
Mustapha, Hanan and Djahel, Soufiene and Perry, Philip and Zhang,
Zonghua (2021) Rethinking Deep Packet Inspection design and deployment
in the era of SDN and NFV. In: The 2021 IEEE International Conference on
Smart City, 20 December 2021 - 22 December 2021, Haikou, Hainan, China.
(In Press)

Downloaded from: https://e-space.mmu.ac.uk/628663/

Version: Accepted Version

Publisher: IEEE

Please cite the published version

https://e-space.mmu.ac.uk

https://e-space.mmu.ac.uk/628663/
https://e-space.mmu.ac.uk


Rethinking Deep Packet Inspection Design and
Deployment in the era of SDN and NFV

Hanan Mustapha∗, Soufiene Djahel∗, Philip Perry† and Zonghua Zhang‡
∗Manchester Metropolitan University, UK

†Ulster University, UK
‡Huawei France Research Center, Paris, France

{hananmustapha.96@gmail.com,s.djahel@mmu.ac.uk, p.perry@ulster.ac.uk, zonghua.zhang@huawei.com}

Abstract—With the advent of Software-Defined Networking
(SDN) and Network Functions Virtualization (NFV), the design
and deployment of DPI (Deep Packet Inspection) must be recon-
sidered. The programmability, global visibility and centralized
control of SDN, as well as the NFV enabled lightweight service
creation and migration, have potential to empower the capability
of DPI tools. On the other hand, dynamic environments make the
deployment of DPI challenging. Although it has been validated
that some security functions like firewall, and Intrusion Detection
System (IDS) can be implemented in SDN controllers or NFV, it
remains unclear whether or not DPI can be done in the similar
way considering its sophisticated interactions with the network
traffic packets, especially for the stateful protocols and encrypted
traffic. In other words, the design and deployment of DPI in an
SDN and NFV architecture would not be as straightforward.
Therefore, this paper aims to shed the light on the challenges
facing DPI design and deployment in the context of SDN and
NFV and propose a solution to overcome them.

Index Terms—SDN, NFV, Deep Packet Inspection.

I. INTRODUCTION

The rapid growth of Internet traffic types and volume
along with the associated increase in network complexity have
created a significant drive to change the way current network
services are designed, deployed, managed and secured. That
drive has seen a move away from dedicated telecommunica-
tions and data communications management nodes to a new
ecosystem of management functions that leverage technologies
that have been matured in distributed software systems. The
two core concepts in this new paradigm are Software Defined
Networking (SDN) [1] and Network Function Virtualization
(NFV) [2] which are both network growth enablers due to their
software-based functionality. This offers ways to economically
scale networks and deploy tailored network management capa-
bilities that can efficiently respond to changing requirements
from end users, network operators and service providers.

Maintaining a secure network requires real-time observa-
tion, deep inspection and classification of network traffic to
trigger adequate network reconfiguration and intrusion de-
tection alerts to stop the detected threat or at least mini-
mize its impact. Both NFV and SDN technologies can be
very useful in achieving the desired security level for these
networked systems, although they might be prone to their
specific security threats as well [3], as they can enable faster
response to detected security breaches [4]. The ability to
forensically examine network traffic after a successful security

attack is very important as it provides a learning basis that
help the attacked system to be more resilient against new
attack attempts and enables pursuing the perpetrators. Network
forensics is a branch of computer forensics that is responsible
for detecting network related crimes [5]. It uses specialist
software to analyze network traffic in terms of its patterns
and the content of its packets to recognize the characteristics
of security attacks along with their source.

Deep Packet Inspection (DPI) is a mechanism used in
network forensics to inspect the payload of a packet rather
than just the meta-data that can be extracted from the headers.
Existing DPI tools have certain limitations, as discussed later
in the paper, that can impact their efficiency, agility and
practicality but we believe that the advent of SDN and NFV
could be a potential solution to these limitations. Indeed, the
separation of data and control planes in SDN facilitates the
extraction of the required information for DPI tools from
the network. Moreover, thanks to NFV, network expansion is
made easier as well as dynamic deployment of DPI tools as
software services. Therefore,this paper will present an in depth
investigation of the potential use of SDN and NFV to improve
the efficiency, agility and scalability of the existing DPI tools.

The remainder of this paper is organized as follows. In
Section II, we briefly describe the key principles of SDN and
NFV and discuss their advantages and potential limitations
in addition to their main application domains. In Section III,
we review the most important approaches for Deep Packet
Inspection and critically analyze and compare them. After-
words, we propose an SDN-NFV architecture to enhance DPI
efficiency and overcome a number of limitations of current
DPI approaches in Section IV. Finally, we conclude the paper
in Section V and highlight potential future works.

II. AN OVERVIEW OF SDN AND NFV

In this Section, we will introduce the key principles, termi-
nology and features of SDN and NFV that will have an impact
on network forensics in general, and DPI in particular.

A. SDN Technology: Key Principles

SDN is a networking technology that is widely deployed
and offers improved network management [6]. Although pro-
grammable networks have been evolving since 1995 [1], it is
only in recent years that the widespread use of a consistent



approach has become possible. SDN has enabled large net-
works to efficiently cope with sudden increases in traffic or
periods of congestion, since the network components can be
programmed to reconfigure the network topology [6].

The key principles that govern SDN’s operations are [7]:
• The control and data planes are decoupled, which means

that all control decisions are removed from packet for-
warding devices.

• Packet forwarding no longer depends on the destination
address in each packet header; rather it depends on a flow
table that contains forwarding rules for each flow.

• A traffic flow is identified by one or more characteristics
of the packets - such as source Ethernet address, packet
size, packet type or IP addresses.

• When a packet arrives at a switch, it is matched to a
flow if possible. Any unidentified packets are forwarded
to the controller and a new forwarding rule is sent from
the controller to the switch’s flow table.

• The network behavior is therefore dependent on the
network application using it.

The main components of SDN, as shown in Figure 1, that are
of interest in this paper are the following:

• SDN Applications: These are the programs connected
to the SDN controller’s ”North-bound” interface which
determine how the controller sets flow table rules.

• SDN Controller: As the name suggests, it is responsible
for controlling the network traffic and responding to SDN
applications’ requests. The controller presents a rather
abstract view of the network to the external applications.

• Control Plane: This is made up of SDN controllers
(there could be more than one controller in the same
architecture).

• Data Plane: This is made up of devices or resources
responsible for traffic forwarding and processing.

The most widely used protocol that connects the control plane
to the data plane in SDN is the OpenFlow protocol [8].

SDN has the capacity to accommodate many services that
are governed by abstract policies to control flows that can
be identified by a large number of parameters. Although the
goal of this abstraction is to simplify network management
and translate it into more ”human friendly” language, it is
also possible for policies to interact in an unexpected way
which can impact on performance, function and security.
Moreover, the move away from the well defined routing rules
of conventional IP networks requires retraining of staff to
enable them to understand the impact of reconfiguration of
the policies that govern network behavior.

B. NFV Technology: Key Principles

The dramatic increase in the speed of general purpose pro-
cessors and Virtual Machine (VM) technologies have resulted
in commodity hardware that can execute complex, real time
functions at low cost. In the networking domain, the virtual-
ization of network functions has developed greatly in recent
years so that there are now a range of network functions that

Figure 1: Three-layer model of SDN

can run on a regular Linux machine with moderate compute
capability. These efforts have been assisted by standardization
groups such as ETSI-NFV who have developed industry led
protocols for the management and orchestration of NFV.

The key novelty of NFV is that the major networking
functions are no longer physical hardware nodes, they now
run as software. To gain a better understanding of the NFV
architecture, as shown in Figure 2, we will outline its three
main components and how they operate [9]:

• Virtual Network Functions (VNF): This is the actual
implementation of network functions or services in soft-
ware, such as (virtual) firewalls, switches, Domain Name
System (DNS) servers or DPI.

• NFV Infrastructure (NFVI): This is the combination of
physical and virtual processing, storage and connectivity
resources needed to create the environment where VNFs
can be deployed. NFVI includes the hypervisors as well
to run the virtual machines (VMs) and share physical
resources between them.

• NFV Management and Orchestration (MANO): As
its name suggests, this is the component that handles
the network’s initialization, modification and other man-
agement operations. The orchestration is required for the
management of a VNF over its full life cycle and any
possible automation in initiating new services.

NFV is very beneficial for network operators and service
providers because they no longer have to purchase bespoke,
single function hardware. Instead, one general purpose com-



puting device can be used to run multiple network functions
that can be tailored to specific network management require-
ments and only when requested. This implies improved scal-
ability and facilitates automation [9]. Within such a system,
then, the security policies and mechanisms can be automated,
in particular, DPI can be targeted to specific traffic types of
packets that originate in a particular geographical area.

C. NFV MANO

The integration of SDN concepts and NFV deployment
methodologies have attracted a great deal of research attention
coupled with industrial development - with a primary goal
of standardization of the approaches [10]. One of the prime
drivers has been the European Telecommunications Standards
Institute (ETSI) through their initiative known as ETSI-NFV.
In the context of this current paper, the subset of that initiative
known as ETSI-NFV-MANO is of particular interest as it
defines an architecture that is built on robust research and
industry best-practice.

One important concept in NFV-MANO is the idea of Service
Function Chaining [11] where a number of virtualized services
or functions can be concatenated to provide a network service
to create a higher level network function or deliver some
business goals for the network operator. Service chaining
can therefore be used to insert DPI functions in a particular
network path to enable some security functionality.

This idea of network services is also discussed in [12]
with particular reference to the core of the fifth generation
mobile network (5GC) which is moving to a Software-Based-
Architecture (SBA) that embodies SDN, NFV and MANO
concepts as network services or functions. In fact, these
concepts are so deeply embedded in the 5GC that they are
often not identified as separate but rather are all pervasive,
essential concepts.

The idea of viewing security as a suite of services that
can be orchestrated to deliver adaptive or tailored security
solutions using both physical security nodes or virtualized
security functions has also been explored [13]. This interesting
approach to combining virtualized and physical resources is of
particular interest to the deployment of DPI solutions.

III. DEEP PACKET INSPECTION: STATE OF THE ART

In this Section, we provide a brief overview of Deep Packet
Inspection in networking to understand how it is performed.
We then discuss a number of commercial products that use
DPI for network forensics. Finally, we critically analyze the
different existing approaches for DPI and highlight their
respective strengths and limitations.

A. An Overview on DPI

The basic function of a router is to receive a packet and
forward it towards its destination address without checking its
content (i.e., the payload). This makes the network vulnerable
to malware, spyware or any sort of malicious data that could
potentially be hidden in the payload of a packet. Therefore,
the concept of DPI was introduced allowing some authority to

Figure 2: NFV Architecture according to ETSI

open a packet, inspects its content and decide on whether this
packet should be forwarded or it presents a threat that should
be either flagged, dealt with or both. DPI enables inspecting
layers 2 to 7 from the Open Systems Interconnection (OSI)
model [14]. The most common inspection used consists in
comparing the packet content against certain attributes and
checking for hits in any of the accessible layers. Depending
on the application in which DPI is used the inspection process
could be customized in terms of what needs to be matched,
such as traffic from a certain IP address etc. DPI includes
port-based analysis that enables the identification of the port
number by inspecting the TCP or UDP headers and thus
determining which protocol was used to generate the packet.
Statistical analysis [8] can also be employed as a DPI method,
but it is not payload specific and rather uses several approaches
to classify traffic based on port numbers or timestamps. We
argue, however, that both port-based and statistical analysis
methods are not exactly DPI but could be classified as what
is known as Shallow Packet Inspection (SPI) [14] because
the payload is not involved at any stage of the inspection
process. There exist multiple DPI methods, the variation is
determined based on how the payload is matched to keywords.
Understanding the logic behind DPI is an important step to
find out which method should be avoided and which can be
improved. Some of the methods can be performed as either
string matching or regular expression matching [15]. We are
mainly interested in two methods and the ones that are most
commonly used among all [15], they are as follows:

• Automaton-based: This involves both regular expres-
sions and string matching. A finite state automaton is
created for each string or packet. The input can take
multiple states until it is able to match itself to the



required expression or string.
• Heuristics-based: A trial-and-error approach to find a

specific string or expression in the payload.
When explaining the Automaton-based DPI later in Section

III-C we shall introduce Non-deterministic Finite Automaton
(NFA) and Deterministic Finite Automaton (DFA) and how
they perform differently. Inspecting the packet payload will
naturally decrease the network speed since every packet will
undergo this process, which is the first issue associated with
DPI and there are more. Another issue that arises is data and
user privacy since the packet’s content or a portion of it are
being revealed to an unknown (or even known) third party
other than the intended recipient. Achieving a secure and fast
network is yet to be real; research has been expanding to
reach a consent that has the best of both. We believe that
DPI is an important tool that enforces network security and is
highly important for governments. Internet Service Providers
(ISP) and other enterprises both implement DPI in their
network infrastructures, but usually they are less concerned
with security. DPI does have a high risk of being illegal to
conduct and many privacy concerns, especially with encrypted
traffic, that could make it a data breach rather than a network
security mechanism.

B. Commercial Applications of DPI

DPI is an application that is used on a daily basis by
networks’ users without their knowledge. The most common
DPI personas are firewalls, parental or data filtering and
Intrusion Detections Systems (IDS) [16]. The purpose of DPI
in networks is determined by the organisation it is serving.
Security benefits of DPI applications are not limited to fire-
walls and IDS only; we shall discuss the most significant DPI
models by classifying them at a government level, enterprise
level or personal level. We will also show how encryption is
no longer an inspection preventer in most of the known DPI
systems.

Governments take the responsibility, whether users approve
or not, and closely monitor all Internet traffic and can even
block certain services. In fact, Virtual Private Networks (VPN)
are blocked in China, Iran and The United Arab Emirates.
Governments do not like users surfing the web while being
connected to VPN for two reasons, the first is that they can
no longer monitor what a user is doing and the second is that
the VPN server could be hosted in a hostile country, which
could leak important and sensitive data. Some large online
vendors and social media websites are not accessible in parts
of the world for reasons that are not fully justified or accepted
by users. Governments can even censor the data that is sent
over the network, and this is where DPI is useful for them as it
enables them to identify and eliminate packets with unwanted
data. The reasons for which this is done include preventing
attacks at higher network level, others remain political. Some
DPI deployments are purely business related, for example
if an enterprise provides a certain video streaming services,
they could block traffic coming from other video streaming
websites or applications either by checking source IP addresses

or a certain payload pattern in the packets. One could argue
that censoring and blocking actions are not intended to secure
the network, but the ability to use them in such scenarios
implies that they can be leveraged to make the network safer
and is a good starting point for research.

Firewalls are widely used software for packet inspection
that protect and filter traffic between two points in a network
[16]. Firewalls play an important role in protecting the end-
point device from malware and supporting IDS by blocking
predefined IP addresses known as a security threat. How deep
a firewall inspects a packet would depend on the firewall
type and configuration. There are many software vendors that
worked on and produced different or multiple DPI solutions in
the form of network management or IDS services; among these
vendors, we have Cisco, Allot and Qosmos. Some of these
technologies have even been patented due to their uniqueness
in DPI. A previous survey on existing DPI software was an
insight for this paper, further information can be found in
[17]. A software developed by Ipoque named Protocol and
Application Classification Engine (PACE) uses DPI for both
network security and network management [18]. It performs
DPI on OSI layers 4 to 7 and uses analysis techniques for
traffic classification. It has built-in firewalls, IDS and other
network security applications.

Allot has developed Predictive DPI (PDPI) technology that
is able to successfully perform DPI on encrypted data to
prevent certain network attacks and perform successful URL
filtering1. Symantec developed a service named DeepSightTM
Intelligence which is a fully cloud-based cyber threat system
to ensure network security. It is able to identify vulnerabilities
in the networks or any malware files. In fact, there are
other companies, such as Sandvine, that use DeepSightTM
Intelligence in their own network security solution. Qosmos
ixEngine is another DPI Software Development Kit (SDK)
that can be used by developers to employ and configure DPI
functionality into networks. Qosmos states that more than 70%
of network vendors use their SDK to produce end products
[19]. ixEngine is useful for inspecting OSI layers 2 till 7
and can analyze traffic and also perform metadata extraction
for improved traffic classification. Cisco also uses DPI for
application classification through the Application Visibility
and Control (AVC) used in their routers and other networking
hardware. Cisco produced multiple network devices that are
able to perform DPI. They do not elaborate on the security
benefits, rather they emphasize on the network management
ability and control [20]. Another network management solu-
tion, known as BIG-IP Policy Enforcement Manager2, was
developed by F5 Networks to perform URL filtering and
inspection on packet headers and OSI layers 4 to 7.

C. DPI approaches: a taxonomy

The research on DPI has been active for almost two decades
to develop more accurate IDSs. Since DPI is performed

1https://www.allot.com/service-providers/traffic-management/encrypted-
traffic-classification/

2https://www.f5.com/products/big-ip-services/policy-enforcement-manager



by inspecting the packet headers or payload and searching
for some known keywords, research efforts have focused on
making this matching process faster and more efficient using
regular expressions and pattern matching algorithms as well as
dedicated hardware devices. Other researches have attempted
to apply DPI on encrypted payload and even onion router
(TOR) traffic. In this section, we will critically analyze the
most important related research works by providing some
insights about their methodology and solutions.

1) Bloom Filter based DPI with Hardware support:
Bloom Filters have been tested to perform string matching
in a predictive manner rather than algorithmic. The Bloom
Filters theory was founded in 1970 by Burton Howard Bloom
[21] and is in fact string matching data structure that used
probability when achieving results, hence ‘filtering’ a stream
of data. In theory, this can be particularly useful to speed
up payload inspection. Multiple Bloom Filters were used by
Dharmapurikar et al., which they refer to as Parallel Bloom
Filters in order to improve the speed of DPI [22]. They
developed a prototype and inspected data coming from the
internet to their network via a Washington University Gigabit
Switch (WUGS)3 with a capacity of 20 gigabits per second
(Gb/s). The obtained results show that 10,000 string were
captured using their prototype, however they do not state
how many payloads were inspected nor the total number of
strings searched. Parallel Bloom Filters were not used in this
prototype, only a single filter; however, the concept is very
feasible. They also used reconfigurable hardware to create their
network which is a good concept to consider as it can support
the use of virtualisation in DPI. The authors take on another
attempt with using Bloom Filters and this time in a network
based IDS. They combined the Longest Prefix Match (LPM)
algorithm and the Aho-Corasick algorithm [23] to improve the
string-matching rate. Their system is based on Cisco’s open
source IDS, named Snort, using on-chip memory hardware to
reach a data rate of 10 Gb/s.

In conclusion, we believe that applying this experiment
again using a memory hardware that could even reach up to
two tera bytes would make the process much faster than 10
Gb/s. If we were to compare this rate with the latest version
of PACE which is 4 Gb/s, we can see that this mechanism,
even being an open source appears more promising. One might
argue whether this is realistic, ixEngine can achieve a highest
rate of 10Gb/s on each x86 core and Allot Service Gateway
9700 [24] cluster can go up to 2 Tb/s. The main advantage
of [22] is that it achieves a reasonable data rate which is
competitive with commercial DPI. However, the hardware
used can be costly and could be a huge obstruction for network
expansion.

2) DFA-based DPI enhanced with regular expressions
rewrite rules: Regular expressions are the key concept behind
the design of any string-matching algorithm, and should be
given great importance when attempting to improve any DPI
mechanism. Yu et al. proposed a novel fast and memory-

3https://www.arl.wustl.edu/projects/archive/gigabitkits/switch.html

efficient regular expressions matching technique to improve
DPI in [25]. In this work, the authors designed novel reg-
ular expression rewrite techniques to effectively reduce the
extremely high memory requirements of the existing schemes.
Then, they developed a grouping technique that enables
compiling a set of regular expressions into several engines,
leading to a significant enhancement of the matching process
speed without excessive increase in memory usage. The above
techniques were used in a new unique implementation of
DFA-based matching to perform DPI. The general concept of
expressions rewrite rules used in this work consists in reducing
the total number of hops a system requires to retrieve a certain
character combination, and thus reducing the required memory
space. Although DFA approach is better than NFA in terms
of the achieved speed and memory usage required it is still
unclear how the rewrite rules are being applied on certain
combination of expressions.

3) Delayed Input DFA based DPI: Regular expression sets
that arise in various advanced network applications, such as
security appliances from CISCO systems, and are represented
by DFA still require high memory usage, which significantly
limit their practicality. To overcome this issue, Kumar et
al. have taken DFA to a further level and designed a new
technique named Delayed Input DFA (D2FA) which aims to
reduce the memory usage during a DPI process [26]. Their
idea consists in reducing the number of transitions performed
to one only, where a transition is defined as the number of
matching functions executed. This reduction is achieved by
splitting tasks between multiple memory chips during each
inspection made by the DPI process. Such approach would
make the process faster since each memory chip is dealing
with less data. It is worth to note that the term ”Delayed Input”
comes from waiting for every chip to complete processing and
then combining each chip transition with the corresponding
transition. For cost-effectiveness purpose, the proposed D2FA
technique was implemented using multiple low storage mem-
ory devices but still achieve faster results.

4) Content Addressed Delayed Input DFA based DPI:
The main limitation associated with the use of NFA or even
D2FA in DPI is the reduced network throughput. In [16],
Kumar et al. proposed a novel technique, named Content
Addressed Delayed Input DFA (CD2FA), that provides com-
pact representation of regular expressions and thus achieves a
throughput equals to that of uncompressed DFA, without the
need of extra memory. CD2FA is built upon the same idea
of D2FA with the exception that state numbers are replaced
by content labels. The information contained within these
labels enable CD2FA to avoid any default traversal, meaning
that unnecessary memory accesses are prevented and higher
throughput can therefore be achieved. Although the memory
access rate in CD2FA is the same as in uncompressed DFA
when carrying out a search for specific keywords, CD2FA
achieves higher throughput than DFAs in systems with a small
data cache because of their small memory footprint and high
cache hit rate. According to the results shown in [16], we
conclude that CD2FA is capable of implementing regular



expressions in a more economic way as well as enhancing the
achieved throughput and scalability in the number of rules.
Moreover, it only requires off-the-shelf computing peripherals
and avoids complexity, making it simple to implement and
more realistic for use in DPI process.

5) Cache-based and prediction assisted DPI: Although
DFAs are widely used to perform multiple regular expression
matching in linear time, their implementation in modern mem-
ories affects negatively the matching speed, especially when
the size of DFA gets larger. Tang et al. [27] investigated the use
of both cache memory and prediction techniques to improve
DPI speed. Their work consists mainly in finding a way to
make DFA behavior predictable and improve cache memory
access. They introduced a new concept called local prediction
which enables predicting the memory accesses to the DFA
and thus increases the cache hit rate. Such prediction helps
in speeding up the process by taking decisions on whether
the rest of the payload should be inspected or skipped. They
developed a prototype consisting of an IDS that uses Snort
data on real traffic. The objective of this work was to improve
the performance of DPI process by improving the hit rate
and the robustness level. To conclude, we believe that it
would be useful to develop different prediction approaches
that could improve the prediction accuracy, or apply local
prediction to other than DFA, such as Content Addressed
D2FA. Using different or large cache memory could also
improve the accuracy of the evaluation process. Moreover, the
performance evaluation of prediction approaches should also
consider other metrics such as the processing speed. In fact,
there is also a vendor competition, Allots’ PDPI. A lot of work
can be done to keep up with the pace of vendor based DPI.

6) Speculative Parallel Pattern Matching based DPI: The
large set of patterns used by modern DPIs to inspect network
packets are usually defined using regular expressions parsed
by DFAs. Since these packets are inspected one byte at a time,
this will slow down the DPI process. To avoid this issue, an
interesting research work conducted by Najam et al. proposes
to use speculation and multi-stride (stride-k) to improve data
packets pattern matching in DPI [28]. The main idea consists
in splitting each packet into two chunks, then inspecting the
bytes of each chunk simultaneously using speculation and
multi-stride DFA, where a stride represents the number of
bytes processed per state transition. This will certainly improve
the processing speed but leads to high memory usage, which
requires some sort of data compression to reduce it. To this
end, Najam et al. chose a compression scheme that uses
alphabet compression tables and data addressing built upon
the work of Kong et al. to reduce the memory consumption
[29]. Experimental results demonstrated the effectiveness of
this scheme as it successfully reduced the memory usage by
65% compared to uncompressed DFA. Attempting to inspect
chunks of data bytes rather than a single byte is not impressive
since enterprise DPI has with all means reached very fast
throughput, making the market congested and competitive. In
conclusion, packet payload must be studied with more depth
and focused on when developing efficient DPI methods. A

similar research work was conducted by Luchaup et al. to
tackle multiple regular expressions and speculation, further
information can be found in [30].

D. DPI vs TOR and Encrypted Traffic

Cryptography was introduced into computing to help keep
data inaccessible by unauthorized users. This brought up two
challenges for DPI; the first is how to decrypt the data and the
second being the issue of data privacy. Our main concern is the
first challenge, how can data be decrypted for inspection, or is
there another means of inspecting packets without the need of
decryption. Another challenge is linked to onion routing (or
TOR) which is a mechanism used to make packets untraceable
to hide their origin. TOR software encrypts the data being sent
and the next destination address since the routing is distributed
among many other routers. Although tracing the source is
not the focus of this work, it is an important aspect to look
into if suspicious packets are identified. Some vendor DPI
software managed to tackle encrypted data and have produced
successful results such as PDPI by Allot.

1) DPI vs TOR Traffic: To the best of our knowledge,
current IDS systems are not able to efficiently handle TOR
traffic, however, Saputra et al. attempted to unveil certain TOR
trademarks that can help in blocking them completely. In [31],
Saputra et al. performed network analysis with the open source
software Bro. They managed to determine certain identifiers
in Transport Layer Security (TLS) handshakes such as cipher
suite used by the browser. This work is not particularly
targeting payload inspection; however, it sheds light on the
fact that even the most intelligent ways of staying anonymous
on the internet can be identified easily if network data is
properly analyzed. Since there is no certitude that all TOR
traffic is bad or harmful, there is no need to block all data
transmission through TOR. Saputra et al. did not clearly state
what the cipher suite TOR uses or any of the other TOR
identifiers they determined, so even if their proposed TOR
blocking mechanism was implemented by an ISP, it is not
clear what they must block. To conclude, we believe that more
work must be done in order to correctly identify TOR traffic,
which could be extremely important for DPI at a government
level.

2) BlindBox: Sherry et al. proposed a novel way of per-
forming DPI over encrypted Hyper Text Transfer Protocol
(HTTP) traffic, named BlindBox [32]. They proposed an
architecture that involves a middle box to perform DPI. The
traffic that enters the middle box is encrypted using an encryp-
tion method named DPIEnc. Both BlindBox and DPIEnc are
technologies developed by Sherry et al. and work together
to achieve the sought results. The basic model consists in
encrypting the traffic twice, once with Secure Sockets Layer
(SSL) and the second time with DPIEnc. The traffic is then
split into smaller strings based on some token; in their case,
they used 8 bytes per token. They reinvent a new HTTP secure
(HTTPS) scheme that is meant for use in DPI which acts in
a similar way to a proxy server. In order to do so, BlindBox



is designed to operate using three protocols, which are the
following:

• Basic Detection: this is word to word matching or
matching traffic with keywords.

• Limited IDS: this works like an IDS and uses the first
protocol as detection scheme.

• Full IDS with Probable Cause Privacy: this uses the
first and second protocols, but is able to decrypt the data
when necessary.

They also conducted a detailed evaluation of the three proto-
cols by testing BlinBox performance on real traffic (function-
ality) and checking whether it is plausible to deploy it in real
networks by assessing the generated overhead. The protocols
are designed to work together or separately depending on the
environment and requirements of the network. BlindBox in-
spection achieved a detection rate of 186 Mb/s, when deployed
on single core memory, which is quite reasonable. This DPI
scheme respects users’ privacy since it does not decrypt any of
the payload data, making it reliably protective of user and data
privacy that cryptography is designed to provide. Since there is
no decryption involved, the network speed is not significantly
affected. Since the encryption is done in-house, it is easy to
retrieve any necessary decryption keys if any maliciousness is
detected (the third protocol).

In conclusion, BlindBox appears to be a potential IDS that
can perform DPI over encrypted traffic without ruining any
privacy agreements made by cryptography. We believe that
it could be turned into a commercial product, however this
depends on the adaptation of the BlindBox-based HTTPS. It
also appears that there could be some vendor locking if Blind-
Box is used since it can only operate with its own hardware
and protocols (i.e., BlindBox requires all its components and
protocols to work, including a middle box).

3) GINTATE: A similar research work has been conducted
by Miura et al. in [33] using a monitoring framework named
GINTATE capable of performing DPI over TLS traffic. In this
work, TLS communications are decrypted using a shared key
between the framework and the client device and the results
are then scrutinized in DPI processing. GINTATE consists of
three main components responsible for performing different
tasks as described below:

• GINGATE: is responsible for intercepting the packets
carrying TLS related communications and forwarding
them to GINPEEK.

• GINPEEK: perform DPI processing by analyzing the
packets received from GINGATE after decrypting them.

• GINFRIEND: holds the session keys and information
required for decryption to share with GINPEEK.

One of the distinguishing features of GINTATE is its scala-
bility which is achieved by splitting the DPI processing across
several computing servers for every TLS session. This is done
as a response to the increase of the volume of captured packets
where GINGATE adds new GINPEEKS to avoid saturation
of the available computing resources. Moreover, GINTATE
offers an independent analysis module that can be extended

by programs in any language and enables achieving detailed
protocol analysis. In GINTATE, decrypting TLS traffic adds
an extra computing overhead in addition to the communication
overhead incurred by key sharing between GINFRIEND and
GINPEEK. The critical nature of key sharing adds strict
constraints on their storage method to prevent any leakage.
We do not recommend the decryption of data before inspection
since it does not preserve users’ privacy, other than the fact that
it slows down the inspection process while doing a non-DPI
task. Furthermore, TLS 1.3 was launched as of August 2018
which included a few major changes from TLS 1.2, including
a change in the cipher suite [34]. Although it is not stated as
to which TLS version was used by Miura et al., but this could
mean that GINTATE needs upgrading.

E. Discussion

In [35], Becchi & Crowley argued whether using DFA
is ’practical’ in DPI due to the high memory requirement
associated with it, or should DPI be restricted to the use of
NFA only for regular expression matching. They introduced
a new concept named Hybrid Finite Automaton (Hybrid-FA),
which combines the best of both DFA and NFA and tested
its performance using Snort IDS on real traffic. Hybrid-FA
has been found to use higher amounts of memory than NFA
but lower than that required by DFA. DPI has now advanced
through the use of data compression methods and cache
memory, making DFA very practical. It is also not clear how
the FA is able to alternate between using NFA and DFA, that
is; when is better to use each of them on a certain expression.
We strongly believe that there is a potential to develop a fast
and low cost mechanism that improves the throughput in NFA
but we still do not know the best way to achieve that. In
Table I, we compare the DPI solutions discussed in Sections
III-C and III-D by highlighting their respective strengths and
limitations.

IV. SDN-NFV ARCHITECTURE FOR ENHANCED DPI

In previous sections, we have introduced and described var-
ious DPI solutions; some are fully software based while others
require hardware enhancements. We have also highlighted
the benefits of combining SDN and NFV to create a unified
network infrastructure that can improve agility and scalability.
In this section, we will examine how DPI can benefit from an
SDN-NFV architecture.

A. SDN-NFV Architecture
The reduced network throughput rate that DPI causes was

the major issue faced by most DPI solutions. We believe that
SDN and NFV, combined, have the potential to overcome this
problem based on these key factors:

• SDN separates data from control, making it easy to
extract the information from the network that is required
for inspection.

• NFV facilitates the expansion of a network, making it
easy to dynamically deploy software services.

• DPI exists as software that lends itself to virtualization.



DPI Solution Strengths Limitations

Bloom Filter based DPI Reasonable data rate Hardware usage

with hardware support [22]

DFA-based DPI enhanced with regular Lower memory consumption Rewrite rules usage

expressions rewrite rules [25]

Delayed Input DFA Requires one memory chip Slow inspection

based DPI (D2FA) [26]

Content Addressed D2FA [16] Off-the-shelf resources usage High memory access rate requirement

Cache-based and prediction Cache memory and prediction usage Narrow evaluation performed

assisted DPI [27]

Speculative parallel pattern matching Capability of inspect multiple strings Not challenging at an industrial level

based DPI [28]

DPI vs TOR Traffic [31] Detect TOR traffic No payload inspection

BlindBox [32] Respecting data privacy Vendor lock-in

GINTATE [33] Network independent Slow inspection

Table I: Summary of the main strengths and limitations of the existing (DPI) approaches

We use a simplified and abstracted model of the SDN/NFV
architecture, shown in Figure 3, which includes only the most
essential parts that are required to understand how applications
can be deployed as network functions [36]. Starting from the
top of the figure the application layer contains the VNF, in
our case DPI would reside in this layer, meaning that DPI is
deployed as a virtual function. The main reason for imple-
menting DPI as a VNF is to take advantage of virtualization,
which implies the benefits of being more agile, better resource
utilization and lower costs. For example, an ISP can have more
than one DPI solution available that can be selected depending
on the customer’s request. This is not only useful for DPI,
but can be important for running IoT services. We previously
highlighted that firewalls are being improved to include DPI
mechanisms, but this is not universal, so that it is best to have
DPI software deployed as part of the application layer instead
of control layer. Furthermore, an ISP can provide a dedicated
and tailored DPI solution to customers who request it at an
additional fee.

The NFV MANO resides in the control layer along with the
SDN controller which can be virtual or physical. This layer
is responsible for the management of the network functions
and other resources. The control layer is connected to the
application layer through an API so that the MANO function-
ality can deploy applications dynamically. One would naturally
assume that the SDN controller would implement some sort of
security mechanisms by default, however, having the controller
making all decisions would slow down the functionality and
effectiveness of the networks and impact on the end user’s
performance. Hence, we believe that we can exploit the
flexibility and efficiency of NFV MANO by separating these
functions from the SDN controller functionality.

Finally, the data layer or infrastructure layer would be
made up of any hardware that is required, including storage.
This is particularly useful for DPI that requires Bloom Filter

hardware, or even any additional external hardware. Note
that the Bloom Filter is optional and is only deployed if a
specific DPI solution required it. Other DPI solutions, such as
BlindBox, which is a middle box, could be used as part of
the data layer; however, it might need some reconfiguration to
adapt into the new SDN/NFV environment. This is assuming
that the middle box is hardware based, however it can be
deployed as a VNF.

The OpenFlow protocol is used for communication between
the data and control layers so that there is no direct commu-
nication between data and application layers, the control layer
acts like a mediator between the two.

B. Potential Benefits
It is important to identify the benefits associated with

the SDN-NFV architecture described in the above section to
understand how it can benefit DPI and overcome some of its
associated limitations outlined in Table I.

a) Data Layer:
• All physical and virtual resources reside at this layer.

The virtualisation infrastructure is of particular interest
here, including hypervisors, compute platforms, storage
and applications specific hardware.

• It is abstracted away from the network control and
applications so that additional resources can be added.

• These resources can also be dynamically reconfigured to
accommodate multiple services if needed.
b) Control Layer:

• The control requirements for the SDN part and the NFV
part of the architecture are fully independent from each
other.

• The control layer can be completely virtual (or logical)
to reduce costs and increase flexibility.

• Additional security mechanisms can be embedded within
the network here.



Figure 3: Hybrid SDN-NFV architecture

• The control layer is the key behind the agility and
scalability of the entire network.
c) Application Layer:

• The software for each of the VNF’s resides here.
• DPI can be deployed as a VNF so that it can be

independent from other network functions.
• Multiple DPI tools can be added, whether they are open

source or vendor based.

C. Impact on DPI limitations
After identifying all the possible benefits that an SDN-NFV

architecture can bring, we will now explain how it can tackle
the current limitations we found in existing DPI solutions/tools
(see Section III-E). The nature of some of these limitations
prevents SDN/NFV from being a solution so we shall not
include them. We discuss these in the same order they were
described in Table I. A summary of these corrections can be
found in Table II.

a) Hardware resources usage: The first limitation we
identified was hardware usage, which specifically required
some sort of Bloom Filter processing. SDN-NFV architecture

can directly improve this by creating a VNF that can connect
the hardware for the Bloom Filter into the data path when
needed. Moreover, Bloom Filters can be implemented as a
purely software function that could be used by other compo-
nents.

b) Speed (slow inspection): The inspection speed of
D2FA can be improved with the SDN-NFV architecture
since there is no need for DPI to run on a single physical
machine. This means that the virtual capacity can be expanded
as required to adjust to the optimum speed and no longer
affect other services running on the application layer. NFV
MANO can also be useful to ensure the consistency of the
prediction rules, which we briefly mentioned in Section III-C3.
Network speed was also a limitation to GINTATE (see Section
III-D3) since it involved decrypting all traffic. By using SDN
to steer traffic towards a scalable compute platform running the
decrypting component (GINPEEK) could improve the speed.

c) High memory access rate: Content Addressed D2FA
was one of the favorite DPI solutions we explored since it
did not require customized equipment. However, in terms of
performance, it did require high access rate to the memory.
This would affect the overall performance of the network
regardless of the end result. As before, using SDN to steer
the traffic to one or more virtual functions with scalable
fast access memory and assembling the ensemble with NFV
MANO resolves the problem.

d) Vendor lock-in: BlindBox was an overall DPI solu-
tion for inspecting encrypted data packets without the need of
decrypting them. The major limitation resulting from Blind-
Box was the fact that it requires all its components to function
and uses its own HTTPS mechanism resulting in vendor lock-
in. SDN/NFV cannot help in overcoming this limitation, but
can ease the integration of a third party cloud-based solution
into the network.

Limitations Solved by our

SDN-NFV architecture?

Hardware usage X

Rewrite rules usage N/A

Slow inspection X

High memory access X

rate requirement

Narrow evaluation N/A

Not challenging at N/A

an industrial level

No payload inspection N/A

Vendor lock-in ×

Table II: DPI limitations correction

V. CONCLUSION AND FUTURE WORK

We focused in this paper on exploring the great opportuni-
ties that SDN and NFV could offer to improve network foren-
sics functions, in particular DPI. After analyzing the benefits



and limitations of both SDN and NFV and investigating the
most important existing DPI approaches and identifying their
key limitations, we explored the possibility for developing an
SDN-NFV architecture to overcome them. The SDN-NFV ar-
chitectural model we used is made of three layers; application
layer, control layer and the data layer. We suggested that DPI
should be deployed as a VNF in the application layer to scale
up its usage as a service. The architecture is also flexible so
that hardware-based DPI can be connected into any point in the
network by using the NFV MANO to orchestrate the topology.
The flexibility of the SDN/NFV approach also can ensure that
the network speed is not affected by DPI. As a future work,
we aim to investigate how DPI could be used to prevent from
cyber attacks in IoT environments. We are also interested in
improving network firewalls to perform some sort of DPI, to
reduce the load on IDS tools, and thorough data inspection
mechanism that could be part of a network or SDN controller.

ACKNOWLEDGMENT

This research has been supported in part by the BT Ireland
Innovation Centre (BTIIC) project, funded by BT and Invest
Northern Ireland.

REFERENCES

[1] N. Feamster et al. The road to sdn: An intellectual history of pro-
grammable networks. SIGCOMM Comput. Commun. Rev., 44(2):87–98,
April 2014.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine, 53(2):90–97, 2015.

[3] M. Pattaranantakul et al. Nfv security survey: From use case driven
threat analysis to state-of-the-art countermeasures. IEEE Communica-
tions Surveys Tutorials, 20(4):3330–3368, 2018.

[4] B. Siniarski et al. Real-time monitoring of sdn networks using non-
invasive cloud-based logging platforms. In 2016 IEEE 27th Annual
International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC), pages 1–6, 2016.

[5] R. Hunt and S. Zeadally. Network forensics: An analysis of techniques,
tools, and trends. Computer, 45(12):36–43, 2012.

[6] H. Farhady et al. Software-defined networking: A survey. Computer
Networks, 81:79 – 95, 2015.

[7] D. Kreutz et al. Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14–76, 2015.

[8] W. Xia et al. A survey on software-defined networking. IEEE
Communications Surveys Tutorials, 17(1):27–51, 2015.

[9] R. Mijumbi et al. Network function virtualization: State-of-the-art
and research challenges. IEEE Communications Surveys Tutorials,
18(1):236–262, 2016.

[10] C. Rotsos et al. Network service orchestration standardization: A
technology survey. Computer Standards & Interfaces, 54:203 – 215,
2017. SI: Standardization SDN & NFV.

[11] M. Mechtri et al. Nfv orchestration framework addressing sfc challenges.
IEEE Communications Magazine, 55(6):16–23, 2017.

[12] B. Nogales et al. Design and deployment of an open management
and orchestration platform for multi-site nfv experimentation. IEEE
Communications Magazine, 57(1):20–27, 2019.

[13] Bernd Jaeger. Security orchestrator: Introducing a security orchestrator
in the context of the etsi nfv reference architecture. In Proceedings of
the 2015 IEEE Trustcom/BigDataSE/ISPA - Volume 01, TRUSTCOM
’15, page 1255–1260, USA, 2015. IEEE Computer Society.

[14] K. Mochalski and H. Schulze. White paper on deep packet inspection.
itu-t study groups com13, 2009.

[15] C. Xu et al. A survey on regular expression matching for deep packet
inspection: Applications, algorithms, and hardware platforms. IEEE
Communications Surveys Tutorials, 18(4):2991–3029, 2016.

[16] S. Kumar et al. Advanced algorithms for fast and scalable deep packet
inspection. In 2006 Symposium on Architecture For Networking And
Communications Systems, pages 81–92, 2006.

[17] T. Bujlow et al. Independent comparison of popular dpi tools for traffic
classification. Computer Networks, 76:75 – 89, 2015.

[18] Ipoque GmbH. R & s pace 2 - solution guide. rohde & schwarz gmbh
& co. kg. leipzig., 2015.

[19] Qosmos. Qosmos ixengine: Classification & metadata engine. qosmos.
paris., 2016.

[20] Application visibility and control. cisco systems inc. california., 2011.
[21] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426, July 1970.
[22] S. Dharmapurikar et al. Deep packet inspection using parallel bloom

filters. IEEE Micro, 24(1):52–61, 2004.
[23] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An

aid to bibliographic search. Commun. ACM, 18(6):333–340, June 1975.
[24] Service gateway 9700. allot communications ltd. hodhasharon., 2018.
[25] F. Yu et al. Fast and memory-efficient regular expression matching

for deep packet inspection. In 2006 Symposium on Architecture For
Networking And Communications Systems, pages 93–102, 2006.

[26] S. Kumar et al. Algorithms to accelerate multiple regular expressions
matching for deep packet inspection. In Proceedings of the 2006
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’06, page 339–350, New
York, NY, USA, 2006. Association for Computing Machinery.

[27] Y. Tang et al. Cache-based scalable deep packet inspection with predic-
tive automaton. In 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pages 1–5, 2010.

[28] M. Najam, , et al. Speculative parallel pattern matching using stride-
k dfa for deep packet inspection. Journal of Network and Computer
Applications, 54:78 – 87, 2015.

[29] S. Kong et al. Efficient signature matching with multiple alphabet
compression tables. In Proceedings of the 4th International Conference
on Security and Privacy in Communication Netowrks, SecureComm ’08,
New York, NY, USA, 2008. Association for Computing Machinery.

[30] D. Luchaup et al. Multi-byte regular expression matching with specula-
tion. In Recent Advances in Intrusion Detection, pages 284–303, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[31] F. A. Saputra et al. Detecting and blocking onion router traffic using
deep packet inspection. In 2016 International Electronics Symposium
(IES), pages 283–288, 2016.

[32] J. Sherry et al. Blindbox: Deep packet inspection over encrypted traffic.
SIGCOMM Comput. Commun. Rev., 45(4):213–226, August 2015.

[33] R. Miura et al. Gintate: Scalable and extensible deep packet inspection
system for encrypted network traffic: Session resumption in transport
layer security communication considered harmful to dpi. In Proceedings
of the Eighth International Symposium on Information and Communi-
cation Technology, SoICT 2017, page 234–241, New York, NY, USA,
2017. Association for Computing Machinery.

[34] E. Rescorla. The transport layer security (tls) protocol version 1.3.
internet engineering steering group (iesg). california., 2018.

[35] M. Becchi and P. Crowley. A hybrid finite automaton for practical
deep packet inspection. In Proceedings of the 2007 ACM CoNEXT
Conference, CoNEXT ’07, New York, NY, USA, 2007. Association for
Computing Machinery.

[36] A.L.V. Caraguay et al. An overview of integration of mobile infras-
tructure with sdn/nfv networks. In Proceedings of the 7th International
Conference on Information Technology, pages 250–265, 2016.


