance assessment metrics on
3,000 test images from the CelebA-HQ dataset. † Lower is better. ] Higher is better.

Performance Assessment
Method Author MSE † MAE † FID† PSNR ] SSIM ]
CE Pathak et al. [152] 133.481 129.30 29.96 27.71 0.76
PC Liu et al. [124] 124.62 105.94 15.86 28.82 0.90
GC Yu et al. [227] 102.42 43.10 4.29 39.96 0.92
Proposed Foreground-guided 194.86 57.38 9.63 34.35 0.92

6.6.1 Quantitative Results

In image inpainting in the wild, it is important to note that the visual and seman-

tic understanding of the completed regions is of high importance to the audience.

This is due to the fact that in real-life scenarios, users want to appreciate the visual

quality of the blending between the inpainted regions and the original unmasked re-

gions. However, in computer vision, the quantitative evaluation for these regions is

to improve and eliminate weak baseline models. Based on previous state-of-the-art

research, the Mean Square Error (MSE), Mean Absolute Error (MAE), Frenchet In-

ception Distance (FID), Peak Signal to Noise Ratio (PSNR) and Structure Similarity

Index Measure (SSIM), are used to quantify the performance against the state of the

art ([152, 124, 227]). Table 6.1 shows the quantitative evaluation for the inpainted

images with one of ours in bold.

The high values obtained for MSE, MAE and FID show poor performance of the

model whereas lower values for these metrics indicate better performance. For clarity,

it is included on the table that † lower is better and ] higher is better. PSNR and

SSIM with higher values will indicate the prediction is closer to the ground-truth

image, which will have a maximum score value of 1.

Our proposed method achieved the best SSIM score (tied with GC) and second

performer in the majority of other metrics. This quantitative measures showed our

method preserve the structure of the face. To further investigate, quantitative mea-

sures are performed on the foreground inpainted face and hair regions only, as shown

on Table 6.2, with our proposed model outperformed the state-of-the-art models.

6.6.2 Qualitative Results

In this section, visual comparisons of the proposed model compared with the state-

of-the-art are demonstrated. Without bias and based on code availability, the Pathak

et al. [152] (CE), Liu et al. [124] (PC), Yu et al. [227] (GC) are used to measure

against our model. From Figure 6.3, CE struggles with arbitrary hole-to-image mask
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Table 6.2: Quantitative comparison of various performance assessment metrics on
3,000 test images from the CelebA-HQ dataset on Foreground inpainted regions. †
Lower is better. ] Higher is better.

Performance Assessment
Method Author MSE † MAE † FID† PSNR ] SSIM ]
CE Pathak et al. [152] 133.481 129.30 27.38 27.71 0.76
PC Liu et al. [124] 102.72 4.35 7.99 29.24 0.87
GC Yu et al. [227] 29.14 1.47 2.23 35.33 0.95
Proposed Foreground-guided 26.01 2.58 1.19 37.38 0.96

(a) Input (b) CE (c) PC (d) GC (e) Proposed (f) GT

Figure 6.3: Qualitative comparison of our proposed model (e) with the state-of-the-
art methods on CelebA-HQ, using the Quick-Draw binary mask dataset by Iskakov
et al. [84] as masking method: (a) Input masked-image; (b) CE [152]; (c) PC
[124]; (d) GC; (e) Proposed; and (f) Ground-truth image.

regions and the generated image is blurry, while PC and GC leave a bit of artefacts

(best viewed when zoomed) on the generated image. Focusing on the face and hair

regions, our model performs better than the state-of-the-art with no artefacts left on

the inpainted regions. However, despite marginally comparable quantitative results

on full inpainted images, our model completes and generates the facial image with no

visible boundaries of the binary masks as seen on the generated images completed by

the state of the art.
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(a) Input (b) CE (c) PC (d) GC (e) Proposed (f) GT

Figure 6.4: Qualitative comparison segmented Foreground Inpainted regions of our
proposed method with the state-of-the-art methods on CelebA-HQ, using the Quick-
Draw binary mask dataset by Iskakov et al. [84] as masking method: (a) Input
masked-image; (b) CE [152]; (c) PC [124]; (d) GC; (e) Ours; and (f) Ground-
truth image.

6.7 Semantic Inpainting with Fidelity Preserva-

tion

The qualitative results in Figure 6.3 showed the performance of our model has great

visual quality when compared to the state of the art. To further show reasonable

semantic understanding of predictions, our model can fill-in high-level textural and

structural information as seen in Figure 6.4 where other methods have failed. As seen

on the Figure 6.4, the lip region on the image inpainted by our model is fully recovered

with and our model shows a full semantic understanding of the image by putting a

broader smile as compared to the original input. Furthermore, on the same Figure 6.4,

the earring, nose and eye regions are fully recovered with contextualised features with

our model. This also show that our model has high semantic understanding of facial

features when trained with the joint loss function. Thus semantic understanding of

features in latent space significantly improves the visual quality of generated facial

components, which is further supported by Figure 6.5. When focuses on the face and

hair regions only, the first row of Figure 6.5 illustrates the ability of our method in

predicting the missing eye region and the others show accurate prediction of mouth

regions.

6.8 Summary

This chapter introduced a method to inpaint missing region(s) within an image using

foreground guidance. The results obtained suggests the importance of foreground
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(a) Input (b) CE (c) PC (d) GC (e) Proposed (f) GT

Figure 6.5: Qualitative comparison of our proposed model with the state-of-the-art
methods on CelebA-HQ, using the Quick-Draw binary mask dataset by Iskakov et al.
[84] as masking method: (a) Input masked-image; (b) CE [152]; (c) PC [124]; (d)
GC; (e) Proposed; and (f) Ground-truth image.

guidance training for the prediction of challenging corrupted patches on an image. It

has been shown that the proposed model can predict and reconstruct plausible and

realistic features while preserving the realism of the faces. Our model can produce

high-quality visual results that meet the goal of real-world in-the-wild scenarios. Fur-

ther exploitation of foreground pixels is a promising foundation for future inpainting

tasks. In this chapter, the significance of high-quality inpainting with fidelity preser-

vation is demonstrated. This technique, however, is limited to faces because it is based

on semantic reasoning of disentangled pixels represented in the foreground segmenta-

tion mask introduced within the network as a loss model. To generalise high-quality

generated images, there must be a way to train the model to learn high-level features

while not missing important subtle features required to generate the inpainted regions.

In the following chapter, the network designed is considered with significant design

implementations proposed specifically to highlight and extract high-quality features

while transitioning easily to the decoder. The aim is to generalise this network to

natural and building scene datasets.
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Chapter 7

V-LinkNet: Learning Contextual
Inpainting Across Latent Space of
Generative Adversarial Network

In this chapter, the latent space of two encoders is used as a loss model in our

proposed V-LinkNet, a GAN-based technique for learning contextual inpainting. A

novel transition layer is introduced for feature transfer and explore the components

of V-LinkNet and their importance to the network using experimental methods. To

show performance discrepancies, different faces with the same mask and other masks

with different faces are experimented with the proposed inpainting algorithm. This

is because inpainting performance varies based on image conditions. Lighting, back-

drop, and facial features can all affect the prediction of the missing region. A face

with lots of illumination or posture change will underperform. In order to improve

reproducibility and enhance inpainting research, a standardised protocol is proposed

for identifying biases with different masks and images with varying background and

textural alterations.

————————————————————————

7.1 Introduction

Multi-column latent space learning [205, 210] have achieved the state-of-the-art results

in many research areas [33, 27, 35]. GAN models, such as [205, 125, 220] have used

multi-columns to encode and propagated features directly to the decoder or use a

self-supervised Siamese style inference approach [210], where a style encoder is the

supervisor of the generator. Existing works [124, 120, 126, 226, 227, 87] have shown
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that GAN coupled encoder-decoder models can achieve visually-reasonable content

of the missing regions, which are semantically-consistent with the entire image.

The complexity of these methods may be a disadvantage because they are stacked

differently depending on the network designer. Another possible explanation is that,

due to the nature of the design, insufficient full resolution details (latent feature en-

codings) of the missing parts may be missed or failed to transfer to the decoder,

or large missing parts require longer periods of training. Alternative approaches to

image inpainting are two-stage models, where a coarse version is generated and then

used as the input to a refinement network. Another issue is lack of adequate in-

formation during reconstruction (as already mentioned in Chapter 6), due to larger

target pixel region. It is also tougher to construct high-dimensional distribution from

natural scenes than from aligned faces with no visible aberrations. It is noted that a

bottleneck [242, 219, 118] or a feature transfer mechanism like attention layers within

deep layers of convolutions is often required when inpainting high-resolution images.

Because high-resolution images have large feature maps, training takes longer if there

isn’t adequate GPU memory [152, 123, 229]. Additionally, when extracting features

from high-resolution images, some features may be lost during the operation. How-

ever, more detailed information about low-level features, such as edges, is frequently

captured within the first few layers of the convolution. As a result, failure to consider

prior semantic distributions leads in unusual textures on the generated image.

So far solutions to some inpainting problems have been proposed in previous chap-

ters, although not all limitations were solved. The first solution (Chapter 4) handled

the task with high-resolution images, but it depletes computational resources. Fur-

thermore, this model lacks the ability to focus solely on mask regions, which is why

the proposed solution in Chapter 5 was introduced. The proposed solution in Chap-

ter 5 achieved state-of-the-art results, but was limited in its ability to extract subtle

textural features of the face and generate images that preserve natural and unnatural

facial attributes, as well as expression. It was observed that the limitation of this

model to inpaint images with large textural regions was due to the design’s fewer

layers when compared to Chapter 4. Nonetheless, I continued to search for a solution

to this problem and proposed the model in Chapter 6, which is capable of extracting

subtle textural features and generating images with fidelity preservation. Because it

uses the segmentation mask from [115] to provide clues during backpropagation, this

model can only handle faces. However, research opened up in this direction to design

a model that can extract these features without requiring a semantic segmentation

mask and that can generalise to natural or building scene images.
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For reproducibility, the datasets providers for inpainting research split the images

to training set and testing set. However, the pairing of the masks are mostly random

and lack a standard protocol. For example, a tiny mask region and large mask

region on the same image will have different results. Biases in quantitative and

qualitative evaluations were identified for different masks and images with varying

background and textural alterations. This is because image inpainting performance

varies depending on image conditions. Lighting, backdrop, and facial features can all

affect the prediction of missing region. Thus a face with lots of illumination or an

angled posture facial image with complex background will underperform. Figure 7.1

illustrates the inpainting results of a mask on different faces. It is noted that the

results are varied depending to the occluded regions. While the middle image of the

second row from the left achieved SSIM of 0.93, the image next to the ground-truth

image achieved poor results with SSIM of 0.89. Figure 7.2 shows another issue when

inpainting is performed on faces occluded by different masks. With different masks,

the inpainted results have significant discrepancies, hence the reason to propose a

standard protocol for testing in this chapter.

Input Inpaint GT Input Inpaint GT

Figure 7.1: Illustration of inpainted results with one mask on different faces.Note
the changes in SSIM value for different faces with the same mask.

In this chapter, a dual-encoder network approach is considered and introduces a

new learning strategy for both models to communicate with each other. Here, the V-

LinkNet is presented; a cross-latent space reverse mapping GAN for image inpainting.

Below, the main contributions are highlighted:

• An end-to-end learning across latent space that uses feature information to

encode fine details to complete the missing regions.
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Input Inpaint GT Input Inpaint GT

Figure 7.2: Inpainted images for the same image, different masks show different
performance. See SSIM values on the inpainted images.

• A recursive residual transition layer is designed to capture high-level features in

a similar manner as maxpooling units within convolutions with feature preser-

vation and transfer technique employed as a ResNet-like unit within the block.

• A standard protocol by introducing testing sets with paired masks and images,

which will be made available for the image inpainting community.

An ablation study is conducted to validate the results of the proposed solution and

demonstrate that our results achieve better performance than the state of the art

methods.

7.2 Connection to Related Work

7.2.1 Attention Transfer

The concept of contextual optimization of features to enhance textures within the

target region for inpainting is a trending topic in image inpainting. To obtain best

features, new techniques that use attention or residual learning continuously being

improved. Some of these methods [226, 227, 200, 239, 211, 126, 228, 201, 238, 243, 126]

have demonstrated the effectiveness of attention. Contextual attention [226, 227] has

shown that a deep learning model to search for long range information to fill in missing

regions. Despite the high performance already seen with these methods, there is still

room to improve as swapping patches is challenging and can lead to inaccurate results.
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7.2.2 Style Transfer

Given two image domains, a style transfer task can change the style of an image in

one domain using an image of the other domain as reference[37]. One domain can be

the content and other the style reference image. In the context of image inpainting,

the content and style of the known region can be used to fill in the hole regions.

Recently, style transfer has been used as a style-objective function to optimize CNN

inpainting models [210]. Other style methods have been used, for example instead

of using Gram matrix, the method in [116] have used MRF and [205] introduced

implicit diversified MRF (ID-MRF) as an alternative for style transfer. To expand

further, [205] used cosine similarity measure and pre-trained VGG19 network [183]

to compare patches and compute the loss. With the cosine similarity measure, the

objective function searches nearest neighbours for different generated feature patches.

7.3 Method

The V-LinkNet is a CNN with two encoders of different weights, a recursive residual

transition layer and a decoder as the generator. Our network is a GAN that employs

a global and local Wasserstein discriminator. A global and local WGAN discrimina-

tor [9] are used so that the model can generate realistic images. Consider inpainting

as a masked image obtained by applying matrix operands on the mask and ground-

truth images from the same distribution (training data). The inpainted (generated)

image is the conditional distribution, the ground-truth is the marginal distribution,

and the masked image is the joint distribution. Within the generator, one encoder

emphasises on encoding contextual information and the other on preserving the image

details of the unmasked regions. On one encoder, neurons are disconnected within

the convolutions layers to allow the network to focus on missing regions, thus ensur-

ing full contextual details are captured. Between the two encoders, a loss function is

implemented to force the latent space to minimise the error of encoded features from

both encoders. At the end of the two encoders, the outputs of both encoders are

concatenated so as to obtain high level features encoded by both encoders. Just like

morphological processing where two images are blended for erosion, features of both

encoders are considered as two images, which can be blended to extract high-quality

features, thus eliminating mask residues via erosion. This is achieved by designing a

recursive residual transition layer to highlight and extract high-quality fine-grained

features from the fused features of both encoders. Our recursive residual transition

layer is a mini-ResNet block with residual maxpooling units and residual convolution
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Figure 7.3: Overview of our proposed architecture during training. The proposed
feature fusion refinement block passes refined features to learnable upsample layers
within the decoder (DθE(·)). The connected residual pooling refinement unit is further
illustrated in 7.3.3. See section 7.5.1 for detailed implementation.

interlinked together to output fine-grained features with high-level semantic informa-

tion for the decoder. The pooling unit within this layer emphasises on the contextual

information from the fused features to capture more high-level background details

of high-resolution feature maps [136]. The intuition is to ensure that the generated

images satisfy semantic and visual consistency with preserved ground-truth realism.

The key components of this network are the loss function, context encoder and

the recursive residual transition layer. The loss model is specifically designed to use

reversed feature mapping in latent space (i.e performing mask reversal and use it as

the input to the loss model). Details of the proposed method are shown in Figure 7.3,

and the feature refinement unit illustrated in Figure 7.4. Lastly, the loss functions

used during the training process are disucessed.

7.3.1 Problem Formulation

Previous works [152, 82, 124, 216] in computer vision have shown that inpainting is

a learning problem that can be solved by encoding high-level features. The recon-

structed output is geared towards having a close similarity to the input. Consider

the inpainting task to have an input source mx = X �M and a target image X,
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where M is the binary mask. Te V-LinkNet is trained on the training set of X and

use high-level features within both encoders to minimise the error. Midway between

the paired encoders, the convolution blocks are modified from that of previous chap-

ters4 6 by increasing the dilation rate from 8 and 16. Both encoders EθA(·) and

EθB(·) learn high-level features to obtain output features EθA(φ) and EθB(φ) which

are passed into a recursive residual transition layer. The recursive residual transition

layer designed to fuse the features from both encoders to exploit feature information

at different scales. The V-LinkNet learns through latent space loss and adversarial

loss to reconstruct images with similar pixel values of the target image.

7.3.2 V-LinkNet Architecture

Our proposed V-LinkNet is a generative model consisting of a generator, a global

and local discriminator as shown in Figure 7.3. The discriminators are included for

adversarial training. Only the generator network is used during the testing phase.

The generator Gθ has dual encoder branches (gθA(·) and gθB(·)) and a decoder

(fθE(·)). Within Gθ, encoder branch gθA(·) focuses on the capturing contextual in-

formation covered by the masked (unknown) regions. To ensure the reconstructed

image is visually coherent with the structure and context of the ground-truth, gθB(·)
is designed to capture encoding with main focus on perceptual and structural in-

formation. To ensure high-quality contextual features for missing regions, a loss is

introduced between fθE(·) and gθA(·). During training, the loss between both en-

coders ensures ongoing communication in order to improve the models learning on

contextual information. By employing this technique, the model coupled with other

components can enhance visual consistency with contextualised features. The loss

model is designed based on the MSE specifically to penalize large errors and provide

fast learning. Both encoders gθA(·) and gθB(·) have eight convolution blocks, each

with variations in spatial resolution and receptive fields at dilation rates of 2, 4, 8,

16. gθA(·) has dropout layers after each convolution block to reinforce learning. Block

one to five, have batch normalization and Exponential Linear Unit (ELU) activation

followed by maxpooling layer, while block six to eight has ELU and dropout. Within

the decoder fθE(·), are learnable upsampling layers using bilinear interpolation each

with a convolution block that includes batch normalization and ELU activation layers.

The final convolution block has a Tanh activation layer with no batch normalization

layer which is deliberate so as to accelerate training and stabilize learning. The out-

put of the final layer IR = fθE(gθ) and the generator output as Gθ(IR). The final

output a generated image based on nonlinear weighted upsampling in latent space.
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V-LinkNet consist of a training and inference (testing) phase, where the training

sample are masks and ground-truth images. During training, the network learns with

the main objective being to generate an image given the mask and the ground-truth.

To minimise the error through back propagation, a suitably designed loss function is

implemented, discussed in 7.4.2.1 that evaluates the training set to minimise the error

to find high-quality matching features between the paired encoders. The corrupted

image is projected onto the latent space of the generator through iterative backprop-

agation. The weights of both encoders are reused to compute an objective function

that will specifically target valid regions. At each stage of the network training, the

weights will assist with fast updating during learning to guide the model.

7.3.3 Recursive Residual Transition Layer

Residual learning has been well established in deep learning due to their ability to

reduce training error in much deeper layers. A simple implementation of a residual

block is a fast-forwarded activation layer within the neural network. By adding the

activation layer of a previous layer, to a deeper layer within the network, a resid-

ual connection is achieved. In previous Chapters 4,5 and 6 it is observed that large

portions of the background are not fully captured during feature abstractions within

the decoder. Hence the reason why maxpooling is considered, an operation that

highlights the most present feature of an image patch and calculates its maximum

value. Because features encode spatial representation of visible patterns, it is more

informative to consider the maximum presence of different features extracted from

the image. Hence the reason why max pooling is considered instead of average pool-

ing in this work. To capture much information a chained residual refinement unit is

designed, aimed to capture large image background regions. The idea is to efficiently

pool multiple window sizes, combine them using learnable weights and fast-forward

to deeper layers to reduce the error during training. As a result, training gradients

are obtained from the next connected layer within each layer, and these gradients

are used to update the parameters in the current layer. This, in turn, influences the

weights of the filters, causing the activation maps to increase or decrease, lowering the

loss. The residual connection of the activation maps are combined with the output

of the final pooling layer and the input of the residual layer to obtain the unit output

feature map. This feature map is refined structural and textural information from

both encoders that are propagated from known regions to facilitate image comple-

tion naturally during reconstruction at the decoder. Our proposed connected pooling

operation combined with residual connections reduces the error near the boundary

124



Figure 7.4: Illustration of connected residual pooling. This unit utilizes maxpooling
with pool-size of 2× 2 and ElU activation function as gating. The connected residual
network uses dilated convolutions for refinement.

regions of the hole regions, as it fills it in with fine contextual information. This

unit is designed to predict and delineate the binary mask regions as highlighted by

the Sobel operator on the input features. The concatenated features when passed

via pooling unit suppresses noise to project informative pixels. This is different from

using the channel-wise attention which squeezes the spatial dimension of the feature

map. The objective of this design is to extract meaningful pixels whilst suppressing

uninformative ones before passing them to the decoder. First the concatenated fea-

tures extracted from EθA(·) and EθB(·) are passed through ELU activation and then

perform pooling operation followed by a 3× 3 convolution and ELU unit as a gating

layer. For more refined details a dilation rate of 16 is used within the convolution

layer of this unit.

Fφ(Xi) = σ([Mpool]F3×3) (7.1)

where σ is the ELU activation function, F3×3 is the convolution layer. The final

feature map is given by:

Xφ = Aφ(Fφ(Xi)⊕Xi) (7.2)

where ⊕ is element-wise addition and lastly a dilated convolution layer to refine to

transfer the feature to the decoder.
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7.4 Loss Function

7.4.1 Feature Losses

More recent approaches [227, 136, 224, 229] use pre-trained VGG16 or VGG19 [183]

to evaluate or enhance the perceptual quality of image inpainting results. These

models [205, 227, 238, 224] have perceptual and style losses and these losses are still

undisputed when it comes to evaluating or improving the overall performance of the

generator. Inspired by perceptual losses in feature space, a novel feature loss in latent

space is proposed. Features are low-dimensional latent state representations captured

in latent space. By reusing deeper-level features from both encoders in latent space,

an objective learning loss model is designed to capture rich features of the reversed

regions covered by the mask. In addition, it is desirable for the inpainted regions

to be as close to the counterpart regions of the ground-truth. Thus a head-start

with faster update of parameters and weights to the generator is important in this

task. The reasons for this is that both encoders will learn from each other. Another

reason is that loss functions can become difficult in latent representations, thus reusing

latent representations for cost functions give the network easy access to compute the

gradients for better head-start. One encoder will take the compliment of the reversed

masked region and the other will take in the masked region. The textural feature

of the encoders will have understanding from the reversed input while the masked

region will preserve the regions under the mask. This allows the network to learn by

correcting each other from a reasonable prediction. Moreover, there is no guarantee

that continuous training will accurately capture more refined features in space for this

specific task. Thus using all layers to find a better gradient computation increases

computational complexity hence why only one deeper identical layers of both encoders

are used for this experiment.

7.4.2 Latent space feature-aware gradient loss

Utilizing image gradients is very common practice of various image processing algo-

rithms [234, 80]. In image inpainting, known and unknown regions are representations

of the masked image, thus applying gradient algorithm to detect occlusion boundaries

can prove useful. Image gradients highlight directional change in images and can be

used in edge detection algorithms [213]. [17, 40, 197] by making use of edge informa-

tion. Diffusion-based inpainting, uses fluid dynamics and partial differential equations

to propagate information along the edges from known to unknown regions. Because

edges are continuous, information travelling along isophote (line joining points with
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the same pixel level intensity) match gradient vectors at the boundary between the

missing pixels and known pixels. However, the use of edge information vary based

on hyperparameter and the choice of edge detector. The Sobel operator is not new

to image inpainting [170]. The Sobel algorithm [96] is capable of extracting occlu-

sion boundaries because images contain noise which can generate a sudden transition

of pixel values [234]. During edge detection with the Sobel operator, noise can be

suppressed without removing edges, edges are enhanced using a high pass filter and

elimination of spurious edges which are noise related (edge localisation). In [170] the

Sobel operator is utilized to obtain gradient information of generated and ground-

truth images to compute a loss function. The loss function measures the quality

of the generated output based on edge information. Another utilization of gradient

information is proposed in [232] where the gradient map of the mask and masked

image are utilized within the network to obtain gradient features, which are later

fused with image features to obtain the final image. To determine the direction of

filling priority, the model is designed to target the image gradients of feature maps

and use this information to construct a loss model.

Based on this, a variation of our proposed latent space loss is computed, namely

feature-wise latent space gradient loss with depth-wise convolutions, using the Sobel

operator. The goal of using feature-wise gradient is to investigate filling-in large miss-

ing regions that require depth penetration while minimising computational complex-

ity. Feature gradients of the third convolutional layer of both encoders are obtained

to compute the loss model. To re-enforce on outer edges and fidelity of the generated

image, image gradients of the generated and ground-truth images are used to assist in

the final reconstruction. Note that the edge map based on the gradients are computed

in y and x directions.

7.4.2.1 Generator Loss

The generator loss evaluates the missing pixel region and the perceptual quality of

the image. To maximise contextual and feature-wise learning, high-level features are

extracted from deeper layers of EθA(·) and corresponding features of EθB(·). To help

the model learn, the image, mask and reversed mask are included as part of the loss

function so that it can actually penalize the error during encoding and reconstruction

for better inference.

Lφ = ||(EθAφ[M, Igt]− EθBφ[(1−M), Igt])||22 (7.3)

127



Gx = Igt ∗Xedge(i, j), Gy = Igt ∗ Yedge(i, j) (7.4)

where Gx and Gy are gradients computed by depth-wise convolution using the x and

y components of the edge operator on an image Igt.

∇Igt =
√
G2
x +G2

y (7.5)

Ledge = ||∇Igt − [Gθ(∇IR)]||22 (7.6)

∇φ = ||∇EθAφ[M, Igt]− EθBφ[(1−M), Igt]||22 (7.7)

LedgeLoss = λ · Lφ + (1− λ) · Ledge (7.8)

Where λ = 0.5 as coefficient to obtain LedgeLoss. The pixel space L1-norm, based on

a range of pixel values with the input image and output image is used here.

Lpix = ||K � (Igt(i, j)− IR(i, j))||11 (7.9)

Lvgg = ||φ[Igt]− φ[Gθ(IR)]||22 (7.10)

Further, the reversed mask loss (Lrm) from 5 is used to compute a contextual loss.

Here the aim is to keep the known pixel locations of the input image by penalizing

the predictions thus creating similar pixels based on the reversed mask and masked

regions.

Ic = M � Igt + (1−M)�G(z) (7.11)

Lrm = ||φ(1−M � Igt)− φ(IC ||11 (7.12)

Lc = ||φ(1−M � Igt)− φ(IR �M ||22 (7.13)

The total loss (LT ) is a weighted sum of all the losses with highest weight applied to

Lφ.

LT = α1 · Lvgg + α2 · Lrm + α3 · Lpix (7.14)

where α1 = 0.5, α2 = 0.3, α3 = 0.1 are coefficients of the weights applied to the loss.

7.4.2.2 Discriminator Loss

For adversarial loss, he Wasserstein distance loss similar to [205, 87] used in both

discriminators.

Lw = EI∼Px [Dθ(Gθ(Igt))]− EIR∼Pz [Dθ(Gθ(IR))] (7.15)

where real-data distribution is represented in the first term and generated-data dis-

tribution is the second term. Finally, the overall objective loss function of the model

is defined in Equation 7.16.

LF = LT + Lw (7.16)
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7.5 Experiments

In this section, a standard protocol for testing is proposed.

7.5.1 Implementation

Implementation of the V-LinkNet is done using the Keras library with a Tensorflow

backend, and training of the model is done on a P6000 GPU computer. All images

are scaled to 256× 256× 3 and 512× 512× 3 and align them with their appropriate

masks. The network is pretrained using a novel loss function that backpropagates

gradients using features from both encoders. The RSMProp optimizer, with a 0.0005

learning rate is used for pretraining the network. The generator and discriminator

networks are updated following pretraining and utilised the Adam optimizer [103]

with a learning rate of 0.00001 and a beta of 0.5. The network is trained with a

batch size of 5 and for 100 epochs, which takes around three to five days depending

on the amount of the training data. After obtaining a well-trained model, the reverse

mask loss and a decreased learning rate (e.g., 1e5) is used to fine-tune it while re-

taining the original network topology. The input is updated throughout completion

using a contextual loss and a perceptual loss with coefficients of 0.1 and 0.9, respec-

tively. Stochastic clipping is employed during back-propagation. A modest value is

considered to ensure that contextual loss is prioritised during test-time optimization,

and that the inpainted part of the generated image most closely resembles the input

background context of the entire image. The generator and discriminator are fixed

during back-propagation. Note that due to the limited computational resources, the

network is not pretrain for 512 × 512 images. CelebA-HQ, Paris Street View, and

Places2 datasets were utilised, each having a comparable training and testing set

suited to the state of the art. A fully trained model can predict missing pixels for

image-to-mask ratios ranging from [0.1 to 0.8] during testing. The inference time

can be between 0.192 seconds to 63 seconds depending the on mask size. During

inference, the network design with batch normalisation layers disabled.

7.5.2 Datasets

7.5.2.1 Standard Protocol Testing Dataset

This section introduces the standard protocol test set for face inpainting and the mask

test set (Figure 7.5 generalised to Paris Street View [45, 152] and Places2 [241] test

sets. The proposed protocol share the filenames of the paired image and mask test set
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with comma-separated value (CSV) file. This test protocol set is labeled according

to CelebA-HQ [99] that contains 3000 high-resolution face images from CelebA [131].

The masks are labeled following the test set of QuickDraw Mask [84] and Nvidia Mask

[124] test set specific to each image. These images are paired and named on a CSV

file. The proposed standardised test protocol is compiled with facial images, mostly

profile faces with pose variations and various textural backdrops. The mask difficulty

and image difficulty were investigated to support the notion that the complexity of

the inpainting task is based on pose, backdrop, and mask hole variation: Figure 7.2

shows the various mask paired to specific image and the performance evaluation.

For Places2 and Paris Street View datasets, the evaluations are based on the mask

difficulty on the standard test set of these datasets. Note that our evaluation masks

are set to 3000 mask images.

(a) M1 (b) M2 (c) M3 (d) M4 (e) M5 (f) M6

Figure 7.5: Examples of our standardized protocol. (a) MaskDataset1 [0.001,0.6]
M1 [84] (b)MaskDataset2 [0.001,0.1] M2 (c)MaskDataset3 [0.1,0.3] M3 (d) Mask-
Dataset4 [0.3,0.4] M4 (e) MaskDataset5 [0.5,0.6] M5 (f)MaskDataset6 [0.1,0.4] M6.
Note that M2 to M6 are from the Nvidia Mask dataset [124]

7.5.2.2 Training Datasets

The training datasets are CelebA-HQ [99], Paris Street View [45] and Places2

[241] used in the previous Chapters 4,5 and 6. Each training image for both Paris

Street View and Places is resized to size 256 × 256 pixels which is then used as an

input to our model.
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7.6 Results

7.6.1 Baseline model Comparison

This section presents a quantitative and qualitative evaluation of the proposed V-

LinkNet in comparison to state-of-the-art methods.

• Context encoder-decoder framework (CE) [152] introduced the channel-

wise fully connected layer to solve the convolutional layer limitation associated

with failures in direct connection of all locations within a specific feature map.

The channel-wise fully connected layer is designed to directly link all activation;

thus enabling propagation of information within the activation of a feature map.

• Partial Convolution (PC) [124] proposed partial convolutions with mask

updating to enforce learning in irregular hole regions during convolutions and

ease feature transfer to subsequent layers, allowing convolution layers to target

more of the missing regions as a result.

• Gated Convolution (GC) The authors [227] proposed a gating mechanism

that learns soft masks within convolutions to make the transfer of features

within convolutions more convenient. This method differs from PC [124] in that

the irregular mask is learnt rather than being updated in each step, whereas

the former does not have this feature.

• RMNet (RM) Chapter 5 introduced reverse mask mechanism within the net-

work. The reverse mask forces the convolutions to subtract visible regions

through the reverse mask mechanism, thus ensuring the output prediction is on

the missing regions only.

• V-LinkNet Pre-trained model with latent space loss and introduce recursive

residual transition layer combined with perceptual losses and reverse mask loss.

The recursive residual transition layer forces the model to focus on learning

between disentangled pixels of valid and non-valid regions as it transfers high-

lighted high-quality features to the decoder.

7.6.2 Qualitative Results

The figures in this section depicts the visual results of the V-LinkNet method. Fig-

ure 7.8 depicts a visual comparison of the V-LinkNet method to the state of the art.

Without bias and based on code availability, the Pathak et al. [152] (CE), Liu et
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Input Ours GT Input Ours GT

Figure 7.6: Results showing inpainted images using V-LinkNet on Places2 Dataset
with MaskDataset1 of our standardized test set ranging from [0.1-0.6], where images
in column (a) are the masked-image generated using the Quick-Draw Mask dataset
[84]; images in column (b) are the results of inpainting by our proposed method; and
images in column (c) are the ground-truth.

Input Ours GT Input Ours GT

Figure 7.7: Visual results showing inpainted images using V-LinkNet on Paris Street
View Dataset with MaskDataset2 of our standardized test set, where images in column
(a) are the masked-image; images in column (b) are the results of inpainting by our
proposed method; and images in column (c) are the ground-truth.

al. [124] (PC), Yu et al. [227] (GC) to measure against our model as per previous

chapters 4, 5 and 6. The visual comparison of Places2 and Paris Street View datasets

best represent how our model can generalise to natural scene images. The generated
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images are shown on Figure 7.6 for Places2 [240] while Figure 7.7 shows the inpainted

images generated from Paris Street View dataset [125]. For comparison with the

state-of-the-art and a variation of our model, the generated images are shown on Fig-

ure 7.8. Based on this Figure 7.8, CE struggles with arbitrary hole-to-image mask

regions and the generated image is blurry, while PC and GC leave a bit of artefacts

(best viewed when zoomed) on the generated image. Focusing on the face and hair

regions, our model performs better than the state-of-the-art with no artefacts left on

the inpainted regions. However, despite marginally comparable quantitative results

on full inpainted images, our model completes and generates the facial image with no

visible boundaries of the binary masks as seen on the generated images completed by

the state of the art.

(a) In (b) CE (c) PC (d) GC (e) RM (f) Ours (g) GT

Figure 7.8: Visual comparison of the inpainted results by our models Ours, CE, PC,
GC and RM on CelebA-HQ [124] where MaskDataset1 is used as masking method
with mask hole-to-image ratios [0.01,0.6].

7.6.3 Quantitative Results

It is important to note that the visual and semantic understanding of the completed

regions is critical to the audience when inpainting in the wild. This is because the

visual quality of the blending between the inpainted regions and the original unmasked

regions should be unnoticeable in real-world scenarios. For quantitative evaluation to

track model performance and based on previous state-of-the-art research, the MAE,

FID, PSNR, and SSIM are used to quantify performance against the state of the art

([152, 124, 227]). The high values obtained for MAE and FID show poor performance

of the model whereas lower values for these metrics indicate better performance. For
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Table 7.1: Quantitative comparison of various performance assessment metrics on
3,000 set 1 test images from the standardized protocol dataset. † Lower is better. ]
Higher is better.

Performance Assessment
Method Author MAE † FID† PSNR ] SSIM ]
CE Pathak et al. [152] 129.96 29.96 32.61 0.69
PC Liu et al. [124] 98.01 15.86 33.03 0.81
GC Yu et al. [227] 43.10 4.29 39.96 0.92
RM Chapter 5 31.91 3.09 40.40 0.94
V-LinkNet V-LinkNet 37.97 2.76 39.75 0.96

clarity, the † stands for lower is better and ] higher is better. PSNR and SSIM with

higher values will indicate the prediction is closer to the ground-truth image, which

will have a maximum score value of 1. Table 7.1 shows the quantitative evaluation

for the inpainted images with two of ours in bold. Our proposed method achieved

the best FID and SSIM.

To generalise this model, quantitative measures are evaluated for Places2 and

Paris Street View datasets. The results are compared with that of 5 and the findings

presented on Table 7.2. On the Paris Street View dataset, the proposed model out-

performed that of Chapter 5, but failed on the Places2 dataset. The best results are

highlighted in bold.

Table 7.2: The inpainting results of V-LinkNet on Paris Street View and Places2,
where our standard protocol MaskDataset1 [84] is used as masking method with
mask hole-to-image ratios range between [0.01,0.6]. The results are compared against
the state-of-the-art [87]. † Lower is better. ] Higher is better.

Performance Assessment
Dataset Method MAE † FID† PSNR ] SSIM ]
Paris Street View RMNet 5 33.81 17.64 39.55 0.91
Paris Street View V-LinkNet 26.60 14.94 40.9 0.95

Places2 RMNet 5 27.77 4.47 39.66 0.93
Places2 V-LinkNet 107.68 38.34 34.45 0.91

7.7 Ablation Study

To understand the proposed method, an investigation is carried out to demonstrate

the effectiveness of each component contributing to the inpainting task. The visual

results are shown on Figure 7.9 and the quantitative evaluations on Table 7.3. Another
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Table 7.3: Quantitative comparison of the performance assessment metrics on 3,000
images from the standard protocol test dataset. The masking method applied is based
on MaskDataset1. † Lower is better. ] Higher is better.

Performance Assessment
Method Author MAE † FID† PSNR ] SSIM ]
VN1 (V-LinkNet) 37.81 3.91 35.54 0.92
V-LinkNet (Ours) 37.97 2.76 39.75 0.96

evaluation is carried out to assess the algorithm’s performance across all datasets of

the proposed standardised protocol.

7.7.1 Recursive Residual Transition Layer

This section examines whether residual features from our recursive residual pooling

unit has a positive effect on our model. The results in Table 7.3 demonstrate that

residual refinement has a positive impact on the overall performance of our model.

According to our findings, this improvement is attributable to the elimination of

low-level information as a result of the pooling units being interconnected residually,

which allows direct backpropagation of high-level information throughout the learning

process.

(a) In (b) VN1 (c) VN2 (d) GT

Figure 7.9: For ablation study, the inpainted results are compared by variations of the
models VN1, VN2, on CelebA-HQ [124] where MaskDataset1 from our standardized
set is used as masking method with mask hole-to-image ratios [0.01,0.6].
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7.7.2 Latent space feature loss combined with edge-based
gradient loss

A slight modification is performed on the recursive residual transition layer by re-

moving the pooling unit. The modified layer is a residual block with the concept of

attention in our inpainting task. This modification includes 1 × 1 convolutions on

gθA(φ) and gθB(φ) output and concatenate the projected features maps. For dynamic

feature selection, a softmax function is utilised on the concatenated feature map.

Applying softmax after 1 × 1 convolutions on each encoder output enables precise

feature values, thus preserving local and detailed information. During the experi-

ment, the model uses Lvgg, LedgeLoss combined with L1 pixel-wise reconstruction loss.

It is observed that using the Lφ loss combined with LedgeLoss gets rid of checker-board

artefacts on the generated image. Another observation is that the Sobel operator

used to compute LedgeLoss helps with noise reduction and enhances the image quality

of the generated output. However, the quantitative evaluation of the model with this

loss is not great compared to the full model without the Sobel loss.

7.7.3 Quantitative evaluation of the standardized protocol
test sets for celebA-HQ

This protocol is designed to evaluate the performance on a set of mask and images.

The mask ratios in the Masksets range from [0.01,0.6]. The different MaskDataset and

ratios are: MaskDataset1 [0.1,0.6], MaskDataset2 [0.01,0.1], MaskDataset3 [0.1,0.3],

MaskDataset4 [0.3,0.4], MaskDataset5 [0.5,0.6] and MaskDataset6 [0.1,0.4].

Table 7.4: Summary of quantitative results of the proposed standardized test set
on CelebA-HQ [98] and Paris Street View [45] datasets. The performance evaluation
vary from maskset to imageset and are approximated to 2 decimal places. The results
included are for distortions (image-to-mask ratio) between 10%-20% on image sizes
256× 256. † Lower is better. ] Higher is better.

Performance Assessment
Dataset/Mask Ratio Mask Type MAE † FID† PSNR ] SSIM ]
MaskDataset1 [0.01,0.6] Irregular 37.97 2.76 39.75 0.96
MaskDataset2 [0.01,0.1] Irregular 21.35 3.36 39.04 0.94
MaskDataset3 [0.1,0.3] Irregular 33.64 5.23 36.53 0.91
MaskDataset4 [0.3,0.4] Irregular 64.15 12.06 33.72 0.89
MaskDataset5 [0.5,0.6] Irregular 107.33 15.82 31.90 0.74
MaskDataset6 [0.1,0.4] Irregular 25.75 4.19 37.7 0.93
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The MaskDataset6 are a selection of irregular masks that are used as masking

method for more than one image (i.e one mask is applied on different images and

evaluation carried out to show variations in inpainting performance). Each mask is

evaluated on more than one image and the performance is different across the dataset.

The overall results are shown in Table 7.4.

This study is conducted to identify biases for different masks on different images

and propose a standard protocol that will propel research in inpainting. The mask-to-

area ratio was determined using OpenCV toolbox. Based on this study, it is observed

that the performance of an algorithm will very much depend on the mask type used

and the image. There are some conditions on a facial image that can influence the

performance such as the pose, the lighting, features and background. In the case

of CelebA-HQ dataset, it is observed that if the mask is on the skin region, the

performance evaluation has better scores compared to when the mask is applied on

a difficult background with variations in lighting conditions. Compare the different

quantitative performances of the standardised testing protocol on Table 7.4, where

the MaskDataset2 (mostly tiny mask regions and a few large mask regions) applied

to facial images shows an SSIM performance of 0.94, which is higher than the more

difficult binary masks (MaskDataset5) applied to the same set of images with an SSIM

performance of 0.74. Furthermore, the mask applied to a face posed at an angle will

influence the results either positively or negatively. This is supported by the SSIM

perfomance value of 0.93 obtained for the same mask on various facial images of the

standard tests set during the experiment as shown on Table 7.4. It is based on this

finding that the standardized testing protocol is proposed for research to progress in

this direction. The proposed method’s shortcomings are that it needs a larger GPU

for training, using more computing resources, and that, unlike other approaches in

the literature, it struggles to generate plausible textures for large missing areas.

7.8 Propagating High Level Features

For each spatial location, each convolutional layer expects a certainty. V-LinkNet

handles high-level feature propagation as a learned operation within a residual unit

designed with maxpooling units and a residual convolution unit to create the full

layer. The proposed solution is simple and efficient, and it acts as a bridge to the

decoder. After each convolution, ELU is used as the activation function, followed by

maxpooling and batch normalization. To avoid exploding gradients, l2 regularizers
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at 1E-5 are used within the convolution blocks. The V-LinkNet model can propa-

gate high-level features to the decoder using this unit. To validate its efficacy, an

ablation study is conducted with various model components. The unmodified recur-

sive residual transition layer combined with the losses excluding the Sobel gradient

loss is found to be the best model combination. It is observed that combined re-

cursive residual unit, which is linked to residual pooling and residual convolution,

enables direct backpropagation within the bottleneck’s deeper layers. This forces the

selection of high-level information during decoder layer propagation, resulting in high-

quality reconstruction of inpainted regions. Certainty, the propagation of high-level

features has been completely learned and transferred to the decoder. Furthermore,

the feature-wise loss model shared by both encoders aids the model during early

learning, resulting in a better learning strategy shared by both encoders. The losses

and Wasserstein discriminators improve the semantic consistency of our model, which

ensures fine contextual information.

7.9 Summary

This chapter introduces a novel inpainting technique that uses two encoders to learn

from one another in order to improve on previous inpainting methods. Furthermore,

the dual-encoder approach takes advantage of semantic coherency across textural fea-

tures in latent space. In addition, the loss model between encoders that uses features

by both encoders provide clues from reversed regions to encourage high level feature

abstractions. A newly designed recursive residual transition layer that fuses features

of both encoders to enhance the projected textures and also serve as a feature propa-

gation module is also introduced in this chapter. The proposed method is capable of

producing high-quality semantic structural and textural features that match the over-

all image. Finally, a standardised protocol for testing is proposed in order to improve

research and reduce the propagation of weak baselines in deep learning inpainting

models.
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Chapter 8

Conclusion

This chapter summarises the research findings and the outcomes of the thesis. It

provides new insights for future work and concluding remarks on the direction of

facial inpainting.

————————————————————————

8.1 Introduction

This thesis proposed new methods to image inpainting based on the fundamental

components of GANs. The thesis aims to design novel facial inpainting algorithms

by capturing contextualised features to fill in missing regions with irregular holes

or free-form mask. This thesis has presented SWGAN in Chapter 4, RMNet in

Chapter 5, FGAN in Chapter 6 and V-LinkNet in Chapter 7 as proposed solutions

to facial inpainting. Two of these models have been extended to natural scene images

to generalise the proposed solutions and to show that their performance are not

only limited to facial inpainting. The proposed methods are considered as effective

solutions for predictions of corrupted facial images at this point in time. Furthermore,

when the proposed approaches are merged, these can successfully generate plausible

results with both square and irregular masks. This is achieved by the dual-encoder

network proposed in Chapter 6. The contributions of this thesis are summarised in

the following parts, and the limitations are highlighted in order to provide possibility

for advancement in this field of research.
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(a) Input (b) CH 4 (c) CH 5 (d) CH 6 (e) CH 7 (f) GT

Figure 8.1: Visual summary of the performances by all the models proposed in
this thesis based on the standardised testing protocol: (a) Input masked-image;
(b) Chapter 4 (CH4); (c) Chapter 5 (CH5); (d) Chapter 6 (CH6); (e)Chapter 7
(CH7); and (f) Ground-truth image. (Zoom to see changes.)
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8.2 Comparative Performance for all Methods

Quantitative and Qualitative evaluation is good practice in computer vision. This

helps to improve on existing methods, thus propelling research in the right trajec-

tory. Because this is important, a comparison of all the methods proposed in this

thesis will help the reader to understand that the visual differences and quantitative

differences are influenced by the different components of the proposed algorithms.

Figure 8.1 shows the visual comparison on the various methods. The evaluations are

Table 8.1: Quantitative comparison of various performance assessment metrics on
3,000 set 1 test images from the standardized protocol dataset. † Lower is better. ]
Higher is better.

Performance Assessment
Method Chapter MAE † FID† PSNR ] SSIM ]
SWGAN Chapter 4 66.09 4.14 29.87 0.94
RMNet Chapter 5 31.91 3.09 40.40 0.94
FGAN Chapter 6 57.38 9.63 34.35 0.92
V-LinkNet Chapter 7 37.97 2.76 39.75 0.96

conducted using the standardised testing protocol and a summary is shown on Ta-

ble 8.1 for quantitative measures across all algorithms proposed in this thesis. Many

newly proposed methods [238, 229, 11, 221] including the contributions in this thesis

show how important a contributor is to a network. A slight change can improve or

mar the results. The proposed method in Chapter 4 performed well to capture contex-

tual information but left some checker-board artefacts in some images with difficult

masks. This is because, it focused on the global image and no module was included

in the model to capture allow it focus on the hole regions. In addition, computational

resources was a problem as it faced memory issues. This limitation was taken into

consideration and a new design introduced in Chapter 5. The model in Chapter 5

significant changes with reduced layers and a reverse mask mechanism and spatial

preserving operator introduced. Nonetheless, this model in Chapter 5 still failed to

capture key subtle features and faced some difficulty with difficult mask unlike the

state of the art models [152, 124, 227]. The issue here is that the limitations are dif-

ferent as can been seen on the mask residue left on the third image of the first row on

Figure 8.1 when compared to the state-of-the-art [152, 137] presented in Chapter 4.

The model in Chapter 6 performed well in preserving the key subtle features and nat-

ural attributes of the face but failed to preserve background textures. The method

in Chapter 7 performed well overall compared to all other methods proposed in this
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thesis, thus robust to feature extraction, propagation and information dissemination.

However, unlike the state of the art methods, it is limited in generated plausible fea-

tures for images with large missing regions. Another observation is that the image

has so much details and lighting effect on the forehead of the facial region can influ-

ence the results for facial inpainting as shown in Chapter 7. This is reinforced by a

detailed examination of the images generated by the proposed model in Chapter 6,

which failed in cases when the backdrop is too bright, while displaying high-quality

inpainting inside the facial region. This demonstrates the need of considering all

aspects of inpainting (feature extraction, feature propagation, feature dissemination,

and feature regularisation) while developing and modelling. As a result, depending

on the algorithm, the limitation would vary depending on the design and training

duration. It is necessary to analyse the balance of computing resources. Because of

computational resource constraints, the algorithms proposed in this thesis all have

decreased layers at some point owing to memory constraints.

8.3 Research Findings

This section outlines the research findings of this thesis with respect to the objectives

described in Chapter 1, section 1.6. Table 8.2 is a summary of the objectives of this

work and their corresponding outcome. The first objective explored the literature

on image inpainting with focus on irregular hole inpainting on facial images. The

objective is achieved with the proposed guidelines to the research community in image

inpainting in the form of a literature review paper published here [PUB1]. So far,

the research conducted in Chapter 2 has served as guidance to design the algorithms

that have met the objectives of this thesis, as evidenced by the publishing of the

novel proposed methods that were developed from the research. These publications

([PUB2], [PUB3], [PUB4] and Chapter 7 form the contribution chapters to this thesis.

Section 4.3 is a facial inpainting method that uses a new combination loss func-

tion that constraints colour saturation within feature loss. The model can inpaint

high resolution images thanks to implementation of dilated convolutions combined

with skip connections to facilitate the process. This work lays the foundation to the

contribution in Chapter 6.

In Section 5.3, a novel method is proposed. This method introduces reverse mask-

ing to image inpainting. The reverse masking methods combined with a newly pro-

posed reverse mask loss assists the model during training. This work lays the ground

work to the contribution in Chapter 6. The second objective is to use the proposed
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Table 8.2: Objectives and outcomes of this thesis.

NoObjective(s) Outcome(s)

1 To conduct an informed study on the state-of-
the-art algorithms of image inpainting, nested
with comparative study of these techniques on
facial images. Identify the gap in facial inpaint-
ing and suggest future direction based on re-
search findings.

Identified the gaps in literature and publish a
research paper ([PUB1]) that highlights these
gaps with future works to halt the proliferation
of irresolute baseline models that lack contextu-
alised features.

2 To develop new deep learning architectures for
image inpainting based on Generative adversar-
ial networks (GANs)

Three novel methods ([PUB2], [PUB3], [PUB4]
are proposed and published. Furthermore, a
new technique for image inpainting is proposed
in Chapter 7.

3 To propose new approaches to facial inpainting
with the capability of occlusion reasoning that
can preserve fidelity of attributes even with large
hole-to-image ratios.

A new technique with semantic segmentation
masks is proposed in [PUB4]

4 To identify potential biases in performance eval-
uation and conduct empirical studies to compare
the performance of the inpainting algorithms.

Introduced a standardised protocol for facial in-
painting with paired irregular masks sizes with
different variations. Chapter 7

methods in the contribution chapters to design an application for facial inpainting.

A prototype (see Appendix B) to demonstrate this objective has been developed

using Pythons QtCore module. The module includes a platform of independent im-

plementations for animations, state machines, etc that can be used to design user

applications. The objective is to showcase our work with an interactive tool using

image inpainting where all the weights of our pretrained models can be explored to

compare the different models in real time.

The third objective is to focus on the facial features on the image to preserve

fidelity of attributes. This is achieved by using the segmented region of the facial skin

within the model. It was observed that, this method extracts key subtle features to

generate key attributes of the facial image with close similarity to the ground-truth

regardless of the missing region (see Chapter 6). To show that this method per-

formed well, the foreground (face only) regions of the inpainted image are segmented

and evaluated using the benchmark metrics and evaluation techniques from baseline

models. The evaluation as shown in Chapter 6 demonstrates that the quantitative

measures of the proposed method outperforms the state of the art.

The fourth objective is to propose a standardised protocol to identity potential

biases in the evaluation of generated images with respect to the masking method

used. This objective is detailed in Chapter 7. This is achieve by curating from Nvidia

irregular mask dataset which have masks of various sizes ranging from [0.01,0.8] and

matching these against particular images from the CelebA-HQ test set based on the

state of the art [137, 205, 120, 226, 227]. This is of use in that, it will strengthen
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future methods to evaluate the same facial features based on the same corrupted

regions, thus improving on inpainting. This has set a standard to facial inpainting

because the face is complex and if inpainted poorly can be visibly identified with the

human eye.

This work answered the research questions in Chapter 1. The first question is ad-

dressed by proposing the method in Chapter 4, which introduced network component

(dilated convolutions and skip connections) to capture more contextual information

to handle high-resolution images. Finally the results were evaluated and compared

with the state-of-the-art methods and used in further research to answer the second

and third research questions. Thus in further proposed methods (Chapters 6 and

Chapter 7) dilated convolutions and skip connections are utilized. However, both of

these networks have this in common but differ in other components, which address

facial fidelity and irregular hole inpainting with large textural regions. In Chapter 5,

dilated convolutions and skip connection is not utilized but a novel technique to tar-

get irregular holes whilst preserving the valid regions is proposed. Furthermore a

comparison of all the methods is outlined in the introductory part of this chapter to

showcase how the performance improved with research.

8.4 Future Work

The future of image inpainting holds great promise for the development of new

learning-based algorithms capable of high-quality and high-level feature extraction

for image understanding. The following are a few of the possible paths to take in

order to advance this field.

• Inpainting irregularly damaged regions on an image is still a challenge. One of

the most common applications for image completion is to delete the parts of a

picture that the user does not wish to be shown. These photos captured with

a smart phone or camera are often of extremely good quality (high-resolution)

and shot in very complex environments. It will be more difficult for the general

public to create rectangular-shaped masks that directly match the content they

wish to remove from such images than it will be for them to make irregular-

shaped masks that follow the curves of the region to be eliminated. As a result,

future research will focus on developing additional models that can solve this

challenging task while at the same time requiring less computational resources.

An effort to overcome this issue is illustrated in Chapter 4 using SWGAN, which

proved effective in outperforming the state of the art for high-resolution images.
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However, it was shown that this model requires a longer training time and is

limited in its capacity to solve the problem of irregular masks.

• The necessity of a lightweight solution to image inpainting is the future. To ad-

dress the complexity in irregular missing pixel regions, the RMNet was proposed

to target missing pixels only whilst preserving the visible ones. Furthermore, to

tackle the inpainting problem in real world scenarios, a robust architecture of

extremely deep neural networks that can function on mobile devices needs to be

developed. Despite the fact that the RMNet was utilised to tackle this issue, it

may be too heavy to operate on mobile devices, thus there is still potential for

improvement. The structural adjustments will serve as a roadmap for this kind

of improvement on the RMNet. That is a more reduced layers of the RMNet

trained over a decreased number of epochs with a lower amount of computing

resources. One other suggestion is to explore standard convolutions and make

changes that could be robust to distinguishably extract features of valid pixels

and hole regions. Also feature propagation or feature information dissemination

to subsequent layers should be considered when designing such models with less

parameter accretion.

• Generating images with contextualised features is still a challenge. An attempt

to solve this problem is proposed in Chapter 6, where a foreground mask is

introduced into the network to serve as a representation of disentangled pixels

of attribute features of the face, thus invoking semantic reasoning to assist the

convolutional layers to hallucinate pixels with fidelity preservation. However,

this network faced some drawbacks; where it performed well in performing in-

painting on facial features but poor performance is associated with background

regions. Another future development is to target more on preserving the back-

ground regions. Thus a design to handle this will be to preserve the background

during inpainting and guide the network to target subtle facial features as well

as generating features with fidelity preservation.

• A further attempt was to ditch the foreground mask and propose a model

that will highlight high-level facial features. The preceding algorithms laid the

groundwork for the design of the V-LinkNet architecture in Chapter 7. Although

this model can handle all mask types and high-resolution images, it needed a

large amount of processing power, necessitating the design and implementation

of a simpler and robust light-weight architecture. Another potential future
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approach is the collection of extremely big and diverse training datasets. A

dataset of this nature should include a fairly even distribution of people from

all three groups of human beings.

• Loss functions are still a major issue. This area for image inpainting is a future

development that research should focus on the design of the loss function, which

would be beneficial. The loss functions of supervised models are primarily con-

cerned with comparing the outputs to the desired pictures. Using an average

with different weights on the masked interior contents and the boundaries of

the masked region, for example, may be used to enhance the loss functions of

the supervised models, according to one idea. The blurriness problem, which

is linked with masks at border regions, might be solved by slightly overlapping

the masked and unmasked areas and giving the overlapping boundaries higher

weights in the loss. The loss functions of unsupervised models will be more

difficult since these models will need to take into account different networks

or latent distributions, which will make them more complicated. For example,

the loss function of the GAN model necessitates the modification of the hyper-

parameter alpha in order to achieve better results. Another loss proposal is that

when designing feature propagation within convolution layers, a suitable loss to

compute the error within these layers should be considered; otherwise, it may

take longer to achieve the desired results or there will still be failures in contex-

tual information with large hole regions. When it comes to cost-effectiveness,

combining the conventional approach with the deep learning method is another

suggestion for the research community in image inpainting. Traditional tech-

niques may fill in the gaps in the information depending on the surrounding

context. Deep neural networks might be used to first rebuild some simple back-

ground information from the pictures or the borders of missing sections, and

then forecast the most significant or most complicated component of the image

using that information.

• Facial wrinkle inpainting. Future research, will focus on bounding box local-

isation targeting wrinkles in order to explore localised wrinkle segmentation.

A newly proposed dataset that will facilitate this development will be needed

for facial wrinkle inpainting. In addition, an expanded study on GAN dissec-

tion to explore neurons responsible for wrinkles, colourisation and other facial
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attributes may be useful. It will be great for novel techniques on image nor-

malisation and other image preprocessing and post processing techniques to be

proposed to aid visual computing.

• Empirical evaluation techniques that match the HVS are still under investiga-

tion. Experimentation on how individuals perceive image symmetry or cluttered

images on generated faces vs how the same information is viewed on natural

scene images is advised. This will provide hints on how convincing a generated

image should seem based on subjective assessments before using quantitative

measures.

Finally, it would be nice to see that researchers have embraced the proposed stan-

dardized protocol in Chapter 7 as a benchmark for all models going forward. Thus en-

abling perform evaluations with different evaluation metrics under the same condition

(mask-to-image ratios). This will help to improve models in terms of optimization,

hyperparameters and computational cost.

The research community has to work on a realism preservation evaluation metric

that will assess if a generated image is preserved based on the human perception.

At the moment, SSIM is the best measure so far, but a new technique will be much

better.

8.5 Concluding Remarks

In conclusion, image inpainting derives from human visual perception to continue

end nodes of missing pixels on damaged images as a traditional painting restoration

method. Image inpainting has always been a difficult task, even among artists, due

to differences in visual perception and understanding. To address these issues, digital

image inpainting (Traditional and Deep Learning methods) were introduced based

on previous research. Computational evaluation methods for validating inpainted

images and quantifying contextualised features of inpainted regions in comparison to

their original counterparts have been proposed in literature and have been explored

in this thesis to evaluate the proposed algorithms for facial image inpainting. This

thesis presents a collection of contributions that provide additional solutions to facial

image inpainting. Techniques capable of preserving subtle textural features, facial

expressions, and natural and unnatural facial features on high resolution images are

included. One of the other two methods can force the network to focus on missing

regions and generate images with contextualised features that are consistent with
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the rest of the image. The other is capable of highlighting and extracting high-level

features while allowing for a smooth transition to the decoding layers. Furthermore, a

standardised protocol as a testing dataset to identify disparities of generated images

with different masks and the same mask with different facial images has been proposed

and made available for reproducibility to allow research in facial image inpainting to

progress in the direction of improving newly proposed techniques.
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Appendix A

Network Configuration

In this section, the RMNet model 5 configuration is reported in detail. On Table A.1,

shows the configuration of the Generator (Gθ). where Mr is the reversed mask and

Table A.1: RMNet Generator Architecture

Layer Size/Dilation Rate Output Size
Maskinput None 256× 256× 1
Imageinput None 256× 256× 3
lambda1 (Mr) None 256× 256× 1
multiply1 (MI) None 256× 256× 3
conv2d5 5× 5 /2 256× 256× 64
conv2d6 5× 5 /2 128× 128× 64
conv2d7 5× 5 /2 64× 64× 128
conv2d8 5× 5 /2 32× 32× 256
conv2d9 5× 5 /2 16× 16× 512
dropout1 (Dropout) None 16× 16× 512
upsampling2d1 None 32× 32× 512
conv2dtranspose1 4× 4 /2 64× 64× 512
upsampling2d2 None 64× 64× 512
conv2dtranspose2 4× 4 /2 64× 64× 256
upsampling2d3 None 128× 128× 256
conv2dtranspose3 4× 4 /2 128× 128× 128
upsampling2d4 None 256× 256× 128
conv2dtranspose4 4× 4 /2 256× 256× 64
conv2dtranspose5 4× 4 /2 256× 256× 3
activation5 None 256× 256× 3
multiply2 None 256× 256× 3
add1 None 256× 256× 3
concatenate1 None 256× 256× 4

MI is the masked image. On Table A.2 , the configuration of RMNet discriminator
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(Dθ)is shown. All the sizes are included but not of the Flatten, Dense1 to Dense3

layer parameters as this will depend on the size of the input image. However, all sizes

displayed on both tables are based on a 256× 256× 3 image.

Table A.2: RMNet Discriminator Architecture

Layer Size/Stride Output Size
conv2d1 3× 3 /2 128× 128× 64
conv2d2 3× 3 /2 64× 64× 128
conv2d3 3× 3 /2 32× 32× 256
conv2d4 3× 3 /2 16× 16× 256
flatten1 None 65536
dense1 None 512
dense2 None 256
dense3 None 1

A.1 Qualitative Results

In this section, more qualitative results of RMNet on CelebA-HQ [124], Paris street

view [45] and Places2 [241] datasets are shown. Figures A.1, A.2 and A.3 show results

of RMNet compared with the state of the art methods [152] [124] [227]. On Figure A.4

more results of the model extended on Nvidia mask dataset are shown. Figures A.5

and A.6 show results on Paris street view [45] and Places2 [241]. In general, our

model yield better results than the state-of-the-art when compared visually.

• CE: Context-Encoder by Pathak et al. [152]

• PConv: Partial Convolutions by Liu et al. [124]

• GC: Free-Form image inpainting with gated convolutions by Yu et al [227].

• RMNet: RMNet using `rm when λ= 0.4.

where `rm is the reverse mask loss and λ is the weight applied on `rm.

On Figure A.3, some examples of failed cases by the proposed model compared to

the state of the art are shown. However, our model was able to complete reasonable

structure with some artefacts compared to the state of the art.
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(a) Masked (b) CE (c) PConv (d) GC (e) RMNet (f) GT

Figure A.1: Examples of predictions by CE, PConv and RMNet on Quick Draw
dataset[84] as masking method on CelebA-HQ [124].
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(a) Masked (b) CE (c) PConv (d) GC (e) RMNet (f) GT

Figure A.2: Examples of predictions by CE, PConv and RMNet on Quick Draw
dataset[84] as masking method on CelebA-HQ [124].
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(a) Masked (b) CE (c) PConv (d) GC (e) RMNet (f) GT

Figure A.3: Failure cases by CE, PConv, GC and RMNet on Quick Draw
dataset[84] as masking method on CelebA-HQ [124]. Visually, RMNET results are
closer to ground-truth when compared to all other models.
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(a) Masked (b) RMNet (c) GT (d) Masked (e) RMNet (f) GT

Figure A.4: Examples of predictions using RMNet on Quick-Draw [84] Dataset with
Nvidia Mask [124] used as masking method.
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(a) Masked (b) RMNet (c) GT (d) Masked (e) RMNet (f) GT

Figure A.5: Examples of predictions using RMNet on Paris Street View [45] with
Quick-Draw [84] used as masking method.
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(a) Masked (b) RMNet (c) GT (d) Masked (e) RMNet (f) GT

Figure A.6: Examples of predictions using RMNet on Places [241] with Quick-Draw
[84] used as masking method.
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Appendix B

Application of Facial Inpainting

This section contains a prototype that will be used to demonstrate the inpainting

algorithms proposed in this thesis. This is an interactive tool for facial inpainting in

which users can apply hand-drawn masks to a facial image to evaluate the quality of

inpainting by their preferred model. The inpainting results are evaluated using the

pre-trained models from the proposed models in Chapter 4, Chapter 5, Chapter 6,

Chapter 7. The application and pre-trained weights can be downloaded from GitHub.

B.1 Image Inpainting Prototype

Image inpainting is not all about research but also demonstrating that the research

can be utilized in real world scenarios. A free-form inpainting prototype is created

to demonstrate the capability of our models with real-world facial images. This

application is designed as part of the final stages of the work to provide an interactive

tool for facial inpainting. This prototype allows a user to draw a mask on the region

they want to remove or inpaint and then input it. This prototype will work with

the models created in Chapters 5 and 7. The figure’s left side (Figure B.1 depicts

the masked image. The user must upload the image using the buttons described

on the prototype and then draw the mask on this image before inpainting with the

middle button. The results are shown on the right side of Figure B.1. It takes about

1.93 seconds for smaller mask regions and up to a minute or two for very large mask

regions, depending on the size of the mask. However, because the prototype was

created in PyQt5, further development into a software App that can be deployed on

a mobile device will be excellent. Furthermore, additional features such as brush size

and other parameter selection would improve how a user interacts with the system.

To test this prototype, it is required that Python 3.6- Python 3.8 is used due to some

functions that have been removed in Python 3.9 which requires Tensorflow 2.5.
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Figure B.1: Application for Facial Inpainting. An interactive tool designed to show-
case the capability of our model to inpaint images online.
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[42] Ismaël Daribo and Béatrice Pesquet-Popescu. Depth-aided image inpainting

for novel view synthesis. In Multimedia Signal Processing (MMSP), 2010 IEEE

International Workshop on, pages 167–170. IEEE, 2010.

[43] Li Deng. The mnist database of handwritten digit images for machine learning

research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142,

2012.

[44] James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the brain

solve visual object recognition? Neuron, 73(3):415–434, 2012.

[45] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei Efros.

What makes paris look like paris? ACM Transactions on Graphics, 31(4), 2012.

[46] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. Fragment-based image com-

pletion. In ACM Transactions on graphics (TOG), volume 22, pages 303–312.

ACM, 2003.

[47] Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, and

Chris Pal. The importance of skip connections in biomedical image segmenta-

tion. In Deep learning and data labeling for medical applications, pages 179–187.

Springer, 2016.

[48] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for

deep learning. arXiv preprint arXiv:1603.07285, 2016.

[49] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and

transfer. In Proceedings of the 28th annual conference on Computer graphics

and interactive techniques, pages 341–346. ACM, 2001.

163



[50] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric

sampling. In iccv, page 1033. IEEE, 1999.

[51] Omar Elharrouss, Noor Al-Maadeed, and Somaya Al-Maadeed. Video summa-

rization based on motion detection for surveillance systems. In 2019 15th Inter-

national Wireless Communications & Mobile Computing Conference (IWCMC),

pages 366–371. IEEE, 2019.

[52] Omar Elharrouss, Noor Almaadeed, Somaya Al-Maadeed, and Younes Akbari.

Image inpainting: A review. Neural Processing Letters, pages 1–22, 2019.

[53] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-

tional journal of computer vision, 88(2):303–338, 2010.

[54] Olivier Faugeras and Renaud Keriven. Variational principles, surface evolution,

PDE’s, level set methods and the stereo problem. IEEE, 2002.

[55] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[56] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis and

the controlled generation of natural stimuli using convolutional neural networks.

arXiv preprint arXiv:1505.07376, 12, 2015.

[57] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer

using convolutional neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2414–2423, 2016.

[58] Mrinmoy Ghorai, Sekhar Mandal, and Bhabatosh Chanda. A group-based im-

age inpainting using patch refinement in mrf framework. IEEE Transactions

on Image Processing, 27(2):556–567, 2018.

[59] D Goldman, E Shechtman, C Barnes, I Belaunde, and J Chien. Content-aware

fill. Accessed on, 25, 2014.

[60] Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz Velho. Warping & morphing

of graphical objects. Morgan Kaufmann, 1999.

[61] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

164

http://www.deeplearningbook.org


[62] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in neural information processing systems, pages

2672–2680, 2014.

[63] Fiona Govan. Elderly woman who botched religious fresco demands royalties.

The Telegraph, Sep 2012.

[64] Pulkit Goyal, Sapan Diwakar, et al. Fast and enhanced algorithm for exemplar

based image inpainting. In Image and Video Technology (PSIVT), 2010 Fourth

Pacific-Rim Symposium on, pages 325–330. IEEE, 2010.

[65] Petr Gronat, Michal Havlena, Josef Sivic, and Tomas Pajdla. Building

streetview datasets for place recognition and city reconstruction. Research Re-

ports of CMP, Czech Technical University in Prague, 2011.

[66] Christine Guillemot and Olivier Le Meur. Image inpainting: Overview and

recent advances. IEEE signal processing magazine, 31(1):127–144, 2014.

[67] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. In Advances in

Neural Information Processing Systems, pages 5767–5777, 2017.

[68] Zongyu Guo, Zhibo Chen, Tao Yu, Jiale Chen, and Sen Liu. Progressive image

inpainting with full-resolution residual network. In Proceedings of the 27th ACM

International Conference on Multimedia, pages 2496–2504, 2019.

[69] Christopher Haccius and Thorsten Herfet. Computer vision performance and

image quality metrics: Areciprocal relation. Computer Vision Performance and

Image Quality Metrics-A Reciprocal Relation, 1:27–37, 2017.

[70] James Hays and Alexei A Efros. Scene completion using millions of photographs.

ACM Transactions on Graphics (TOG), 26(3):4, 2007.

[71] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020.

165



[72] Kaiming He and Jian Sun. Image completion approaches using the statistics

of similar patches. IEEE transactions on pattern analysis and machine intelli-

gence, 36(12):2423–2435, 2014.

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[74] Lei He, Yan Xing, Kangxiong Xia, and Jieqing Tan. An adaptive image inpaint-

ing method based on continued fractions interpolation. Discrete Dynamics in

Nature and Society, 2018, 2018.

[75] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. In Advances in neural information processing systems,

pages 6626–6637, 2017.

[76] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality

of data with neural networks. science, 313(5786):504–507, 2006.

[77] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010

20th International Conference on Pattern Recognition, pages 2366–2369. IEEE,

2010.

[78] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[79] Ying Huang, Maorui Wang, Ying Qian, Shuohao Lin, and Xiaohan Yang. Image

completion based on gans with a new loss function. In Journal of Physics:

Conference Series, volume 1229, page 012030. IOP Publishing, 2019.

[80] Yu-Kai Huang, Tsung-Han Wu, Yueh-Cheng Liu, and Winston H Hsu. Indoor

depth completion with boundary consistency and self-attention. In Proceedings

of the IEEE International Conference on Computer Vision Workshops, pages

0–0, 2019.

[81] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

166



[82] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and lo-

cally consistent image completion. ACM Transactions on Graphics (TOG),

36(4):107, 2017.

[83] Akiko Ikkai, Trenton A Jerde, and Clayton E Curtis. Perception and action

selection dissociate human ventral and dorsal cortex. Journal of cognitive neu-

roscience, 23(6):1494–1506, 2011.

[84] Karim Iskakov. Semi-parametric image inpainting. arXiv preprint

arXiv:1807.02855, 2018.

[85] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1125–1134, 2017.

[86] Viren Jain and Sebastian Seung. Natural image denoising with convolutional

networks. In Advances in Neural Information Processing Systems, pages 769–

776, 2009.

[87] Jireh Jam, Connah Kendrick, Vincent Drouard, Kevin Walker, Gee-Sern Hsu,

and Moi Hoon Yap. R-mnet: A perceptual adversarial network for image in-

painting. arXiv preprint arXiv:2008.04621, 2020.

[88] Jireh Jam, Connah Kendrick, Vincent Drouard, Kevin Walker, Gee-Sern Hsu,

and Moi Hoon Yap. Symmetric skip connection wasserstein gan for high-

resolution facial image inpainting. arXiv preprint arXiv:2001.03725, 2020.

[89] Jireh Jam, Connah Kendrick, Vincent Drouard, Kevin Walker, Gee-Sern Hsu,

and Moi Hoon Yap. R-mnet: A perceptual adversarial network for image in-

painting. In Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 2714–2723, 2021.

[90] Jireh Jam, Connah Kendrick, Vincent Drouard, Kevin Walker, and Moi Hoon

Yap. Foreground-guided facial inpainting with fidelity preservation. In Nicolas

Tsapatsoulis, Andreas Panayides, Theo Theocharides, Andreas Lanitis, Con-

stantinos Pattichis, and Mario Vento, editors, Computer Analysis of Images

and Patterns, pages 231–241, Cham, 2021. Springer International Publishing.

[91] Jireh Jam, Connah Kendrick, Kevin Walker, Vincent Drouard, Jison Gee-Sern

Hsu, and Moi Hoon Yap. A comprehensive review of past and present image

167



inpainting methods. Computer Vision and Image Understanding, page 103147,

2020.

[92] Jiaya Jia and Chi-Keung Tang. Image repairing: Robust image synthesis by

adaptive nd tensor voting. In Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on, volume 1, pages I–I.

IEEE, 2003.

[93] Xiao Jin, Yuting Su, Liang Zou, Yongwei Wang, Peiguang Jing, and Z Jane

Wang. Sparsity-based image inpainting detection via canonical correlation anal-

ysis with low-rank constraints. IEEE Access, 6:49967–49978, 2018.

[94] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time

style transfer and super-resolution. In European conference on computer vision,

pages 694–711. Springer, 2016.

[95] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element miss-

ing from standard gan. arXiv preprint arXiv:1807.00734, 2018.

[96] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an

image edge detection filter using the sobel operator. IEEE Journal of solid-

state circuits, 23(2):358–367, 1988.

[97] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation

functions in generalized mlp architectures of neural networks. International

Journal of Artificial Intelligence and Expert Systems, 1(4):111–122, 2011.

[98] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

[99] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive grow-

ing of gans for improved quality, stability, and variation. In International Con-

ference on Learning Representations, 2018.

[100] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4401–4410, 2019.

168



[101] Norihiko Kawai, Tomokazu Sato, and Naokazu Yokoya. Image inpainting con-

sidering brightness change and spatial locality of textures. In VISAPP (1),

pages 66–73. Citeseer, 2008.

[102] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an

ensemble of regression trees. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1867–1874, 2014.

[103] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[104] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max

Welling. Semi-supervised learning with deep generative models. In Advances in

neural information processing systems, pages 3581–3589, 2014.

[105] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and

Max Welling. Improved variational inference with inverse autoregressive flow.

Advances in neural information processing systems, 29:4743–4751, 2016.

[106] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[107] Reese Kuppig. Image quilting for texture synthesis and trans-

fer,http://cs.brown.edu/courses/cs129/results/proj4/rkuppig/. CS129-CS-

Brown Edu, 2015.

[108] Tsz-Ho Kwok, Hoi Sheung, and Charlie CL Wang. Fast query for exemplar-

based image completion. IEEE Transactions on Image Processing, 19(12):3106–

3115, 2010.

[109] Tsz-Ho Kwok and Charlie CL Wang. Interactive image inpainting using dct

based exemplar matching. In International Symposium on Visual Computing,

pages 709–718. Springer, 2009.

[110] Y-K Lai, S-M Hu, DX Gu, and Ralph R Martin. Geometric texture synthesis

and transfer via geometry images. In Proceedings of the 2005 ACM symposium

on Solid and physical modeling, pages 15–26, 2005.

169



[111] Olivier Le Meur, Josselin Gautier, and Christine Guillemot. Examplar-based

inpainting based on local geometry. In Image Processing (ICIP), 2011 18th

IEEE International Conference on, pages 3401–3404. IEEE, 2011.

[112] Olivier Le Meur and Christine Guillemot. Super-resolution-based inpainting.

In European Conference on Computer Vision, pages 554–567. Springer, 2012.
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