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Abstract

The curvature of surfaces affects the organisation of condensed matter upon them.

In biology, the curvature of cell membranes affects how proteins are arranged within

them and the growth of virus capsids is affected by their curvature, for example. Curva-

ture is also used to guide colloidal self-assembly in industrial nanoscale manufacturing

processes, to produce, among other things, drug delivery systems, biosensors and pho-

tonic crystals.

An open question in the field concerns how two-dimensional crystalline systems

deal with the closure constraint imposed by finite curved surfaces. A crystal on a

conical surface is a good model for studying this as the curvature strain associated

with surfaces of non-zero Gaussian curvature is eliminated and the closure constraint

is variable, unlike on, for example, cylindrical surfaces. In this work, putative global

minimum energy structures of two-dimensional, model colloidal crystals confined on

conical surfaces of a range of angles are generated using basin-hopping and visualised

with Voronoi tessellation. The colloidal particles interact via an isotropic Morse po-

tential. The defect patterns observed in these model, minimum energy crystals are

discussed and analysed. The interparticle potential range and the cone angle affect

whether any defects are seen in the minimum energy structures, and, if defects are

produced, what they are. Both wedge-shaped defects reported in experiment and

novel bulk-terminating helical defects are observed. At small cone angles, the type of

defect is very sensitive to changes in angle, as different defects can alleviate different

amounts of strain. A phase diagram of preferred defect type against cone angle and

interparticle potential range is produced for near-cylindrical conical surfaces. Another

interesting feature of the crystal is the vertical position on the cone that it prefers to

occupy; a preliminary line energy model is constructed which explains this behaviour

qualitatively.

1



Acknowledgements

Many thanks to my supervisors, Professor Halim Kusumaatmaja and Dr Mark Miller,

for the opportunity and of course for all their time this year. Their help and patience

has been invaluable, both within the bounds of this project and beyond. In such strange

times, they have been willing to help me out at the drop of a hat. It was fantastic to

meet Mark for the first time at the conclusion of the project!

Thank you to Jack Law, whose work I continued and whose guidance was much

appreciated, especially in the early part of the year.

I would also like to thank Professor Vinothan Manoharan and Jessica Sun of Har-

vard University for their contributions and the constructive discussions we had.

And thank you lastly to my family, who have put up with twelve months of a

full time masters student working all over the house, including, unhelpfully, during a

complex house move to the other end of the country!

2



Contents

1 Introduction 5

1.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Curvature in Biology and Materials Science . . . . . . . . . . . 5

1.1.2 Curvature and Self Assembly . . . . . . . . . . . . . . . . . . . 6

1.1.3 Defining Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Colloids and Colloidal Systems . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Colloidal Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Two-Dimensional Colloidal Crystals . . . . . . . . . . . . . . . . 12

1.3 Colloidal Crystals on Curved Surfaces . . . . . . . . . . . . . . . . . . . 13

1.3.1 Spherical Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Non-Spherical Curved Surfaces . . . . . . . . . . . . . . . . . . 19

1.4 Colloidal Crystals on Conical Surfaces . . . . . . . . . . . . . . . . . . 21

2 Methodology 24

2.1 The Model System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Global Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Voronoi Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Results and Discussion 36

3.1 The Surface Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 A Cyclical Coordinate System . . . . . . . . . . . . . . . . . . . 36

3.1.2 Simple Repulsive R-12 Potential . . . . . . . . . . . . . . . . . . 37

3.1.3 Truncated, Shifted, Smoothed Repulsive R-12 Potential . . . . . 38

3.2 Large-Angle Cones: Magic, Intermediate and Near-Magic Angles . . . . 41

3.3 Small Angle/Near-Cylindrical Cones . . . . . . . . . . . . . . . . . . . 49

3



CONTENTS 4

3.3.1 Analysis and Categorisation of Defect Structures . . . . . . . . 49

3.3.2 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Defect Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The Effect of the Dimensions of the Conical Surface on the Crystal

Location - A Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Approximating a Cluster at the Upper Boundary . . . . . . . . . . . . 67

4 Conclusions and Further Work 72

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Further and Improved Methods and Analysis . . . . . . . . . . . 73

4.2.2 Beyond Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 More Complex Models . . . . . . . . . . . . . . . . . . . . . . . 75

A Appendices 76

A.1 An Example Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 Supplementary Large Angle Images . . . . . . . . . . . . . . . . . . . . 77

A.3 Defect Types and Categorisation Decision Tree . . . . . . . . . . . . . . 84

A.4 Further Defect Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5 Band Model Derivation 1: Length of Defect . . . . . . . . . . . . . . . 90

A.6 Band Model Derivation 2: Length of Edges . . . . . . . . . . . . . . . . 92

Bibliography 83

A F Gerrand



1. Introduction

This thesis aims to add to the existing body of knowledge on the effect of confining

curved surfaces on the organisation of condensed matter. In particular, the effect of

conical surfaces on the ground state configurations of colloidal crystals is investigated.

Colloidal systems lend themselves well to computational modelling, and here minimum

energy configurations of colloidal crystals on confining conical surfaces are investigated

using global energy minimisation techniques.

In this introductory chapter, curvature and colloidal systems will be discussed and

an overview of colloidal systems confined upon spherical, cylindrical and other curved

surfaces will follow. The chapter will conclude with an outline of the structure of the

rest of the thesis.

1.1 Curvature

1.1.1 Curvature in Biology and Materials Science

Curvature is an important geometrical feature in numerous biological and engineered

systems. At the most basic level, curvature can be understood as any deviation of a

surface from a flat plane. In biology, the behaviour and order of biological membranes

and their constituents is strongly influenced by the curvature of the membrane.1,2

Figure 1.1 illustrates some examples of the role of curvature in structures in animal

and plant cells.3 Membrane curvature plays a role in cell division, cellular endocytosis

(the intake of macromolecules into cells) and viral replication.4–7 The understanding

of membrane budding and pinching, important stages in these processes, has led to a

more complete picture of cell mechanics and growth.8 Membrane curvature can also act

as a signalling mechanism between and within cells.1,9 Mechanosensitive ion channels
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1.1. CURVATURE 6

are vital in proper cell function; the MscL family of channel proteins are well-studied

proteins which open and close depending on the local curvature of the membrane

within which they sit, allowing for the entry and exit of crucial cellular substances.

They have been shown to prevent E. coli bacteria from exploding by opening when the

intracellular pressure gets too high.10,11

Recently, functionalised nanoparticles (NPs) have been used to generate curvature

in cell membranes as part of a process in which other, nonfunctionalised NPs are de-

livered into the cells.12,13 Processes like this could be crucial in enabling the controlled

delivery of nanomedicines. Curvature as a signalling mechanism has also been ex-

ploited in the development of novel biosensors and in potential de novo drug delivery

systems.9,14

Beyond biology, curvature is also important in the understanding and manufacture

of novel materials, such as in the development of functional metamaterials. The me-

chanical and electronic properties of the two-dimensional ‘wonder material’ graphene

are affected by its curvature.15,16 For example, the local electrochemical potential in

rippled graphene has been shown to be proportional to the square of the local curva-

ture.15 Carbon nanotubes (CNTs) are essentially rolled up graphene sheets and their

curvature, determined by how tightly rolled they are and quantified by considering

their radius, determines their electronic, mechanical and magnetic properties.17–19

Curvature also plays a role in the properties of nanostructured materials. Nano-

materials with structures that have negative Gaussian curvature (see Section 1.1.3)

are of particular interest and include nanocavities, nanotubes, groove nanostructures

and hollow nanospheres. These types of structures can provide good model systems

in which to study nanoconfined processes like electrical and thermal transport.20 Fur-

thermore, nucleation is favoured inside nanostructures of negative curvature which is

useful in certain industrial applications.20 Curvature has also been shown to affect the

direction of contact-electrification, with negative charge accumulating on surfaces with

positive curvature and positive charge on surfaces of negative curvature.21

1.1.2 Curvature and Self Assembly

Imparting curvature onto self-assembling systems can be a way to control or direct self

assembly. Self assembly is the spontaneous organisation of a larger, ordered structure

A F Gerrand



1.1. CURVATURE 7

Figure 1.1: Prominent examples of membrane curvature in cells where recent progress

has revealed insights into the underlying molecular mechanisms. Convex curvature

(with respect to the cytoplasm) is shown in pink lines, and concave curvature is shown

in blue. Image taken with permission from work by Jarsch et al.3

A F Gerrand



1.1. CURVATURE 8

from component parts and is ubiquitous across all length scales; from the development

of weather patterns and the formation of galaxies to the growth of cancer cells, the

formation of viral capsids and protein and nucleic acid folding.22–25 Self assembly is

also utilised in industry in the synthesis of molecular crystals, monolayers and colloidal

systems.22,26

Curvature can have a significant effect on the shape of the potential energy surface

(PES) of a system (see Section 2.2) and the routes across it that the system can take.

Making use of this, curvature has been used to guide the self assembly of nanoparticles

and of molecular monolayers on nanoparticles.27,28 A better understanding of the po-

tential energy surfaces and minimum energy configurations of nanoscale systems can

help in the cost-efficient development of novel, tailored, self-assembled structures.25,29,30

1.1.3 Defining Curvature

To deal with curvature formally, a mathematical definition is required. The curvature

of a surface at a given point can be defined using its two principal radii of curvature, R1

and R2. These are the largest and smallest radii of all the possible circles occupying

planes orthogonal to each other and to the surface. The circles follow exactly the

local curvature of the surface at that point. If there is no curvature in one of the

two directions, then that radius of curvature is infinite. From R1 and R2 two types of

curvature can be defined: mean curvature H,

H =
1

2

(
1

R1

+
1

R2

)
,

and Gaussian curvature K,

K =
1

R1

1

R2

.

The sign of the Gaussian curvature depends on whether the principal radii are on the

same side of the surface or not, independent of which side that is. If the radii are on the

same side, then the Gaussian curvature is positive, if they are not then it is negative.

Gaussian curvature in particular is useful when categorising surface curvature. Fig-

ure 1.2 illustrates three different cases, as defined by their K: where K > 0, where

K = 0 (where one or both of the radii of curvature are infinite) and where K < 0.

Spherical and ellipsoidal surfaces have positive curvature at all points; flat planar,

A F Gerrand



1.2. COLLOIDS AND COLLOIDAL SYSTEMS 9

Figure 1.2: An illustration of three surfaces with different Gaussian curvatures. The

black lines indicate the intersection of the surface with the planes containing the prin-

cipal radii of curvature. The point on the surface at which the lines cross is the point

at which the curvature is being measured. From left to right: a surface with positive

Gaussian curvature; a surface with zero Gaussian curvature; a surface with negative

Gaussian curvature. Image courtesy of Mark Miller.

cylindrical and conical surfaces have zero Gaussian curvature all over; and a hyper-

bolic surface (often referred to as a saddle surface) has negative Gaussian curvature.

1.2 Colloids and Colloidal Systems

Colloids are particles of one phase uniformly dispersed in a second phase with dimen-

sions on the order of nanometres or micrometres.31 A schematic colloidal suspension

is shown in Figure 1.3. The definition can vary depending on the source, but the

key attributes of non-crystalline colloidal systems are their length scale and that they

are under the influence of Brownian motion.32,33 Colloidal systems are distinct from

solutions in that the particles are large enough to be considered to be in their own

phase, i.e. they are not just molecules. The phases in colloidal systems are known as

the dispersed phase and the continuous phase (the medium in which the particles are

dispersed), both of which can take many different forms. Emulsions, liquid crystals

(both liquid in liquid), gels (liquid in solid), sols (solid in liquid), foams (gas in liq-

uid) and aerosols (liquid in gas) are all considered to be colloids, where the dispersion

medium (within which the colloidal particles sit) and the particles themselves are dis-

A F Gerrand



1.2. COLLOIDS AND COLLOIDAL SYSTEMS 10

Figure 1.3: The structure and scale of a typical colloidal suspension. Particles of one

phase of diameter order 10–1000 nm are suspended in a second, continuous phase.

tinct phases. Everyday examples of these types of colloidal systems include milk (an

emulsion), shaving cream (a foam), hairspray (an aerosol), smoke (a solid aerosol —

solid in gas), pigmented ink (a sol), aerogels (solid foams — gas in solid) and gelatin

(a gel). This reflects the wide array of applications available for colloidal systems.

Colloids can also provide a platform for creating complex, hierarchical structures,

with increasingly complex particles able to combine to form unique forms of matter,

much in the way that atoms do.34,35 A benefit of using colloidal particles in the de-

velopment of new materials is the ease with which they can be modified; they can be

treated as ‘designer atoms’ in the sense that their properties, shapes and interactions

can be controlled with high precision in the lab.34 Many different shapes and types

of colloids have been synthesised; dumbbell, cubic, lock-and-key, prismatic, ellipsoidal

and bowl shaped particles have all been successfully characterised, among others.36–41

On top of tweaking the physical properties of the particles themselves, the interactions

between them can also be tuned. Altering the geometries is one way of doing this, and

chemically modifying their surfaces is another. Types of inter-particle interactions that

have been achieved in colloidal systems include screened Coulomb, depletion, short-

range attractive and ionic.42–45 Colloids have also been made to interact anisotropically,

A F Gerrand



1.2. COLLOIDS AND COLLOIDAL SYSTEMS 11

by constructing particles with ‘patches’ of different chemical properties on their sur-

faces.46,47 One specific type of this kind of colloid is the so-called Janus particle, which

is a particle split into two halves, each with distinct properties.48 By manipulating the

ways the particles interact with each other, the way they assemble can be modified.

1.2.1 Colloidal Crystals

In a colloidal crystal, the particles have order. They are analogous to molecular and

atomic crystals in their ordering but, in general, differ in scale as the repeating subunits

of the crystals are colloidal particles and not atoms or small molecules.32,49 Colloidal

crystals can be found in nature; natural opals, for example, consist of closely-packed

silica particles formed over years of hydrostatic and gravitational compression.49 Many

man-made colloidal crystals are thus referred to as synthetic opals.

Colloidal crystals are the subject of active research due largely to the way they can

cooperatively organise themselves into useful structures, which lends them well to cost-

efficient manufacturing on the nanoscale. They can also be manipulated to undergo

controllable phase transitions under the right conditions.50 They have varied applica-

tions, including as photonic and phononic crystals, in catalysis, in display technologies,

as bio- and chemical sensors and as templates in cell culturing, chemical synthesis and

nanofabrication.49,51 In photonics, colloidal crystals are of interest as, due to their

size, they can act as photonic crystalline band gap materials and also as templates for

manufacturing them.49 The ease of chemical modification of colloids means that, for

example, the band gaps in these materials can often be tuned conveniently.52

Three-dimensional colloidal crystals can be used as sacrificial templates in the man-

ufacture of three-dimensional ordered macroporous materials (3DOM materials), mate-

rials that contain highly ordered networks of macropores connected by small channels.49

The materials that are formed from manufacturing techniques using these templates,

often referred to as inverse opals, maintain the optical properties of the colloids as

the ordered network of voids created as the colloids are removed exactly replicate the

shapes of the colloids that were used to template them.53 3DOM materials could have

applications in making photonic crystals, catalysts, electrodes, sensors and more.54

Colloidal crystals make good systems for modelling and studying general crystalline

behaviour (such as that of atomic and molecular crystals). This is because the size

A F Gerrand



1.2. COLLOIDS AND COLLOIDAL SYSTEMS 12

of the colloidal particles allows them to be imaged in real time with standard light

microscopy.49 The larger particle sizes also mean that the organisational timescales are

slower and more straightforward to track experimentally. Nucleation rates of colloidal

crystals, for example, are much easier to measure than those of atoms or molecules.55,56

There is an overlap between the forces that determine the behaviour of colloidal systems

and those that govern atomic matter (electrostatics, depletion interactions etc.); col-

loidal particles have, for example, been used both to demonstrate the theory of crystalli-

sation of hard spheres and the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)

theory of melting in two dimensions experimentally.57,58

1.2.2 Two-Dimensional Colloidal Crystals

In the lab, colloids can be adsorbed onto surfaces, creating monolayer or thin film col-

loidal systems. These systems can have markedly different properties from their one-

and three-dimensional counterparts. Crystalline two-dimensional colloidal systems, un-

like one- and three-dimensional colloidal crystals, can be used as masks or templates

for colloidal lithography where they impart their crystalline order on a substrate in

the cost-effective manufacture of ordered, thin, nanostructured materials.49 Patterned

two-dimensional colloidal crystals also have potential applications as bio- and chemi-

cal sensors and in electronic and optoelectronic devices.49 Lipids, proteins and other

molecules diffusing within biological membranes could also be considered to constitute

polydisperse colloidal-like liquid crystals, although the precise local order within these

types of biological structures is more transient due to the constant diffusion within

them. Defects in the packing of these kinds of two-dimensional crystals play a key role

in the self assembly of structures such as viral capsids.23

Two-dimensional colloidal crystals lend themselves to synthesis on a substrate or

surface.29 Patterned two-dimensional colloidal crystals can be manufactured on sub-

strates using techniques including transfer printing and template-directed or surface-

induced assembly.49 Assembling large, defect-free two-dimensional crystals is particu-

larly challenging, although in some cases defects can be beneficial; for example, some

purposefully engineered, artificial defects can act as photonic dopants in functional

photonic devices.59

A F Gerrand



1.3. COLLOIDAL CRYSTALS ON CURVED SURFACES 13

1.3 Colloidal Crystals on Curved Surfaces

Spatially confining colloidal crystals to specific geometries can allow the properties and

function of the material to be tuned by perturbing the stable structure in a controlled

way.60 A two-dimensional crystal of identical spherical particles with a fixed density on

a plane is most stable when arranged in a hexagonal pattern with each crystalline unit

surrounded by six others and all particles equally spaced. For example, consider a sheet

of graphene, or how layers of spherical fruit can be most efficiently packed in boxes,

both of which are shown in Figure 1.4. When that hexagonal structure is transferred to

an extended surface with non-zero Gaussian curvature, however, the angles between the

‘bonds’ joining neighbouring units can no longer be π
3
as in equilateral triangles, and

thus strain is introduced.25 This is also demonstrated by considering the parallel lines

of units in the hexagonal packing arrangement — these can no longer be parallel when

the arrangement moves to such a surface. Therefore a trade-off arises between system

curvature and the local order of the particles. When it is large enough, the curvature

strain can disrupt the ordered crystalline structure and produce imperfect, defective

crystals. Thus, understanding the effect of curvature on these systems is another

step towards controlling the packing and therefore the properties of two-dimensional

crystalline materials.

1.3.1 Spherical Surfaces

The simplest curved surface to consider when confining two-dimensional colloidal crys-

tals with curvature is the sphere, which is a surface with constant Gaussian and mean

curvature (a sphere of radius r has K = r−2 and H = r−1 everywhere on its sur-

face). The general problem of packing on a sphere is a well studied one. In 1904, J.

J. Thomson introduced what is now known as ‘the Thomson problem’ where, in his

plum pudding model of the atom, electronic point charges are uniformly spread across

the ‘surface’ of the atom in a minimum energy configuration.62 In biology there are

also numerous examples of the packing of particles on a sphere; molecules or proteins

packed on metazoan epithelia, viral capsids, spherical radiolaria, to name a few, are all

cases where particles are confined to spherical or near-spherical surfaces, or the systems

concerned can be modelled as such.63–66 The effect of the energetic trade-off between

A F Gerrand



1.3. COLLOIDAL CRYSTALS ON CURVED SURFACES 14

Figure 1.4: An illustration of the hexagonal packing of a two-dimensional system on a

flat surface. Left: a visualisation of the atomic structure of a small section of graphene,

a single sheet of covalently bonded carbon atoms; right: a picture of oranges packed in

a box at a market in Spain.61

local order and longer range curvature is also a key consideration in, for example, the

structure of fullerene carbon clusters and the even the ordering of electrons trapped

on liquid helium bubbles.67–69

Defective Packing on Spherical Surfaces

Spherical confinement of colloids is of high interest given spheres offer uniform, con-

trolled curvature with which the effects of curvature on packing and self-assembly can

be studied.60 Even in the simplest cases, finding the lowest energy arrangement of

particles in spherical confinement is not a straightforward problem, and has not been

fully solved even more than a century after Thomson introduced the problem for the

first time in 1904. It is listed as problem seven in Smale’s Problems - a list of eighteen

of the most potentially consequential unsolved problems for the 21st century.70 It has

been solved analytically for only a few discrete numbers of particles (all below 12).71,72

The exact hexagonal packing arrangement preferred on a planar surface cannot be

directly translated to the sphere, as demonstrated by Euler’s formula for convex poly-

hedra. In 1758, Euler defined the Euler characteristic or Euler number χ, a topological

invariant (a descriptor of a 3D shape that is unchanged when the surface is contin-

A F Gerrand



1.3. COLLOIDAL CRYSTALS ON CURVED SURFACES 15

Figure 1.5: An association football on Texas grass, from work by Kroto et al.67 The

spherical surface of the ball is completely tiled with both hexagonal and pentagonal

panels, as it cannot be tiled by hexagonal panels alone.

uously deformed), to be χ = V − E + F , where V is the number of vertices on the

surface, E is the number of edges and F the number of faces.73 For all closed, convex

surfaces, χ must be 2. For a surface tiled only by hexagons, χ is equal to 0, and there-

fore hexagons alone cannot cover a convex polyhedron; all convex polyhedra must have

some non-hexagonal faces. This means that a hexagonal lattice on a spherical surface

must incorporate some defects (some sites of five-fold coordination). The example of

an traditional association football, as in Figure 1.5, demonstrates this in practicality.

In hexagonal lattices, two types of local topological defect are possible: disclina-

tions, which are points of local five- or seven-fold symmetry (particles with coordination

numbers of five or seven) and dislocations, which are a pair of neighbouring points, one

of which has local five-fold symmetry and the other local seven-fold symmetry.74 These

defects can also be categorised by their topological charge relative to the most stable,

six-fold environment (defined as 6−m, where m is the number of nearest neighbours):

a point with coordination number of five has a topological charge of +1 and one with

seven has a −1 topological charge. Thus the disclinations have a net, non-zero charge,

and the dislocations do not (as the immediately neighbouring charges cancel each other

out). A +1 disclination is shown in parts A and B of Figure 1.6. Above a certain sys-

tem size, disclinations can combine and scars (high-angle grain boundaries) can form,

which are defined by their excess topological charge.75 Further, dislocations can ap-

pear lined up with variable spacing in so-called pleats, which have no net topological

charge, depending on the underlying curvature.74 These can also be observed in planar

crystals, but tend to terminate at the edges of the crystal, whereas in spherical crystals

A F Gerrand



1.3. COLLOIDAL CRYSTALS ON CURVED SURFACES 16

they terminate freely in the bulk.75 Some pleats are shown in parts C and D of Figure

1.6.

Despite the difficulty in finding analytical solutions to the problem of arranging

particles on a spherical confining surface, the problem is well studied, both experimen-

tally with colloidal systems and computationally.60,76–79 The net topological charge of

the defects on a sphere always comes to +12, which corresponds to the simplest way

of obeying Euler’s rule on a sphere (and achieve χ = 2), where 12 pentagons (local

sites of five-fold symmetry and of +1 topological charge) are used in combination with

hexagons to tile the surface. Computational approaches to the problem have shown

this: Wales et al., who generated putative global minima for particle numbers N up

to and including N = 972 using the basin-hopping algorithm, and Bowick et al., who

applied continuum models to systems of up to N = 2000 in size, have both shown this,

for example.78,79 Studies agree that 12 defects are present on minimum energy spheri-

cally confined crystals and that individual defects are dominant at small N , while more

complex defect structures become prevalent at larger system sizes. At low N , twelve

isolated disclinations appear equally spaced around the sphere, and at high N these

become twelve equally spaced scars, each with a net topological charge of +1.78,79 In

some cases scars can combine, radiating from individual disclinations, forming button

defects.79,80 Pleats are not observed in spherical systems. Experimental verification of

these predictions has been quite successful, with simple, individual defects observed to

be prevalent in smaller systems and twelve distinct scars observed to be prevalent in

larger systems.76,77

For crystals of area much less than the total area of a confining spherical surfaces

(often referred to as a crystal on a spherical cap), the line energy of the edge of a

crystal is in competition with the strain imparted on the crystal by the surface. For

surfaces of high enough curvature, the crystal forms ‘ribbons’ across the surface from

a common point, like those shown in Figure 1.7.25,81 These ribbons contain as close

to ideal local packing as is possible on a surface with Gaussian curvature. For high

enough curvature, the energy associated with forming an edge of a crystal is less than

the energy associated with disrupting the preferred crystal packing. Ribbons will not

form on surfaces with lower curvature as the line energy associated with forming an

edge of the crystal is greater than the strain energy which the surface curvature adds

to the regular lattice.
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Figure 1.6: Light microscope images of packing of particle-coated droplets on larger

spherical droplets from work by Bausch et al.75 In A and B: a +1 disclination with and

without overlaid triangulation; in C and D: the joining of dislocations of zero topological

charge to form pleats with and without overlaid triangulation.
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Figure 1.7: A spherical droplet formed in a water-in-oil system with radius 17.6

µm partially coated in particles. The droplets in the system encapsulate an aqueous

mixture of 1.0 mm polystyrene (PS) spheres and 80 nm poly(N-isopropylacrylamide)

[poly(NIPAM)] particles. Ribbon-like crystals can be seen on the surface. From work

by Meng et al.81
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Figure 1.8: The fruit of the monstera deliciosa or Swiss cheese plant, demonstrating

packing on a non-spherical surface in nature.82

1.3.2 Non-Spherical Curved Surfaces

Real curved surfaces are often not simply spherical; biological systems can adopt much

more complex curved shapes. One example of packing on a non-spherical surface in

nature, the packing of seeds on the surface of the fruit of a Swiss cheese plant, is shown

in Figure 1.8. To take some further examples from biology, the Golgi apparatus,

mitochondria, tubular networks, and the endoplasmic reticulum all take specialised

curved shapes more complex than spheres.4

Experimentally, solid, non-uniformly curved surfaces can be challenging to manu-

facture to a high level of precision. It is similarly challenging to produce a stable non-

spherical fluid-fluid interface — droplets tend to a spherical shape given the shape’s

stability. There are some techniques that can be used, however. Toroidal shapes have

been generated successfully in the lab: yield stress fluids have been employed to trap

toroidal droplets in their non-spherical shape, and toroidal liquid films have been gen-

erated using hydrophilic and hydrophobic patterning on a substrate.83,84 Non-spherical

fluid-fluid interfaces have also been produced by pinning droplets to posts and by cre-

ating capillary bridges between opposing solid surfaces.85,86

Manipulating existing surfaces can be one way of producing solid shapes with a

desired curvature. Holding glass needles under tension and stretching them can be

one way of producing conical surfaces, for example.87 Further, solid shapes can be

milled out by using precision etching techniques like the focused ion beam (FIB),

A F Gerrand



1.3. COLLOIDAL CRYSTALS ON CURVED SURFACES 20

although problems arise in the deposition of waste material and the width of the

incident beam.87,88 Advances have been made in the field of 3D printing recently,

although on the microscale there are still issues with rough edges due to the definition

required to print at such a small length scale.

Defective Packing on Non-Uniformly Curved Surfaces

Different kinds of defects are observed in crystals on non-spherical surfaces. As dis-

cussed earlier, spherical crystals can host disclinations with topological charge of +1

and scars. However, disclinations with a topological charge of −1 are not observed, as

seven-fold coordination is favourable only in regions of negative Gaussian curvature.

Pleats can also only be observed on non-spherical crystals, particularly in regions of

low curvature.89

For crystals with areas much smaller than the available area on the confining non-

uniformly curved surface, there is another factor to consider than defective packing:

the location at which the crystal prefers to exist. On a torus, it has been shown that

the location of a crystal depends on its size, its perimeter to area ratio, the local

curvature and the local crystalline frustration (and thus the interparticle interaction

range).90,91 Active particles confined within a flat annulus have also been shown to

prefer to accumulate on the outer concave boundaries than the inner convex bound-

aries.92 Moreover, similar coupling of curvature with crystal location has been shown

on sinusoidal surfaces.91

Packing on Curved Surfaces with Zero Gaussian Curvature

Surfaces with zero Gaussian curvature have the ability to host defect-free crystals as a

two-dimensional crystal can be draped over the surface without the requirement of in-

plane stretching.93 This is the case even when the mean curvature of the surface is non-

zero. Consider cylindrical surfaces, for example; at certain cylindrical radii and crystal

orientations, when the periodic structure is commensurate with the circumference of

the cylinder, a hexagonally packed crystal can be wrapped onto itself maintaining

perfect periodicity. This is demonstrated in CNTs. The network of carbon-carbon

bonding in CNTs cannot support fractional bond lengths and so CNTs can only exist

with quantised values of their radii. Crystals on surfaces with zero Gaussian curvature
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Figure 1.9: A simulated two-dimensional colloidal crystal packed on a cone with a

‘magic’ net angle of 180 ◦. From left to right, the net of the cone, side view of the cone

and top view of the cone. At this net angle, a perfect, defect-free crystal can be hosted

by the cone. Image adapted from Jack Law’s work.90

can be perfect, but they can also be made to host defects when confined in a system

of finite size.93 Cylindrical crystals, for example, can host chiral seams, or ‘line slips’,

at values of the cylinder circumference not commensurate with the periodicity of the

crystal lattice.93 On the kinetics front, the ‘closure’ constraint of the periodicity in

cylindrical crystals can also be responsible for so-called closure catastrophes, where

the crystal growth is halted by the accumulation of topological defects which appear

as the crystal wraps around the surface and reaches its own edge.94,95 Work by Tanjeem

et al. has demonstrated the line slip phase forming in confined, cylindrical colloidal

crystals, where the hard cylindrical surface they used was a heated, stretched glass

optical fibre.95 They also identified kinetically trapped kinked line slips with partial

vacancies which arise due to the closure constraint.

1.4 Colloidal Crystals on Conical Surfaces

Moving from the cylindrical surface with zero Gaussian curvature and constant mean

curvature, conical surfaces also have zero Gaussian curvature but variable, non-zero

mean curvature, the value of which depends on the distance from the apex of the

cone. Hence, conical surfaces should be expected to host defect-free crystals in some

situations. One situation where a defect free crystal is hosted on a cone is shown in

Figure 1.9.

The work in this thesis is motivated in part by recent experimental work by Jessica
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Figure 1.10: Unpublished light microscopy images of colloidal crystals on confining

conical surfaces, left of θp = 0.2 ◦ (θmax = 0.011 ◦), right of θp = 0.9 ◦ (θmax = 0.049 ◦),

generated by Jessica Sun in the Manoharan Lab at Harvard University. θp is the angle

of the three dimensional cone, as illustrated in Figure 2.2 in Section 2.1, and θmax is

the angle of the net, as illustrated in the same figure. A line slip can be seen in the left

image, and a wedge-like void can be seen in the right image. Used with permission.

Sun in the Manoharan Lab at Harvard University and considers the ground state con-

figurations of two-dimensional colloidal crystals on confining conical surfaces. Here,

large-angle cones were investigated first to reproduce previous results.90 Crystals on

small-angle cones were then investigated, where the conical surface tends to cylindrical.

The cone angles accessible in the experimental work were generally small, and so this

provided the motivation for the small-angle cone investigation. One aim was to com-

plement the experimental work, in part by reproducing and rationalising certain defect

structures such as line slips and wedge-like voids, both shown in Figure 1.10. The main

aim, however, was to pursue a general understanding of the packing of two-dimensional

crystals on conical surfaces including: defect shape and behaviour; the effect of cone

angle and interparticle interaction range; and preferred crystal location.

In Chapter 2, the methodology is outlined. The model system for the colloidal

crystal and the basin-hopping method used to find the putative global minima are

introduced. Voronoi tessellation, the visualisation method employed to assist in the

structural analysis of the putative global minima, is also discussed.

In Chapter 3, the results are presented. The first set of results to be explored
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are crystals on large angle cones. Defect patterns in crystals on conical surfaces of

certain ‘magic’ (angles that can host defect-free crystals), near-‘magic’ and interme-

diate (halfway between successive magic angles) angles are discussed. The structural

differences between crystals with long and short range interparticle potentials are also

discussed. Next is the investigation of crystals on small-angle cones. A wide range of

possible defect structures are found. A ‘phase diagram’ illustrating the relationship of

the defect structures with the cone angle and the potential range is then constructed,

and the defect types are analysed in detail. The last sections of the chapter outline two

further investigations. The first involves the construction of a model that attempts to

explain the preferred position of a crystal band on a conical surface, and the second

investigates the effect of a fixed ring of particles at the truncated end of the cone.

Finally, in Chapter 4, the overarching conclusions and potential directions for future

work are laid out.
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2. Methodology

In this chapter, the methodology used in the work described by this thesis is outlined.

In Section 2.1, the model for the colloidal crystals is discussed, followed by both the

implementation of the confining curved conical surfaces and the boundary conditions

applied to constrain the particles to the surfaces. The minimum energy structures were

generated in this work by basin-hopping, a technique first proposed by Li and Scheraga

in 1987 and then further developed by Wales and Doye in 1997.96,97 Basin-hopping is

outlined in Section 2.2. Finally, in Section 2.3, there is an overview of the Voronoi

tessellation method used to visualise the structures and prepare them for analysis.

2.1 The Model System

A computational model of a colloidal crystal constructed from isotropically attractive

Morse particles was used in this work. Real colloidal systems are rarely monodisperse

but, for simplicity, the model crystals here are, meaning that every particle in each

system is the same size and shape. The number of degrees of freedom in each monodis-

perse, conical, two-dimensional Morse crystal of N particles considered in this work is

2N − 1 (−1 due to rotation of the crystal about the cone axis). In the model system,

each particle is defined by the coordinates of its centre. A pairwise Morse potential

acting between particle centres determines the equilibrium separation and thus the

particle diameters. The Morse potential energy UM of two particles separated by a

distance r is defined as

UM(r) = ϵ e−ρ(r−r0)(e−ρ(r−r0) − 2),

where ρ is the parameter that defines the range of the potential, r0 is the equilibrium

interparticle distance (the minimum in the potential, see Figure 2.1) and ϵ is the unit
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of energy and the energy of the system at r = r0. Both the energy unit ϵ and the

interparticle equilibrium distance r0 were set to 1 for this work. Figure 2.1 illustrates

the shape of the potential.

Although the functional form of the Morse potential is empirical, it captures the

key features of a steep, repulsive core and a well of conveniently adjustable depth and

range that may be used to describe attractive interactions between colloidal particles

where present.98,99 For example, the Morse potential has been fitted to the Asakura-

Oosawa potential in modelling colloid-polymer mixtures in three dimensions.100,101 By

tuning the range parameter, the Morse potential has also been used to rationalise

experimental statistics on structural isomerism in colloidal clusters.102,103 Furthermore,

the extensive body of computational studies on Morse-based models provides a well

established context for interpreting new results.102–105

The range of the potential (linked to the width of the potential well) is easily

adjusted: ρ = 18 was used as an approximation to short range interactions and ρ = 6

represents the longest range interactions used here. The shorter the range of the

potential, the ‘harder’ the particles in the model system. In past works, ρ = 30 has

been used to approximate interactions in real colloidal systems.102–105 Here, ρ = 18 is

employed, which represents a trade-off between computational time (as shorter range

interactions make the structures harder to converge) and having a short enough range

to approximate real systems. The effect of these values of ρ on the shape of the potential

is shown in Figure 2.1.

Here, the Morse particles are confined to truncated conical surfaces defined by

cylindrical coordinates of [ϕ, z], where ϕ is the angle around the z axis, and z is the

height on the cone, as shown in Figure 2.2. The midpoint of the axis of the cone is

set as z = 0 and ϕ is measured about its axis. By using this coordinate system, the

particles are confined to the conical surface in ϕ, but not in z. The particles must also

be confined in z and different approaches to this problem are discussed in Section 3.1.

The dimensions with which the surfaces are defined are shown in Figure 2.2: θp and

θmax are the angles of the cone and the net of the cone respectively, h is the height

of the truncated cone, and rb and rt are the radii of the base of the cone and the

truncated top of the cone respectively. In this work, the cone angle (θp or θmax) is

varied at constant area and, in most cases, a constant truncation radius rt of 1.0.

The dimensions of the cone and the net of the cone are related by the following
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Figure 2.1: The Morse potential and the effect of the range parameter ρ on its shape.

Figure 2.2: The dimensions of the truncated conical surface on which the colloidal

crystal was confined, left, and the net of the surface, right. The [ϕ, z] coordinate system

is shown.
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expressions:

hc =
h

1− rt
rb

Rc =
√
h2c + r2b

Rt =
√

(hc − h)2 + r2b

θmax =
rb
Rc

θmax = 2π sin

(
θp
2

)
(2.1)

In transforming from the cone to the net of the cone, a cut is made at some arbitrary

ϕ = 0 and the conical surface is ‘unrolled’. The surface of the cone has periodicity 2π

in ϕ, but no periodicity in z.

2.2 Global Optimisation

In this work, putative global minimum energy structures of the model crystals described

in Section 2.1 were generated. Globally optimising these types of structures is not a

straightforward task. The problem of global optimisation, finding the lowest minimum

out of all of the turning points (minima, maxima and saddle points) of a function or

functions, is found across mathematics, science and engineering. Global optimisation

appears in mathematical problems such as in finding minimum path lengths (e.g. the

travelling salesman problem), fitting or packing objects and curve fitting; in engineering

problems such as the design of microprocessors; and in scientific problems like in protein

or molecular structure prediction (through minimising energy functions).106,107 In this

work, the focus was on finding global minima. While finding local minima (those

nearest to the point at which the procedure is initiated) is often a well-defined task,

success in the more challenging global optimisation problem (finding the absolute lowest

minimum of the function independent of the starting point) cannot be guaranteed and

methods usually only provide best guesses — putative global minima.
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Monte Carlo Approaches

A popular way of approaching global optimisation problems is with a Monte Carlo

(MC) algorithm. MC algorithms are diverse, but all include some aspect of random-

ness — the approach was named after the grand casino in Monaco at Monte Carlo

by Nicholas Metropolis in 1947.108 Such algorithms use stochastic sampling (random

sampling from a given probability distribution) to solve problems numerically. MC

algorithms are important in a number of fields; an MC algorithm was named the most

influential algorithm of the 20th century by Computing in Science and Engineering.109

Applications range from computer graphics (as a way of solving the rendering equation

used in path tracing three-dimensional image rendering), to evaluating the impact of

risk in business and finance (including in derivative valuation).110,111

In condensed matter physics, MC algorithms are useful tools for efficiently exploring

the configuration space of complex systems in cases where dynamics are not needed.

They are used to investigate many-body structure problems on the quantum, atomic

and molecular scales, where the high dimensionality of the configuration spaces of the

systems prove too computationally costly to be dealt with by non-stochastic means.

The Monte Carlo Metropolis-Hastings (Metropolis MC) algorithm is commonly used

to explore potential energy surfaces in these cases.112 It proceeds as follows:

1. The system energy is calculated;

2. A small, random perturbation is applied to the system coordinates;

3. The new system energy and thus the change in energy due to the move ∆E

are calculated. If the move reduces the system energy (and ∆E < 0) then the

move is accepted; if it does not (and ∆E > 0) then the move is accepted with a

probability P defined by the temperature T and ∆E. This acceptance criterion

can be compactly written as

P = min

[
1, exp(−∆E

kBT
)

]
,

where kB is the Boltzmann constant.

A common adaptation of this approach employed to find the lowest energy con-

figuration of the system is simulated annealing.113 In a similar way to the physical
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annealing process used in materials science, the method proceeds with a steadily de-

creasing temperature T . In terms of the above steps, steps 2 and 3 are repeated with

an incrementally lower temperature T each time.

Potential Energy Surfaces

The structure of a many-body system exists on an n-dimensional potential energy

surface (PES), sometimes referred to as an ‘energy landscape’, where n is the number

of degrees of freedom of the system.107 Finding the point of lowest energy on the PES

is equivalent to finding the most stable configuration of the system. Surveying a PES

comprehensively to find its global minimum efficiently is tough, especially when the

surface is complex and has many local minima.

Different kinds of surfaces provide different challenges. ‘Structure-seeker’ surfaces

have a gentle funnel-like structure which leads to the global minimum. Annealing MC

is successful at optimising systems with this kind of PES, i.e. surfaces that are smooth

and have low energy barriers and multiple paths that converge to the global minimum,

but systems with ‘glassy’ surfaces, which have a large number of distinct potential

low energy configurations sitting in funnel-like local minima separated by high energy

barriers, are much harder to optimise.97 For example, simple MC annealing methods

have been shown to successfully find global potential energy minima of simple Lennard-

Jones clusters, but fail to find minima for more complex clusters.97 They also fail in

more complex cases such as protein structure prediction.114 Systems with short range

interparticle interactions such as those investigated in this work tend to have glassier,

more complex PESs. Thus, the path between a random starting point and the true

global minimum is likely to pass through a large number of local minima, often with

high energy. This makes it much more difficult for simple MC optimisation algorithms

such as simulated annealing described above, which can easily get trapped by the local

minima.115 Hence, different methods are required to effectively deal with these kinds

of surfaces.

Basin-Hopping

In this work, the systems in question consist of particles with short-range attractive

interactions. These are typical cases where the PES is complex, rough and difficult to
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sample and so it is challenging to find the global potential energy minimum with stan-

dard MC approaches. To make better progress with this task, we use basin-hopping, a

method proposed by Wales and Doye in 1997 and inspired by the work of Li and Scher-

aga in 1987 which removes the barriers between local minima.96,97 It has been shown

to have success in tackling complex geometry optimisation problems such as clusters

and spherical crystals.78,116 Basin-hopping transforms the complex PES at hand into

a series of neighbouring ‘basins’; formally, this transformation of the potential energy

function U(rN) is written

Ũ(rN) = min[U(rN)],

where min[U(rN)] is a local minimisation of U(rN).

The basin-hopping algorithm proceeds in a similar way to the general Metropolis

MC procedure outlined above, but after each perturbation the geometry is subject

to a local energy minimisation. Often the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) algorithm is used to do this and it is the algorithm used in this work.

Thus every point on the surface is assigned the same energy as its local minimum, as

shown in Figure 2.3. The set of points associated with each minimum is referred to as

its ‘basin of attraction’. The algorithm is less likely to become trapped in local minima

away from the global minimum and hence more of the PES is explored and the global

minimum of a complex PES is more likely to be found.

The general basin-hopping algorithm is as follows:

1. The system energy is calculated;

2. A random perturbation is applied to the system coordinates;

3. The coordinates undergo a local energy minimisation;

4. The new coordinates are accepted or rejected with a probability P which, like in

Metropolis MC, is dependent on the difference between the energies of the system

before and after the move ∆Ũ and the temperature T of the system according to

P = min

[
1, exp(−∆Ũ

kBT
)

]

and the local minimum is recorded;
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Figure 2.3: An illustration of the basin-hopping algorithm transforming a one-

dimensional potential energy surface (PES) into a surface of ‘interpenetrating stair-

cases’. The original PES, U(rN), is shown with the solid line and the transformed

PES, Ũ(rN), is shown with a dotted line.

5. Steps 2 to 4 are repeated for a predetermined number of steps;

6. The lowest energy local minimum recorded at the end of the above steps is

designated the putative global minimum.

In basin-hopping, the temperature T in the acceptance criteria is often referred to

as the basin-hopping temperature. The higher it is, the more likely a move into a

higher energy basin is accepted. Thus, it controls the rate of exploration of the PES.

In this work, the basin-hopping algorithm was applied using an adapted version

of the open source code GMIN, developed by the Wales group at the University of

Cambridge. The original code is freely available on their website.117 In the adapted

form of basin-hopping used here, the moves are implemented by placing each particle

at a random point on a sphere centred on the original location of the particle. The

particles are then projected back to the nearest point on the surface. This particular

stepping procedure is used as the surface is curved and so standard random translation

moves in Cartesian space are not straightforward. A fictitious temperature parameter

of 1 was chosen. For all calculations carried out in this work, the general method for

finding putative global minima involved carrying out 80, 000 total basin-hopping steps

in two runs of 40, 000 (due to run time limitations run time on the high performance
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computing service used). Often, the output putative global minimum energy crystal

would be fragmented with some particles detached from the bulk crystal, as the random

initial fragments can start too far apart to interact and so there is no gradient to drive

the clusters together. To solve this problem, an initiation step was introduced. Thus,

the basin-hopping was carried out as follows:

1. Within the dimensions of the surface, all of the particles are given random starting

positions;

2. 10 basin-hopping steps are carried out with the range of the Morse potential set

to a very long range value of ρ = 4 in order to coalesce the particles and pull

them together at the start;

3. The lowest energy minimum found during these 10 steps is used as the starting

point for the basin-hopping proper;

4. Basin-hopping is carried out as above, using the desired larger values of ρ.

This, in general, helped to generate single crystal minima. Longer range potential

crystals tend to converge more quickly due to their simpler energy landscapes. This

was discussed by Miller et al. in 1999.118

In these systems, the putative global minima can often be different across different

basin-hopping runs. This is due to the complexity of the PES of a crystal size of the

order of N = 102 like those considered in this work. The number of particles in the

systems means that one particle move around the edges of the crystals can move the

system to a different minima but, as the energy before and after the move are very

similar and the bulk of the structure is the same, the minima is essentially the same.

Thus, complete repeats of the above process were carried out and the lowest overall

minimum across the repeats was taken as the putative global minimum. A sample

input file for the main basin-hopping calculations can be seen in Appendix A.1.

2.3 Voronoi Tessellation

In order to analyse the putative global minimum energy systems generated by the

above methods, visualising the structures effectively is key. A way must be found to
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Figure 2.4: An example of a Voronoi tessellation of a selection of points on a two-

dimensional surface. Left: the points before Voronoi tessellation; right: the points

after Voronoi tessellation. Vertices between Voronoi cells are shown in orange and

dotted lines indicate cell boundaries which do not terminate at vertices at both ends

(and thus unbounded cells). The Voronoi tessellation helps the reader to identify where

order has broken down in the arrangement of the points.

clearly identify and locate any defects in the crystalline order. A method which has

been applied in the past for such a purpose is Voronoi tessellation, named after Georgy

Voronoy, who first published his study of this kind of tessellation in n-dimensions in

1908.119,120 Simply, Voronoi tessellation divides a space containing a collection of points

into a set of polygons, each containing one point and all of the space closer to that point

than any other. This is demonstrated in Figure 2.4. Thus, order and disorder in the

arrangement of points is illustrated more clearly. Voronoi diagrams have been applied

in a variety of contexts. They have been used in aviation to find nearest airfields for

diversions, in assigning voting or schooling catchment areas and even as the basis for the

facade of the Home of the Arts on the Australian Gold Coast.121–123 Voronoi diagrams

have also been employed effectively to visualise the order in crystalline structures.66,78

Here, the global minimum configurations on the net of the conical surfaces are

considered and so only two-dimensional Voronoi tessellation is relevant. The steps

taken to produce the Voronoi diagrams in this work are outlined in Figure 2.5. First,

the program outputs the coordinates of the Morse particles. They are output by default

in three dimensions and the source code was adapted so the coordinates of the particles

projected onto the net of the conical surface are also output. The Voronoi diagram of

the crystal on the net can then be produced from these coordinates. Lastly, the diagram
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is coloured based on the attributes of the polygons: regular hexagons are coloured in

green, irregular hexagons in yellow, pentagons in red and heptagons in blue. These

colourations reflect the coordination environment of the particle they contain. Thus,

defects in the crystal show up clearly, with the non-green polygons contrasting against

the regions of ‘perfect’ hexagonally packed crystal in green. The irregular hexagons

are determined to be irregular by considering the lengths of the sides. When any one

of the sides is more than 30 % longer than any of the others, the hexagon is labelled

irregular and coloured yellow. Unfortunately, the Voronoi method is not as useful for

visualisation at the edges of the crystal. Although many larger cells are removed, the

larger and open cells at the edges mean that red, blue and orange (orange polygons

have a number of sides that is not 5, 6 or 7) polygons appear around the edges without

providing any useful information about the crystalline packing. In general, these should

be ignored. The coordinates are periodically repeated in ϕ to preserve the tessellation

at the straight edge boundaries of the net, but at the top and bottom of the crystal in

the direction with no periodicity, these artefacts still appear, as seen in Figure 2.5.

In this work, the Voronoi diagrams were generated using the Python3 (version

3.7.9) spatial package which is part of the SciPy library (version 1.6.0) and plotted

using Matplotlib (version 3.4.3).124,125 The package uses the Qhull library (version

8.0.2) to perform the Voronoi tessellation.126
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(a) (b)

(c) (d)

Figure 2.5: Step-by-step visualisation of the generation of Voronoi diagrams in this

work. The output Morse crystal particle coordinates in three dimensions are shown in

(a); the Morse crystal coordinates transformed to the net of the cone are shown in (b);

a Voronoi diagram produced from the coordinates on the net of the cone is shown in

(c) (note that there has been a rotation of the coordinates in ϕ to put the defects in the

centre); the Voronoi diagram coloured based on the shapes of the polygons is shown in

(d). The polygons are coloured as follows: regular hexagons in green, irregular hexagons

in yellow, pentagons in red and heptagons in blue. The outline of the net of the cone

has been superimposed on the Voronoi diagrams and bounds them.
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3. Results and Discussion

This results chapter is structured as follows. First, in Section 3.1 potential approaches

to the lack of confinement of the conical surface in the z direction, as described in

Section 2.1, are discussed in Section 3.1. The section concludes with the approach

used for the majority of the rest of the work. Next, in Section 3.2, minimum energy

structures on large-angle cones are shown and discussed. Section 3.3 deals with small-

angle (near-cylindrical) cones, where the different possible defect structures are shown,

along with trends in energy and behaviour as the angle and the potential range ρ

are varied. A ‘phase diagram’ is used to illustrate the general behaviours and then

the defect structures are discussed in more detail. The chapter finishes with two other

studies. Section 3.4 looks to model the ideal position of a band of crystal on the conical

surface, while Section 3.5 attempts to model scenarios where some colloidal particles

are pinned at the upper boundary of the truncated cone.

3.1 The Surface Boundary Conditions

Before the simulations could be started, the treatment of the boundaries had to be

considered. The conical surfaces used in this work, as described in Section 2.1, are

periodic in ϕ but unconstrained in z. If the system is left unconstrained in z, then

particles can escape the surface when the basin-hopping steps are carried out. Here,

three approaches to dealing with this problem were trialled.

3.1.1 A Cyclical Coordinate System

In previous work, the conical surface was constrained in z through the use of a cyclical

coordinate system, [ϕ, ψ].90 By the nature of using an angular coordinate ψ to define
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the position in the z dimension, the position on the cone smoothly changes direction

at the boundary of the cone and so the particles cannot escape the cone. Under this

cyclical coordinate system, a position on the cone in three-dimensional space [x, y, z]

is calculated as follows:

x = rb
hc − (h

2
) cosψ + h

2

hc
cosϕ,

y = rb
hc − (h

2
) cosψ + h

2

hc
sinϕ,

z =
h

2
cosψ,

where h is the height of the truncated cone, rb is the radius of the base of the cone

and hc is the height of the untruncated cone, all dimensions as defined in Figure 2.2 in

Section 2.1. From these relations the interparticle distances and thus Morse interaction

energies and gradients could be calculated within this coordinate system.

The cyclical coordinate system is useful in that it naturally constrains the particles

on the surface, but its application is more computationally intensive than that of the

cylindrical coordinate system described in Section 2.1. As uniform changes in vertical

position z do not generate uniform changes in the cyclical coordinate ψ, it is more

challenging for the algorithm to converge and thus basin-hopping steps take longer.

A new approach was thus required to allow larger systems to be investigated than in

previous work.90 A comparison of the cyclical coordinate system with an alternative

confinement approach using boundary potentials in the [ϕ, z] coordinate system (which

will be discussed in Section 3.1.2) is shown in Table 3.1.

3.1.2 Simple Repulsive R-12 Potential

The second approach that was trialled was the implementation of a simple, repul-

sive boundary potential acting at the top and bottom boundaries of the conical sur-

face. Here, the [ϕ, z] coordinate system discussed in Section 2.1 is in use. The energy

Eboundary of the boundary potential was defined as

Eboundary =
A

(h
2
− z)12

+
A

(h
2
+ z)12
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Approach Mean steps/B-H Step Mean time/B-H step

Cyclical Coordinates 1641 1.601 seconds

Simple R−12 891 0.707 seconds

Table 3.1: A comparison of the computational cost of two different approaches to con-

fining the system in z. The comparison was carried out over 100,000 basin-hopping

(B-H) steps on a system of 100 Morse particles with potential range ρ = 6 on a surface

of rt = 0.1 and θmax = 60 ◦.

and the gradient as

dEboundary

dz
=

12A

(h
2
− z)13

− 12A

(h
2
+ z)−13

,

where h is the height of the truncated cone as defined in Figure 2.2 in Section 2.1 and

A is some constant (which was set to 0.001 to keep the function small at values far

from the boundaries).

This twelfth-power potential is at its minimum at z = 0 and increases quickly as

the top and bottom boundaries of the cone at ±h
2
are approached. This potential

has advantages in computation time and simplicity of implementation over the cyclical

coordinate system approach discussed in Section 3.1.1, as shown in the comparison in

Table 3.1. However, there is a small, non-zero gradient at all values of z except at

exactly z = 0 which could affect the minimum energy structures and so an improved

approach was devised.

3.1.3 Truncated, Shifted, Smoothed Repulsive R-12 Potential

To minimise any potential for the boundary treatment to affect the minimum energy

structures generated in this work, the simple R−12 potential was adapted. To address

the non-zero value of the potential for all values of z, the potential was truncated to

force it to zero at some values (h
2
− zcut) and (−h

2
+ zcut), where zcut is some cutoff

distance from the boundaries, so the boundary only contributes to the system energy at

the very top and bottom on the conical surface. This was done using equal and opposite

Heaviside (step) functions, θ(z). This, however, creates two problems. Firstly, the

potential does not smoothly go to zero at the cutoff values (it is no longer continuous).

Secondly, discontinuities are also introduced into the gradient of the potential. To
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address these issues, two further adaptations were made to the potential: the function

was shifted down in energy so that the energy reaches zero continuously and then

smoothed to ensure the gradient was also continuous. The energy associated with the

adapted R−12 boundary potential was defined as

Eboundary =

[
A

(h
2
+ z)12

− A

(h
2
+ zcut)12

+
12A(h

2
− zcut + z)

(h
2
+ zcut)13

]
θ(zcut −

h

2
− z)+[

A

(h
2
− z)12

− A

(h
2
− zcut)12

−
12A(h

2
+ zcut − z)

(h
2
− zcut)13

]
θ(zcut −

h

2
+ z),

and the gradient as

dEboundary

dz
=

[
−12A

(h
2
+ z)13

+
12A

(h
2
+ zcut)13

]
θ(zcut −

h

2
− z)+[

12A

(h
2
− z)13

+
12A

(h
2
+ zcut)13

]
θ(zcut −

h

2
+ z),

where zcut is the positive cutoff value of the potential in z (set to zcut = 1.0 going

forwards in this work, the diameter of one particle, to keep the effect of the potential

localised to the boundary), h is the height h of the truncated cone as defined in Figure

2.2 in Section 2.1 and A is a scaling factor (set to 0.001 again, the same as in the

previous potential). The shapes of the potential and its gradient are shown in Figure

3.1. This boundary potential was used for the majority of the calculations in this

thesis, unless specified otherwise.
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Figure 3.1: The shape of the truncated, smoothed, shifted R-12 potential applied at the

top and bottom of the truncated conical surface (here of height h = 40) to confine the

Morse particles. Here, the cutoff value zcut is set to 5.0 and not 1.0 to better show

the shape of the potential. Both the energy Eboundary and the gradient of the potential
dEboundary

dz
are shown.
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3.2 Large-Angle Cones: Magic, Intermediate and

Near-Magic Angles

With the new treatment of the boundary conditions at z = ±h
2
established, larger

systems could be studied, here of up to N = 200. To begin with, conical surfaces

of large angles were studied in an attempt to reproduce results from previous work

but for a larger system size.90 Angles of θmax = 30◦ and above are considered large in

this work. Cones of angles larger than those around θmax = 120◦ are not discussed in

this work as, for the system sizes employed here, conical surfaces of larger angles tend

to create crystalline bands that are too narrow to analyse in terms of their defects.

Cone angles on the net that are a multiple of 60◦ are special as they are commensurate

with the rotational symmetry of a hexagonal lattice and can therefore host defect-free

crystals, as noted by Law.90 These cases are referred to as ‘magic angles’.

Firstly, putative global minima of systems of size N = 200 on magic-angle cones

were generated. These runs were carried out with Morse particles of potential range

ρ = 6 and ρ = 18, and a truncation of rt = 1.0 was used as standard in an attempt

to separate out the effect of the peak of the cone. In agreement with previous work,

minima on magic-angle cones of θmax =
nπ
3

(here θmax = 60◦ and 120◦, where n = 1 or

2) were defect free.90 Visualisations of the putative global minima for the crystals on

magic angle cones of θmax = 60◦ using Voronoi tessellation are shown in parts (a) and

(b) of Figure 3.2. The same but for cones of θmax = 120◦ are shown in parts (a) and

(b) of Figure A.1 in Appendix A.2. It can be seen in these figures that the defect-free

nature of the crystals is independent of the range of the potential. As a reminder of

and a reference for the colouration of the polygons:

• RED polygons are pentagons ;

• GREEN polygons are regular hexagons ;

• YELLOW polygons are irregular hexagons ;

• BLUE polygons are heptagons ;

• ORANGE polygons have a number of sides other than 5, 6 or 7 (although these

are in almost all cases only a product of the visualisation method and not relevant
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(a) θmax = 60 ◦ and ρ = 6 (b) θmax = 60 ◦ and ρ = 18

(c) θmax = 30 ◦ and ρ = 6 (d) θmax = 30 ◦ and ρ = 18

Figure 3.2: Visualisations of the structures of crystals on magic and intermediate angle

cones of θmax = 60 ◦ and 30 ◦ with truncation radius rt = 1.0. Each crystal is made of

200 particles. Equivalent visualisations of systems on cones of angle θmax = 120 ◦ and

90 ◦ are shown in Figure A.1 in Appendix A.2.

to the analysis of the crystal packing).

Recall that non-green polygons at the top and bottom edges (the top and bottom

boundaries of the crystals in z) of the crystals that do not form part of a bigger defect

in the crystal are, in general, anomalies that arise due to the visualisation method and

should be ignored.

Minima on ‘intermediate’ angle cones (of angle halfway in between magic angles)

were also produced. Cones of the intermediate angle θmax = 30◦ are shown in parts

(c) and (d) of Figure 3.2. Conical surfaces have zero Gaussian curvature. Hence, the

crystal packing on a section of a cone can be ideal, as seen on the magic angle cones in

A F Gerrand



3.2. LARGE-ANGLE CONES: MAGIC, INTERMEDIATE AND NEAR-MAGIC
ANGLES 43

parts (a) and (b) of Figure 3.2. However, when the end of the crystal wrapping around

the cone and onto itself is not commensurate with itself, a complete, ideal crystal

cannot be hosted. Thus, defects are introduced. On these intermediate angle cones,

they consist of a complete chain of dislocations up and down the crystal. In effect,

there is a tear in the crystal structure. Similarly to at magic angles, the structures

of the defective crystals on the intermediate cone angles of θmax = 30◦ were seen to

be qualitatively independent of the Morse potential range. The same is the case on

conical surfaces of the next intermediate angle θmax = 90◦, which can be seen in parts

(c) and (d) of Figure A.1 in Appendix A.2.

Subsequently, the same calculations were carried out at near-magic angles of 60◦ ±
10◦ and 120◦ ± 10◦. As before, they were carried out with two values of the range of

the Morse potential, ρ = 6 and ρ = 18. The putative minima for cones of near the

magic angle of θmax = 60◦ are shown in Figure 3.3 and those on cones of near the magic

angle of θmax = 120◦ are shown in Figure 3.5. Angles of magic angle ±10◦ were chosen

to ensure that the wrapping of the crystal is sufficiently incommensurate to create

defects; at angles nearer to the magic angle, often the crystals remained defect free,

particularly in systems with the longer range potential. Considering first the longer

range potential crystals with ρ = 6 on cones of angle θmax = 50◦ and 70◦, it can be seen

that disclinations with topological charge of 0 are introduced by the crystal to deal

with the non-commensurate nature of the overlap of the crystal edges. These appear

as a neighbouring pair of red and blue polygons. In contrast, the short potential Morse

crystals on surfaces of the same dimension deal with the strain in a different way;

wedge-shaped voids, similar to those observed in experiment (see Figure 1.10), open

up in the crystal packing. Below the magic angle, the wide end of the wedge points

towards the narrow end of the cone and above the magic angle the opposite is the

case. At the larger angles of θmax = 110◦ and 130◦, the same types of wedge-shaped

voids appear in the short range potential crystal. However, the long range potential

crystals on cones of these angles appear defect free. The differences in defect patterns

in the systems with different interaction ranges is due to the way the strain is spread

throughout the systems. The longer range potential distributes the strain throughout

the system, while the shorter potential localises the strain. This is illustrated by the

particle energy histograms in Figures 3.4 and 3.6. It can be seen that in the longer

range potential crystals, the distribution of particle energies is more spread, whereas in
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the crystals of shorter potential range the particle energies are more discretised around

the integer values of energy. This reflects the way that the strain is localised by the

shorter range potential by changing the coordination environments of a smaller number

of particles drastically, rather than changing the environments of a larger number of

particles slightly. Plots of the particles showing their energies are shown in Figures A.4

through A.7 inclusive in Appendix A.2. It can be seen that the higher energy particles

are those with non-ideal coordination environments and are those grouped around the

defects and the edges, as expected. In Figure A.4 in particular, the difference between

the short and long range potentials is clear, with the strain being gradually spread out

towards the defect and the bottom edge for the longer range potential and localised

around the defect and edges for the shorter range potential crystal.
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(a) θmax = 50 ◦ and ρ = 6 (b) θmax = 50 ◦ and ρ = 18

(c) θmax = 70 ◦ and ρ = 6 (d) θmax = 70 ◦ and ρ = 18

Figure 3.3: Visualisations of the structures of putative global minimum energy crystals

on near magic angle cones of θmax = 50 ◦ and 70 ◦, all with truncation radius rt = 1.0.

Each crystal is made of 200 particles with Morse potential range of ρ = 6 or ρ = 18.

A F Gerrand



3.2. LARGE-ANGLE CONES: MAGIC, INTERMEDIATE AND NEAR-MAGIC
ANGLES 46

(a) θmax = 50 ◦ and ρ = 6 (b) θmax = 50 ◦ and ρ = 18

(c) θmax = 70 ◦ and ρ = 6 (d) θmax = 70 ◦ and ρ = 18

Figure 3.4: Histograms of particle energies in putative global minimum energy crystals

of 200 particles on near-magic angle conical surfaces of θmax = 50 ◦ and 70 ◦, all with

truncation radius rt = 1.0 with potential range ρ = 6 and ρ = 18.
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(a) θmax = 110 ◦ and ρ = 6 (b) θmax = 110 ◦ and ρ = 18

(c) θmax = 130 ◦ and ρ = 6 (d) θmax = 130 ◦ and ρ = 18

Figure 3.5: Visualisations of the structures of putative global minimum energy crystals

on near magic angle cones of θmax = 110 ◦ and 130 ◦, all with truncation radius rt =

1.0. Each crystal is made of 200 particles with Morse potential range of ρ = 6 or ρ =

18.
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(a) θmax = 110 ◦ and ρ = 6 (b) θmax = 110 ◦ and ρ = 18

(c) θmax = 130 ◦ and ρ = 6 (d) θmax = 130 ◦ and ρ = 18

Figure 3.6: Histograms of particle energies in putative global minimum energy crystals

of 200 particles on near-magic angle conical surfaces of θmax = 110 ◦ and 130 ◦, all with

truncation radius rt = 1.0 with potential range ρ = 6 and ρ = 18.
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3.3 Small Angle/Near-Cylindrical Cones

After considering larger angle cones of θmax = 30◦ and above, crystals on smaller angle

cones of θp = 5.715◦ (θmax = 0.313◦) and below were investigated. Note that going

forwards, any cone angles referred to are θp, the angle of the cone in three dimensions

and not θmax, the angle of the net of the cone, as that was the convention used in the

experimental work that guided this part of the investigation. The conversion between

the two is shown in Equation 2.1 in Section 2.1 (θmax = 2π sin{θp/2}). To begin

with, crystals on conical surfaces of similar dimensions to those investigated in the

experiment were simulated with values of Morse potential range ρ from ρ = 18 (closest

to experiment) to ρ = 6 (longest range).

3.3.1 Analysis and Categorisation of Defect Structures

There were a number of different defect types observed in these small-angle systems.

Except for the edge-terminating helical defect in part (b) of Figure 3.9, all of the

defects on the conical surfaces originate from dislocations, or red-blue polygon pairs,

as the surfaces have zero Gaussian curvature. Examples of the observed types are

shown in Figures 3.7 through 3.10. They include: simple dislocations (Figure 3.7);

wedge-shaped voids (Figure 3.8); edge- and bulk-terminating helices (Figure 3.9); and

compound/hybrid defects including ‘L-shapes’ and double wedges (Figure 3.10).

(a) θp = 2.6 ◦ (θmax = 0.143 ◦) and ρ = 6 (b) θp = 1.4 ◦ (θmax = 0.077 ◦) and ρ = 6

Figure 3.7: Examples of dislocation defects observed in small-angle, minimum energy

Morse crystal structures. Two localised dislocation defects are shown in (a) and one

extended dislocation defect is shown in (b).
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Figure 3.8: A wedge defect observed in small-angle, minimum energy Morse crystal

structures. This defect was observed at θp = 1.5 ◦ (θmax = 0.082 ◦) and ρ = 15.

(a) θp = 0.7 ◦ (θmax = 0.038 ◦) and ρ = 15 (b) θp = 0.3 ◦ (θmax = 0.016 ◦) and ρ = 15

Figure 3.9: Examples of helical defects observed in small-angle, minimum energy Morse

crystal structures. A complete, bulk-terminating helical defect is shown in (a) and an

incomplete, edge-terminating helical defect is shown in (b).

(a) θp = 1.2 ◦ (θmax = 0.066 ◦) and ρ = 15 (b) θp = 1.3 ◦ (θmax = 0.071 ◦) and ρ = 18

Figure 3.10: Examples of hybrid/compound defects observed in small-angle, minimum

energy Morse crystal structures. A hybrid ‘L-shaped’ defect is shown in (a) and a

compound double wedge defect is shown in (b).
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To deal with the variety of structures observed, an automatic analysis and cate-

gorisation algorithm was developed. It proceeds as follows:

1. Voronoi analysis of the minimum energy structure is carried out on its net;

2. The largest collection of neighbouring non-green polygons on the surface is iden-

tified as the primary defect. If the defect is not complete in one copy of the

net (i.e. it wraps around the cone) then a complete version is reconstructed by

periodically repeating the net;

3. The largest complete defect is analysed. Analyses include:

(a) Calculating the location of the centre of mass of the defect;

(b) Calculating the total moment of inertia of the system;

(c) Calculating the directions of all of the vectors between every pair of particles

in the defect;

(d) Identifying the all chains of three or more particles in a line in the defect;

(e) Determining if the defect contains a red/blue polygon pair;

(f) Calculating the angle between all of the neighbouring chains of particles

three or more particles long;

4. The defect is categorised using the above information gathered about the defect.

The decision tree applied to categorise the minima is shown in Appendix A.3.

Using this categorisation procedure, a kind of phase diagram was constructed to more

comprehensively illustrate the effect of cone angle θp and potential range ρ on the types

of defect structure observed in the putative global minimum crystals. The diagram is

shown in Figure 3.11. Note that in cases where multiple defect types coexist, the

structures were confirmed manually.

A F Gerrand



3.3. SMALL ANGLE/NEAR-CYLINDRICAL CONES 52

Figure 3.11: An effective ‘phase diagram’ showing effect of potential range ρ and cone

angle θp on the defect type observed in putative global minimum energy Morse crystals.

For a point on the diagram labelled with two or three distinct defects, the two or three

listed types were seen to coexist in the structure.
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3.3.2 Trends

Although the ‘phase diagram’ in Figure 3.11 is complex, there are some clear trends to

be observed. For all values of the potential range ρ, the crystal minima go from defect

free at low θp to a succession of defects that line up from the top to the bottom of the

crystal band. At shorter range potentials, at θp = 3.0◦ (θmax = 0.164◦), these merge to

form a complete crack in the crystal structure and indeed for ρ = 18, the structures

tend to those seen at the intermediate angle of θmax = 30◦ (shown in Figure 3.2). At

longer range potentials, at θp = 3.0◦ (θmax = 0.164◦) the defects stay distinct and the

crystal stays more intact. It can be expected that the structures with ρ = 6 would also

tend to the structure observed for that potential range at θmax = 30◦ if the angle were

increased beyond θp = 3.0◦ (θmax = 0.164◦).

At the intermediate values of angle in Figure 3.11, the defect structures are more

interesting. In general, at lower values of θp, singular defects appear in the crystal

structure to alleviate the strain created by the closure constraint on the cones, and

then at higher values of θp, more than one defect is introduced to deal with the greater

amount of strain. The longer the range of the potential, the larger angle at which the

first, second and then third defects are introduced to the structure.

As with the crystals on large angle cones, there is a trend in the way the strain is

dealt with against the range of the potential of the Morse particles. The shorter the

range of the potential, the more localised the strain. The loss of defect-free crystals as

the putative global minimum also depends on the range of the potential. At ρ = 6, a

defect-free crystal is observed at angles as large as θp = 0.4◦ (θmax = 0.022◦), whereas

for a crystal with ρ = 18 the defect free crystal only persists at angles as large as

θp = 0.2◦ (θmax = 0.011◦).

The energies of the putative global minima structures are plotted in Figure 3.12

against the angle of the surface. It can be seen that the shorter the range of the potential

in the Morse crystals, the higher energy the putative global minimum structure has at

a given angle θp. Further, it can be seen that for all values of ρ investigated here, in

general, the larger the angle of the conical surface, the higher the energy of the global

minimum. This makes sense as the higher angle conical surfaces introduce a greater

amount of strain energy into the system. From θp = 0.1◦ (θmax = 0.005◦) to θp = 3.0◦

(θmax = 0.164◦), the overlap of the crystal around the cone and onto itself only gets
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Figure 3.12: A plot to show the relationship between the overall system energy of pu-

tative global minimum energy Morse crystals of 200 particles confined on truncated

conical surfaces and the angle θp of the conical surfaces for five values of potential

range ρ.

more incommensurate; if the angle were increased beyond θp = 3.0◦ (θmax = 0.164◦)

it would reach a maximum at θmax = 30◦ and reduce to zero the next value of magic

angle at θmax = 60◦, where it can overlap with itself perfectly again. It appears that

for all values of ρ, the increases in energy of the systems begin to tail off at higher

angles, as once the structure introduces a full tear into the crystal, more strain does

not further disrupt the structure. The shorter the range of the potential, the lower the

angle at which this tailing off starts to occur.

It is also worth noting that the energy plots for longer range potentials are smoother

than those for short range values of ρ. This reflects the ease with which the true global

minimum can be found — the longer the range of the potential, the smoother the PES

and the easier the system is to converge.
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3.3.3 Defect Analysis

As discussed earlier, defect-free crystal structures are present on the very smallest angle

conical surfaces across the whole ρ = 6 to ρ = 18 potential range. Conical surfaces of

such small angle are near-cylindrical, and cylindrical surfaces can also host defect free

crystals. There is still strain in these structures, however, despite the lack of defects.

The strain is spread throughout the structures, warping them slightly. The lattice can

be warped in one of two ways: by stretching the ‘bonds’ between the particles and

holding them in tension, or by squeezing the particles closer together, in compression.

This tension or compression of the lattice can occur in any of the three lattice directions.

A defect-free crystal is shown in Figure 3.13 with bond vectors visualised. The bond

vectors are coloured based on the angle within their sector. It can be seen that all

angles pointing down the cone are slightly larger than those pointing up the cone; the

strain is incorporated into the crystal structure all the way through it. This can be

seen as a spreading of the bond angles moving down the cone; bond lengths are slightly

larger at the bottom of the cone than they are at the top. This can be seen qualitatively

as the cluster of red angles being centred closer to 30◦ (between 28 and 29◦) than the

cluster of blue angles (between 32 and 33◦). It is likely that if the system was larger, at

some point a defect would be introduced to the structure, as the lattice would continue

to spread down the cone and the bond lengths would become too large to be stable.

In the third direction, around the cone circumference, there is no change in vector

moving up and down the cone. An alternative defect-free structure with a different

overall lattice rotation at the larger cone angle of θp = 0.2◦ (θmax = 0.011◦) is shown in

Figure A.8 in Appendix A.4. The defect-free structure on this larger-angle surface is of

higher energy due to the increased strain created by the larger angle. The strain in the

two defect-free structures is dealt with slightly differently; the lattice in the structure

on the θp = 0.1◦ (θmax = 0.005◦) cone gradually spreads out down the cone giving three

separate clusters of angles (different angles pointing up, down and across the cone),

whereas the rotation of the lattice on the cone of θp = 0.2◦ (θmax = 0.011◦) means

the lattice cannot spread out symmetrically in the direction of the circumference of

the cone in the same way. The rotation must allow the structure to accommodate the

strain differently, as shown by the fact that there are two clusters of angles rather than

three. It seems that the rotation is better at dealing with the strain than the spreading
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of the lattice given it occurs at higher θp.

Localised dislocations are observed at longer range potentials. An example of two

localised dislocations is shown in part (a) of Figure 3.7. They appear as a pair of red

and blue polygons. At higher angles, more of these defects appear lined up in the

crystal lattice to relieve the greater strain energy. At a few values of θp at ρ = 6,

namely θp = 1.2◦, 1.3◦ and 1.4◦ (θmax = 0.066◦, 0.071◦ and 0.077◦), extended versions

of these defects appear, as shown in part (b) of Figure 3.7. They create a zig-zag

pattern of irregular hexagonal environments that loops all the way around the conical

surface.

At shorter range potentials, these localised dislocations are not observed. Instead,

wedge-shaped voids form in the crystal lattice, not unlike those observed in experiment

(see Figure 1.10). These are the same type of defect as are observed in the short range

potential near-magic angle structures discussed in Section 3.2 and shown in Figure 3.3.

An example of the type of wedge-shaped void seen at these small angles is shown in

Figure 3.8. It was observed that the wedges form pointing around the circumference

at lower θp and up and down the cone axis at higher θp.

At small angles, another kind of defect is observed: helical defects, which are long

and wrap around the cone. These are referred to as helices or helical defects in this

work but are sometimes referred to line slips elsewhere. These helices are observed to

both terminate freely in the bulk at two ends, or terminate in the bulk at one end

and the edge at the other. An example of each of these types of helix are shown in

Figure 3.9. The edge-terminating helices do not contain a five-/seven-fold coordination

environment pair dislocation, whereas the complete helices do. The edge-terminating

helix, which are like a tear in the crystal lattice, has been observed in experiment by

Jessica Sun in the Manoharan Lab. Helical defects that are as long as the crystal

and that do not terminate in the bulk have been observed in cylindrical crystals.127

These defects are not seen at high θp and so it can be inferred that they resolve the

strain in a less severe way than the wedges, dislocations and scars seen at higher θp.

In Figure 3.14, it can be seen that the helical defect facilitates a gradual rotation of

the lattice vector down the cone axis. When these defects appear at higher values of

θp, the helix angle relative to the cone axis becomes larger and the helix is ‘tighter’.

This is because the system must alleviate the greater strain more dramatically with a

more rapid rotation of the lattice vector along the cone axis. In Figure 3.15, the bonds
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Figure 3.13: A plot of bond vectors in a defect-free crystal observed at ρ = 18 and θp =

0.1 ◦ (θmax = 0.005 ◦). The accompanying histogram shows the frequency of angles and

the chosen colour scheme. Here, the angles are measured within their local 60 ◦ sector

in a clockwise direction for those in the top half of a cell and anticlockwise for those

in the lower half. A diagram showing how the angles are measured is also shown. The

structure on the net is periodically repeated in ϕ by 2π to better illustrate the defect

pattern.
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between each pair of particles (where one of the pair is in a green cell) are plotted

and coloured by their length. This visualisation shows that, moving down the cone,

more tension is introduced in one lattice direction (shown by longer bonds) and also

that the helical defect alleviates that increased tension through a ‘reset’ of the bond

lengths. This is done by facilitating a step increase in the number of particles in each

row across the defect.

Although the above defect types form the basis for almost all of the defective

structures observed across the minimum energy structures of 200 particle Morse crystals

of ρ = 6 to ρ = 18 on conical surfaces of angle θp = 0.1◦ (θmax = 0.005◦) to θp = 3.0◦

(θmax = 0.164◦), often they do not appear in the idealised forms discussed above.

Hybrid defects appear in local minimum structures frequently. One such structure

appears to be a combination of a wedge-like void and a helical defect. Such an ‘L-

shaped’ defect is shown in part (a) of Figure 3.10. Another type of hybrid defect that

appears is the compound wedge defect (where two or more wedge-shaped voids link

up), shown in part (b) of Figure 3.10.

All of the above defect types are in competition with each other. At certain values

of angle, certain defects dominate. The lack of distinction between defect ‘phases’ can

be attributed in part to how close in energy the competing defect structures often are.

It can be challenging, given all the degrees of freedom in play, for very similar energy

minima to be distinguished. Attempts were made to determine the energy of each

defect type across a range of values of angle by seeding the defect structures and thus

determining the precise ranges of angle over which each defect is dominant, but the

difficulty of separating the defect energy from the position and rotation of the crystal

on the cone prevented this from being done effectively. This is because by performing

basin-hopping steps at each new value of angle, a shift in crystal location or rotation

prevents the structures from being directly comparable.
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Figure 3.14: A plot of bond vectors in a crystal hosting a helical defect observed at ρ =

18 and θp = 0.7 ◦ (θmax = 0.038 ◦). The accompanying histogram shows the frequency

distribution of angles and the chosen colour scheme. Three distinct colours are chosen

here to illustrate the variation in angle through the structure, not to show three distinct

sets of angles. Here the angles are all measured in a clockwise direction within their 60 ◦

sector. A diagram showing how the angles are measured is also shown. The structure

on the net is periodically repeated in ϕ by 2π to better illustrate the defect pattern.
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Figure 3.15: A plot of bond lengths in a crystal hosting a helical defect observed at ρ =

18 and θp = 0.7 ◦ (θmax = 0.038 ◦). The accompanying histogram shows the frequency

distribution of bond lengths and the chosen colour scheme. The structure on the net is

periodically repeated in ϕ by 2π to better illustrate the defect pattern.
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3.4 The Effect of the Dimensions of the Conical

Surface on the Crystal Location - A Simple

Model

All of the Morse crystal systems generated in this work sit on a surface larger than the

size of the condensed crystal system. To approximate the area which the crystal takes

up, the following was used:

Area = N(πr2)

(
6

π
√
3

)
(3.1)

where N is the number of particles in the crystal, r is their radius and π
√
3

6
reflects

the proportion of space taken up by spheres when they are ideally packed on a two-

dimensional surface. Thus for N = 200 and r = 1.0, an ideal crystal of 200 particles

would therefore occupy approximately 173 squared units. In reality, the non-ideal

crystal packing means the area of the crystal will be slightly larger, but not by much.

The system area is set to just over 292 squared units as standard. Thus, the crystal has

a reasonable amount of room within which it can move, so during the basin-hopping

it can move up or down the cone.

Figure 3.16: An illustration of the simple band model of the crystal with key dimensions

labelled. The band of crystal is shown in grey and has area Ab. The thick black line up

and down the band is the model defect and its length corresponds to Lb.
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To try to explain the behaviour observed in the simulations, a simple model was

developed. It was postulated that the position of a crystal of fixed area on the cone

represents a trade-off between the length of the edges of the crystal (and the line energy

associated with that length) and the length of a scar defect through the crystal (and

the line energy associated with that length), from the top to the bottom of the band.

The higher up the conical surface a band of constant area sits, the shorter the edges

of the crystal and the longer the scar is through it. Also, the larger the angle of the

cone, the thinner the band at a given height on the cone. This model is clearly only

relevant for values of θp which are high enough that a complete scar forms through the

crystal. An illustration of this simple model is shown in Figure 3.16.

The thickness of the band Lb (equal to the length of the defect in this model) as a

function of the distance from the top of the cone to the top of the crystal band zt, the

area of the band Ab and the cone angle θp was found to be

Lb =
Ab

π tan θp
2

[
zt +

√
Ab cos

θp
2

π tan
θp
2

+ z2t

] (3.2)

and the total length of both edges of the crystal band Lc as a function of the same

parameters was calculated to be

Lc = 2π tan
θp
2

zt +
√√√√Ab cos

θp
2

π tan θp
2

+ z2t

 . (3.3)

The derivations for Equations 3.2 and 3.3 are shown in Appendices A.5 and A.6 re-

spectively.

Thus, by weighting these two functions with their energy per unit length and finding

the minimum energy of the sum of the two functions for a given area A and cone angle

θp, an approximation of the preferred position of the band on the cone can be found.

To find approximations of the energy per unit length of the model defect and the edges

of the crystal band, calculations were made based on a range of crystals produced by

basin-hopping calculations. The energy per length of the edges and of the defects were

calculated from the crystal structures as follows:

1. The Voronoi tessellation procedure was carried out on the structure on the net;
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2. The particles in pentagonal, heptagonal and irregular hexagonal Voronoi cells

were identified (these particles are all of those in the defect or at the edge of the

crystal);

3. The edge and defect particles were differentiated. This was done as follows:

(a) An edge/defect particle was selected;

(b) A second, neighbouring edge/defect particle was selected;

(c) The midpoint between the neighbours was found;

(d) The number of other particles within 0.9 distance units of the midpoint

between the pair was counted. If the number is one, then the particle is on

the edge. If it is two, then the particle is in the defect.

4. The average energy of all line and defect particles was calculated;

5. The length of the edges and the defect were calculated. This was done as follows:

(a) The edge particles were split into particles on the top edge and those on the

bottom edge by finding which were above and below the average of the z

values of the particles with the highest and lowest values of z;

(b) The average z of the particles on each edge were calculated;

(c) The circumference of the cone at the average z of the top and bottom edges

was calculated and taken as the lengths of the top and bottom edges;

(d) The slope length between the average z of the top edge particles and the

average z of the bottom edge particles was taken as the defect length.

6. The average number of particles per unit length in the defect and on the edges

were calculated;

7. The energy per length of the edges were calculated from the average edge particle

energy and the average number of particles per unit length in the edge with the

following formula:

Eper length, Edges = Nper length, EdgesEper particle, Edges
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No. Particles/Length Energy/Particle Energy/Length

Defect 1.96 1.53 3.01

Edges 1.01 2.09 2.11

Table 3.2: Values of energy per length, energy per particle and particles per length

for the line defect in and the edges of the crystal band gathered from 11 200 particle

putative global minimum energy crystal structures on conical surfaces of rt = 1.0–2.0.

8. The energy per length of the defect was calculated from the average defect particle

energy and the average number of particles per unit length in the defect with the

following formula:

Eper length, Defect = Nper length, DefectEper particle, Defect

With this method, the average values shown in Table 3.2 were calculated from

11 different crystal structures with potential range ρ = 18 of N = 200 on cones of

θp = 5.715◦ (θmax = 0.313◦), A = 292.1681168 and values of rt from 1.0 to 2.0. These

values were used as the line energies of the crystal defects and edges. The resulting

model is plotted in Figure 3.17. The minimum energy position of the crystal predicted

by this model is shown in Table 3.3.

To check the validity of the model, the true global minimum position of the crystal

on the cone at given angles would ideally be required. However, this is difficult given the

complexity of the PES; the basin-hopping algorithm does not find it easy to translate

the full crystal up and down the cone. Instead, in this analysis, values of total system

energy against crystal position as measured from a series of different crystal minima

on surfaces with θmax = 5.715◦ (θmax = 0.313◦) sitting at different points on the cone

are used. A plot of these values is shown in Figure 3.18, and a simple second order

polynomial fit is overlaid to illustrate how the minimum energy position was found.

The minimum energy position is given in Table 3.3.

The model successfully captures the qualitative behaviour of the crystals, but the

minimum energy position of the model is different to that calculated from the putative

minimum energy structures by a factor of 1.43. This discrepancy could reflect a number

of assumptions made by the model including: the straightness of the line defect (in

every putative global minimum energy structure it is not perfectly straight and in
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Figure 3.17: The simple band model of the cone, showing the weighted energies of

the defect, the edges and the sum of the two. The model is applied to a surface of

θp = 5.715 ◦ (θmax = 0.313 ◦), and the available surface shown has rt = 1.0 and A =

292.1681168. The minimum energy position of the top of the crystal band according to

this model is 27.671.
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Figure 3.18: A plot of total energy against crystal position of a number of putative

global minimum energy Morse crystals of size N = 200 on conical surfaces of θp =

5.715 ◦ (θmax = 0.313 ◦) and A = 292.1681168. A simple, second order polynomial fit

is superimposed onto the data and was used to find the minimum energy position. The

minimum energy position of the top of the crystal band according to the model is at

39.699. For all crystals the Morse potential range is set to ρ = 18.

Minimum Energy Position of Top of Band

Model 27.7

Simulation 39.7

Table 3.3: Minimum energy positions of the top of a band of crystal on a conical

surface of θp = 5.715 ◦ (θmax = 0.313 ◦) as calculated from putative global minimum

energy structures and a simple band model based on line energies.

some cases is far from it); the straightness of the edges (similar to the line defects the

crystals rarely have straight edges and even if they do they are perpendicular to the

cone axis as assumed by the model); and the area of the crystal (this is larger than the

approximated value shown in Equation 3.1 as the packing in the band is not perfect).

Further, to consider the position of the crystal for other values of ρ, new values for the

line defect and edge energies would need to be found from relevant data. Additionally,
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the model breaks down when there is no complete crack present in the crystal, so is

not directly applicable when any other defect type is present.

3.5 Approximating a Cluster at the Upper Bound-

ary

Further to the above investigations, an attempt was made at approximating the effect

of a cluster of particles sitting at the truncated peak of the cone. This was motivated

by experimental observations of such a phenomenon by Jessica Sun in the Manoharan

Lab at Harvard University. A demonstration of the kind of clustering observed is shown

in Figure 3.19.

The presence of a cluster was approximated by introducing a ring of particles around

the top of the conical surface. The particles were implemented by introducing a new

potential, the sum of a given number of Morse potentials originating at equally spaced

points around the top of the cone, in place of the R−12 potential described in Section

3.1.3 acting at the upper boundary (the truncated end) of the cone. The potential

acting at the bottom of the cone was left unchanged. Due to this implementation, the

cluster ‘particles’ were fixed at z = h/2 and could not be moved in the basin-hopping

steps. At each step at which the energy and gradient of the energy of the system

were calculated, the energy of the ring of Morse particles were added instead of the

previously discussed upper R−12 boundary potential.

Two distinct cluster-related investigations were carried out. Both used Morse par-

ticles with a potential length of ρ = 18 to best simulate the real systems.

First, a ring of six regularly spaced Morse particles were placed around the top of

the cone. They were spaced at the ideal Morse equilibrium distance from each other,

1.0, at a truncated radius of rt = 1.0. For this investigation, systems of 150 particles

were used as the implementation of the ring of particles was more computationally

intensive and so computation times increased. Cones of angle θmax = 50◦ through 70◦

were tested to see the effect on the ideal packing at magic angles and on the known

defect structures at near-magic angles. Visualisations of the putative global minima

are shown in Figure 3.20. It can be seen that the addition of the ring pulls the bulk

crystal up to the top of the cone to be in contact with it. It can also be seen that the
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Figure 3.19: Unpublished light microscopy image of colloidal particles clustering at the

tip of a conical surface from work by Jessica Sun in the Manoharan Lab at Harvard

University. Used with permission.

defect structures in the bulk are not greatly affected by the addition of the rings; there

is only a change in structure around the top of the cone. Given the rings are horizontal

with respect to the vertical axis of the cone, it is not possible for a perfect crystal to

be seeded by or incorporate the ring. Hence, some disorder is observed at the top of

the bulk crystal where it meets the ring in each case.

Second, the truncation radius of the cone, rt, was varied. Thus the radius of the

ring of six particles was also varied, and the effect of changing the spacing between the

particles in the ring was investigated. Consider the limiting cases: when the particles

have low separation, the shape of the potential at the ring tends to a Morse well around

the top boundary, and when the particles have high separation, particles can escape

from the cone between them. Neither of these limits could be investigated effectively

here due to computational constraints, so ring radii from rt = 0.6 to rt = 1.4 were

implemented. Visualisations of the putative global minima are shown in Figure 3.21.

A first observation might be that, for all values of rt, the crystal is pulled to the top of

the surface and exists in contact with the ring as seen in the first investigation. Second,

blue polygons are observed at smaller values of rt and not at higher values. Conversely,

red polygons are seen at higher values of rt and not at lower values. The tighter packing

of the particles in the ring compared to in the bulk at smaller rt leads to the formation

of heptagonal (blue) environments in the bulk crystal, and the looser packing at higher

rt does the opposite, creating more pentagonal (red) environments. Lastly, there is
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not an observable difference in screening length for the disorder introduced by the ring

across the values of rt investigated here. All of the bulk crystals resolve the non-ideal

packing imparted by the ring within one or two particles’ environments’ width.
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(a) θmax = 50 ◦ without ring (b) θmax = 50 ◦ with ring

(c) θmax = 60 ◦ without ring (d) θmax = 60 ◦ with ring

(e) θmax = 70 ◦ without ring (f) θmax = 70 ◦ with ring

Figure 3.20: Visualisations of the structures of cones of angles θmax = 50 ◦, 60 ◦ and

70 ◦, all with truncation radius rt = 1.0, with and without a ring of six equally spaced

particles around the peak. All Morse particles have range of ρ = 18 and there are 150

particles in each crystal.
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(a) rt = 0.6 (b) rt = 0.8

(c) rt = 1.0 (d) rt = 1.2

(e) rt = 1.4

Figure 3.21: Visualisations of the structures of cones of angle θmax = 60 ◦ with a ring

of six equally spaced particles around the peak at varying truncation radii rt. All Morse

particles have range of ρ = 18 and there are 200 particles in each crystal. Visualisations

of rt = 0.7, 0.9, 1.1 and 1.3 are shown in Figure A.3 of Appendix A.2.
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4. Conclusions and Further Work

4.1 Conclusions

This thesis aimed to pursue a general understanding of the packing of two-dimensional

crystals on conical surfaces. To do this, minimum energy structures of Morse crystals

with a number of different potential ranges on truncated conical surfaces of a range

of different dimensions were generated using basin-hopping, a Monte Carlo inspired

global energy minimisation technique. Through analysis of the putative global minima

of the colloidal crystals, a few key concepts emerged.

The closure constraint: conical surfaces have zero Gaussian curvature and so

can in principle host defect-free crystals. The frustration imparted on a crystal by

a finite conical surface is not therefore due to the curvature but due to the closure

constraint introduced by the finite size of the surface. This is explained by considering

the wrapping of the crystal around the cone and onto itself. If the crystal overlaps

in a commensurate way, then there is no frustration as seen in crystals on cones of

‘magic’ net angles of θmax = nπ
3
, but if the overlap is not commensurate then strain is

introduced. This is most clearly seen at intermediate angles of θmax =
(n+1/2)π

3
.

Defect structures: in this work, many different defect structures were observed

at different cone angles and potential ranges. Analysing the the defects seen at small

angle and short potential range showed that the defects are introduced to alleviate the

strain introduced by the closure constraint by allowing for a rotation in the crystal

lattice or by allowing the bond lengths to ‘reset’ to their preferred, equilibrium length.

As the cone angle is increased, different types of defects that relax the strain to different

extents appear, and the larger the angle, the higher the defect frequency per unit length

of the system. This is to provide the greater relief of stress required at higher angles.

In ascending order, edge-terminating helical defects, across-cone wedge defects, bulk
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terminating helical defects and up-and-down-cone wedge defects provide increasing

levels of strain relief to a crystal. The wedge-shaped defects seen were like those

observed in experiment. The bulk-terminating helical defects seen at short potential

range and small cone angle are a novel type. Some hybrid defect structures were

also observed that appear to be combinations of other defect types. These are double

wedges, which present as two connected wedge defects, and L-shaped defects, which

present as a combination of a helical defect and a wedge.

Effect of potential range: the range of the potential was observed to affect

the defect structures. Generally, longer range potentials spread the strain throughout

the structure and shorter range potentials localise it by creating concentrated defect

patterns. This is observed in the distribution of particles energies in short and long

range potential crystals; short range potential crystals have particles with energies

that have discretised, near integer values, whereas long range potential crystals have a

continuous range of particle energies. This produces different defect patterns on conical

surfaces of a given angle at different potential ranges. It also means that, at a longer

potential range, a higher cone angle is required to introduce defects to the structure

and also to introduce a full crack through the structure. Furthermore, it is easier to

minimise the energies of structures of longer range potential crystals, as the PESs are

smoother.

Line energies: the position of a crystal on a conical surface is determined by the

energies associated with making its edge and that associated with creating defects in

the structure. This has been observed in previous work.90,91 Here, a preliminary model

was presented to model the crystal position using the line energies of the line defect in

the crystal and the edges of the crystal, and the behaviour was successfully captured

on a qualitative level.

4.2 Further Work

4.2.1 Further and Improved Methods and Analysis

In the small-angle cone studies, it was seen that there are many competing degrees of

freedom that all contribute to the energy and structure of the global minimum energy

structure at a given angle θp and potential range ρ which made it difficult to find the
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true global minima. This was reflected in the observation of hybrid defects such as

L-shaped defects which were combinations of two different defect types. These include

the position of the crystal on the surface, the rotation of the crystalline lattice on the

surface and the defect type present in the structure (i.e. the way the strain introduced

by the non-commensurate overlap is dealt with by the structure). Ideally, some way

of separating these degrees of freedom should be introduced. For example, this may

be done by seeding certain crystal positions, crystal rotations and defect types. If this

were done successfully, then the energy of defect types could be tracked for a given

crystal position and rotation, allowing for critical crossover points at which each defect

type dominates to be identified.

A better understanding of the structure of the potential energy surfaces of these

systems would also contribute to a more complete picture of their behaviour. One

way that a structure’s PES can be studied is by generating disconnectivity graphs.118

Disconnectivity graphs map potential energy surfaces by locating local minima and

the transition states between them and thus illustrate how easily certain structures

can interconvert and whether certain ‘classes’ of structure exist. Broadly, they can

also help in categorising the surfaces as ‘glassy’ (multiple similar energy funnels) or

‘structure-seeker’ (single funnel).118 Disonnectivity graphs have been used in the past

to categorise minimum energy states of repulsive colloids on catenoids, unduloids and

nodoids as dislocation-dominated or disclination-dominated.89

4.2.2 Beyond Structure

In this thesis, we have studied the global minimum energy structures at what is effec-

tively zero temperature. In real systems, the observed behaviours are often influenced

by the kinetics of the systems at finite temperature. A complementary study of the

time-dependent formation and rearrangement of the crystals could be carried out using

molecular dynamics simulations. The location and direction of nucleation and growth

on the conical surfaces could affect the type of defects produced and generate structures

which are kinetically trapped and not the true lowest energy structures. Kinetically

trapped defect structures have been observed on cylindrical surfaces, for example.127

This is seen in experimental work, where, when nucleation occurs in numerous loca-

tions at once, leading to small grain sizes and the overall crystal structure becoming
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disordered.87 This is because each seeded crystal is unlikely to be commensurate when

it grows enough to collide with another crystal at a neighbouring site.

4.2.3 More Complex Models

In the model system studied in this thesis, the interaction of the particles with the

surface are not considered explicitly. Instead, the particles are just confined to the

surface by the way the model is constructed. In reality, the interactions of the particles

with the surface do play a role in the behaviour of the system and thus an investigation

into the effect of the surface interactions would contribute to a better understanding

of real colloidal systems. Further, the assumption of monodispersity was made when

constructing the model. This does not reflect real systems, in which particle sizes

generally take a range of values. Interestingly, it has been shown that scars form

in the arrangement of cells on spherical metazoan epithelia at a number lower than

predicted for the Thomson problem and polydispersity has been suggested as a reason

for this.63,78 Thus, investigating polydisperse colloidal crystals, perhaps with some

probability distribution of diameters, might help to better replicate the real systems.

Another potential route for investigation is the effect of non-spherical particles on the

packing. For example, cubic particles want to pack in a square lattice. If the Euler

characteristic (as discussed in Section 1.3.1) is considered; a square lattice has an equal

number of vertices V and faces F and twice the number of edges as faces, so E = 2F ,

it has an Euler characteristic χ = 0. Thus, a square lattice on a closed, convex surface

requires defective packing. It could be assumed that patterns and types of defects that

would appear would be different to those observed in the hexagonal lattices studied in

this work.
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A. Appendices

A.1 An Example Input File

An example input data file is shown below. The below data file is combined with a

coords file containing either starting coordinates for the system (if the GTHOMKEEP-

COORDS command is present in the datafile), or a blank file with a number of lines

corresponding to the number of particles in the system. In that case random starting

coordinates are generated. The below file is for a run of 40, 000 basin-hopping steps

on a system of Morse particles with r0 = 1.0 and ρ = 6 on a cone of θp = 0.1◦ and

rt = 1.0 at a fictitious temperature of 1.0. The commands can be found at reference

[110] , except for GTHOMKEEPCOORDS which was an addition to the code.

GTHOMKEEPCOORDS

GTHOMSON 8 1.039787396934568 1.0 45.59298686956423

GTHOMSONPOT 6 1.0 6.0

SAVE 100

SORT

SLOPPYCONV 0.00001

TIGHTCONV 0.0000001

STEPS 40000 1.0

MAXIT 10000 10000

STEP 0.3

TEMPERATURE 1.0

MAXBFGS 0.01

MAXERISE 1.0D-8
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A.2 Supplementary Large Angle Images

(a) θmax = 120 ◦ and ρ = 6 (b) θmax = 120 ◦ and ρ = 18

(c) θmax = 90 ◦ and ρ = 6 (d) θmax = 90 ◦ and ρ = 18

Figure A.1: Visualisations of more structures of minimum energy crystals on cones

of θmax = 120 ◦ and θmax = 90 ◦ with potential ranges of ρ = 6 and ρ = 18. Each

crystal has 200 particles and each surface has truncation radius rt = 1.0 and area A =

292.1681168.
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(a) θmax = 120 ◦ and ρ = 6 (b) θmax = 120 ◦ and ρ = 18

(c) θmax = 90 ◦ and ρ = 6 (d) θmax = 90 ◦ and ρ = 18

Figure A.2: Histograms of particle energies in the global minimum energy crystals

on magic and intermediate angle conical surfaces of θmax = 120 ◦ and 90 ◦, all with

truncation radius rt = 1.0 with potential range ρ = 6 and ρ = 18.
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(a) rt = 0.7 (b) rt = 0.9

(c) rt = 1.1 (d) rt = 1.3

Figure A.3: Visualisations of more structures of minimum energy crystals on cones of

angles θmax = 60 ◦, with a ring of equally spaced particles around the peak at varying

truncation radii rt. Each crystal is made of 200 particles with Morse potential range

of ρ = 18 and sits on a surface of area A = 292.1681168.
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(a) θmax = 50 ◦ and ρ = 6

(b) θmax = 50 ◦ and ρ = 18

Figure A.4: Visualisations of structures of minimum energy crystals on cones of angles

θmax = 50 ◦. Each crystal is made of 200 particles and sits on a surface of area A =

292.1681168. The particles are coloured according to their energy, with the colour map

illustrated on the accompanying colour bars and histograms.
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(a) θmax = 70 ◦ and ρ = 6

(b) θmax = 70 ◦ and ρ = 18

Figure A.5: Visualisations of structures of minimum energy crystals on cones of angles

θmax = 70 ◦. Each crystal is made of 200 particles and sits on a surface of area A =

292.1681168. The particles are coloured according to their energy, with the colour map

illustrated on the accompanying colour bars and histograms.
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(a) θmax = 110 ◦ and ρ = 6

(b) θmax = 110 ◦ and ρ = 18

Figure A.6: Visualisations of structures of minimum energy crystals on cones of angles

θmax = 110 ◦. Each crystal is made of 200 particles and sits on a surface of area A =

292.1681168. The particles are coloured according to their energy, with the colour map

illustrated on the accompanying colour bars and histograms.
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(a) θmax = 130 ◦ and ρ = 6

(b) θmax = 130 ◦ and ρ = 18

Figure A.7: Visualisations of structures of minimum energy crystals on cones of angles

θmax = 130 ◦. Each crystal is made of 200 particles and sits on a surface of area A =

292.1681168. The particles are coloured according to their energy, with the colour map

illustrated on the accompanying colour bars and histograms.
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A.3 Defect Types and Categorisation Decision Tree

1. Does the biggest defect contain more than 1 particle? If Yes go to 2, if No then

DEFECT TYPE 1

2. Is the number of neighbouring chains in the defect 0, 1, or more than 1? If 0

then DEFECT TYPE 1, if 1 go to 3, if more than 1 go to 10

3. Are the numbers of red and blue polygons each greater than 2? If Yes go to 4, if

No go to 6

4. Does the defect span more than half of the available width of the cone? If Yes

go to 5, if No then DEFECT TYPE 2

5. Does the defect have an inertia (normalised for particle number) of more than

10? If Yes then DEFECT TYPE 3, if No then DEFECT TYPE 14

6. Do the neighbouring chains have an angle between them of more than 1◦? If Yes

go to 7, if no go to 8

7. Do the neighbouring chains have angles of more than 135◦ or less than 45◦? If

Yes then DEFECT TYPE 4, if No then DEFECT TYPE 5

8. Does the defect contain a dislocation (5/7 polygon pair)? If Yes go to 9, if No

then DEFECT TYPE 7

9. Does the defect contain 2 chains only, or more than two chains? If 2 chains then

DEFECT TYPE 6, if more than 2 then DEFECT TYPE 13

10. Does the defect contain a dislocation (5/7 polygon pair)? If Yes go to 11, if No

go to 12

11. Does the defect span more than half of the available width of the cone? If Yes

then DEFECT TYPE 2

12. Is the number of neighbouring chains in the defect 2 or 3? If 2 then go to 13, if

3 then go to 15, if more than three then go to 17
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13. Is the largest angle between neighbouring chains between 1 and 10 degrees and

smallest less than 1 degree? If Yes go to 14, if No then DEFECT TYPE 10

14. Does the helical part of this defect point up and down or across the cone? If up

and down then DEFECT TYPE 8, if across then DEFECT TYPE 9

15. Are the largest and second largest angles between neighbouring chains between

1◦ and 10◦ and the smallest less than 1◦? If Yes then go to 16

16. Does the helical part of this defect point up and down or across the cone? If up

and down then DEFECT TYPE 11, if across then DEFECT TYPE 12

17. Does the defect contain more than 2 dislocations (5/7 polygon pairs)? If Yes

then go to 18

18. Does the defect have an inertia (normalised for particle number) of more than

10? If Yes then DEFECT TYPE 3, if No then DEFECT TYPE 14
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List of Defect Types:

1. : defect-free crystal

2. : complete crack separating distinct crystals

3. : complete crack up and down cone

4. : simple wedge up and down cone

5. : simple wedge across cone

6. : complete helical defect

7. : edge-terminating helical defect

8. : simple L-shaped hybrid defect - wedge across, helical up and down

9. : simple L-shaped hybrid defect - helical across, wedge up and down

10. : compound double wedge defect

11. : complex L-shaped hybrid defect - double wedge across, helical up and down

12. : complex L-shaped hybrid defect - helical across, double wedge up and down

13. : indeterminate L-shaped hybrid defect - helical up and down, unknown across

14. : amorphous localised defect
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A.4 Further Defect Analysis

Figure A.8: A plot of bond vectors in a defect-free crystal observed at ρ = 18 and θp =

0.2 ◦ (θmax = 0.011 ◦). The accompanying histogram shows the frequency distribution

of angles and the chosen colour scheme. Here the angles are measured in a clockwise

direction within their 60 ◦ sector.
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Figure A.9: A plot of bond vectors in a crystal hosting an L-shaped defect observed

at ρ = 18 and θp = 0.5 ◦ (θmax = 0.027 ◦). The accompanying histogram shows the

frequency distribution of angles and the chosen colour scheme. Here the angles are

measured in a clockwise direction within their 60 ◦ sector.
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Figure A.10: A plot of bond lengths in a crystal hosting an L-shaped defect observed

at ρ = 18 and θp = 0.5 ◦ (θmax = 0.027 ◦). The accompanying histogram shows the

frequency distribution of bond lengths and the chosen colour scheme.
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A.5 Band Model Derivation 1: Length of Defect

The length Lb of the defect in the model discussed in Section 3.4 and given by Equation

3.2 is derived in this section. The slope length Lb of a band on a cone (i.e. the slope

length of a truncated cone) is given by

Lb = L2 − L1, (A.1)

where L2 and L1 are the slope lengths from the apex of the cone to the bottom of the

band and the top of the band respectively. The relations between the angle of the cone

θp and the slope length of the cone L, the radius r and the vertical distance from the

apex z at a given point are:

sin
θp
2

=
r

L
, (A.2)

cos
θp
2

=
z

L
, (A.3)

tan
θp
2

=
r

z
. (A.4)

The surface area A of a cone is given by

A = πrL.

and so the area of a band of a cone Ab (a truncated cone) is given by

Ab = πr2L2 − πr1L1, (A.5)

where r2 and r1 are the radii at the base of the band and the top of the band respectively.

By combining Equation A.2 and Equation A.5, it can be shown that

Ab = πL2

(
L2 sin

θp
2

)
− πL1

(
L1 sin

θp
2

)
,

which can be rearranged to give

Ab = π sin
θp
2

(
L2
2 − L2

1

)
(A.6)

and thus

Ab = π sin
θp
2
(L2 − L1)(L2 + L1).
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Now, if Equation A.3 rearranged for L and Equation A.1 are substituted in, it can be

shown that

Ab = π sin
θp
2
Lb

(
z2

cos θp
2

+
z1

cos θp
2

)
,

and thus

Lb =
Ab

π sin θp
2

(
z2

cos
θp
2

+ z1

cos
θp
2

) . (A.7)

To remove the dependence on z2, z2 as a function of z1 and band area Ab must be

found. By starting with Equation A.6 and by substituting in Equation A.3, it can be

shown that

Ab = π sin
θp
2

( z2

cos θp
2

)2

−

(
z1

cos θp
2

)2


which in turn can be rearranged for z2

z2 =

√√√√Ab cos
θp
2

π tan θp
2

+ z21 . (A.8)

When substituted into Equation A.7 and z1 is replaced by zt (the vertical distance

from the cone apex to the top of the crystal band), after rearrangement, this gives the

result in Equation 3.2:

Lb =
Ab

π tan θp
2

[
zt +

√
Ab cos

θp
2

π tan
θp
2

+ z2t

] .
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A.6 Band Model Derivation 2: Length of Edges

The length Lc of the edges of the crystal band in the model discussed in Section 3.4

and given by Equation 3.3 is derived in this section. At a given distance z from the

apex of cone of angle θp down its axis of rotation at which the radius of the cone is r,

the circumference of the cone C is given by

C = 2πr

and thus, by combining the above equation and Equation A.4, it can be shown that

C = 2πz tan
θp
2
. (A.9)

The total edge length of a band on the cone is given by

Lc = C1 + C2,

where C1 and C2 are the circumference of the cone at the top and the bottom of the

band respectively. Hence, by substituting in Equation A.9, it can be shown that

Lc = 2πz1 tan
θp
2

+ 2πz2 tan
θp
2
,

where z1 and z2 are the vertical distance of top and bottom of the band from the apex

of the cone respectively. After rearranging the above equation to

Lc = 2π tan
θp
2
(z1 + z2),

substituting in Equation A.8 and replacing z1 with zt gives the result in Equation 3.3:

Lc = 2π tan
θp
2

zt +
√√√√Ab cos

θp
2

π tan θp
2

+ z2t

 .

A F Gerrand



Bibliography

[1] B. Antonny, Annual Review of Biochemistry, 2011, 80, 101–123.
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