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Listening to Rivers
Using sound to monitor rivers

Wm. Alexander Osborne

Abstract

From a babbling brook to a thunderous torrent, a rivers’ soundscape can be described bymany
onomatopoeic words. Using sound produced sub-aerially by a river to calculate its stage
is an entirely novel idea, designed to be used in an environment that is seldom monitored,
headwater catchments. In these environments it is difficult to use traditional methods of
automatic stage gauging, such as pressure transducers and ultrasonic depth monitors. I
propose a cost-effective, simple to install sound monitor which can be simply placed beside
a river that is making a noise. I develop a method of how to take the tempest that is river
sound and filter it to a usable component using data collected from around the North East
of England during Storm Ciara and Dennis, 2020. Understanding where river sound is
generated from and the mechanisms behind it are key to developing soundmonitoring which
is why I use an experiment at a white water course to investigate the link between sound
and river topography. Using an artificial channel and obstacles I investigate the link between
obstacle height and configuration on the production of sound. To use river sound as a proxy
for river stage, there has to be a process of how to setup and calibrate sound. I present a
method of how one may go about setting up a sound monitor and the usage it may have in
water resource management. Finally, I apply the method of sound filtering, river placement,
and calibration at a catchment scale to determine its validity in river monitoring. Although
novel, using sound to monitor a rivers’ stage is practical and deployable.

Supervisors: Dr Rebecca Hodge and Prof Gordon Love
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“ ...suddenly he stood by the edge of a
full-fed river. Never in his life had
he seen a river before—this sleek,
sinuous, full-bodied animal, chasing
and chuckling, gripping things with a
gurgle and leaving them with a laugh...

Kenneth Grahame
The Wind in the Willows ”



Chapter 1

Introduction

1.1 Overview

Rivers are dynamic and evolving features of the landscape, from the source to the sea, tumbling
and flowing through the environment. When a river floods it causes significant damage and
cost (Kummu et al., 2011). In England alone, there is a 1 in 6 risk of a property flooding from a
combination of river and coastal sources (Environment Agency, 2009). During this project there
have been 20 named storms that have contributed to flooding in the UK, with recurrence intervals
of 1 - 20+ years (Met Office, 2021). It is predicted that with the effect of climate change, the UK
will see a 10% increase in rainfall by 2100, with a focus on more intense heavy rainfall. If left
unchecked, the cost of flooding in the UK could increase by 15 times by 2080, from around £1.4
billlion currently (IPCC, 2014). River monitoring has been deployed to target resources, such as
temporary flood barriers, and provide warning, but still there is only one monitor for every 130
km of river network in the UK (Marsh, 2002). Therefore there is a need to monitor these flood
events in a way that will not incur significant cost and can be implemented throughout a river
network, to alert as many people as possible. Even with better monitoring, significant cost will
still be associated with flooding and the best long term solution is to reduce our contributions to
climate change. However, strategies to adapt to a changing climate must also be met, with the
IPCC (2014) stating that since 1950, there is a likelihood that storms have increased in frequency.

The monitoring of aspects of the hydrological cycle, hydrometry, encompasses river flow and
behaviour. The onus is on the Department for Environment Food and Rural Affairs (Defra),
the Environment Agency (EA) in England, Scottish Environmental Protection Agency (SEPA)
in Scotland, Natural Resources in Wales, and Lead Local Flood Authorities (LLFA) to monitor
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the risk associated with flooding in the UK (Environment Agency, 2013). However there is
no combined single body responsible, meaning that there is a juxtaposition between national
and local strategy even though they are required to follow the Flood and Water Management
Act 2010. A LLFA is responsible mainly for smaller water courses and their flood risk, with the
EA or national equivalent being responsible for flood forecasting and activity on main rivers.
There is however a gap when it comes to individual property protection, which goes under the
umbrella term flood responsibility, with their own safety falling to them, the riparian owner.
Communities can also come together to form a flood action group, with 50 in 2004, increasing
to over 234 as of 2017 (Trell et al., 2017). As this scale of responsibility moves lower and lower,
cost-benefit becomes more necessary: a project that protects 1,000 homes will be chosen over one
that benefits 100 for the same cost (Sugdon, 2004). The UK Goverment forecasted that increasing
the EA budget by an extra £20 million a year, would in turn save £180 billion over a century
(Bennett and Hartwell-Naguib, 2014). That saving amounts to nearly 10% of UK GDP annually
currently, which when spread over 100 years is quite small, meaning for such an investment the
savings is large, but in context of national income is small.

Currently there are direct and indirect measurements from a river that are used in flood
management, which are derived from emerging and existing technology. River stage (distance
between a reference elevation and thewater surface), discharge (volume ofwater passing through
a section at a specific time interval), and velocity of the river are the most common metrics used
(Schaefer, 1972). Commonly, the easiest to understand and recognisable measurement is river
stage, being easily understood by the public, and professionals as we can imagine what 1 m is for
example. Stage is measured mainly through the use of pressure transducers, situated within the
river. Pressure transducers are a well proven system of reliable stage measurements, but does
require infrastructure and careful placement of them. The cost of this permanent infrastructure
for use in the national flood network is £80,000 on average for a gauge station, and is focussed
in areas where it is easier to access (Environment Agency, 2015). Other types of monitors are
also used, which are more cost effective and are discussed in Section 1.6.There are therefore
substantial proportions of the river network that are not monitored and where cost effective
monitoring solutions would be beneficial.
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The aim of this project is to determine if we can use sound as a method of monitoring a river
for use in flood management using only the natural soundscape. The term "soundscape" is the
sounds that can be heard when if by a river, from the tumbling of the flow, to the birdsong and the
wind. I use sound as a proxy for river stage, whilst trying to identify a sound-stage relationship
and creating a sound-stage ratings curve. I target the smaller, headwater catchments, which
make up 70 - 80% of the total catchment area since they are seldom monitored conventionally
(Gomi et al., 2002). The monitor is situated out of the water, therefore not using hydrophones,
but instead a simple microphone. Ease of deployment is key, and the monitor needs to provide
reliable measurements that can be easily be situated to any part of a river system. It is intended
to be simple to deploy and leave, with limited calibration needed. The monitor is not designed
to replace current river monitoring strategy, but to act along side and target areas not currently
widely monitored. I show a new, innovative way of using sound to monitor a river. I split this
work into three main parts:

How?
Can river sound be related to stage through filtering the soundscape around a river?

Why?
Can I determine what produces sound in a river and how it relates to in-stream obstacles?

What?
What can river sound monitoring be used for and where can it be implemented?

Chapter 2 is a published paper which investigates whether there is a relationship between river
sound and flow stage. It shows my method of how to extract a single component of sound that
relates to stage. It goes onto present data collected from Storm Ciara as an example of how
well sound and stage form a relationship. Chapter 3 is a submitted paper on how to generate a
sound-stage ratings curve for field calibration. Chapter 4 is a submitted paper which investigates
which components of a river channel need to be present to generate a sound-stage relationship
using a white water course to simulate at a real-world scale. The source of the sound is identified
through the use of image analysis. Chapter 5 is a test of a network of sound monitors in the River
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Gaunless catchment and shows the steps necessary for future deployments of this method in
water resource management. Chapter 6 is a concluding chapter which sums up the progress
made in sound monitoring and its possible usage in the future.

The next section of this chapter gives an introductory overview on what sound is, and the
challenges faced in linking this to a river. I then review the current state of river monitoring
using sound, and examine the causes of sound within this environment. Finally I examine the
suite of technology being deployed to help with flood mitigation and explore the topic of "big
data".
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1.2 Sound fundamentals

A fundamental knowledge of sound and how it interacts with itself and the environment is
needed to understand the complexity of a river soundscape and dictates what I can and cannot
measure. This section introduces what sound is and how factors such as attenuation can limit
sound.

1.2.1 What is sound?

Sound is generated when something vibrates, with its energy moving through a medium such
as air, water or even the ground as a longitudinal pressure wave (Hall and Crockford, 1973;
Rossing and Fletcher, 2004; Khairetdinov et al., 2020). When these pressure waves hit something
that is listening, such as your ear or microphone, the differences in pressure generated by these
waves cause a diaphragm to move, allowing something to be heard through electrical signals
(Hudspeth, 1989; Huang and Shiu, 2015). As to what is heard, sound is split into two main
constituents, with the interplay of amplitude and frequency. A sound wave is a oscillating
signal, with how many times it repeats within a second giving its frequency in Hertz, with the
more cycles giving a higher pitch. The loudness of a sound is determined by the amplitude of
the signal. Amplitude can be measured in pressure, decibels (a logarithmic scale), or a direct
electrical signal in volts depending on how the signal is captured and processed (Figure 1.1).

A pure tone signal would look like a sinusoidal line, however, sound can be made up of many
waves of different amplitudes and frequencies, with the superimposition of these creating
constructive and destructive interference (Figure 1.2). With different frequencies, the resultant
waveform can look complex. In dealing with a natural source, we expect the signal to be complex
with the added complication of multiple sound sources coming together.

5



1.2.1. What is sound?

Figure 1.1: The affect of how frequency and amplitude effect a sinusoidal wave. With a reduction
in the period between complete cycles, a higher frequency will be observed and an decrease in
wavelength. An increase in the amplitude of a wave will create a louder sound.

Figure 1.2: Three different frequency waves with one another causing a resulting pattern of
destructive (wave amplitudes become smaller) or constructive (wave amplitudes become larger)
interference.
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1.2.2 Signal processing

Viewing audio data in a meaningful way for acoustic research has relied upon using an idea
introduced in the 19th Century to categorise frequency within the frequency domain, called
Fourier analysis. With constructive and destructive interference, trying to figure out the types of
frequencies present in a signal is all but impossible by just looking at the shape of the waveform.
Fourier (1878) theorised that any function can be decomposed into an infinite sum of sinusoidal
functions using,

f(θ) = a0 +

∞∑
n=1

(an cos nθ + bn sin nθ) (1.1)

f(t) = a0 +

∞∑
n=1

(an cos nωt+ bn sin nωt) (1.2)

where f is frequency, a is amplitude and ω is angular velocity. The idea has been developed into
a powerful tool which in its simplest form is changing the perspective of the data, from one in
time, to that of frequency (Figure 1.3). The complexity of performing this analysis, a discrete
Fourier transform (DFT), requires the sequentialisation of large amounts of data. The time taken
to perform a DFT means that a faster alternative method is preferred using improved algorithms,
a fast Fourier transform (FFT) which imposes different limits on the data. Imagine you have a
signal made from the addition of a number of sine waves - so the signal is quite complicated.
If you take the FFT of the signal it will tell you the amount of each component present. So the
FFT of a sine wave is a delta function. The FFT of the sum of 2 sine waves is 2 delta functions as
shown in Figure 1.3.

FFTs are used in numerous aspects of signal processing (Oppenheim and Weinstein, 1972),
encompassing image analysis (including the processing of a Digital Elevation Model (DEM))
(Burt, 1981), sound filtering (Bishop et al., 2020), spectroscopy (Pacholski et al., 2005) and
magnetic resonance (Irarrazabal and Nishimura, 1995) to name some practical applications.
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Figure 1.3: Transformation of a complete complex waveform in the time domain via a FFT which
splits the complex into its constituent parts. The result from a FFT is a conversion into the
frequency domain, showing what was combined to form the time domain signal. (Adapted
from AAVOS.com, 2021)

1.2.3 Sound attenuation

It was said by Marconi, the credited inventor of radio, that sound never dies, simply decays.
He then stated that theoretically you could hear into the past, listening to quieter, and quieter
sounds, with his aim to hear the Sermon on the Mount (Hayes, 2009). Since energy cannot be
destroyed, andwe sadly cannot hear into the past, the energymust dissipated and be transformed.
Through sound attenuation, sound energy is transformed into ultimately heat energy, with the
yelling human voice generating 0.001 W of energy at 80 dB, meaning it would theoretically take 2
million people to get a kettle to boil water (Long, 2014). Like a splash in a puddle, sound energy
dissipates from the source until it is completely transformed. Along with the absorption of
energy, sound scatters in other directions from the original path, which increases the perception
of sound, allowing something to be heard indirectly. Being omnidirectional does reduce the
ability of sound to travel further. Equal spreading loss in decibels, As, is given by

As = 20g log

(
r2
r1

)
(1.3)
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in which r are the relative positions of the source and measuring point and g is the wave
propagation characteristic. The frequency of the wave also affects how far it can be heard from
the source. Lower frequencies are the least attenuated over distance, hence why thunder can be
heard as a low rumble from miles away (Bedard, 2005; Ziemann et al., 2013). How far sound
travel also depends on what it is propagating through. Earthquakes generate sounds that can be
monitored seismically all over the Earth (teleseismics), but you can’t hear one from the other
side of the planet through the air (Dziewonski and Romanowicz, 2015). In a fluid, such as air
and water, the ability of a sound to travel through it is known as Stoke’s Law,

α =
2ηw2

3ρV 3
(1.4)

where α is the attenuation coefficient, η is the fluid viscosity, w is the rate of change of the wave, ρ
fluid density andV the speed of sound in the fluid. In air, temperature and relative humidity (RH)
controls how far sound will transmit by changing the ρ , with warmer air temperatures allowing
sound to travel further, negating the fact of refraction (the changing of the direction of a wave
when passing through a medium), and higher humidity also aiding sound transmission (Figure
1.4).

Figure 1.4: The effect of RH and air temperature on sound attenuation (Harris, 1966).

How RH and temperature affects the propagation of sound is due to how it changes the speed of
sound, by changing variables in Stoke’s Law, such as fluid density, since cold air is denser than
warm air for example (Panda et al., 2016). Low frequencies, <2 kHz, are the least affected by
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changes in RH and air temperature. In a UK outdoor setting, RH is on average between 70-90% ,
and air temperature, 4-18 °C, meaning the greatest form of attenuation on sound will primarily
be from temperature. The most challenging places to monitor sound at a distance would be both
cold and with low RH. The heterogeneity of the atmosphere therefore makes calculating models
of attenuation difficult, with the simplification of a sphere of sound propagating from the source
being inadequate (Royle, 2018).

1.2.4 Harmonics and resonance

A fundamental frequency is the frequency at which an object resonates when it vibrates, for
example hitting a gong. All objects have a fundamental frequency, as it is the reaction to an
external force on the object, but the frequency depends on what is being struck and how well it
dampens the sound (Matson, 2016). Often in association with a fundamental frequency there are
subsequent harmonic frequencies (Figure 1.5). The harmonic frequency is a multiple integer of
the fundamental, for example, a 100 Hz signal will have a 200 Hz, 300 Hz, etc... harmonic. When
a gong is first hit, the fundamental frequency is dominant, but as time goes on, a time-decay
takes over, allowing the various harmonics to appear (Hayes, 2009). Overtones, which includes
harmonic frequencies, are alternative frequencies that can appear that are above the fundamental.
The interplay of these additional frequencies is what make a tone feel "rich", with each overtone
being lower in amplitude to the preceding one.

We see the behaviour of harmonics and overtones in natural settings, not only with musical
instruments.Jousset et al. (2003) found while monitoring volcanic tremors that repeated peaks
at higher frequencies from a seismogram at steps from the fundamental frequencies. It was
assummed this was down to internal resonance structures within the ground facilitating this.
Dziak et al. (2008) found during hydrophone monitoring of underwater tremors that the
fundamental frequency was 3 Hz, with harmonic spacing seen at every 3 Hz until being
undetectable after 18 overtones as they either become too quiet. Detecting overtones utilise the
FFT approach, with being able to see the peaks occurring over the frequency domain, when the
peaks begin to go into background noise then they are indistinguishable.
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Figure 1.5: The fundamental frequency (Green) with its subsequent harmonics, 2nd (Red) and
3rd at lower amplitudes (Blue) (Ottewill, 2013).

1.2.5 Section summary

Understanding the basics of sound and how it interacts with its surroundings is crucial when
it comes to beginning to monitor a river soundscape. Sound can be broken down into the
frequency domain using a FFT, meaning that sections of a soundscape can be identified and
studied. The environmental impact of RH and air temperature adds another complexity to
monitoring outdoors and the impact of that needs to be assessed. Knowing that sound can be
multilayered, with fundamental frequencies and overtones means there is a likelihood sound
can be studied at different frequencies, or over a range of them.
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1.3 Sound and rivers

Research into the sound produced by rivers was first published in 1933, with the first recorded
example of Minnaert (1933) using the sound of sediment impacts on a pipe to characterise
bedload movement. Two main fields of river sound were then spurred, hydrophone and
geophone monitoring. With a history and research spanning more that 80 years, the insights
gained from these two techniques is overwhelming. This section looks into the current field
of river monitoring using sound, including how sound is generated and how geomorphology
impacts this.

1.3.1 Hydrophone - Underwater sound

Ahydrophone is a sensorwhich listens to the soundwaves travelling throughwater. Hydroacoustic
monitoringmeasures sound signalswithin thewater, allowing non-invasive, long termobservation
(Figure 1.6) (Linke et al., 2018). Hydrophones were first created in the aftermath of the Titanic
disaster as an early form of sonar, and since then have been used in ecology, geomorphology and
geophysics (Krohn and Chen, 1992; Frost, 2001; Simpfendorfer et al., 2002; Belleudy et al., 2010).
In the context of sediment derived sound, it is categorised as self generated noise (SGN), and is
composed within the boundary of water, with turbulence and sediment transport (Manasseh
et al., 2006). The speed of sound is much faster in water than in air, at 1,480 m s-1 compared to
343 m s-1 in air due to water being denser, allowing energy to be passed along easily (Del Grosso
and Mader, 1972). So when a sound is created underwater, the flow of the river for example
cannot prevent the transmission of sound upstream, and spreads out omnidirectionally, meaning
you can hear equally as well from upstream and downstream so long as new sound sources
aren’t introduced such as turbulent noise acting on the hydrophone or impossibly the river flows
faster than the speed of sound.

1.3.2 Hydrophone - Listening to sediment

Sound is not a direct measurement, but is continuous, i.e. sound is always being produced
in a river (unless dry), and it changes through the influence of other factors such as rainfall.
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Figure 1.6: A typical hydrophone setup beside a river (Vogel, 2006).

Hydrophones are used in scenarios in which the direct measurement of a river process is either
too dangerous or the processes happens without prior knowledge. Bedload measurements,
identifying when the sediment become mobile, what size and how much of it, is difficult to
directly measure without infrastructure (Ergenzinger and De Jong, 2003). Although this project
is not about sediment, there is a longer history of using sound to monitor sediment (compared
to flow), and thus start by presenting this. The Erlenbach stream, Switzerland, pictured in
Figure 1.7 has been fitted with an automatic sediment basket allowing sediment transport rates
and grain size distribution to be measured (Rickenmann et al., 2012). Sediment collection bins,
Birkbeck-type pit bedload samplers, can also be installed within the channel to monitor bedload
flux, as with the Tordera River, Spain (Garcia et al., 2000). These structures are not placed at the
whim of the researcher, but require significant resources and time to install. It is said that these
sampling methodologies are destined to become redundant, and only used for calibration when
continuous and reliable alternatives mature. These include direct measurements using acoustic
Doppler current profilers (ADCP), sonar and radar and passive using hydrophones and impact
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columns (Gray et al., 2010). Depending on what is needed to be measured, some techniques are
better suited to certain grain sizes. Le Guern et al. (2021) was interested in sandy-gravel beds
and used a combination of both a hydrophone and ADCP to quantify it.

Figure 1.7: The Erlenbach sediment monitoring station, with a zoomed in image of the sediment
catching baskets (Rickenmann et al., 2012).

An early form of bedload monitoring used the sound generated from a grain impacting a steel
plate on the ground, and counted the impact sound to determine the rate at which grains hit the
plate. In 1986, the Erlenbach was monitored using this method, with now the addition of the
baskets (Banziger and Burch, 1990). Results from a storm event showed that there were two
peaks of bedload movement, one at maximum water runoff and a second during the falling limb
(Figure 1.8). The issue concerning this method is that the sensor was only able to hear small
flood events, in which individual grain impacts could be heard. Higher magnitude events cause
suspended particles, covering the sensor and resulted in less impacts being measured. Turowski
and Rickenmann (2009) found that the tools and cover effect, with a grain either being used to
contribute to bed erosion, or protect and cover it, can impact acoustic impact measurements,
leading to a high degree of scatter between events of similar discharge. The scatter in data is
primarily down to how the a sediment grain interacts with the plate and its mode of transport,
with the monitoring technique itself shown to be reliable. Additional sound signals such as from
the rolling and sliding of sediment instead of impacting has been shown to influence the signal
(Krein et al., 2008).
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Figure 1.8: Number of recorded impacts on the plate vs. the measured water discharge (Banziger
and Burch, 1990).

Krein et al. (2016) used a hydrophone under a steel plate to investigate how bedload changed in
different energy regimes (increased water stage). Instead of counting impacts on the plate, they
used the spectrum of sound to calculate bedload flux. The signal produced by the hydrophone
is related to sediment impacts, with the louder the sound, the larger or more of the impactor.
The frequency remained broadly the same, at between 0.1- 3 kHz, with intensity changing the
most. It means that the increase in water stage caused changes in the acoustic field, due to an
increase in bedload. Although the experiment was only over 0.04 m of water depth, it does give
a continuous record.

These heavy infrastructure systems employed here are beyond what most can hope to achieve,
and similarly to the infrastructural costs that the EA facewhen building gauges, alternativemeans
are always sought after. The easier impact plate method also does not provide conclusive results
with bedload, due to issues concerning the movement and behaviour of the sediment, such as
becoming suspended. Therefore, for sound to be useful as a surrogate for direct measurements
of bedload, it has to be able to be as good as in-channel measuring, while not creating additional
issues.

15



1.3.3. Hydrophone - Underwater soundscape

Figure 1.9: Hydrograph generated from a discharge event with the time series spectrogram
showing the frequency and amplitude of the sound generated from impacting grains (Krein
et al., 2016).

1.3.3 Hydrophone - Underwater soundscape

Monitors that are easy to deploy, especially in large rivers with extreme hydrologic and hydraulic
conditions and for continuous collection are advantageous (Geay et al., 2019). A passive acoustic
approach to determine bedload was demonstrated by Bedeus and Ivicsics (1964), while lowering
a so called acoustic indicator (hydrophone), into the water without the need of steel plates
or other infrastructure. Their results in Figure 1.10 show that they were getting variation in
the sound, but it was very noisy and also didn’t particularly correspond well with the bedload
sampled or water depth. A hydrophone does not only pick up the sediment moving and
impacting, but a whole suite of water induced noise, and without a way of filtering out and
isolating this, your results will be poor. Aural review, listening to the sound by the ear, was seen
as an effective means of distinguishing sound sources (Camp and Farwell, 1972).
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Figure 1.10: Water depth with the sound captured using a hydrophone with the measured
in-channel bedload transport rate (Adapted from Bedeus and Ivicsics (1964)).

Studies using flumes and natural experiments found that certain SGN are classed in domains,
specific sections of the spectrum. Linke et al. (2018) found that frequencies >1 kHzwere related to
how turbulent the water was and <1 kHz was the sound produced when sediment moved when
monitoring freshwater ecosystems. Tonolla et al. (2009) found that during flume experiments
investigating the sources of underwater sounds, that the most excitable part of the spectrum was
between 0.125 - 2 kHz when obstacles began to be submerged. The signal to noise ratio is very
close to each other in flume experiments, with external noise such as turbulence and pump noise
being filtered out, which was aided by using two instead of one hydrophones (Tonolla et al.,
2009). The reason why particular parts of the sound spectrum are more excited than the others
was explored by Thorne and Foden (1988) when looking at the sound generation of impacting
glass spheres. It was found that the the deceleration of the impactor to the impactee generated
sound depending on their density, size and speed. The peak frequency, f produced is found
using
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fpeak =
224

D0.9
(1.5)

when grain diameter, D, is with uniform-grain distribution (Thorne, 1986). Meaning that
sediment with a size of between 10 and 20 cm will theoretically have a frequency range spanning
0.9 - 1.7 kHz. When viewing hydrophone data of bedload noise, Figure 1.11, Petrut et al.
(2018) found the low frequencies are noisy, and without form, but above 1 kHz there is more
homogeneity, then sound at these frequencies should correspond to particles of 20 cm. Hydrodynamic
processes generated sound from 0.01 - 1 kHz, and 1- 50 kHz was truly showing bedload SGN. In
comparison to Figure 1.10, the action of being able to filter the data using power spectral density
has helped delineate a signal.

Figure 1.11: Spectrogram of underwater sound with the sections split between hydrodynamic
noise and bedload sediment generated noise using a hydrophone (Petrut et al., 2018).

Barton et al. (2010) found thatwhen researching high energy bedload transport, their hydrophone
monitoring had acoustic spikes and noted that within the bedload community large uncertainties
were acceptable given the use of current methods of quantifying bedload. Signal analysis is
therefore the key to unlocking the potential of hydrophone data, that is not linked to impact
plates. It was found that the root mean squared of acoustic pressure, Prms, is related to bed load
transport,M , with

Prms = βMγ (1.6)

where β and γ are parameters based on what is being measured, and by what (Rouse, 1994;
Geay et al., 2019). These experiments were run in so called “mountain type rivers”, with areas
such as riffles and pools able to mix the water. Larger rivers such as the Danube were monitored
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by Vračar and Mijić (2011) over ten years, and without the agitation of the river bed found that
frequencies below 100 Hz are most linked to flow rate and speed of the river. Higher frequencies
were found to be related to increasing anthropogenic activity on the riverbanks.

For hydrophones to be seen as reliable in bedload measurements, key details need to be known,
including the frequency released by the grains, grain size distribution and that the ambient noise
is constant and able to be removed (Marineau et al., 2015).

1.3.4 Hydrophone - Sound generation

Hydrophones are not only used for bedload monitoring, but can also pick up turbulence of
the water itself. Turbulence causes extraneous noise which is filtered out when looking at
bedload, since the frequency is within the same range, from 0.5- 2 kHz (Lugli and Fine, 2007).
Turbulence will be generated from the flow itself, or induced by the wind generating surface
waves, broadly in the 0.1 -1 kHz region (Zakarauskas, 1986). The trapping of air within water,
causing bubbles, is thought to be the main source of the acoustic signal, within and outwith the
water. The breaking of waves, moving floating objects and rainfall can also create sub-surface
bubbles, which release sound when they burst (Bolghasi et al., 2017a). The sounds of splashing,
pouring and streaming are easily identifiable by humans, but do not have any distinctive features
(Van Den Doel, 2005). Water is largely soundless by itself and needs an external force and to
be moving (Bragg, 1921). Ronan (2017) studied how changing Froude numbers affects the
acoustic field generated underwater. They found that as Froude number increased from 1 to
1.7 there was a change of sound when the flow regime changed from an undular to hydraulic
jump. The frequency with which a bubble fragments is a function of surface tension, hydrostatic
(transference of energy by pressure) and hydrodynamic (transference of energy throughmotion)
forces (Leighton, 2012). The frequency of a bubble bursting was explored by Minnaert (1933),
who was interested in reducing the complexity in the sound of the “humming of the sea” or
the “roar of a cataract” to a more elementary state. Chicharro and Vazquez (2014) wrote the
equation as

f0 =
1

R0

√
3γPA
4π2ρ

(1.7)
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where, f0 is frequency, r0 is bubble radius, PA is absolute liquid pressure, ρ is liquid density and
γ is specific heat ratio. The bubble radius therefore assumes the bubble is spherical, and without
observing individual bubbles is broadly accepted to work. Bubbles are influenced by the flow
measured by the Reynolds number and surface tension with gravity measured by the Eötvös
number (Figure 1.12) (Clift et al., 1978). The shape is therefore not always a sphere.

Figure 1.12: How a changing Eötvös and Reynold number can have on the shape of a bubble
(Krull et al., 2016).

Trying to measure the sound frequency produced by a single bubble, given the circumstances
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needed to form them is highly complex and not readily studied (Frizzel, 1987). Bubbles interact
with one another, such as two bubbles coalescing into one also releases sound happening as
quickly as 0.1 ms (Manasseh et al., 2007). We therefore take the Minnaert resonance as an
idealised frequency, without the effects of fluid dynamics (Ammari et al., 2017).

Experiments by Leighton et al. (2005) looked at the physics of breaking waves and showed that
most bubbles burst at a frequency of between 0.4 and 2 kHz. They compared the detection of
this from a hydrophone and a microphone. In doing so they showed that it was possible to pick
up the sound of a bubble bursting first in water, then in the air due to the differences in the speed
of sound and acoustic attenuation reducing its amplitude. The signal itself was shown to decay
faster compared to in the water.

1.3.5 Geophone

A geophone is used to monitor ground vibration (known as seismic signals), with a signal being
created when a mass moves inside the device between magnets (Iskander, 2018). The frequency
of seismic data is lower than compared to that measured hydrophone and microphones, and
depending on the type of geophone can be from 0.001 Hz to 2 kHz (Xiao et al., 2018). Burtin
et al. (2016) describes how seismic monitoring can be used in geomorphic activities, at landscape
and streamside scale to measuring surface processes, not only limited to earthquake monitoring.
Seismic data was first used in fluvial studies by Govi et al. (1993) to measure coarse sediment
delivery mechanisms during flood events, with the microseismic signals found able to be related
to bedload transport mechanisms. Fluvial seismology is relatively new with Hsu et al. (2011)
being able to monitor seismically the impacting of grains during a storm event. Tsai et al. (2012)
observed that the seismic data scaled with the size of grains and their velocity. The behaviour
of how bedload sound changes over a discharge cycle was investigate by Barrière et al. (2015)
and showed hysteresis of the sound, with the sound becoming quieter after peak flow. Seismic
research has mainly been focused on bedload processes, as direct methods of collecting data are
challenging, especially during large floods when the bulk amount of sediment transport occurs,
similarly to the themes introduced in Section 1.3.1 (Roth et al., 2017). Gimbert et al. (2014) have
subsequently found that amplitudes in the region of 0.001 – 0.1 kHz formed a relationship with
discharge when modelled for determining the sound of turbulent flows, with Anthony et al.
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(2018) narrowing the range to between 0.0004 – 0.045 kHz.

Understanding what is generating the seismic signal is imperative to being able to filter out the
component that is needed. Schmandt et al. (2013) found three distinct fluvial sources for seimic
noise; bed load transport at 15 - 45 Hz, fluid traction on the bed at 0.0073 kHz and waves at
0.006 - 0.007 kHz. Figure 1.13 has spectrograms showing a relationship between a discharge
of 300 to 1300 cumecs, on both seismic and infrasound (low frequency microphone). Burtin
et al. (2011b) also linked changes in the 0.003 - 0.009 kHz region of being linked to river level,
and assumed a linear relationship between seismic noise and water level, with seismic monitors
within 50 m of the river. The limit imposed on the relationship between seismic noise and water
level is whether the river reaches bankfull, with the relationship only being formed if the water
level is kept below bankfull.

Figure 1.13: (Left)- Geophone data, (Right)- Infrasound data during a discharge event. Event
time goes from top to bottom (Schmandt et al., 2013).

Gimbert et al. (2014) suggests that noise generated by thewater itself can be translated into seismic
waves, from processes occurring such as cavitation in the water. Ambient monitoring, in which
the geophone is not located within the channel gives the ability to monitor these additional

22



1.3.6. Section summary

sources, as well as being easier to access for maintenance (Burtin et al., 2016). Evidence of
additional sources of sound being found is seen in Figure 1.14, in which Burtin et al. (2008a)
found a hysteresis effect on the seismic signal. The data show that for the same water level, the
seismic signal is higher at the start of the season, because of increased bedload transport rates.
Without bedload data they are however not able to categorically say it was due to this.

Figure 1.14: Clockwise hysteresis effect on seismic signals from a seasonal perspective during a
monsoon season (Burtin et al., 2008a)

Changing the temporal scales from seasonal to event based, Hsu et al. (2011) was also able to
find hysteresis within seismic data. However, they suggest that without the effect of bedload, a
similar loop can be generated by either the effect of the flood wave pressure changing from with
the flow or with the channel shape itself changing. Schmandt et al. (2017) took a new approach
to seismic monitoring, but looking at event timing, at a reach scale level by placing a 76 element
array around a 700 m stretch of river. They were able to control the flow and gravel injection
into the river, meaning they could hold the discharge constant and also introduced their own
timed gravel. By being able to hold discharge at a given level, they were able to determine the
fundamental frequency of the river at that discharge, and also to find a region of the spectrum
that only changed due to an input and subsequent sediment transport.

1.3.6 Section summary

The sound a river makes has been shown to be linked to the processes happening within the river
itself, with both hydrophone and seismic data being able to infer bedload transport. The size
and shape of the grains contribute to the frequencies produced, through their ability to move
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and in generating more turbulent flows. The research shown in this section goes to show that
sound generated by a river is dependent at least underwater and seismically to river condition.
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1.4 Geomorphic resistance

In the previous section it was found that the size of the grains had an affect on the soundscape
produced underwater and seismically. This section explores the relationship between the
geomorphology of a river channel and how it may impact the soundscape through its impact on
flow and energy.

1.4.1 Flow resistance

When trying to describe geomorphology in relation to how it affects the rivers’ flow, a quantitative
approach is needed (Piégay, 2017). Flow resistance relationships are used to try and understand
why one reach may behave substantially different from another that looks similar. It is essential
to be able to predict channel flow resistance as they are required for prediction of flow depths,
velocity, shear stress distribution, flood routing and mitigation (Bathurst, 2002; David et al., 2011;
Powell, 2014; Lamb et al., 2017). Therefore, it is crucial for studies concerning geomorphological,
sedimentological and hydroengineering research (Ferguson, 2010). Many studies have focused
upon lowland rivers, however, some have begun to look at how mountain streams compare
to existing relationships. Defining a mountain stream differs between authors, with slopes of
between 0.1 and 41% being considered (Bathurst, 1985; Nitsche et al., 2012; Schneider et al., 2015).
The qualitative definition is that there is coarse bed material (cobbles and boulders), relatively
immobile grains and topographic variability (Bathurst, 2002; Monsalve et al., 2017).

The significance of flow resistance is that it can be thought of in terms of energy dissipation,
with the energy to overcome it converted to heat and most importantly, sound (Powell, 2014).
Although there is a generic river sound, it can be different from low to high flow, or when there
are obstacles or not present.

1.4.2 Relative submergence

Any obstacle in a river will have relative submergence which is the measure of the height of the
obstacle relative to the depth of the water. Depending on the relative submergence different
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mechanisms of flow patterns can develop related to depth which is why it is important in trying
to link river depth to sound.

Boulders create flow pathways, increasing flow resistance especially at lower flows (Bathurst,
2002). This boulder-flow interaction can trigger turbulence, hydraulic jumps or plunging jet
flows, allowing air to be mixed into the water, generating white water. It is by this method that
bubbles are produced, and as mentioned in Section 1.3.4 these produce different frequency peaks
when burst. Studies have linked bed roughness to energy loss within the flow, with complex
3D flow patterns between obstacles (Yen, 2002). However, once these obstacles are submerged,
the ability of them to cause the trapping of air sharply diminishes and in turn turbulence is
reduced (Kucukali and Cokgor, 2008). The response in the soundscape will therefore be linked
to this threshold. The drag caused by boulders sometimes referred to as morphologic drag,
due to the immobility of them is seen as themainmechanism of flow resistance (Lamb et al., 2017).

If the free-surface is disturbed, caused by obstacles, was found by Flammer et al. (1970) to be
related to relative submergence of obstacles. The free-surface effects are primarily responsible
for the generation of white water (Brocchini and Peregrine, 2001). However, Flammer et al.
(1970) found in an experimental drag simulation that there are stages to the free surface effects,
pronounced, gradual and negligible, i.e. there is a lot of white water, to very little white water.
To quantify how boulders and immobile objects interrupt flow, a relationship between the flow
depth of the river and the height of the object has been formed. For sediment, the size chosen
in a reach is usually D84 which is the 84th percentile size from a grain size survey of the entire
reaches river bed. With a measure of how river depth in relation to the objects in the flow, the
corresponding resistance function can be calculated. Figure 1.15 shows this relationship found
within a mountain stream.

Most river reaches will not have a single protruding boulder within a channel, but will have amix,
with the flow moving around one boulder being compounded by any other nearby (David et al.,
2011). Therefore boulder concentration needs to be included within flow resistance calculations
as the total wake interference resistance is not equivalent to if the boulders were added up
individually (Ferro, 2003). A method suggested by Kucukali and Cokgor (2008) to measure the
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Figure 1.15: The difference of flow resistance depending on the scale of relative roughness,
between large scale (depth and obstacle height are similar) and small scale (the depth is greater
than the obstacle height) (Rickenmann and Recking, 2011).

Figure 1.16: The blockage area (diagonal lines) in respect to the total surface area opposing flow
as a function of depth. Where,D is boulder height, d, is water depth, B is boulder spacing and b
is space between boulders (Kucukali and Cokgor, 2008).

impact of boulders on flow involves taking cross sections across a river reach and comparing
boulder area facing upstream to the area of flow, known as the blockage ratio (Figure 1.16) .The
relationship found was to compare the blockage ratio against aeration in the water (turbulence)
and showed a strong correlation. Therefore the more of an obstacle to flow there is, then the
more free-surface effects that could be expected. Linking this with the project it means that for
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there to be white water, there has to be geomorphic resistance.

1.4.3 Section summary

In this section there is evidence that the disturbed free-surface and the white water, bubble
producingmedium, is linked to the relative submergence of an obstacle. The size and the amount
of the flow that is obstructed is linked to flow resistance and energy being released.
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1.5 Monitoring of rivers

In this section the idea of what needs to be monitored and how well is examined for rivers. The
use of networked sensors and how many of them are required to build robust monitor network
are considered.

1.5.1 How do you solve a problem like river monitoring?

Kundzewicz (2016) argued that if a flood happens, it should not be taken as a failure, and also not
a success if flood prevention worked, i.e. you shouldn’t be complacent. The floodwarning system
is only as strong as its weakest link, with the success of the system dependent on everything
being satisfactory which may have worked one time, but might not the other. Perera et al. (2019)
found that 75% of responses from the UN Office for Disaster Risk reduction indicated that their
river basins did not have satisfactory hydrological network coverage such as depth gauges, with
this most felt in developing countries. Significant numbers of stations in developing countries
are staffed, with manual physical measuring and 50% having deficient technology such as from
poor maintenance. The problem with river monitoring comes down to cost, with either being too
expensive to have to begin with, or too expensive to build up an adequate enough network. The
location, the density and the type of station are all important decisions to take when developing
a network (WMO, 2008).

WMO (2008) describe the minimum network stream gauge density (SGD) required to have
an operational system, to minimise the chances of miscalculations. Within hilly/undulating
land, which we assume is most of the UK, the recommendation is 1 monitor per 1,875 km2 of
watershed area, but the UK is very dense with 1 monitor per 161 km2. The UK’s network is as
dense as the EA has to understand its complex drainage density, climate, geology, land use and
water utilisation (Marsh, 2002). The recommend amount does not take into account population
density or socio-economic factors (Philip and McLaughlin, 2018). Whereas Benson (1965) did
take into account these variables, including variables such as relief, population growth and water
abstraction, with the nuance that a network fit for purpose now, may not be as it evolves. The
lower the network density, the better the quality of data that needs to collected from them with
Mishra and Coulibaly (2009) describing how to operate a low density network:
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1 Choose a primary site that is useful to multiple socio-economic groups

2 Identify which of these primary stations are needed to keep errors low

3 Rank stations on how they perform in combination with each other which give
low overall error

4
Look at how expensive the stations are in rank order, and decide if continuing
at the site is required.

5 Select the combination that can improve network performance without requiring
much additional resources.

On the other hand there is also a need for stream gauge network optimisation, as there is little
point having 10 stations on a river, when it really only requires 4 for your purpose. Yoo et al.

(2011) examined the Hantan River basin, Korea and found that the 27 stations in operation could
be reduced to 7 through modelling. Splitting the station network into a dendrogram as a way to
visualise them to show redundancy in the system and has the focus on tributaries instead of the
main channel (Figure 1.17).

Joo et al. (2019) also found that a similar basin with 18 stations, performed optimally when
there were only 12. Counter intuitively the more stations that are in a basin does not necessarily
provide a better outcome. Again, upstream stations were seen as beingmore important thanmain
channel which is what this project is focussed on. Joo et al. (2019) does mention that although
hydrologically these stations are significant, it does not take into account floodmitigation strategy,
such as monitoring before a significant population.

The monitoring of parts of the water cycle requires high frequency observational data, from
different sources to aid in research, water management, modelling and forecasting (Tetzlaff
et al., 2017). In a survey of 336 hydrologists, Blume et al. (2016) found that to advance research
there was consensus that small (<10 km2) to medium (10 - 100 km2) catchments would have
the most significant impact to advance the science as they have been less well studied. Smaller,
plot size and large scale (>1000 km2) were seen as having the least impact. New monitoring
equipment and techniques had a very strong need, with the addition of the current network being
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Figure 1.17: Catchment drainage networkmapwith the station network map. Significant stations
highlighted (Yoo et al., 2011).

maintained, rather than more modelling. Real time monitoring is crucial in flood monitoring
in particular as knowing the current condition of the river aids in refining any forecast and
actionable alerts (Moreno et al., 2019). At the medium catchment scale, river flooding can be
dictated by numerous processes, such as where the rain falls, how saturated the ground is and
what the land use may be (Figure 1.18) (Gaál et al., 2012; Rogger et al., 2017). With any changes
in these variables having a different effect on the potential flood (Viglione et al., 2016).

Localised variations of these variables can have a profound impact on the flood response, with
antecedent conditions influencing the possible flood (Norbiato et al., 2008). Within a season,
the input conditions can have different catchment level responses, with simple and complex
hydrographs (Harvey, 1971). In river forecasting, the river tributaries can be based upon
conceptual models and in this sort of system forecasts for upstream and small catchments is
lacking (Javelle et al., 2010). Zoccatelli et al. (2011) found that neglecting the fact of rainfall
spatial variability, influenced the catchment response time by -30 - 72%, showing that catchments
have great spatial responses. The system of flooding is highly interlinked, with what happens in
downstream, more densely populated areas being the resultant of upstream conditions (Seher
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Figure 1.18: Feedbackmechanisms of how aspects of the hydrological system can either positively
or negatively impact flooding prediction (Gaál et al., 2012).

and Löschner, 2018). The contribution of these individual reaches and section (hydrodynamic
dispersion), coupled with geomorphological dispersion dictate how a flood event may unfold, if
these are constant (Rinaldo et al., 1991). However, the celerity of the flood wave should not be
thought of in terms of space and time singly, with variation of flow depth and how this reacts to
geomorphology (Dixon et al., 2016). With high spatiality variation in response in these upper
catchments, the onus is on how hydrological monitoring might be able to fill these voids.

1.5.2 Section summary

The key message from this section is that the monitoring of headwater catchments aids in the
modelling of floods. Although too many monitors can be counter intuitively bad for modelling,
having more upper catchment monitors are good. With 75% of respondents to a survey stating
that small and medium level catchments offer the best research prospects, this area is prime for
monitoring.
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1.6 Internet of Things

The Internet of Things (IoT) is an umbrella term to group together a new generation of technology
with the interaction of "things" being shared through a network (Figure 1.19)(Atzori et al., 2010).
Themain aim behind the IoT is to enable people to gain access to technology that would otherwise
be too costly or too difficult to setup themselves, such as smart home appliances. It is purported
that by 2025 there will be 21.5 billion devices connected through the IoT, compared to only 9.9
billion in 2020 (Lueth, 2018).

Figure 1.19: Diagram of how the internet of things connects to each part of the system
(MathWorks, 2021).

1.6.1 Rivers and Internet of Things

In river monitoring IoT has enormous potential and growth. IoT sensors are essentially "dumb"
according toHughes et al. (2006) since they are only nodes in a system, recording and transmitting
data, with the analysis done off site, such as how they used nodes to measure flow depth.
Smith et al. (2009) presented a smarter flood warning system in which the sensors (pressure
or conductivity) were proactively determining what they were recording, adapting, such as
increasing measurement time, or to turning on advanced features such as cameras. Although
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an adaptive sensor seems like a good idea, since 2009 there has been no update on the river
monitoring technology, since perhaps it has became easier due to communication upgrades to
enable this enhanced feature remotely, keeping sensors "dumb". Dimakis et al. (2006) noted
that individually, they are cheap and unintelligent sensors, with them deriving strength from
numbers to provide reliable and robust information. Indeed, the drive for cheaper, easier to
deploy devices make it less necessary to provide precisely tuned data. The "dumb sensor, smart
sink", with a sink being a main processing unit, has been the working paradigm of sensor
technology for large-scale networks (Meng et al., 2006).

The development of cost effective, low-power, data capturing IoT devices has reached the point
that high quality observational data is obtainable and aiding in flood risk mitigation (Horsburgh
et al., 2019a). With systems being lower cost, this means that they can be scalable, allowing
more data sources to be utilised. In flood detection there are two important factors, perception
(is it really happening), and speed (enough time for action to be taken) (Yuliandoko et al.,
2018). Connecting these devices from remote areas is challenging, with mobile signal as one
possibility being directly influenced by rainfall intensity, which is not promising when rainfall
and flooding go hand in hand (Geng et al., 2019). Other communication types such as LoRa use
localised WiFi to connect devices in remote locations, through a centralised gateway (Ragnoli
et al., 2020). Lauridsen et al. (2017) found that all communication types have the possibility of
outages regardless of specification.
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Marin-Perez et al. (2012) describes the four main requirements for hydrologic applications of IoT
sensors:

Power
Connection to convential power sources are often missing near areas of hydrological interest.
Renewable sources such as solar and wind are susceptible to vandalism and theft. Sensors must
therefore be of low power consumption, have standard batteries and last at least one hydrologic

cycle (2 - 6 months).

Hardware compatibility
The data logging component of the system should be able to connect to more than one type of
instrument to increase flexibility and adaptability. Power supply must be easy to change and
adapt to the draw downs from the components to have optimal power management and

performance.

Reliability
The system should be able to withstand the conditions it is built for, i.e. a flood monitor must be
able to communicate and function during heavy rain storms. Backup systems must be present to

avoid information losses.

Communication
Sensors are often in remote areas, the type of communication should adapt to the conditions.
Peer to peer connections between each of them should be possible to extend monitorable range.

There are three main IoT monitor types that are specialised for monitoring river depth: ultrasonic
depth monitors (UDM), optical and depth loggers. In this section we will explore the rationale
behind these technologies and examine the sort of data these can provide.
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1.6.2 Depth loggers

The most common type of monitor are depth loggers which calculate river depth by recording
the difference between atmospheric and in-stream pressure (Sorensen and Butcher, 2011). First
used from the 1960’s, they were designed to replace a mechanical approach to automated depth
recording using floats and counterweights (Freeman et al., 2004). Installation of loggersmay need
enhanced power supplies, robust infrastructure and an alternative is just to download the data
at the site instead. It can be said that the EA gauges are already part of the IoT system, with their
pressure monitors instantly connecting to their servers via a fixed phone line or mobile network
and running off of battery power (Environment Agency, 2011). However, the inflexibility of
this setup, with reliance on permanent infrastructure make it costly, with costs for a basic setup
and maintenance at £1,000pa, so perhaps not at true IoT approach. These devices can however
produce accurate water depths with precision of 0.001 m, but do require constant compensation
between the hydroststic and air pressure (Ba̧czyk et al., 2017). Companies such as VanEssen and
HOBO make ready-to-go solutions that use depth loggers and pre-built portable stations using
network signal, but with a cost in excess of £1,000. These pre-built systems offer ease of use and
operation, aimed primarily at the industrial and research level.

An example of a true IoT device using a depth logger is a FreeStation, and as the name implies,
the foundations of this system are free, with the end user paying for their own parts and time,
with the parts costing less than £100 (Figure 1.20A). Chan et al. (2020) found when comparing
their own £16 pressure transducer based sensor to a £600 commercially based when measuring
stilling well depth, had an R2 of 0.94. However, this was within a relatively stable environment
of a well, with depth changes of 20 cm. Whether or not this system will be suitable for a river
environment has not been stated, however, these results are encouraging. A more modular and
DIY orientated project is known as the EnviroDIY, which also has the ability to attach a DIY
pressure transducer (Figure 1.20B) (Horsburgh et al., 2019b). Designed as a DIY environmental
science station it can also be used to gather atmospheric data. Folz et al. (2018) used the station
and gathered convincing results that this monitor was able to monitor river level, albeit with
the station facing power and connectivity issues requiring weekly site visits. The haphazard
approach to infrastructure also caused problem with high water and winds knocking over
stations due to flimsy construction for the conditions to be expected.
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Figure 1.20: Examples of DIY pressure transducers. (Top)- Freestation presure transducer with
integrated pressure monitor and Arduino and (Bottom)- EnviroDIY pressure sensor only hidden
inside a bolted pipe (Horsburgh et al., 2019b; Chan et al., 2020)

.

There is a lack of use of DIY station data within the literature, either due to being in its infancy,
or still lacking credibility. There is no lack of data with the EnviroDIY network consisting of
2,811 stations (405 hydrology) and the FreeStation network of 382 (46 hydrology).

1.6.3 Ultrasonic depth monitors

In contrast to depth loggers, UDMs are non-contact monitoring devices, meaning they do not
need to be fitted within water. Lo et al. (2015) describes how depth loggers have a high associated
maintenance, because they are at risk of being buried in sediment or being destroyed. UDMs
are devices that look down onto the river, sending out a pulse of ultrasonic sound, and listening
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for the reflection back (Rahmtalla et al., 2014). By measuring the time between the pulse and the
return, the algorithm can work out the distance to the water surface. The system relies upon
a direct line of sight to the water surface, and for variables such as RH and temperature to be
known, for estimating the speed of sound, for reliable measurements which requires a separate
sensor (Panda et al., 2016). The most common sensor used, the HC-SR04, does however only
have an accuracy of 96.6% compared to a pressure transducer at 99.9% (Nasution et al., 2018).
The theoretical sensing range of the HC-SR04 is between 0.02 m to 4 m, and the practical range
of 0.02 m to 80.8 m, with a dispersion angle of 15 °(Indoware, 2013). The practical vs. theoretical
range is due to the ultrasonic cone generated by the sensor, rather than a direct laminar pulse, it
spreads out (Figure 1.21) (Escolà et al., 2011).

Figure 1.21: Ultrasonic cone demonstrating the zone which is useful and also the spread of the
cone (Molnar, 2004).

The use of UDMs is widespread among the IoT driven river monitors, far more so than pressure
monitoring in terms of published work. UDMs are more widespread as they are outwith the
river, so easy to install and only requires one sensor instead of two pressure sensors to calculate
water depth. Commercial and consumer units are available with this technology, being utilised
more in the community flood resilience sector. RiverTrack, RiverCore, Libelium, BMRSS and
the FreeStation are but a few of the devices available on the market (Figure 1.22). Mohd Sabre
et al. (2019) uses an integrated network of UDMs and the IoT to create localised flood alerts. The
underlying technology behind the sensing is all but identical.
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Figure 1.22: (A)- RiverCore with the small, low profile sensor attatched to a bridge, (B)-
RiverTrack internals with the battery and computer, (C)- Libelium station over a low order
stream on a bridge and (D)-BMRSS (Bridge mounted river sensor system). (GOV.scot; Moreno
et al. (2019); libelium.com and Kruger et al. (2016))

For these devices to work well, Kruger et al. (2016) recommended a sturdy mounting point,
with access to line of sight to the water surface. Kruger et al. (2016) chose to mount their UDMs
onto bridges, since not only did they span rivers, they also were easy to get to. The added
benefit at mounting to bridges are that the structures need to be checked to see if river levels
may impact the bridge users safety. Being able to look vertically down on the surface is needed,
given the ultrasonic cone dispersal. Moreno et al. (2019) examined the use of a "drifting" sensor,
which is suspended over a channel by guide ropes. The data gathered showed that during calm
conditions the measurements from the sensor to the surface fluctuated between 0.84 m and 0.96
m. In contrast, the fixed mounting system by Kruger et al. (2016) utilised the step of repeated
short duration measurements of 5 groups of 5 over 15 seconds, with the highest average of these
being taken. The results are incredibly close to that of the government operated site nearby
(Figure 1.23).
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Figure 1.23: Comparision of the water stage data from a USGS station (yellow) and the BMRSS
(black) (Kruger et al., 2016).

1.6.4 Optical

A simpler method for calculating water stage is to read a value from a stage board, which can
either be done in person or with the aid of cameras. Unlike with UDMwhich has other variables
that need to be recorded for an accurate measurements, such as temperature, RH and incidence
angles and is required to be placed over a river, camera based systems are simple (Kim et al.,
2011). Water level recognition can be achieved through image processing, rather than someone
observing it (Shin et al., 2007). Issues can still persist with with images, however, another benefit
of the technique is that someone can visually check the data, something that couldn’t be done
with a depth logger or UDMwithout visiting (Gilmore et al., 2013). The reason to image process
is that it is tricky to tell by eye what the water level is, especially at high flow with depending on
the surface (Takagi et al., 1998). Takagi et al. (1998) developed a method that has a stage board
and a slanting metal strip to help determine what the water interface was like, as if it was mirror
like then the measured height would be incorrect. That method of image processing is however
is problematic due to special apparatus needing to be installed, such as a stage board and its
sensitivity to detritus (Kim et al., 2011).

Iwahashi and Udomsiri (2007) set out a method for water level detection without the use of
any in-situ river equipment based upon detecting the boundary between water and land. The
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process of adding additional frames together as a method of removing raindrops and waves, i.e.
combining 30 frames of a video into one frame and averaging, has the effect of being able to clear
the image of noise, but also create a firm boundary (Figure 1.24). Alternatively, Sakaino (2016)
believed that the heavy computational cost with sequencing multiple frames is unnecessary and
developed a technique using a single frame to increase accuracy and speed. By breaking the
image into a histogram of pixel intensity from black (0) to white (255) and comparing these
values before and during an event they found a cross correlation of 0.87 between their method
and a UDM. Opportunistic measurements, by close to river CCTV cameras was explored by Lin
et al. (2018) in which they managed to get a level resolution of 1 cm using utilising principles of
photogrammetry to create control points to stabilise the image in the case that the camera moved.
Neural networks have been used by Pan et al. (2018) as an alternative to the "difference" method
(frame comparing) to generate water level data, with the difference method performing at 0.046
m of error against 0.009 m of error with a nerual network. Combining CCTV data and neural
networks, Moy de Vitry et al. (2019) found as a proof of concept that 75% of images correlated
with water level after training the neural network with 1218 flooding images. These camera
images were not only from river images, but also roads and from cars.

The previous studies have looked at rivers in amore urban setting in channels that are hydrologically
indistinctive, with no bed or bedload being visible. We therefore begin to look at optical based
water level detection in more challenging areas.

There are however difficulties with optical based margin measurements in more remote areas
which were found by Young et al. (2015) when using images from Iceland. Illumination changes
caused by the sun tracking across the sky, changing the contrast of images, meant that the
difference in colour between the water and the surrounding landscape was not strong enough
to separate the two. Furthermore environmental factors such as snow, fog and rain obscured
the camera and the edge of the bank was highly textured, with no smooth surfaces to find a
measuring point. In light of these challenges they adopted a manual approach to measuring,
which had an enormous consequence on the data gathered.

Eltner et al. (2018) identified the need for small-scale and headwater catchments to be gauged,
and thought that imaged based gauging could be the answer. In addtion to a fixed camera setup,
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Figure 1.24: Image workflow from a single frame, to a combined frame. With after being filtered
a water level can be established (Iwahashi and Udomsiri, 2007).

structure frommotion was utilised to construct the channel in 3D, which stitches together photos.
Their results yet again do not have night time collection, yet they conclude that it performs well
(Figure 1.25). Leduc et al. (2018) found an R2 of 0.91 based from a pressure transducer against
their camera based monitor, however, they also do not have the facility to use night time images
and argue that non- continuous data is still useful for channel hydraulics. Night vision cameras
have been shown to be effective in measuring water level, however, though using a specially
adapted stage board (Zhang et al., 2019b). Challenges occur however with now more complex
lighting scenarios, such as at twilight, and with the use of artificial lighting causing glare and
shadows (Zhang et al., 2019a).

Broadening the use of image based water level detection, Kröhnert and Eltner (2018); Elias et al.
(2019) have developed a method for smartphone cameras to be used incidentally to measure
water level. Without the need of any sort of infrastructure, a user can take an image, and have
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Figure 1.25: Hydrographs obtained from traditional gauges (blue) and the optical system (green)
(Eltner et al., 2018).

that converted into a water level measurement, and has 0.02 m accuracy up to 20 m away. The
caveat being that a 3D image of the survey site needs to be known in advance in order to project
the 2D image onto a 3D surface.

1.6.5 Particle image velocimetry

As a subset of optical measuring, there is also the opportunity to not only gather water level
data but also flow velocity, which can be combined to let the user calculate discharge. Hauet
et al. (2008) mentions how combining the two techniques is possible and is seen as the natural
progression (Elias et al., 2019).

Stream velocity measurements in high discharge scenarios, and with gradients greater than 0.1%
being tricky due to shallow flow and turbulence (Jarrett, 1984; Lu et al., 2006). Organisations
such as the EA and USGS need to maintain and extend ratings curves to characterise the flow,
but can put personnel at risk (Legleiter et al., 2017). Particle image velocimetry (PIV) is an
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optical, low-cost, non-contact based approach for measuring stream flow using sequential images
to determine temporal evolution of surface flow velocity (Willert and Gharib, 1991; Patalano
et al., 2017). These systems can either be fixed CCTV type cameras or from uncrewed aerial
vehicles (UAV)s (Tauro et al., 2017; Thumser et al., 2017). Adrian (2005) noted that PIV can be
an accurate, quantitative measurement of fluid velocity, which is challenging and complicated.
PIV is split into two camps, Large Scale Particle Image Velocimetry (LSPIV) and Large Scale
Particle Tracking Velocimetry (LSPTV), and is used to determine water surface velocity and
discharge estimates (Figure 1.26) (Patalano et al., 2017). LSPIV uses Eulerian frame of reference
and LSPTV uses Lagrangian frame of reference. Eulerian is when the image changes in the
fixed field of view, with Langrangian being the frame of reference changing instead enabling
particle trajectory to be monitored (Rapp, 2017). LSPIV is a more widely adopted monitoring
strategy, with Fujita et al. (1998) being among the first to adapt PIV for use in environmental
settings, rather than a laboratory (Dramais et al., 2011). Admiraal et al. (2004) states that LSPTV
is unbiased compared to LSPIV, and is more efficient in high velocity gradient zones.

LSPIV requires five components: flow visualisation, illumination, image recording, image
processing and orthorectification. From these components it is possible to determine mean
velocity, streamlines, vorticity and all other statistical moments and cross-products (Muste et al.,
2008). Discharge however requires the bathymetry of the channel and flow depth, which either
needs to be measured once if it is not changing, or repeatedly if it is and an assumption between
the surface velocity and average stream velocity. Genç et al. (2015) found that there was an error
of 4.08% between using surface velocity and in-stream discharge measurements. Le Coz et al.
(2010) found that during flash flood events, in discharges of near 300 m3 s-1, they were within
10% of the discharge measured by an ADCP and in discharges from 300 to 2500 m3 s-1, within
20%. Significant problems occurred when conditions for taking the images were poor or if the
flow became unsteady, contributing to errors of between 30-80%. LSPIV can be used with UAVs,
to survey rivers that are seldom measured due to their sporadic nature of response and practical
difficulties of getting there fast enough (Tauro et al., 2016). Perks et al. (2016) measured a 1 in 200
year flood event using drone imagery, and were able to determine flow velocity and direction,
with an error of ± 0.15 m s1.
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Figure 1.26: Comparison of the different PIV techniques with LSPIV on the left, with each
coloured arrow on the left is an average velocity for an area and LSPTV on the right, and each
coloured line tracks an individual particle (Patalano et al., 2017).

Using commercial available cameras, Hortobágyi et al. (2019) has been able to feature track debris
in a river, such as foam, wood, and turbulence structures, to determine vectors of water velocity,
using LSPTV. Tracking of these objects is comparable in field and laboratory conditions, with
adequate accuracy, with LSPTV most efficient during periods of low to medium flow (Patalano
et al., 2014; Mella et al., 2019). This method is particularly advantageous in low flow conditions, as
traditional measuring with an ADCP is limited in shallow water (Gordon, 1989). In comparison
to LSPIV, (Tauro et al., 2017) found that LSPTV provided closer to the actual velocities rather than
underestimating. Lightning (reflections of the sunlight) and the wind (moving the particles) are
environmental factors that effect the use of LSPTV in particular (Patalano et al., 2014). Conversely,
LSPIV has lighting and seeding related issues, and generally underperforms in adverse condtions
(Tauro et al., 2017).
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PIV techniques can also be combined with techniques that measure water depth from images
(Section 1.6.3). Ran et al. (2016) gathered both surface velocity andwater level from aDIY camera
recorder, which had a water level accuracy of 3.7 cm and within 10% of values from measured
velocity. From the ungauged station, they were able to construct a convincing ratings curve with
an R2 of 0.94 (Figure 1.27). However, the monitoring period was only during daylight hours
due to no artificial illumination. Illuminating for night monitoring was shown to be effective by
Chaves (2012), with the use of a pulsed LED, and retro-reflective fabric to help bounce back the
light to the camera, providing a large number of valid field vectors to measure.

Figure 1.27: Ratings curve using data only acquired from a PIV system and stage data from 3D
stereoimaging (Ran et al., 2016).

Often during flood events, there is rain. Authors do not go into detail about the effect of rain on
image acquisition, often calling it optical noise. Zhang et al. (2013) noted how rain and fog can
blur an image, due to increased airborne particles, dulling the image. Raindrop impact on the
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surface can impact the motion vector estimation, but not significantly enough. If the river cannot
be seen, either being obscured by rain or bad lighting, optical based monitoring breaks down.

1.6.6 Section summary

Depth loggers, UDM, optical and PIV are all innovative solution to monitor a river, with stage
and surface velocity being able to be measured or calculated. Each of these technologies have
pros and cons, which sound can potentially overcome. Depth loggers require to be placed within
the river, with infrastructure, meaning headwater catchments and their bed topography meaning
fixing is difficult. As sound is omnidirectional and can travel away from a river, it does not need
to be place within a river. UDMs need a direct line of sight to the river surface and to be steady
to get a clear measurement, sound again is not required to be placed over a channel. Both optical
and PIV require illumination if to work at night time, requiring power, whereas sound is just as
loud at night as in the day.
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1.7 The Data

1.7.1 Citizen science

Data accuracy and availability issues persist at a local level, with localised catchments being
spatially and temporally complex (Starkey et al., 2017). Citizen science is a relatively new
endeavour, and in the environmental sector allows the public to make observations, contributing
to the hierarchy of decision making at local levels (Ferri et al., 2019). Hydrology has the potential
to become a major citizen science project since it enables diverse observations from areas which
may have been out of bounds, such as in another country or at a national level (Nardi et al.,
2021). Ferri et al. (2019) found that the cost vs. impact of the recording of river conditions carried
out, which when measured was a 2 to 1 outweighing at reducing the expected flood damage.
Buytaert et al. (2014) states that the development of new sensing technology, data processing
and analysis are allowing this public engagement with science to become viable. The internet
has been the enabler for this new wave of scientific endeavour, with the layperson being able to
build their own sensors, instead of needing a University education and high-tech equipment
(Wildschut, 2017). Cost effective sensors allow relative amateurs to collect data with the IoT
allowing this data to be delivered to large databases, which has been setup and maintained by
someone. Buytaert et al. (2016) also sees a trend from hydrometry being measured by formal
institutions (EA) towards a diverse array of decentralised data collectors.

Diverging from the norm of traditional data collection, the accuracy of data collected using
of citizen science has been called into question. Hunter et al. (2013) claims that the limited
training, knowledge and expertise can lead to bad data. A juxtaposition behind the greater
science community regarding citizen science as a poor, and not that trustworthy, is in stark
contrast to the scientists themselves wanting this data. It is dependent on how well the citizen
scientists are trained and how well the project is setup. Cuff et al. (2008) labelled two main
concerns with this form of data collection, "observer effect" and "junk data". The collection of
data from cheap, unverified, uncalibrated sensors can be seen as "junk data", with no pretence of
neutrality or comprehensiveness. The "observer effect" is essentially when someone becomes so
engrossed in a subject to work, they lose objectivity, change their behaviour and alter the data.
Rather than being nihilistic, Sheppard and Terveen (2011) broke down the argument into how
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Figure 1.28: Workflow of a citizen science project (Kim et al., 2013).

data quality can be defined, maintained and balanced. The data you get from citizen science is
only as good as the effort and design that is put in in the first place, high quality data requires a
defined collection strategy, rigorous quality control and an atmosphere where participants are
engaged.

1.7.2 The Big idea

With the IoT and citizen science approach the number of stations will become far greater (Towe
et al., 2020). So what is the big idea with this? Big data. To define something as big data, it has to
satisfy the three V’s; volume, velocity and variety. High volumes of low density information, such
as river levels, the speed of data collection in near real time and the variety of data, coming from
different source in an unstructured way (Gandomi and Haider, 2015). The data stream does not
necessarily need to be data points frommonitors, but also from indirect sources such as tweets and
generic CCTV (Ranjan et al., 2017). Accurate flood warning systems are to benefit from this big
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data, with advancements in IoT andmachine learning providing the tools to analyse the real-time
data, producing a system that is as near to real-time warning as possible (Donratanapat et al.,
2020). Mathematical models, predicting flood peak and duration for example, are increasingly
updated with observations from physical sensors to reduce model uncertainty and improve
forecasting (Mazzoleni et al., 2017). Hydraulic models may not perform as expected if calibrated
to low flows when an unexpected event takes place (Unduche et al., 2018). A solution to improve
the sparsity of gauge data is to deploy DIY sensors in the data assimilation process, albeit with
the caveat that the data itself may have high uncertainty (Fava et al., 2019). Mazzoleni et al. (2017)
found that with even limited and uncertain hydraulic data can improve the flood prediction of
models. Real-time data assimilation combines the complementary model and observational data
into an optimal estimate (Reichle, 2008).

Sood et al. (2018) put catchments into discrete clusters, grouping together weather data, river
data and ground data (forest density, soil type and drainage systems) within a 200 m area.
When one cluster begins to notice change, the surrounding clusters are put into enhanced mode,
making more frequent observations. Mitra et al. (2016) proposed a mesh connected wireless
sensor network , composed of water level, humidity, pressure, water flow and rain intensity and
to train an artificial neural network to detect flooding. Using a pre-obtained data set, with 65%
of the data being used to train and the remaining for validation, Mitra et al. (2016) had a R2

value of 0.99 for prediction if there was a flood. The authors themselves state that that the model
might not be complex enough, and when a data set from a IoT is used this may need significant
modification to train the neural network to new situations. Towe et al. (2020) raises the argument
of what you want and need a model to do dependent on the time. Fast response decisions need
a model to be operationally fast and robust with the ability to take real-time data, in contrast to
longer term decisions, which are more flexible and generate more probable outcomes. A recent
report by the EA recommended that for regional to national flood modelling, there has to be
synergy between all data sources and for regional models to all use the same type of input data
to allow a national forecast to be made (Robson et al., 2017). Importing new types of data into
flood mitigation is seen as important, but trying to determine how these complex and mixed up
data sources can be used is still lacking (Demir and Krajewski, 2013).

Big data , with aiding traditional data sources is seen as a solution in crisis management, when

50



1.7.3. Section summary

there is a simultaneous information overload and "information dearth", due to not enough
sensors where you need them, and too many where you don’t (Restrepo-Estrada et al., 2018).
Procuring from the citizen science methodology, georeferenced social media is a supplement to
floodmodelling that is becoming popular, as the data is linked to the peoplewho are experiencing
a flood, "human sensors", moving the conversation from numbers to a more personal approach
(Fraternali et al., 2012). Calling it human computation, Quinn and Bederson (2011) introduces the
concept that instead of relying on a computer model to make decisions solely, human intelligence
or intuition is far better at collecting the results that are needed. Figure 1.29 displays a sample
workflow for data gathered from traditional hydrometric sources and from the human aspect
data. In practice, by adding this social media aspect, (Restrepo-Estrada et al., 2018) seen an
increase from 39% accuracy when determining rainfall using only traditional monitors to 71%
accuracy by including social media (nearly 16 million tweets), based upon more data was being
received from areas that were seldom monitored. Moving from reactive to proactive is seen as a
way of mitigation to minimise disruption and protect people (Barr et al., 2020).

Looking towards the future, McCabe et al. (2017) mentions that it is unclear whether current
models are able to usefully ingest the numerous new streams of data, or whether this new data is
going to simply be superfluous to modelling, with petabytes (million gigabytes) of data coming
in. Remarkably, Feng and Sester (2018) was able to pick out the peaks of rainfall events with only
images and texts supplied on Twitter. McCabe et al. (2017) stated that non-traditional sources
will expand the spatio-temporal representation of existing networks. However in theory Fonstad
and Zettler-Mann (2020) sees that current analytics are lagging behind new big data, with the
analogy of "new wine in old bottles", with new data with old analysis.

1.7.3 Section summary

In this section the acquisition of data is shown to be important, with the caveat that the data has
to be of good enough quality to be used. Utilising citizen science in which it is both beneficial to
the citizen and a researcher is seen as a motive for sound monitoring.
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Figure 1.29: Workflow of how different data streams can be used to construct a working
hydrological model (Restrepo-Estrada et al., 2018).
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“Sometimes, if you stand on the bottom
rail of a bridge and lean over to watch the
river slipping slowly away beneath you,
you will suddenly know everything there
is to be known.

A.A. Milne ”
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2. Babbling brook to thunderous torrent: Using sound to monitor river stage

Abstract

The passive, ambient sound above the water from a river has previously untapped potential for
determining flow characteristics such as stage. Measuring sub-aerial sound could provide a new,
efficient way to continuously monitor river stage, without the need for in-stream infrastructure.
Previous published work has suggested that there might be a relationship between sound and
river stage, but the analysis has been restricted to a narrow range of flow conditions and river
morphologies. We present a method to determine site suitability and the process of how to
record and analyse sound. Data collected along a 500 m length of the River Washburn during
July 2019 is used to determine what makes a site suitable for sound monitoring. We found that
sound is controlled by roughness elements in the channel, such as a boulder or weir, which
influences the sound produced. On the basis of these findings, we collect audio recordings
from 6 sites around the North East of England, covering a range of flow conditions and different
roughness elements, since 2019. We use data from those sites collected during storms Ciara and
Dennis to produce a relationship between this sound and river stage. Our analysis has showed a
positive relationship between an R2 of 0.73 and 0.99 in all rivers, however, requires careful site
selection and data processing to achieve the best results. We introduce a filter which is capable
of isolating a rivers’ sound from other environmental sound. Future work in examining the
role of these roughness elements is required to understand the full extent of this technique. By
demonstrating that sound can operate as a hydrometric tool, we suggest that sound monitoring
could be used to provide cost effective monitoring devices, either to detect relative change in a
river or, after more research, a reliable stage measurement.
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2.1. Introduction

2.1 Introduction

Hydrometry, the measuring of components of the hydrological system such as river flow
characteristics, is crucial in flood mitigation strategy and monitoring (Chacon-Hurtado et al.,
2017). The methods by which rivers are monitored are ever evolving with new techniques
such as PIV and ADCP measuring flow velocity, and UDM measuring stage (Muste et al., 2004,
2008; Kruger et al., 2016). There is a drive for greater ease of use of this kind of technology,
being spurred on by the IoT to create an easy to use framework that everyone can contribute
to (Moreno et al., 2019). These approaches are designed to supplement the 1,500 hydrometric
stations currently operational in theUK (Marsh andHannaford, 2008). Although theUKnetwork
of government agency hydrometric stations is dense, this equates to one monitor per 130 km of
the river network (Marsh, 2002). All of these technologies, both existing and emerging, have
infrastructural issues to overcome to work efficiently, such as power, direct line of sight and
calibration, limiting their wider implementation. There is a need for an innovative, non-invasive,
cost-effective method for monitoring river stage, which could be distributed throughout parts of
catchments that currently are not monitored.

Imagine being beside a river, what do you hear? In this study we propose that sound can be used
as an alternative method to calculate river stage and track flood peaks. The use of sound is based
upon the assumption that a river gets louder as its depth increases, such as a babbling brook
becoming a thunderous torrent, generating a soundscape that is dependent on river condition.
We focus on sound because it has a number of potential advantages over alternative methods for
measuring river stage. Measuring sound is power efficient as the monitor measures passively,
rather than actively generating a signal, such as an ultrasonic pulse from an UDM. PIV requires
illumination at night, which can be a significant drain on energy. Sound can be measured from
the banks of a river, reducing the need for extensive in-stream infrastructure. Despite its potential
advantages, we do not currently know under what range of conditions sound can be used to
monitor river stage. A method that works across a wide range of conditions is necessary for this
technique to be used to manage flood risk.

The sound of a river has been studied through the use of seismic (ground), infrasonic (air) and
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2.1. Introduction

hydroacoustic (water) surveying, examining how sound production can be linked to sediment
transport, flood processes and turbulence within a natural environment (Manasseh et al., 2006;
Ronan et al., 2017; Schmandt et al., 2017). The sub-aerial sound of a river is primarily produced
by the entrainment and collapse of air bubbles in the flow, through turbulent features such as
hydraulic jumps, rapids or waterfalls generating waves and whitewater (Bolghasi et al., 2017b).
Minnaert (1933), first described how the sound of "musical" air bubbles and running water were
complex in nature. The Minnaert resonance is the idealised sound frequency at which a bubble
bursts, without the effects of surface tension, viscosity of the liquid and the thermal conductivity
of the gas (Gaunaurd and Überall, 1981). Bubbles monitored underwater were found to burst in
the frequency range of 400 - 2000 Hz, with bubble radius determining the frequency (Chicharro
and Vazquez, 2014). The larger the bubble, the lower it’s corresponding frequency, such as a 10
cm bubble radius has a frequency of 32 Hz and a 1 cm radius of 326 Hz (Leighton, 1994). We
expect that this frequency range will determine the frequencies in the sound made by rivers
sub-aerially.

The relationship between sub-aerial sound and stage level has been investigated by Morse
et al. (2007). They concluded that as stage changes, then sound pressure, the deviation of air
pressure from ambient, will change in unison. The presence of geomorphic features, such as
a cascade or riffle, were found to affect the sound pressure ranges. The study, however, had
limited observations, with 6-8 sound points over a range of flow conditions that did not include
flooding, nor were the mechanics of what controlled the sound considered. The extrapolation of
a relationship found during low flow to high flow has not been tested, with high flows having an
inherently different flow regime, with surface turbulence structures emerging (Chanson, 1996).
A relationship between seismic noise, sediment transport and river discharge was found by Govi
et al. (1993); Anthony et al. (2018) and with river stage by Burtin et al. (2008b) , determining
that hydrodynamics were the most probable source of the signal. Infrasound monitoring by
Schmandt et al. (2013) suggests that waves on the water surface generated sound, showing a
link between discharge and sound. The use of passive sound above the water is also seen as
an emerging way of measuring the air-water gas exchange velocity (K), which is essential for
ecological processes (Morse et al., 2007; Klaus et al., 2019). Klaus et al. (2019) found that there was
a positive relationship between sound pressure and K in the frequency range 31.5 Hz - 1000 Hz.
The riverbed morphology had a significant control over the sound produced by each reach, with
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2.2. Methods

large scale roughness element (RE), such as boulders, having a larger effect than a gravel bed.
A large obstacle will also cause the most deflection of the water, called form drag, at low and
high flow (Bathurst, 2002). Looking at the self-aeration process, the mixing of gases from the
atmosphere into the water, Kucukali and Cokgor (2008) found that there was a relationship
between the blockage ratio (upstream area blocked by an obstacle) and aeration caused by
turbulence. With a relationship between the size of an RE and turbulence, this supports the idea
that REs are important to sound generation. We therefore seek to expand our understanding
about a link between sound and REs and whether this has any influence on sound and stage
relationships.

The aims of this paper are to: (1) identify sites suitable for sound monitoring; (2) determine if
river sound can be isolated from a complex, seasonal soundscape, outwith clement conditions;
(3) investigate how factors such as REs may influence a relationship between sound and stage.

2.2 Methods

We first introduce our process for determining site suitability and the techniques to record and
analyse sound data from rivers. We then examine the relationship between the recorded sound
and river stage, and explore the factors that contribute to the relationship.

2.2.1 Sound collection

All audio from our field locations (introduced below)was recorded in theWAV format at 16 kbps
as it preserves more data in a recording compared to a compressed format such as MP3. Mennitt
and Fristrup (2012) used consumer level recorders for outdoor audio recording and found that
although MP3 allowed long, continuous recordings to be made, it did reduce the frequency
resolution that could be used. Recording at a sampling rate of 44.1 kHz, with the Nyquist
frequency of 22.05 kHz, the recording captures all data in the frequency range between 1 Hz and
22.05 kHz, which is greater than the range of normal human hearing of 20 Hz to 20 kHz (Horii
et al., 2018). However, because of limitations in the response of consumer grade microphones to
low-frequency sound (Table 2.1) and due to power-source noise, we only consider frequencies >
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2.2.2. Site suitability

Monitor Microphone Directionality Frequency range Singal to
noise ratiio (dBA)

Sensitivity (dB)
(1 kHz at 94 dB, 1Pa)

River Washburn RØDE VideoMic Supercardioid 40 Hz - 20 kHz 79 -38
Bushnell E3 ECM-60C Omni 50 Hz - 13 kHz 40 -64
Raspberry Pi CMA-4544PF-W Omni 20 Hz - 20 kHz 60 -44

Table 2.1: The monitors and their associated microphones units within them. Technical
specification of the microphones is freely available online. Values that are important to the
study are frequency range, signal to noise ratio and sensitivity. These determine the range we
can measure at and also the conversion into sound pressure level. Each microphone has a quasi
flat response to frequency as per the technical specifications but was not tested in this study. Any
frequency bias will have a negligible effect on our data.

50 Hz in this study. We define river sound as the sound that can be audibly heard by a person
since we expect that someone can audibly tell the difference between a river at low and high
flow. Infrasound, below 20 Hz, is not considered as consumer microphone frequency ranges
rarely go below 20 Hz and with the frequency humans can hear at, a change of rivers sound
is audibly noticeable. Bubbles would also need to be bigger, at greater than 30 cm diameter to
produce sound below 20 Hz (Leighton, 1994).

In this study, three types of microphone are used, with their technical specification shown in
Table 2.1. Although less than ideal to use different microphones, once converted into sound
pressure level (SPL), our sound value is measured in decibels of SPL (dB SPL) in reference
to 20µPa. Understanding how the sound changes is more relevant to our study and not why
one river is louder than another since other factors such as sound attenuation would need to
be accounted for for direct comparison. All microphones were recessed within an enclosure to
protect against wind and rain, but not blocked to the environment.

2.2.2 Site suitability

In order to identify the most suitable sites we need to know how the sound produced by a river
channel changes spatially and what river features influence it. We deem a site suitable if (1) we
can hear the river and (2) if there is a significant response in the sound between river stages. We
addressed this at the River Washburn, Yorkshire, UK, where there was a unique opportunity
to record audio in the same day during a low compensation discharge of 0.08 m3s-1 and a high
continuous discharge of 8.55 m3s-1. The Washburn is a natural river channel connecting a series
of reservoirs, and occasional high discharges move water between the reservoirs. These releases
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2.2.3. Sound analysis

are used for whitewater sports, and the channel has been managed by introducing rapids and
boulder gardens (REs), altering it from what it would have been naturally.

To investigate site suitability an acoustic map along 500 m of the river was generated to help
us identify regions that had a markable change in sound from low to high flow. Markers were
placed at 10 m intervals along the course of the river, and each point was referenced using a dGPS.
Recordings were taken at an elevation of 1.5 m above the bank during high and low conditions
from the marked location. An additional section of the river was identified for a more in depth
examination which had a flat floodplain around a RE to examine how sound behaves at different
monitoring points around a channel. Mapping the sound at 10 m intervals along the river, and at
1 m points away from the river we are able to describe how sound behaves. Audio was recorded
for 8 seconds at each location, using the RØDE VideoMic (supercardioid) with a sensitivity
azimuth of 210°which is more directional in comparison to omnidirectional microphones at 360°.
We used a supercardioid microphone to record the majority of sound produced by each specific
section of the channel, and to limit sound from sections further up/downstream. However,
components of upstream and downstream will still remain.

Photographs of each marker section were taken to assess what was generating the whitewater at
each reach and to designate if a section had: no REs (Rank 1), small REs (Rank 2), or large REs
(Rank 3). Qualitative ranking of the REs is used as direct measurements of these obstacles was
not possible. Determining rank was done by eye, with rank 2 and 3 differentiated by if there was
a large RE (height approximately >1 m) and how the REs were dispersed, such as how directly
in the flow they were. It was assumed that a RE in the middle of the flow will have more impact
on the flow than at either bank side.

2.2.3 Sound analysis

With the sound captured, we needed to find a way to filter any noise from our expected river
signal. Audio clips were converted from the time to frequency domain using a FFT in MATLAB
R2020a. To examine at a resolution of 1 Hz, a minimum sample length of 1 second is required.
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2.2.3. Sound analysis

We aim to identify a river sound zone (RSZ), which is the frequency range that best correlates
with river stage. To derive a single sound value for each recording, which can be compared
against the corresponding river stage measurement, we use the spectral centre (median) of the
data. The median is calculated from all values of SPL within a certain frequency range, known
as a bin. As the FFT produces a SPL value for every 1 Hz, we have 22,050 individual sound
values, with 0 Hz being the mean of the data. Therefore when we calculate a median from a 1
kHz bin, it is calculated from 1000 values. We use this instead of the spectral centroid (average)
or maximum volume, because the median of the data yields a more representative signal that is
not skewed by erroneously large or low values in the frequency range. Median filters are useful
in scenarios where periodic patterns are found (Ohki et al., 1995). The first bin of 1 - 1000 Hz is
clipped to 50 - 1000 Hz, as due to the switching power supply used, noise from the power supply
affects readings below 50 Hz.

It is unrealistic to assume that the only sound source is the river. To further constrain the RSZ,
other environmental noise needs to be removed. Certain frequency domains that may be of
influence are: the human voice in mainly the 100 Hz - 8 kHz range; birdsong at 1 - 8 kHz;
and vehicles at 0 - 4 kHz (Monson et al., 2014; Liu et al., 2013; Slabbekoorn and Ripmeester,
2008). These noises will primarily affect monitoring during low flow conditions as during high
conditions these will either be absent, or drowned out. Figure 2.1 shows the spectrogram of each
of these individual noises. Each sound has its own unique fingerprint, compared to a pure river
signal. Birdsong has excitable chirps and trills, car sound is a wideband, flat noise, and talking
is in pulses of speech. To reduce the number of noise related errors the RSZ will have to be both
strongly linked to the river, while maintaining its independence from these other environmental
noises.

Wind and rain are not associated with a certain frequency range, and are dependent on intensity
instead. The fluctuating nature of wind and rain intensity makes this sound known as Brownian
noise, with a rumbling, roaring sound (Yackinous, 2015). Rain was found by Burtin et al. (2011a)
to have caused a seismic signal when landing on rocky debris near monitors. Wind can be the
most intrusive sound on a recording and if the wind is constantly louder than the river, blowing
out the microphone, then it is not possible to extract a river component. In a remote location
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2.2.3. Sound analysis

away from cultural noise sources, wind has also been recorded on seismic monitors at the surface,
contaminating the recorded signal at speeds of only 6.5 mph (Withers et al., 1996). Ronan et al.

(2017) found wind to be the most probable source of high power, low spectral coherence noise
on infrasound recordings. With Anthony et al. (2018) suggesting that without wind filters and
if deployed close to a river, infrasound acoustic signals were likely unsuitable for smaller river
systems. To reduce wind impact on the monitor, the microphone can be placed in the opposite
direction to the prevailing wind or placed in an area with adequate wind baffling from trees or
shrubs. But, even with adequate protection, wind can still be heard in some recordings. Figure
2.1B shows a spectrogram of a gusty signal, with the bright peaks caused by intermittent wind
spreading into the higher frequencies. If the entire recording was run through the FFT code,
then these peaks spanning the entire frequency range would dominate the results.

To remove the impact of the wind we apply an additional filtering step to our data (Figure
2.2). We record each sample for as long as possible as it provides a better chance of getting a
continuous section of recording without wind noise. Changing the recording length is subject to
the site and how confident we are that we can filter out the wind physically. In this study we
considered a minimum recording length of 5 seconds to be necessary. To filter out the wind noise,
we split the recording into 1 second rectangular windows, with 0.5 second overlap between them.
We do this to allow a frequency resolution of 1 Hz to be maintained through the FFT, as this
matches our sampling rate. A rectangular window also does not smooth out the boundaries
of the clip. Reducing the total recording length reduces the number of windows, and thus
the potential samples to get the lowest median from. The overlap is to increase the number of
windows that can be taken from any given recording. The audio data from each of these new
windows are processed with the same FFT code, resulting in one median value per frequency
bin for each window. The minimum value for the RSZ, the region of frequencies found to have
the maximum correlation with stage, from across all the different time windows is chosen. We
take the minimum value from all the different time intervals because it is expected that river
sound is constant in any recording and will always be the loudest of any constant base sound but
will also be quieter than sporadic noises caused by wind, thunder etc. By taking the minima of
each audio sample in the RSZ, we can significantly improve the processing of noisy recordings.
We call this the lowest median filter (LMF). When assessing this technique to determine any
bias in the window that is chosen, we found that the window with the lowest value is equally
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taken from across all the windows and one is not preferentially choosing one.

The following section introduces our workflow of collecting and processing river data, which
was applied to all study sites and is the basis for any future work or different sites (Figure 2.2).

2.2.4 Study site monitoring

Six sites were selected for monitoring between November 2019 and February 2020 based upon
the findings of data collected at the River Washburn for site suitability, chiefly the occurrence of
REs (see Figure 2.3 and Table 2.2 for characteristics). These locations were selected to be typical
of many rivers and not highly specific. Sites A-C were deemed to have good site suitability. Sites
D-F were not explicitly chosen for good suitability, for instance many have small REs and site
F has a large amount of wind noise. They are predominantly alluvial rivers but include two
bedrock channels (site D and F), and range between 8.0 - 34.5 m wide. Stage at Sites A-C was
measured using a pressure transducer (TD- Diver), calibrated to atmospheric pressure, and
Sites D-F were EA operated gauges recording at 15 minute intervals.
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2.2.4. Study site monitoring

Figure 2.1: Spectrograms for different sources of environmental noise. Each recording is only of
that sound. (A) Chainley Burn during average flow condition on a calm day, (B) Trout Beck,
County Durham during continuous high wind, (C) Reciting of the alphabet, (D) main road
with cars going past and (E) Black bird. Plots are produced by the spectrogram function using
short-time Fourier transforms, which allows both frequency and the time domain to be viewed
concurrently. Bin width is set to 1 Hz to show a finer resolution of data.
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Figure 2.2: Our workflow of how to monitor a river using sound with the required steps needed
to perform lowest median filtering.
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2.2.4. Study site monitoring

Figure 2.3: Map of study site locations with corresponding photographs taken from each site
showing the morphology of the river and the general surroundings. A-D were taken during low
river levels, with E-F taken during above normal levels. Approximate channel widths A: 6.0 m,
B: 6.0 m, C: 5.0 m, D: 8.0 m, E: 13.5 m and F: 5.0 m.
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Site River Coordinates Data collection period Gauging Distance from monitor
to river bank (m)

Bankfull
depth (m)

Bankfull
width (m) Substrate

A Haltwhistle Burn (Lower),
Northumberland

5458’43.5"N
227’40.6"W 24/07/2019 -19/02/2020 Diver 1.0 1.6 14.3 Cobble

B Haltwhistle Burn (Upper),
Northumberland

5458’47.2"N
227’36.4"W 28/01/2020 -19/02/2020 Diver 5.0 1.1 19.9 Cobble

C Chainley Burn, Northumberland 5458’51.1"N
221’22.7"W 6/12/2020 - 19/02/2020 Diver 1.5 1.4 9.8 Cobble

D Rookhope Burn, County Durham 5444’51.0"N
204’31.0"W 27/11/2019 -14/02/2020 EA 4.5 0.8 8.0 Cobble/

Bedrock
E Kielder Burn, Northumberland 5513’50.9"N

234’54.0"W 27/11/2019 -16/02/2020 EA 13.0 1.5 34.5 Gravel

F Killhope Burn, County Durham 5445’11.7"N
213’27.5"W 27/11/2019 -18/02/2020 EA 7.5 0.8 8.7 Bedrock

Table 2.2: Study site location properties.
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2.2.4. Study site monitoring

A Bushnell E3 trail camera was used to record sound at Site A as this provided a "ready to go"
setup at the start of the project. A purpose built monitor was created from a Raspberry Pi Zero, a
CMA-4544PF-Wmicrophone and aWittyPi Mini (timer) for use at all subsequent sites. Monitors
were attached as close as possible to the river on existing structures and out of danger of high
water. At Site A sound was recorded for up to 10 seconds, once an hour due to running off of AA
batteries. A reading once an hour is the minimum frequency to monitor at, as anything longer
than this becomes unconducive for meaningful flood monitoring. Higher frequency sampling
rates of every 15 minutes were achieved with the Pi Zero at Sites B-F, allowing comparison
against the 15 minute interval EA station data. Each device has a finite number of recordings it
can take, due to the size of battery used, meaning it can either sample at a high rate for a short
time, or last longer and only sample every hour. Using a 7 Ah, 12 v lead acid battery allowed up
to 1,400 recordings to be made with the Pi. The length of individual recordings varied due to
power saving management, with the wildlife camera varying between 8- 10 seconds and the Pi
Zero, 9-10 seconds.

With exception of the acousticmapping, an omnidirectionalmicrophonewas used in themonitors
as this captures audio from an identified reach, without the need to target the microphone during
installation. There would be a risk of a supercardioid microphone moving during any long term
experiment, which would incur an extra source of error. The ambition to make a sensor that can
be widely deployed means that it is advantageous if it can use cost effective and easily procured
components. Higher resolution and frequency response data could be captured with a higher
specification microphone and digital audio recorder, but with the problems of power and cost
becoming an issue. We expect that the frequencies that will be of interest are less than 15 kHz,
so the microphones used should be sufficient (Klaus et al., 2019).

During our monitoring, the UKwas subjected to substantial rainfall in February 2020, with Storm
Ciara on 8th − 9th February, and Storm Dennis on 15th- 16th February. These events produced
river levels that reached the highest levels monitored in some of our stations, and higher than
levels reached from Storm Desmond (5th- 6th December 2015) for others but not quite beating
long standing records. Having both storms back to back was an incredibly rare opportunity. We
use the data from the storms as our primary dataset, because it ranges from very low to very
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high levels, and therefore can be used to test the range of conditions across which sound can be
used to predict stage. We supplement this data with a longer dataset collected at Site A from
24th July 2019 to 20th February 2020.

We test the fit of any sound-stage relationship using a Nash-Sutcliffe efficiency (NSE), comparing
our observed and simulated stage data. Nash and Sutcliffe (1970) developed a technique to test
the fit of observed and simulated flow data, by determining how well it fits to a 1:1 line. NSE
has a range of 1 to -∞, with the 1 being a perfect relationship. McCuen et al. (2006) showed that
a NSE greather than 0.5 was a good fit. When comparing between observed and calculated stage
we therefore show a NSE which will determine how good the fit is.

2.3 Results

We present our results in three stages: (1) analysing what features within a river may control the
sound emitted and determine a suitable site, (2) demonstrating how the LMF helps to improve
the data collected from the river and (3) examine whether the filtered sound data has any
correlation to river stage.

2.3.1 Acoustic mapping

2.3.1.1 River Washburn

An acoustic map of the River Washburn is shown in Figure 2.4 during low and near bankfull flow.
The River Washburn has a SPL of 30 - 60 dB SPL across its course during low conditions, with
higher values at a weir and a constrained section. At high discharge certain reaches become very
loud, where there are substantial REs with heights > 0.5 m. When observing the photographs
at each section, we found a correlation between the presence of whitewater and the SPL, with
more whitewater being associated with higher SPL values, agreeing with (Ronan et al., 2017).
Every section of the river experienced a rise in SPL from low to almost bankfull flow. When
comparing to the qualitative REs rankings in the channel: Rank 1 generates a median range
of SPL between 40 - 60 db SPL; Rank 2, 46 - 64 db SPL and Rank 3, 45- 66 dB SPL (Figure 2.5).
Therefore between low and high flow, SPL rises by around 20 dB SPL no matter what rank is
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used. However, choosing the rank in which the loudest sound is produced is beneficial as it
provides a higher likelihood of being louder than any possible environmental noise.
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Figure 2.4: Acoustic map plotted of a 500 m course of the River Washburn during low and high flow. Markers show recording locations with the
coloured line being a 1D interpretation between these points. Images shown highlight the main areas of change along with photographs of the sites.
Sound values are obtained using the lowest median filter with a frequency of 0.05 -1 kHz. 0.05- 1 kHz is used due to the site being sheltered from
wind meaning any sound generated will be purely from the river.
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Figure 2.5: Box plot of normalised amplitude at low and high flow conditions, grouped by
the qualitative rankings of roughness elements at the River Washburn. Photographs show a
representative example of each rank. Roughness element rank is chosen by eye, with dominant
REs, i.e. the largest element, being easily identifiable in Rank 3. Number of samples: Rank 1, 22;
Rank 2, 15; and Rank 3, 13.

An in-depth look at a section of the river with an large RE, with a rank of 2, is shown in Figure 2.6.
In Figure 2.6A , as we walk 10 m away from the river, the SPL drops from 66 to 55 dB SPL during
high flow. At every point, the SPLmeasured at high flow is larger than that measured at low flow.
Moving upstream or downstream, Figure 2.6B shows that SPL drops as we move away from the
RE. The highest SPL is not at the RE as a tree was between the microphone and the RE. Without
the tree we would expect a smooth convex shape to continue. Sound does not drop as much
as whenmoving away from the river, with a 10mmovement causing a drop from 66 to 61 dB SPL.

2.3.2 Lowest median filter

2.3.2.1 River sound/ stage relationship

Long term audio data, recorded using the trail camera at Site A are compared against the river
stage data from the pressure transducer in Figure 2.7. The audio data were processed to calculate
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Figure 2.6: At the River Washburn, acoustic mapping was done around a dominant RE with
a rank of 2. (A) moving away from the river and (B) along it. Recordings were done at the
same points during low and high flow. Sound value relates to the 0.05 - 1 kHz band after lowest
median filtering.

the median SPL within the frequency range 0.05- 1 kHz. The frequency range was chosen to
illustrate how well the filter works, although may not be the best frequency range to use in the
study due to the prevalence of wind. We call the resulting profiles of how sound changes over
time sonohydrographs. In Figure 2.7A there is little similarity between the sonohydrograph and
the actual hydrograph. In contrast in Figure 2.7B, after LMF, the sonohydrograph has the same
shape as the hydrograph, with the steep sides of the rising limbs and the slower lowering of the
falling limbs. In Figure 2.7A the wind noise produced by winter storms is clearly highlighted
in the large fluctuations of the blue line such as on the 9th February 2020, with no clear signal
being given during this time period. If used to interpret river stage, the river would appear to be
in a state of flooding and sudden drainage repeatedly. In contrast, in the filtered data, there are
no fluctuations. We therefore apply the LMF in all subsequent data analysis.

2.3.2.2 Wind noise

The Killhope Burn, at Site F, is a far noisier site in comparison to the more secluded locations
such as Haltwhistle, with traffic and wind noise (Figure 2.8). As shown in Figure 2.1, these
pollutants share the same frequency space as the river sound, meaning we needed to use a higher
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Figure 2.7: Sonohydrographs (blue) and hydrographs (black) of the Haltwhistle Burn over a
Summer/ Winter season. (A) Unfiltered data at 0.05-1 kHz and (B) LMF filtered data at 0.05-1
kHz. Unfiltered data is a FFT of the entire audio clip, and the median taken from the 0.05 - 1kHz
bin.

frequency range of 5-6 kHz as it was shown later in the study to be the best to use at this site.
The readings are affected by wind even during periods of more settled weather, with Storm
Atiyah, 8th- 9th December 2019. The filtering has an enhanced effect compared to Figure 2.7,
removing most of the fluctuating readings and reducing the scatter of the data. We still have
some wind noise artefacts in the data in Figure 2.8C, but significantly less than in Figure 2.8A.
The number of points in the data where the SPL is an order of magnitude greater than the value
of the previous point is reduced by 70% after application of the filter. The fit and smoothness of
the sonohydrograph also improves, when viewed in relation to river stage. When we plot river
sound and it’s co-current river stage we are able to fit a function to this, with Figure 2.8B and D
showing that an exponential relationship is able to be found, with a R2 of 0.85 after the LMF,
when before it was not possible. The wind noise that was persistent at low stages has all but
been eradicated.
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2.3.2.2. Wind noise

Figure 2.8: Comparison of river data with substantial wind noise from the Killhope Burn,
Wearhead between 5 - 6 kHz. (A) Unfiltered sonohydrograph, (B) unfiltered river stage/ sound
relationship, (C) LMF sonohydrograph and (D) LMF river stage/ sound relationship.

To allow the LMF to operate efficiently, a recording length has to be long enough to include a gap
in any concurrent noise. We ran our LMF code with different lengths of recordings, from one
second to total recording length. These new SPL values were then compared against stage, and
the R2 found of the best relationship between the two. In Figure 2.9 the difference between the
calmer Haltwhistle and the windier Killhope site becomes clear. Haltwhistle is able to achieve a
better relationship against river stage at very short recording times, with a one second recording
giving an R2 of 0.90 in the 1 - 2 kHz bin. Conversely a one second recording at Killhope only
has an R2 of 0.7. There is a upwards trend in R2 against recording time for both sites, but this
trend is more substantial at Killhope. At a total recording time of greater than two seconds there
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2.3.3. Storm Ciara and Dennis

Figure 2.9: Sound data from Haltwhistle and Killhope filtered through the LMF using different
total recording times and its affect on the stage/ sound relationship R2 value. Haltwhistle burn
uses a logarithmic function to fit to the data, and Killhope uses an exponential function.

is a substantial increase in R2 in the Killhope data, with R2 reaching 0.97. After four seconds
there is a gradual increase of the fit. The filter is also improving the lower frequencies of the
Killhope burn, however, longer recording times would be needed to match the mid-frequencies.
This demonstrates that the LMF is effective at reducing the impact of wind noise on our data.

2.3.3 Storm Ciara and Dennis

Figure 2.10 represents February for the study sites located throughout the North East of England.
For each site we calculated the median sound value after LMF filtering in bin widths of 1
kHz, plotted these values against river stage, and calculated an R2 value of a logarithmic and
exponential fit. Two fit options are used as some data fits better with an exponential compared
to a logarithm. Our aim is to identify whether there is a relationship in the data, regardless of
the form, rather than having a prior assumption about what the shape of the relationship should
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be. The variations in R2 values with frequency range are shown in the first column of Figure
2.10. We use all the sound data during February (inclusive of storms) to determine the RSZ
that is most likely to be the best region to use going forward. Site D has relatively poor, but
consistent correlations throughout the spectrum between 0.05 - 15 kHz. We see that the highest
R2 values occur in the 0.05 - 3 kHz range in 4 out of the 6 rivers (Sites A, C, D and E). The RSZ
used subsequently for each of these rivers is the highest R2 found from fitting a relationship.
Two sites have their best relationship with a logarithm, and four with an exponential. The R2

values can vary across the frequency range in each river, with some being very consistent (Site
B), to others being less consistent (Site C).



2.3.3. Storm Ciara and Dennis

Figure 2.10: Workflow for identifying the best RSZ and obtaining the best river sound/
stage relationship for our 6 sites during Storm Ciara and Dennis. Column 1- the plotting of
Storm Ciara/Dennis sound data against stage forming an R2 value for both a logarithmic and
exponential function. Highlighted point is the chosen RSZ for the rest of the figure which is the
highest R2 value. Column 2- The sound data and river stage plotted for the highlighted RSZ.
Column 3- The sonohydrograph and hydrograph comparison for the RSZ. Horizontal dashed
line shows the highest point of the largest roughness element found in the channel.

With the best RSZ determined, column 2 in Figure 2.10 compares the river stage data against
the sound data recorded during February using the chosen bin (RSZ) highlighted in column 1.
Each river shows a correlation between recorded sound and river stage, with certain reaches
better than others. Sites A, B and C had very good site suitability and have been found to have
amongst the highest and most consistent R2 of between 0.89 - 0.94. In these sites stage modeled
from sound is within 0.2 m of the actual stage at the 95% confidence interval. Sites D, E and F
were not explicitly chosen for good site suitability but they do all still have a strong relationship,
with R2 of between 0.73 - 0.99. Data below 0.3 m at Site E has been removed since no comparable
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2.3.3. Storm Ciara and Dennis

river stage data is available.

The highest river level was recorded at Site E at 2.2 m. When the stage reaches 1 m, we see a
large increases in SPL with subsequent increases in stage. Bankfull for this reach is at an average
depth of 1.5 m, above which the river flows through riparian vegetation. At these levels any
riverbed morphology will have been submerged, but other obstacles such as trees start to interact
with the flow. Site E is the only site to have experienced significant above bankfull flow during
this time period. Flow in other channels was kept within the banks by features such as built up
footpaths and flood defences. Site D was located at a weir/ natural waterfall complex, with the
shape of the graph perhaps reflecting this, with large variation of SPL below 0.25 m at 47 - 52 dB
SPL. At low flow there may be two competing sound sources, the REs and the weir/waterfall.
As river stage increases one sound source may become dominant, most likely the waterfall, and
a less varied signal emerges.

Column3 shows the hydrograph compared against the sonohydrograph. From the sonohydrographs
we can see that there are a few peaks caused by wind, with some still found in Figure 2.10xv and
xviii. High gusts of 50 mph, and a sustained wind speed of 30 mph, in combination with low
river level are the likely cause. The general shape between the two curves are the same during
flooding. There is divergence between the graphs in Figure 2.10xi at lower river levels, before
the peak emerging at 0.3 m. Site E does not record stage below 0.3 m, however, we have included
our sound data in the sonohydrograph to show that we were still able to measure sound below
0.3 m.

2.3.4 Nash-Sutcliffe

In Figure 2.11, when converted from sound to stage using the sound-stage relationship found in
Figure 2.10 we are able to assess the how well the simulated data compares. We can see in all
plots that the simulated data plots well against the observed data, with a NSE ranging from 0.80
to 0.95. There are no observable differences on whether a logarithmic or exponential function is
used on the resulting NSE. The lower NSE of 0.80 at Kielder is due to the lack of observed data
below 0.3 m.
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2.4. Discussion

Figure 2.11: Storm Ciara and Dennis observed stage data vs. simulated data from using the
sound-stage relationship found in Figure 2.10. Nash-Sutcliffe efficiency given between observed
and simulated stage.

2.4 Discussion

We have shown that sound shows a strong correlation with river stage after determining the
best frequency range. Consequently we think that it might be possible that given reliable sound
measurements and site calibration, a corresponding river stage can be estimated. Producing
reliable estimations of river stage from sound requires consideration of how the river sound
can be isolated from ambient noise and how sound is produced by a river. Although this is
preliminary work, it has shown promising results, albeit with requiring post processing at this
stage.

2.4.1 Controls on sound generation

In order to be able to implement monitors at different locations without the need for calibration,
we need to be able to predict the form of the stage/SPL relationship. We expect that this will be
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2.4.1. Controls on sound generation

a function of factors including the size of the largest obstacle, obstacle density, bankfull level,
how close the monitor is to a RE, and if there are any barriers between them which was shown
to impact sound propagation (Figure 2.6). Our Washburn dataset leads us to the conclusion
that for a site to be suitable for monitoring it beneficial to have a RE within the channel since it
produces the loudest sound. The variability in sound along the 500 m section is proposed to be
entirely down to the REs presence, prominence or absence. The REs of these reaches impede the
river, forcing flow around/ and or over. The river has to exert its energy to overcome these, and
some of this is released as sound energy, from the entrapment of air and bursting of bubbles.
When observing the photographs at each section (Figure 2.5), we found a correlation between
the presence of whitewater and the SPL, with more whitewater being associated with higher
SPL values. An entirely featureless reach, such as a culvert, would be less than ideal for this
method, unless there was some sort of texture.

In our data we see upticks in the trend of the sound/stage data in Figure 2.10viii , xi and xvii
. The interruptions occur when a RE feature has either been submerged or perhaps when a
new RE is activated. Site D, with its weir and waterfall, is an alluvial channel, with boulders
of between 0.2 - 0.3 m. We believe that once the boulders have been submerged the loudest
sound is generated from the waterfall complex, which at low levels is quieter than the boulder
sound. Site F’s RE is from stepping within the bedrock channel, with step heights of 0.35 - 0.45
m. Similarly with Site D, once these features are submerged, the trend seen in the data shows an
exponential trend in sound being produced, with an increase from 0.5 to 1.4 m, having a SPL
range of 40 -45 dB SPL. The trend means that as stage increases, the SPL will increase, but not at
the same rate as during lower levels at the RE submergence height. The continued upward trend
in data is hypothesised to still be originating from these RE, however from a different mechanism
arising from the higher discharges. Turbulence structures created by the changes in flow may
be generating different bubble structures for example, with fluctuations in intensity. Standing
waves are the most likely cause of new turbulence at higher stages with submerged boulders,
with localised increases in Froude number (Comiti and Lenzi, 2006). The preference of a either
an exponential or logarithmic function being fitted to the data is hypothesised to be linked to
a self limiting part of the system, with a river reaching a point that there are no other sound
sources being activated. Sites with an exponential fit have their REs covered at low levels, and
do not activate new ones even at above bankfull. Sites with logarithmic functions have either not
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2.4.1. Controls on sound generation

had their REs covered or have broken their banks and activated new ones. To further test this
hypothesis a river would have to be monitored at both in bank and over bank storm conditions.

In ranking the river reaches in Figure 2.5, sections without any REs still had an increase in SPL
between low and high flow. We could conclude that generally there is noise bleeding in from
sections up/downstream, or that there are other sound generating elements in a reach. Figure
2.6B has sound generated from an RE being observable 10 m up or downstream of it, which is
within our 10 m sampling range. Therefore the change in sound observed at a site with smaller
REs (Rank 1), may in fact be affected by REs further away. The design of the river means that
there were REs found throughout, and attributing a specific RE for bleeding is difficult. Bank
resistance is another possible source of sound, such as from protruding tree roots or alluvial
deposits. However, we expect that REs are the main source of sound within a river environment.
Our Washburn data suggests that the larger the RE in the river, the greater the SPL at high
conditions. Being louder is seen to be beneficial to monitoring, since the river is more likely to
be louder than environmental noise and is broadcast over greater distances, meaning monitors
can be located further away. Rivers with smaller REs may still be able to be used, with the caveat
of monitors perhaps needing to be more sheltered or closer to the river. In general we can say
that the larger the RE, the louder it can become, and therefore opens more flexibility in the
monitoring regime. Assuming that large obstacles are near permanent fixtures in the river, they
remain stable even during high flow events. This stability should make any long term data and
future extrapolation of stage far easier than if the environment was constantly shifting. Amoving
obstacle would have the same effect as moving the microphone (Figure 2.6), changing the sounds
that are monitored. Further long term studies will need to be undertaken to determine how
long a site’s relationship remains stable, however, in Figure 2.7 over the course of 6 months the
signal does not change drastically. Over this time, bedload will have been transported, but this
movement did not change the signal we observed. In a more dynamic environment, a change in
bed configuration may have a significant change in sound.

We can use the Storm Ciara data (Figure 2.10), where data were collected from channels with
different REs, to determine whether a RE has any influence on a relationship. The data show
that, regardless of RE size, a smooth relationship exists after RE submersion. However, the trend
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2.4.2. RSZ isolation

of that relationship appears to be ultimately controlled by the RE, such as in Figure 2.10viii ,
xi and xvii. As all sites had REs, we cannot be sure if these sorts of relationships would still
persist at sites without REs. We have shown that when using co-located measurements of sound
and stage, we can derive a relationship to predict stage to within 0.2 m at the 95% confidence
interval. However, the ideal frequency band used to get stage information and the nature of the
relationships are both highly site specific, and so it is not currently feasible to predict the form of
that relationship without some paired measurements of sound and stage. But, at all sites SPL
has increased with increasing stage. Consequently the relative change in SPL of the river could
be used, without calibration, to determine whether the peak of a flood has passed.

2.4.2 RSZ isolation

When trying to determine the best frequency range to use in our research, we defined the best
zone as the RSZ. We found the RSZ to change between different rivers within the range 0.05 - 6
kHz, with no set zone for all (Figure 2.10). The RSZ is influenced by how noisy the signals fed
into the LMF were. The greatest challenge faced by this study was the isolation of a river sound
component from the ambient soundscape. Without the benefit of generating our own signal, we
rely on the continuous burbling of a river and if this primary sound source is obscured by other
noises we need to actively search for a clean signal, which is why the RSZ is influenced. We
expect that the main frequency range for sound production in rivers is in the lower frequencies, <
3 kHz, as we experienced ourmost consistentR2 values there, with one site B having amarginally
betterR2 at 3 - 4 kHz but only by 0.03 compared to 2 -3 kHz. We do still have very highR2 values
in higher frequencies, and a very good 0.99 for Site F. However, 0.05- 3 kHz is heavily affected by
wind noise, which if strong enough may require the switching to higher frequencies as observed
at Site F. Potentially Site F may have had a strong relationship in the lower frequencies, but due
to persistent wind noise we cannot identify it.

Research using hydrophones is consistent with our RSZ, with surface turbulence having a
frequency range of between 500 - 2000 Hz over varying flow regimes (Geay et al., 2017). Tonolla
et al. (2009) examined how relative submergence of an obstacle influenced the sound, stating that
a frequency swapmay occur once a relative submergence limit is passed, such as a riffle producing
mid-frequency noise during low discharge, changing to a low frequency at high discharge. We
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2.4.2. RSZ isolation

do not see the complete abandonment of a frequency range after a RE is submerged, such as in
Figure 2.10xiv and xvii , as there is still a relationshipwith stage present beyond RE submergence.
A frequency switch might be causing the change in direction of a relationship once an RE is
submerged, but we cannot be certain on this since the low frequency needed to confirm this at our
sites that display this behaviour is obscured by the wind. Other sources of sound produced from
within a river, such as sediment transport, can exist in the same frequency space as turbulence,
around 1 kHz (Krein et al., 2016). But, we have not seen any indication from our data of sudden
changes in our trends at high discharges. It might be that our rivers do not generate bedload
sound loud enough to overcome the sound of turbulence, but in other rivers it might be a different
case. The sound from sediment moving is not strongly transmissible through the water to the air,
with acoustic pressure reducing by 2000 times when sound transfers between the two, meaning
either there has to be a lot of bedload movement or for the turbulence sound to be lower than it
for it to be heard (Leighton, 2012).

We use a frequency range instead of a single frequency to measure river level because as river
level increases, changes in the turbulence cause the bubble size to change, altering the frequency
of the sound that is produced, the Minnaert resonance. Using a range also adds stability to the
data. In the frequency range of 0.05 - 3 kHz, we are in the Goldilocks zone for sound production
from surface turbulence, with filtering helping to remove any environmental noise. Within this
range, each river has a different most efficient frequency to look at. But, not all rivers have their
best efficiency in this region, so the RSZ may need to be altered subject to analysis of previous
data. We do however see that the sites chosen for good sound potential, (Sites A and C), have
the RSZ in the 0.05 - 3 kHz region. The reason for better stage/ sound relationships being found
at higher frequencies when the lower frequencies are polluted, despite sound being produced in
the 0 - 3 kHz region, is perhaps down to harmonics. If there is a fundamental frequency of 1.5
kHz, we can expect to see upper harmonics at 3 kHz, 4.5 kHz etc. reducing in SPL magnitude
at each jump. Similarly a range of fundamental frequency may have these harmonics. Kumar
and Brennen (1991) showed that sound of bubbles bursting in water showed harmonics, with
defined peaks occurring at higher frequencies above the fundamental frequency. It is perhaps
with harmonics and overtones of the bubbles that we continue to see a river/ sound relationship
at higher frequencies.
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2.4.2. RSZ isolation

Having identified that sound production is focussed at < 3 kHz, we need to ensure that we are
able to monitor this region as easily as possible. The basics of sound isolation lie in the design and
placement of the monitor. Eldwaik and Li (2018) noted that wind noise was notoriously difficult
to filter in an outdoor environment, due to its time varying nature and broadband frequency. We
show that our LMF can help to reduce noise from the wind (Figure 2.8), but better still would be
to not have the noise in the first place, achieved by having a microphone properly shielded from
the wind. We recessed our microphones to protect them from the rain and wind, but still had
wind noise present meaning without recessing our data may have been more affected. Adding a
wind dampening sponge could also be used, having the effect of quietening down the recording,
but also baffling the wind (Lin et al., 2014). Even with these preventative measures, wind noise
will still be present since it is part of the soundscape. Rivers that are however found in exposed
areas, such as moorland that are subject to frequent low level wind, and placement of the monitor
then becomes crucial. Placing a monitor as close to the river as possible has two benefits, the
likelihood of hearing only the river, and also offering the highest range in sound, with a better
resolution of data (Figure 2.6). We see that through acoustic mapping at the River Washburn,
when the microphone is moved further away from the river, it begins to quieten. At every point,
the SPL measured at high flow is larger than that measured at low flow. SPL decreases upstream
and downstream of the RE, with the highest SPL near the RE. The decrease in SPL as you move
up/downstream, is less than that observed when heading away from the river due to other
sound components being introduced from the river. We do however acknowledge that placement
beside a river is not always possible, and find that being within 5 m is advantageous, with being
able to move up to 10 m and still having a difference between high and low (Figure 2.6). The
limitation of how far a monitor can be placed is when the sound from high and low flow overlap,
meaning you cannot monitor changes acoustically anymore. The distance of how far a monitor
can be placed is determined by the river itself; larger, more energetic rivers, may be still within a
zone of high relationship further than 5 m. Conversely, a smaller, less energetic river may need
to have a closer monitor.
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2.4.3 Sound as a hydrometric

We are encouraged by the trends between sound and river stage we see in each river that we have
monitored. Currently we are able to model with certainty when river level is changing, with all
sites in Figure 2.10 showing their flood peaks clearly from sound data. With NSE of between
0.80 and 0.95 we believe this to be a very good fit between observed and simulated data, with a
score of 0.50 being described as a good fit. We acknowledge that an absolute measurement is not
currently of a standard that could be used for essential management. Consequently we do not
see sound as a method for absolute value monitoring, but rather a warning system, capable of
detecting flood peaks when they occur or when the river might be starting to flood. If absolute
measurements are needed, alternative channel monitoring techniques are available.

Sound varied with stage in all the river reaches that we monitored, and so we are confident that
noisy rivers will have a relationship with stage. The more data that is collected and correlated
with the river stage, the greater the confidence we have in sound being used as a measurement.
On reflection on what makes a good section of river to monitor to measure sound, our Washburn
data gave us ideas on sound generation from large obstacles, making lots of noise was shown to
be largely correct. Further work will need to be undertaken to allow a SPL/ stage relationship to
be predicted from the channel characteristics and without the need for previous stage data.

2.5 Conclusion

At the start of this study, we set out to isolate river sound from a soundscape. The isolation of
the river from the soundscape was achieved through the use of the LMF, which is capable of
turning a poor, windy relationship, into a promising, predictable signal. A perfect scenario, with
no wind or rain noise, is still advantageous, but we have shown that even with these sources
that river sound is a monitorable source of river stage information. Future work will need to be
undertaken to allow stage measurements to be calculated without the need of calibration. The
relationship between sound and a river’s stage has been shown to have a strong relationship,
with positive correlation seen in every site chosen. River morphology was shown to influence
the sound that we were able to measure and find relationships from. Our results suggest that
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there is significant geomorphic control on sound production and that sound is unique to each
river, like a fingerprint, but it is still able to be monitored after site calibration.

When assessing the usefulness of this technology, it has to be considered in the benefits it may
bring to some places that require some sort of monitoring. The technology may not be used
to determine an exact river stage, but to show if a flood peak has past or if the river is rising
or lowering. Using sound as a method for measuring a river is a novel approach to remotely
monitor rivers. Established methods of gathering hydrometric data are not going to be abolished
thanks to this, but can work in harmony, with a larger catchment scale network envisioned, made
up of several IoT devices that each work in their own specialised sector. Sound can fill the gaps
where other hydrometric stations cannot be deployed, either due to infrastructure or cost. With
continued research into this field, it may be possible to embed sound monitoring into a network
scale approach to river flood management, rather than isolating it to a sole source of information.
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3. A sound rating curve: Using sub-aerial sound to calculate river stage

Abstract

The sub-aerial sound of a river can be used as a proxy for stage, enabling the monitoring
of catchments that may seldom be studied with traditional techniques. Our previous work
has shown that the relationship between sound and stage is dependent on the number and
size of obstacles in the channel, and cannot easily be predicted. Previously, we calibrated
relationships between sound and stage using data sets with thousands of paired measurements.
However, collecting so many stage measurements is generally not feasible, and defeats the point
of developing an alternative method for measuring stage. The aim of this paper is to determine
the minimum number of paired stage and sound measurements that are needed to produce
a ratings curve that will give a robust prediction of stage from sound. We use sound-stage
measurements from the Haltwhistle Burn, Northumberland and Killhope Burn, County Durham,
during the 2020 Storms Ciara and Dennis as our data set. We find that as the number of points
used to generate a rating curve increases, from 3 to 7, then the relationship formed becomes
more robust. However, adding a condition that there has to be a minimum stage range between
all points used is more important than the number of points. We recommend that sound-stage
ratings curves are produced from a minimum of 6 pairs of sound-stage points, and/or data that
covers a 0.5 m variation in stage.
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3.1 Introduction

Directly measuring a stream characteristic, such as stream discharge, is challenging. Instead,
indirect methods are often used to calculate them (Ocio et al., 2017). Osborne et al. (2021) found
that the sub-aerial sound produced by a river can be related to its stage. That was achieved
through the continual simultaneousmeasuring of stage and sound, with stage being continuously
monitored with pressure transducers. We found that the relationship between the sound and
stage could be approximated by a log or exponential relationship, which could be used to predict
stage at times when stage was not being measured directly. But, in order for this technique to
be widely applied, we need to establish how to implement it in locations without continual
independent stage gauging. An alternative way of measuring stage is to measure stage manually.
Without the continual stage measurements to compare sound against, we address the question
of whether a relationship can be formed from limited concurrent sound-stage measurements to
form a rating style curve. Developing a sound-stage rating curve would enable sound monitor
calibration without the need of instream infrastructure such as stilling wells. In this paper we
will be testing whether a sound-stage ratings curve can be established and examine the best
practices in doing so in regards to the minimum number of points required.

Knowing the uncertainties around the production of a ratings curve is essential for hydrometry
and water resource management, and they are broken into three classes: natural, knowledge
and data uncertainties (Jalbert et al., 2011). A natural uncertainty is the understanding that
some processes in nature are random, such as turbulent flow dynamics, the vegetation changing
seasonally or the river freezes (Di Baldassarre andClaps, 2011). A knowledge baseduncertainty is
that there are processes occurring that you are unaware of, such as backwater or hysteresis effects
(McMillan and Westerberg, 2015). Finally, data uncertainty is how accurate your measurements
taken are and if they are consistent over time (Jalbert et al., 2011). A ratings curve boils down to
drawing a smooth curve between points, but depends onwhat those points are, and how accurate
they are (Herschy, 2008). Rating curves are typically built up over years of monitoring, with a
back catalogue of stream flow measurements helping to reduce all the classes of uncertainties.
When developing a curve for an entirely new field location, it was shown by Pool and Seibert
(2021) that sample periods of between 1 and 6 months can produce a robust curve. Alternatively,
taking several point measurements during peak flow events can produce a valid ratings curve
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(Perrin et al., 2007). Having a field campaign to gather as much data over an event can be used
to create a ratings curve in otherwise data scarce environments, for example going out during
a storm event (Pool and Seibert, 2021). This suggests that with careful design, it is possible to
develop a rating curve with a small number of points.

A ratings curve is only as reliable as the data that it is developed from. A ratings curve’s
uncertainties may become more prevalent and amplified after it is extrapolated beyond the last
data point (Di Baldassarre and Claps, 2011; Pedersen and Rüther, 2016). The ramifications of
uncertainties are dependent on how the data is used by the end user, with a potential of great
damage and cost if improperly used, such as for stream flow estimations (Petersen-Øverleir
and Reitan, 2009). Di Baldassarre and Montanari (2009) found that when extrapolated beyond
themaximummeasured value, that at higher and higher discharges the extrapolation uncertainty
greatly increased, with a 14%error on streamflowdischarge. Quantifying or excluding uncertainty
therefore needs to be taken into account to avoid increased costs or incorrect decisions being
made (Westerberg et al., 2020).

3.2 Method

3.2.1 Sound rating curve

To determine the minimum number of concurrent sound-stage measurements that are necessary
to produce a robust sound-stage ratings curve, we use our data set from the 2020 Storm Ciara,
from the Haltwhistle Burn, Northumberland (gravel bedded river, with a channel width of 19.9
m and bankfull depth of 1.1 m) and Killhope Burn, County Durham (bedrock river, with a
channel width of 8.7 m and bankfull depth of 0.8 m). The data set has over 1000 sound-stage
measurements over a flood event in which stage rose by over 1 m at both locations, during a 1 in
10 year flood event. Stage data was measured in stream using a TD-Diver pressure transducer
at the Haltwhistle Burn and stage data was acquired from the Environment Agency pressure
transducer at Killhope. Sound data was collected at both sites using a custom built Raspberry Pi
operated sound monitor, using an omnidirectional microphone. Sound data is filtered using

92



3.2.1. Sound rating curve

the lowest median filter, which uses a fast Fourier transform to convert the sound data into the
frequency domain (Osborne et al., 2021). The filter removes any extraneous noise, such as wind,
and enables the rivers’ sound to be measured in decibels of sound pressure level (dB SPL) within
a given frequency range. Osborne et al. (2021) found that sound at certain frequencies correlates
best with river stage, and from that study the frequency range used in this study are 1 - 2 kHz for
Haltwhistle and 5 - 6 kHz for Killhope. Stage and sounddatawere collected at 15minute intervals.

To identify what combination of sound-stage measurements are needed as a field campaign style
calibration, we subsample the complete sound-stage data sets from the rivers. We fit rating curves
to subsamples containing between 3 and 7 pairs of points. We use two approaches to sample the
points: random sampling and sampling such that there was a proscribed minimum difference in
stage between the minimum and maximum recorded stage, which we varied between 0.1 and 0.5
m. We do not test higher than a 0.5 m range, as we want a method that could be implemented
using manual stage measurements, and realistically during floods there shouldn’t be anyone
within or near the river. Each combination of number of points and sampling strategy is repeated
100 times, and a curve fit to each set of points. We compare these curves to the curve produced
when all sound-stage measurements are used with a 95% confidence interval, which represents
our best prediction of the actual relationship between stage and sound. The fits to all data have
an R2 of 0.92 for Hatlwhistle and 0.99 for Killhope (Figure 3.1). Osborne et al. (2021) found
that for the Haltwhistle Burn, a logarithmic function formed the best relationship and for the
Killhope an exponential fit. The different fits is presumed to be a result of the roughness element
sizing in each. Therefore, each data set is fitted with their respective curve. We further compare
the resulting equations by producing a sonohydrograph (a hydrograph produced from sound),
from the equations and the entire time series of sound data. To compare between the different
sonohydrographs, the peak stage is taken from each sonohydrograph and plotted in a box plot to
show the range of peak stages produced and how that compares to the actual recorded peak stage.

We define a robust ratings curve as onewhichmeets the following criteria: (1) As sound increases,
stage increases; (2) There is a proportional increase in stage with sound, i.e. stage does not
increase by 1 m over only 1 dB SPL and (3) the curve has to have reasonable ends, such as stage
is not measured higher than could be generated, e.g. a small stream having a stage of over 2 m.
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Figure 3.1: Sound-stage ratings curves for the Haltwhistle and Killhope Burn during Storm Ciara
and Dennis. Red curve is the relationship formed from the sound-stage measurements with the
dashed red lines being the 95% confidence interval.

3.3 Results

3.3.1 Sound-stage curve

Sound-stage curves for 100 runs were generated from the Haltwhistle and Killhope Burn data
set as shown in Figure 3.2 and 3.3. Sampling only three data points at random and fitting a curve
(Figure 3.2.a and 3.3.a) produces many curves which greatly differ from the red curve, including
scenarios in which stage rises and sound falls. These lines couldn’t be correct given what is
known about how sound and stage interact. The unfeasible rating curves, ones that are beyond
the confidence interval from the red curve, may be generated from three very close or identical
sound-stagemeasurements. Increasing the number of data points used in themodel runs (Figure
3.2.a-e and Figure 3.3.a-e), without any minimum range, begins to reduce the number of lines
that are unfeasible, from 22 to 14 at Haltwhistle and 89 to 52 at Killhope. The number of curves
that are falling out of the confidence interval are still high, especially for Killhope, giving a near
1 in 2 chance of the curve being unfeasible even with seven points being used.

Once the condition of needing a minimum range between values is applied, then nearly all the
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Haltwhistle rating curves are within the 95% confidence of the entire data set value curve. When
the minimum range between values is set at 0.5 m and 7 data points are used at Haltwhistle, both
the spread is reduced and the number of unfeasible lines is reduced to 8. However, at Killhope
there are still lines that fall outwith the 95% confidence interval. When curves are fitted to only
three points at Haltwhistle and Killhope, but there is a minimum range of values set at 0.5 m,
there is still an improvement compared to curves fitted to three points selected at random. Even
though the curves are beyond the 95% confidence interval, they are still close, and within a 90%
confidence interval.

3.3.2 Sonohydrographs

Reconstructing river stage from sound recordings using the sound-stage curve constructed from
relationships found previously are shown as sonohydrographs in Figure 3.4 and 3.5. When
compared to the red hydrograph line, which was measured by pressure transducers in the
channel, we show that the shape of the sonohydrographs match the hydrographs, with rising
and falling limbs. When an unfeasible relationship is used to calculate the sonohydrograph,
the resulting sonohydrograph is either reversed or exaggerated beyond what the river’s stage
was at that time. In Figure 3.4 the range of the river is 0.4 to 1.1 m, so for example a range of
between 0.8 to 2.6 m can be described as unfeasible. As the sonohydrographs are derived from
the relationships formed in Figure 3.2 and 3.3, they follow the same pattern of improvement
with increasing the number of points or increasing the minimum range between values. With
the Killhope data set the sonohydrographs are more likely to be exaggerated, due to the use of
an exponential function compared to a logarithmic function at Haltwhistle.
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Figure 3.2: Sound-stage ratings curves for the Haltwhistle Burn during Storm Ciara and Dennis.
Columns are related to the number of sound-stage measurements used to form a curve and rows
are when there has to be a minimum range between stage measurements. Red line- Curve fitted
to 1,000 data points, Red dashed line- 95% confidence interval and Grey lines- each model run
with set parameters.
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Figure 3.3: Sound-stage ratings curves for the Killhope Burn during Storm Ciara and Dennis.
Columns are related to the number of sound-stage measurements used to form a curve and rows
are when there has to be a minimum range between stage measurements. Red line- Curve fitted
to 1,000 data points, Red dashed line- 95% confidence interval and Grey lines- each model run
with set parameters.
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Figure 3.4: Sonohydrographs for the Haltwhistle Burn during Storm Ciara and Dennis. Columns
are related to the number of sound-stage measurements used to form a curve and rows are when
there has to be a minimum range between stage measurements. Red line- Hydrograph from in
stream pressure transducer, and Grey lines- each model run with set parameters.
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Figure 3.5: Sonohydrographs for the Killhope Burn during Storm Ciara and Dennis. Columns
are related to the number of sound-stage measurements used to form a curve and rows are when
there has to be a minimum range between stage measurements. Red line- Hydrograph from in
stream pressure transducer, and Grey lines- each model run with set parameters.
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3.3.3 Nash-Sutcliffe

Converting river sound using the rating curve relationships to a stage value is shown in Figure
3.6 and 3.7. The previous comparison between hydrograph and sonohydrograph shows howwell
the shapes and peaks match. However to compare how well the observed stage data matches the
corresponding calculated stage requires the use of Nash-Sutcliffe efficiency (NSE) to determine
if there is a good fit between sound-stage and stage. In Figure 3.6 at Haltwhistle regardless
of run, we see a NSE above 0.68. When a minimum difference in stage is implemented or the
number of points increased, the NSE increases to a stable 0.88 to 0.95, with the closeness of the
boxplots showing broadly NSE are high. Figure 3.7 at Killhope has a poorer NSE, ranging from
0.22 to 0.90, with outliers at 0.17. Increasing the number of points, with no minimum range does
little to improve the NSE. Only when the minimum range of stage is implemented do we see an
increase in the NSE. With only 3 points at 0.5 m minimum range, the NSE median is 0.80.

100



3.3.2. Sonohydrographs

Figure 3.6: Box plots of the Nash-Sutcliffe efficiency of the Haltwhistle Burn calculated from the
observed and simulated hydrographs.
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Figure 3.7: Box plots of the Nash-Sutcliffe efficiency of the Killhope Burn calculated from the
observed and simulated hydrographs. Outliers shown as red crosses.
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3.3.4 Peak stage

When using the peak stage from Storm Ciara we assess how well the relationships formed from
only a few data points behave in determining water stage (Figure 3.8 and 3.9). Using the peak
stage from the sonohydrographs we use a box-plot to assess how spread out the peak stage data
is in relation to the peak stage taken from the hydrograph. When only three points are used in
curve fitting at Haltwhistle, the predicted peak stage varies from 0.75 to 1.4 m (with the 25th to
75th percentiles of the predictions being 1.05 to 1.2 m), compared to an actual peak of 1.06 m
(Figure 3.8.a). Similarly at Killhope, the predicted peak stage varies from 0.25 to 1.2 m (with the
25th to 75th percentiles of the predictions being 0.52 to 0.8 m), compared to an actual peak of 1.3
m (Figure 3.9.a). However, as the number of points increases and minimum range is introduced,
the range of stage at Haltwhistle improves to 0.95 to 1.2 m (with the 25th to 75th percentiles of the
predictions being 1.08 to 1.15 m) when 7 points and a minimum range of 0.5 m is used (Figure
3.8.f). At Killhope, the predicted stage range is 0.9 to 1.7 m (with the 25th to 75th percentiles of
the predictions being 1.2 to 1.4 m)(Figure 3.9.f). The effect of introducing more data points and
a minimum range between values is more apparent at Haltwhistle, in which the range of peak
stages narrows as they are introduced. However, even with the no restrictions, the median of the
predicted peak stages is almost always the same as the measured peak stage. Killhope improves
more from the conditions placed on point selection, with limited conditions of 3 points and no
minimum range producing a median value up to 1 m less than measured.
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Figure 3.8: Box plots of the peak stage of the Haltwhistle Burn taken from the sonohydrographs
using the sound-stage ratings curves. Dashed line- Peak stage recorded from the in stream
pressure transducer.
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Figure 3.9: Box plots of the peak stage of the Killhope Burn taken from the sonohydrographs
using the sound-stage ratings curves. Dashed line- Peak stage recorded from the in stream
pressure transducer.
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3.4 Discussion

3.4.1 Sound-stage curve

The setting up of a sound-stage monitor comes with the challenge of calculating a stage value
from the recorded sound. Figures 3.2 and 3.3 demonstrated that themore concurrent sound-stage
values that are recorded, the more likely the relationship generated from them would be reliable.
As noted by Perrin et al. (2007), several points are all that can be needed to form a robust
relationship, as long as those points are taken at the right time. The more data points that are
added reduces the chances of errors within the data, as a sound point either higher or lower
than anticipated, i.e. 20 dB SPL instead of 10 dB SPL, would skew the relationship, and make
the resulting stage calculated higher or lower. The errors associated with individual depth
measurements are small, and therefore there is less need to have lots of depth measurements
to smooth out errors in individual data points. Without a conditional range required between
values however, the points may all be recorded around the same stage. Having a narrow range
of stages is detrimental to the ratings curve as it means that a larger proportion of the rating
curve will be extrapolated outside the range of the data. However, if the stage data are manually
collected, some extrapolation may be inevitable as the Environment Agency warn against the
collection of data during a flood peak based on the grounds of health and safety (Ramsbottom
and Whitlow, 2003).

To mitigate errors of the fitted curve, we recommend that at least 6 distinct points are taken.
When less than 6 points are taken, then the resulting curves can be unreliable (Figures 3.2
and 3.3). Ibeje (2019) suggested that taking random subsamples of existing data can aid in
determining uncertainty, meaning our approach in using fewer measurements to identify what
is required in our rivers to produce a robust rating curve. If only three points are used then the
curve fitting is poorly constrained, and the final curve is unlikely to represent the curve fitted to
a larger data set. Only by increasing the number of sound-stage points above 5 do the curves
begin to coalesce, getting closer to the entire data set curve, with the best improvement from 3 to
4 points. Five or more randomly sampled points are already likely to have a wide range of stage
values. Kiang et al. (2018) found that extrapolating data beyond the largest measured stage was
always going to cause uncertainty, and recommended to use a range when extrapolating using
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stage to calculate discharge. To reduce the uncertainty caused by extrapolation, we examined
what happens when a condition on the sound-stage measurements is used, with a minimum
difference of stage between values. Figures 3.2 and 3.3 show that when a condition is added, even
with three data points, the number of unreliable curves reduces. The sound produced by a river
is proportional to its stage, so with three points at low and higher stages, means the extrapolation
between them is possible. For Storm Ciara, the predicted range of peak stage for Haltwhistle
was calculated at 0.95 -1.2 m and Killhope at 0.9 - 1.7 m (Figure 3.8 and 3.9). The narrower range
of Haltwhistle indicates that the relationships being formed have lower uncertainty, with the
larger range from Killhope indicating that there are other factors influencing the relationship.

3.4.2 Sonohydrographs

The intended purpose of a sound-stage ratings curve is to derive a stage value from sound, for
example in order for it to be used in flood management or real-time forecasting. Figures 3.4 and
3.5 show the hydrographs and the sonohydrographs for Storms Ciara and Dennis. The shape of
the sonohydrographs begin to closely match that of the hydrographs once either more points or
a conditional range is implemented on the data. From an unreliable rating curve, the timings
and shape of the sonohydrograph will still be known, but actual stage values would be highly
inaccurate. There is a difference between if a logarithmic function or an exponential is required
to fit the data and how it affects the ratings curve. An exponential by definition experiences more
rapid increase in stage as sound increases, and for Killhope (Figure 3.5) predictedmaximum stage
values were reaching upwards of 40 m. Exponential curves are rarely found in stage-discharge
rating curves, but are more common in sediment rating curves (Vaughan et al., 2017). Even
when more points are chosen and a condition applied, there are still sonohydrographs that
exhibit unrealistic stages. If a rating curve predicts stages above what could ever be expected
then the data should be examined to see if there are any data points which are erroneous. If
a logarithmic function is being used to form a curve, then, as shown in Figure 3.4, once more
points or a condition are applied, the resulting sonohydrographs are comparable to that of the
hydrograph.
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When comparing between observed and calculated stage it becomes clear again that an
exponential relationship behaves poorly opposed to a logarithmic function (Figure 3.6 and
3.7). A good fit (> 0.5 NSE), is found with all logarithmic function runs, regardless of minimum
range or number of points used. That shows that with minimal data points, the resulting
sound-stage relationship is of a good fit. However, when the exponential function is used with
Killhope there is greater spread of NSEs and therefore when used to convert sound to stage will
provide unreliable results. The poorer fit may be due to the spread of sound-stage measurements
at lower stages due to the wind. Increasing the number of points and a minimum range improves
the NSE, but still can lead to outliers, leading to a poor fit.

To understand how well a ratings curve is working, comparing the peak stage calculated and
measured allows us to assess if curves are more or less prone to inaccuracy dependent on the
data value used. The box plot of predicted peak stage straddles the actual peak stage measured
(Figure 3.8). As more points are added, the box plot reduces in size, meaning more of the
calculated values are falling with the actual peak stage. The rating curves used seem to be
overestimating the peak stage more than underestimating. The overestimating may be due to
fewer sound-stage measurements near the peak of the flood, so curves are fitted to data from
lower stages. Noting that the correlation between stage and SPL is weakest in the lower stages.
If these rating curves were to be used for flood monitoring then the possibility of predictions
only being 5 cm over the actual peak stage is encouraging. Figure 3.9 shows the need to have a
range of stage measurements, as when data from a limited range of stages is used to produce a
curve, the peak stages are around 1 m lower than observed at Killhope. When a minimum stage
range is used, the resulting peak stages are close to the observed peak.

3.4.3 Implementation

For our method of stage gauging, a stage value is required to compare against sound and there
are alternative methods to calculate stage without the need for in stream measuring. We suggest
that in addition to taking several sound-stage measurements, that they are taken across a flood
peak where possible, with a minimum difference in stage of 0.5 m between them. It may be
beneficial to use data frommultiple flood events to account for the uncertainty caused by changes
in channel morphology during an event. To apply this method to other rivers, the difference
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between the minimum stage range will be dictated by the expected stage of a river during a
flood. For example, if a river is expected to flood upwards of 2 m, then having a sound-stage
measurement of nearer the expected peak stage is advantageous to reduce extrapolating. For
both the Haltwhistle and Killhope their bankfull depths were around 1 m, therefore a minimum
stage range of 0.5 m was adequate. Our analysis was based upon previous work, allowing us
to know if the data would be best fitted by a logarithmic or exponential relationship. In a new
location, we recommend the use of a logarithmic function at first to generate a ratings curve,
with the proviso that when further data points are added, then the user might want to also try
an exponential fit. Having a baseline relationship, using stages below a peak will at least enable
a range of peak stages to be produced, which can then be further added to during a flood peak.
Extrapolation of a ratings curve beyond the last value is difficult, and many approaches rely
upon the use of hydraulic equations, until bankfull is reached, at which point the hydraulics of
a river changes. Without reaching bankfull, the ratings curves we have determined may reach
the same boundary. Therefore the extrapolation of a sound-stage ratings curve is limited by
bankfull stage. The Environment Agency plot their ratings curves in 2 - 5 year time periods
to determine if there has been any change and we therefore recommend the same approach if
sound monitoring is used over more than one season.

3.5 Conclusion

The aim of this paper was to determine the minimum number of concurrent sound-stage points
to form a rating curve. We have shown that by having more than three measured points, with at
least 0.5 m difference in stage, then a ratings curve can be generated. However, adding more
sound-stage measurements is beneficial at reducing any uncertainty around the collection of the
data and any changes of condition over time. It is hoped that by using a sound-stage ratings
curve that sound monitoring for flood management could be implemented without the need to
have a coupled stage monitor at all times. We see the method for generating a sound-stage curve
as a robust method which can easily be implemented.
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4. The influence of in-channel obstacles on river sound

Abstract

The sound of a river can change from a babbling brook to a thunderous torrent, and we have
previously shown that there is the potential to predict river stage from the river’s sub-aerial
sound. Here we examined how alterations in channel configuration can change the relationship
between stage and sound pressure level using a white water course to simulate a real world
scale channel. By using blocks as roughness elements (RE) we were able to customise the
course’s obstacles, creating towers of different heights and placements. We then ran a varied flow
discharge of up to 10m3 s−1 through. We used data collected from microphones, a hydrophone
and cameras to monitor the flow and to understand the processes occurring. In addition to
sound processing, we used image analysis to calculate the area of white water on the surface of
the water to determine the mechanism for sound production. Our analysis showed the likeliest
source of sub-aerial sound is from white water being produced from the flow’s interaction with
the REs, with the relationship between white water value and sound relationship having an R2

between 0.35 and 0.82.. In terms of influence on sound, we found that the height of the REs is
more important than their spatial distribution, with the taller the RE, the better the logarithmic
relationship between sound and stage. We suggest that monitoring in a natural setting will work
best in the places with the tallest obstacles and that the quality of the sound-stage relationship is
dependent on RE height.
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4.1 Introduction

Rivers can be variable, noisy environments, able to change from a babbling brook to a thunderous
torrent. There is evidence to suggest that the flow controls the range of sounds produced by a river,
including seismic (ground vibrations), hydroacoustic (underwater) ,infrasonic (sub-aerially at
< 20 Hz) and human-audible acoustics (sub-aerially at 20 Hz - 20 kHz) (Manasseh et al., 2006;
Morse et al., 2007; Ronan et al., 2017; Schmandt et al., 2017; Osborne et al., 2021). Human-audible
sound produced sub-aerially has been shown to correlate with a river’s stage, providing a
non-intrusive way to monitor a river (Osborne et al., 2021). Using sub-aerial sound to monitor a
river’s stage is potentially a non-intrusive method of measuring, such as for flood monitoring,
when other methods such as pressure transducers or ultrasonic depth monitors aren’t safe to
deploy. This method could be especially useful in the seldom monitored headwater catchments,
which make up 70 - 80% of total catchment area, whose morphology is characterised by rough
beds (Gomi et al., 2002). The sound of the river is determined by the interaction of the flow
with the bed topography. Our previous work has demonstrated the role of roughness elements
(RE) in producing noise, but we do not know how factors such as RE size and spacing affect
noise production. To determine the effect of the bed topography on the flow, and the sound it
produces, we designed an experiment using a white water course (WWC), allowing the channel
bed to be altered through the addition of REs. Our findings will aid future work using sound to
monitor stage as it will identify sections of a river that will provide the best chances of finding a
sound-stage relationship. We turn to two areas of hydraulics that introduce aspects of how the
bed topography of a river can influence its flow; flow resistance and white water generation.

Flow resistance is formed by featureswithin a channel that oppose the flow, generating turbulence,
anddepends on channel topography and bed texture anddischarge (Venditti, 2013). Understanding
flow resistance is critical for applications including flood prediction/ management and channel
design, such as in civil engineering (Ferguson, 2010; Powell, 2014). The flow resistance of a river
channel is likely to be linked to the production of sub-aerial sound. We collected audio data
from a range of different rivers, and we found that REs have an effect on the sound produced
sub-aerially and suggested that they are the probable cause for sound production in a river
(Osborne et al., 2021). To compare between different rivers, relative submergence is used as a
way to determine the scale of an object relative to the flow depth (Weichert et al., 2006). Herbich
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and Shulits (1964) suggested that resistance at flow depths greater than RE height is related to
the pattern and spacing of the REs. Bathurst (1978) noted that unless all the taller REs protrude
from the flow, then there will be spatial differences in the flow regime, with the wake from
one RE affecting the flow around downstream REs. Water will be forced around an obstacle
(producing buffer waves) when relative submergence is low, but as stage increases, the water’s
path will begin to change and will eventually overtop the RE (producing recirculating waves)
(Kean and Smith, 2006). Therefore sound may be dependent on how closely REs are spaced and
if they protrude from the flow. We take account in our experiment that the size, distribution and
state of protrusion of the obstacles can have an effect on the flow resistance.

Sub-aerial sound is primarily generated from the surface of the water, and is formed from
turbulent structures such as standing waves and eddy currents forming white water (Bolghasi
et al., 2017b). Air becomes trapped within the water, known as self-aeration, when there are flow
discontinuities generating white water locally, which is both air trapped within the water, and
air coated in water (Rodi, 2010; Chanson, 2012). In flume studies of supercritical flow, where
flow was forced to diverge or overtop a structure, air cavities built and led to "loud noises" being
formed (Chanson and Toombes, 1998). In terms of energy, we can think of this as a turbulent
energy cascade, in which the initial large scale eddies break down into progressively smaller
and smaller eddies until they are small enough that friction removes the remaining energy
(Kolmogorov, 1949). In doing so, the bubbles generated from turbulent eddies break up further
into smaller, and smaller bubbles (bubble-mass cascade) (Chan et al., 2021). Bubble size and
eddy size are intrinsically linked, with large eddies advecting bubbles and small eddies being
unable to break them up (Chanson, 2012). Advected bubbles are then released when the shear
becomes low enough. Bubbles and sound are linkedwith theMinnaert resonance, with the larger
a bubble, the lower its corresponding frequency, such that a 10 cm bubble radius has a frequency
of 32 Hz and a 1 cm radius bubble has a frequency of 326 Hz (Minnaert, 1933; Leighton, 1994).
These white waters are drivers of air-water gas exchange, especially in mountain streams, where
turbulence and bed roughness means that the gas exchange rate can be 96 times greater than for
low-sloped, gentler rivers (Hall et al., 2012; Ulseth et al., 2019). Underwater sound production can
be generated from the collision of bedload as sediment is transported downstream (Marineau
et al., 2015). However, since there is no mobile bedload in our experiment, then that is not
generated. While we can determine the source of the sound, there is no current way of linking
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the white water to the sub-aerial sound that is being produced and how it is related with RE
size or configuration. Our experiment will examine how the area of white water found on the
surface relates to the sub-aerial sound.

Our focus here is with the sub-aerial sound produced by a river and how that is connected with
REs. However, in our experiments we also record underwater sound as a basis of comparing if
what is observed on the surface is the same as underwater sound. The aims of our paper are to
investigate if : (1) there is a link between the sound produced and the height of a RE; (2) layout
of REs has any control on sound production and (3) there is a relationship between the white
water area and sound pressure level (SPL).

4.2 Methods

Experimental setup

The Tees Barrage International White Water Centre, Stockton-on-Tees was chosen to simulate a
real scale river. Figure 4.1 shows photographs of the course when used for sport. The course
has substantial advantages over a conventional indoor flume such as removing the need for
recirculation pumps which produce noise that would obscure the audio signal. It is at a scale
which is comparable to a river, but retains the same control over flow that you get in a flume
(Barton et al., 2005). Being at real life scale means our data are comparable to real world river
systems. The experiment was run over two consecutive days, 9th - 10th December 2020, on which
there were cloudy but settled weather conditions.

The section of the course that we collected data in is 7.5m wide, with a slope of 0.005, and is
lined with concrete. Within the channel obstacles can be created from RapidBlocs™which are
interlocking, stackable blocks that are able to be attached firmly to the channel bed in different
configurations and can quickly be rearranged into new designs. Blocks are 1.0 m x 0.50 m x 0.25
m and are capped with a rounded lid of 1.0 m x 0.50 m x 0.08 m. We used these blocks to alter
the channel bed, simulating different REs. Water was run through the course with a discharge
up to 10m3 s−1. Within the channel, the water was released using a digitally controlled and
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monitored bear trap gate, allowing fine control of 0.1m3 s−1 in discharge and was able to sustain
the desired discharge due to the large body of water being held upstream.

Our experiment involved changing the blocks within the channel and then quickly increasing
the flow from zero to full discharge, before gradually ramping down the discharge. The course
was initially configured for white water sports, with blocks arranged to create alternating runs
and hydraulic jumps. We reconfigured the upstream part of the course to remove the obstacles
that created the hydraulic jumps, and to minimise the backwater effect of downstream obstacles
(Figure 4.1C and D), creating a clear run which was maintained for 50m. To increase the flow
depth in our experimental section we created a pinch point upstream and downstream of the test
site, which constrained the channel. The addition of these side blocks allowed a stage above 1m
to be achieved (Figure 4.2A). Although these blocks are an additional RE in our measurement
section, their influence will be consistent through all runs.

To monitor the WWC, 4 microphones were setup in an array around and above the channel
(Figure 4.2B). In addition to sub-aerial recording, a hydrophone was placed within the channel
to record underwater sound and two pressure transducers (TD-Diver) were attached to the floor

Figure 4.1: Star represents the area chosen for the study. (a) Aerial image of the course during
full flow, (b) aerial image of course during no flow, (c) section of course used during no flow
and (d) section of course during high flow. Image (a) is produced with permission of the Tees
Barrage International White Water Centre and (b) OS data Crown copyright.
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Figure 4.2: A- Photograph of the white water course during experimental run F3 showing
the proximity to the bear trap gate. B- Schematic of the experimental setup and locations of
equipment. Microphones:Downstream (M1), central (M2), upstream (M3) and over-channel
(M4). Hydrophone (H), camera, and central diver (D1) and bank diver (D2). The pickup angle
of the microphones is shown with the concentric circles.
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in the centre (D1) and the bank (D2) to monitor stage. One microphone was suspended above
the centre point (M4) of the test site from guide wires, with the other three located downstream
(M1), centrally (M2), and upstream (M3). All the microphones were directed to the centre
of the test site. The microphones were covered with a windshield primarily to prevent water
splashes from hitting them, but also to reduce any wind noise. Wind was however limited
during the experiment at less than 5 mph. We used RØDE NTG2, which is a mid-high level
supercardioid microphone, with a rejection of 150° to the rear, with a sensitivity of -36 dB re
1v/Pascal at 1 kHz. The hydrophone used was an Aquarian H2a, an omnidirectional hydrophone
with a sensitivity of -170 dB re 1v/Pascal at 1 kHz. Due to the different reference values between
water and air, the SPL values between them cannot be directly compared. The hydrophone
was shielded from the direct flow of the course by situating it behind a set of blocks upstream
of the measurement site. All microphones and the hydrophone were connected to a Zoom F6
field recorder and so could be operated at the same time. For the first two experimental runs
the hydrophone was disconnected, therefore no data is presented for these runs. The Zoom
F6 recorded each microphone simultaneously at 32-bits at 44.1 kHz in the WAV format. Our
sound data is presented in sound pressure level (dB). During each run, a time lapse video was
recorded from the bank of the channel near M2 using a GoPro MAX 360 at a frame rate of one
per second.

4.2.1 Experimental run

An experimental run typically took 15- 20 minutes including both the increase and decrease in
flow, and the rearrangement of the blocks. The blocks were setup in the following ways (Figure
4.3) and hereunto configurations will be referred to by the letter of the configuration, and the
number of blocks, i.e. LF2.2 would be blocks with their long face perpendicular to the flow in
a side by side arrangement with each side being two blocks tall and LFn refers to all scenarios
with a single tower of heights between 1 and 4 blocks. We used configurations of between one
and four towers of blocks, and each tower was between one and four blocks tall. The run types
are broken into two groups, simple and mixed. In simple runs, all towers had the same height,
whereas in mixed runs different towers had different heights. A run started with a dry course,
and consisted of a rapid flow release of 10m3 s−1, followed by a period of time to allow the flow
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4.2.1. Experimental run

Figure 4.3: Block configurations when placed in the channel. LF- longest face, SF- shortest face,
n- number of blocks in the tower.

to steady, which averaged from around 30 - 60 seconds. The discharge was then dropped in
2m3 s−1 increments, with again time being given to allow the gate to move and for the discharge
to drop, averaging 1 minute. As the experimental section was within 30m of the top of the
course, the flow quickly adapted to any change in discharge. We stopped the run once the flow
reached 2m3 s−1, as after this point the noise of the gate draining obscured the sound produced
by the REs as well as allowing foam to be produced.
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4.2.2 Sound processing

Producing a sound-stage relationship requires a single value for sound, which is found by
processing audio through a fast Fourier transform (FFT), giving SPL for each frequency. By
splitting our continuous recording into 1 second clips, it allowed a frequency resolution of 1 Hz
from the FFT, meaning an SPL for each hertz from 20 Hz up to 22.05 kHz due to the microphone
frequency response. A single SPL value is found by binning into kHz ranges, i.e. 1-2 kHz, and
then the median (spectral centre) of the 1000 SPL values within this range is taken (Osborne
et al., 2021). The spectral centre of the data is used as it yields a more representative signal that
is not skewed by erroneously large or low values in the frequency range. Each kHz bin therefore
had a single value, with the sound-stage relationship being dependent on the frequency bin
chosen. Since there was no wind present during the experiments we do not need to preprocess
the data to remove any extraneous ambient noises. In Osborne et al. (2021) we showed that
the sound-stage relationship was strongest at low frequencies (< 3 kHz) and that not having
wind noise significantly improves the data quality. We use our experimental data to test how
sound-stage relationships are affected by microphone location, and whether the location affects
the frequency that produces the strongest sound-stage relationship. As we are concerned with
finding the best relationship possible, we needed to analyse all microphone recordings to chose
the microphone that provided the best signal.

4.2.3 Image processing

We used image processing to measure how the amount of white water that was produced varied
through each experimental run. Video was recorded from the same location as M2 on the bank
of the course, which gave an oblique view to the channel. An above water view would have been
preferred, but would have been difficult to record continuously and to set up. A drone was not
appropriate because its rotor noise would then have affected our sound recordings. Beneficially,
the experimental days were cloudy, giving equal lighting and no shadows or glare from the
water. For each experimental run, we had one video frame per second, which matched the sound
processing clip length of a second. Within a frame there were areas outwith the target area,
such as the sky, that were first masked from the frame, leaving only the channel. Due to the top
surface of the block being white, these were masked as well, whereas the other surfaces are dark
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enough to not be considered white (Figure 4.4). The frame was then converted into greyscale
and then binarised into black (0) and white (1) using imbinarize in MATLAB 2021. A pixel was
either assigned black or white given the threshold luminance value. Pilot tests showed that a
luminescence value of 0.6 produced the best results as it kept the white water, but removed any
light reflections. Noise was reduced in the binarised image, with white pixels being required to
be connected to another white pixel. A connection value of 20, meaning a minimum block size
of 20 white pixels, was found to be capable of removing pixels not related to white water but to
also still capture small white water areas. The equation to calculate the amount of white water
in an image is

WWV = log10
W

T
(4.1)

whereW = number of white pixels and T = total number of pixels, and WWV is the white water
value. A log was taken for theWWV as it is to be compared against SPL, which is also in log form.
Each frame had a WWV and collectively over an entire run a change in WWV can be observed.

4.3 Results

The results are presented in the following order: (1) analysing the experimental runs to identify
what microphones and frequency ranges are the best to use, (2) investigating the effect of
roughness element size and configuration on sub-aerial andunderwater sound and (3) comparing
how both sub-aerial and underwater sound relate to our image analysis of white water.

4.3.1 Microphone and frequency selection for sub-aerial sound

We present an example experimental run in Figure 4.5 to show the relationships between sound
and stage for both the rising and falling limbs. Figure 4.5A shows SPL from M4 between 0.02
kHz to 1 kHz, and stage data recorded by transducer from D2. Stage data from D1 is not used
since it was highly variable due to being placed in front of an obstacle. The figure shows that
stage and SPL rise and fall concurrently, with the exception of increases in sound in the first
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Figure 4.4: Flow chart of how the white water value is obtained from an image. Light blue
shading indicates the masked area.

30 seconds which are noises from the bear trap gate opening and not from increases in stage.
We therefore disregard increases in sound before stage in all data. Figure 4.5B shows that there
there is hysteresis within the run, with the falling limb being quieter than the rising limb. The
Froude number of the rising limb was 0.41 and the falling limb was 0.61 meaning subcritical
flow occurred during the duration of the run. We focus our analysis on the data from the falling
limb as it is more representative of a river, compared to the sudden increase of discharge with
the rising limb. The longer time duration of the falling limb also means that this limb provides
more data points.
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4.3.1. Microphone and frequency selection for sub-aerial sound

Figure 4.5: A- Sonohydrograph (blue) with the stage (black) recorded from the diver 2. B-
Scatter between sound pressure level value and concurrent stage value.

To identify which microphone and frequency range to use in the subsequent analysis, for all
runs and for every microphone we plotted the stage and SPL data (as in Figure 4.5B) and
fitted a logarithmic function to it, and generated its R2 value. For each of the 37 runs, we
identified the microphone which produced the highest R2 using a frequency range of 0.02 -
1 kHz (Figure 4.6A). Based upon the full data set of R2 values, there is very little difference
between the R2 values from the different microphones. To determine what frequency range to
monitor, we perform the same process as for choosing the microphone. The frequency range
with the highest R2 is counted for each run, for each microphone. Figure 4.6B and C show
the results from microphones M3 and M4, and it is clearly seen that lower frequencies, < 2
kHz, have the highest R2 values. M4 has 25 out of the 37 highest R2 values in the 0.02- 1 kHz
bin. We therefore chose the 0.02- 1 kHz bin for use in subsequent data processing. Generally
theR2 values drop as frequency range is increased, an observationmade by Osborne et al. (2021).

With a frequency range chosen we can analyse how configuration of the blocks affects the R2

values for M3 and M4 (Figure 4.6D and E). Both microphones have high R2 values, with M3
ranging from 0.63 to 0.92 and M4 from 0.17 to 0.94. M3 shows similar R2 values across all block
configurations, whereas with M4 R2 values are lower for shorter REs than for higher ones. M4 is
chosen in the paper due to its position centrally over the channel meaning that it stays a more
consistent distance from the obstacles, regardless of their configuration. We also select M4 as we
think that M3 is more affected by the noise of upstream obstacles.
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4.3.1. Microphone and frequency selection for sub-aerial sound

Figure 4.6: A- Histogram displaying which microphone has the runs with the highest R2 values
using the frequency range 0.02 - 1 kHz and categorised by the roughness element height used.
B and C - Microphone 3 and 4 and the frequency range where the highest R2 occurs. D and E-
Microphone 3 and 4 and the R2 obtained when using the frequency range of 0.02- 1 kHz.

125



4.3.2. The impact of roughness element height on sub-aerial sound

4.3.2 The impact of roughness element height on sub-aerial sound

We break the runs into two groups, simple and mixed, and by the height of the REs, in order to
clarify the results. The runs with a simple configuration show a clear relationship between sound
and stage, which overall forms a logarithmic function (Figure 4.7). Within the overall logarithmic
shape, some scenarios show kinks in the data at certain elevations. For configurations with a RE
height of 1 the data is more scattered, with kinks in the data above the RE 1’s height. Similarly
we see a kink in the data from runs with REs of two blocks high, however, it occurs above the
height of RE 2. The kink in data is not seen in data from runs with REs of 3 and 4. The scatter
of the data reduces as RE height is increased and in turn the R2 of the logarithmic fit increases.
For example, with the simplest block configuration LFn, (where n = 1 to 4), R2 increases from
0.52 to 0.91. Another factor to consider is the range of the data, and how loud the flow becomes.
With an RE height of 1, SPL approximately varies between 60 - 75 dB, whereas with a RE height
of 4, SPL varies between 60 - 85 dB.

4.3.3 The impact of roughness element configuration on sub-aerial sound

Having established that the RE height is important in the sound-stage relationship, we now
see how this relationship is affected by RE configuration. Figure 4.8 shows all the other runs
undertaken, comprising REs of varied heights, and different configurations. As with the previous
configurations, as RE height is increased, the R2 value also increases. However, the changes
in R2 as the height of the tallest RE varies from RE 1 to RE 4 is not as substantial as from the
simpler configurations. The kinks observed above the submergence of an RE are still visible in
the data, most notably when there are RE 1 heights. The spatial configuration has a negligible
effect on the trends we are seeing, with the configuration with most blocks SF4/4/4 having the
same loudness as SF4/4. There are differences between runs where the blocks were connected
or separated, for example SF4.4 and SF4/4, with the latter being marginally louder. The only
configuration with the same RE height, and only a change in location, SF4 and SF0/4/0, has a
reduced R2 from 0.91 to 0.78. The reduction in R2 can be attributed to the microphone being
further away in SF0/4/0. The configuration with all RE heights in the channel, SF4/3/1/2, has a R2

of 0.65, but it can be seen that the data kinks around the same points as when RE 1 and RE 2 are
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Figure 4.7: Plots showing the sound pressure level and stage recorded during the simple
configuration experimental runs. Inset schematics have the block configuration colour coded to
the towers’ height. Black line is the logarithmic function fitted to the data and the associated R2.
Horizontal lines indicate the heights of the roughness element.
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Figure 4.8: Plots showing the sound pressure level and stage recorded during the mixed
configuration experimental runs. Inset schematics have the block configuration colour coded to
the towers’ height. Black line is the logarithmic function fitted to the data and the associated R2.
Horizontal lines indicate the heights of the roughness element.
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submerged. Of interest is the run in which there were no REs within the experimental section.
Sound was still generated by other obstacles downstream, which in turn generated a high R2 of
0.83, with a SPL range of 60 - 75 dB. Although we have a high R2 value, the loudness is less than
in runs with obstacles in the section. Whenever an RE is within the vicinity of the microphone it
will have the effect of becoming the main signal source due to proximity, and therefore will be
what we are mainly listening to during out experimental runs.

4.3.4 The impact of roughness elements on underwater sound

We also evaluate how the underwater sound recorded by the hydrophone varies with RE number
and spacing (Figure 4.9). The relationship between sound and stage is not as clear as that shown
with sub-aerial sound. In each run there is a hook in the data as stage decreases from 0.6 to 0.4
m, in which sound becomes louder as stage falls. We do not have an increase in sound as stage
decreases in the sub-aerial data unless there is a RE of a similar height present, but this pattern
is visible in the hydrophone data at all RE height configurations. As RE height increases there is
not an increase in R2 (unlike in Figure 4.7), but we have decrease in R2 in LF4.4 and SF4. There
is significant scatter in the data, especially at high stages, for example a range of 15 dB at a stage
height of 0.6 m in SF1.1.

Figure 4.10 shows hydrophone data for the mixed RE configurations and, as with the change
from sub-aerial to underwater, there are substantial changes. There is significant scatter of the
data, with R2 values between 0.01 and 0.68. The highest R2 of 0.68 is found with configuration
SF4.3, with all experimental runs in the SFn1.n2 configuration having high R2 values between
0.59 - 0.68. With no RE in the channel, there is a positive relationship between SPL and stage up
until a stage of 0.6 m. Above this, SPL is constant regardless of stage.

4.3.5 White water value

The white water value (WWV) was calculated from only runs using configurations LFn1 and
LFn1.n2 (where n1 and n2 = 1 to 4) due to the fall of darkness during other runs on the first day.
During day 2 natural foam was generated from the Archimedes screw which severely impeded
measurement of the white water produced by the REs. Figure 4.11 shows both the stage and
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Figure 4.9: Plots showing the underwater sound pressure level and stage recorded during the
simple configuration experimental runs. Inset schematics have the block configuration colour
coded with the towers’ height. Black line is the logarithmic function fitted to the data and the
associated R2 printed. Horizontal lines indicate the heights of the roughness element levels. No
data indicates that the hydrophone was not on during these runs.

130
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Figure 4.10: Plots showing the underwater sound pressure level and stage recorded during the
mixed configuration experimental runs. Inset schematics have the block configuration colour
coded with the towers’ height. Black line is the logarithmic function fitted to the data and the
associated R2 printed. Horizontal lines indicate the heights of the roughness element.
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4.3.5. White water value

WWV relationships for LF4.4. WWV is a negative number due to being a log of a value less
than one, so therefore the closer to 0 the WWV is, the more white water there is in the image.
Figure 4.11A-C shows that the shape of a hydrograph, sonohydrograph (sound graph) and the
aphrosograph (foam graph) is very similar. When plotted against SPL, WWV has an R2 value of
0.73, compared to an R2 value of 0.25 for the relationship between sound and stage for the same
run (Figure 4.11D and E). The data shown here is for an entire run, complete with the initial
ramping up of the course hence why there is a strong hysteresis effect. We compare an entire
run, instead of only the falling limb as if sound is linked to white water, then that relationship
should be true regardless of flow type and thus prove that white water is the source of sound.
The hysteresis effect is lesser in the sound/ WWV plot, meaning that even during rapid increases
in discharge and unsteady flow, the white water still correlates with the sound.

Figure 4.11: Data shown from experimental run LF4.4. A- Hydrograph, B- Sonohydrograph
(sound), plotting sound-stage, C- Aphrosograph (foam), plotting sound-WWV, D- relationship
between stage and sound pressure level and E- relationship between white water value and
sound pressure level. Black line is a logarithmic function fitted to the data.
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4.3.5. White water value

Figure 4.12: Plots showing the relationship between sub-aerial sound and white water value.
Inset schematics have the block configuration colour coded to the towers’ height.

When the sub-aerial sound and WWV are compared for different heights and configurations, we
see a different pattern to that between sub-aerial sound and stage (Figure 4.7). Rather than an
increase in RE height improving the relationship between sound and stage, Figure 4.12 has very
similar R2 of between 0.54 and 0.82 regardless of height. The only low R2 value of 0.35 was with
LF1 in which there was a large range of WWV for a similar SPL. When there is low sound, < 70
db SPL, there is a hockey stick shape to the data, primarily in LF2 and LF2.2. At these lower SPLs,
as they increased there was no substantial change in WWV, meaning at the early and closing
stages of release, even as sound was being produced, there was little change in the WW being
made. The data from LF2, LF2.2 and LF3.3 has two distinct clusters of data, between low and
high SPL, with gaps of WWV between them.
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4.4 Discussion

4.4.1 Roughness element impact on sub-aerial sound

Our previous work linking sound to river stage indicated that the RE size was a determining
factor on the relationship between sound and stage (Osborne et al., 2021). Here we tested the
hypothesis that the height of the RE was the main controlling factor on sound. By comparing the
R2 values from the different RE configurations (Figure 4.13a), we see that as the height increases,
so does the R2, which provides support for our previous work. The height of the RE, rather than
the configuration of the blocks, appears to cause the R2 of the relationship between sound and
stage. We find that a RE does not become inactive in sound generation once fully submerged, and
still has an influence on flow at higher stages, as seen by the sound data not rapidly quietening
after RE submergence (Figure 4.7). As the stage rises it will first encounter the base of the block,
and the flow is blind to the height of the RE, so we expect to see that below the submergence of a
block, any sound-stage relationship will be the same. Our data (Figure 4.7 and 4.8) suggests
we see this blindness, with nearly identical data paths from the taller REs (Figure 4.14). We
see kinks in the data when the flow reaches the point where it encounters the top of the RE, for
example, runs LF1, LF1.1, SF1 and SF1.1 in Figure 4.7, and causes a rapid loudening of the flow.
The sudden change in SPL is linked to the height of the RE, with it occurring just after the flow
overtops the block.

Figure 4.13: Synthesis figure of the R2 values collected from each experimental run, broken into
the simple (a) and complex (b) configurations. Complex configuration uses the block height
that changed in each run. Black line indicates the average relationship found with increasing RE
height.
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4.4.1. Roughness element impact on sub-aerial sound

Figure 4.14: SPL plotted against stage for all LFn1.n1 block combinations.

The free-surface is the dynamic and turbulent surface of the rivers’ flow, and therefore is affected
by flow disturbing REs (Muraro et al., 2021). Flammer et al. (1970) observed that as relative
submergence increased, the flow transitions between three phases of pronounced, gradual and
negligible free-surface effects. These free-surface effects are shown to be white water generating
structures such as surface waves and riffles (Brocchini and Peregrine, 2001). Lawrence (2000)
found at the point of partial submergence that there was high flow resistance and that as the RE
continued to be submerged the resistance gradually reduced. Therefore, as an RE is overtopped,
we do not see a cessation to the free-surface effects, but continue to observe them. At our
maximum stage, an RE with height of 1 has a relative submergence of 2.85, whereas a RE with a
height of 4 has a relative submergence of 0.87. This means that at the max stage the RE1 and RE4
are respectively in the regions of gradual and pronounced free surface effects. At maximum stage,
the RE of height 1 is still producing free surface effects, which would only become negligible
at a stage of around 1.5 m. The larger RE 4 would require a stage of nearly 4 m to reduce any
free-surface effects, therefore allowing sound to be measured beyond submergence. It is by the
mechanism of REs becoming submerged, but still having free-surface effects, that we suggest
why sound is produced, albeit at a reduced but stable rate, after the submergence of the RE.
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The boundary layer is the region where a fluid flows over a solid body, such as our water over
the blocks, in which velocity is zero at the boundary, and increases away from the boundary in
a logarithmic velocity profile (Carling, 1992). After the submergence of a RE, factors such as
RE arrangement and channel geometry were required for modelling the boundary. The kinked
changes in SPL at the point when an RE is submerged (Figure 4.7) is from the mechanism of
how the flow changes, as before submergence it could only go around the sides, forming a
horseshoe vortex, and as stage increases, it can now overtop, creating a trailing vortex (Dey
et al., 2008; Ouro et al., 2017). The change of vortex has an associated change in energy, with a
horseshoe vortex releasing more energy than a trailing vortex (Zeman, 1995). The shape of the
obstacle will influence the free-surface, generating drag, with Nardone and Koll (2016) finding
that sharp angular obstacles (such as our block) produce the maximum amount of drag due to
increasing flow separation. However, hemispherical object still produced drag and followed the
same pattern of drag lessening as the RE became submerged further (Nardone and Koll, 2016).
Simpson (1989) found that as flow separation occurs, turbulent flow forms and thus white water
is produced, so the larger or more angular the RE, the more flow separation that will happen.
That results in more white water, which was shown to be linked to sound. Relative submergence
and sound can be linked, with the stronger relationships between stage and sound occurring
when REs have a lower relative submergence at maximum stage.

When considering a natural river channel, we do not expect to see a single block in the channel,
or for every boulder to be the exact same size or shape. So by looking at more complex channel
designs, by including different heights of blocks and configurations, we can go someway to create
a more naturalistic setup. With a single RE we find that RE height is the critical determinant
of the sound-stage relationship, and so when there are a mixture of heights, we expect that the
tallest RE will still be the most important. It is clear from the comparison in Figure 4.13 that the
R2 values are higher when there are multiple REs in the channel. Counterintuitively, creating
less of an obstacle, makes the sound-stage relationship better. For examples, the addition of
a split level block configuration with SFn1.n2, increases the R2 with removing one block from
SF2.2 to make SF2.1, increases R2 from 0.59 to 0.86. We expect the presence of multiple heights
act to smooth the abrupt transition from flow going around, to overtopping a RE, which created
the sudden increases in SPL shown in SF1 and 1.1. If that is played out in a natural environment,
then a heterogenous mix of RE heights would have influence on the sound being produced,
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helping to increase the correlation between sound and stage.

We cannot disregard the influence of shorter REs in a configuration, as although a mixture
of heights may help smooth out the data, large varied heights may introduce scatter in the
sound-stage relationship, e.g. 10 cm and 100 cm REs. With SF4/1 and SF4/2, there is a block
of 4 in each, however compared to other situations with a 4 block high tower, the R2 is lower.
At lower depths the flow is again blind to the fact of smaller REs, with RE4 perhaps being a
constant background sound, with the shorter RE acting independently as in SF1. Without the
smooth transition between two block heights, the sudden increases in SPL are back. In runs
with an uneven distribution of block heights, the ability of taller blocks to dominate over the
shorter ones becomes clear. For example, when 2 out of the 3 towers are 4 blocks high, the R2

only varies between 0.87 and 0.91. Conversely, when only one of the towers is 4 blocks high, the
shorter towers influence the sound-stage relationship greatly, with an R2 range between 0.45 and
0.91. In an uneven distribution, the REs with the greatest number of similar heights may impose
more of an impact than the spatial configuration of them. However, as the average height of
the block increases, so does theR2, meaning the taller the obstacles are, the better the relationship.

137



4.4.1. Roughness element impact on sub-aerial sound

4.4.2 Roughness elements and hydraulics

The kinks in the data we see for example during runs LF1, LF1.1, SF1 and SF1.1 in Figure 4.7 may
be able to be explained in terms of hydraulics. Papanicolaou et al. (2010) found during flume
studies that when there is low flow, relative submergences effect on flow structures is governed
mainly by localised flow structures and Froude number, and during high flow the Reynolds
number. The kink in data could therefore be subject to the change in hydraulic governance.
Shamloo et al. (2001) found that when relative submergence reached 1, overtopping produced
an arching vortex from the combining of the horseshoe vortexes and defined regimes in which
features such as surface waves appear and when different vortexes appear and change. The
kink can be attributed to the changing through these regime changes. During low flow, Karman
vortexes exist, generating backflow behind the block. As flow depth increases, the vortexes
transition into horseshoe and arch types. The increases in flow increases the amount of energy
in the system, and the kink could be the rapid transfer of energy when one vortex structure
transitions into another.

In the flow there is an energy budget, through which energy is transferred from potential energy,
into kinetic. However, the kinetic energy is transferred into other forms of energy, such as
frictional loss due to flow resistance. It is the transfer of energy that enables a river to generate
sound by the mechanism of transfer of energy. In our experiment, we enabled the transfer of the
kinetic energy to sound using the RE blocks in the channel. The energy budget was therefore
near identical during the experimental runs, with the only change occurring from the RE blocks.
When increasing roughness, energy is transferred from the flow, into turbulence, which in turn
slows the flow down (Carbonneau and Bergeron, 2000). If we were to measure flow velocity
during the experiment, we would be therefore able to measure how different RE blocks affected
flow speed, and in turn if this translated to changes in sound with a direct correlation between
energy lost in the flow, and sound generated. We can intuitively see this when we increase the
RE height, as the larger the face opposing the flow, the more energy is lost to overcome it, with
when an RE is 1 tall, the sound generated is quieter than when it is 4 tall.
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4.4.3 Sub-aerial sound generation

Knowing what is creating the sound we are trying to relate to stage will aid in the design of any
future sub-aerial and river sound experiments. From the image analysis of a how white water
changes over stage, we are able to determine that white water correlates with SPL and infer that
it is the white water producing the sound. Figure 4.11 demonstrates that on both rising and
lower limbs, white water and sound maintain a logarithmic fit, unlike the relationship between
white water and stage when there is a split between the limbs. In Figure 4.12 there is an R2 of
between 0.35 and 0.82, the fit between white water and stage is not perfect, with scatter still
across the data. The scatter of the data could be a result of the camera position being oblique to
the flow, introducing error in the WWV, or that the sound also introduces scatter since there can
be a range of SPL for a single stage. There may be variation in the white water calculations due
to small changes of luminance in an image, meaning greater or fewer pixels are categorised as
white or black. Given that we did not have a light meter to measure that, we cannot be certain if
imperceivable changes to light may have occurred. We presumed there are two zones of river
sound production, from underwater and on the surface of the water. As our experiment lacked
any mobile bedload, then it cannot account for the scatter of the data. In real word examples in
which there is mobile bedload there may be an opportunity for sound to transmit from the water
into the air, but is dependent on the water depth, the frequency and amplitude of the collision
(Geay et al., 2019).

Some of the scatter between white water and sound may be due to the episodic nature of
bubble formation and destruction. The exact moment between an image being taken and a
recording being matched up could be out by milliseconds for example with bubble formations
bursting within 10’s of milliseconds, the data could be out of sync (Chicharro and Vazquez,
2014). Averaging sound over an entire second should help to reduce the impact of that, whereas
for the WWV there is no averaging since only a frame was recorded per second. The recording
of coastal breaking waves by Deane (1997) found air entrapment to generate sound underwater,
with both the sound and breaking waves (creating white water when the air rises to the surface)
occurring simultaneously. Peak sound production happened at the moment the wave broke,
with it reducing as the wake decayed. A coastal wave is at a different physical and temporal
scale to the waves generated in the WWC. Waves are being constantly being constructed and
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destructed in the WWC, and interacting with themselves, so rather than an episodic splosh of a
wave, it combines into a melodic form. With potentially multiple sound sources from different
REs, of differing intensity, duration and frequency, taking a single video frame for reference may
induce a minimal error but should not be completely out of sync.

4.4.4 Underwater sound generation from roughness elements

With no bedload, the hydrophone used in our experiment would have two possible sources
of sound, with Tonolla et al. (2009) finding during underwater flume experiments noise was
transmitted bywhitewater at the surface, or from the pressure field formed around the hydrophone.
We do not think that it is useful to construct relationships between stage and underwater sound
because our data showed only a weak relationship between the two. Furthermore, in natural
channels they would be affected by the noise of bedload transport. Bedload transport has been
shown to be active in the same frequency range that we observe sub-aerial sound at, at between
500- 2000 Hz and dependent on bedload size (Geay et al., 2017). Our data suggests that there is a
direct correlation between underwater sound and stage up to a stage of 0.6 m, which may not be
a good choice if concerned about flood monitoring for example, but could influence other forms
of monitoring, such as bedload since the frequencies overlap. Tonolla et al. (2009) identified that
relative submergence of REs may cause changes in the underwater soundscape, particularly in
lower order streams. With that change in soundscape, we therefore may be seeing evidence as to
why stage and underwater sound relationships are lesser than sub-aerial sound. Marineau et al.

(2015) recorded the sound level of a flood event using a hydrophone, and attributed discharge
in direct relation to the bed transport generated sound. Given that our data has underwater
sound reacting in a similar manner without bedload it could mean that the influence of the
sound produced by the flow needs to be considered in future works.

4.4.5 Controls on WWV and sound

Having identified where sound is being produced from, we now need to understand what in
turn controls the white water production. Our experiment leads us to two conclusions regarding
how the height of an RE and the spacing of them affects sound production. From our white water
imaging (Figure 4.12), we see that as an RE gets taller, the R2 of the sound-WWV fit increases
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from 0.35 at LF1 to between 0.71 and 0.74 at the other heights. The WWV is similar to the same
SPL on these graphs, at -2 WWV having a SPL range of 65-71 dB. The nature of the scatter can be
partially explained by the height of the REs, with the shorter RE (LF1) being submerged almost
immediately, but in doing so producing white water and sound, hence why it has a narrow range
of SPL. At taller REs (LF3 and 4), there is sound produced, but with less white water since water
is forced around for longer, instead of over the top. The larger range of SPL is what allows a
better fit to be found.

When comparing between a height change, but with larger block face there is a similar pattern,
with the R2 of the fit increasing from 0.54 at LF1.1 to between 0.73 and 0.82 at the other heights.
How the downstream length of the obstacle affect the white water is seen by comparing LF3
& LF4 and LF3.3 & LF4.4, with the amount of white water being less in the side by side REs.
We suggest that even though LF4.4 provides a larger blockage to the flow compared to LF4, it
causes the flow to diverge more, which seems to reduce the amount of turbulence produced. The
separation of data point clusters in LF2.2 and LF3.3 may be explained by the sudden generation
of white water once these obstacles are overtopped, since there would be a significant rise in
white water generation potential. From a white water and sound perspective we can determine
that as RE height increases, the larger the SPL range becomes and that the configuration of the
blocks mimics but could add a new delay to sound being produced.

4.4.6 Lessons for field deployment of sound monitors

A sound monitor can be used in areas where traditional monitoring techniques for stage
measurements are not feasible, such as a lack of infrastructure. The need to understand what
it is within a river that generates a strong sound-stage relationship is therefore vital if sound
monitoring is to be of use in fields such as flood monitoring. From our WWC experiment we
identify the following lessons that should improve a sound-stage relationship.

To draw comparisons between an entirely unnatural channel to a natural one has its drawbacks,
such as that there is no active bedload, and that it condenses a hydroevent from hours into
minutes. Whatwe can take away is the interaction of flow and REs. The height of REs is important
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in the sound-stage relationship, with the higher the RE, the higher the R2. This does not mean
that you need a 1 m tall RE in a stream that only reaches 0.5 m for example, as it all becomes
relative to the flow itself. Our configurations with RE of 2 (0.58 m) high still can produce very
good relationships in relation to stages of up to 1.2 m. So in a natural setting an RE equivalent or
up to 50% less than the anticipated maximum stage will offer a strong chance of a relationship,
with the proviso still that the taller the RE, the better the relationship can be. It will be highly
unlikely that a natural channel will have simply one RE within it, meaning that channels are
more likely to have a heterogeneous mixture of REs. In that situation having a distribution of
REs will help to generate a smoother and more constrained sound-stage relationship.

If this experiment was conducted in a natural setting, using natural REs, the results would be
different. Changing the uniformity of REs, from rectangular blocks, to more rounded boulders,
would impact the sharp transition we see when an RE is overtopped. Instead of a definite overtop,
there will be a gradual transition, from which it might not be capable to definitively see such a
kink. Having a mixture of REs would therefore have multiple overtopping transitions happening
at once, and as shown when mixed REs are used, they combine into a mixed signal, not several
single, distinctive ones. The shape and orientation of a RE can also impact the flow resistance,
and in doing so could influence the sound produced (Aberle et al., 2022). We investigated
how orientation of an RE can impact sound, with either the long or short face perpendicular
to flow, and showed that when there is a longer surface for the flow to overcome (short face
perpendicular to the flow), the sound generated is louder, in comparison to the same RE block
when the long face is shown. Another factor of a natural river is that REs can move, and although
in our experiment REs were fixed, the microphones downstream and upstream still provided
a good relationship between sound-stage, simulating if the REs began to move away from the
microphone. If there was sufficient energy in the system, then a completely new RE configuration
could emerge, and then any existing sound-stage relationship would be void, and a new one
needing to be formed. We therefore do not see sound monitoing being implemented in high
energy environments, when there is potential for REs to move during an event.

The use of using image analysis to calculate the amount of white water on a river is a proof of
concept, rather than a fully functional process. We advise that if the method was to be used in
a comparative study that certain conditions would have to be kept. Aerial photography will
provide the best view of the river, so therefore the use of a drone would be best, if the sound
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produced by it was minimal. Despite the oblique view of our images, we were still able to find
relationships, but obscuring by the blocks was possible. The field of view (FOV) of the river
surface also needs to be considered, as you need to observe the full extent of the white water
generated from an obstacle. Having a narrow FOV would cut off sections of the tail of a wave for
example. Having too large a field is less of a concern unless other white water structures begin
to appear that are not related to the RE being studied. We therefore recommend that the FOV is
directly related to the size of the RE so as to observe its white water production without cropping
out areas and not introducing other structures into it. To compare between rivers would require
that the total area being monitored is similar to allow comparison. The ability to calculate the
amount of white water in a river temporally could also be useful for other disciplines such as
gas exchange or identifying areas of flow resistance.

4.5 Conclusion

Our paper aimed to determine the source of sub-aerial sound and how the REs within a channel
can affect the sound-stage relationship. Through the use of a large scale experiment we were able
to closely mimic a real river and generate sounds of a similar type. Sub-aerial sound is concluded
to be predominantly produced by white water generated by the interaction of flow with the RE.
Identifying the mechanism for the creation of the sound enabled us to begin to test what other
factors could influence sound-stage relationship. The height of the REs within a channel is the
primary control on the sound-stage relationships strength. In terms of relative submergence,
the lower the stage that is required to be monitored up until, the better the relationship will
be. A heterogeneous mixture of REs does not degrade the relationship, and instead improves
it. An uneven distribution however will begin to influence the relationship, with more tall REs
stabilising it, and more shorter REs destabilising.

Although the experiment was run at real world scale, it is not a complete analogue of a real
river’s behaviour. Sediment is not fixed to the bed like our blocks, but is mobile, meaning
the configuration can change during a flood event. However, since spatial configuration is
not a significant factor in the sound-stage relationship, and the sound from individual REs
becomes melodic. If the balance of RE heights were to change, then that may begin to change
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the relationship. With continued research into sound mechanics of rivers in relation to REs,
such as our experiment but in a fully natural setting, the size and spacial distribution could be
represented by a singular component, such as the maximum RE height in the channel. All of
which could be aid in the possibility of being able to predict the sound so that you can use it as a
proxy for stage.
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“We called it the "River of Silence"; for
there seemed to be a hushing influence in
its flow. No murmur arose from its bed,
and so gently it wandered along...

Edgar Allan Poe
Eleonora ”



Chapter 5

A case study of the River Gaunless

catchment

5.1 Introduction

When trying to build a comprehensive network of river stage monitors for water-resource, flood
and environmental management it needs to adapt to the changing nature of future hydrometrics.
With data the most scarce currently where it is most needed in smaller catchments (Hundt
and Blasch, 2019; Wilby, 2019). There are limitations on the resources available and therefore
monitoring is targeted where the most useful data can be collected from (Seibert et al., 2019).
Knowing if there is change in streamflow in an is crucial to water resource management and
importantly to flood management when time is a critical component (Demeritt et al., 2013).
Having an easy to deploy andmaintain system of hydrometric stations is therefore advantageous
and could help to reverse the decline in stations when we are in a period of climate change (Ward
et al., 2019).

I developed a low-cost river stage monitor capable of being placed in upland river channels. The
monitor records the sound of the rivers, which when filtered to produce a SPL I have shown
to have a relationship with stage (Osborne et al., 2021). The relationship between sound and
stage is dependent on the number and size of REs in the channel. I will detail the method for
deploying a network and then examine a case study of the River Gaunless network. My aims
of this chapter are to show: (1) how to set-up and maintain a sound monitoring station, (2)
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whether monitoring headwater catchments be achievable and (3) what benefits these additional
stations have on water resource management.

5.1.1 Background

The use of sound has certain benefits over conventional and emergent river stage measuring
techniques as shown in Section 1.6.1, such as not requiring in-stream infrastructure or needing to
be placed within the river (Osborne et al., 2021). Deployment is focused primarily in headwater
catchments due to their compatible morphology, such as having a steep gradient and variable bed
topography which generates the white water required for sound monitoring (Gomi et al., 2002).
Headwater streams are seldommonitored commercially due to the lack of resources and inherent
difficulty to reach but are useful in understanding how fast water moves from the landscape to
the river system (Benda et al., 2005; Hundt and Blasch, 2019; Fritz, K., Johnson, R., and Walters,
2006). Headwaters are the most adaptable locations, being most impacted in the winter/spring,
altering their discharge regime, even with slight variation in rainfall or snowmelt (Riley et al.,
2018). Although headwater rivers are small, being first and second order streams, they are 60 –
80% of the total length of the stream network, and up to 80% of its drainage area (Pažourková
et al., 2021; Benda et al., 2005; MacDonald and Coe, 2007). These streams have potential to provide
natural flood control and are also important ecologically, with controls on sediment and nutrient
fluxes but are usually under represented in monitoring networks (MacDonald and Coe, 2007;
Bradford and Marsh, 2003). The confluence of lower order streams and the continued increase
of the drainage area adds complexity to what is influencing the channel more, the headwaters
or the inputs downstream. Because of the number of channels, and both temporal and spatial
extent of them, it becomes difficult to estimate their value and input into the channel and to
separate out the contributions of individual tributaries to downstream flood peaks (Gomi et al.,
2002; Baattrup-Pedersen et al., 2018). I therefore examine the difference in headwater channels
and their impacts downstream.

Hundt and Blasch (2019) said that low-cost and practical stream flow measuring could be used
by professionals or even citizens to provide a solution to the lack of headwater monitoring, such
monitoring would be of value even if it only indicated the peak time and duration of a flood.
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However, the quality of the data needs to be assured, since the data is to be used in decision
making or warning local residents and also to potentially calibrate and test flood models (Wilby,
2019). The short lead times of minutes to hours in comparison to hours to days in larger rivers
means there is less time to warn communities downstream, meaning that early warning systems
need to be designed to mitigate risk (Borga et al., 2014). Simulated flood models are an option to
examine the risk to communities, with the understanding if during the conditions monitored,
this outcome is likely (Cameron et al., 1999). However, some models do not take into account
the individual tributary catchment responses and group them together into a basin, raising
uncertainty (Wang et al., 2021). The use of stream gauging also causes the risk of errors, with
assumptions on stage-discharge relationships being stretched due to a lack of temporal data, such
as only daily stages (McMillan et al., 2010, 2012). Rabie et al. (2017) found that for floodmodelling
to be useful, detailed information has to be included such as rainfall, soil moisture, land use and
stream gauge data. The inclusion of data from headwater channels has to be weighed upon the
benefit it gives, as their difficult to predict behaviour makes modelling significantly challenging
(Kavage Adams and Spotila, 2005). Hydraulic models may not perform as expected if calibrated
to low flows when an unexpected event takes place (Unduche et al., 2018). A solution to improve
the sparsity of gauge data is to deploy my sound monitors in the data assimilation process, albeit
with the caveat that DIY data itself may have high uncertainty (Fava et al., 2019). Mazzoleni
et al. (2017) found that with even limited and uncertain hydraulic data, it can improve the flood
prediction of models. Real-time data assimilation combines the complementary model and
observational data into an optimal estimate (Reichle, 2008).

5.2 Method

I present our study area of the River Guanless and describe the headwater and tributary channels
that make up the area. I explain the principle of setting up a sound network and the method
used to get the most reliable data from it.
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River Coordinates Gauging RE (m) Drainage Area (km2) Substrate
Hindon Beck

(1st)
54°37’12.3"N
1°52’43.7"W Sound 0.30 5.1 Bedrock

Cowclose Beck
(1st)

54°37’13.5"N
1°52’43.2"W Sound 0.35 2.4 Bedrock/ Cobble

Arn Gill
(1st)

54°37’10.7"N
1°52’14.5"W Sound 0.25 3.6 Cobble

Steele Gill
(2nd)

54°37’13.6"N
1°52’2.4"W Sound/ EA 0.21 12.1 Cobble

Crow Howle Beck
(2nd)

54°37’29.5"N
1°49’45.9"W Sound 0.30 8.5 Cobble

Highlands
(3rd)

54°37’13.9"N
1°47’37.5"W Sound/ EA 0.40 28.8 Cobble/ Boulder

Gordon Beck
(2nd)

54°37’49.7"N
1°46’14.3"W Sound 0.25 6.7 Cobble

Ramshaw
(3rd)

54°37’45.2"N
1°45’31.6"W Sound/ EA 0.20 41.4 Cobble

Table 5.1: Monitoring site location properties with river stream order. Roughness element (RE)
is the height of the tallest obstacle within the channel.

5.2.1 Study area

The River Gaunless is located to the East of the North Pennines, travelling through County
Durham before joining the River Wear (Figure 5.1A). It flows from the Woodland Fells, through
smaller communities in its upper reaches before going through the town of Bishop Auckland.
Gaunless means "useless" as original Viking settlers said it was unmanageable by boat, due its
rough bed, and therefore resources could not be transported (Curtis, 2015). The River Gaunless
was chosen primarily because of the existing infrastructure on the River, with three EA stage
gauges within a 7 km reach of each other. The river has three gauges within a short distance
because the local mining history has produced a substantial pollution risk and the gauges are
used to calculate the pollution from different point sources. The Gaunless is a spatey river, being
described by the EA as a highly connected drainage system allowing fast responses to rainfall.

The River Gaunless catchment is shown in Figure 5.1B, upstream of our lowest monitoring point.
In total the catchment’s drainage area is 41.4 km2. I have chosen to monitor five main tributaries
into the River Gaunless: Hindon Beck; Arn Gill; Cowclose Beck; Crow Howle Beck and Gordon
Beck based upon their increase to cumulative drainage area (Table 5.1). The order of the streams
are based upon the definitions set out by Strahler (1957), with the highest order stream being
the one which all others flow into. Other tributaries are present in the Gaunless but are not
considered either due to being farm drainage or having very small drainage areas (< 1 km2).
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Figure 5.1: A-Map of the location of the River Gaunless study site. B- Catchment area of the River
Gaunless from the lowest monitoring point. Main channel shown in dark blue, with tributaries
in light blue.

5.2.2 River Gaunless network

A network of sound-stage monitors were deployed in the River Gaunless area. My network was
setup in order to identify the contribution of each tributary to the River Gaunless. Although
there are already three EA run stage gauges, these are found on the main River Gaunless at
points after main tributaries join meaning that associating what tributaries are contributing
more or less water to the River Gaunless is difficult. The sites chosen were not appropriate for
traditional stage monitoring techniques, as examined in Section 1.5 due to a mixture of bed type
and vegetation coverage as shown in Figure 5.2. I include the three EA gauge sites as sound-stage
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monitor locations as the EA gauges provide an independent dataset with which to validate the
sound monitor results. I use the Nash-Sutliffe efficiency as described in Section 2.2.4.

Each site was fitted with a sound-stage monitor which was capable of recording 10 seconds
of sound every 15 minutes from February to June 2021, with a battery lasting up to a month.
Sound data was then processed using the lowest median filtering method as outlined in our
previous work (Osborne et al., 2021). As five sites did not have stage measuring already installed,
generating a relationship between sound and stage from using concurrent measurements was
not possible. I therefore use the sound rating curve approach outlined in Chapter 3 to calculate
stage, using 5 concurrent sound-stage measurements.

5.3 Results

5.3.1 Gaunless

I present data from a flow event on the Gaunless that occurred on the 11th March 2021 which
caused three distinct peaks in the stage data. Figure 5.3 shows a storm hydrograph for the Steele
Gill EA gauging station with rainfall data from the local Copley station. In total, 21.6 mm of
precipitation was measured over three days causing the river to rise by 0.16 m, followed by
two smaller peaks. During the rest of the monitoring duration monitoring there was a lack of
significant rainfall, and so this was the largest event during this time.

With 3 sound-stage monitors placed at existing EA gauges I am able to assess the sound-stage
relationships and to determine if the sound data was in unison with the stage data. In Figure 5.4
I have the hydrograph and sonohydrograph overlapping from which I can see that the timings
of the peaks in the Steele Gill and Highlands gauge match. The sound-stage relationship is
very good with an R2 of 0.89 at the Steele Gill, with an R2 of 0.70 at Highlands. However, the
Ramshaw site does not show the expected relationship between sound and stage, and above a
threshold stage of 0.15 m, the SPL drops. The Nash-Sutcliffe efficiency is equally as good, at 0.75
and 0.83 respectively.
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Figure 5.2: Network diagramofmonitor locationswith photographs of the rivers at representative
low flow. Green Environment Agency logos symbolise locations where Environment Agency
gauges are situated.
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Figure 5.3: Hydrograph of the River Gaunless from Steele Gill site and rainfall data from Copley
gauge during from the 6th- 20th March 2021.

My sites without conventional stage monitoring are shown in Figure 5.5, at which I have five
concurrent sound-stage measurements taken during the event and at other times. With the
five measurements I construct my sound-stage ratings curve. Using the equation I am able to
input all our SPL readings and calculate stage. The R2 values vary between 0.64 to 0.96 for the
fit of the curve to the data. The sonohydrographs produced are similar to the EA gauge data
with three peaks, with the exception of Arn Gill where the peaks are not clearly visible. The
shape of Hindon Beck, Crow Howle and Gordon Beck are close to the sharp rising limb seen
with the EA data. Cowclose has a more rounded shape, indicating that it held onto a higher
stage after the peak. With the exception of Arn Gill, the sonohydrographs appear to be smooth,
with around a 0.01 m oscillation in stage calculation. Arn Gill has a jagged line, which can be
associated with the limited range of its SPL, only varying from 32 - 38 dB SPL. The other rivers
have a larger range of SPL, with between 9 - 25 db SPL separating the highest and lowest recorded.

Table 5.2 shows the peak stage and time from all the stations during the 11th March 2021 flow
event. Comparing the stations with both sound and EA monitoring, shows that Steele Gill has
the sound peak 45 minutes later than the EA, and Highlands having a sound peak 2 hours earlier



5.3.1. Gaunless

Figure 5.4: Column 1- Comparison between the Environment Agency hydrograph data and
sonohydrograph data at 1 -2 kHz. Inset graph shows in detail the peaks. Column 2- Relationship
between sound-stage with a logarithmic function fitted. Nash-Sutcliffe efficiency given between
the observed and simulated stage taken from the sound-stage relationship.
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Figure 5.5: Column 1 - Sound-stage rating curve fitted from 5 concurrent stage-sound
measurements using a logarithmic function. Column 2- Sonohydrograph constructed from
the relationship found and applied to all other sound values.

than the EA. The peak stages from these stations are close, with the sound stage being 0.04 m
lower than the EA at Steele Gill and 0.03 m lower at Highlands. With sound only monitoring
the peak times are broadly similar to what the EA gauges record, with the exception of Arn Gill
which recorded a peak around 8 hours earlier than the others. Peak stages of between 0.18 - 0.36
m are recorded in the upper rivers of the network, with similar stages of between 0.34 and 0.38
m.

With five concurrent sound-stage measurements being taken to form a sound-stage curve
used to calculate the stage from our sound data, I look at what happens when the number of
measurements are reduced. Figure 5.8 has the sonohydrographs for each sound only station, with
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River Monitor Sound
peak time

Calculated sound
peak stage (m)

Gauge peak
time

Gauge peak
stage (m)

Hindon Beck Sound 08:30 11/03/21 0.36 - -
Cowclose Beck Sound 06:45 11/03/21 0.18 - -

Arn Gill Sound 23:30 10/03/21 0.36 - -
Steele Gill Sound and EA 08:00 11/03/21 0.25 07:15 11/03/21 0.29

Crow Howle Beck Sound 06:45 11/03/21 0.38 - -
Highlands Sound and EA 05:45 11/03/21 0.37 07:45 11/03/21 0.40

Gordon Beck Sound 06:30 11/03/21 0.34 - -
Ramshaw Sound and EA - - 07:30 11/03/21 0.31

Table 5.2: Flow event data from the sonohydrograph data and comparison between the
Environment Agency gauge data.

the progressive removal of the highest stage measurement. By simulating when someone only
takesmeasurements during low stages, I can determinewhat affect it has on the sonohydrographs
and how it affects the predicted peak stage. In Figure 5.4 and 5.5 there is not a clear effect from
removing measurements, with Gordon Beck showing both over and under estimation, and
Hindon Beck showing only under estimation.

The peak calculated stage when removing the highest stage consequentially has the greatest
impact on Gordon Beck in which the removal of points leads to an increase of stage, changing
from 0.34 to 0.49 m, a change of 44%. If the that trend was to continue, then a measured stage of
1.0 m would be shown as 1.44 m potentially. The other monitoring stations have the trend that
when a measurement is removed, the peak calculated stage lowers, with Crow Howle changing
from 0.37 to 0.21 m, a reduction of 43%. Consequentially if a flood was to occur using only these
two points, then a stage measuring 1.0 m would be shown as 0.56 m.



5.3.1. Gaunless

Figure 5.8: Sonohydrographs from the sound-stage rating curves with using all concurrent
values in black. The highest stage is removed each time.
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Figure 5.9: Predicted peak stage from the sonohydrographs after the removal of the highest
stage from the sound-stage ratings curves.

5.4 Discussion

5.4.1 Peak stage

The Gaunless network is made up of 5 sound-stage monitors, in conjunction with 3 traditional
pressure transducer EA gauges. I do not intend that sound-stage monitors are to replace existing
gauges but investigate areas in which valuable additional data can be gathered where it cannot
be done currently. Hindon, Cowclose Beck and Arn, Steele Gill make up the headwaters of the
River Gaunless. Having monitors distributed around the headwaters allows the identification of
which of these tributaries is the spatiest, or if they all act in unison, and if they all peak at the
same time.

Investigating these smaller streams and tributaries is not a priority for national or regional flood
management but could be important for local flood management. By using the data from the EA
gauges I am able to verify my data from the flow event on the 11th March 2021, as without it I
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would not be able to link the sound-stage monitors to the event. The flow event was not a flood
scale event but it can be used to build our argument for exploring the headwater response and
subsequent downstream response. By looking at the sound peak time from Table 5.2 and Figure
5.4 the peak does not occur at the same time in any of the sound monitor locations, whereas the
EA peak gauge times occur around the same time of around 07:30. A flood peak is expected
to happen sequentially downstream, however, the peak occurs earlier at the downstream EA
station than the midstream station. Although it does not follow the sequence, it is given that
within a margin of error that the peak of the River Gaunless main channel was found around
07:30. The sound-stage monitors do not record the peak at the same time, either being an hour
later or 2 hours earlier. The sound peak timing cannot be changed since it is not related to the
sound-stage ratings curve. I can observe that sound and stage peak time do not happen at the
same time. In Chapter 4 I found that at maximum stage, there was variance within the sound,
meaning peak stage and sound does not always match. Due to the mechanism involved in sound
creation with relation to RE height, sound can become quieter after submergence. With Steele
Gill and Highlands having RE heights at 0.21 m and 0.4 m, and peak stages of 0.29 m and 0.4 m
respectively, they are at the point when sound can become quieter, meaning the peak sound may
occur earlier or later than the peak stage. In regards to future events, when a flood is expected
at these stations the stage will be higher than the RE height and therefore will not have the
transitional sound discussed in Section 4.4.3.

With the sound only monitoring stations I cannot determine if the sound and stage peak occur at
the same time, but can estimate their reliability with the timings of the EA gauges. The headwater
catchments show similarity to the EA timings, with the exception of Arn Gill, which has a sound
peak 8 hours earlier than observed at Steele Gill. There may be the effect of the sound transition
occurring since Arn Gills’ RE height is 0.25 m, and with concurrent measurements being taken
at around that height I can assume the river reaches that stage. Another factor may be that the
Arn Gill catchment is inherently different to the other headwater catchments.

If the sonohydrographs are to be used, then I can identify that the headwater catchments influence
the River Gaunless from confluence at Steele Gill. We are seeing an unsynchronised outflow of
the the headwaters meaning we are seeing a reduced peak and a longer duration of the higher
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stage at Steele Gill. If the Arn Gill catchment was in sync with the other headwater catchments,
then an additional drainage area of 3.6 km2 would be in combination with the others, leading
to a higher combined stage at Steele Gill. By looking at the headwater catchments individually
like this we are able to determine if flow is synchronised or unsynchronised. In future flood
planning it would be intriguing to know if the peak experienced was due to synchronous flow
or not. Meaning that if given a set rainfall, and that the rivers were close to flooding, than if the
same rainfall occurred and the rivers were in sync then flooding may occur. Only by real-time
monitoring of the headwaters would you be able to determine if flood peaks were occurring.

5.4.2 Water resource management

The River Gaunless catchment was chosen to test using sound as a surrogate measurement
for stage due to spatey nature of the headwaters. The general hydrology of the Gaunless is
interesting to river monitoring, since there are different pathways that the water can take, with
the main tributaries all being significant contributors. Therefore if Crow Howle had a localised
shower, then it would cause localised flooding, and propagate downstream in the Gaunless.
Whereas monitors upstream of that point would not record a rise in stage.

Flooding has been found within the region of our study with properties employing their own
flood prevention measures, such as flood screens and building levees to contain the smaller
tributaries. These measures have been taken by the local communities at Crow Howle Beck and
Gordon Beck. It is in these areas that a stage gauge would be of benefit, as it would allow both
the people to know the state of the river but also to identify at what stages does property damage
occur, allowing future mitigation strategies. The sound monitors found in the headwaters are
useful for understanding if what is happening downstream, whereas the sound monitors found
in community areas are for active flood management. I therefore assess the Crow Howle and
Gordon Beck based upon their impact on the local community.

Crow Howle and Gordon Beck are considered to be significant tributaries with drainage areas of
8.5 km2 and 6.7 km2. There are 12 homes within the flooding zone of the Crow Howle Beck and
8 homes around Gordon Beck. Understanding therefore what the river is doing can therefore act
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as either a reassurance to the homeowners or give them warning to a potential flood. With an R2

value of 0.95 and 0.96 for the sound-stage ratings curve, I am confident that sound monitoring in
these rivers is reliable enough to give an indication for this.

The sound-stage monitors could be used in a range of water resource management scenarios.
I identify 3 areas that can use the existing sound-stage monitoring techniques: natural flood
management (NFM) verification, the effect of land use on flooding and improvement of flood
modelling. NFM has potential benefits, by helping to store and slow the flow of any rainfall
event, reducing the peak (Black et al., 2021). The verification of NFM has however heavily
relied on modelling to rate the effectiveness, with only around 25% of studies using observed
data (Kay et al., 2019; Black et al., 2021). I have shown that peak timing can be identified from
sonohydrographs and their duration. By placing a monitor above and below any NFM structure,
then the effect can be quantified.

Local land use has an impact at the local scale to flooding, influencing the timing and magnitude
of the flood peak (O’Connell et al., 2007). Pattison and Lane (2012) found that land use caused
the most impact at small catchment scales, meaning that areas such as headwaters are suitable
for monitoring land use impact. The inclusion of local land use in flood sensitivity is not well
represented in modelling, and in data sparse areas is not feasible (Ewen et al., 2013; Sanyal
et al., 2014). The headwater catchments of the Gaunless have different land uses, with Hindon
Beck being a mixture of heather moorland and some farmed grassland, and Cow Close and
Arn Gill being mainly farmed grassland according to the UKCEH Land Cover 2020 survey. A
difference of land use may be impacting the peak times of the headwater channels discussed,
with heather moorland being more retentive than farmed grassland causing a slowing of the
peak (Ramchunder et al., 2009). Both the farmed grassland dominant streams reach peak
stage earlier than Hindon Beck with the predominantly heather moorland. In reference to the
Gaunless’ mining heritage, the profusion of EA gauges is to determine the amount of mining
waste being transferred downstream. Sound monitoring could be beneficial for observing
the spatial differences in peak stage and the hydrograph shape and used to monitor seasonal
changes and impact of land use change or practice (Ott and Uhlenbrook, 2004; Mayes et al., 2006).
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The main use of the sound-stage monitors is for active flood gauging, giving a calculated stage
for that reach, and indicating if the river has reached peak stage. However, that data can be
used in flood model calibration and validation to improve future flood resilience and planning
(Mazzoleni et al., 2017). Our data is not an absolute value for river stage, and without comparing
against in-water stage measuring I cannot guarantee that the stage produced will be highly
accurate, but will give an approximate value within 5 cm of the true stage. That begs the question
as to why might uncertain data be used in a flood model. Fava et al. (2019) found that using
additional observed data with errors ± 10 cm can still improve model forecasting. Real-time
monitoring of smaller catchments is useful in flood modelling since as was shown in Table 5.2,
the catchments reached peak stage at different times, which subsequently affects the downstream
portion. Starkey et al. (2017) found that by adding spatial density and ground truth data, not
only improved flood forecasting but also localised catchment planning and its response. The
network density of the Guanless with the EA gauges was already very high at 1 monitor per
13.8 km2, given that the UK average is 161 km2 and the global directive of 1875 km2 (WMO, 2008).
Including the sound-stage monitors the network density of 5.1 km2 is now found at the Gaunless.
I argue that such a high density of stations is a valuable resource, and in terms of cost and
infrastructure is minimal for the insights gained.

5.5 Conclusion

Sound-stage monitors offer a new opportunity for flow gauging in areas where traditional
gaugingmethodsmay be difficult, and as such I target headwater channelswhich have challenging
bed topography. I have shown that the setup of the monitor requires calibration before any
stage value can be calculated, with the best improvement of the reliability of data coming from
taking stage measurements at both low and high stages. Although a minimum of two points
can be used to fit a relationship, I recommend taking as many measurements as possible, to
both calibrate and validate the data. The Gaunless network has shown spatial variability of the
catchments in terms of peak stage timing, which is assumed to influence the flood peak intensity
downstream. Understanding what is happening in the headwaters not only benefits the local
communities, but also in future attempts to improve flood resilience and management. I propose
that the future of sound-stage monitors is being used in community monitoring schemes in
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which real-time data can be fed into local flood action groups. Alternatively additional gauging
being used in research activities to validate results of NFM or flood models is feasible. Further
work will need to be done to see if adding these extra gauges into a flood model will improve the
model or if real-time data from the monitors can be used to update flood forecasting by knowing
how the headwater catchments are responding.
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“No man ever steps in the same river twice,
for it’s not the same river and he’s not the
same man.

Heraclitus ”



Chapter 6

Conclusion

In my thesis my research aim broke down into three main sections: How to monitor sound; Why
is sound related to a river and What can sound be used for? Through a combination of fieldwork
and experimental work I have addressed each of these questions and hereby give my conclusions
on each of these sections.

6.1 How?

The project started with the ambiguous title of "Listening to Rivers", but how does one listen
to a river and then extract any data from it? I set out to find a universal method to record and
analyse sound data, removing the need to have a sensor positioned at the exact right spot or for
it to be suspended over the top of the river. With the goal to have flexibility in mind, I developed
the lowest median filter. The filter was designed with the basic principle that the sound of a
river is constant, unlike the sound at a beach with the waves coming in and out. If the sound
of a river is constant, then any other extraneous noise such as from wind should be able to be
removed. In Section 2.2.3 the ability of the filter to take a noisy signal into a meaningful one was
shown. The development of the filter is not limited to sub-aerial sound monitoring for rivers,
but could also be beneficial to other sound monitoring projects.

Having developed a method to retain only the river sound data, the question of how sound can
be measured by a river was explored. The questions of how close by a river do you need to be,
or at what part was shown to be important if sound is to be used. The closer to the river you
measure, the louder it will be, but if you are not able to be at the river, then a buffer zone of
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around 5 m from the river will still be able to be used: as long as you can hear the river, then that
area is suitable. Utilising the River Washburn and its planned releases, surveying a long reach
of a river during both high and low flow helped to identify the places that generated to most
sound. In sections where there was a large RE, the sound generated was far greater than if there
were no REs or if they were small. Finding that REs were important to river sound generation
means that future site selection for sound monitoring require a RE.

Storm Ciara and Dennis provided data at exactly the correct time, with a 1 in 10 year storm event.
The data proves that sound can function during storm condition and that the lowest median filter
is capable even during very windy weather. I showed that the frequency at which you monitor a
river is not as simple as picking the same for all of them, and that the best frequency range is
dependant on the river and the environmental conditions. A frequency range of between 1 - 2
kHz is the range I suggest to be used before any others are chosen, with the absence of any other
data. The relationship between sound and stage was shown to be very good, ranging from a R2

of 0.73 to 0.99.

Having shown that sound and river stage can form a relationship, I focussed on how the
sound-stage data could be calibrated for an observer. Using sound by itself, without any
concurrent stage measurements, you will not be able to calculate a stage value. You will be able
to plot a sonohydrograph, so rising and falling limbs, and peak timings will be known. To assign
a depth value to the sound data requires the creation of a sound-depth ratings curve, meaning
reference depth and sound values need to be taken. As a general rule, the more data points to
form the curve, the better, with a range of stage values being taken as with Chapter 3. This is not
so dissimilar to how stage-discharge curves are produced, so should not be taken as a limitation
of using sound.

6.2 Why?

Being able to monitor a rivers’ sound in relation to depth raised the question, does this work?
Using the Tees Barrage I was able to determine the source of river sound and how that links to
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RE height and configuration. Knowing if there has to be a certain formulation of REs to have a
better sound-depth relationship would be crucial in future deployments of sound monitors. I
found that the heights of a RE was more important than the configuration of them. The height
of the RE determined how smooth the relationship between sound and stage were, with shorter
REs creating more scatter. Of significance was the interface when the stage and RE height met,
with over-topping occurring.

With over-topping, the sound experienced a sudden rise in SPL, before falling after the submergence
of the RE. Importantly the sound continued to rise after the submergence of an obstacle, meaning
that as previously thought the RE does not need to be the same height as the depth that is
wanting to be monitored. It is however apparent as the maximum depth of a river increases
above an RE, the sound-depth relationship begins to become more scattered at higher depths. It
would therefore be prudent to have multiple sound-depth points at these levels to construct a
robust sound-depth ratings curve.

In addition to understanding how sound and depth relate to each other, the source of the
sound of a river was identified as the white water being generated. By relating sound to the
amount of white water in an image, I can add another site selection criteria in which white water
must be present. I identified that the sound recorded from a hydrophone, underwater, was
not as representative of stage as sub-aerial sound. It is also noted that underwater sound and
the amount of white water also relate to each other, meaning that in hydrophone studies the
detection of water stage changes may be being measured.

6.3 What?

The purpose of the project was to determine if listening to rivers can be used to infer a rivers’
stage, which we have shown in the previous sections to be possible. However, the application
of this technology was to address the lack of monitoring in areas deemed to be unnecessary to
conventional monitoring, or without adequate gain of information. The headwater channels are
a natural location for sound monitoring, and the network study carried out at the River Gaunless
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goes some way to showcase what these additional monitoring locations can show. The network
of locations took less than a half a day to setup 8 sound locations and then attending the sites
over the course of a month to create a sound-stage curve. Showing the ease of deployment of
a sound network and with continued calibration of a sound-depth ratings curve is promising.
Future work in expanding into larger networks, over a greater area might help to fill in areas of
the country that aren’t being monitored.

6.4 Future work

In the course of the thesis I answered my three research questions which leaves a crucial one left,
where next? In order to make sub-aerial sound a credible method for use in flood monitoring
there will need to be long term studies to determine the seasonality of sound. In the UK, the
majority of my monitoring occurred during Winter, which came with certain conditions, such as
stable temperature. In areas which have larger swings in temperature, the affect on sound might
become more pronounced, and skew any sound-stage relationships. Longer study durations will
also determine if changes in REs will have any perceivable change in sound-stage relationships. I
would therefore like to set-up a long term study on a section of river which has REmeasurements
being taken and tracked, such as from terrestrial laser scanning or drone imagery. That would
answer the long term suitability of sound monitoring and if there is a life-expectancy to any
relationships formed.

As a new form of river monitoring there are still questions to be asked around sound monitoring
to make it reliable. I have gone some way to answer the main questions regarding sound, such
as "will it work in the wind", and "what are the limits on sound". There are certain rivers chosen
for sound monitoring that ended up performing poorly, and further data are needed to test my
ideas’, why they did do, such as Ramshaw on the Gaunless. Modelling, such as computational
fluid dynamics, could be utilised to some degree to attempt to understand how a flow behaves
over a range of depths, and if there are features of weirs or culverts that make sound monitoring
a non-starter at these locations. Further modelling a river reach with the aim of determining
the amount of white water produced would enable me to remotely assess a rivers’ ability to
have sound monitoring and determining the optimal placement of any sound monitor. Having
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a model would improve on the work done at the WWC, as model runs similar to the WWC
could be trialled to determine if the model is creating the same effect as the real-world. There is
potentially a method to extract a rivers’ stage using the amount of white water on it’s surface,
using remote imagery, or translating white water into a proxy for gas exchange.

6.5 Summary

Using sub-aerial sound to monitor a rivers’ stage was a novel idea, which over the course of the
project has been shown to be productive. The areas in which the insights gained from the project
are two fold, research and consumer. The research potential of the devices are that they are
easy to install and are cost effective, meaning the coverage of sound monitors can be far greater
than that of traditional techniques. Coupled with the ease of deployment, anywhere a river
makes a sound, is a potential site. I see sub-aerial sound not being limited to headwater channels,
but for example deployed around ephemeral streams for flash flood warnings. Consumer use
of sound has both potential benefits and drawbacks, especially if the sound-stage curves are
badly calibrated. If advice is followed, then it is not beyond reason that someone can monitor for
themselves or at community level a local river that has the potential of flooding.
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