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Abstract

In this thesis we look at the problem of finding and classifying stationary and biaxisymmetric solutions in
five-dimensional theories of gravity, using particular hidden symmetries. We consider three theories: the
electrostatic sector of Einstein-Maxwell, vacuum gravity and minimal supergravity (Einstein-Maxwell
gravity with a Chern-Simons term).

For electrostatic solutions to Einstein-Maxwell theory, the equations on the metric and Maxwell field
possess a SL(2,R) symmetry. This allows one to derive transformations which either charge a solution
or immerse it in an electric Melvin background. By considering a neutral static black lens seed and
performing these two transformations with appropriately tuned transformation parameters, we construct
the first example of a regular black lens in Einstein Maxwell theory with topologically trivial asymptotics.

For vacuum gravity we consider asymptotically flat solutions. The vacuum Einstein equations are
integrable in the sense that they can be reformulated as the integrability condition for an auxiliary
linear system of PDEs. Taking these PDEs, one can integrate them over the event horizons, the axes
of symmetry and infinity. By carefully considering continuity conditions between these solutions, one
may actually solve for metric data on the horizons and the axes in terms of some geometrically defined
moduli, subject to a set of polynomial constraints. This represents a very useful tool for answering the
existence problem, reducing it to the much more tractable question of whether a particular system of
polynomials (subject to some inequalities) has any solutions. Using this polynomial system we provide a
constructive uniqueness proof for the Kerr (using analogous four-dimensional results), Myers-Perry and
black ring solutions. We also prove, through a combination of analytic and numerical methods, that
the “simplest” L(n, 1) black lens cannot exist by showing that it must possess a conical singularity on
one of the axes.

Finally we consider the case of asymptotically flat solutions in minimal supergravity. As with the
vacuum, this is an integrable theory and so a similar analysis can be performed with exactly analogous
results, although with rather more complicated polynomial systems determining the existence of solu-
tions. A notable feature of minimal supergravity, not present in the vacuum theory, is the existence of
regular solitons - in this context these are non-trivial solutions without black hole regions. We begin
the exploration of the moduli space of these solitons by first studying the case of flat space.
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Lay Summary

This thesis is about gravity and black holes in higher dimensions.
Our modern understanding of gravity is encapsulated in Einstein’s theory of General Relativity (GR),

formulated roughly 100 years ago. This theory is founded upon the idea that absolute notions of space
and time should instead be replaced by the unifying concept of “spacetime”. The guiding principle
behind this theory can be concisely stated in the words of John Wheeler: “Spacetime tells matter how
to move; matter tells spacetime how to curve”. What this means is that spacetime has a structure
which affects the motion of matter. This structure is then itself a dynamical object, meaning that it
can be changed by the presence of matter.

One of the most striking predictions of GR is the existence of black holes. These are very dense
regions of spacetime which have a boundary known as an event horizon. Any matter (or light) that
crosses this horizon towards the black hole can never escape. Although these objects were initially
posited purely from a theoretical standpoint, they were later experimentally observed in a variety of
ways. The most accurate measurements have been made over the last 10 years, based on observations
of the so-called gravitational waves emitted from two colliding black holes.

The previous two paragraphs give a description of gravity in 4 spacetime dimensions (3 spatial
and 1 time dimension). However there is nothing particular to 4 dimensions about the mathematical
formulation of GR and it is straightforward to consider this theory with any number of spatial dimensions.
Whilst these descriptions are not directly physically relevant - we live in 4 dimensions - they turn out
to be valuable theories on a mathematical level. A prime example of this is the holographic principle.
This principle underlies numerous results which show that the equations for GR in D dimensions can
actually help us understand particle physics in D − 1 dimensions.

Since we are interested in particle physics in our familiar 4 dimensions of spacetime, it is natural to
look at gravity in 5 dimensions and in particular we will look at black holes. In 4 dimensions an isolated,
equilibrium, rotating black hole must have a (squashed) spherical horizon and can be fully described
by just two parameters which describe its mass and how much it is rotating. This is known as the
no-hair theorem and it means that all black holes with the same parameters must have an identical
gravitational field; there can be no other distinguishing features. However in 5 dimensions there is much
more room for black hole variety. For example, along with the analogue of the spherical 4 dimensional
black hole, there are also black holes which have a “doughnut” shaped horizon, black rings. If a black
ring is positioned around a spherical black hole, this creates an even stranger object known as the black
Saturn.

The aim of this thesis is to explore this zoo of black objects in order to understand the full range of
possible black holes in five dimensions.
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Chapter 1

Introduction

Black holes are regions of spacetime with sufficiently strong gravitational forces that prevent even light
from escaping. There has been great interest in studying such objects for over a hundred years since
the development of the theory of general relativity (GR) (1915) and the discovery of the Schwarzschild
metric for a static black hole spacetime (1916). The next leap in understanding came with the discovery
of the Kerr metric [4] (1963) which describes the much more complicated situation of a rotating black
hole. Shortly afterwards the charged generalisation was derived, the Kerr-Newman metric [5] (1965).
Following on from these results was the work of Penrose and Hawking on singularity theorems in the
late ’60s [6, 7, 8]. Up to this point there was some scepticism about the physical existence of black
holes. The singularity theorems settled this conclusively by demonstrating that in fact black holes are
a true physical prediction of GR, which one would expect to form under generic conditions. This work
was eventually awarded a Nobel prize over 50 years later in 2020. Another important advance in the
mathematical understanding of black holes was in the derivation of various uniqueness results in the late
’60s and early ’70s (see [9] for a review), the culmination of which was the no-hair theorem. This will
be discussed in much greater detail shortly, but essentially this theorem guarantees that, at equilibrium,
black holes can be characterised uniquely with just their mass, angular momentum and electromagnetic
charges.

Around the same time, astronomers were beginning to identify black holes based on indirect obser-
vations, beginning with the identification of Cygnus X-1 in 1971 [10, 11]. Since then there have been
huge advances in our understanding of black holes as astrophysical objects. Of particular note is the
landmark work of LIGO in the first measurement of the gravitational wave signature from two merging
black holes [12] in 2016.

The position of black holes in modern theoretical physics has grown in importance over the last
few decades as a powerful probe of quantum gravity. There are two principal aspects to this. Firstly
black holes need a theory of quantum gravity to be understood properly. Black holes therefore provide
an almost unique opportunity to study a situation where both GR describing gravity and quantum field
theories (QFTs) describing the other forces come into conflict. A notable example of this conflict is
given by the black hole information paradox [13]. Roughly speaking this is the fact that information can
seemingly disappear into a black hole, clashing with the unitarity postulate of QFTs which necessitates
that information instead be conserved.

Secondly black holes provide a useful test-bed for ideas from AdS/CFT [14] and, more generally,
holography. Broadly speaking these provide an equivalence between D-dimensional “bulk” gravity
theories and D− 1-dimensional “boundary” QFTs. Therefore by understanding black holes in the bulk
one gains insight into the corresponding configuration in the boundary theory.

Holography also clearly provide a motivation for studying higher-dimensional black holes, at least
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in the five-dimensional case, which would correspond to matter theories in four-dimensional space.
In order to fully explore this higher-dimensional case however, it is instructive to first consider the
four-dimensional case, which is rather better understood.

The reviews [15, 16, 9] were useful in writing this chapter and provide further details on some of
the results that will be discussed.

1.1 Four-dimensional electrovacuum black holes

We will begin by considering a four dimensional spacetime (M, g, F ) satisfying the equations of Einstein-
Maxwell gravity. The action is given by1

S =

∫
M

R ? 1− 2F ∧ ?F, (1.1)

where we will use the fact that the field strength F = dA (at least locally). This theory will serve as
a useful grounding to understand the various five-dimensional theories that we will consider later on,
namely the vacuum, electrovacuum and minimal supergravity theories.

It is a natural question to ask what the full space of solutions for this theory is - this is the classifica-
tion problem. To make this problem more manageable we impose certain simplifying assumptions. We
will take the spacetime to be stationary and asymptotically flat (AF), here and throughout the thesis
(with the notable exception of when we look at Melvin asymptotics in Chapter 2):

Asymptotically Flat: This condition states that the spacetime approaches Minkowski space at “in-
finity”. More precisely we will assume that the asymptotic region of M is diffeomorphic to R×R3 \B
where B is a closed ball centred at the origin of the R3. Using this, one can then construct a Cartesian
coordinate system xA (A,B = 0, . . . , 3) in the asymptotic region of M . Introducing a flat metric on
this space ηAB and a radial coordinate r = xixi (i, j = 1, . . . , 3), g and A (in some gauge) must satisfy

gAB = ηAB +O2(r−1), AA = O2(r−1), (1.2)

where if f = Om(rn), then ∂kf = O(rn−k), for all integers k, 0 ≤ k ≤ m.
Using flat space as the choice of limiting spacetime is a natural choice for the asymptotic behaviour

of our space M . This condition also allows one to model an “isolated body” in general relativity as is
done in Newtonian gravity or classical electromagnetism. There are of course other possible asymptotic
conditions, for example de Sitter, anti de Sitter (AdS) or Kaluza-Klein. However it is notable that
known solutions possessing these other asymptotics tend to have parameters which can vary the exact
asymptotic behaviour of the spacetime. By taking an appropriate limit, one can often recover an AF
solution. For example taking the infinite limit of an AdS radius in an asymptotically AdS space gives an
AF space. This demonstrates that a good understanding of AF spacetimes is still useful in understanding
spacetimes with non flat asymptotics.

Stationary: We recall that stationary spacetimes possess a Killing vector field (KVF) k, compatible
with A, such that k is asymptotically timelike. This means that k satisfies

Lkg = LkA = 0. (1.3)

1Here and throughout this thesis we take c = 1, G = (16π)−1 but otherwise adopt the conventions of Wald’s textbook
[17].
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This also tells us that the isometry group of g must have an R subgroup.
Stationary spacetimes represent equilibrium states, that is spacetimes that have settled down and

exhibit time-independent features. In contrast to these solutions one could instead consider the larger
class of dynamical spacetimes where there is not necessarily a stationary KVF. Although these are more
generic and obviously of great astrophysical interest (in understanding black hole mergers for example),
very little is known about exact solutions in this context and instead approximate and numerical methods
must be employed. For this reason and since we are interested in exact solutions, we will assume
stationarity throughout.

Asymptotic flatness allows us to define a couple of useful invariants which can be associated to a
spacetime. The mass of an AF, stationary spacetime is given by the standard Komar integral

M = − 1

8π

∫
S2
∞

?dk (1.4)

where S2
∞ represents the 2-sphere at infinity. Now recall that if in addition to the stationary KVF the

spacetime possesses a spacelike KVF m with topologically S1 orbits which is compatible with k and A,
then the spacetime is axisymmetric. In other words

[m, k] = 0, Lmg = LmA = 0. (1.5)

Using this axial KVF one can write down the Komar integral for the angular momentum

J =
1

16π

∫
S2
∞

?dm. (1.6)

Using asymptotic flatness we can clarify exactly what we mean by black hole spacetimes. An AF
spacetime can be conformally compactified, adding in a new conformal boundary and bringing the
asymptotic region into a finite region of coordinate space. The important features of the boundary for
our purposes are future and past null infinity, denoted I+ and I− respectively - these provide start and
endpoints for null curves in the spacetime. One can then define the domain of outer communication
(DOC) of a spacetime to be given by the intersection of the causal past of I+ with the causal future
of I−. We can also define the black hole region as the complement of the causal past of I+ in M .
From the definition this is a subset of the complement of the DOC in M , and if it is non-empty then we
call the spacetime a black hole spacetime. These definitions are illustrated in Figure 1.1, the Penrose
diagram for the Schwarzschild spacetime.

Another important assumption that we will make throughout the thesis is that horizons we consider
are non-degenerate; this means that the surface gravities associated to them should be non-zero. This is
for the most part a technical assumption, in the sense that many of the results we present can be proved
in the degenerate cases as well. However these proofs normally require treating the degenerate case on
a completely different footing to the non-degenerate cases and so complicate the analysis somewhat.

An important solution satisfying these assumptions (AF, stationary, non-degenerate horizon) is the
Kerr-Newman spacetime [5], the charged generalisation of the Kerr spacetime. It can be written in
Boyer-Lindquist coordinates as

g = −Σ−1(∆− a2 sin2 θ)dt2 − 2a sin2 θΣ−1(r2 + a2 −∆)dtdφ

+ sin2 θΣ−1[(r2 + a2)2 −∆a2 sin2 θ]dφ2 + Σ∆−1dr2 + Σdθ2

A = −Σ−1
[
Qr(dt− a sin2 θdφ) + P cos θ(adt− (r2 + a2)dφ)

] (1.7)
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I+

I−

Figure 1.1: The Penrose diagram for the Schwarzschild spacetime. I+ and I− represent future and past
null infinities respectively. The DOC corresponds to the blue diamond, the black hole region corresponds
to the white triangle and the wiggly line represents the singularity of the spacetime.

where θ, φ are angles on the 2-sphere, r > 0 and

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 + e2, e =
√
Q2 + P 2. (1.8)

M is the mass, the angular momentum J = aM , Q is the electric charge and P is the magnetic charge.
The parameters are constrained to obey M2 > a2 + e2 with extremal black holes found in the limit that
the inequality becomes an equality. Physically this represents an isolated, spherical, rotating black hole
with charge. Note that this solution is also axisymmetric around the axis of rotation and ∂φ gives the
KVF associated to this symmetry.

This in fact represents the most general family of solutions under our assumption gives certain
global regularity conditions; we will call a stationary spacetime well-defined if: i) the DOC is globally
hyperbolic, ii) k has complete orbits, iii) any cross section of the black hole horizon is compact, iv)
there exists an acausal, connected, hypersurface which is asymptotic to a constant time slice in (1.2)
and whose boundary is a cross section of the horizon (see [9] for full details). For this classification
result (also known as the no-hair theorem), we must also assume that (M, g, F ) is analytic (though it
is believed that this assumption is ultimately unnecessary). Then the theorem can be stated as follows:

Theorem 1. Analytic, well-defined, stationary and AF black hole spacetimes in Einstein-Maxwell gravity
with connected, non-degenerate horizons have a DOC which is isometric to a member of the Kerr-
Newman family of solutions.

The purpose of the remainder of this section will be to describe the main steps in the proof of
this theorem. This will serve as a useful precursor to the discussion of the higher-dimensional case
and ultimately vacuum gravity and minimal supergravity in five dimensions. The proof of the unique-
ness theorem follows a rather different path depending on whether the black hole is rotating or not,
corresponding to either the generic stationary or static case.
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1.1.1 Static uniqueness

First we consider the case where the black hole is not rotating i.e. when k2|H = 0, where H is the
black hole horizon. One can use this to demonstrate that the stationary KVF k must be hypersurface
orthogonal which shows that the spacetime is static. This is known as the staticity theorem [18, 19],
and its proof involves combining various differential identities with Stokes’ theorem. The fact that
non-rotating black holes must be part of a static spacetime is an intuitive, albeit non-trivial, statement.
Note that this has not been proved in the degenerate case and in fact violations of this theorem in
different theories of gravity are known when the horizons can be degenerate (the BMPV spacetime [20]
provides an example of this in five-dimensional minimal supergravity [21]).

We’ve now taken information defined on the black hole horizon (i.e. the fact that it is non-rotating)
and proved the global statement that the spacetime is static. There are a couple of ways to complete
the uniqueness proof. The classic method by Israel proceeds by first showing that the DOC must be
spherically symmetric [22, 23]. The proof that the DOC must be isometric to Reissner–Nordström
solution is then a consequence of Birkoff’s theorem. A more recent alternative to Israel’s theorem is
provided by Bunting and Masood-ul-Alam [24, 25]. This method involves glueing together a spatial
slice of the DOC to itself along the black hole horizon. Under a conformal transformation this resultant
glued space is complete and has zero mass, therefore using the positive mass theorem one can show
that it is isometric to flat Euclidean space. One can then show that the conformal rescaling must be
such that the original space is the Reissner–Nordström solution.

1.1.2 Generic stationary uniqueness

Now consider the case where the black hole is rotating i.e. k2|H 6= 0. Topological censorship states that
any curve starting and ending in the asymptotic region can be deformed to a curve lying completely in
the asymptotic region [26]. This relies on the Einstein equations together with the null energy condition.
A simple consequence of this theorem is that the DOC is simply connected. This can be used to prove
the horizon topology theorem [27, 28], which states that the only allowed topologies for black hole
horizons are 2-spheres. Following on from this one can prove the rigidity theorem [29]. This establishes
two fundamental results, first that there is an additional KVF m making the spacetime axisymmetric.
Second one can show that the horizon is in fact a Killing horizon with normal equal to k + Ωm for
each horizon component where Ω is the angular velocity of the corresponding component (this result
justifies the existence of the surface gravities we have discussed previously). A key part in the proof of
this theorem is the use of analyticity to take a local result about axisymmetry and turn it into a global
statement. These three theorems apply equally to the static case above and we shall shortly discuss the
generalisation of these two theorems to the higher dimensional cases where a richer structure emerges.

The next crucial step is to construct some new global coordinates in the DOC adapted to the
symmetries of the solution known as the Weyl-Papapetrou coordinates. In these coordinates the metric
can be separated into two blocks (this is proved by the circularity theorem [30, 31, 32]). One of these
blocks corresponds to conformally flat (ρ, z) coordinates (essentially cylindrical polars), the other block
corresponds to a time and angle coordinate associated to the symmetries (we give the form of the
metric in terms of these coordinates for the general D case explcitly in (1.12)). One can then compare
the metrics for two solutions possessing the same mass (1.4) and angular momentum (1.6) in these
coordinates. By using complicated nonlinear integral expressions, the differences between components
of the metrics are seen to vanish and so the two metrics must describe the same spacetime. These
integral expressions were initially written down by Robinson just for the vacuum case [33]. It was later
realised by Mazur [34] that there was in fact deep structure underlying this result coming from the
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hidden SL(2) symmetry in vacuum gravity. By exploiting a similar SU(2, 1) symmetry in Einstein-
Maxwell gravity, Mazur was able to derive a corresponding identity in this more general setting. Using
this identity completes the proof of the uniqueness in the rotating case.

The fact that vacuum and electrovacuum theories in four dimensions possess these hidden symme-
tries is closely related to the fact that they are integrable theories. Broadly speaking this means that
the Einstein equations can be rewritten as the integrability condition of a pair of linear PDEs. We will
discuss this and many of the ideas described above in greater detail in the context of higher dimensions
in the coming sections.

1.1.3 Comments on the no-hair theorem

There are two important respects in which Theorem 1 can be strengthened: First, in the case that
the horizon is rotating the non-degeneracy assumption can be dropped. Second, in the case that the
horizon is non-rotating, using the method of Bunting and Masood-ul-Alam discussed [24], one can
relax the connectedness assumption (in which case one finds that the Reissner–Nordström is the unique
solution).

The question mark over the existence of rotating black holes with more than a single horizon
component is an interesting gap in the no-hair theorem. Important results have been developed that
go some way towards addressing this. Notably Weinstein has established a uniqueness theorem for h
horizons [35] in terms of 4h− 1 parameters, using results from the theory of harmonic maps. Roughly
speaking these parameters come from the three uniqueness parameters for each horizon (i.e. mass,
angular momentum and charge) in addition to the h − 1 lengths of the “struts” connecting adjacent
horizons. Together with this, Weinstein gave a non-constructive proof of the existence of such solutions
up to possible conical singularities arising from these struts.

In order to address the existence of fully regular solutions one must use different methods. One
such method relies on the integrability structure of Einstein-Maxwell gravity and has been pursued by
Varzugin [36, 37] and Meinel and Neugebauer [38]. It turns out that one can construct these solutions
of Weinstein on a portion of the axis of symmetry for a general h-horizon solution and moreover derive
various constraints on the uniqueness parameters (although these are difficult to solve even for h = 2).
This has been used as part of the proof that there are no solutions with h = 2 in the vacuum case
[39], and to narrow down the most general candidate solution for h = 2 in the electrovacuum case [40].
We will discuss this constructive approach based on integrability in much greater detail throughout the
thesis. Indeed the content of Chapter 3 is essentially an attempt to extend and refine this method in
the five-dimensional vacuum setting.

1.2 Black holes in higher dimensions

In the previous section we’ve been considering GR in four dimensions; now we will extend this to
an arbitrary number of dimensions D ≥ 4. There are a few reasons why this is an interesting and
useful thing to do. Firstly as we’ve discussed previously, holography sets up a correspondence between
D dimensional gravity theories and D − 1 dimensional QFTs. Therefore in principle studying five-
dimensional gravity theories can help shed some light on theories of matter in four dimensions. Another
reason to take higher dimensional black holes seriously is that they can act as a toy model for black
holes in four dimensions. For example the first calculations accounting for the microscopic origin of
the Bekenstein-Hawking entropy for a black hole were done for certain black holes in five dimensions
[41]. It is still an open problem how to do this generically in four dimensions. Studying gravity in other
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dimensions can also be instructive because of its differences rather than similarities. An example of this,
which we shall soon cover in more detail, is that the naive extension of the no-hair theorem to D > 4
breaks down, a somewhat surprising result which shows us that this is really a property unique to four
dimensions.

To begin with we will consider a number of the features of four-dimensional gravity we’ve described
in the previous section and describe what happens to them in D dimensions. We will again consider an
AF, stationary spacetime with non-degenerate horizons with a general matter content (satisfying the
dominant energy condition). Then the following theorems hold:

Topological Censorship: Global hyperbolicity already provides some information about the topology
of the DOC, namely that 〈〈M〉〉 ∼= R × Σ where Σ is a Cauchy surface. In addition to this the D-
dimensional topological censorship theorem states that any curve starting and ending in the asymptotic
region can be continuously deformed to a curve that lies entirely within the asymptotic region [26, 42],
just as in the 4-dimensional case. This theorem is equivalent to the fact that the DOC (and so Σ) is
simply connected [43].

Horizon Topology: For D = 4 we saw that any black hole horizons (strictly their cross-sections)
must necessarily have S2 topology - this is Hawking’s topology theorem [27]. The generalisation to
arbitrary dimension is more complicated: the D-dimensional horizon topology theorem states that the
so-called Yamabe invariant associated to each horizon component is positive [44, 45, 46]. This is an
invariant associated to the smooth structure of a space defined in terms of the average scalar curvatures
over the components for various metrics (see above papers for the exact construction of this invariant).
For D = 4 this Yamabe invariant is essentially the Euler characteristic of the horizon, positivity of
which implies that the horizon must have spherical topology, recovering the four-dimensional result.
For D = 5 this restriction implies that the horizon topology must be a connected sum of arbitrary
discrete quotients of S3 and S2×S1 ring spaces. We see that non-spherical horizon topologies are now
possible in 5 dimensions and as D grows larger the constraints placed on the horizon topology become
weaker.

Rigidity Theorem: The electrovacuum rigidity theorem in four dimensions ensures that the black hole
horizon is a Killing horizon and that the spacetime is axisymmetric (assuming the spacetime is analytic)
[29]. The higher dimensional generalisation gives exactly the same result [47, 48], guaranteeing exactly
one extra compatible axial KVF. We note that this is a less restrictive additional symmetry as D gets
larger. In principle an AF spacetime in D dimensions can have up to b(D − 1)/2c axial KVFs. This
bound comes from the dimension of the Cartan subgroup of the rotation group SO(D− 1). For D = 4
this bound simply gives 1, so the rigidity theorem gives as many KVFs as possible. For any D > 4, this
is no longer the case and so rigidity guarantees relatively little symmetry.

Clearly these theorems are most restrictive in the case D = 4. This means that for D > 4,
various novel features emerge such as the existence of (non-extremal) multi-black hole solutions and
non-spherical black hole horizons (both of which we will discuss in more detail in the context of five
dimensions).

The classification results for the static case in Einstein-Maxwell gravity extend to higher dimensions
in the obvious way (for non-extremal horizons). In the four-dimensional case assuming staticity is
enough to determine that the DOC of the spacetime must be given by the Reissner–Nordström solution
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[24, 25]. Exactly analogous results can be derived for D > 4, where now the metric must be given by
the higher-dimensional generalisation of the Reissner–Nordström spacetime [49, 50, 51]:

g = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
D−2, f(r) = 1− 2µ

rD−3
+

q2

r2(D−3)
,

A =
q

CrD−3
dt, C2 = 2

D − 3

D − 2
,

(1.9)

where dΩ2
D−2 is the metric on the unit D− 2-sphere, r > 0 and µ, q are parameters proportional to the

mass and charge of the spacetime.
On the other hand, it is a notable feature of (electro)vacuum theories in higher dimensions that a

naive generalisation of the no-hair theorem fails - for D > 4, mass and angular momenta are no longer
sufficient to guarantee uniqueness of a solution. The first demonstration of this was in the discovery of
the black ring solution by Emparan and Reall [52], a five-dimensional vacuum black hole with S2 × S1

horizon topology. For the remainder of this section we will study this problem in more detail and consider
what is known about the space of solutions. As we shall shortly see if we want want to make much
progress in the AF case we will need restrict to D = 5.

1.2.1 Five-dimensional black holes, rod structure and integrability

The problem of extending classification results for stationary rotating black hole spacetimes to higher
dimensions is a difficult one, and indeed there have only been successes in some special cases. One of the
fundamental stumbling blocks here is the fact that the rigidity theorem only guarantees the existence of
a single extra axial KVF, which is less and less restrictive as the number of dimensions D increases. An
immediate consequence of this is that for D ≥ 5 one cannot construct the Weyl-Papapetrou coordinates
that we saw were fundamental in the proof of the no-hair theorem for rotating black holes. Therefore
a natural class of solutions to consider are those for which these coordinates exist.

We consider spacetimes with D−3 commuting axial KVFs, mi (i = 1, . . . , D−3), which commute
with the stationary KVF k (and are compatible with relevant matter fields). Note that in light of the
results of the rigidity theorem it is reasonable to assume that this class of solutions is non-generic for
D > 4, since extra symmetry has been assumed. An AF spacetime has at most b(D−1)/2c axial KVFs
and so we see that AF is only compatible with these D − 3 extra symmetries in the cases D = 4, 5
which we will now assume (note that it is possible to consider higher D if one considers Kaluza-Klein
asymptotics instead). Also for simplicity we restrict to either vacuum gravity, Einstein-Maxwell gravity
or (five-dimensional) minimal supergravity (MSG) (although some of the results we will present can be
proved under slightly looser matter assumptions). We will consider MSG in more detail in Section 1.4
but for now we can think of it as Einstein-Maxwell gravity in five dimensions with a Chern-Simons term.

Assuming these new symmetries now gives enough additional structure to be able to define Weyl-
Papapetrou coordinates in the DOC [53, 54]. Denoting the KVFs collectively as ξA = (k,mi) where
A = 0, . . . , D−3, we can then define coordinates xA such that ∂xA = ξA. Now consider the subbundle
of the tangent bundle spanned by ξA. Using the fact that mi vanish on the “axes” of symmetry and
the compatibility of the matter with the symmetries, one can show that

ξ0 ∧ · · · ∧ ξD−3 ∧ dξA = 0, (1.10)

for all A, where by abuse of notation we’ve used ξA to stand in for its covector metric dual. Frobenius’
theorem then implies that this subbundle is actually integrable (in four dimensions this is the circularity
theorem previously mentioned [30, 31, 32]). The upshot of this is that one can use these xA coordinates
to split the metric into a D − 2-dimensional and a 2-dimensional block.
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We can then use gAB, the metric with respect to xA, to define the remaining coordinates. We
introduce a new coordinate ρ in the DOC, away from the axes, through

ρ :=
√
− det gAB > 0, (1.11)

(which one can show to be well-defined [55]). This coordinate turns out to be harmonic upon using the
Einstein equations (since the energy-momentum tensor is traceless) and so one can define its harmonic
conjugate z according to dρ = ?2dz where ?2 denotes the Hodge dual on the 2-space orthogonal to the
space of KVFs. Then finally the metric (in the DOC) can be written in terms of these global coordinates
as

g = gAB(ρ, z)dxAdxB + e2ν(ρ,z)(dρ2 + dz2) (1.12)

where, as with gAB, the conformal factor e2ν is independent of the Killing coordinates xA.
These coordinates are a crucial tool in understanding the structure of D-dimensional spacetimes in

this multi-axisymmetric class, just as they are in the 4d case. Notice that our symmetry assumptions
mean that the isometry group must have G = R× U(1)D−3 as a subgroup. Therefore one can define
the orbit space M̂ := 〈〈M〉〉/G, where we are quotienting the DOC out by the orbits of the KVFs.
Considering a vacuum spacetime for simplicity (similar results hold for the Einstein-Maxwell and the
five-dimensional MSG cases), the following theorem applies [56]:

Theorem 2. Consider a D = 4, 5, AF, stationary vacuum spacetime (M, g) with D − 2 compatible
commuting axial KVFs. Then the orbit space M̂ is a manifold with boundaries and corners homeomor-
phic to the upper half plane given by the Weyl-Papapetrou coordinates (ρ, z). The ρ = 0 boundary is
divided into intervals or “rods” on which gAB has nullity 1, and points (which represent the corners)
on which gAB has nullity 2. These rods correspond to either (orbit spaces of) horizons or “axes” of
symmetry where integer linear combinations of the axial KVFs vanish.

Each axis rod therefore has an associated “rod vector” v = vimi, giving the associated vanishing
KVF, with coprime integer components vi. For D = 4, the only choice for the rod vectors is v = m,
the only axial KVF. For D = 5 one must also impose a so-called admissibility condition on the rod
vectors of neighbouring axis rods as follows:

det

(
v1
a v2

a

v1
a+1 v2

a+1

)
= ±1, (1.13)

where the a and a+ 1 subscripts denote the rod vectors corresponding to the ath and (a+ 1)th rods -
we will denote these by Ia and Ia+1. This condition is necessary to avoid potential orbifold singularities
on these rods. Rods can either be infinite, semi-infinite or finite in which case they have a coordinate-
independent length. The data encoded by the rods including their rod vectors and these rod lengths
are collectively referred to as the rod structure.

For D = 4 the set of rod vectors simply tell us about the number of black hole horizons since
regular solutions cannot have two horizon rods next to each other and all axis rod vectors are trivial.
For D = 5 on the other hand, rod structures can be much more complicated since it is possible to
have two adjacent axis rods with differing rod vectors, corresponding to non-trivial 2-cycles in the DOC.
There are a couple of other specific ways that rod structures in five dimensions encode topology. First,
the rod vectors for the semi-infinite rods on the right and left (i.e. as z → ±∞) for an AF spacetime
must agree with those for flat space. Up to certain choices this means that the left and right rods must
be axis rods with rod vectors m1 and m2 (we consider concrete examples in the next section which will
make this more explicit). Second, the rod vectors for the rods either side of a horizon rod tell us about
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the topology of that horizon [56]. Let p be equal to the determinant formed by these rod vectors, so
if Ia is a horizon rod corresponding to a horizon with cross section B, then p = det(va−1, va+1). If
p = ±1 then B ∼= S3, a spherical horizon. However for p 6= ±1, we instead have B ∼= L(p, q) for some
integer q where L(p, q) is a lens space. This topological space can be described in the following way:

L(p, q) =

{
S1 × S2, p = 0

S3/ ∼, otherwise
(1.14)

where ∼ is given by (w1, w2) ∼ (e2πi/pw1, e
2πiq/pw2) where (w1, w2) ∈ {(w1, w2) ∈ C2 : |w1|2 + |w2|2 =

1} ∼= S3. These exhaust all the possible horizon topologies, representing a refinement of the results of
the horizon topology theorem discussed previously.

The final step in proving a uniqueness theorem for solutions in this class is to determine a divergence
identity in line with the D = 4 method [34]. As we discussed, the crucial property allowing such an
identity to be found is some kind of hidden symmetry in the theory being considered. More precisely we
require that one can reformulate the theory as a harmonic map (also known as a sigma model) coupled
to gravity with a symmetric target space X that has non-positive sectional curvature. If this holds for
a theory then there exists a map Φ : M̂ → X which must obey

d(ρ ?2 dΦΦ−1) = 0, (1.15)

where ?2 is the Hodge dual defined on M̂ and Φ−1 represents the inverse of Φ in X. The hidden
symmetries of the theory can then be seen to arise from symmetries of the target space X. More
explicitly one can rewrite X as a coset space G/H and these symmetries correspond to the action of G
on the harmonic map equations above. For the vacuum theory in D dimensions the target space has an
SL(D − 2)/SO(D − 2) coset space structure [57, 58]. For MSG in five dimensions the corresponding
coset space is G2(2)/SO(4) [59] where G2(2) is the non-compact real form of the group G2. We will
present the uniqueness results for these two cases in the next two sections. On the other hand it is not
known how to reformulate Einstein-Maxwell theory in this way for D ≥ 5, although we note that for
D = 4 this can in fact be done with coset space SU(2, 1)/S(U(1) × U(2)) [60] - this is the basis of
the four-dimensional electrovacuum uniqueness theorem. See [61] for a review of the details of these
harmonic maps. Once we have this coset space reformulation, an expression known as Mazur’s identity
[62] applies, a divergence identity comparing two solutions to the harmonic map equations. Using
Stokes’ theorem one can show that if these two solutions are in sufficient agreement at “infinity” and
on the axis (we will define this more precisely when we state the uniqueness theorems) then Mazur’s
identity implies that they must in fact be isometric. These uniqueness results can be generalised to
target spaces which aren’t necessarily symmetric spaces, although they must still have non-positive
sectional curvature [63].

Finally it is worth remarking on the link between these hidden symmetries and integrability. In this
context a theory of gravity being integrable means that the equations of the theory can be rewritten as
the integrability conditions of a pair of linear PDEs. This is difficult to arrange in general, however once
the equations have already been written in the form of a harmonic map (1.15), it becomes automatic.
The way to do this is using the Belinski-Zakharov (BZ) equations [64, 65]2

∂zΨ =
ρV − µU
µ2 + ρ2

Ψ, ∂ρΨ =
ρU + µV

µ2 + ρ2
Ψ, (1.16)

where ρdΦΦ−1 = Udρ+V dz, Ψ is a complex matrix and k = z+(µ2−ρ2)/(2µ) is a spectral parameter
which defines µ(k) on a 2-sheeted Riemann surface.

2Note that we use a slightly modified spectral parameter k as compared with the original BZ equations, as in [36].
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One of the uses of this integrable structure is in applying the inverse scattering method to gravity
[64, 65, 66]. This is a method adapted from classical integrability theory which allows one to take
simple (possibly singular) seed solutions and transform them into much more complicated solutions
using a particular soliton ansatz. Note that this is more powerful than just using the internal hidden
symmetries of the theory and indeed as we shall see all known vacuum solutions in five dimensions can
be constructed in this way. We shall use hidden symmetries in Einstein-Maxwell gravity in Chapter 2
and exploit this integrability structure in Chapters 3, 4 and 5.

1.3 Five-dimensional vacuum gravity

We now consider vacuum gravity in four and five dimensions. By following the procedure outlined in
the previous section one can prove the following uniqueness theorem [56, 67]:

Theorem 3. Consider the class of D = 4, 5 AF, stationary, vacuum spacetimes with 2 commuting axial
KVFs that contain a non-degenerate3 event horizon. There is at most one solution in this class for a
given rod structure and set of horizon angular momenta.

In D = 4, the horizon angular momentum associated with a horizon H is given by (1.6) with H
replacing the S2

∞ as the integration surface. For D = 5 the horizon angular momentum is instead given
by

Ji =
1

16π

∫
H

?dmi. (1.17)

For D = 4 and at most a single horizon component, the rod structure essentially just encodes
the mass of the black hole (through the rod length of the horizon rod). Therefore combining this
with the existence of the Kerr solution recovers the no-hair theorem (Theorem 1). For D = 5 this
theorem provides an extension of this uniqueness results, where now additional metric and topological
information in the form of the rod structure must be combined with the asymptotic charges to give a
unique solution. We will shortly consider the known solutions in five dimensions and see explicitly that
this extra information in the form of rod structure really is necessary to distinguish different spacetimes.

It is worth emphasising that this uniqueness theorem is non-constructive and is only really helpful
if a particular solution exists; a separate analysis is needed to answer the existence problem. Earlier
in this chapter we discussed a result by Weinstein [35] which partially answers this question in the
four-dimensional case with possibly disconnected horizons. This result was extended to five dimensions
by Khuri, Weinstein and Yamada [69]. In order to state this we must first define a technical condition
on the rod structure required in five dimensions. This compatiblity condition states that if there are
three consecutive axis rods Ia−1, Ia, Ia+1, then

v1
a−1v

1
a+1 ≤ 0 , (1.18)

whenever the admissibility condition (1.13) between the pairs Ia−1, Ia and Ia, Ia+1 are obeyed with
positive determinant. We also define an unbalanced solution, as a solution which is regular everywhere
except for possible conical singularities on the axis rods. Then the five-dimensional existence result can
be stated as:

3An analogous theorem can be established for degenerate horizons, i.e. for extreme black holes in this class [68]
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Theorem 4. Consider the class of solutions as in Theorem 3. Then for any admissible rod structure
(obeying the compatibility condition (1.18) if D = 5) and set of horizon angular momenta, there exists
exactly one unbalanced solution4 in this class.

This theorem does not settle the classification of regular solutions, though it does greatly simplify
the problem reducing it to a regularity analysis near and on the axis.

We can illustrate this theorem by considering Weyl solutions in five dimensions. These are static
solutions with D − 3 orthogonal axial KVFs. If we were just to restrict to regular spacetimes then
the only Weyl solution would be the five-dimensional Schwarzschild-Tangherlini solution ((1.9) with
D = 5, q = 0) by the vacuum static uniqueness theorem. However if we allow for possible conical
singularities then the space of solutions is much wider; for any given rod structure compatible with
the admissibility condition (1.13) and the Weyl class, one can construct a unique solution in terms of
harmonic functions on R3 [53]. These are precisely the solutions guaranteed by the theorem above.
Although these solutions are not regular they are still useful as simple seed solutions for the inverse
scattering method and we shall use them for something similar in Chapter 2 in the context of generating
solutions in Einstein-Maxwell gravity.

Let us now consider the dimension of the moduli space of solutions in Theorem 4. Denote the moduli
space of unbalanced solutions with h horizon rods and a finite axis rods by Mh,a

sing. The continuous
parameters in Theorem 4 are given by h+ a rod lengths and (D − 3)h horizon angular momenta, and
so one finds that

dimMh,a
sing = (D − 2)h+ a. (1.19)

From experience with the known solutions one expects that removal of the conical singularities on each
finite axis rod reduces the number of parameters by one, thus reducing the total by a. Hence, a natural
conjecture, which agrees with the known solutions, is that provided regular solutions actually exist, the
dimension of the moduli space of regular solutions Mh,a

reg with h horizon rods and a finite axis rods is

dimMh,a
reg

?
= (D − 2)h. (1.20)

1.3.1 Known solutions

We now give a list of the known stationary, biaxisymmetric, non-degenerate, AF solutions in the five-
dimensional vacuum theory, noting that all of these solutions barring the first two were originally found
using the inverse scattering method. Recall that given a horizon rod, the topology of the horizon B is
determined by p, the determinant of the rod vectors associated to the rods either side. If |p| = 1 then
B ∼= S3, if p = 0 then B ∼= S2 × S1, otherwise B ∼= L(p, q), a lens space (for some integer q).

(5d) Flat space: The metric for flat space (using Hopf coordinates on the S3) can be written as

g = −dt2 + dr2 + r2(dθ2 + sin2 θ(dx1)2 + cos2 θ(dx2)2), (1.21)

where r > 0, 0 < θ < π/2 and the xi have periods of 2π. We can write this in terms of Weyl-
Papapetrou coordinates by using the definition of ρ (1.11) and the fact that the (ρ, z) part of the
metric is conformally flat. Doing this one finds that

ρ =
1

2
r2 sin(2θ), z =

1

2
r2 cos(2θ), (1.22)

4Technically there is also a potential problem over whether the metric is smooth and even in ρ up to the axis, however
this is resolved for D = 4 [70] and it is believed that these results are applicable to the D = 5 case as well.
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and so we can write the flat space metric as

g =
µ

ρ2 + µ2
(dρ2 + dz2)− dt2 + µ(dx1)2 + ρ2µ−1(dx2)2,

µ :=
√
ρ2 + z2 − z.

(1.23)

To analyse the rod structure we consider the axis ρ = 0. There are two rods: either z < 0 in which
case ∂2 = 0 or z > 0 in which case ∂1 = 0. Note that there is a corner between these two rods at
z = 0 where both these vectors vanish.

(0, 1) (1, 0)

Figure 1.2: The rod structure for flat space in five dimensions. The vectors (0, 1) and (1, 0) give the
rod vectors for the left and right rod in the mi basis.

Figure 1.2 is a diagram representing this rod structure. All the rod structures we will consider have
the same left and right semi-infinite rods as flat space, a reflection of the fact that we are considering
AF spacetimes.

Myers-Perry: The analogue of the Kerr black hole (S2 topology horizon) in D dimensions is known
as the Myers-Perry spacetime (SD−2 topology horizon) and was originally derived using a Kerr-Schild
ansatz [71]. The rod structure for the five-dimensional Myers-Perry solution is given in Figure 1.3. The
determinant |p| = 1 and so we recover the fact that the horizon is topologically a 3-sphere.

(0, 1) H (1, 0)

Figure 1.3: The rod structure for the five-dimensional Myers-Perry spacetime. H represents the orbit
space of the horizon

Black ring: The black ring spacetime contains a black hole with S2×S1 horizon topology. This was
the first known example of an AF, vacuum solution with non-spherical horizon topology. The singly
spinning black ring was originally derived by Emparan and Reall [52] as a Wick-rotation of a C-type
metric [72, 73] and the generic doubly spinning case was then derived by Pomeransky and Sen’kov [74,
75] using the inverse scattering method. We know that regular static black rings cannot exist due to
the static uniqueness theorem and indeed there is a lower limit on the angular momentum of black rings
- physically, one can think of this rotation as necessary to support the topology of the horizon. We give
the rod structure in Figure 1.4 and the fact that the determinant p = 0 illustrates that the horizon has
S2 × S1 topology as stated.

These solutions provide the simplest counterexample to the generalisation of the no-hair theorem to
higher dimensions - there exist black rings with the same mass and angular momentum as Myers-Perry
black holes which are clearly not isometric. Moreover there is 2-fold non-uniqueness within the class of
black rings themselves. So-called “fat” and “thin” black rings (which are not isometric) exist for the
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some overlapping region of M,J values, demonstrating that horizon topology is insufficient extra data
in addition to the asymptotic charges to give uniqueness. Note these two classes are not required to be
isometric from the uniqueness theorem stated above since they have different rod lengths for the finite
axis rod.

(0, 1) H (0, 1) (1, 0)

Figure 1.4: The rod structure for the black ring spacetime.

Black Saturn: The black Saturn [76] is a multi-black hole spacetime containing an S3 black hole and
an S2 × S1 black ring. The known solution only has non-zero angular momentum in a single direction
and so is expected to be non-generic. The rod structure is given in Figure 1.5.

(0, 1) H1 (0, 1) H2 (1, 0)

Figure 1.5: The rod structure for the black Saturn spacetime. H1 corresponds to the black ring type
black hole and H2 corresponds to the S3 black hole.

An interesting property of the black Saturn is that by counter balancing the rotation of the two
black holes, one can arrange the total momentum to be zero. This means that this is not a unique
property of the five-dimensional Schwarzschild solution as might otherwise be expected. Note on the
other hand that for a single horizon J = 0 implies that the spacetime is static [68] and so must indeed
be given by the five-dimensional Schwarzschild solution in line with the static uniqueness theorem.

Double black rings: There are two known double black ring solutions. Firstly there is the concentric
di-ring spacetime consisting of the two rings rotating on the same plane [77, 78], with rod structure
given in Figure 1.6. The other spacetime is the orthogonal di-ring spacetime consisting of the two rings
balanced in orthogonal planes [79, 80], see Figure 1.7 for the rod structure. These solutions are both
singly spinning and so are expected to be special cases of some more general doubly spinning solutions.

(0, 1) (1, 0) H1 (1, 0) H2 (1, 0)

Figure 1.6: The rod structure for the concentric di-ring spacetime.

These spacetimes represent the extent of knowledge of exact solutions in the stationary vacuum class
we are considering. Note that these are in fact all the known solutions in this class even without the
U(1)2 axial symmetry assumption. As mentioned before the rigidity theorem only guarantees a single
U(1) symmetry so these are expected to be non-generic solutions in the more general class. It is also
interesting to note that the topologies of the black hole horizons in the spacetimes above are either S3
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(0, 1) H1 (0, 1) (1, 0) H2 (1, 0)

Figure 1.7: The rod structure for the orthogonal di-ring spacetime.

or S2 × S1. Black holes with lens space horizon topologies have yet to be constructed in the vacuum
theory, although as outlined previously, their existence still remains a possibility (such solutions can be
constructed in MSG as we shall see shortly). We address the question of existence for a black lens with
the simplest possible rod structure (see Figure 1.8) in Chapter 4.

(0, 1) H (n, 1) (1, 0)

Figure 1.8: The rod structure for a black lens spacetime with horizon topology L(n, 1) where n ∈ Z.

Before we move on, it is interesting to consider the stability properties of some of these black hole
solutions mentioned, although we will not consider these issues for the remainder of this thesis. The
four-dimensional Kerr solution is thought to be stable against arbitrary perturbations (see [81, 82, 83] for
recent progress), a result which seems to extend to the five-dimensional Myers-Perry solution (however
note that higher-dimensional Myers-Perry solutions are in fact unstable [84, 85]). The black ring solution
on the other hand is known to suffer a variety of instabilities; depending on the relative size of the S2

and the S1 of the ring, they possess Gregory-Laflamme type instabilities [86, 87], instabilities from radial
perturbations [87, 88] or so-called “elastic” instabilities from non-axisymmetric perturbations [89]. Less
is known about the instabilities of the black Saturn and di-ring solutions, although it is reasonable to
expect that they too are unstable due to their black ring components, at least in the regime where there
is minimal interaction between their constituent black holes.

1.4 Five-dimensional minimal supergravity

We now consider minimal N = 1 supergravity in five dimensions, constructed in [90]. Note that this
theory can be found through dimensional reduction of 11-dimensional supergravity. The action for the
bosonic sector can be written as

S =

∫
R ? 1− 2F ∧ ?F − 8

3
√

3
F ∧ F ∧ A, (1.24)

with F = dA. The first two terms in this action give the action for Einstein-Maxwell gravity, while the
third is the five-dimensional Chern-Simons term. In the purely electric (Ai = 0) or magnetic (A0 = 0)
case, the Chern-Simons term is zero and so MSG is equivalent to Einstein-Maxwell gravity.

There is no general static classification known for AF, MSG solutions comparable to the one that
exists for Einstein-Maxwell gravity, however certain similar results can be shown in special cases. First
there is of course the obvious case when the Chern-Simons term is zero and so the Einstein-Maxwell
uniqueness theorem holds. More interesting results are known in the case of supersymmetric solutions;
all static solutions in this class must be in the (multi-centred) extreme Reissner–Nordström family [91].
On the other hand, if we just use the weaker assumption that the spacetime is just strictly stationary
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rather than static (i.e. the timelike KVF k is strictly timelike in the DOC), then any spacetime with a
connected horizon that doesn’t have an S2 × S1 topology must be given by the BMPV solution - this
is the supersymmetric limit of the charged Myers-Perry black hole, as we will see shortly. As mentioned
previously, we note that the black hole horizon is non-rotating despite the spacetime not being static.

The results discussed above for non-rotating black holes did not require the U(1)2 rotational symme-
try to hold. If we now impose biaxisymmetry and consider rotating solutions, then strong classification
results analogous to the vacuum case are known. This is ultimately because one can view the equations
in this theory as arising from a harmonic map to a symmetric space [59], just as in the vacuum case.
The uniqueness theorem in MSG extending Theorem 3 is given by [92, 93, 94, 95, 96, 97]:

Theorem 5. Consider the class of five-dimensional AF, stationary, spacetimes in MSG with 2 commuting
axial KVFs that contain a non-degenerate event horizon. There is at most one solution in this class for
a given rod structure, set of horizon angular momenta and electric charges and set of dipole charges
associated with each finite axis rod.

The electric charge Q associated to a horizon H is given by

Q =
1

4π

∫
H

?F − 2√
3
F ∧ A, (1.25)

where the integrand is closed by the equations given by varying the MSG action (1.24) with respect to
the gauge field A. The dipole charge D associated to axis rod I is given by

D =
1

4π

∫
C

F, (1.26)

where C is the 2−cycle corresponding to the orbit under the axial KVFs of I in M .
We stress that this gives a non-constructive uniqueness result, and so one must rely on other methods

to determine whether there are actually any solutions for given uniqueness data. As in the vacuum case,
an important existence result has been established for MSG which represents significant progress towards
establishing a full classification of solutions in this class. We first recall that an unbalanced solution is
a solution which is regular everywhere except for potential conical singularities on the axis. Then the
theorem (which extends Theorem 4) can be stated as [97]:

Theorem 6. Consider the class of solutions as in Theorem 5. Then for any admissible and compatible
(1.18) rod structure, set of horizon angular momenta and electric charges and set of dipole charges
associated with each finite axis rod, there exists exactly one unbalanced solution in this class.

Let us now consider the dimension of the moduli space of solutions in Theorem 6. Consider the
moduli space of unbalanced solutionsMh,a

sing with h horizon rods and a finite axis rods. The continuous
parameters in Theorem 6 are given by h+a rod lengths, 2h horizon angular momenta, h horizon electric
charges and a axis dipole charges and so one finds that

dimMh,a
sing = 4h+ 2a. (1.27)

As previously mentioned, experience with the known solutions suggests that removal of the conical
singularities on each finite axis rod reduces the number of parameters by one, thus reducing the total
by a. Hence, a natural conjecture, which agrees with the known solutions, is that provided regular
solutions actually exist, the dimension of the moduli space of regular solutions Mh,a

reg with h horizon
rods and a finite axis rods is simply

dimMh,a
reg

?
= 4h+ a. (1.28)
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1.4.1 Known solutions

We now list of the known stationary, biaxisymmetric, AF solutions in five-dimensional MSG. There is
of course some overlap with the vacuum solutions given in the previous section in the vacuum limit
of these MSG solutions. It is also worth bearing in mind that the multi-black hole vacuum solutions
can’t be found as limits of any of the charged MSG solutions listed below (although multi-black hole
supersymmetric do indeed exist).

Charged Myers-Perry: The charged Myers-Perry solution is an MSG solution with the same rod
structure as the Myers-Perry solution (see Figure 1.3). From (1.28), one expects the most general
family in this class to have 4 parameters and indeed such a family has been derived by Cvetič and Youm
[98] (see also [99]). This has a limit to the extreme Reissner–Nordström solution when Ji = 0 and to
the supersymmetric BMPV solution [20] when J1 = J2 and M = (

√
3/2)|Q|.

Charged black ring: The charged black ring is an MSG solution with the same rod structure as the
black ring in the vacuum (see Figure 1.4). From (1.28), one expects the most general family in this
class to have 5 parameters and such solutions have been constructed by Feldman and Pomeransky [100]
5. Various special cases were previously constructed probing different lower dimensional sections of the
full moduli space [101, 102, 103, 104], including a 3-parameter supersymmetric solution [105].

Supersymmetric solutions: Supersymmetric solutions in this context are solutions admitting a
Killing spinor (which is also symplectic and Majorana). An important consequence of this is that
the metric then must be given by a fibration over a 4d hyperkähler base space [106]. Combining this
with global constraints coming from the stationary and U(1)2 symmetry assumptions, one can show
that this base space must in fact be of multi-centred Gibbons-Hawking form [107]. This allows for a
constructive classification of these supersymmetric solutions (in the class we are considering) for arbi-
trary rod structures. Various black hole solutions were constructed before this classification was known:
the BMPV [20] and black ring solution [105] mentioned above; L(n, 1) black lenses [108, 109] (with
rod structure given by Figure 1.8 up to unimportant choices); “bubbling” black hole spacetimes with
non-trivial topology in the DOC (2-cycles) [110, 111]; various multi-black hole solutions [112, 113, 114].

The classification also allows for counting the number of continuous parameters of these supersym-
metric solutions. The (conjectured) dimension of the moduli space of supersymmetric solutions Mh,a

susy

based on considering the constraints appearing in the construction of solutions is given by [107]

dimMh,a
susy

?
= 2h+ a. (1.29)

Intuitively this makes sense, since for each horizon one must take the supersymmetric and extremal
limit of the general solution, thus reducing the number of parameter by 2h in total (compare above
with (1.28)). In any case this result agrees with all the known solutions.

Solitons: In this context soliton spacetimes are spacetimes with no event horizon (and therefore no
horizon rods). Whilst for the vacuum theory it is well-known that smooth soliton solutions cannot exist
(a simple proof follows from combining Stokes’ theorem and the positive mass theorem), this result no
longer holds in MSG. The only known non-supersymmetric soliton (see [115, 116]) has a single axis rod
with rod structure given by Figure 1.9 (up to irrelevant choices). On the other hand, all supersymmetric

5This is actually a black ring solution in the more general U(1)3 supergravity theory.
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solitons have been constructed [117] and form part of the classification mentioned above [107], thereby
proving that the number of axis rods a must be even for there to be supersymmetry. Note also that when
the number of horizon rods h = 0, dim M0,a

susy = dim M0,a
reg (compare (1.28) and (1.29)). Therefore

any solitons (that exist) with a odd must be non-supersymmetric and it is natural to expect that all
solitons with a even are supersymmetric.

(0, 1) (1, 1) (1, 0)

Figure 1.9: The rod structure for the known non-supersymmetric soliton

As with the known solutions in vacuum gravity there are some interesting gaps in the solutions here.
For example, there are a wealth of solutions coming from the supersymmetric classification, almost
all without charged non-supersymmetric counterparts. In a similar way to the vacuum we also see
that there are no known (non-degenerate) black hole horizons with lens space topology. It is finally
worth noting that all the solutions listed above have a U(1)2 rotational symmetry. In contrast with the
vacuum case, a family of solutions in MSG are known which do not posses this symmetry: these are
the supersymmetric multi-BMPV black holes first constructed in [21]. In particular whilst the BMPV
black hole has at least an SU(2) × U(1) rotational symmetry (of which U(1)2 is a subgroup), the
multi-BMPV solution has at most an SO(3) symmetry (which doesn’t have a U(1)2 subgroup). It is
worth bearing in mind however, that these multi-BMPV solutions are not smooth at the horizon, with
the metric being at best C1 and the Maxwell field C0 [118].

1.5 Organisation

This thesis will be split into chapters as follows:
In Chapter 2 we begin by considering multi-axisymmetric, stationary solutions in D-dimensional

Einstein-Maxwell gravity. We express the Einstein-Maxwell equations in two different ways by con-
sidering two possible reductions of the D-dimensional theory to a 3-dimensional base space. In the
five-dimensional electrostatic case, SL(2,R) symmetries become apparent which can then be used to
either charge a black hole or immerse it in a background electric field depending on the choice of
reduction. We use these transformations to generate regular solutions from neutral, static black Saturn
and black lens seeds.

In Chapter 3 we consider AF, biaxisymmetric, stationary solutions in five-dimensional vacuum gravity.
Taking advantage of the integrable structure we show that it is possible to derive complete metric
information on the axis (ρ = 0) in terms of rational functions of z and various moduli. There are
various consistency conditions on the moduli which lead to a system of polynomial equations and
inequalities. We conjecture that these constraints fully classify the space of solutions in this theory.

In Chapter 4 we apply the method from the previous chapter to a number of examples. We rederive
the moduli space of a few known solutions. In so doing we provide a proof that the known Pomeransky-
Sen’kov black ring is indeed the most general solution for its rod structure. We also analyse a the rod
structure corresponding to the simplest black lens. Through a combination of analytic and numerical
methods we demonstrate that there is no regular solution corresponding to this rod structure.
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In Chapter 5 we extend the method developed in Chapter 3 to AF, biaxisymmetric, stationary
solutions in five-dimensional minimal supergravity, another theory admitting a description in terms of a
harmonic map to a symmetric space. The results follow through in a similar way, although the equations
on the moduli that one derives are significantly more complicated than in the vacuum setting.
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Chapter 2

Electrostatic Solutions in a Melvin
Background

In this chapter we consider five-dimensional electrostatic solutions to Einstein-Maxwell gravity with 2
commuting spacelike Killing fields. We take two different reductions to 3 dimensions, corresponding
to reducing over either an R × U(1) or a U(1)2 subgroup of the isometry group. Using appropriately
defined potentials we can write out the Einstein-Maxwell equations in both cases as PDEs for some
axially symmetric functions on R3. By considering the isometries of the target space given by these
equations we find a hidden SL(2,R) symmetry group for each reduction.

The two different choices of reduction then give rise to two non-trivial 1-parameter families of
transformations corresponding to either charging a black hole or immersing it in a background electric
field. Using these transformations we charge a static black Saturn and a static L(n, 1) black lens
spacetime and by tuning the strength of the external field, we cure the conical singularities to give new
regular solutions. Notably the electrified black lens generated is the first example of a regular black lens
in Einstein-Maxwell gravity with topologically trivial asymptotics1.

2.1 Introduction

We now consider black hole solutions in Einstein-Maxwell gravity in D dimensions. Complete classi-
fication results are known in a couple of special cases: static, AF solutions must be isometric to the
Reissner-Nordström solution [49, 50, 51] and in four dimensions the general stationary, axisymmetric,
AF solution is known to be the Kerr-Newman solution (see Theorem 1). However considering either
non-static or higher-dimensional spacetimes, the situation is less clear. In this chapter we will initially
consider stationary, multi-axisymmetric, AF solutions in Einstein-Maxwell gravity. By considering a cou-
ple of natural reductions over the axial and stationary KVFs to 3 dimensions, we present a convenient
description of the Einstein-Maxwell equations in this theory (this mirrors some of the work in [119]).
It is notable that even with our restrictive assumptions, not a lot is known about this theory, in stark
contrast to the corresponding sectors of vacuum gravity and minimal supergravity which are governed
by powerful uniqueness theorems (see Theorems 3 and 5). The key to these uniqueness theorems is the
fact that the reduction to 3 dimensions yields a gravitating harmonic map to a coset space - there is
no such interpretation of the reduced equations in the Einstein-Maxwell case.

Along with these uniqueness theorems, another key consequence of this harmonic map description

1The results of this chapter have been written up in [1] with an additional appendix, not presented here, giving details
of charging general Weyl solutions
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is the existence of hidden symmetries. For example if the harmonic map is to a G/H coset space,
then the isometries of this target space are given by G which in turn corresponds to symmetries of
the original equations (see [61, 120] for reviews). The simplest example of these symmetries appears
in stationary, axisymmetric, vacuum solutions in 4 dimensions where an Ernst system arises which has
an SL(2,R) symmetry [57]. To see this from the perspective of the harmonic map, one reduces to
3 dimensions by quotienting out the orbits of the U(1) symmetry corresponding to the axisymmetric
Killing vector. Similar results hold in various other theories of gravity: D-dimensional vacuum gravity
has an SL(D−2,R) symmetry [58]; 4-dimensional Einstein-Maxwell gravity has an SU(2, 1) symmetry
[121]; 5-dimensional minimal supergravity has a G2(2) symmetry [59]; 11-dimensional supergravity has
an E8(8) symmetry [122, 123]. Einstein-Maxwell gravity for D > 4 does not have this coset space
harmonic map interpretation (as mentioned above) and therefore the hidden symmetries of the theory
are obscured. However it is important to note that if we consider purely electric spacetimes in five
dimensions then the Chern-Simons term vanishes (see (1.24)) and the theory becomes equivalent to
minimal supergravity, thereby inheriting some symmetries (and also the uniqueness theorem) of that
theory.

Although there are uniqueness results known in five-dimensional, AF vacuum gravity and minimal
supergravity, it is still unknown which solutions actually exist (with the exception of supersymmetric
solutions in minimal supergravity [107]). For example we know from general theorems that black hole
horizons in five dimensions must either have S3, S2×S1 or L(p, q) (lens space) topology however only
S3 and S2 × S1 horizon black holes are known (in the non-extreme case). Part of the motivation for
studying Einstein-Maxwell theory in this chapter is as a toy model to understand solutions that haven’t
been constructed in these theories. To do this we will consider static solutions and then charge them
using the hidden symmetries discussed above to give new electrostatic solutions which will preserve
the rod structure of the original (see Section 1.2 for full definition of rod structure). These new
charged solutions circumvent the static uniqueness theorem since they are no longer AF and are instead
embedded in an external electric background. Whilst this breaks asymptotic flatness, it still preserves
the asymptotic topology of the metric, i.e. the cross-sections are still topologically S3 at infinity.

A large class of static vacuum solutions is given by Weyl solutions. These are five-dimensional
solutions with 2 orthogonal axial KVFs, that can be trivially constructed out of axially symmetric
harmonic functions on R3 [53]. Clearly, from the static uniqueness theorem, AF solutions in this class
must be singular for all but the flat or Schwarzschild case, so they must be transformed somehow to
make them regular. One way to do this is by adding rotation, which can be achieved using the inverse
scattering method. This is a method based on integrability that takes a seed Weyl solution and uses
it to generate a more general solution using a particular “soliton” ansatz [64, 65, 66]. A different
approach is to add charge to these solutions to balance them. Again one can do this using inverse
scattering [124], however there are other methods developed to do these charging transformations
relying explicitly on hidden symmetries of the theory. In 11 dimensions one can charge solutions using
the U-duality of supergravity (equivalently the E8(8) symmetry we discussed above), which is also
inherited by supergravity theories in lower dimensions through dimensional reduction (see e.g. [104,
125, 126] for applications to minimal supergravity).

In this chapter we will develop charging transformations for biaxisymmetric, electrostatic solutions
in five dimensions by using some SL(2,R) hidden symmetry. We apply this transformation to the case
of the black Saturn and a simple black lens. AF, charged black Saturns in Einstein-Maxwell gravity
have been constructed previously, for example a singular static charged solution [127] and a regular
rotating solution with a dipole charge [128]. However no AF black lens solutions have been constructed
in Einstein-Maxwell gravity, and the new regular charged solution that we derive gives the first example
of a solution that is even asymptotically topologically trivial. The topology of our solution at infinity
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is an important feature since it is clearly possible to construct any black lens solution if one relaxes
this requirement, simply by quotienting a Schwarzschild solution by an appropriate discrete subgroup
of O(4).

This chapter is organised as follows: In Section 2.2 we discuss two different reductions from the
D-dimensional theory to a 3-dimensional base space. This allows us to write the Einstein-Maxwell
equations in a convenient way on this base space for both reductions. In Section 2.3 we specialise to
the case of electrostatic solutions in five dimensions. Each of the two choices of reductions from the
previous section lead to equations with different apparent symmetries. Exploiting these symmetries, we
derive two different 1-parameter families of charging transformations. By combining them we discuss
a 2-parameter family of transformations which charge a solution and then immerse it in a background
electric field; In Section 2.4 we apply this combined transformation to the black Saturn and a L(n, 1)
black lens solution and, by appropriately tuning the strength of the external electric field cure the conical
singularities. We end with a discussion of these results and possible extensions in Section 2.5.

2.2 Background

We begin by considering a D-dimensional spacetime (M, g, F ) in Einstein-Maxwell gravity with action
(1.1). In addition we assume that the spacetime is AF, and possesses a stationary KVF k and D − 3
compatible axial KVFs mi (i = 1, . . . , D − 3), a result of which is that the isometry group has an
G := R × U(1)D−3 subgroup. We saw in Section 1.2 that under appropriate assumptions, Weyl-
Papapetrou coordinates can be chosen such that the metric can be written as

g = gAB(ρ, z)dxAdxB + e2ν(ρ,z)(dρ2 + dz2), (2.1)

where ∂A = (k,mi) for (A = 0, . . . D − 3), ρ2 := − det gAB and dz := − ?2 dρ, with ?2 the Hodge
dual on the orbit space M̂ := M/G. Note that since ∂A are Killing vector fields, the metric coefficients
only depend on ρ and z.

The orbit space theorem (Theorem 2) states that the orbit space M̂ is a simply connected manifold
with boundaries and corners with the boundary given by the ρ = 0 axis in Weyl-Papapetrou coordinates.
Furthermore the corners (rod points), occurring at specific values of z, divide this boundary up into
intervals (rods) corresponding to either axes where integer linear combination of the KVFs vanish or
horizon orbit spaces. The presence of finite axis rods is generically associated with conical singularities:
for a given axis rod I with rod vector v, there is a conical singularity unless [54]

lim
ρ→0, z∈I

ρ2e2ν

|v|2
= 1. (2.2)

Note that this assumes that the angles φi have a standard 2π period. We will solve some of these
conditions explicitly in Section 2.4 when we consider black Saturn and black lens solutions.

Instead of looking at the 2-dimensional M̂ , to better understand the hidden symmetries of this
theory we must instead reduce to a 3-dimensional base space which we will denote M3. There are two
obvious ways of doing this using the symmetries available, corresponding to either quotienting out the
metric by U(1)D−3 or U(1)D−4 × R. For the reduction by U(1)D−3 one can write the metric as

g = e2ν(dρ2 + dz2)− γ−1ρ2dt2 + γij(dφi + widt)(dφj + wjdt), (2.3)

where γ = det γij and we’ve taken xA = (t, φi) and so ∂0 = k and ∂i = mi.
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Next we introduce some potentials as follows: First define the electric and magnetic potentials Φ
and Ψi by

dΦ = ι1 · · · ιD−3 ? F, dΨi = ιiF, (2.4)

where ιi := ιmi . Φ and Ψi are well-defined (up to constants) through Maxwell’s equations and the
topological censorship theorem. Next we define the twist 1-forms Ωi by

Ωi = ?(m1 ∧ · · · ∧mD−3 ∧ dmi), (2.5)

where by abuse of notation we’ve used mi to stand in for their covector metric duals. Since ιjΩi = 0,
these can be viewed as 1-forms on M3 or more explicitly

Ωi = |γ|−1/2 ?3 dmi (2.6)

where the mi are viewed as functions on M3 and ?3 is the Hodge dual on this space. By further reducing
down to M̂ (and using the fact that ι0Ωi = 0), Ωi can be related to wi through

Ωi = ρ−1γγij ?2 dwj, (2.7)

where ?2 is the Hodge dual on M̂
Defining the Levi-Civita connection D on M3, we can now write the Einstein-Maxwell equations for

the Killing part of the metric and the potentials as2

D2γij =γklDγik · Dγjl − γ−1Ωi · Ωj − 4DΨi · DΨj

+
4

D − 2
γij(γ

klDΨk · DΨl − γ−1DΦ · DΦ),
(2.8)

D · Ωi = γ−1Dγ · Ωi + γjkDγij · Ωk, (2.9)

D2Φ = γ−1Dγ · DΦ + γijDΨi · Ωj, (2.10)

D2Ψi = γjkDγij · DΨk − γ−1DΦ · Ωi, (2.11)

and
dΩi = 4dΦ ∧ dΨi. (2.12)

At first glance it may appear as though these equations involve the conformal factor e2ν through the
inner product and connection on M3, however this turns out not to be the case. This is due to the fact
that i) Ωi and the functions we are considering are invariant under the action of the stationary KVF k
and ii) the (ρ, z) part of the metric is conformally flat. Combining these pieces of information we find
that the inner product on M3 acts like the inner product on R3 in cylindrical polars, up to a conformal
factor which can be scaled away in the equations above.

The equations for ν come from gravity on M3 coupled to γij and the various potentials. Reducing
this to two dimensions gives a pair of PDEs

1

ρ

(
ν,ρ +

1

2
γ−1γ,ρ

)
= Xρρ −Xzz,

1

ρ

(
ν,z +

1

2
γ−1γ,z

)
=2Xρz, (2.13)

where

Xpq = γ−1Φ,pΦ,q + γijΨi,pΨj,q +
1

8
γ−2γ,pγ,q +

1

8
γijγklγik,pγjl,q +

1

4
γ−1γij(ιpΩi)(ιqΩj), (2.14)

2These equations are identical to those appearing in [119], with a corrected factor of 2 on terms quadratic in the
Maxwell potentials.
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and p, q run over ρ and z. The integrability of these equations can be established using (2.8) to (2.12).
We have been considering the reduction over just the axial KVFs i.e. over U(1)D−3, however there

is another obvious reduction one can perform over the stationary KVF and all but one of the axial KVFs
i.e. over U(1)D−4 × R. Without loss of generality we can choose the leftover KVF to correspond to
∂D−3. Then we can write the metric as

g = e2ν(dρ2 + dz2) + hµν(dxµ + yµdφD−3)(dxν + yνdφD−3)− h−1ρ2(dφD−3)2, (2.15)

where h = dethµν and µ, ν = 0, . . . , D − 4. We can define potentials in a similar way to the other
reduction:

dR = ι0 · · · ιD−4 ? F, dSµ = ιµF,

Zµ = ?(k ∧m1 ∧ · · · ∧mD−4 ∧ deµ),
(2.16)

where eµ = (k,mi 6=D−3). The Einstein-Maxwell equations ((2.8) to (2.14)) then take the same form
with {hµν , R, Sµ, Zµ} replacing {γij,Φ,Ψi,Ωi}.

2.3 Charging transformations

We now set D = 5 and consider electrostatic solutions - we will shortly see how this condition can be
written in terms of the potentials adapted to each reduction. We can then derive non-trivial transfor-
mations between solutions in this class by looking at the symmetries of the Einstein-Maxwell equations
described in the previous section.

2.3.1 Charging black holes

We will start with the slightly less natural reduction over R × U(1). Under this reduction staticity
implies that

h01 = h10 = 0, Z0 = 0, y0 = 0 (2.17)

and a pure electric spacetime must also satisfy

R = 0, Sµ6=0 = 0. (2.18)

For convenience we define S = S0, then the metric can be written

g = e2ν(dρ2 + dz2)− e2V0dt2 + e2V1(dφ1 + ydφ2)2 + e2V2(dφ2)2, (2.19)

where e2V0 = h00, e2V1 = h11, y = y1 and V0 + V1 + V2 = ln ρ.
The Einstein-Maxwell equations for V0 and S come from (2.8) and (2.11) and are given by

D2V0 = α−2e−2V0(DS)2, D2S = 2DV0 · DS (2.20)

where α =
√

3
2

. Note that these two equations only depend on V0 and S and so can be solved
independently to the rest of the equations.

We now consider the target space T , defined by the equations for V0 and S (2.20). The equations
can be viewed as coming from the Lagrangian

L = DV 2
0 − α−2e−2V0DS2. (2.21)
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Therefore by defining coordinates X± = eV0 ± α−1S, we can write the metric on T as

ds2 = 4
dX+dX−

(X+ +X−)2
, (2.22)

which we recognise as AdS2 in lightcone coordinates. It has isometries given by

X± → aX±, X± → X± ± b, X± → X±

1∓ cX±
, (2.23)

for real constants a, b and c, with the KVFs corresponding to these transformations generating the
Lie algebra sl(2,R). These are hidden symmetries of the original equations (2.20). The dilation and
translation transformations are both trivial, corresponding to rescaling t and gauge transforming S
respectively. However, the third transformation is more interesting and can be used to generate a
non-trivial 1-parameter family of new solutions given a starting seed solution.

It is convenient when performing the third transformation to simultaneously rescale t and gauge
transform S in order to manifestly preserve the asymptotic conditions. Specifically we impose that if
e2V0 → 1 and S → 0 at asymptotic infinity for the seed metric then these conditions should hold for
the final metric as well. Then the transformation can be written as

e2V0 → e2V0L−2, S → (1− cα−1S) (S − αc) + αce2V0

(1− cα−1S)2 − c2e2V0
, (2.24)

where

L =
(1− cα−1S)2 − c2e2V0

1− c2
. (2.25)

The equations for the other metric components (2.8), (2.13) imply that they transform as

e2Vi → e2ViL (i = 1, 2), y → y, e2ν → e2νL. (2.26)

Note that the condition V0 + V1 + V2 = ln ρ is invariant under this transformation.
In order to preserve signature and avoid creating new singularities under this transformation, L must

be positive which is satisfied if and only if −1 < c < 1. To show that this implies L > 0, it is sufficient
to show that X± < 1 3, a result which is the content of lemma 2 in [51]. We also note that gij
transforms with an overall factor of L meaning that a rod vector of the starting solution is a rod vector
of the end solution and so the rod structure is partially preserved.

Since this transformation preserves asymptotic flatness whilst adding an electric field, it can be
physically interpreted as adding electric charge into the bulk of the spacetime, or equivalently adding
charge to black hole horizons that are present. In fact if one were to apply this to a higher dimensional
Schwarzschild black hole, then the transformed metric would be a Reissner–Nordström black hole with
charge proportional to c - this is essentially guaranteed by the static uniqueness theorem [50].

2.3.2 Immersing black holes in an electric background

Now we consider the reduction over U(1)2. In this case staticity implies that

Ωi = 0, wi = 0, (2.27)

3We are using the fact that e2V0 → 1 and S → 0 at asymptotic infinity and we also assume that the mass M and
charge Q obey M > |Q|.
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and a pure electric spacetime must also satisfy

Ψi = 0. (2.28)

The metric can be written in the form

g = e2ν(dρ2 + dz2)− ρ2e−2Wdt2 + e2W1(dφ1 + udφ2)2 + e2W2(dφ2)2, (2.29)

where e2W1 = γ11, u = γ12γ
−1
11 , e2W2 = γ22 − γ2

12γ
−1
11 and W := W1 +W2.

The Einstein-Maxwell equations for W and Φ (2.8), (2.10) are

D2W = −α−2e−2W (DΦ)2, D2Φ = 2DW · DΦ. (2.30)

An almost identical analysis as in the previous section applies to these equations with the only difference
being that in this case the target space T ∼= H2, the hyperbolic plane. The isometries of T determine
the transformations for W and Ψ as before. The non-trivial 1-parameter family of transformations is
given by

e2W → e2WM−2, e2Wi → e2WiM−1, u→ u

Φ→
[
Φ(1 + kα−1Φ) + αke2W

]
M−1, e2ν → e2νM2

(2.31)

where
M = (1 + kα−1Φ)2 + k2e2W (2.32)

and k is a real parameter. Note that the condition W −W1 −W2 = 0 is invariant under this transfor-
mation.

Similarly to the previous transformation, M must be positive to preserve signature and avoid creating
new singularities. M > 0 follows immediately from the definition and there are no restrictions on k.
As before gij transforms with just an overall factor (M−1 in this case) and so the transformed solution
has the same rod vectors as the seed.

An important difference between this transformation and the previous one is that now asymptotic
flatness can no longer be preserved. In fact this transformation takes asymptotically flat spacetimes to
asymptotically Melvin ones. These are spacetimes that asymptotically look like the 5d electric Melvin
universe, a spacetime with metric

ds2 = M2 µ

ρ2 + µ2
(dρ2 + dz2)−M2dt2 +M−1

(
µ(dφ1)2 +

ρ2

µ
(dφ2)2

)
, (2.33)

where
M = 1 + k2ρ2, µ =

√
ρ2 + z2 − z, (2.34)

and k determines the strength of the electric field. Therefore one can think of this transformation as
taking a spacetime and immersing it in an electric background.

2.3.3 Combined transformation

We now consider applying these two transformations consecutively to neutral, static, AF black hole
spacetimes. By convention we will take m2 to be the rod vector for the left semi-infinite rod IL (i.e.
the rod with z → −∞) and m1 for the right semi-infinite rod IR (i.e. the rod with z → ∞). As
discussed in the previous section, the first transformation will give the black holes an electric charge and
then the second will immerse them in a background electric field. We know (from the static uniqueness
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theorem) that these static seed solutions will generally have some kind of singularity. If these are conical
in nature we will show how tuning the parameters of these transformations might allow one to cure
these singularities to give regular solutions.

Consider a static seed metric as in (2.19), with S = 0, i.e. a neutral solution. If we charge this
solution using the transformation associated to the R× U(1) reduction (2.24), (2.26), (2.25), we find
that

g = e2νL(dρ2 + dz2)− e2V0L−2dt2 + e2V1L(dφ1 + ydφ2)2 + e2V2L(dφ2)2, (2.35)

S =
αc(e2V0 − 1)

1− c2e2V0
(2.36)

where

L =
1− c2e2V0

1− c2
. (2.37)

Next we need to convert these into the variables adapted to the U(1)2 reduction. This is trivial for
the metric components

e2W (0)

= ρ2e−2V0L2, e2W
(0)
1 = e2V1L, u = y, e2W

(0)
2 = e2V2L, (2.38)

where we use (0) superscripts for this intermediate solution for later convenience. To do something
similar for the Maxwell potential, we first work from the definition of S (2.16) and Φ(0) (2.4) (and use
the fact that F is purely electric) to find that

dΦ(0) = ρ−1e2W (0)

?2 dS. (2.39)

Using the expression for e2W (0)
(2.38) and S (2.36) in terms of V0 this simplifies to

dΦ(0) =
2αc

1− c2
ρ ?2 dV0. (2.40)

V0 is an axially symmetric harmonic function on R3, which can be seen from (2.20) since the seed
is neutral (or even just considering the above equation on M3 and acting with the exterior derivative
on both sides). We also know that V0 must tend to 0 at asymptotic infinity (since the solution is AF)
and be smooth everywhere except for on horizon rods where it should diverge as ln ρ (this is necessary
for a smooth horizon). A candidate form for V0 that satisfies these constraints can be written as

V0 =
1

2

n∑
k=1

sk lnµk, (2.41)

for constants sk given by

sk =


−1 (zk, zk+1) is a horizon rod

1 (zk−1, zk) is a horizon rod

0 otherwise

, (2.42)

and
µk =

√
ρ2 + (z − zk)2 − (z − zk). (2.43)

Note that lnµk are axially symmetric harmonic functions and (lnµk+1 − lnµk) is smooth everywhere
apart from ρ = 0, zk < z < zk+1 where it diverges as ln ρ. Considering another function V ′0 satisfying
these constraints, it is simple to see that V ′0 − V0 is a smooth and bounded harmonic function and so
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must be constant everywhere. This demonstrates that the form of V0 given above is unique up to a
rescaling of the t coordinate.

Combining (2.41) with the identity

ρ ?2 d lnµk = −dµ̄k, (2.44)

where
µ̄k = ρ2/µk =

√
ρ2 + (z − zk)2 + (z − zk), (2.45)

and using the result in the equation for Φ(0) in terms of V0 (2.40), we finally get a solution for Φ0

Φ(0) = − αc

1− c2

n∑
k=1

skµ̄k, (2.46)

which is valid up to an arbitrary additive constant. Notice that we have chosen a gauge for Φ(0) such
that Φ(0)|IL = 0

Now we can use the transformation associated to the U(1)2 reduction (2.31), (2.32) on this charged
solution to give

g = e2νLM2(dρ2 + dz2)− e2V0L−2M2dt2 + e2V1LM−1(dφ1 + ydφ2)2 + e2V2LM−1(dφ2)2, (2.47)

Φ =
[
Φ(0)(1 + kα−1Φ(0)) + αke2W (0)

]
(2.48)

where
M = (1 + kα−1Φ(0))2 + k2e2W (0)

(2.49)

and e2W (0)
,Φ(0) are given in (2.38), (2.46).

Conical singularities

Lastly we discuss conical singularities. For a given rod Ia with rod vector va, there is a conical singularity
unless the balance condition (2.2) is satisfied (taking φi to have period 2π). For the seed solution these
constraints are only satisfied on the left and right semi-infinite rods. After the combined transformation
the expression on the LHS of (2.2) will pick up a factor of (Ma

0 )3 where we define

Ma
0 = lim

ρ→0, z∈Ia
M = (1 + kα−1Φ(0)|Ia)2, (2.50)

and we have used the fact that e2W (0)
vanishes on axis rods. Note that Φ(0) is constant on axis rods,

which can be seen from its definition (2.4) and the fact that va = 0.
Consider the left axis rod IL. Then Φ(0)|IL = 0 from (2.46) and so ML

0 = 1 and there is no conical
singularity in the transformed metric. However on the right rod IR, from (2.42), (2.46) we see that

Φ(0)|IR = − 2αc

1− c2

∑
H

`H , (2.51)

where the sum is over horizon rods H with associated rod length `H . Therefore the left hand side of
(2.2) is given by

N2 := (MR
0 )3 =

(
1− 2ck

1− c2

∑
H

`H

)6

, (2.52)
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for the transformed metric which is clearly not equal to 1 unless either c, k = 0 or there are no horizons
(we return to these cases below). Therefore if we want to remove the conical singularity on IR we must
either relax the assumption that φ1 has a period of 2π or equivalently rescale φ1. We take the second
option and rescale φ1 → Nφ1 (we take N > 0). This puts the metric into the new form

g = e2νLM2(dρ2 + dz2)

− e2V0L−2M2N−2dt2 + e2V1LM−1(Ndφ1 + ydφ2)2 + e2V2LM−1(dφ2)2,
(2.53)

where we have also taken t → N−1t in order to maintain the W − W1 − W2 = 0 condition. An
immediate consequence of this is that ∂1 transforms as ∂1 → N−1∂1 under this coordinate change and
so a rod vector should transform as well i.e. as v = p∂1 + q∂2 → N−1p∂1 + q∂2 for constants p and
q. This is compatible with the earlier statements that these charging transformations shouldn’t change
rod vectors since all that is changing is the coordinates used to describe them. For the orbits of this
rod vector to be closed we now have the requirement that qNp−1 must be rational (when p 6= 0). We
will return to this condition when we discuss the black lens spacetime in the next section.

Analysis of the conical singularity condition for the finite axis rods is more difficult to do in general
and we leave the discussion of this to the next section where we examine particular solutions. However
there are some straightforward results in a couple of special cases. First consider the case c = 0. This
implies that Φ(0) = 0 and so N2 = Ma

0 = 1 which in turn implies that the transformation doesn’t affect
the conical singularity condition (2.2). Similarly when k = 0, this condition is again unaffected by the
transformation. We therefore see that both the charging and immersing transformations are needed to
act non-trivially in order to have a chance at removing singularities. Lastly, consider a soliton solution,
a spacetime with no black hole horizons. In this case e2V0 = 1 (since sk = 0 (2.42) on all rods) and
so S = 0, L = 1, which means that the transformation is independent of c. By the arguments above
this means that conical singularities cannot be cured and so this method cannot be used to construct
regular solitons in an electric background.

2.4 Examples

2.4.1 Black Saturn

The neutral static black Saturn solution can be constructed from its rod structure (Figure 2.1) as a
Weyl solution [53], with its metric given by

e2V0 =
µ1µ3

µ4µ2

, e2V1 = µ4, e2V2 = ρ2 µ2

µ1µ3

,

e2ν = µ4
r2

12r
2
23r14r34

r2
13r24

∏4
i=1 r

2
ii

,
(2.54)

where
rij = ρ2 + µiµj, (2.55)

µk is given by (2.43) and the rod points obey z1 < z2 < z3 < z4.
The metric physically corresponds to an S3 black hole surrounded by a black ring in a flat background.

One can isolate the central S3 black hole by taking z2 → z1, essentially removing the black ring horizon
rod (note that this causes the dependence of the metric on z1 to drop out). There is also a limit to
the black ring by taking z4 → z3 which removes the S3 horizon. Since this is a static, AF solution
to vacuum gravity (which is neither flat space nor a Schwarzschild black hole), it cannot be a smooth
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(0, 1) H1 (0, 1) H2 (1, 0)

Figure 2.1: The rod structure for a black Saturn solution, where H1 corresponds to a black ring and
H2 an S3 black hole.

solution [50]. As expected this is because of a conical singularity on the finite axis rod IC = (z2, z3)
which has rod vector vC = m2. Explicitly we find that for distinct zk

lim
ρ→0, z∈IC

(
ρ2e2ν

e2V2

)
=

(z3 − z2)2(z4 − z1)

(z3 − z1)2(z4 − z2)
, (2.56)

is always less than 1 and so the conical singularity cannot be removed through tuning zk alone (see
(2.2)).

We now charge and immerse this solution in the way described in the previous section. The equations
for the metric components and Φ are trivially given from the general formalism (2.53), (2.48). Expression
(2.56) picks up a factor of (MC

0 )3 (2.50) which allows it to be solved in terms of k to give

k =
1− c2

2c(z2 − z1)

1±

[
z3 − z1

z3 − z2

(
z4 − z2

z4 − z1

)1/2
]1/3

 , (2.57)

where we are assuming k, c 6= 0. This gives two disjoint families of regular solutions: if we take the
upper sign then k > 1−c2

c(z2−z1)
and the charge of the black hole and the electric background have the

same sign, on the other hand the lower sign implies that these electric charges have opposite signs since
k has the opposite sign to c. Setting z4 = z3 gives a balanced static charged black ring immersed in
an electric background (presumably matching the solution found in [125] for a choice of upper or lower
sign).

2.4.2 Black lens

We next consider a neutral static L(n, 1) black lens, a black hole spacetime with L(n, 1) lens space
horizon topology. We use the metric given in [129]4 which is written in (x, y) coordinates as

g = −1 + νy

1 + νx
dt2+

2R2(1 + νx)

(1− a2)(x− y)2H(x, y)

[
H(x, y)2

1− ν

(
dx2

G(x)
− dy2

G(y)

)
+ (1− x2)[(1− ν − a2(1 + νy))dφ2 − aν(1 + y)dφ1]2

− (1− y2)[(1− ν − a2(1 + νx))dφ1 − aν(1 + x)dφ2]2

]
,

(2.58)

where
G(ζ) = (1− ζ2)(1 + νζ), H(x, y) = (1− ν)2 − a2(1 + νx)(1 + νy). (2.59)

4The metric was originally derived in [130] but written in Weyl coordinates and not recognised as describing a black
lens spacetime. We have also used ν and R in place of c and κ in [129] to avoid confusion with our charging parameters,
and used (φ1, φ2) in place of their (ψ, φ).
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The constants lie in the ranges 0 < ν < 1,−1 < a < 1 and R > 0 with the coordinates (x, y)
constrained by −1 ≤ x ≤ 1 and −1/ν < y ≤ −1. The rod structure is given in Figure 2.2. The
left axis rod corresponds to x = −1, the horizon rod corresponds to y = −1/ν, the finite axis rod
corresponds to x = 1 and the right axis rod corresponds to y = −1. The rod vector for the finite axis
rod ID is given by vD = ∂1 + n∂2 with n given by

n =
2aν

1− ν − a2(1 + ν)
. (2.60)

Requiring that the orbits of vD are closed imposes that n is an integer, though we shall replace this
condition with a slightly different one shortly when we discuss the transformed solution.

(0, 1) H (n, 1) (1, 0)

Figure 2.2: The rod structure for a simple L(n, 1) black lens.

The metric has a limit to a black ring by taking n → 0 (equivalently a → 0). Similarly there is a

limit to a Schwarzschild black hole by taking n→∞ (equivalently a→ ±
√

1−ν
1+ν

). Again, as with the

black Saturn solution, there is a conical singularity associated with the finite axis rod ID where x = 1.
The metric of the spacetime after performing both the transformations we’ve discussed (2.53),

(2.48) can be written as

g = −1 + νy

1 + νx
M2L−2N−2dt2+

2R2(1 + νx)

(1− a2)(x− y)2H(x, y)
M−1L

[
H(x, y)2

1− ν
M3

(
dx2

G(x)
− dy2

G(y)

)
+ (1− x2)[(1− ν − a2(1 + νy))dφ2 − aν(1 + y)Ndφ1]2

− (1− y2)[(1− ν − a2(1 + νx))Ndφ1 − aν(1 + x)dφ2]2

]
,

(2.61)
with L,M,N given by (2.25), (2.32), (2.52) and Φ given by (2.48). Note that

ρ2 = − 4R2

(x− y)2
G(x)G(y) (2.62)

from the definition of ρ in terms of the determinant of the Killing part of the metric. We also see that
the rod vector for ID is now written vD = ∂1 + n̄∂2 for

n̄ = Nn =

(
1− 4ckνR2

1− c2

)3
2aν

1− ν − a2(1 + ν)
. (2.63)

This means that we should now take n̄ to be an integer (and relax that requirement on n) to ensure
that vD has compact orbits, giving a L(n̄, 1) black lens.

Now we consider possible conical singularities on the axis rods. By construction there are no conical
singularities on the semi-infinite axis rods as long as φi have periods 2π. In order to cure the conical
singularity condition for the finite axis rod ID, we use the fact that the conformal factor for the neutral
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seed is given by

e2ν =− 2(1 + νx)(x− y)H(x, y)

(1− ν)(1− a2)R2

[(2 + ν(1 + x) + ν(1− x)y)(ν + x+ y + xy)(2− ν(1− x− y − xy))]−1 .

(2.64)

For the seed solution we find that

lim
x→1

ρ2e2ν

|vD|2
=

(a2(1 + ν)− (1− ν))2

(1− a2)2(1− ν2)
. (2.65)

The right hand side of this expression is less than 1 for all allowed values of a, ν and therefore the
balance condition (2.2) cannot be satisfied in the neutral case (as expected).

By the structure of the charging transformations we know that this expression will just be multiplied
by an overall factor of (MD

0 )3 (2.50) in the transformed solution. Therefore we can solve the balance
condition (2.2) for the new solution in terms of k (c, k 6= 0) to find

k =
1− c2

4cνR2

(
1±

[
(1− a2)(1− ν2)1/2

|a2(1 + ν)− (1− ν)|

]1/3
)
, (2.66)

where we have used (2.46), (2.42) and the fact that the horizon rod length is z2−z1 = 2νR2 (see [129]).
Again this gives two distinct families of solutions corresponding to the charges of the transformations
either having the same or opposite sign. Combining this with the expression for n̄ we find

n̄ = s
2aν(1− a2)(1− ν2)1/2

((1− ν)− a2(1 + ν))2
, (2.67)

where s gives the sign of ((1− ν)− a2(1 + ν)). Any value of n̄ can be found for suitable a, ν, just as
in the vacuum case with n.

2.5 Discussion

In this chapter we have considered 5d biaxisymmetric, electrostatic, black hole solutions. The Einstein-
Maxwell equations take a different form depending on whether one reduces to a three-dimensional base
space over R×U(1) or U(1)2. From these different formulations of the equations we have derived two
distinct 1-parameter families of transformations. The first of these transformations preserves asymptotic
flatness and can be interpreted as adding charge to black holes in a spacetime, for example acting on
the Schwarzschild solution with this transformation gives the Reissner–Nordström solution (this must be
the case because of the static uniqueness theorem [50]). The second transformation does not preserve
asymptotic flatness but instead immerses the black hole in an external electric background known as
the Melvin universe. Although the transformed solutions are no longer AF, they still preserve some of
that structure, namely having an S3 topology spatial cross-section at infinity.

We used both these transformations on a neutral static black Saturn and an L(n, 1) black lens. By
tuning the charging parameters we were able to remove the conical singularities in these two solutions
and so find regular black hole spacetimes. The regular black lens is of particular interest since it is the
only known example which has trivial topology at infinity.

The other obvious type of reduction that we have not considered in this chapter are reductions
over null KVFs. Different reductions allow new perspectives on the structure of the Einstein-Maxwell
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equations, making certain symmetries more manifest in some cases and it would be interesting to see
what kind of symmetry this type of reduction would lead to. Another potentially useful extension of
this work is to understand how the combined charging transformation works on the general class of
Weyl solutions. Particularly this means being able to determine the rod structures for which the conical
singularity conditions can be removed. As discussed, in the soliton case it is certainly not possible to
balance solutions using these charging transformations, irrespective of any parameter tuning. However
it remains a possibility that a new large class of regular charged (multi-)black hole solutions with
non-trivial 2-cycles in the DOC could be found.
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Chapter 3

Classification of Vacuum Solutions Using
Integrability

This chapter looks at the classification of solutions in four and five-dimensional vacuum gravity. We
consider AF, stationary, vacuum black hole spacetimes in four and five dimensions, that admit one
and two commuting axial Killing fields respectively. The equations governing these spacetimes reduce
to a harmonic map on the two-dimensional orbit space. This harmonic map can be rewritten as the
integrability condition of a pair of linear PDEs. By taking advantage of this structure we derive a method
which determines metric data on the ρ = 0 axis given a particular rod structure. This information can
then further be leveraged to find the moduli space of solutions with this rod structure. We leave explicit
examples of this method and the analysis of particular simple rod structures, including one corresponding
to a black lens, to the following chapter.

This chapter draws heavily from sections 1-3 of [3].

3.1 Introduction

We now consider vacuum solutions with D = 4, 5 dimensions. We will be looking at the class of
stationary, AF spacetimes with D−3 commuting axial KVFs that we originally discussed in Section 1.2.
Crucially, the Einstein equations for these spacetimes reduce to a harmonic map on the two-dimensional
orbit space. This leads to two important consequences. Firstly there is a uniqueness theorem governing
these solutions, Theorem 3. This theorem dictates that each rod structure with a given angular momenta
for each horizon component leads to a unique solution (if it exists). Secondly the Einstein equations are
integrable, since the harmonic map can be written as the integrability condition of a pair of linear PDEs,
these are the BZ equations (1.16). This feature will be fundamental to the results of this chapter.

As we’ve discussed in the introduction, in the vacuum D = 4 case with a connected horizon, Theorem
3 reduces to the classic black hole uniqueness theorem for the Kerr black hole: it says that any solution
is uniquely parameterised by the horizon rod length `H and angular momentum J (there are no finite
axis rods). The (non-extreme) Kerr solution realises all possible values of this data, `H > 0, J ∈ R,
and hence the classification for this case is complete (in this case one can of course also use the M,J
to label solutions as is traditionally done). As in the classic D = 4 case, the proof of Theorem 3 is
non-constructive and involves a nonlinear divergence identity (Mazur identity) which characterises the
‘difference’ of two solutions to the corresponding harmonic map problem. Therefore this theorem does
not address the crucial question of existence: for what rod structures and horizon angular momenta do
regular solutions actually exist?

41



Indeed, the existence question is largely open even for D = 4. In this case the other possible rod
structures correspond to black holes with multiple horizons, with finite axis rods separating the disjoint
horizon rods. There is a general expectation that equilibrium configurations describing such solutions
in the vacuum cannot exist due to their mutual gravitational attraction. In fact, by adapting existence
results for harmonic maps to this problem, Weinstein has shown that a unique N -component black hole
solution exists given any rod structure and horizon angular momenta, which is regular everywhere away
from the axis [70, 131, 132]. However, such solutions may still suffer from conical singularities on the
finite axis components (i.e. those not connected to infinity). Physically, these singularities are related
to the force of attraction between the black holes and it is conjectured that for N > 1 such solutions
always do possess conical singularities. Evidence that this force is always attractive has been obtained
by studying various special cases [133, 132].

Candidate multi-black hole solutions, known as the multi-Kerr-NUT solutions, have been known
for some time [134, 135, 65], although an analysis of the potential conical singularities has proven
to be essentially intractable. Naturally, the N = 2 case corresponding to a double-black hole has
been the most extensively studied. From the above theorem this solution depends on five-parameters
(two horizon rod lengths, one axis rod length and the angular momentum of each horizon), that are
related by the equilibrium condition (i.e. the condition for removal of the conical singularity on the
finite axis rod). The study of the equilibrium condition for the double-Kerr-NUT solution has been
the subject of much work, see e.g. [136, 137]. However, even if one can give a general proof that
the equilibrium condition for the double-Kerr-NUT solution is never satisfied, this would still not give a
proof of the non-existence of a regular double-black hole, since it is not a priori clear that it contains the
general solution with these boundary conditions. Recently, this conjecture has been settled by Hennig
and Neugebauer [39]: a regular double-black hole solution does not exist. The proof consists of two
steps: (i) employing the inverse scattering method from integrability theory to prove that the general
solution with such boundary conditions is contained in the known double-Kerr-NUT solution (this was
already shown in earlier work by Varzugin [36] and Meinel and Neugebauer [38]); (ii) showing that the
equilibrium conditions are incompatible with the area-angular momentum inequality for a marginally
trapped surface [138, 139, 140].

The D = 5 case is more complicated for two principle reasons. Firstly, there are more horizon
topologies compatible with biaxial symmetry: S3, S2 × S1 and lens spaces L(p, q). Secondly, for every
horizon topology (including multi-horizons) there can be an arbitrary number of finite axis rods on which
different linear combinations of the two axial Killing fields vanish – these correspond to non-trivial 2-
cycles in the domain of outer communication (DOC). Recently, a theorem which partially addresses the
existence question in this context has been established by Khuri, Weinstein and Yamada [69] (Theorem
4 with D = 5). It is a five-dimensional analogue of Weinstein’s theorem for D = 4 multi-black holes
[35] using the theory of harmonic maps adapted to this setting. It essentially tells you that for given
uniqueness moduli (rod structure and angular momenta), there exists a solution which is regular away
from the axis. This greatly simplifies the problem of classification of regular solutions. In particular it
reduces to an analysis of possible conical singularities at the inner axis rods (it has been shown that
there are no conical singularities at the two semi-infinite axis rods [141]). Note that it also requires one
to make the technical assumption that the rod structure satisfies some compatibility requirement (see
(1.18)).

The purpose of this chapter is to use the spectral equation of BZ (3.54) to systematically investigate
all possible solutions for any given rod structure. In particular, we explicitly integrate the BZ spectral
equations along the axes and horizons, and around infinity. Then, using this we show that one can
determine the metric everywhere on the axes and horizons for any given rod structure purely algebraically.
Our main result can be summarised as follows (see Theorem 8 for a precise statement):
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Theorem 7. Consider a D = 4, 5 stationary vacuum spacetime as in Theorem 3. On every component
of the axis and horizon, the general solution for the metric components and the associated Ernst or
twist potentials are rational functions of z. These functions are explicitly determined in terms of the rod
structure, horizon angular momenta, horizon angular velocities and certain gravitational fluxes, which
are subject to a set of nonlinear algebraic constraints.

Thus the solution depends on a number of continuous parameters which are geometrically defined:
the rod lengths, the angular momenta and angular velocities of each horizon, and certain gravitational
fluxes. The gravitational fluxes are invariants associated to each finite axis rod. In the spacetime the
finite axis rods correspond to non-contractible (D − 3)-cycles and the fluxes are integrals of certain
closed (D−3)-forms constructed from the Killing fields. For every axis rod one can define an associated
Ernst potential from the Killing fields which are nonzero on that rod. The change in Ernst potential
across the associated rod is then precisely the gravitational flux through the corresponding 2-cycle. It
is worth noting that similar gravitational fluxes arise in the recently found thermodynamic identities for
D = 5 black holes in this class [142].

As mentioned in our theorem, the parameters in the general solution must obey certain nonlinear
algebraic equations. These arise from integrating the BZ spectral equations along the z-axis and around
the ‘semi-circle’ at infinity. Furthermore, imposing the metric is free of conical singularities on the axes
and horizons typically imposes further constraints on the parameters. Thus we are able to address part
(ii) of the regularity problem left open by Theorem 4. Hence, our method is particularly useful for ruling
out regular solutions with a prescribed rod structure. For example, one can prove that a D = 5 solution
with no horizon and one finite axis rod must be conically singular at the finite axis rod; this is of course
guaranteed by the no-soliton theorem for vacuum solutions (even without biaxial symmetry), although
it illustrates that our method is capable of showing that certain rod structures must lead to conically
singular solutions.

Our method may be thought of as a higher-dimensional analogue of the D = 4 methods of Varzu-
gin [36, 37] and Meinel and Neugebauer [38], which both lead to simple constructive uniqueness proofs
for Kerr. In particular, Varzugin integrated the BZ spectral equations along the axis and horizons and
used this to show that the N -black hole solution is contained in the 2N -soliton solution of BZ [65].
We also integrate the BZ spectral equations along the boundaries, although our analysis of its solution
differs, and we give a simple method to extract the spacetime metric, so even for D = 4 it offers an
alternative approach. On the other hand, Meinel and Neugenbauer integrated a different spectral equa-
tion along the axis, whose integrability condition gives the Ernst equations, and used this to determine
the Ernst potential on the axis. It would be interesting to investigate the precise relationship between
these various methods.

This chapter is organised as follows. In Section 3.2 we recall well-known properties of stationary
vacuum spacetimes with D − 3 commuting axial Killing fields and introduce various Ernst potentials
which will feature later (this section also serves to set our notation). In Section 3.3 we derive the
general solution to the BZ spectral equations on the axes, horizons and around infinity, and use this
to construct the general solution to the Einstein equations on the axes and horizons. In Sections 3.4
and 3.5 we specialise to D = 4 and D = 5 respectively and compute the asymptotic charges of the
general solutions. In Section 3.6 we discuss our results and future work. We relegate various results to
the Appendix.
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3.2 Background

3.2.1 Einstein equations and rod structure

For this section we recall and expand on some of the results of Sections 1.2 and 1.3 and set up some
notation for the rest of the chapter. Let (M,g) be a D-dimensional stationary spacetime with D − 3
commuting axial Killing vector fields that also commute with the stationary Killing field. We denote
the stationary Killing field k and the remaining D − 3 axial Killing fields mi, i = 1, . . . , D − 3, and
assume these generate an isometry group G = R × U(1)D−3. We define coordinates (t, φi) adapted
to the stationary and axial symmetries, so k = ∂t and mi = ∂φi , and choose mi to be generators with
2π-periodic orbits, i.e. the angles φi are 2π-periodic. We also assume that there is at least one point in
spacetime that is a fixed point of the axial symmetry (as is the case for asymptotically flat spacetimes).

Under such assumptions the spacetime metric can be written in Weyl-Papapetrou coordinates [53,
54]

g = gAB(ρ, z)dxAdxB + e2ν(ρ,z)(dρ2 + dz2), (3.1)

where A ∈ {0, 1, . . . , D − 3}, ∂A are the Killing fields and

det gAB = −ρ2. (3.2)

Then the vacuum Einstein equations reduce to

∂ρU + ∂zV = 0, (3.3)

where
U = ρ∂ρgg

−1, V = ρ∂zgg
−1 (3.4)

and the conformal factor, e2ν , is then determined by

∂ρν = − 1

2ρ
+

1

8ρ
Tr (U2 − V 2), ∂zν =

1

4ρ
Tr UV . (3.5)

Indeed, the integrability condition for (3.5) is (3.3).
One can also establish the orbit space theorem, Theorem 2. This shows that the orbit space M

under the isometry group M̂ = M/G, is a 2d simply connected manifold with boundaries and corners,
which may therefore be identified with the half-plane

M̂ = {(ρ, z) | ρ > 0} . (3.6)

The boundary of the orbit space ρ = 0 corresponds to the z-axis and this splits into intervals, called rods,
(−∞, z1), (z1, z2), . . . , (zn,∞), with z1 < z2 < · · · < zn, each of which corresponds to a connected
component of the horizon orbit space Ĥ = H/U(1)D−3, or an axis with an associated vanishing “rod
vector”. The endpoints of the rods za, a = 1, . . . , n, correspond to the corners of the orbit space,
each of which corresponds to where an axis intersects a horizon, or for D > 4, a fixed point of the
U(1)D−3-action (i.e. mi = 0 for all i = 1, . . . , D− 3, which occurs precisely where two axes intersect).

Let us denote the rods by Ia, for a = 1, . . . , n+ 1, and the length of the finite rods Ia = (za−1, za)
by `a = za − za−1 for a = 2, . . . , n. Given any axis rod Ia the corresponding rod vector takes the form

va = viami (3.7)
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where (via)i=1,...,D−3 are coprime integers. If D = 5, for any adjacent axis rods Ia and Ia+1 separated
by the corner z = za the associated rod vectors must satisfy the condition

det

(
v1
a v2

a

v1
a+1 v2

a+1

)
= ±1 . (3.8)

Following [69], we will call any rod structure satisfying (3.8) admissible. We will denote the union of
all axis rods by Â and all horizon rods by Ĥ. The collection of all this data

{(`a, va) | Ia ⊂ Â} ∪ {`a | Ia ⊂ Ĥ} (3.9)

is known as the rod structure. We will often denote the semi-infinite axis rods by IL = I1 = (−∞, z1)
and IR = In+1 = (zn,∞). For definiteness, in the D = 5 case we will choose the mi such that m2 = 0
on IL and m1 = 0 on IR, i.e., the rod vectors vL = (0, 1) and vR = (1, 0) relative to the basis (m1,m2).

For D = 5 any finite axis rod Ia lifts to a 2-cycle in the spacetime. Explicitly this is given by the
surface Ca obtained from the fibration of the nonzero U(1) Killing field ua = uiami over the closure of
Ia (recall va = 0 on Ia). If the adjacent rods are both axis rods then ua must vanish at the endpoints
of Ia and Ca has the topology of S2; if only one adjacent rod is an axis rod (and hence the other a
horizon) then ua only vanishes at the corresponding endpoint so Ca is topologically a 2-disc; finally if
both adjacent rods are horizon rods then ua does not vanish at either endpoint and Ca is topologically
a cylinder.

Another important set of invariants for such solutions are the Komar angular momenta of each
connected component of the horizon Ha defined by

Jai =
1

16π

∫
Ha

?dmi, (3.10)

where we fix the orientation ε01...D−3ρz > 0. From a standard argument, invoking Stokes’ theorem and
the Einstein equation, these are related to the total angular momenta of the spacetime Ji =

∑
a J

a
i .

Due to the assumed symmetry these can be reduced to integrals over the horizon rods using∫
Ha

?α = (2π)D−3

∫
Ia

?(m1 ∧ · · · ∧mD−3 ∧ α) (3.11)

where α is any U(1)D−3-invariant 2-form. This gives

Jai =
1

8
(2π)D−4(χi(za)− χi(za−1)) , (3.12)

where χi are the twist potentials defined by

dχi = ?(m1 ∧ . . .mD−3 ∧ dmi) . (3.13)

The existence of globally defined twist potentials follows from the fact the vacuum Einstein equations
imply the RHS of (3.13) is a closed 1-form and the fact that the DOC is simply connected using
topological censorship [26, 42, 43]. Observe that the twist potentials are constant on any axis rod.
Therefore, they can only vary across a horizon rod and the above shows that the change in twist potential
across any horizon rod is precisely the angular momenta of the corresponding horizon in spacetime.

We now are now in a position to consider the uniqueness and existence theorems mentioned in
Chapter 1 and the introduction in more detail. Theorem 3 guarantees that there is at most one solution
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for a given rod structure (3.9) and horizon angular momenta (3.12). However, as highlighted in the
introduction, the main limitation of this theorem is that it does not address the crucial question of
existence: for what rod structure and angular momenta do there exist regular black hole solutions?
This is not an issue for D = 4 as the uniqueness theorem reduces to the classic no-hair theorem for the
Kerr black holes (although for multi-black holes this is largely open, as explained in the Introduction).

However, for D = 5 the uniqueness theorem is less powerful as even for a connected horizon an
arbitrary number of axis rods are allowed in principle. To this end, Theorem 4 has been established,
which guarantees the existence of a solution for any admissible rod structure that obeys a certain
technical compatibility condition (1.18). As explained in the Introduction, this theorem guarantees the
solution is regular in the DOC away from the axes. Therefore it does not address regularity of the
solution on the axes, which generically will possess conical singularities on the finite axis rods. It is
instructive to consider certain special cases of Theorem 3 and 4.

First, consider the case of no horizon. Then, it is well known from the no-soliton theorem that
the only regular solutions in this class of spacetimes is Minkowski spacetime (indeed, this result does
not even assume biaxial symmetry). Hence, it must be that the only regular solution with the same
rod structure as Minkowski spacetime is Minkowski spacetime itself. Furthermore, any solution with
non-Minkowski rod structure must be singular on some component of the axis. For example, consider
the Eguchi-Hanson soliton

ds2
EH = −dt2 +

dR2

1− a4

R4

+ 1
4
R2

(
1− a4

R4

)
(dψ + cos θdφ)2 + 1

4
R2(dθ2 + sin2 θdφ2) , (3.14)

where R ≥ a. As is well known, if ψ is periodically identified with period 2π this gives a smooth
metric with a bolt at R = a which is asymptotically locally Euclidean with S3/Z2 topology for large
R. However, if instead we take (θ, ψ, φ) to be Euler angles on S3, we get an asymptotically Minkowski
spacetime, except now with a conical singularity at the bolt. This example then gives a non-trivial
rod structure with one finite axis rod corresponding to the bolt R = a separating the two semi-infinite
rods. In particular, relative to the basis (m1,m2) introduced above, the rod vectors are vL = (0, 1),
vB = (1, 1) and vR = (1, 0), where vB is the rod vector on the bolt, thus giving an admissible rod
structure (3.8). It is a one parameter family of solutions, where the parameter can be taken to be length
of the axis rod, in line with the above theorems (since there is no horizon the only moduli are the rod
lengths). One might wonder whether the more general Gibbons-Hawking solitons similarly give solutions
with multiple axis rods in Theorem 4. In Appendix 3.A we show that in fact these do not possess an
admissible rod structure (instead they possess orbifold singularities at the corners z2, . . . , zn−1 and thus
correspond to solutions of a different theorem in [69]).

Now consider black hole solutions with a single horizon. First, suppose that the angular momenta
Ji = 0. Then it can be shown that the solution must be static [68] and hence by the static uniqueness
theorem the solution must be the Schwarzschild black hole [49]. This implies that any regular solution
in this class must have the same rod structure as Schwarzschild, i.e. one horizon rod separating the
two semi-infinite axis rods. In other words, any solution with a single horizon, Ji = 0 and finite axis
rods, must be conically singular on the axis rods. This shows that for single black holes, not all rod
structures and angular momenta lead to regular solutions.

Next, consider the rod structure of the Myers-Perry solution: a single horizon rod and two semi-
infinite axis rods (i.e. this is the same as that of Schwarzschild). Then, since the Myers-Perry solution
realises all possible data `H > 0 and (J1, J2) ∈ R2 it is the only solution in this class. A self-contained
proof of this was given in earlier work [143]. This case is analogous to the Kerr solution in four
dimensions.
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For a black ring something more interesting happens. Consider the rod structure of the known
black ring, i.e. one horizon rod and one finite axis rod (and two semi-infinite axis rods). In this case
there are four parameters in the uniqueness theorem, namely the horizon and finite axis rod lengths
`H , `A and the angular momenta Ji. However, the most general known regular black ring solution is
the three parameter doubly spinning solution [74]. Thus, in this case the known regular solutions do
not occupy all parts of the possible parameter space. A way to understand this is that generically one
has a conical singularity at the finite axis rod and its removal imposes a constraint on the four available
parameters thus leaving a three parameter subset. Nevertheless, this raises the question: are there
other regular black rings which occupy different parts of the possible moduli space? A definitive answer
requires constructing the most general solution with such a rod structure. We answer this question in
the negative in the next chapter1.

Remarkably, regular multi-black hole solutions do exist in five dimensions. The first such example
constructed was the black Saturn, an equilibrium configuration of a spherical black hole surrounded
by a black ring that is balanced by angular momentum [76]. This solution is a four parameter family
corresponding to the horizon rod lengths and one angular momentum for each black hole (the rod length
of the finite axis rod between the black holes is fixed by removing the associated conical singularity).
There should be a more general six-parameter family where both the spherical black hole and black ring
are doubly spinning which is yet to be constructed. Similarly, regular four-parameter multi-black rings
have been constructed: di-rings are concentric rings rotating in the same plane [77], and bi-rings rotate
in orthogonal planes [79, 80]. Again, these should be part of a more general six-parameter family of
two doubly spinning black rings that remains to be constructed.

3.2.2 Geometry of axes and horizons

In this section we write down a general form for the metric near ρ = 0, i.e., near any axis or horizon,
which will be useful for our purposes. The analysis of the geometry near an axis and near a horizon is
very similar, although for clarity of presentation we will use different notations for the metric in these
two cases. Most of the material in this section is well-known. In Appendix 3.B we also include a
regularity analysis at the corners of the orbit space which is perhaps less well-known.

Axes

First consider an axis rod Ia. For simplicity of notation we temporarily drop the labelling of each rod.
It is convenient to introduce an adapted basis for the D − 2 commuting Killing fields ẼA = (eµ, v)
where µ = 0, . . . , D− 4 and v = vimi is the rod vector corresponding to Ia. For D = 4 we simply take
e0 = k. For D = 5 we take eµ = (k, u) where u is an axial Killing field

u = uimi, such that A =

(
u1 u2

v1 v2

)
∈ GL(2,Z) , (3.15)

i.e. (u, v) are 2π-periodic generators of the U(1)2-action. It is worth emphasising that u is defined only
up to an additive integer multiple of the rod vector v. Then, relative to the adapted basis the metric

1In fact, a four parameter family of ‘unbalanced’ doubly spinning back rings has been constructed [75], i.e., these
suffer from a conical singularity at the axis rod. It is possible that these do fill out the whole moduli space, although
as far as we know this has not been checked in the literature. If so, then by the uniqueness theorem this would have to
be the general solution and hence the known three-parameter family of black rings would have to be the most general
regular solution with this rod structure.
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on the orbits of the isometry can be written as

g̃ =

(
hµν − ρ2h−1wµwν h−1ρ2wµ

h−1ρ2wν −h−1ρ2

)
. (3.16)

Note that the normalisation (3.2) is automatically imposed in this basis. Here, hµν is an invertible
(D − 3)× (D − 3) matrix and its determinant h = dethµν < 0. A regular axis requires hµν , wµ to be
smooth functions of (ρ2, z) and

lim
ρ→0, z∈Ia

ρ2e2ν

|v|2
= 1 . (3.17)

This ensures the absence of a conical singularity at Ia [54].
The inverse metric in this adapted basis is

g̃−1 =

(
hµν wµ

wν −hρ−2 + wρwρ

)
(3.18)

where hµν is the inverse matrix of hµν and wµ = hµνwν . The requirement of a smooth axis implies the
following limits exist

Ů = lim
ρ→0

U , V̊ = lim
ρ→0

V

ρ
, (3.19)

where here and throughout we denote quantities evaluated in the limit ρ → 0 by a circle above.
Explicitly, relative to the adapted basis we find

˚̃U =

(
0 −2wµ
0 2

)
, ˚̃V =

(
(∂zhµρ)h

ρν −hhµν∂z(h−1wν)
0 −(h−1∂zh)

)
(3.20)

where here, and in what follows, all quantities on the RHS are understood to be evaluated at ρ = 0.
Taking the ρ→ 0 limit of the second equation in (3.5) it follows that the conformal factor on the axis
obeys

∂zν̊ = −∂zh
2h

(3.21)

which integrates to

e2ν̊ = −c
2

h
(3.22)

where c > 0 is a constant.
Collecting these results, we deduce that the metric induced on the axis component associated to Ia

is

ga = −c
2
adz2

ha(z)
+ haµν(z)dxµdxν , (3.23)

where xµ are adapted coordinates so that eµ = ∂µ, µ = 0, 1, and we have reinstated the rod labels.
This is a (D − 2)-dimensional smooth Lorentzian metric for z ∈ Ia. The condition for the absence of
a conical singularity in the spacetime at Ia (3.17) is

ca = 1 , (3.24)

which is sometimes referred to as the equilibrium or balance condition.
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For D = 5 one or both of the adjacent rods to Ia may be another axis rod (for D = 4 it must be
the case that any adjacent rod is a horizon rod). If Ia+1 is another axis rod then u = ∂/∂x1 = 0 at
z = za and the above metric will have a conical singularity at this endpoint unless

ha′(za)
2

ha00(za)
= −4c2

a , (3.25)

in which case the metric extends smoothly at this point. Note that we used ha′(za) = ha00(za)h
a
11
′(za)

to simplify the above expression which in turn comes from haµ1(za) = 0 and smoothness. Similarly, if
Ia−1 is an axis rod then u = ∂/∂x1 = 0 at z = za−1 and the above metric extends smoothly at this
endpoint iff

ha′(za−1)2

ha00(za−1)
= −4c2

a . (3.26)

Therefore, if Ia is a finite axis rod and provided these regularity conditions are met, the axis metric
extends to a smooth Lorentzian metric on R × Ca. The 2-cycle Ca is topologically S2, a 2-disc or
a 2-cylinder depending on if Ia−1, Ia are either both axis rods, one axis rod and one horizon, or both
horizon rods, respectively. In Appendix 3.B we analyse the geometry where two axis rods meet and
derive further relations that follow from the above regularity analysis. In particular, we find that for two
axis rods Ia and Ia+1 the function |z− za|e2ν̊ is continuous at z = za, a result that has been previously
proven in [144].

Horizons

The analysis of the metric near a horizon is very similar. Consider a component of the horizon, Ha,
with corresponding rod Ia (again, for simplicity of notation we will temporarily drop the labelling of
each rod). The Killing field null on the horizon is

ξ = k + Ωimi , (3.27)

where Ωi are the angular velocities of the black hole. Now, working in an adapted basis for the D − 2
commuting Killing fields, ẼA = (mi, ξ), the metric can be written as

g̃ =

(
γij − ρ2γ−1ωiωj γ−1ρ2ωi

γ−1ρ2ωj −γ−1ρ2

)
, (3.28)

where γij is an an invertible (D − 3) × (D − 3) positive definite matrix with determinant γ = det γij
(again the normalisation (3.2) is automatically imposed in this basis). A regular non-degenerate horizon
requires ωi, γij to be smooth functions of (ρ2, z) and

lim
ρ→0, z∈Ia

ρ2e2ν

|ξ|2
= − 1

κ2
, (3.29)

where κ 6= 0 is the surface gravity [54].
The analysis of the metric induced on the horizon proceeds in an essentially identical fashion to the

axis metric analysis above. The inverse metric in this adapted basis is

g̃−1 =

(
γij ωi

ωj −γρ−2 + ωiωi

)
(3.30)
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where γij is the inverse matrix of γij and ωi = γijωj. The requirement of a smooth horizon then implies
the limits (3.19) exist, which relative to the adapted basis are

˚̃U =

(
0 −2ωi
0 2

)
, ˚̃V =

(
(∂zγik)γ

kj −γγij∂z(γ−1ωj)
0 −(γ−1∂zγ)

)
. (3.31)

Then the second equation in (3.5) integrates to

e2ν̊ =
c̃2

γ
(3.32)

where c̃ > 0 is a constant and imposing the smoothness condition (3.29) gives

c̃ = κ−1 . (3.33)

We deduce that the metric induced on the horizon component Ha associated to the rod Ia is

g|Ha =
dz2

κ2
aγ(z)

+ γij(z)dφidφj , (3.34)

where we have reinstated the rod labels. This is a (D − 2)-dimensional smooth Riemannian metric for
z ∈ Ia (recall the axial Killing fields mi = ∂φi).

Given the metric on a horizon Ha, one can determine the surface gravity as follows. In general there
are conical singularities in the metric (3.34) at the endpoints z = za−1, za and demanding that they
are absent will fix κa. For D = 4 we have m = ∂φ vanishing at each endpoint so the condition for no
conical singularities is simply

κa =
2

γ′(za−1)
= − 2

γ′(za)
. (3.35)

In order to fix the sign we have used the fact that γ′(za−1) > 0 and γ′(za) < 0 (these follow from γ > 0
in the interior of Ia). Observe this gives two ways of calculating κa and hence in principle can provide a
non-trivial constraint on the parameters of the solution. For D = 5 the adjacent rods Ia−1 and Ia+1 are
axis rods with rod vectors va−1 and va+1. In particular va−1 = 0 at z = za−1 and va+1 = 0 at z = za,
so that the horizon metric has conical singularities at the endpoints of Ia. The horizon metric extends
to a smooth metric at these end points iff the surface gravity

κ2
a =

4

γ′(za−1)γ′ij(za−1)via−1v
j
a−1

=
4

γ′(za)γ′ij(za)v
i
a+1v

j
a+1

. (3.36)

Therefore, again, in principle this gives two independent expressions for κa and hence may provide a
constraint on the parameters of the solution. In Appendix 3.B we obtain further relations for the surface
gravity by studying the geometry near where an axis rod meets a horizon rod. Similarly to the analysis
of a corner between two axes described in the previous section, we find that if an axis rod and horizon
rod meet at z = za then |z − za|e2ν̊ is continuous at z = za.

Using (3.34) one can also compute the area of a cross-section of the horizon

A =

∫
Ha

κ−1
a dzdφ1 · · · dφD−3 =

(2π)D−3`a
κa

, (3.37)

a relation which has been previously derived [67].
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Standard basis

In order to compare the solutions on each rod it is useful to write them in a common basis of Killing
fields. For definiteness we will take a basis adapted to the semi-infinite rod IL, i.e. the standard basis
EA = (k,m1, . . . ,mD−3). We can relate the adapted bases ẼA associated to each rod Ia to the
standard basis by ẼA = (L−1

a ) B
A EB where La is a change of basis matrix. The metric g̃ in the adapted

basis ẼA, relative to the standard basis is thus

g = Lag̃L
T
a , (3.38)

where g̃ is given by (3.16) or (3.28) for an axis rod or horizon rod respectively.
If Ia is a horizon rod then ẼA = (mi, ξa) where ξa is the corotating Killing field (3.27) for the

component of the horizon Ha, so

La =

(
−Ωa

j 1
δij 0

)
. (3.39)

On the other hand, now suppose Ia is an axis rod. In 4d there is of course only one axial Killing field
and so there is only one type of axis rod and hence the transformation matrices La are the identity
matrix for all axis rods. In 5d we take the basis ẼA = (k, ua, va), where (ua, va) is a basis of U(1)2

Killing fields such that va is the rod vector, which gives

La =

(
1 0
0 A−1

a

)
, (3.40)

with Aa a GL(2,Z) matrix given by (3.15). In particular, in 5d the right semi-infinite rod IR has rod
vector vR = m1 and choosing uR = m2 gives

LR =

 1 0 0
0 0 1
0 1 0

 . (3.41)

It is worth noting that for any horizon and axis rods detLa = ±1. Therefore, using (3.38) we deduce
that the normalisation (3.2) is also obeyed in the standard basis.

3.2.3 Ernst potentials and gravitational fluxes

We will need to introduce the following Ernst potentials baµ associated to each axis rod Ia,

dbaµ = (−1)D−1?̃(e0 ∧ · · · ∧ eD−4 ∧ deµ) , (3.42)

where ẼA = (eµ, va) is the adapted basis defined above and we fix an orientation ε̃0···D−3ρz > 0.
Therefore ?̃ = (detLa)? where ? is the Hodge dual with respect to the standard orientation (defined
above) and La is the transformation matrix between the adapted basis and the standard basis. Closure
of the 1-form on the RHS of (3.42) follows by the vacuum Einstein equations and simple connectedness
ensures the potentials are globally defined. Explicitly, in Weyl coordinates we have

∂ρb
a
µ = ρg̃D−3Ag̃Aµ,z , ∂zb

a
µ = −ρg̃D−3Ag̃Aµ,ρ . (3.43)

From the explicit form of the metric in the adapted basis (3.16) it follows that near each axis rod Ia

∂zb
a
µ = 2wµ +O(ρ) , ∂ρb

a
µ = O(ρ) (3.44)
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as ρ→ 0.
The above Ernst potentials associated to each axis rod depend on the corresponding rod vector.

For D = 4 there is only one type of axis rod and the corresponding Ernst potential is simply

db = − ? (k ∧ dk) . (3.45)

For D = 5, there are many possible axis rods, although there are two rods which appear in any
asymptotically flat solution: the two semi-infinite axis rods IL and IR on which m2 = 0 and m1 = 0
respectively. The Ernst potentials (3.42) associated to IL and IR are

dbLµ = ?(k ∧m1 ∧ deLµ), eLµ = (k,m1) , (3.46)

dbRµ = − ? (k ∧m2 ∧ deRµ ), eRµ = (k,m2) . (3.47)

where the sign in the latter arises from the transformation (3.41) between the adapted basis and the
standard basis being orientation reversing, detLR = −1.

We will also need similar potentials associated to any horizon rod Ia. We define these analogously
to the Ernst potentials (3.42). Thus, given our adapted basis for a horizon rod ẼA = (mi, ξ), these
potentials are precisely the usual twist potentials (3.13) (observe our choice of orientation in these two
formulas is consistent). Therefore, similarly to the Ernst potentials, we find the twist potentials obey

∂ρχi = ρg̃0Ag̃Ai,z , ∂zχi = −ρg̃0Ag̃Ai,ρ (3.48)

and using (3.28) we find that near a horizon rod Ia

∂zχi = 2ωi +O(ρ) , ∂ρχi = O(ρ) (3.49)

as ρ→ 0.
As shown earlier, the change in twist potential over a horizon rod is related to the Komar angular

momenta of the horizon (3.12). Similarly, one can relate the change in the Ernst potentials (3.42)
across their associated axis rods Ia to certain gravitational fluxes. For D = 4 we can define the flux

G[Ia] = −
∫
Ia

?(k ∧ dk) (3.50)

for any finite axis rod. Since the integrand is closed by the vacuum Einstein equations these fluxes may
be evaluated over any curve homotopic to Ia. Clearly, from (3.45) we deduce

G[Ia] = b(za)− b(za−1), (3.51)

which gives a geometric interpretation to the change in Ernst potential over an axis rod.
Similarly, for D = 5, given any finite axis rod Ia we may define gravitational fluxes on the corre-

sponding 2-cycle Ca. Explicitly, for each 2-cycle Ca one can define a set of fluxes

Gµ[Ca] =
1

2π

∫
Ca

?̃(e0 ∧ deµ), (3.52)

where eµ = (k, ua), µ = 0, 1, is our adaped basis of Killing fields on Ca (recall ẼA = (k, ua, va) is the
adapted basis of Killing fields in the full spacetime). The integrand is closed by the vacuum Einstein
equations so one can evaluate these fluxes over any 2-surface homologous to Ca so it only depends
on the homology class [Ca]. Thus these fluxes define gravitational topological charges. Due to the
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invariance under the Killing fields these integrals can be reduced to ones over the corresponding axis
rods,2

Gµ[Ca] =

∫
Ia

?̃(e0 ∧ e1 ∧ deµ) = baµ(za)− baµ(za−1) , (3.53)

where we have used the definition of the Ernst potentials (3.42). Thus we see that the fluxes Gµ[Ca]
precisely correspond to the change in the Ernst potential baµ(z) over the associated axis rod Ia giving it
a geometric interpretation. A similar set of topological charges have appeared in recent identities that
relate the thermodynamic variables to the topology of solutions in this class [142].

Finally, it is worth noting that one can also relate the changes in Ernst potentials baµ(z) (3.42) over
a horizon rod Ia to the standard thermodynamic quantities. We give these expressions in Appendix 3.C.

3.3 Integrability of Einstein equations

3.3.1 Belinski-Zakharov spectral equations

As we saw in Chapter 1, vacuum gravity is an integrable theory. More concretely as shown by Belinski and
Zakharov (BZ), the Einstein equations (3.3) are the integrability conditions for the following auxiliary
linear system [64, 65],

DzΨ =
ρV − µU
µ2 + ρ2

Ψ, DρΨ =
ρU + µV

µ2 + ρ2
Ψ , (3.54)

where

Dz = ∂z −
2µ2

µ2 + ρ2
∂µ, Dρ = ∂ρ +

2µρ

µ2 + ρ2
∂µ (3.55)

are commuting differential operators, µ is a complex ‘spectral’ parameter and Ψ is an invertible (D −
2)× (D − 2) complex matrix function of (ρ, z, µ).

We will work with a slightly different version of the BZ linear system [145, 146, 36]. This is obtained
by a change of spectral parameter defined by the coordinate change (ρ, z, µ)→ (ρ, z, k) where

k = z +
µ2 − ρ2

2µ
, (3.56)

which in particular implies Dz → ∂z, Dρ → ∂ρ. This results in the linear system

∂zΨ =
ρV − µU
µ2 + ρ2

Ψ, ∂ρΨ =
ρU + µV

µ2 + ρ2
Ψ , (3.57)

where µ = µ(k) is defined implicitly by (3.56) and k is the new complex spectral parameter. We will
assume Ψ is a smooth function of (ρ, z) and meromorphic in k (in a suitable domain). Henceforth we
will work exclusively with this alternate form of the BZ linear system (3.57). It turns out to be more
useful for our purposes since, as (3.56) shows, the spectral parameter k is defined on a two-sheeted
Riemann surface.

Independently of (3.54), one can check directly from (3.57) that ∂z∂ρΨ = ∂ρ∂zΨ iff

∂ρ

(
V

ρ

)
− ∂z

(
U

ρ

)
− 1

ρ2
[U, V ] = 0 (3.58)

2Here we are using the identity
∫
Ca
?̃α = −2π

∫
Ia
?̃(ua ∧α), valid for any U(1)2-invariant 3-form α. This also shows

that
∫
Ca
?̃(e1 ∧ deµ) = 0 so that these quantities do not give rise to new charges.
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and

∂ρµ =
2ρµ

µ2 + ρ2
, ∂zµ = − 2µ2

µ2 + ρ2
(3.59)

and the Einstein equations (3.3) are satisfied. Equation (3.58) is in fact identically satisfied as it is the
integrability condition for the existence of a matrix g such that (3.4), whereas the general solution to
(3.59) is given by (3.56) where k is the integration constant. For some purposes it will be convenient
to write the linear system in the equivalent form

(ρ∂ρ − µ∂z)Ψ = UΨ, (µ∂ρ + ρ∂z)Ψ = VΨ. (3.60)

In particular, this form will be useful when evaluating on the boundary of the half-plane.
Although solving for Ψ in general is complicated, it is straightforward to solve for the general form

of det Ψ. Right multiplying (3.57) by Ψ−1 and taking the trace gives

∂ρ det Ψ =
2ρ det Ψ

µ2 + ρ2
, ∂z det Ψ = −2µ det Ψ

µ2 + ρ2
, (3.61)

where we have used Tr U = 2 and Tr V = 0. Comparing to (3.59) it follows that

det Ψ = µf(k), (3.62)

where f(k) is an arbitrary function of k (i.e independent for ρ, z).
As we will take k to be a complex parameter we need to take care to treat the implicitly defined

function µ in (3.56) properly. Locally, we may solve for µ to get

µ = k − z ±
√
ρ2 + (k − z)2 . (3.63)

Thus there are branch points at k = w and k = w̄ where w = z + iρ and so we take the branch cut
to be the finite line in the complex k-plane between these points. Hence we consider the linear system
(3.57) on the two sheeted Riemann surface Σw ⊂ C2 defined by

y2 = (k − w)(k − w̄) , (k, y) ∈ C2 . (3.64)

The square root function (3.63) is then defined by µ : Σw → C where

µ(k, y) = k − z + y (3.65)

We will denote y on the two sheets (i.e. the two square roots) by y±(k) and use k as a local coordinate
on each sheet. For definiteness we define y+ by having positive real part for Re (k − w) > 0. We also
define µ± = µ(k, y±) and note the useful identity µ+µ− = −ρ2.

We will also denote the corresponding Ψ on the two sheets by Ψ± and similarly for any other quantity
on Σw. Since Ψ± corresponds to Ψ evaluated on the two sheets of the same Riemann surface we must
require a continuity condition at the branch points:

Ψ+(ρ, z, k) = Ψ−(ρ, z, k) at k = z ± iρ . (3.66)

This condition will be important in our later analysis. Taking the determinant of this and comparing to
(3.62) shows that f+(k) = f−(k) (for Im k 6= 0, and by continuity, for all k except perhaps at isolated
points) and so we drop the subscript on this quantity.
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The spectral equations have an important involution symmetry which allow one to map solutions
on one Riemann sheet to the other. The matrices defined by

Ψ̃± = gΨT−1
∓ , (3.67)

where g is the metric associated to the Killing coordinates xA, obey the same equations as Ψ±, i.e.,

(ρ∂ρ − µ±∂z)Ψ̃± = UΨ̃±, (µ±∂ρ + ρ∂z)Ψ̃± = V Ψ̃± . (3.68)

It is easy to show that given two solutions Ψ± and Ψ̃∓ to the above equations their ‘difference’
B± = Ψ̃−1

± Ψ± must be independent of (ρ, z). Therefore, it follows from (3.67) that

Ψ± = gΨT−1
∓ B± , (3.69)

where B± = B±(k) are invertible matrices. It immediately follows from this that B± = BT
∓. Fur-

thermore, for ρ > 0 we can write (3.69) as B± = ΨT
∓g
−1Ψ± and evaluating this at the branch points

k = z ± iρ and using the continuity condition (3.66) shows that B±(k) is symmetric (for Im k 6= 0,
and by continuity, for all k except perhaps at isolated points). Putting all this together we deduce that
B+ = BT

− = B− so we may drop the subscript on B. Thus this symmetry may be simply written as

Ψ± = gΨT−1
∓ B (3.70)

where B = B(k) is an invertible symmetric matrix. Taking the determinant shows

detB(k) = f(k)2 . (3.71)

3.3.2 Spectral equations on semi-circle at infinity

We will consider asymptotically flat spacetimes in four and five dimensions. In both cases the asymptotic
region corresponds to the semi-circle at infinity in the half-plane (3.6). Thus it is convenient to introduce
polar coordinates (r, θ) on the half-plane where

ρ = r sin θ, z = r cos θ (3.72)

and 0 ≤ θ ≤ π. In terms of the complex coordinate w = z + iρ we have w = reiθ. The semi-circle at
infinity then simply corresponds to r →∞. More precisely, we introduce the contour Cr = {reiθ : 0 ≤
θ ≤ π} in the half-plane with anticlockwise orientation and consider large r.

Now, fix a sheet of Σw with local coordinate k and consider traversing Cr starting at θ = 0. The
branch points w, w̄ trace out corresponding semi-circles in the upper and lower half of the complex
k-plane with a moving branch cut between the upper and lower semi-circle. Any fixed value of k on
the sheet must pass through the moving branch cut as we traverse Cr for large enough r (i.e. r > |k|).
This occurs at an angle given by Re(k − w) = 0, i.e.

cos θ∗ =
Re(k)

r
=⇒ θ∗ =

π

2
− Re(k)

r
+O(r−3) . (3.73)

Now, passing through the branch cut corresponds to changing sheet of Σw. Therefore, in effect,
traversing Cr imposes a change of sheet as we pass through θ = θ∗. In particular, given a solution to
the linear system Ψ±(r, θ, k) on the two sheets, this implies the following continuity conditions on the
semi-circle at infinity

lim
ε→0+

Ψ±(r, θ∗ − ε, k) = lim
ε→0+

Ψ∓(r, θ∗ + ε, k) . (3.74)
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Notice this provides a relation between the Ψ+ and Ψ− fields at infinity.
The above considerations also affect the asymptotic expansion of quantities defined on each sheet

along infinity. For instance, consider µ+ on the + sheet. Traversing Cr from θ = 0, it is easy to see
that the branch cut approaches a fixed k from the right (where y+(k) has negative real part) so

µ+(r, θ, k) = (k − r)(1 + cos θ) +O(r−1) 0 ≤ θ < θ∗ , (3.75)

whereas traversing Cr from θ = π, the branch cut approaches k from the left so

µ+(r, θ, k) = (k + r)(1− cos θ) +O(r−1) θ∗ < θ ≤ π . (3.76)

A similar argument for µ− shows that

µ−(r, θ, k) =

{
(k + r)(1− cos θ) +O(r−1) 0 ≤ θ < θ∗
(k − r)(1 + cos θ) +O(r−1) θ∗ < θ ≤ π

. (3.77)

Observe that the continuity conditions limε→0+ µ±(r, θ∗ − ε, k) = limε→0+ µ∓(r, θ∗ + ε, k) are indeed
satisfied.

It is convenient to write our linear system (3.57) in polar coordinates, which gives,

∂rΨ = YrΨ, Yr =
r sin2 θS − µT
µ2 + r2 sin2 θ

(3.78)

∂θΨ = YθΨ , Yθ =
r sin θ(µS + rT )

µ2 + r2 sin2 θ
(3.79)

where S = r∂rgg
−1 and T = sin θ∂θgg

−1. We now consider the solution to the spectral equations in
the limit r →∞.

The explicit solution depends on the dimension, although it has some common features which will be
key in our analysis. Let ḡ denote the Minkowski metric and Ψ̄ a corresponding solution to the spectral
equation (3.79). Now define the ‘difference’,

∆ = Ψ̄−1Ψ , (3.80)

between a Minkowski solution Ψ̄ and a solution Ψ to (3.79) for any asymptotically flat metric g. Then,
it easily follows that

(∂r∆)∆−1 = Υr, Υr ≡ Ψ̄−1(Yr − Ȳr)Ψ̄,
(∂θ∆)∆−1 = Υθ , Υθ ≡ Ψ̄−1(Yθ − Ȳθ)Ψ̄ . (3.81)

The matrices Υ depend on the explicit solution in Minkowski spacetime and the definition of asymptotic
flatness, which for D = 4, 5 will be given later. All that we need at this stage is that for both dimensions,
all matrix entries of Υr and Υθ are O(r−2) and O(r−1) respectively, as r →∞. Thus, asymptotically, ∆
must be only a function of k. In other words, the solution to the spectral equation for an asymptotically
flat spacetime is asymptotic to that for Minkowski spacetime, as one would expect.

More precisely, consider the solution on the + sheet of Σw

Ψ+ = Ψ̄+∆+ . (3.82)

From the above it follows that

∆+ =

{
NR(k) +O(r−1) 0 ≤ θ < θ∗
NL(k) +O(r−1) θ∗ < θ ≤ π

, (3.83)
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where NR,L(k) are invertible matrices and R,L denote the right and left segment (these in general are
different since Υr+,Υθ+ are discontinuous on Cr at θ = θ∗). Using the involution symmetry (3.70) we
find that

Ψ− = gΨ̄T−1
+ ∆T−1

+ B , (3.84)

where B = B(k) is the matrix used in (3.70). Hence imposing the continuity conditions (3.74) we
deduce that

C ≡ NT−1
R (k)B(k)NL(k)−1 (3.85)

= lim
r→∞

Ψ̄T
+(r, θ−∗ , k)g(r, θ∗)

−1Ψ̄+(r, θ+
∗ , k) . (3.86)

The relation (3.86) allows one to compute C given the asymptotics of the Minkowski solution. It
is worth remarking that although (3.74) consists of two continuity equations, the fact that B is a
symmetric matrix (3.70) ensures that they are equivalent.

There is a certain freedom in the choice of Ψ̄+ corresponding to right-multiplication by a matrix
function of k. Since the asymptotic expansion (3.76) for µ+ to leading order is independent of k, we
may choose Ψ̄+(r, θ, k) such that as r →∞ the leading term in each entry is independent of k. Making
this choice, one then expects from (3.86) that C is independent of k and hence is a constant matrix
(we will confirm this explicitly later).

3.3.3 General solution on the axes and horizons

We will now show that the linear system simplifies when evaluated on the boundary of the half-plane.
Recall that smoothness of the axes and horizons requires the metric must be a smooth function of
(ρ2, z). Therefore we may assume Ψ is a smooth function of (ρ2, z).

First we make a few general remarks. In order to evaluate limits to the boundary we will need the
following useful relations

µ+ ∼ 2(k − z), µ− ∼ −
ρ2

2(k − z)
(3.87)

as ρ→ 0. Thus taking the limit of the determinant det Ψ± and using (3.62) shows that Ψ+ is generically
a nonsingular matrix on the boundary whereas Ψ− is singular. Therefore we will only consider Ψ+ and
use (3.70) to deduce Ψ−.

We are now in a position to evaluate the limit of the linear system (3.60) for Ψ+ as ρ → 0. It is
easy to see this system reduces to an ODE

(z − k)∂zΨ̊ = 1
2
ŮΨ̊, (3.88)

where we define Ψ̊(z, k) = limρ→0 Ψ+(ρ, z, k) and the second equation vanishes identically due to our
assumption that Ψ+ is a smooth function of ρ2. We will explicitly solve the linear system along the
boundary ρ = 0.

First consider an axis rod Ia. In the corresponding adapted basis the metric is given by (3.16). The
general solution to the linear system (3.88) on Ia in this basis can be written as

X̃a(z, k)M̃a(k), X̃a(z, k) =

(
−δ ν

µ baµ(z)
0 2(k − z)

)
, z ∈ Ia (3.89)

where we have used (3.20, 3.44) and M̃a(k) is an arbitrary integration matrix. The particular solution
X̃a(z, k) satisfies

∂zX̃a = −˚̃Ua. (3.90)
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We note there is a lot of freedom in the choice of particular solution X̃a(z, k). In particular, the
integration constant for the Ernst potential baµ(z) may be set to any value we like by right multiplying
the particular solution by a constant upper triangular matrix with unit diagonals (which can then be
absorbed into a redefinition of M̃a(k)). For convenience we will choose the potentials to vanish at the
lower endpoint of the finite rods

baµ(za−1) = 0 (3.91)

for a = 2, . . . , n and
lim

z→−∞
bLµ(z) = 0 , lim

z→∞
bRµ (z) = 0 . (3.92)

The latter are consistent with the asymptotics bLµ → 0 and bRµ → 0 at infinity (even off axis).
In order to compare the solutions on each rod we will write them all relative to the standard

basis. The metric near each axis rod Ia relative to the standard basis is given by (3.38), which implies
U = LaŨL

−1
a . Hence, from (3.89), we deduce that the general solution to the linear system (3.88) on

an axis rod Ia relative to the standard basis takes the form

Ψ̊a(z, k) = Xa(z, k)Ma(k) , z ∈ Ia , (3.93)

where

Xa(z, k) = La

(
−δ ν

µ baµ(z)
0 2(k − z)

)
L−1
a (3.94)

and Ma(k) are arbitrary matrices. It is also worth recording that the metric on Ia relative to the
standard basis (3.38) is simply

g̊(z) = La

(
haµν(z) 0

0 0

)
LTa . (3.95)

Recall that in these formulas, if D = 4 the matrix La is the identity matrix, whereas if D = 5 it is given
by (3.40).

Now consider a horizon rod Ia. An entirely analogous derivation of the solution can be given in this
case using (3.31, 3.49). Thus we find the general solution to the linear system (3.88) on a horizon rod
Ia relative to the standard basis can be again written as (3.93) where

Xa(z, k) = La

(
−δ j

i χai (z)
0 2(k − z)

)
L−1
a (3.96)

and χai (z) = χi(z)− χi(za−1) (which corresponds to a choice of integration constant), the matrix La
is given by (3.39) and Ma(k) are arbitrary matrices. The metric on Ia relative to the standard basis
(3.38) is simply

g̊(z) = La

(
γij(z) 0

0 0

)
LTa . (3.97)

We now have the general solution to the linear system on all components of the boundary ρ = 0.
Before moving on it is worth noting that for both axis and horizon rods we have

detXa(z, k) = 2(−1)D−3(k − z) (3.98)

and combining this with (3.62) implies

detMa(k) = (−1)D−3f(k) , (3.99)

for all a = 1, . . . , n+ 1.
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Clearly we must impose continuity of Ψ̊(z, k) at z = za for a = 1, . . . , n, where adjacent rods Ia
and Ia+1 touch, i.e.,

Ψ̊a(za, k) = Ψ̊a+1(za, k) . (3.100)

Upon using the general solution this gives

Ma(k) = Pa(k)Ma+1(k) (3.101)

where we have introduced the matrices

Pa(k) = Xa(za, k)−1Xa+1(za, k) , (3.102)

for each a = 1, . . . , n. Observe that from (3.98) it follows that detPa(k) = 1 automatically. Iterating
we find

Ma(k) = Qa(k)MR(k), (3.103)

Qa(k) ≡ Pa(k)Pa+1(k) · · ·Pn(k) (3.104)

for a = 1, . . . , n+ 1 with Qn+1(k) understood as the (D− 2)-dimensional identity matrix. In particular

ML(k) = Q1(k)MR(k) . (3.105)

Note the fact Pa(k) is unit determinant implies detQa(k) = 1 automatically.
We may now match the solution on the semi-infinite axis rods to the solution for an asymptotically

flat spacetime near infinity (3.82) and (3.83). Firstly, the solutions for Minkowski spacetime on the
semi-infinite axes can be deduced from the above by setting bL,Rµ (z) = 0. A convenient choice, such
that these solutions are independent of k to leading order as |z| → ∞, is

˚̄ΨL(z, k) =

(
−δ ν

µ 0
0 2(k − z)

)
, ˚̄ΨR(z, k) = LR

(
−δ ν

µ 0
0 2(k − z)

)
L−1
R . (3.106)

Thus from (3.82) we get

∆̊+L = ML(k) +O(z−1), ∆̊+R = MR(k) +O(z−1) , (3.107)

where we have used (3.92) and further assumed the asympotic expansion for bL,Rµ (z) = O(z−1) (this
follows from the definition of asymptotic flatness as we will see later). Therefore, comparing to (3.83)
we deduce that

NR(k) = MR(k) , NL(k) = ML(k) . (3.108)

We may use this to eliminate the matrices NL/R in favour of ML/R and thus from (3.85) we obtain

MLB
−1MT

R = C−1 . (3.109)

Recall that the choice of asymptotic solutions corresponds to a choice of matrix C (3.86). Later we will
see that our choice (3.106) fixes C to be a dimension dependent constant matrix. In any case, taking
the determinant of (3.109) and using (3.71) and (3.99) implies

detC = 1 (3.110)

independently of the dimension.
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Using the invertible symmetric matrix B = B(k) and the matrices Ma = Ma(k) associated to each
rod Ia, we now introduce an important set of symmetric matrices

Fa(k) = −Ma(k)B(k)−1Ma(k)T (3.111)

for each rod Ia. The definition of Fa can be rewritten using (3.103), (3.105) and (3.109) to give

Fa = −QaQ
−1
1 C−1QT

a (3.112)

or more explicitly in terms of Pa(k) to give

FL = −C−1P T
n · · ·P T

1 ,

Fa = −P−1
a−1 · · ·P−1

1 C−1P T
n · · ·P T

a ,

FR = −P−1
n · · ·P−1

1 C−1,

(3.113)

where a runs from 2 to n. In general the determinant of Fa is

detFa(k) = (−1)D−2 (3.114)

as a consequence of Qa(k) being unit determinant and (3.110).
We are now ready to state the main result of this section.

Proposition 1. The metric data on each rod satisfies the algebraic equation

g̊(z) = Xa(z, z)Fa(z) , z ∈ Ia (3.115)

where Fa(z) is given by (3.111), whereas g̊(z) and Xa(z, z) are given by (3.95), (3.94) for an axis rod
and (3.97), (3.96) for a horizon rod.

Proof. We impose continuity at the branch points (3.66) on the axis ρ = 0:

lim
k→z

Ψ+(0, z, k) = lim
k→z

Ψ−(0, z, k) . (3.116)

Using (3.70) to write Ψ− in terms of Ψ+, the continuity condition (3.116) reads

Ψ̊(z, z) = lim
k→z

g̊(z)Ψ̊(z, k)T−1B(k) . (3.117)

Evaluating on each rod and using the general solution (3.93), equation (3.111) and the elementary
identity g̊(z)Xa(z, k)T−1 = −g̊(z), gives (3.115) as claimed.

We emphasise that, crucially, equation (3.115) does not depend on the arbitrary matrices Ma(k) and
hence provides a constraint on the spacetime geometry. In fact, (3.115) fully determines the functional
form of the metric on each rod Ia. Indeed, both g̊(z) and Xa(z, z) for z ∈ Ia are rank-(D − 3) so
(3.115) gives 1

2
(D−3)(D−2)+D−3 algebraic equations for the 1

2
(D−3)(D−2)+D−3 unknowns,

either (haµν(z), baµ(z)) or (γij(z), χi(z)) (depending on if Ia is an axis or horizon rod).
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3.3.4 Classification theorem

The explicit solution for the metric on each axis rod is summarised by the following theorem which is
the main result of this chapter.

Theorem 8. Consider a D = 4 or 5-dimensional vacuum spacetime as in Theorem 3.

1. The general solution (haµν(z), baµ(z)) on any axis rod Ia is

haµν(z) = −F̃aµν(z) +
F̃aµN(z)F̃aNν(z)

F̃aNN(z)
, baµ(z) =

F̃aµN(z)

F̃aNN(z)
, (3.118)

where µ = 0, . . . , D − 4 and N = D − 3 and the matrices F̃a(k) are defined by

Fa(k) = La

(
F̃aµν(k) F̃aµN(k)

F̃aNν(k) F̃aNN(k)

)
LTa . (3.119)

In particular, this implies

dethaµν(z) = − 1

F̃aNN(z)
. (3.120)

2. The general solution (γij(z), χai (z)) on any horizon rod Ia is

γij(z) = −F̃aij(z) +
F̃ai0(z)F̃a0j(z)

F̃a00(z)
, χai (z) =

F̃ai0(z)

F̃a00(z)
, (3.121)

where i = 1, . . . , D − 3 and F̃a(k) is defined by

Fa(k) = La

(
F̃aij(k) F̃ai0(k)

F̃a0j(k) F̃a00(k)

)
LTa . (3.122)

In particular,

det γij(z) = − 1

F̃a00(z)
. (3.123)

In both cases Fa(k) are the matrices defined by (3.113). The solution depends on the ‘moduli’

{bLµ(z1), bRµ (zn)} ∪ {(`a, va, baµ(za)|Ia6=L,R ⊂ Â} ∪ {(`a,Ωa
i , χ

a
i (za)|Ia ⊂ Ĥ}, (3.124)

where Â and Ĥ are the union of axis and horizon rods respectively.

Proof. First consider an axis rod Ia and let us write Fa(k) as (3.119). Then, using (3.95) and (3.94)
reveals that (3.115) is equivalent to haµν = −F̃aµν + baµF̃aNν and F̃aµN = FaNNb

a
µ. We can solve this

for baµ = F̃aµN/F̃aNN , since F̃aNN 6= 0 for any z ∈ Ia; to see this latter condition simply note that if

F̃aNN = 0 then F̃aµN = 0 which contradicts the fact Fa(k) must be unimodular (3.114). Thus we find
the unique solution on an axis rod Ia is (3.118). Then, recalling that detLa = ±1 for any rod, (3.114)
implies that (3.120). A completely analogous analysis holds for any horizon rod Ia.

The matrices Fa(k) are written in terms of the matrices Pa(k) which in turn are defined by (3.102).
From the explicit form for Xa(z, k) on each axis rod (3.94) or horizon rod (3.96), it is clear that the
set of matrices Pa(k) depend on the parameters za, va, b

a
µ(za), b

R
µ (zn), χai (za),Ω

a
i . However, due to the

translation freedom in the choice of origin of the z-axis the solution can only depend on the constants
za via the rod lengths `a = za − za−1 and therefore the solution depends on (3.124).
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Remarks.

1. Alternate forms of the general solution can be obtained by replacing Fa(k) with Fa(k)T for some
a ∈ {1, . . . , n+ 1}, although of course these are all equivalent since the Fa(k) are symmetric.

2. The horizon moduli χai (za) are (up to a constant) the horizon angular momenta Jai (3.12). We
will recover this result from an asymptotic analysis of the general solution later. On the other
hand, the axis moduli baµ(za) are equal to the gravitational fluxes (3.51) and (3.53).

3. From the explicit form of the matrices (3.113), (3.102), (3.94), (3.96) it is easy to see that the
metric components and potentials on each rod are rational functions of z.

3.3.5 Moduli space of solutions

In order to complete this classification result one needs to develop a full understanding of the moduli
space of unbalanced solutions. Note that in general, regularity of the axes would impose further
constraints on the moduli from the conditions for the removal of conical singularities (3.24), (3.25),
(3.26), (3.35), (3.36) (see also Appendix 3.B).

We split the discussion into two parts, first talking about the equations and then the inequalities
that govern the moduli space.

Equation constraints:

There are a number of relations that arise from consistency conditions that the solution derived in
Theorem 8 should satisfy. Since the general solution for the Ernst and twist potentials {baµ(z), χai (z)}
on the finite rods (3.118), (3.121) depends on {baµ(za), χ

a
i (za)}, there are potential constraints from the

relations: baµ(z)|z→za−1 = 0 (recall (3.91)) and baµ(z)|z→za = baµ(za) and the corresponding constraints
for horizon rods. In total these amount to 2(D − 3)(n − 1) conditions, (D − 3)(n − 1) of which are
automatically satisfied by our solution as the following shows (note we are not using the symmetry of
the Fa(k) matrices here).

Proposition 2. For the general solution (3.118), (3.121), the following identities are satisfied for generic
values of the moduli :

lim
z→za−1

baµ(z) = 0, (3.125)

lim
z→za−1

χai (z) = 0, (3.126)

if Ia is a finite axis rod or horizon rod respectively.
On the other hand, for the general solution with Fa(k) replaced by Fa(k)T the following identities

are satisfied for generic values of the moduli:

lim
z→za

baµ(z) = baµ(za), (3.127)

lim
z→za

χai (z) = χai (za), (3.128)

if Ia is a finite axis rod or horizon rod respectively.
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Proof. First, using (3.113), we can write Fa(k) = Xa(za−1, k)−1Ga(k), where Ga(k) is a matrix with
a finite limit as k → za−1, for a = 2, . . . , n. Then, if Ia is an axis rod, from (3.94) we get

F̃a(k) =

(
−δ ν

µ 0
0 1

2(k−za−1)

)
G̃a(k), (3.129)

where F̃a(k) is defined in Theorem 8, and Ga ≡ LaG̃aL
T
a is defined similarly. Using (3.118) implies the

solution

baµ(z) = −2(z − za−1)G̃aµN(z)

G̃aNN(z)
. (3.130)

Therefore, if limk→za−1 G̃aNN(k) 6= 0 for generic parameter values, the claim (3.125) follows. This is
proved in Appendix 3.D. The analysis for a horizon rod is essentially identical.

Next, we can write Fa(k)T = Xa(za, k)−1Ha(k), where Ha(k) is a matrix with a finite limit as
k → za. Using (3.94) we find

F̃a(k)T =

(
−δ ν

µ
baµ(za)

2(k−za)

0 1
2(k−za)

)
H̃a(k), (3.131)

where Ha ≡ LaH̃aL
T
a . Therefore the general solution (3.118) with Fa(k) replaced with Fa(k)T gives

baµ(z) = baµ(za)−
2(z − za)H̃aµN(z)

H̃aNN(z)
, (3.132)

which implies (3.127), since limk→za H̃aNN(k) 6= 0 for generic parameter values (again, see Appendix
3.D). The analysis for a horizon rod is completely analogous.

Remarks.

1. Conversely, for the general solution the conditions (3.127) and (3.128) generically provide non-
trivial constraints on the moduli (3.124). Similarly, for the solution with Fa(k) replaced by Fa(k)T ,
the conditions (3.125) and (3.126) generically give non-trivial constraints. Thus, in either case
these consistency relations on the finite rods generically provide (D − 3)(n − 1) constraints on
the moduli (3.124).

2. There are analogous relations that are satisfied automatically on the semi-infinite rods, i.e. for
the solution (3.118) using FR on IR and F T

L (rather than FL) on IL one finds that

lim
z→zn

bRµ (z) = bRµ (zn) , lim
z→z1

bLµ(z) = bLµ(z1) . (3.133)

3. An interesting consequence of this Proposition is that if we now use the fact that the Fa matrices
are symmetric, then both sets of consistency conditions (3.125, 3.126) and (3.127, 3.128) are
satisfied and thus provide no further constraint on the moduli.

There are also consistency conditions on the solution from Theorem 8 on the semi-infinite rods
as one approaches infinity. The most basic of these are simply that bL(z) and bR(z) go to zero as
|z| → ∞ as they should by definition (3.92). One additionally wishes to impose that the solution is
asymptotically flat, as has been assumed. We will consider these conditions in more detail in the next
two sections when we specialise to the D = 4 and D = 5 cases.
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Inequality constraints:

For an axis rod Ia, we can combine the relation for dethaµν in terms of Fa (3.120) and the fact that
haµν(z) is a smooth Lorentzian metric on Ia to give

F̃aNN(z) > 0 , z ∈ Ia . (3.134)

Similarly for a horizon rod Ia, using the formula for det γij in terms of Fa (3.123) and the fact that γij
must be a smooth positive definite metric on Ia we have

F̃a00(z) < 0 , z ∈ Ia . (3.135)

In addition to these signature conditions there are a couple of constraints implicit in the use of rod
structures. These are the fact that the rod lengths are positive for each finite rod

`a > 0, Ia6=L,R (3.136)

and the fact
detha(z) = 0, z ∈ ∂Ia, det γ(z) = 0, z ∈ ∂Ĥ. (3.137)

This latter condition is simply a consequence of neighbouring rods having independent rod vectors. In
fact combining this condition with the solutions for these determinants (3.120), (3.123) and using the
fact that the F matrices are rational functions (ultimately a consequence of the form of Xa (3.94)),
it follows that F̃aNN and F̃a00 have simple poles at the endpoints of their respective rods. Then the
signature conditions imply that

r−a := resk=za−1F̃a22(k) > 0, r+
a := resk=zaF̃a22(k) < 0, (3.138)

for axis rods, and

r−a := resk=za−1F̃a00(k) < 0, r+
a := resk=zaF̃a00(k) > 0, (3.139)

for horizon rods. These residue conditions will be useful in particular in the analysis of the black lens in
the next chapter.

Counting arguments:

We are now ready to consider the moduli space of solutions with n+ 1 rods and h horizons (thus there
are n − 1 − h finite axis rods) that are potentially singular on the axis. The general solution on the
z-axis we have found depends on a number of moduli (3.124): the rod structure, the change in Ernst
and twist potentials across each axis and horizon rod, and the horizon angular velocities. Thus, the
number of continuous parameters is given by n − 1 + (n + 1 + h)(D − 3). On the other hand, from
the uniqueness and existence Theorems 3 and 4 we know that the solutions can be specified by the rod
structure and the change in twist potentials across each horizon rod (recall by (3.12) these are equal to
the horizon angular momenta {Jai }), which consists of n−1 + (D−3)h parameters (see (1.19)). Thus
we expect (D − 3)(n + 1) independent relations on the moduli (3.124); these may be thought of as
determining {Ωa

i , b
a
µ(za), b

L
µ(z1), bRµ (zn)} in terms of the fundamental moduli {`a, va, χai (za)} (although

in practice these may not be the best parameters to express the solution with).
We find that these (D − 3)(n + 1) constraints can be exactly accounted for by combining the

non-trivial conditions on the Ernst/twist potentials at rod points (there are (D− 3)(n− 1) of these as
argued in Remark 1 under Proposition 2) with the 2(D − 3) asymptotic conditions on bL, bR (3.92).
This observation motivates the following conjecture:
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Conjecture 1. Consider a solution as in Theorem 8 (3.118), (3.121) with Fa(k) replaced by Fa(k)T

for a = 1, . . . , n and satisfying the moduli space inequalities above (3.134), (3.135), (3.136), (3.138),
(3.139). Then using the consistency conditions on the Ernst and twist potentials (3.125), (3.126) and
(3.92) one recovers the unique unbalanced solution described in Theorem 4.

Remarks.

1. Here we use an alternate form of the solution in Theorem 8 with Fa being replaced by its transpose
for all rods except IR. This is motivated by Remark 2 under Proposition 2 which ensures that the
non-trivial consistency conditions on bL and bR are both from the conditions at infinity (3.92).
The choice of Fa or its transpose on finite rods is unimportant.

2. This conjecture holds for the simplest D = 4, 5 rod structures we consider i.e. those of flat space,
the Kerr solution and the Myers-Perry solution. For the black ring and black lens rod structures
in D = 5 that we consider in the next chapter we do not verify this conjecture since we do not
fully analyse the space of unbalanced solutions in these cases.

3. Consider the special case where all the continuous moduli (3.124) are set to zero, except for the
rod lengths `a. Also, for D = 5, suppose that any finite axis rods have rod vectors vL or vR.
Then it is straightforward to see that ba and χa are automatically zero since the Fa matrices are
diagonal (the matrix C turns out to be diagonal for D = 4, 5, see (3.151, 3.179)). This satisfies
the consistency conditions and we indeed have the unique unbalanced solution corresponding to
this setup, a member of the class of (generalised) Weyl solutions. These are normally characterised
by the requirement that the D− 2 commuting Killing fields are hypersurface-orthogonal [53] (so
all Ernst/twist potentials must be constants which can be fixed to zero).

In light of this conjecture we will slightly abuse language in the succeeding sections in referring to
the consistency conditions along with the various inequalities as the moduli space equations.

3.4 Four dimensions

3.4.1 General solution and physical parameters

In four spacetime dimensions the general solution on each components of the axis and horizon simplifies.
It is therefore worth recording some of the key formulas and the solution again in this case. The main
simplification arises because there is only one axial Killing field and hence the rod vector which vanishes
on any axis rod is always m = ∂φ (this of course includes the semi-infinite rods IL and IR).

Near any axis rod Ia, the metric (3.16) relative to the standard basis (k,m) is simply

g =

(
h− h−1ρ2w2 ρ2h−1w
h−1ρ2w −h−1ρ2

)
, (3.140)

where h < 0. The general solution to the linear system (3.88) on the each axis rod can be written as
(3.93) where

Xa(z, k) =

(
−1 ba(z)
0 2(k − z)

)
(3.141)

and ba(z) = b(z) − b(za−1) for a = 2, . . . , n, bL(z) = bR(z) = b(z), and b(z) is the Ernst potential
(3.45) fixed by imposing that b→ 0 at infinity.
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On the other hand, near a horizon rod Ia the metric (3.28) relative to the standard basis is

g = La

(
γ − γ−1ρ2ω2 ρ2γ−1ω
γ−1ρ2ω −γ−1ρ2

)
LTa , (3.142)

where γ > 0 and

La =

(
−Ωa 1

1 0

)
. (3.143)

The general solution to the linear system on Ia is (3.93) where

Xa(z, k) = La

(
−1 χa(z)
0 2(k − z)

)
L−1
a (3.144)

and χa(z) = χ(z)− χ(za−1) is the twist potential defined by (3.13).
We now consider the general solution with rods Ia=1,...,n+1. This is given by Theorem 8 in terms

of the matrices Fa(k). In turn, the matrices Fa(k) are constructed from the matrices Pa(k) and a
constant matrix C arising from the solution to the linear system at infinity using (3.113). To fix C we
need to explicitly compute asymptotic solutions to the linear system (3.82), (3.83) which match on to
the axis solution (3.106), (3.107). Then, from the definition (3.102) for matrices Pa(k), we deduce that
the general solution on the axis and horizons depends only on the following constants: the rod lengths
`a = za − za−1, the angular velocity of each horizon Ωa, the jump in Ernst potentials b(za) − b(za−1)
over each axis rod and jump in twist potentials χ(za)− χ(za−1) over each horizon rod.

We now turn to the computation of the constant matrix C. Firstly, Minkowski spacetime in polar
coordinates (3.72) is given by

ḡ = diag(−1, r2 sin2 θ), ν̄ = 0 , (3.145)

which implies S̄ = diag(0, 2) and T̄ = diag(0, 2 cos θ), where S, T are defined in (3.79). The general
solution to (3.79) in Minkowski space, which agrees with the axis solution (3.106), is

Ψ̄+ = diag(−1, µ+) . (3.146)

Thus, using the asymptotic expansion for µ+ in polar coordinates, given in Section 3.3.2, we find that

Ψ̄+(r, θ, k) =

{
diag (−1, −r(1 + cos θ) +O(1)) 0 ≤ θ < θ∗
diag (−1, r(1− cos θ) +O(1)) θ∗ < θ ≤ π

(3.147)

as r →∞.
More generally, any four-dimensional asymptotically flat spacetimes in polar coordinates (3.72) must

take the form

g =

(
−1 + 2M

r
+O(r−2) −2J sin2 θ

r
(1 +O(r−1))

−2J sin2 θ
r

(1 +O(r−1)) r2 sin2 θ(1 +O(r−1))

)
, (3.148)

as r →∞, where M,J are the ADM mass and angular momentum. It follows that the corresponding
matrices S, T in the linear system (3.79) are now given by

S − S̄ =

(
O(r−1) O(r−3)
O(r−1) O(r−1)

)
, T − T̄ =

(
O(r−2) O(r−3)
O(r−2) O(r−1)

)
, (3.149)

which together with (3.147) imply that the RHS of equations (3.81) are

Υr+ =

(
O(r−2) O(r−3)
O(r−3) O(r−2)

)
, Υθ+ =

(
O(r−1) O(r−2)
O(r−2) O(r−1)

)
(3.150)
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for all 0 ≤ θ ≤ π. This justifies the claim (3.83). Thus we may compute C from (3.86) using (3.147),
which gives

C = −I2 . (3.151)

As a simple example, consider the rod structure of Minkowski spacetime, which is given by a single
rod consisting of the whole z-axis. Thus the right and left semi-infinite axes are identified IL = IR and
there are no continuity conditions to be imposed. Then combining (3.109) with (3.117) gives

g̊(z) = X(z, z) (3.152)

which using (3.141) is equivalent to

h(z) = −1, b(z) = 0 . (3.153)

This is indeed the data for Minkowski spacetime (3.145). In itself this a non-trivial result: it shows
that any asymptotically flat stationary and axisymmetric vacuum solution with the same rod structure
as Minkowski spacetime is isometric to Minkowski spacetime on the axis. This of course follows from
the well known no-soliton theorems.

Given a solution (h(z), b(z)) on IL or IR we can compute the mass and angular momentum.
Comparing to (3.148) we find as |z| → ∞

h(z) = −1 +
2M

|z|
+O(z−2) , b(z) = −sign(z)2J

z2
+O(z−3) (3.154)

where b(z) is determined using (3.44) and we have fixed the integration constant so that it vanishes at
infinity.

Finally, given the solution on a horizon rod, the surface gravity can be computed from (3.35), which
in principle may impose a non-trivial constraint on the parameters.

3.4.2 Asymptotics of general solution

We now confirm our general solution (3.118) is asymptotically flat and compute the asymptotic charges.
In particular, the metric and Ernst potential on IL are given by the components of FL(k) = Q1(k)T .

It is convenient to first write Q1 in the form

Q1(k) = XL(z1, k)−1R(k)XR(zn, k), (3.155)

where we have defined

R(k) = R2(k) . . . Rn(k), (3.156)

Ra(k) = Xa(za−1, k)Xa(za, k)−1 (3.157)

for a = 2, . . . , n. Using this we can write FL as

FL(k) =

(
R 0

0 (k)− R 0
1 (k)b(z1)

2(k−z1)
− R 0

1 (k)

2(k−z1)

F̃L10(k)
R 0

1 (k)b(zn)+2(k−zn)R 1
1 (k)

2(k−z1)

)
, (3.158)

F̃L10(k) = 2(k − zn)

(
−R 1

0 (k) +
R 1

1 (k)b(z1)

2(k − z1)

)
− b(zn)

(
R 0

0 (k)− R 0
1 (k)b(z1)

2(k − z1)

)
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and R B
A (k) denote the components of the matrix (3.156) in the standard basis. Hence using (3.118)

we find that the solution on IL is

h(z) = − 2(z − z1)

R 0
1 (z)b(zn) + 2(z − zn)R 1

1 (z)
, (3.159)

b(z) = − R 0
1 (z)

R 0
1 (z)b(zn) + 2(z − zn)R 1

1 (z)
, (3.160)

where we have used the fact that h(z) = −F̃L11(z)−1 (using (3.120) in the D = 4 case). We may now
compute the asymptotics of the solution as z → −∞. To do this we first write Ra (a = 2, . . . , n) in
the following convenient form

Ra(k) = ID−2 +
Sa

k − za
, (3.161)

Sa ≡ La

(
0 −1

2
baµ(za)

0 `a

)
L−1
a , (3.162)

where we have used our solution for Xa (3.94). Combining this with the definition of R(k) (3.156), we
can look at the asymptotic expansion around k →∞ to find

R(k) = ID−2 +
S

k
+O(k−2), S =

n∑
a=2

Sa . (3.163)

This then gives

h(z) = −1− S 0
0

z
+O(z−2), b(z) = −S

0
1

2z2
+O(z−3) (3.164)

where S B
A denote the components of the matrix S defined in (3.163).

We can evaluate these relations more explicitly using (3.162). We find that

Sa =

(
0 −1

2
ba(za)

0 `a

)
, Ia6=L,R ⊂ Â , (3.165)

Sa =

(
`a + 1

2
Ωaχa(za) Ωa(`a + 1

2
Ωaχa(za))

−1
2
χa(za) −1

2
Ωaχa(za)

)
, Ia ⊂ Ĥ . (3.166)

Therefore, from the asymptotics of the general solution derived above we deduce

M =
∑
Ia⊂Ĥ

Ma , Ma = 1
2
(`a + 1

2
Ωaχa(za)), (3.167)

J =
∑
Ia⊂Ĥ

Ja , Ja = 1
8
χa(za) . (3.168)

Observe that expressions for the angular momenta are the well-known relations (3.12). The expressions
for the mass (3.167) together with (3.37) imply the Smarr relation (for multi-black holes).

On the other hand, suppose instead we use the alternate form of the solution where FL(k) is replaced
by FL(k)T . Then the only change in the solution is that now b(z) = F̃L10(z)/F̃L11(z). Working to first
order in the expansion for R(z) as in (3.163) allows us only to determine the O(1) term,

b(z) = b(z1)− 2S 1
0 − b(zn) +O(z−1). (3.169)
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Therefore b(z)→ 0 implies

b(zn)− b(z1) = −2S 1
0 =

∑
Ia⊂Â
a6=L,R

ba(za)− 4
∑
Ia⊂Ĥ

ΩaMa . (3.170)

We provide an alternate derivation of this relation in Appendix 3.C (the same relation was also found
in [36]).

We can similarly consider the asymptotics of the solution on IR which is given by the matrix
FR(k) = Q1(k)−1. The computation is essentially the same as above and one finds the formulas
(3.167) and (3.170).

3.5 Five dimensions

3.5.1 General solution and physical parameters

For D = 5 the general solution for the metric data (haµν(z), baµ(z)) on any axis rod Ia takes the explicit
form (3.118), with an analogous expression for the data (γaij(z), χai (z)) on any horizon rod (3.121). The
solution is given in terms of components of the matrices Fa(k), which depend on the moduli (3.124)
and a matrix C. The matrix C arises in the asymptotic solution (3.82), (3.83), in particular it relates
the solution in the left and right segments (3.85). Therefore, to fully fix the general solution on the
axis and horizon rods we need to find the solution to the linear system in Minkowski spacetime which
matches onto our axis solution (3.106) and compute the corresponding matrix C using (3.86).

Five-dimensional Minkowski spacetime in polar coordinates (3.72) is

ḡ = diag (−1, r(1− cos θ), r(1 + cos θ)) , e2ν̄ =
1

2r
, (3.171)

which gives
S̄ = diag(0, 1, 1), T̄ = diag(0, 1 + cos θ,−(1− cos θ)) . (3.172)

For r > |k|, the solution to (3.79) on Minkowski space which agrees with the axis solution (3.106) is

Ψ̄+ = diag (−1, r(1− cos θ)− µ+, r(1 + cos θ) + µ+)N(r, θ, k) , (3.173)

where the matrix

N(r, θ, k) =

{
diag(1, −1, −2k)−1 0 ≤ θ < θ∗

diag(1, 2k, 1)−1 θ∗ < θ ≤ π
(3.174)

is needed to ensure the solution matches with the one on the axes. In particular, using the asymptotic
expansions in Section 3.3.2 we find that

Ψ̄+(r, θ, k) =

{
diag

(
−1, −2r +O(1), −1

2
(1 + cos θ) +O(r−1)

)
0 ≤ θ < θ∗

diag
(
−1, −1

2
(1− cos θ) +O(r−1), 2r +O(1)

)
θ∗ < θ ≤ π

, (3.175)

as r →∞.
Now, any five-dimensional asymptotically flat spacetimes in polar coordinates must take the form [54]

g =

 −1 + 4M
3πr

+O(r−2) −J1(1−cos θ)
πr

(1 +O(r−1)) −J2(1+cos θ)
πr

(1 +O(r−1))

−J1(1−cos θ)
πr

(1 +O(r−1)) r(1− cos θ)(1 +O(r−1)) ζ sin2 θ
r

(1 +O(r−1))

−J2(1+cos θ)
πr

(1 +O(r−1)) ζ sin2 θ
r

(1 +O(r−1)) r(1 + cos θ)(1 +O(r−1))

 , (3.176)
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as r →∞, where M,Ji are the ADM mass and angular momenta and ζ is a gauge invariant constant.
From this one can show that S, T appearing in the linear system in polar coordinates (3.79) satisfy

S − S̄ =

 O(r−1) O(r−2) O(r−2)
O(r−1) O(r−1) O(r−2)
O(r−1) O(r−2) O(r−1)

 , T − T̄ =

 O(r−2) O(r−2) O(r−2)
O(r−2) O(r−1) O(r−2)
O(r−2) O(r−2) O(r−1)

 . (3.177)

Then using (3.175) we find that the matrices Υ defined in (3.81) satisfy3

Υr+ = O(r−2), Υθ+ = O(r−1) , (3.178)

for all 0 ≤ θ ≤ π, thus justifying (3.83). Finally, from (3.86) we find

C =

 −1 0 0
0 1 0
0 0 −1

 . (3.179)

We therefore have fully fixed the general solution.
We now relate the parameters of the solution to the asymptotic quantities. Given a solution (hLµν , b

L
µ)

on IL we can compute the mass and angular momenta. From (3.176) we deduce that

hLµν(z) =

(
−1− 4M

3πz
+O(z−2) 2J1

πz
+O(z−2)

2J1
πz

+O(z−2) −2z +O(1)

)
,

bLµ(z) =

(
−2J2

πz
+O(z−2)

4ζ
z

+O(z−2)

)
, (3.180)

as z → −∞, where bLµ is determined using (3.44) and we have fixed the integration constant so that
bLµ → 0 at infinity. Similarly, given a solution on IR we can compute the asymptotic quantities again
from (3.176) which in this case implies that

hRµν(z) =

(
−1 + 4M

3πz
+O(z−2) −2J2

πz
+O(z−2)

−2J2
πz

+O(z−2) 2z +O(1)

)
,

bRµ (z) =

(
−2J1

πz
+O(z−2)

4ζ
z

+O(z−2)

)
, (3.181)

as z →∞, again using (3.44) and fixing constants so bRµ → 0 at infinity.
On the other hand, given a solution on a horizon rod Ia we may compute the surface gravity from

(3.36), which in principle may provide one constraint on the parameters. Similarly, given a solution on
an axis rod Ia, smoothness requires that there are no conical singularities at any endpoint of the rod,
the conditions for which are given by (3.25) and (3.26).

3.5.2 Asymptotics of general solution

We now confirm our general solution is asymptotically flat and deduce the asymptotic charges. First,
consider the solution (3.118) on IL which is derived from the components of FL(k) = −C−1Q1(k)T .

3In fact one obtains different fall-offs for 0 ≤ θ < θ∗ and θ∗ < θ ≤ π where some components have faster fall-offs.
We will not need these in our analysis.
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Using (3.155) to write Q1(k) in terms of R(k) defined in (3.156) and then using the asymptotic
expansion (3.163) gives

hLµν(z) =

(
−1− S 0

0

z
+O(z−2) −S 0

1

z
+O(z−2)

−2S 1
0 − bR0 (zn) +O(z−1) −2z + 2(zn − S 1

1 ) +O(z−1)

)
, (3.182)

bLµ(z) =

(
S 0
2

z
+O(z−2)

2S 1
2 + bR1 (zn) +O(z−1)

)
, (3.183)

as z → −∞. Thus comparing to the asymptotics (3.180) we deduce that

M =
3πS 0

0

4
, Ji = −πS

0
i

2
, bRµ (zn) = −2

(
S 1

0

S 1
2

)
. (3.184)

Using (3.162) we can evaluate these expressions more explicitly. We find that

Sa =

 0 −1
2
v1
ab
a
0(za) −1

2
v2
ab
a
0(za)

0 −1
2
εav

1
a(2u

2
a`a + v2

ab
a
1(za)) −1

2
εav

2
a(2u

2
a`a + v2

ab
a
1(za))

0 1
2
εav

1
a(2u

1
a`a + v1

ab
a
1(za))

1
2
εav

2
a(2u

1
a`a + v1

ab
a
1(za))

 , Ia6=L,R ⊂ Â ,

Sa =

 `a + 1
2
Ωa
iχ

a
i (za) Ωa

1(`a + 1
2
Ωa
iχ

a
i (za)) Ωa

2(`a + 1
2
Ωa
iχ

a
i (za))

−1
2
χa1(za) −1

2
Ωa

1χ
a
1(za) −1

2
Ωa

2χ
a
1(za)

−1
2
χa2(za) −1

2
Ωa

1χ
a
2(za) −1

2
Ωa

2χ
a
2(za)

 , Ia ⊂ Ĥ ,

(3.185)

where (ua, va) is a basis of U(1)2-Killing fields such that va is the rod vector and εa = (u1
av

2
a−u2

av
1
a)
−1.

Therefore, from the asymptotics of the general solution derived above we deduce

M =
∑
Ia⊂Ĥ

Ma , Ma = 3π
4

(`a + 1
2
Ωa
iχ

a
i (za)), (3.186)

Ji =
∑
Ia⊂Ĥ

Jai , Jai = π
4
χai (za), (3.187)

bRµ (zn) =
∑
Ia⊂Ĥ

4Ωa
1

3π

(
−2Ma

3Ja2

)
+
∑
Ia⊂Â
a6=L,R

v1
a

(
ba0(za)

−εa(2u1
a`a + v1

ab
a
1(za))

)
. (3.188)

Note that again we reproduce the well-known relations between angular momenta and the change in
twist potential across a horizon rod (3.12). Combining these with the above formulae for the mass,
together with (3.37), gives the Smarr relation. Notice that in the absence of a black hole M = 0 and
Ji = 0, in line with the no-soliton theorem.

If instead we use the alternate general solution with FL(k) replaced by FL(k)T we find

bLµ(z) = bLµ(z1)− 2

(
S 2

0

S 2
1

)
+O(z−1), (3.189)

with hLµν(z) given by the transpose of (3.182). Thus the asymptotics of bLµ now give

bLµ(z1) = 2

(
S 2

0

S 2
1

)
=
∑
Ia⊂Ĥ

4Ωa
2

3π

(
2Ma

−3Ja1

)
−
∑
Ia⊂Â
a6=L,R

v2
a

(
ba0(za)

εa(2u
2
a`a + v2

ab
a
1(za))

)
. (3.190)
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The O(z−1) term, and hence J2, requires a higher order calculation than the one given by (3.163). On
the other hand, the asymptotics of hLµν(z) give the mass (3.186), the angular momentum J1 (3.187)
and the Ernst potential bR0 (zn) (3.188).

We may perform an analogous calculation on IR. Using the general solution (3.118) and the explicit
form FR(k) = −Q1(k)−1C−1, together with (3.155) and (3.163), the asymptotics yield the same
expressions as above for M,J2, b

R
µ (zn), bL0 (zn); here J1 requires the O(z−1) term in bRµ (z) which needs

a higher order calculation. If one instead considers the solution with FR(k) replaced by FR(k)T one
obtains M,Ji, b

L
µ(z1) to this order.

We remark that if one uses the alternate solution as in Conjecture 1, then the above shows that
the solution on IL fixes M,J1, b

L
µ(z1) (and bR0 (zn)) and the solution on IR fixes M,J2, b

R
µ (zn) (and

bL0 (z1)), so taken together these give all the asymptotic quantities. Indeed, this partially motivates our
conjecture. In Appendix 3.C we show how to derive these expression for bRµ (zn), bLµ(z1) from general
properties of the Ernst potentials.

In the case of a single black hole the above formulas simplify. In particular, if say IH = (z1, z2), the
mass and angular momenta become

M = 3π
4

(`H + 1
2
Ωiχi(z2)), (3.191)

Ji = π
4
χi(z2), (3.192)

where `H = z2− z1 and we have chosen a gauge in which χi(z1) = 0 (for a single horizon one is always
free to do this). In this case we find it convenient to work with the dimensionless parameters

ji = JiM
−3/2

(
27π

32

)1/2

, ωi = ΩiM
1/2

(
8

3π

)1/2

, λH =
3π

4M
`H , (3.193)

where we are of course now assuming M > 0. Then (3.191) gives

λH = 1− ωiji . (3.194)

For any finite axis rods Ia, a = 2, . . . , n we also define the associated dimensionless parameters

fa0 = ba0(za)

(
3π

8M

)1/2

, fa1 = ba1(za)

(
3π

8M

)
, λa =

3π

4M
`a , (3.195)

and fLµ , fRµ are similarly defined with baµ(za) replaced by bLµ(z1), bRµ (zn) respectively.
For the single black hole cases we study in the next chapter, we use another conjecture which extends

the results of Conjecture 1, utilising a slightly more convenient set of equations to derive the unbalanced
solutions. Given a single horizon rod, the condition (3.126) can be thought of as an equation for Ji,
as follows. Since (3.128) is automatic we can write χai (z) = χai (za) + (z − za)ga(z) for some smooth
function ga(z). Then evaluating at z = za−1 and using (3.12) we deduce that Ji = π`aga(za−1)/4
which gives a nonlinear equation for Ji (typically ga(za−1) depends on all the moduli, including Ji).
On the other hand, from the asymptotics (3.180) and (3.181), the O(z−1) term in bL0 (z) and bR0 (z)
gives J2 and J1 respectively. The above asymptotic analysis showed that, for the alternate solution,
the computation of these O(z−1) terms requires a higher order calculation, which in general will give
different formulas for Ji than (3.187). Thus, one can take these asymptotic equations as new equations
for Ji, instead of those from (3.126) described above. This motivates the following conjecture:

Conjecture 2. Consider a solution as in Conjecture 1, further assuming that the consistency conditions
on the Ernst potentials (3.125), (3.92) hold. Then the consistency conditions on the twist potentials
(3.126) are equivalent to the O(z−1) asymptotic conditions for bL0 (3.180) and bR0 (3.181), combined
with the expression for the angular momentum (3.187).
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Remarks.

1. This conjecture holds when we consider the rod structure for the Myers-Perry solution. Whilst the
backwards implication also holds for the black ring and black lens cases 4, we have been unable
to show that the forward implication also works in these cases. The value of this conjecture is
that it allows one to solve the relatively simpler asymptotic constraints on the Ernst potentials on
IL,R rather than needing to consider the consistency constraints on the twist potentials (3.126).

2. This conjecture is automatic in the case of no black holes. On the other hand, for multi-black
holes, this conjecture would need to be revisited, a matter which we will not consider this here.

3.6 Discussion

In this chapter we have considered the classification of D = 4, 5 asymptotically flat stationary vacuum
black hole spacetimes that admit D − 3 commuting axial Killing fields. To do this we developed a
method based on integrability of the Einstein equations for this class of spacetimes. In particular, we
have presented a general solution for the metric and associated Ernst and twist potentials on each
axis and horizon component, see Theorem 8. This solution depends on a number of geometrically
defined moduli which obey a set of algebraic equations and inequalities. Generically the solutions
possess conical singularities on the axes and (assuming Conjecture 1) correspond to the moduli space
of solutions guaranteed to exist in Theorem 4. However, by imposing that the axis and horizon metric
is free of conical singularities we obtain, at least in principle, the moduli space of regular black hole
solutions in this class for any given rod structure (which may be empty depending on the rod structure).

In practice the equations which define the moduli spaces increase in complexity as one increases the
number of rods. Therefore an analysis of the general solution remains out of reach. To this end, it would
be interesting to better understand how the set of dependent equations that we have derived relate to
each other and in particular to prove Conjecture 2, as this may lead to a more complete understanding
of the moduli space equations. Nevertheless solving the moduli space equations is entirely possible for
some of the simplest rod structures. We will discuss this in the next chapter.

By construction, we have obtained the general solution only on the boundary of the orbit space,
i.e. on the axis and horizon rods. On the other hand, Theorem 4 shows that for given boundary data,
there exists a unique unbalanced solution that is smooth everywhere away from the axes. Therefore
an interesting problem is write down this full solution explicitly, given our boundary solution. Further
methods from integrability theory are probably well suited to tackle this problem, since they have already
been successful in this regard in four dimensions [147].

It would be interesting to develop our method to study the analogous classification problem for other
types of boundary conditions. In particular, for D = 5 one can have asymptotically Kaluza-Klein (KK)
or Taub-NUT (TN) vacuum solutions. This could be of interest, as in these cases, the space of regular
solutions is richer since one can have regular soliton spacetimes (e.g. R× Euclidean Schwarzschild and
the KK monopole, for KK and TN asymptotics respectively). Presumably our analysis can be adapted
to these cases, although clearly one would have to revisit the solution of the spectral equations near
infinity.

Our method is based on the existence of an auxiliary linear system whose integrability condition
is the vacuum Einstein equations for spacetimes in this symmetry class. It seems likely that this
method could be employed in other theories of gravity which are integrable for spacetimes with D − 2

4Although in the case of the doubly spinning black lens, we have only been able to verify this numerically.
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commuting Killing fields. For example, it is well-known that this is the case for D = 4 Einstein-Maxwell
equations and an analogous inverse scattering method has been developed [38]. This was recently used
to construct the general charged, rotating, double-black hole solution [40].

More generally, any theory which reduces to a two-dimensional sigma-model with coset target space
is integrable in this sense. A notable example is D = 5 minimal supergravity (Einstein-Maxwell-Chern-
Simons theory) [124]. This theory is particularly interesting to study as it is already known to contain
a rich class of regular spacetimes with these symmetries. As we discussed in the introduction, besides
the well-known charged versions of the Myers-Perry black holes and black rings, this theory also admits
positive energy soliton solutions (a.k.a microstate geometries) [148], supersymmetric black lenses, and
black holes with non-trivial topology in the DOC (2-cycles) [110, 108, 109, 111, 107, 149]. Recently
a complete classification of supersymmetric spacetimes in this class was obtained revealing an infinite
class of new black holes, black lenses and rings in spacetimes with non-trivial 2-cycles [107]. A method
based on integrability as in this chapter provides a complementary perspective on the classification
problem that also captures the much larger moduli space of non-supersymmetric solitons and black
holes. This is precisely the problem we consider in Chapter 5.

Before we come to this however, we will first consider the applications of the methods developed
in this chapter to some most basic rod structures, paying particular interest to the question of the
existence of the simplest black lens spacetime.

3.A Rod structure of Gibbons-Hawking solitons

In Section 3.2.1 we showed that the Eguchi-Hanson soliton can be interpreted as an asymptotically
Minkowski solution which is regular everywhere except for a conical singularity on its bolt. In particular,
it gives a rod structure which satisfies the admissibility condition (3.8) and hence gives the corresponding
solution that is guaranteed to exist in Theorem 4. It is natural to wonder whether the more general
Gibbons-Hawking solitons can be similarly interpreted. In fact, we find that within this class of solutions,
the only case which gives an admissible rod structure is the Eguchi-Hanson soliton.

The Gibbons-Hawking solitons are

ds2
GH = −dt2 +H−1(dτ + χidx

i)2 +Hdxidxi , H =
n∑
a=1

1

|x− pa|
, (3.196)

where xi are Cartesian coordinates on R3, pa ∈ R3 are constants and χ is determined by dχ = ?3dH.
We assume n > 1 and note that for n = 2 this is the Eguchi-Hanson soliton (3.14) in different
coordinates (for n = 1 this of course Minkowski spacetime). If we take the pa = (0, 0, za) collinear
then the metric has biaxial symmetry and in cylindrical coordinates reads

ds2
GH = −dt2 +H−1(dτ + χdφ)2 +Hρ2dφ2 +H(dρ2 + dz2) ,

H =
n∑
a=1

1√
ρ2 + (z − za)2

, χ =
n∑
a=1

z − za√
ρ2 + (z − za)2

. (3.197)

Observe that this metric is also in Weyl coordinates. As is well-known, if (τ, φ) are identified as Euler
angles on S3 (i.e. such that the orbits of ∂φ ± ∂τ are independently 2π-periodic) this gives a smooth
ALE metric with S3/Zn topology at infinity and any curve between the centres pa corresponds to a
2-cycle (or bolt).
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On the other hand, one can identify (τ, φ) such that the topology at infinity is S3 resulting in an
asymptotically Minkowski spacetime. Explicitly, as r = |x| → ∞ we have H ∼ n/r and χ ∼ n cos θ,
where (r, θ) are standard polar coordinates on R3, so

ds2
GH ∼ −dt2 + dR2 +

1

4
R2
[
(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2

]
, (3.198)

where we have defined coordinates ψ = τ/n and R2 = 4nr. Thus identifying (θ, ψ, φ) to be Euler
angles on S3 gives an asymptotically Minkowski spacetime. In particular, the rod vectors with 2π-
periodic orbits on the two semi-infinite axes θ = 0 and θ = π are vR = ∂φ − ∂ψ and vL = ∂φ + ∂ψ
respectively. Let us compute the rod structure for this asymptotically flat vacuum solution.

It is clear there are n + 1 axis rods I1 = (−∞, z1), Ia = (za−1, za) for a = 2, . . . , n and In+1 =
(zn,∞). The rod vector on each rod is a multiple of

ṽa = ∂φ − χa∂τ (3.199)

where

χa ≡ χ|Ia =
n∑
b=1

sign(z − zb) = 2(a− 1)− n (3.200)

for a = 1, . . . , n + 1. For a = 1 and a = n + 1 this expression reduces to vL and vR respectively and
hence is correctly normalised. With respect to the 2π-periodic basis (vR, vL) the rod vectors are

ṽa =

(
a− 1

n
, 1− a− 1

n

)
(3.201)

so ṽ1 = v1 = (0, 1) and ṽn+1 = vn+1 = (1, 0) as previously noted. However, for a = 2, . . . , n rod
vectors must be rescaled to ensure they have integer entries with respect to a 2π-periodic basis. Thus
for a = 2, . . . , n the rod vectors are

va =
1

gcd(a− 1, n)
(a− 1, n− a+ 1) , (3.202)

where the prefactor is included to ensure the components are coprime and hence va has 2π-periodic
orbits.

We will now examine whether this rod structure satisfies the admissibility condition (3.8). In general
we have

v2 = (1, n− 1) , vn = (n− 1, 1) , (3.203)

so det(v1, v2) = −1 and det(vn, vn+1) = −1 satisfy (3.8). Therefore, if n = 2, we have an admissible
rod structure v1 = (0, 1), v2 = (1, 1), v3 = (1, 0). This is the Eguchi-Hanson soliton discussed in the
main text (3.14). However, for n > 2 and a = 2, . . . , n− 1 we have

det(va, va+1) = − n

gcd(a− 1, n)gcd(a, n)
, (3.204)

which is never equal to ±1 and hence the admissibility condition (3.8) is always violated for n > 2.
Instead, for these cases the corners of the orbit spaces z2, . . . , zn−1 are orbifold singularities.
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3.B Geometry near corners of orbit space

3.B.1 Intersection of axes

Here we consider the geometry of a D = 5 spacetime near a fixed point of the U(1)2-action, i.e., we
consider the geometry near a corner of the orbit space z = za where two consecutive axis rods Ia and
Ia+1 meet.

Then, as shown in Section 3.2.2, smoothness of the metric on Ia at z = za requires (3.25),
whereas smoothness of the metric on Ia+1 at z = za requires (3.26) with a replaced by a + 1, i.e.,
ha+1′(za)

2/ha+1
00 (za) = −4c2

a+1. On the other hand, for any axis rod

ha00(z) = g̊ABk
AkB (3.205)

is simply the squared norm of the stationary Killing field k on the axis. Therefore, ha00(za) = ha+1
00 (za)

and hence eliminating the norm of k between the aforementioned regularity conditions we deduce that

c−1
a ha′(za) = −c−1

a+1h
a+1′(za) , (3.206)

where in order to fix the sign we have used the fact that ha′(za) > 0 and ha+1′(za) < 0 (these follow
from ha < 0 in the interior of Ia).

Finally, observe that using (3.22) the condition (3.206) is equivalent to continuity of |z − za|e2ν̊

at z = za. In fact this continuity condition for the conformal factor e2ν has been previously proven
in [144].

3.B.2 Intersection of horizon and axis

We now consider the geometry where a horizon rod Ia meets an axis rod Ia+1. In particular, the
geometry on the axis corresponding to Ia+1 (3.23) is a (D− 2)-dimensional Lorentzian spacetime that
must have a regular (D − 3)-dimensional horizon as z → za corresponding to where the full horizon
intersects the axis corresponding to Ia+1. We will now compute the surface gravity of this ‘axis horizon’
z = za, which must of course coincide with the surface gravity of the full horizon.

For D = 5, the Killing field null on the horizon ξ restricted to the axis rod Ia+1 is ξ = k + Ωua+1

where (k, ua+1) is the adapted basis of Ia+1 and Ω is a constant angular velocity. Therefore, the metric
on this component of the axis (3.23) must be of the form

ga+1 = −
c2
a+1dz2

ha+1(z)
+ (p1(z − za) +O((z − za)2)(dx0)2

+ O(z − za)dx0(dx1 − Ωdx0) + (p2 +O(z − za))(dx1 − Ωdx0)2 , (3.207)

as z → z+
a , where we choose adapted coordinates such that k = ∂/∂x0, ua+1 = ∂/∂x1. The expansions

of the metric components follow from smoothness, together with ξ being null on the axis horizon and
ua+1 being tangent to the axis horizon. Here p1 < 0, p2 > 0 are constants related to the metric
components (p1 = 0 would correspond to an extremal horizon which we do not consider here). It
follows that the determinant ha+1(z) = p1p2(z − za) + O((z − za)2) and hence defining ε2 = z − za,
the first two terms in (3.207) approach the Rindler metric

−
4c2
a+1

p1p2

(
dε2 − κ2

aε
2(dx0)2

)
, (3.208)

76



as ε→ 0, with surface gravity

κ2
a =

p2
1p2

4c2
a+1

=
ha+1′(za)

2

4c2
a+1h

a+1
11 (za)

. (3.209)

The second equality follows from the relations p2 = ha+1
11 (za) and p1p2 = ha+1′(za). A similar analysis

for D = 4 (which effectively can be obtained from dropping the dx1 terms above) gives

κ2
a =

ha+1′(za)
2

4c2
a+1

. (3.210)

This analysis confirms the axis geometry on Ia+1 has a smooth non-degenerate horizon at z = za with
surface gravity (3.209) for D = 5 and (3.210) for D = 4.

On the other hand, as shown above, smoothness of the horizon metric at the corner z = za leads to
a different expression for κa. For D = 4 this is given by (3.35) and combining this with (3.210) implies

κ2
aγ
′(za) = c−1

a+1h
a+1′(za) , (3.211)

where the signs are fixed from the fact that γ′(za) < 0 and ha+1′(za) < 0. For D = 5, the expression
for the surface gravity (3.36), written in coordinates φ̂i, i = 1, 2, adapted to the horizon rod Ia so that
ua+1 = ∂1̂ and va+1 = ∂2̂, becomes

κ−2
a =

γ′(za)
2

4γ1̂1̂(za)
, (3.212)

where we used γ′(za) = γ1̂1̂(za)γ
′
2̂2̂

(za). Next, note that

ha+1
11 (z) = g̊ABu

A
a+1u

B
a+1, γ1̂1̂(z) = g̊ABu

A
a+1u

B
a+1 , (3.213)

on the rods Ia+1 and Ia respectively, are both equal to the norm squared of ua+1, so in particular
ha+1

11 (za) = γ1̂1̂(za). Hence eliminating the norm of ua+1 between (3.209) and (3.212) we deduce that
(3.211) also holds for D = 5. The analysis for a horizon rod Ia meeting an axis rod Ia−1 is entirely
analogous and similarly to (3.211) one can derive that

κ2
aγ
′(za−1) = c−1

a−1h
a−1′(za−1) (3.214)

for D = 4, 5.
Finally, using (3.22) and (3.32) we see that (3.211) is equivalent to the continuity of |z − za|e2ν̊ at

z = za (with a similar condition at z = za−1 for (3.214)), just as in the case of a corner separating two
axis rods.

3.C Ernst potential identities

Consider a component of the horizon H with corresponding rod Ia and we drop rod labels when
convenient and unambiguous. First, recall the well-known identity∫

H

?dξ = −2κA , (3.215)

where ξ is the horizon Killing field (3.27), κ is the surface gravity and A is the area of H. Therefore,
using (3.11) we deduce that

ζ(za)− ζ(za−1) = − 2κA

(2π)D−3
, (3.216)
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where we have defined a new potential ζ by

dζ = ?(m1 ∧ . . .mD−3 ∧ dξ) . (3.217)

Also, we will need the following fact: in coordinates adapted to the horizon rod (3.28) implies that the
1-form dual to the corotating Killing field is

ξA = g̃AD−3 = O(ρ2) (3.218)

near the horizon. Thus, in particular, ξ = 0 on the horizon (although dξ 6= 0 since ρ is not a good
coordinate on the horizon).

For D = 4 we can write (3.45) in terms of the corotating Killing field

db = − ? (ξ ∧ dξ) + Ω ? (ξ ∧ dm) + Ωdζ − Ω2dχ , (3.219)

where we have used the definition of the twist potential (3.13) and (3.217). Evaluating this on the
horizon we see that the first two terms must vanish due to (3.218). Thus we find that on the horizon

db = Ω(dζ − Ωdχ) (3.220)

and integrating this over the horizon rod Ia gives

b(za)− b(za−1) = −Ω

(
κA

π
+ 8ΩJ

)
= −4ΩM , (3.221)

where in the first equality we used (3.216) and (3.12) and in the final equality the standard Smarr
relation for the Komar mass of the horizon M = 1

8π

∫
H
?dξ. This implies the identity (3.170).

For D = 5, one can show again using (3.218) that on the horizon

dbLµ =

(
−Ω2Ωidχi + Ω2dζ

Ω2dχ1

)
(3.222)

and hence integrating this over the horizon rod

bLµ(za)− bLµ(za−1) = Ω2

(
− 4
π

(
ΩiJi + κA

8π

)
4J1
π

)
= Ω2

(
−8M

3π
4J1
π

)
, (3.223)

where in the first equality we used (3.12) and (3.216) and in the second the Smarr relation. Similarly,
one finds that on the horizon

dbRµ =

(
−Ω1Ωidχi + Ω1dζ

Ω1dχ2

)
(3.224)

and hence

bRµ (za)− bRµ (za−1) = Ω1

(
−8M

3π
4J2
π

)
. (3.225)

In a similar manner, one can also evaluate the change in Ernst potential associated to any other axis
rod over a horizon rod. Formulae for bLµ(za)− bLµ(za−1) and bRµ (za)− bRµ (za−1) across axis rods can also
be derived, which combined with (3.223) and (3.225) imply the identities (3.190) and (3.188).
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3.D Proof of Proposition 2

First we observe that for an axis rod G̃aNN(k) = vTaGa(k)va where in the standard basis vTa =
(0, v1

a, . . . , v
D−3
a ) is the rod vector. Similarly, for a horizon rod we can write G̃a00(k) = vTaGa(k)va

where vTa = (1,Ωa
1, . . . ,Ω

a
D−3) denotes the horizon null vector. Similar statements hold for the matrices

Ha(k). Thus, to complete the proof of Proposition 2 we need to establish

lim
k→za−1

vTaGa(k)va 6= 0 (3.226)

and
lim
k→za

vTaHa(k)va 6= 0, (3.227)

for each finite rod Ia, for generic values of the parameters. We will only explicitly prove (3.226), though
(3.227) can be proved in an almost identical fashion.

Writing out Ga explicitly in terms of the Pa matrices using the expression for Fa (3.113) gives

G2(k) = −XL(z1, k)C−1Pn(k)T · · ·P2(k)T ,

Ga(k) = −Xa−1(za−1, k)Pa−2(k)−1 · · ·P1(k)−1C−1Pn(k)T · · ·Pa(k)T ,
(3.228)

where a = 3, . . . , n. Consider a fixed, but arbitrary set of axis rod vectors va (this is of course only
relevant for D = 5). Then, from the definition of the matrices Ga(k) it is clear that the LHS of
(3.226) is a rational function Ra(~ϕ) where the vector ~ϕ denotes the continuous moduli in (3.124) (i.e.
excluding the axis rod vectors). For the purposes of the proposition we need to prove Ra(~ϕ) 6= 0 for
generic values of the moduli ~ϕ, i.e. the zero set of Ra is lower-dimensional. A simple strategy to prove
this is to find an explicit value of the moduli ϕ0 for which Ra(ϕ0) 6= 0, since when combined with
analyticity of the numerator of Ra, implies that the zero-set of Ra does not contain an open set. It is
worth noting that for this argument the value ϕ0 does not need to belong to the actual moduli space
of solutions.

It is convenient to choose ϕ0 for each rod Ia such that Pb(za−1) = ID−3 for all b 6= a − 1 and
1 ≤ b ≤ n. This is achieved by setting bbµ(zb) = 0 or χbi(zb) = 0, depending on whether Ib is an axis or
horizon rod, and zb = za−1 + 1/2. The result of this is that for any finite rod Ia

lim
k→za−1

vTaGa(k)va → −vTaXa−1(za−1, za−1)C−1va (3.229)

under these parameter identifications. Therefore in order to prove (3.226) all that remains is to show
that the right hand side of (3.229) is generically nonzero.

First consider D = 4. Using the explicit expression for C (3.151) one finds that

− vTaXa−1(za−1, za−1)C−1va =

{
−1 + Ωa−1χa−1(za−1), Ia−1 horizon rod, Ia axis rod,

−1 + Ωaba−1(za−1), Ia−1 axis rod, Ia horizon rod,
(3.230)

which are indeed generically nonzero.
Now consider D = 5, in which case C is explicitly given by (3.179). If Ia−1 is an axis rod and Ia is

a horizon rod, we can also set Ωa
i = 0 which implies that the right hand side of (3.229) is simply given

by −1. If Ia−1 is a horizon rod and Ia is an axis rod then the right hand side of (3.229) is given by

[viaχ
a−1
i (za−1)][ṽTa va−1]− vTa ṽa, (3.231)
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where ṽTa =
(
0 −v1

a v2
a

)
, which is generically nonzero. Finally, if both Ia−1 and Ia are axis rods then

the right hand side of (3.229) is given by

(detAa−1)−1 det

(
v1
a v2

a

v1
a−1 v2

a−1

)
ṽTa (ba−1

1 (za−1)va−1 − ua−1), (3.232)

where the matrix Aa−1 and the axial Killing field ua−1 are introduced in (3.15). The first factor is
nonzero since Aa−1 ∈ GL(2,Z), the second factor is nonzero since va and va−1 must be linearly
independent (in particular see (3.8)), and the third factor is generically nonzero since ṽa cannot be
orthogonal to both va−1 and ua−1. This establishes the claim.
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Chapter 4

Vacuum Solutions With Simple Rod
Structures

In the previous chapter we derived the general solution on the axes and horizons for any given rod struc-
ture. This chapter complements that analysis by applying those methods to particular rod structures.

We start by briefly discussing the four dimensional case where we solve the moduli space equations
for the Kerr rod structure, rederiving standard results. In five dimensions we do something similar for
Minkowski space (no longer as trivial as the four dimensional case), the Eguchi-Hanson soliton and the
Myers-Perry solution. The first new result comes from considering the rod structure for the black ring.
By rederiving the known solution we prove that the Pomerasky-Sen’kov doubly spinning black ring [74]
is indeed the most general solution with that rod structure, a fact which does not seem to have been
addressed in the previous literature.

We end this chapter by considering the most basic open question in the existence problem in five
dimensions: do regular black holes with lens space topology exist? A number of attempts at constructing
such black lens solutions have resulted in singular spacetimes, the mildest being a conical singularity on
the inner axis [150, 129, 151]. However, it has remained unclear whether these past works represent
the most general solutions with their given rod structures, thereby leaving the question of existence
unanswered. To address this question, we will analyse regularity of the general solution on the axes and
horizon for the simplest rod structure corresponding to a L(n, 1) black lens (see Figure 4.5). As we
will explain below, by a mix of analytic and numerical analysis, we will show that regular black lenses
of this type do not in fact exist.

For all the solutions we consider in both four and five dimensions we find that it is convenient to
use the alternate form of the solution (hµν(z), bµ(z)) as in Conjecture 1 where FL and FH are replaced
by their transpose. Unless otherwise specified this will be how (hµν(z), bµ(z)) are constructed in the
examples we consider.

This chapter draws heavily from [2] and sections 4 and 5 of [3].

4.1 Kerr solution

We start by considering a D = 4 case - the rod structure of the Kerr solution. Namely, we assume there
are three rods IL = (−∞, z1), IH = (z1, z2), IR = (z2,∞) where IH is a horizon rod. The solution is
given by Theorem 8 in terms of the matrices Fa(k) given by (3.113), which in this case are simply

FL(k) = P2(k)TP1(k)T , FH(k) = P1(k)−1P2(k)T , FR(k) = P2(k)−1P1(k)−1 , (4.1)
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where the Pa(k) are defined by (3.102).
First, let us consider z < z1. We can compute the mass and angular momentum by comparing to

the asymptotic expansions (3.154), which in fact also fixes b(z1), b(z2). We find

M = 1
2
[`H + 1

2
Ω(χ(z2)− χ(z1))] , (4.2)

b(z1) = −b(z2) = 2ΩM , (4.3)

J = ΩM2[4M − 1
2
Ω(χ(z2)− χ(z1))] , (4.4)

where `H = z2 − z1 and we have written the latter quantities in terms of M .
On the other hand, from our general asymptotic analysis, (3.168) reduces to

χ(z2)− χ(z1) = 8J , (4.5)

while the expressions (3.167) and (3.170) already follow from (4.2) and (4.3). We can use (4.5) to
eliminate χ(z2)− χ(z1). Then (4.2) gives1

`H = 2(M − 2ΩJ) (4.6)

and (4.4) can be solved for J

J =
4ΩM3

1 + 4Ω2M2
. (4.7)

Substituting (4.7) back into (4.6) we find

`H =
2M(1− 4Ω2M2)

1 + 4Ω2M2
(4.8)

and hence positivity of the horizon rod length `H > 0 and of the mass M > 0 implies

|Ω| < 1

2M
. (4.9)

This determines the full moduli space of non-extreme Kerr black hole solutions. Indeed, the relation
(4.7) now implies the well-known inequality

|J | < M2 . (4.10)

In terms of the physical quantities the solution simplifies a little. We find for z < z1:

h(z) =
−(z − z1)(z − z2)

(z − z2)2 − 4ΩJ(z − z2) + 4MΩJ
, (4.11)

b(z) =
2J

(z − z2)2 − 4ΩJ(z − z2) + 4MΩJ
. (4.12)

It is worth noting that the relation for b(z1) in (4.3) is automatically satisfied by this solution (as it
must be by Remark 2 below Proposition 2). Thus from the above analysis we see that the solution is
naturally parameterised by (M,Ω)2. It is interesting to note that we have fully determined the moduli

1Combining this with (3.37) leads to the standard Smarr relation.

2Eq (4.7) can be solved for Ω, yielding ΩJ = M −
√
M2 − J2

M2 . Using this, the solution can be equivalently uniquely

parameterised in terms of (M,J).
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space (4.10) of non-extremal Kerr solutions by only analysing one semi-infinite axis (this was also found
in [38]).

A similar analysis can be performed for the other semi-infinite axis z > z2. One again finds (4.2)-
(4.4) and the solution for z > z2:

h(z) =
−(z − z1)(z − z2)

(z − z1)2 + 4ΩJ(z − z1) + 4MΩJ
, (4.13)

b(z) =
−2J

(z − z1)2 + 4ΩJ(z − z1) + 4MΩJ
. (4.14)

Again, the relation (4.3) is automatically satisfied by this b(z2) (as it must be). Thus, the analysis of
this semi-infinite axis yields equivalent results.

Finally, consider the horizon rod z1 < z < z2. We find that (3.121) gives

γ(z) =
−4(z − z1)(z − z2)

1 + 4Ω2(z − (z1 −M))(z − (z2 +M))
, (4.15)

χ(z) =
−8Ω(z − z1)2(z − (z2 +M))

1 + 4Ω2(z − (z1 −M))(z − (z2 +M))
, (4.16)

where we have used (4.3) and (4.2). The solution for χ(z) can be shown to automatically satisfy (4.5)
as a consequence of the above relations (as guaranteed by Proposition 2). Furthermore, it can be
checked that γ′(z1) = −γ′(z2) automatically so (3.35) implies that the metric on the horizon has no
conical singularities and the surface gravity simplifies to

κ =
1− 4Ω2M2

4M
. (4.17)

Notice that (4.9) is equivalent to the non-extremality condition κ > 0.
To summarise, we have fully determined the metric on the whole z-axis for any solution with the

same rod structure as Kerr and computed all asymptotic and horizon physical quantites. We find this
reproduces the full moduli space of non-extremal Kerr black holes, as it must from the no-hair theorem.
It is interesting to note that our analysis does this without knowledge of the full spacetime metric.

4.2 Five-dimensional Minkowski space

Next we consider simple D = 5 rod structures. We begin with the rod structure of Minkowski spacetime
as in Figure 4.1. We have two rods IL = (−∞, z1) and IR = (z1,∞). In this case the matrices which

(0, 1) (1, 0)

Figure 4.1: Rod structure for Minkowski spacetime.

give the general solution in Theorem 8 are FL(k) = −C−1P1(k)T and FR(k) = −(CP1(k))−1 where
P1(k) = XL(z1, k)−1XR(z1, k).
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Let us first consider z < z1. For IL this gives

FL(k)T =


1 bR0 (z1)− bL0 (z1)bR1 (z1)

2(k−z1)
− bL0 (z1)

2(k−z1)

0 2(k − z1)− bL1 (z1)bL1 (z1)

2(k−z1)
− bL1 (z1)

2(k−z1)

0 − bR1 (z1)

2(k−z1)
− 1

2(k−z1)

 , (4.18)

and so

hLµν(z) =

(
−1 −bR0 (z1)

−bR0 (z1) +
bL0 (z1)bR1 (z1)

2(z−z1)
−2(z − z1)

)
, bLµ(z) =

(
bL0 (z1)
bL1 (z1)

)
, z < z1 . (4.19)

Imposing our boundary condition bLµ(z)→ 0 as z → −∞ then implies

bLµ(z1) = 0 , (4.20)

which then immediately fixes bLµ(z) = 0 for z < z1.
The analysis for z > z1 is analogous. One gets

FR(k) =


1 −bL0 (z1) +

bR0 (z1)bL1 (z1)

2(k−z1)

bR0 (z1)

2(k−z1)

0 −2(k − z1) +
bR1 (z1)bL1 (z1)

2(k−z1)

bR1 (z1)

2(k−z1)

0
bL1 (z1)

2(k−z1)
1

2(k−z1)

 , (4.21)

and hence using the general solution (3.118) the metric data reads

hRµν(z) =

(
−1 bL0 (z1)

bL0 (z1)− bL1 (z1)bR0 (z1)

2(z−z1)
2(z − z1)

)
, bRµ (z) =

(
bR0 (z1)
bR1 (z1)

)
, z > z1 . (4.22)

Imposing the boundary condition bRµ (z)→ 0 as z →∞ implies

bRµ (z1) = 0 (4.23)

and thus bRµ (z) = 0 for z < z1.
We have now fixed all non-trivial parameters. Notice that the asymptotic conditions for hLµν , h

R
µν

are both satisfied automatically with M = J1 = J2 = ζ = 0. The final solution is simply

hLµν(z) =

(
−1 0
0 2(z1 − z)

)
, bLµ(z) = 0, z < z1 (4.24)

hRµν(z) =

(
−1 0
0 2(z − z1)

)
, bRµ (z) = 0, z > z1 . (4.25)

This of course is the metric data on axis for Minkowski spacetime (3.171). As in four dimensions this is
a non-trivial result, showing that the only asymptotically flat spacetime in this symmetry class with the
same rod structure as Minkowski spacetime is Minkowski spacetime itself. Of course, this is expected
and follows from the more general no-soliton theorem for vacuum gravity.
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4.3 Eguchi-Hanson soliton

Let us now attempt to construct a soliton solution, i.e. a non-trivial solution with no horizon. Of
course, we know from the no-soliton theorem for asymptotically flat vacuum solutions that there can
be no smooth solution in this case. Nevertheless, it is interesting to see how this emerges from our
formalism.

The simplest rod structure without a horizon which is not flat space is given by three axis rods
IL = (−∞, z1), IB = (z1, z2) and IR = (z2,∞) with rod vectors (0, 1), vB = (p, q) and (1, 0)
respectively, where (p, q) are coprime integers. The finite axis rod IB corresponds to a 2-cycle, or bolt,
in the spacetime. The admissibility condition (3.8) between adjacent axis rods fixes p = ±1 and q = ±1
and without loss of generality we can fix p = 1 (since vB is only defined up to a sign). We also fix q = 1
which can always be arranged since vR is only defined up to a sign. Thus we take the rod vector for
IB to be vB = (1, 1). The rod structure is depicted in Figure 4.2. We choose the other independent

(0, 1) (1, 1) (1, 0)

Figure 4.2: Rod structure for the simplest soliton spacetime.

axial vector to be uB = (1, 0), so the change of basis matrix (3.40) is

LB =

 1 0 0
0 1 0
0 −1 1

 . (4.26)

The general solution in this case is determined by (3.118) where

FL(k) = −C−1P2(k)TP1(k)T , FB(k) = −P1(k)−1C−1P2(k)T ,

FR(k) = −P2(k)−1P1(k)−1C−1 (4.27)

and Pa(k) are given by (3.102).
First, imposing that the general solution (hLµν(z), bLµ(z)) on IL obeys our boundary condition bLµ(z)→

0 as z → −∞ fixes the constants
bLµ(z1) = −bBµ (z2) , (4.28)

with bLµ(z)|z→z1 = bLµ(z1) being automatically satisfied (as guaranteed by (3.133)). Next, imposing that
(hRµν(z), bRµ (z)) on IR obeys bRµ (z)→ 0 as z →∞ fixes

bRµ (z2) =

(
bB0 (z2)

−bB1 (z2) + 2(z1 − z2)

)
(4.29)

with bRµ (z)|z→z2 = bRµ (z2) being automatically satisfied (again, as guaranteed by (3.133)). These
relations also follow from our general asymptotic analysis (3.190) and (3.188) respectively.

Finally, the solution (hBµν(z), bBµ (z)) on IB satisfies bBµ (z)|z→z2 = bBµ (z2) automatically (as guaran-
teed by Proposition 2) and bBµ (z)|z→z1 = 0 fixes

bBµ (z2) =

(
0

z1 − z2

)
, (4.30)
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where we have used the above to simplify this expression. All parameters have been now fixed except
for the axis rod length `B = z2 − z1. The resulting solution is

hLµν(z) =

(
−1 0

0 −4(z−z1)(z−z2)
2z−z1−z2

)
, bLµ(z) =

(
0

− (z2−z1)2

2z−z1−z2

)
, z ∈ IL (4.31)

hBµν(z) =

(
−1 0

0 − (z−z1)(z−z2)
z2−z1

)
, bBµ (z) =

(
0

(z−z1)(z+z1−2z2)
z2−z1

)
, z ∈ IB (4.32)

hRµν(z) =

(
−1 0

0 4(z−z1)(z−z2)
2z−z1−z2

)
, bRµ (z) =

(
0

− (z2−z1)2

2z−z1−z2

)
, z ∈ IR. (4.33)

From the asymptotics z → ±∞, we immediately deduce from (3.180) or (3.181) that

M = 0, J1 = J2 = 0, ζ = −1
8
(z2 − z1)2 . (4.34)

This corresponds to the unique unbalanced solution which is guaranteed to exist by Theorem 4.
We may now analyse regularity of the solution. The metric induced on the bolt (3.23) is

gB = −dt2 + `B

(
c2
Bdy2

1− y2
+

1

4
(1− y2)(dx1)2

)
, y =

2z − z1 − z2

z2 − z1

, (4.35)

where (t, x1) are coordinates such that k = ∂t, u = ∂x1 and recall (k, u) is the adapted basis for IB.
Recall that u = m1 and hence x1 is a 2π-periodic angle. Therefore, it is clear that the spatial part of
the metric on the bolt is a smooth round metric on S2 iff cB = 1/2 (indeed, one can check that the
conditions for the removal of the conical singularity (3.25) and (3.26) at z = z1 and z = z2 are satisfied
iff cB = 1/2). Although this gives a smooth metric on the bolt, this shows that in this case the balance
condition cB = 1 (3.24) is violated so there must be a conical singularity at IB. On the other hand, if
we impose the balance condition cB = 1, then inspecting the metric on the bolt shows that there must
be conical singularities at the endpoints of IB.

We have shown that any asymptotically flat solution with a single bolt must have a conical singularity.
This is indeed consistent with the no-soliton theorem mentioned above. In fact, in this case it is easy
to write down the full solution off axis. It is given by the Eguchi-Hanson soliton (3.14) where (θ, ψ, φ)
are Euler angles on S3. The rods IL, IB and IR can be identified with θ = π,R = a and θ = 0. It then
follows that vL = ∂ψ + ∂φ and vR = ∂ψ − ∂φ are the 2π-periodic rod vectors on the semi-infinite axes,
which implies φ1 = (ψ−φ)/2 and φ2 = (ψ+φ)/2. Weyl coordinates (t, φ1, φ2, ρ, z) for this metric are

ρ = 1
2

√
R4 − a4 sin θ, z = 1

2
(z1 + z2) + 1

2
R2 cos θ (4.36)

and the corresponding metric data is

g = −dt2 + 1
4
R2

(
1− a4

R4

)[
(1− cos θ)dφ1 + (1 + cos θ)dφ2

]2
+ 1

4
R2 sin2 θ(dφ1 − dφ2)2 ,

e2ν =
R2

R4 − a4 cos2 θ
. (4.37)

Using a2 = `B, it is straightforward to show that g gives the same (haµν , b
a
µ) on each rod as our general

solution above (4.31)-(4.33). In addition e2ν on the axes and the bolt agrees with our expressions (3.22)
with cL = cR = 1 and cB = 1/2.
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4.4 Myers-Perry solution

We now consider the simplest rod structure of a single black hole with S3 topology , i.e., the same
rod structure as the Myers-Perry solution, see Figure 4.3. Thus we have three rods IL = (−∞, z1),

(0, 1) H (1, 0)

Figure 4.3: Rod structure for the Myers-Perry black hole.

IH = (z1, z2) and IR = (z2,∞) where IH is a horizon rod.
The general solution can be obtained from Theorem 8 where the Fa(z) are again given by (4.27)

(although X2(z, k) now refers to the horizon rod). The solution depends on the parameters
(`H , b

L
µ(z1), bRµ (z2), χi(z2),Ωi) where `H = z2 − z1 and we choose a gauge in which χi(z1) = 0.

From the asymptotics for the solution on IL and IR given in (3.180) and (3.181) we find the mass
M and angular momenta Ji are given by (3.191) and (3.192), the Ernst potentials are3

bLµ(z1) = Ω2

(
8

3π
M
−4J1

π

)
, bRµ (z2) = Ω1

(
− 8

3π
M

4J2
π

)
, (4.38)

and

J1 = 16
9π
MΩ1

(
M − 3

2
Ω2J2

)
, J2 = 16

9π
MΩ2

(
M − 3

2
Ω1J1

)
, (4.39)

where we have eliminated `H and χi(z2) in favour of M and Ji using (3.191) and (3.192). It is worth
noting that the solutions on IL and IR automatically obey bLµ(z)|z→z1 = bLµ(z1) and bRµ (z)|z→z2 = bRµ (z2)
and therefore no further constraints arise from these rods (as guaranteed by (3.133)). Observe that
(4.39) are linear in Ji so we can straightforwardly solve these for Ji and therefore express all parameters
in terms of the physical variables M,Ωi.

It is convenient to use the dimensionless quantities (3.193). Then solving (4.39) gives

j1 =
ω1(1− ω2

2)

1− ω2
1ω

2
2

, j2 =
ω2(1− ω2

1)

1− ω2
1ω

2
2

(4.40)

and |ω1ω2| 6= 1.4 Thus as promised we can express all quantities in terms of M,ωi. In particular,
eliminating ji we find that (3.194) becomes

λH =
(1− ω2

1)(1− ω2
2)

1− ω2
1ω

2
2

. (4.41)

To determine the precise moduli space, we will also need the invariants

dethLµν(z) = −2(z − z1)(z − z2)

z̄1 + z1 − z
, z̄1 =

4M

3π

1− ω2
1

1− ω2
1ω

2
2

, z < z1 , (4.42)

dethRµν(z) = −2(z − z1)(z − z2)

z − z2 + z̄2

, z̄2 =
4M

3π

1− ω2
2

1− ω2
1ω

2
2

, z > z2 . (4.43)

3Equation (4.38) also follows from our general asymptotic analysis (3.190) and (3.188). The same result can be
established from general considerations using (3.223) and (3.225), together with the fact that bLµ(z) = 0 on IR and

bRµ (z) = 0 on IL (from their definition (3.46, 3.47) the potentials bLµ , b
R
µ are constant on IR, IL respectively and vanish

at infinity).
4If |ω1ω2| = 1 then (4.39) imply λH = 0 which contradicts our non-extremality assumption.
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A smooth Lorentzian metric on IL requires that the determinant dethLµν(z) < 0 and is smooth for
z < z1 (see (3.134)) and from the above expression we see this is equivalent to z̄1 > 0. Similarly, the
requirement that dethRµν(z) is smooth and negative on IR is equivalent to z̄2 > 0. The inequalities
λH > 0, z̄1 > 0, z̄2 > 0 are equivalent to

|ωi| < 1 . (4.44)

This fully constrains the moduli space of solutions which is simply given by (4.44) and M > 0. One
can show (4.44) implies

|j1|+ |j2| < 1 , (4.45)

which is a well-known inequality for the Myers-Perry black holes.
Now we turn to the solution (γij(z), χi(z)) on the horizon rod z1 < z < z2 which can be deduced

from (3.121). Writing the parameters in terms of M,ωi as above, we find that both χi(z)|z→z1 = 0
and (3.192) are automatically satisfied (as they must be). Furthermore, using (3.36), we find that
removal of the conical singularities of the horizon metric at the endpoints z = z1, z2 imposes no further
constraints and fixes the surface gravity to be

κ =

√
3π

8M
(1− ω2

1)(1− ω2
2) . (4.46)

The horizon topology is of course S3 with m2 = 0 at z = z1 and m1 = 0 at z = z2. Notice that the
moduli space (4.44) is equivalent to the non-extremality condition κ > 0.

It is straightforward to check that the metric data for above solution agrees precisely with the Myers-
Perry solution restricted to the z-axis, and the parameter region |ωi| < 1 we have derived agrees with
the full moduli space of non-extremal Myers-Perry black holes (of course, this includes 5d Schwarzschild
for ωi = 0). It is interesting to note that by combining (4.39) we obtain the thermodynamic identity
recently obtained by integrating the sigma model equation over the boundary of the orbit space [142].
Thus our present method leads to a refinement of these identities.

4.5 Black ring

We now consider the rod structure of the black ring as depicted in Figure 4.4. Thus we have four rods

(0, 1) H (0, 1) (1, 0)

Figure 4.4: Rod structure for the black ring

IL = (−∞, z1), IH = (z1, z2), ID = (z2, z3) and IR = (z3,∞), where IH is a horizon rod and ID is an
axis rod with rod vector vD = (0, 1). The topology of the horizon is S2×S1 and the finite axis rod ID
lifts to a noncontractible 2-disc in spacetime. We use the adapted basis ẼA = (k,m1,m2) for ID, i.e.
uD = (1, 0), so the change of basis matrix LD (3.40) is simply the identity matrix.

The general solution is given by Theorem 8 and depends on the parameters

{`H , `D, bLµ(z1), χi(z2), bDµ (z3), bRµ (z3),Ωi} (4.47)

where `H = z2 − z1, `D = z3 − z2 and we choose a gauge in which χi(z1) = 0.
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From the asymptotics for the solution on IL and IR given in (3.180) and (3.181) we find the mass
M and angular momenta Ji are given by (3.191) and (3.192) and the Ernst potentials are

bLµ(z1) + bDµ (z3) = Ω2

(
8

3π
M
−4J1

π

)
, bRµ (z3) = Ω1

(
− 8

3π
M

4J2
π

)
, (4.48)

where we have eliminated `H and χi(z2) in favour of M and Ji using (3.191) and (3.192).
The asymptotics of the solution also give non-trivial equations for Ji which in terms of dimensionless

variables introduced in (3.193) and (3.195) are given by

j1 = ω1(1 + λD + j2(fD0 − ω2)) ,

j2 = ω2 − ω1(j1ω2 + fD1 ) + fD0 (ω1j1 − 2) ,
(4.49)

where the previous relations have been used to eliminate variables in favour of ji, ωi, f
D
µ , λD. These

equations correspond to (4.39) for the Myers-Perry solution.
Next consider ID. bDµ (z)|z→z2 = 0 gives the new constraints

fDµ =
j2λD
D

(
1− ω2

1

−ω1λD

)
, D ≡ (1− ω1j1)2 − j2(fD0 + ω1(ω1j2 + fD1 )). (4.50)

These equations are well defined since D > 0. This follows from the relation D = 2λHλDr
−
D together

with (3.138) and positivity of the rod lengths.
Equations (4.49) and (4.50) are significantly more complicated than the corresponding parameter

constraints for the Myers-Perry solution (4.40). Therefore it is instructive to first consider the S1 singly
spinning case.

4.5.1 Singly spinning black ring

The S1 spinning black ring corresponds to setting j2 = 0 in the above equations. In this case (4.50)
simply gives that fDµ = 0. Substituting this back into the equations for ji (4.49) gives

j1 = ω1(1 + λD)

ω2(1− ω1j1) = 0.
(4.51)

The first of these two equations gives j1 and the second implies that ω2 = 0 since 1− ω1j1 = λH 6= 0.
This gives the solution for the general unbalanced S1 spinning black ring parameterised in terms of

(M,ω1, λD). The horizon rod length λH = 1− ω2
1(1 + λD) and so λH > 0 gives the constraint

ω2
1 <

1

1 + λD
, (4.52)

which together with the conditions M > 0 and λD > 0 determines the moduli space of unbalanced
solutions. It can then be checked that (3.134) and (3.135) are satisfied automatically and so impose
no further constraints.

Next consider conical singularities on ID. The balance condition (3.24) and regularity condition at
z = z3 (3.25) is equivalent to

(1− ω2
1)2 − λDω2

1(2− ω2
1) = 0 (4.53)

which implies ω2
1 > 0 and

λD =
(1− ω2

1)2

ω2
1(2− ω2

1)
. (4.54)
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Substituting this back in we obtain

λH =
1− ω2

1

2− ω2
1

, (4.55)

which gives the moduli space of the balanced solution as

M > 0, 0 < ω2
1 < 1. (4.56)

In addition, the expression for j1 (4.51) now takes the simple form

j1 =
1

ω1(2− ω2
1)
. (4.57)

Extremising this over the moduli space (4.56) gives the well-known inequality |j1| ≥
√

27/32. Finally,
condition (3.36) for the removal of conical singularities on IH imposes no further constraints and fixes
the surface gravity to be

κ =

√
3π

8M

√
1− ω2

1

|ω1|
. (4.58)

4.5.2 Doubly spinning black ring

Now we consider the doubly spinning solution corresponding to j2 6= 0. In this case it is no longer
straightforward to solve (4.49) and (4.50) in terms of any of the variables already defined. Firstly, using
(4.49) and (4.50), together with the balance condition (3.24) on ID and the condition for removal of
the conical singularity on ID at z = z3 (3.25), one can show that ω2 = 0 implies j2 = 0 (here we are
also assuming λH , λD > 0). Thus we deduce ω2 6= 0.

It turns out it is convenient to define a new parameter t, using the denominator D defined in (4.50),
by

t =
ω2D

j2λD
. (4.59)

Note that t 6= 0. This gives

fDµ =
ω2

t

(
1− ω2

1

−ω1λD

)
. (4.60)

Now we can solve (4.49) for ji
5

j1 =
ω1(t2(1 + λD)− ω2

2(t− 1 + ω2
1)(t− 2 + ω2

1(2 + λD))

t2 − ω2
1ω

2
2(t− 1 + ω2

1)2
,

j2 =
tω2(t− 2 + ω2

1)(1− ω2
1(1 + λD))

t2 − ω2
1ω

2
2(t− 1 + ω2

1)2
,

(4.61)

and then (4.59) for ω2
6

ω2
2 =

t2(1− ω2
1 − λD(t− 2 + 2ω2

1))

(t− 2 + 2ω2
1)(1− ω2

1(1 + λD))
. (4.62)

This gives two branches of solutions corresponding to either ω2 > 0 or ω2 < 0. We have now solved for
the generic7 unbalanced doubly spinning black ring solution parameterised in terms of (M,ω1, t, λD).

5Using (4.49) and (4.59) one can show that the denominator of (4.61) being zero is incompatible with λH , λD > 0
and the conditions for the removal of conical singularities (3.24) and (3.25).

6The denominator of (4.62) can never vanish since the denominator of (4.61) is nonzero and j2 6= 0.
7As explained above, a couple of possible special cases were ruled out using the balance condition.
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Now consider the possible conical singularities on ID. To remove this the balance condition (3.24)
and the regularity condition (3.25) at z = z3 must be satisfied, which in this case reduces to

ω4
1λD + ω2

1(1 + tλD)− 1 = 0. (4.63)

Note that this implies that ω1 6= 0. Solving this for λD one finds8

λD =
1− ω2

1

ω2
1(t+ ω2

1)
. (4.64)

The expressions (4.61), (4.62) and (3.194) can be simplified with this result and one finds

j1 =
1 + (t− 1 + 2ω2

1)(t− 1 + ω2
1)

ω1(t+ ω2
1)2

, j2 =
ω2(t− 1 + ω2

1)(t− 2 + 2ω2
1)

t(t+ ω2
1)2

, (4.65)

ω2
2 =

t2(ω4
1 − (t− 2)(1− ω2

1))

ω2
1(t− 1 + ω2

1)(t− 2 + 2ω2
1)
, (4.66)

λH =
(1− ω2

1)(t− 2 + ω2
1)

ω2
1(t+ ω2

1)
= λD(t− 2 + ω2

1). (4.67)

This gives the balanced doubly rotating solution, however one still needs to find the bounds on the
parameters (M,ω1, t). These turn out to be given by M > 0,

0 < 1− ω2
1 < t− 1, t < ((1− ω2

1) + (1− ω2
1)−1). (4.68)

Positivity of the rod lengths λH , λD > 0 is equivalent to the first condition and the second condition
then corresponds to ω2

2 > 0. The conditions (3.134) and (3.135) are then automatically satisfied and
impose no further constraints.

Note that the limit curve given by t → ((1 − ω2
1) + (1 − ω2

1)−1) corresponds to the ω2 → 0 (or
equivalently j2 → 0) singly spinning limit. It turns out that taking this limit one recovers the results
of the previous section on the S1 spinning ring as one might expect. Therefore, although the original
definition of t (4.59) only holds when j2 6= 0, this parameterisation can be extended to cover the singly
spinning case as well.

Finally consider the horizon rod IH . Using the parameters (M,ω1, t), we find that both χi(z)|z→z1 =
0 and (3.192) are automatically satisfied (as they must be). There are no further constraints from
removing conical singularities at the endpoints of IH since (3.36) is also satisfied automatically for a
surface gravity given by

κ =

√
3π

8M(t− 1 + ω2
1)

(1− ω2
1)(t− 2 + ω2

1)(t+ ω2
1)

|ω1|(t− 2 + 2ω2
1)

. (4.69)

From this one can explicitly see that the limit curve ω1 →
√

2− t, which is a boundary of the moduli
space of solutions, corresponds to extremal solutions as one might expect. On the other hand although
κ = 0 as ω1 → 1, this corresponds to a singular solution since λD → 0 in this limit.

We have now constructed the most general regular solution on the axes and horizon with the
given rod structure. We will now show that our solution maps exactly to the Pomeransky-Sen’kov

8If t+ ω2
1 = 0, using (4.63) and (4.62) one can show that the denominator of (4.61) is zero which is a contradiction.

Therefore (4.64) is the unique solution of (4.63).
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solution for the balanced doubly rotating black ring. Chen, Hong and Teo [75] present the solution for
ω1 > 0, ω2 > 0 in terms of the parameters (χ, µ, ν), satisfying

χ > 0, 0 < ν < µ < 1. (4.70)

Note that we take ν 6= µ since we are considering non-extremal solutions and ν 6= 0 since we are
considering ω2 6= 0. To find an expression for t in terms of these variables, first use (4.67) to give

t = (2− ω2
1) +

λH
λD

. (4.71)

Using this, combined with the expressions for M,Ω1, `H , `D from the known solution gives

M =
3πχ2(µ+ ν)

(1− µ)(1− ν)
, ω2

1 =
2(µ+ ν)

(1 + µ)(1 + ν)
, t =

2(1 + µ2)(1− ν)

(1− µ2)(1 + ν)
. (4.72)

Inverting these relations for χ2, µ and ν gives

χ2 =
2M

3π

(1− ω2
1)

ω2
1

, µ =
x− (1− ω2

1)

x+ (1− ω2
1)
, ν =

1− x
1 + x

, (4.73)

where

x =
√

(1− ω2
1)(t− 1 + ω2

1). (4.74)

A short calculation also demonstrates that these expressions give bijections between the subspaces
defined by (4.70) and (4.68) restricted to ω1 > 0, ω2 > 0. One can also show that the metric data on
the axis and horizon rods agrees precisely under this map. Therefore, we deduce that the Pomeransky-
Sen’kov black ring is the most general regular solution within this class of rod structures (for ω2 = 0
see the singly spinning case above).

4.6 Black lens solution

An L(p, q) lens space is a topological space which can be described in the following way:

L(p, q) =

{
S1 × S2, p = 0

S3/ ∼, otherwise
(4.75)

where ∼ is given by (w1, w2) ∼ (e2πi/pw1, e
2πiq/pw2) where (w1, w2) ∈ {(w1, w2) ∈ C2 : |w1|2 + |w2|2 =

1} ∼= S3.
In this section we will look at a black hole with lens space horizon topology - a so-called black lens.

We consider the rod structure for the simplest black lens as in Figure 4.5 below. Thus we have four

(0, 1) H (n, 1) (1, 0)

Figure 4.5: Rod structure for a black lens with L(n, 1) horizon topology.

rods: IL = (−∞, z1), IH = (z1, z2), ID = (z2, z3) and IR = (z3,∞), where IH is a horizon rod and
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ID is an axis rod with rod vector to be vD = (n, 1) where n ∈ Z. Indeed, up to irrelevant discrete
choices this is the most general rod structure with one horizon and one finite axis rod that is compatible
with asymptotic flatness and obeys the admissibility condition det(vD, vR) = ±1 (this latter condition
ensures the absence of orbifold singularities at z = z3) [56]. The topology of the horizon is the lens
space L(n, 1) and the finite axis rod ID lifts to a noncontractible 2-disc in the spacetime. For n = 0
this is the rod structure for the black ring solution (Figure 4.4). For n = ±1 the horizon topology
L(1, 1) ∼= S3 is spherical, although the rod structure is distinct to that of the Myers-Perry black hole
(Figure 4.3). We use the adapted basis ẼA = (k,m1, vD) for ID, i.e. uD = (1, 0), so the change of
basis matrix LD (3.40) is given by

LD =

1 0 0
0 1 0
0 −n 1

 . (4.76)

4.6.1 Moduli space equations

The general axis solution is given by Theorem 8 and depends on the same parameters as given for the
black ring (4.47), where again we choose a gauge in which χi(z1) = 0.

From the asymptotics for the solution on IL and IR given in (3.180) and (3.181) we find the mass
M and angular momenta Ji are given by (3.191) and (3.192) and the Ernst potentials are

fLµ = ω2

(
1
−j1

)
− fDµ , fRµ = ω1

(
−1
j2

)
+ n

(
fD0

−λD − nfD1

)
, (4.77)

where we have eliminated `H and χi(z2) in favour of M and Ji using (3.191) and (3.192), and introduced
dimensionless variables according to (3.193) and (3.195). The asymptotics of the solution also give
non-trivial equations for the angular momenta

j1 = ω1 − ω1j2(ω2 − fD0 ) + (λD + nfD1 )(ω1 − nfD0 ),

j2 = −fD0 + (1− ω1j1)(ω2 − fD0 )− fD1 (ω1 − nfD0 ).
(4.78)

where the previous relations have been used to eliminate variables in favour of ji, ωi, f
D
µ , λD.

Next consider ID. We find that bDµ (z)|z→z2 = 0 gives the new constraints

fDµ =
λD
D

(
j2 + nj1 − (n+ j2(ω1 − nω2))(ω1 − nfD0 )

−(n+ j2(ω1 − nω2))λD

)
(4.79)

where

D := (1− ω1j1)(1− j1(ω1 − nω2))− (j2 + nj1)fD0

+ (2nλD − ω1j2 + (n2 − 1)fD1 )(n+ j2(ω1 − nω2)).
(4.80)

These equations are well defined since D > 0. As with the black ring in the previous section this follows
from the relation D = 2λHλDr

−
D together with (3.138) and positivity of the rod lengths.

To summarise, we have shown that the solution is parameterised by the mass M > 0 and the
seven dimensionless parameters λD, f

D
µ , ji, ωi subject to the four algebraic equations (4.78), (4.79) and

various inequalities (3.136), (3.134), (3.135), (3.138), (3.139). Generically this leaves a four-parameter
family of solutions which we expect to correspond to the general unbalanced doubly spinning black lens
(also a four-parameter family, proven to exist in [69]) by appealing to Conjecture 2.
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Finally we restrict to regular solutions by demanding the absence of conical singularities as ρ→ 0 at
the finite axis rod ID and also at the corner z = z3 where two axis rods ID and IR meet. This imposes
conditions (3.24), (3.25), a consequence of which is the “continuity condition”9

hD
′
(z3) = −hR′(z3) . (4.81)

Using (3.120), (3.138) one finds hD
′
(z3) = −1/r+

D and hR
′
(z3) = −1/r−R so that the continuity

condition is equivalent to
r+
D + r−R = 0 . (4.82)

Defining C := −2λD(λH + λD)(r+
D + r−R), this becomes equivalent to

C = (1− ω1j1)(1− j1(ω1 − nω2) + 2λD)− (j2 + nj1)fD0

+ ((n2 − 2)fD1 − ω1j2)(n+ j2(ω1 − nω2))

+ (n(n2 − 2)fD1 + n2(1− ω2j2 + λD)− 1)λD = 0.

(4.83)

We find that (4.83) is a convenient way to impose the regularity conditions listed above, even though
a priori it is only a consequence of the balance condition (3.24) and regularity at the corner z = z3.
Thus, by a slight abuse of terminology we will often refer to (4.83) simply as the balance condition.

Equations (4.78), (4.79) and (4.83) are substantially more difficult to solve than even the equivalent
moduli space equations for the black ring considered in the previous section. For this reason it is
convenient to first analyse various special cases that are tractable, such as the static limit and two
distinct singly spinning limits, before considering the full doubly spinning solution.

4.6.2 Static black lens

For simplicity first suppose that ji = 0 for i = 1, 2. We expect this case to be static (see staticity
theorem [68]) and hence necessarily singular, in line with the static uniqueness theorem [49].

First consider (4.79), which in this case reduces to

fDµ = −nλD
D

(
ω1 − nfD0

λD

)
, (4.84)

where
D = 1 + n(2nλD + (n2 − 1)fD1 ). (4.85)

Eliminating D between the two components of (4.84) gives (λD +nfD1 )(ω1−nfD0 ) = ω1λD after some
algebra. Using this in the first equation of (4.78) gives ω1(1 + λD) = 0 and therefore ω1 = 0 since
λD > 0. The µ = 0 component of (4.84) then gives that either fD0 = 0 or D = n2λD, however the
latter case can be shown to lead to a contradiction by combining it with µ = 1 component of (4.84)
and then with (4.85) and λD > 0. Now, the second equation of (4.78) gives ω2 = 0.

Next consider the µ = 1 component of (4.84). To solve this it is convenient to define a new
parameter t according to

t :=
D

λD
− n2, (4.86)

which can be used to write fD1 as

fD1 =
−nλD
t+ n2

. (4.87)

9So named since it is equivalent to the continuity of |(z − z3)|e2ν . See appendix 3.B for further details.
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Note that t + n2 6= 0 since, as we have already discussed, D 6= 0 is required by the positivity of the
finite rod lengths. Using (4.87) in (4.86) with the explicit form of D and solving for λD in terms of t
gives

λD =
t+ n2

t2 − n2
. (4.88)

This expression is well-defined since if t2 = n2 that would imply that t+n2 = 0, which as just mentioned
is not allowed. Substituting this back into (4.87), one can write fD1 purely in terms of t to find

fD1 =
−n

t2 − n2
. (4.89)

To summarise, we have shown that the asymptotic relations (4.77) and the conditions (4.78) and
(4.79) imply fL0 = fD0 = fR0 = 0 along with

λH = 1, fL1 = −fD1 , fR1 = −n(λD + nfD1 ), ωi = 0 , (4.90)

with fD1 and λD determined by a single parameter t as above. This is in line with our expectation that
ji = 0 implies the solution is static.

Finally we consider the constraints imposed by positivity of the rod lengths (3.136) and the signature
conditions (3.134), (3.135). Obviously λH > 0 is trivially satisfied, whereas λD > 0 gives two possible
branches:

Branch 1: t > |n|
Branch 2: − n2 < t < −|n|, n 6= 0,±1.

(4.91)

As discussed in the previous section the signature conditions imply the conditions (3.138), which for
the upper endpoint of the finite axis rod ID gives

r+
D = −1

2
(t+ 1) < 0. (4.92)

This is satisfied for Branch 1 (in which case t > 0) and is violated for Branch 2 (in which case t < −2).
Thus we must discard Branch 2. Moreover, one can show that (3.134) and (3.135) are satisfied fully
for Branch 1 demonstrating that this corresponds to the unique unbalanced static solution for this rod
structure.

Finally, consider the balance condition (4.83), which simplifies to

C =
t(1 + t)(t2 + n2(1 + t))

(t2 − n2)2
= 0. (4.93)

This condition is clearly violated for any n ∈ Z since above we have shown t > |n|.10 This shows that
there are no regular static black lenses with this rod structure, as expected.

4.6.3 A singly spinning black lens

Next we consider the j2 = 0 case of the black lens. The relations from the asymptotic conditions (4.77)
and (4.78) reduce to

λH = 1− ω1j1,

fLµ = ω2

(
1
−j1

)
− fDµ , fRµ =

(
nfD0 − ω1

−n(λD + nfD1 )

)
,

(4.94)

10In fact, for Branch 2 one can solve C = 0 for |n| ≥ 3. However, in this case r±D > 0, r−R < 0, which implies that the
invariants hD and hR are singular at an interior point of ID and IR respectively. This is consistent with [129].
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and
j1 = ω1 + (λD + nfD1 )(ω1 − nfD0 ),

0 = −fD0 + (1− ω1j1)(ω2 − fD0 )− fD1 (ω1 − nfD0 ),
(4.95)

respectively. The consistency condition (4.79) becomes

fDµ =
nλD
D

(
j1 − (ω1 − nfD0 )

−λD

)
, (4.96)

where
D = (1− ω1j1)(1− j1(ω1 − nω2))− nj1f

D
0 + n(2nλD + (n2 − 1)fD1 ). (4.97)

We can solve these equations by introducing a new parameterisation as follows.
Define u by

u := −j1 − (ω1 − nfD0 )

λD
, (4.98)

which is well-defined since λD > 0. This allows us to write the µ = 0 component of equation (4.96) as

fD0 = fD1 u, (4.99)

and combining this with the definition of u we can solve for

j1 = ω1 − u(nfD1 + λD). (4.100)

Substituting this into (4.95) implies11

ω1 = (nfD1 − 1)u, ω2 = fD1 u , (4.101)

which then implies

D = ((1− u2(1 + λD))2 − n2)(1− nfD1 ) + n2(1 + λD). (4.102)

Now define new parameters t and v according to

t :=
D

λD
− n2, v := −u

√
1 + λD, (4.103)

so that just as for the static case we can write

fD1 =
−nλD
t+ n2

, (4.104)

where t + n2 6= 0 since D 6= 0. This allows one to solve the µ = 1 component of (4.96) for λD to
obtain

λD =
(t+ n2)(1− v2)2

t2 − n2(1− v2)2
. (4.105)

This expression is well defined since t2 − n2(1 − v2)2 = 0 implies that v2 = 1 which in turn implies
λH = −λD < 0 from (4.94) which contradicts rod length positivity. Now we can express all remaining
quantities in terms of t and v:

λH =
(t2 − n2(1− v2))(1− v2)

t2 − n2(1− v2)2
,

j1 = v
√

1 + λD, ωi =
v

(t2 − n2(1− v2)2)
√

1 + λD

(
t2

n(1− v2)2

)
.

(4.106)

11In fact (4.95) admits a second solution, with fD1 = −λD/n, however this implies that r−R = 0 which violates (3.138).
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The conditions λD > 0 and λH > 0 constrain the precise moduli space of solutions. There are three
possible branches

Branch 1: v2 < 1, t >
√

1− v2|n|
Branch 2: v2 < 1, −n2 < t < −

√
1− v2|n|, n 6= 0

Branch 3: v2 > 1 + |n|, −(v2 − 1)|n| < t < −n2, n 6= 0.

(4.107)

To determine which branch actually corresponds to the unbalanced black lens consider the signature
conditions (3.134) and (3.135). As in the static case it is helpful to consider the simpler conditions
(3.138) on the finite axis rod ID which are

r−D =
1

2λH
(t+ n2) > 0, r+

D = −1

2

(
t

1− v2
+ 1

)
< 0 . (4.108)

The first condition rules out Branch 3, whilst the second condition implies that t/(1− v2) > −1, which
rules out Branch 2 (since t/(1 − v2) < −1 in that case). On the other hand, Branch 1 satisfies both
these conditions and furthermore it can be shown that the full conditions (3.134) and (3.135) are also
satisfied in this case. Therefore Branch 1 gives the unique unbalanced solution for a singly spinning
black lens for this rod structure. This is as one might expect since the limit v → 0 of this branch gives
the unbalanced static solution found in the previous section.

It is interesting to consider the moduli space of solutions in terms of physical parameters. In
particular, we find that j1 for the unbalanced singly spinning black lens (n 6= 0) (4.106) is bounded
above:

|j1| <

√
1 +

1

|n|
. (4.109)

Solutions with j1 arbitrarily close to this upper bound can be found near the corner in (t, v)-space given
by t = |n|

√
1− v2 and v = 0. To see this, first note that from (4.106) it is easy to show that |j1| for

fixed v is a monotonically decreasing function of t over the domain defined by Branch 1 and therefore is
bounded by its value at t = |n|

√
1− v2. Then one finds that |j1(t = |n|

√
1− v2, v)| is monotonically

decreasing in |v| and is thus bounded by its value at v = 0 which is given by the RHS of (4.109). We
remark that the curve t = |n|

√
1− v2 corresponds to a component of the extremal locus λH = 0 and

therefore the upper bound on j1 arises from the extremality bound. This result is in clear contrast to
the singly spinning black rings (n = 0) for which j1 can be arbitrarily large for both the unbalanced and
balanced solutions (note that this is consistent with the n→ 0 limit of (4.109)).

Finally, the balance condition (4.83) reduces to

C =
t(1− v2)2 [(n2 − 1)t2 + (t+ 1− v2)(t2 + n2(1− v2)) + t(1− v2)(t+ n2)]

(t2 − n2(1− v2)2)2
= 0. (4.110)

For n = 0 this can be solved to give t = 2v2 − 1 and 1
2
< v2 < 1, which is the regular S1 spinning

black ring. For n 6= 0 the expression after the first equality is strictly positive in the domain defined
by Branch 1, so the balance condition cannot be satisfied for any values of t and v in the moduli
space of unbalanced solutions. Curiously, C = 0 can be satisfied for n 6= 0 in the domain defined by
Branch 2 or 3, although in either case r−Dr

+
D > 0 so the invariant hD(z) must change sign on ID and is

thus singular at an interior point of this axis rod (this follows from (3.120) and the fact that the only
possible singularities of Fa(z) on Ia are at its endpoints)12. This proves that there are no regular singly

12Similarly for Branch 2, one has r−R < 0 so hR(z) must change sign on IR and thus posses a singularity on this axis.
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spinning black lenses for this rod structure with n 6= 0. This explains why the previously constructed
singly spinning black lens solutions must have conical singularities that cannot be removed or naked
singularities [129, 151].

4.6.4 A distinct singly spinning black lens

Another natural singly spinning black lens is given by j2 +nj1 = 0. Solving for j2 = −nj1, the relations
from the asymptotic conditions (4.77), (4.78) now give

λH = 1− j1(ω1 − nω2)

fLµ = ω2

(
1
−j1

)
− fDµ , fRµ = −ω1

(
1
nj1

)
+ n

(
fD0

−λD − nfD1

)
(4.111)

and the equations
j1 = ω1 + nω1j1(ω2 − fD0 ) + (λD + nfD1 )(ω1 − nfD0 )

−nj1 = −fD0 + (1− ω1j1)(ω2 − fD0 )− fD1 (ω1 − nfD0 ).
(4.112)

Condition (4.79) becomes

fDµ =
−nλD
P

(
ω1 − nfD0

λD

)
, (4.113)

where

P :=
D

1− j1(ω1 − nω2)
= 1 + 2n2λD + (n2 − 1)(nfD1 + ω1j1). (4.114)

Note that (4.113) is well-defined since P 6= 0 as a consequence of 1 − j1(ω1 − nω2) = λH > 0 and
D 6= 0.

L(1, 1) horizon

First, consider the special case n = ±1. Then the equations (4.112) and (4.113) can be solved
straightforwardly in terms of λD and ω1 to give

j1 =
ω1(1 + λD)

1 + ω2
1(1 + 2λD)

, ω2 = ∓ω1(2(1 + λD)2 − 1)

1 + λD
,

fD0 = ∓ ω1λD
1 + λD

, fD1 = ∓ λ2
D

1 + 2λD
,

(4.115)

which imply that

λH =
1− ω2

1(1 + λD)(1 + 2λD)

1 + ω2
1(1 + 2λD)

. (4.116)

The inequalities λH , λD > 0 are thus equivalent to the region

λD > 0, ω2
1 < ω2

ext :=
1

(1 + λD)(1 + 2λD)
, (4.117)

where the upper bound for ω1 is equivalent to the extremality bound λH = 0 (hence the notation).
The signature conditions (3.134), (3.135) now turn out to be satisfied automatically. Hence we have
fully determined the moduli space in this case.
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This case also turns out to have an upper angular momentum bound given by

|j1| <
1√
2
. (4.118)

This arises from the following facts: (i) j1(ω1, λD) is monotonic in ω1 over the domain (4.117) and is
thus bounded by its value at the extremality bound; (ii) |j1(ωext, λD)| is monotonic in λD and hence
bounded by its value as λD →∞ which is the RHS of (4.118). Observe that in this case we get a more
stringent bound for j1 than in the singly spinning case j2 = 0 which from (4.109) gives |j1| <

√
2.

Next, the balance condition (4.83) in this case can be written as

C =
λH(1 + 2λD)

1 + λD
+

λD(1 + 3λD(1 + λD)(2 + λD))

(1 + λD)(1 + 2λD)(1 + ω2
1(1 + 2λD))

= 0 , (4.119)

which is clearly incompatible with λH > 0, λD > 0 and so there are no regular solutions in this class.

L(n, 1) horizon

We now return to the general case n2 > 1. Since P 6= n2λD
13 we can define a new nonzero parameter

t :=
nλD

P − n2λD
. (4.120)

Rearranging this for P gives

P =
nλD(1 + nt)

t
, (4.121)

and using this expression for P in equations (4.113) one can solve for fDµ to obtain

fDµ = −t
(
ω1
λD

1+nt

)
. (4.122)

Note that since P 6= 0 we must have 1 + nt 6= 0 and so the expression for fD1 is well defined. Next,
substituting into the definition (4.114) gives an expression linear in j1 which is solved to give

j1 = −t(1 + nt)− nλD(1− t2)

tω1(n2 − 1)(1 + nt)
, (4.123)

where we assume ω1 6= 0 (ω1 = 0 leads to the static black lens which we have already analysed
separately in section 4.6.2)14. Now consider equations (4.112): the first equation can be solved for ω2

and then the second can be solved for ω2
1 resulting in

ω2 =
t(1 + nt)− nλD(1− t2)− tω2

1((1 + nt)(1 + n(t− n)(1 + λD))− (n2 − 1)λD)

nω1(t(1 + nt)− nλD(1− t2))
,(4.124)

ω2
1 = − λD(1− t2)(t(1 + nt)− nλD(1− t2))

t(1 + λD)(1 + nt)2(t(n+ t)− λD(1− t2))
, (4.125)

where the choice of sign for ω1 is not fixed. It is easy to see that the denominator for ω2 is nonzero
in view of our assumptions n2 > 1, ω1 6= 0 and j1 6= 0 together with (4.123) (if j1 = 0 then j2 = 0

13If P = n2λD then (4.113) gives ω1 = 0 and nfD1 = −λD and (4.114) reduces to λD = −1 which violates λD > 0.
14To see this, note that eliminating P in (4.113) gives (ω1 − nfD0 )fD1 = λDf

D
0 which implies that (λD + nfD1 )(ω1 −

nfD0 ) = ω1λD. Substituting this into the first equation of (4.112) gives j1 = 0 and hence j2 = 0.

99



which is the static case). It is also easy to show that the denominator of ω2
1 is nonzero under these

assumptions15 so both expressions are indeed well-defined.
Equations (4.112) and (4.113) have now been solved in terms of t and λD with an additional choice

of sign from ω1. In these variables λH is given by

λH =
(1 + nt)(t2(n+ t)(1 + λD)− n(1− t2)λ2

D)

tλD(n2 − 1)(1− t2)
. (4.126)

The moduli space is defined by λH , λD, ω
2
1 > 0 along with the conditions (3.134), (3.135). As for the

special cases considered previously it is convenient to consider these latter conditions in the weaker form
(3.138) and in particular

r+
D = −n+ t

2t
< 0. (4.127)

By combining this with λH , λD, ω
2
1 > 0, one can show that t and λD must satisfy

t(1 + nt)

n(1− t2)
< λD < λextD :=

t2(n+ t) + t
√
t2(n+ t)2 + 4n(1− t2)(t+ n))

2n(1− t2)
,

nt > 0, 1− t2 > 0.

(4.128)

These conditions turn out to be sufficient to imply the full conditions (3.134) and (3.135) and so
describe the full space of unbalanced solutions in this case. The upper bound on λD corresponds to
extremal solutions with λH = 0 and the lower bound corresponds to the static limit of Section 4.6.2
(though note that a different parameter t is used there).

One again finds a bound on the angular momentum which in this case is given by,

|j1| <

√
1

|n|(1 + |n|)
. (4.129)

This follows from the fact that (4.123) for fixed t is monotonically increasing in λD in the region (4.128),
so it is bounded by its value at λD = λextD . Next one can show that |j1(t, λextD )| is monotonically increasing
in |t| so it is bounded by its value at |t| = 1 which gives (4.129). Note that (4.129) agrees with the
n = ±1 special case we found above (4.118). Thus for general n we again have a more stringent bound
for j1 than in the j2 = 0 singly spinning case (4.109).

Finally consider the balance condition (4.83). This can be written as

C =
λD

n2 − 1
+
λHλD(n+ 2t)

t(1 + nt)
+
t(n+ t)((n2 − 2) + nt)(1 + λD)

(1− t2)(n2 − 1)
= 0 , (4.130)

which cannot be satisfied for any t and λD in the moduli space (4.128) since each of the three terms
after the first equality is manifestly positive. This proves that for n2 > 1 there are no regular singly
spinning solutions of this kind.

4.6.5 Myers-Perry limit

Next we consider the question of what happens to these L(n, 1) black lens solutions as n becomes
arbitrarily large. The rod vector on the finite axis rod vD = (n, 1) clearly diverges in this limit, however,

15If t(n + t) − λD(1 − t2) = 0 one can solve for λD = t(n+t)
1−t2 (since n2 6= 1 means that 1 − t2 6= 0). Then (4.112)

gives t = −n (since ω1, j1 6= 0) and hence λD = 0, which is not allowed.
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since any multiple of the rod vector also vanishes on ID we can rescale it so that it has a finite limit
to obtain n−1vD → (1, 0) = vR as n → ∞ (of course this will spoil the periodicity of vD for finite n,
although not in the limit n → ∞). Therefore, in this limit ID becomes part of IR and hence the rod
structure as n → ∞ reduces to that of the Myers-Perry black hole. This suggests that the n → ∞
limit of the unbalanced L(n, 1) black lens solution should be the Myers-Perry solution. This turns out
to be the case and can be seen to emerge from our moduli space equations as follows.

Recall the moduli space of unbalanced solutions is given by four equations (4.78) and (4.79) for
seven parameters fDµ , ji, ωi, λD.16 We take ωi, λD as the independent parameters and solve for fDµ , ji
by assuming they are finite (possibly vanishing) in the n→∞ limit and that they admit an expansion in
n−1. Then, expanding (4.79) in n−1 we find that the leading order terms immediately give fD0 = O(n−1)
and fD1 = −λD/n+O(n−2). Equations (4.78) and (4.77) then imply that

j1 =
ω1(1− ω2

2)

1− ω2
1ω

2
2

+O(n−1) , j2 =
ω2(1− ω2

1)

1− ω2
1ω

2
2

+O(n−1)

λH =
(1− ω2

1)(1− ω2
2)

1− ω2
1ω

2
2

+O(n−1).

(4.131)

The leading order terms here are precisely the expressions for the Myers-Perry solution [3]. Next we
consider the bounds on the moduli for these unbalanced solutions. In particular from (3.138) we obtain

r−H = − 3π

16M
(1− ω2

1) +O(n−1) < 0, r+
H =

3π

16M
(1− ω2

2) +O(n−1) > 0 , (4.132)

which immediately gives |ωi| < 1 to leading order and is sufficient to imply the remaining inequalities
that define the moduli space λH > 0, (3.134) and (3.135). These are also the moduli space conditions
for Myers-Perry solutions and in particular imply that |j1|+ |j2| < 1 to leading order.

Now we consider the balance condition (4.83) in this limit. Using the expansions of fDµ and ji found
above, the leading term in the large n expansion of (4.83) fixes the n−2 term in fD1 :

fD1 = −λD
n

+
ω1ω2λD(1− ω2

1)

n2((1− ω2
2) + λD(1− ω2

1ω
2
2))

+O(n−3). (4.133)

Note that the conditions |ωi| < 1 ensure the denominator is nonzero. Next, one can solve the µ = 0
component of (4.79) for the n−1 term in the expansion of fD0 provided ω1ω2 6= 0 (this involves the
n−1 terms in the expansion of j1 and j2). Finally, using these expansions the first equation of (4.78)
becomes

ω2(1− ω2
1)(λD + λH)

n((1− ω2
2) + λD(1− ω2

1ω
2
2))

+O(n−2) = 0 (4.134)

for ω1ω2 6= 0. The coefficient of the leading term is nonzero since |ωi| < 1, λD, λH > 0, resulting in a
contradiction for large enough n. For ω1ω2 = 0 one has to repeat the above analysis, although once
again one finds that no regular solutions are possible in this limit. This demonstrates that no regular
solutions exist in the large n limit.

It is worth noting that there is another, more obvious, limit of the unbalanced black lens which
reduces to the Myers-Perry solution. This is λD → 0 with all other parameters held fixed, which
corresponds to simply shrinking the finite axis rod ID away, resulting in the same rod structure as the
Myers-Perry solution. One can see this explicitly by solving our moduli space equations in this limit,
which imply

fD0 = ω2λD +O(λ2
D), fD1 = O(λ2

D) (4.135)

16For simplicity, in this section we are assuming the validity of the conjecture stated at the end of Section 4.6.1.
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and ji, λH , r
±
H are given by the above expressions with O(n−1) replaced by O(λD). Thus to leading

order |ωi| < 1 and the ji are given by the Myers-Perry expressions. Then, the balance condition (4.83)
in this limit is

C =
(1− ω2

1)2

1− ω2
1ω

2
2

+O(λD) = 0 , (4.136)

which clearly cannot be satisfied for small enough λD since the first term is positive. Thus no regular
solutions exist in this limit either.

4.6.6 Doubly spinning black lens

We now study the general moduli space equations for the black lens (4.78), (4.79) together with the
balance condition (4.83). On general grounds one would expect the moduli space of regular solutions
to fill out a 2-dimensional subset of the (j1, j2) plane (or be empty). To see this, first note that from
an existence theorem we know there must be a 4-dimensional moduli space of unbalanced black lens
solutions parameterised by (J1, J2) ∈ R2 and `H > 0, `D > 0 [69]. Therefore, since we expect the
balance condition on the finite axis rod to reduce the number of parameters by one, it is reasonable
to expect that the moduli space of regular solutions is 3-dimensional (if it is non-empty). For a given
mass M > 0 this is then equivalent to a 2-dimensional subset of the (j1, j2)-plane. For reference, for
the Myers-Perry S3 black holes this region is simply |j1| + |j2| < 1, whereas for the black ring it is an
unbounded region [15] (we plot this in our figures below).

The moduli space equations and balance condition possess the following discrete symmetries:17

g1 : (n, j1, ω1, j2, ω2, f
D
0 , f

D
1 , λD)→ (−n,−j1,−ω1, j2, ω2, f

D
0 ,−fD1 , λD), (4.137)

g2 : (n, j1, ω1, j2, ω2, f
D
0 , f

D
1 , λD)→ (−n, j1, ω1,−j2,−ω2,−fD0 ,−fD1 , λD). (4.138)

The g1-symmetry originates from the orientation-reversing symmetry m1 → −m1, n→ −n, vR → −vR,
whereas the g2-symmetry arises from m2 → −m2, n → −n, vD → −vD, vL → −vL. Using these we
may restrict to the region j1 ≥ 0 and n > 0, which we will henceforth (we exclude the n = 0 case as
that corresponds to the black ring).

Unfortunately, we have been unable to solve the moduli space equations and balance condition
analytically in general. Nevertheless, we have verified numerically that for a large sample of solutions
to these equations at least one of the inequalities λH > 0, λD > 0, (3.138), (3.139) is violated. We
give more details on our numerical checks below. First, it is instructive to consider the moduli space
of solutions to the moduli space equations (4.78), (4.79) without imposing the balance condition.
As explained above this should correspond to a 4-dimensional space, or, in terms of our dimensionless
variables, a 3-dimensional space. We have numerically solved these equations and plotted the projection
of this space to the (j1, j2) plane for n = 1, 2, 3, 10 in Figure 4.6 and n = 100 in Figure 4.7. Specifically,
these plots were obtained by numerically solving the moduli space equations at values of j1 and j2

centred around the origin (on a square grid of spacing 0.02) and values of λD from 0 to 103 with
greatest density of sampling in the interval 0 < λD < 1. Then the plotted points correspond to
solutions of these equations which also satisfy λH > 0, (3.134) and (3.135).

These plots suggest that the moduli space for unbalanced L(n, 1) black lenses is a bounded region
in the (j1, j2)-plane somewhat akin to that of the Myers-Perry solution. As n increases this region
approaches that of the Myers-Perry solution, indeed, the n = 100 solution already closely approximates
the Myers-Perry moduli space, in line with our large n analysis in Section 4.6.5. For general n, the upper
bound for j1 is clearly determined by that of the j2 = 0 solution and is consistent with the analytic

17It is easy to see this is the case for (4.78), (4.79).
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Figure 4.6: The unbalanced L(n, 1) black lens solution projected to the (j1, j2) plane (black dots). The
shaded regions correspond to the Myers-Perry black hole (orange) and balanced black ring (blue). The
line segments for j2 < 0 are (4.139) (blue, pink) and for j2 > 0 is (4.141) (red).

bound (4.109) we found in this special case. The bounds for j2 are clearly not symmetric about the
j1-axis and for j2 < 0 they are consistent with the analytic bound we found for the j2 = −nj1 case
(4.129). Note that the lack of symmetry about the j1-axis is a consequence of the rod structure and
that we have fixed the discrete g2-symmetry discussed above.

In more detail, the plots suggest that the boundary of the moduli space consists of several segments.
For j2 < 0 there appear to be three boundary segments which, based on the numerics and the analytic
upper bounds (4.109), (4.129), we conjecture are:

j2 =


j1 − 1 0 < j1 < qn
n
n+2

(−j1 − sn) qn < j1 < rn
j1 − sn rn < j1 < sn

, (4.139)
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Figure 4.7: The unbalanced L(100, 1) black lens solution projected to the (j1, j2) plane. This closely
approximates the Myers-Perry moduli space, consistent with the analysis in Section 4.6.5.

where sn, rn denotes the j1 upper bound in (4.109), (4.129) respectively, and

qn :=
1− 1

2
n(sn − 1)

n+ 1
. (4.140)

In particular, for n = 1, 2, 3, 10 we find qn ≈ 0.396, 0.258, 0.192, 0.069 with qn → 0 as n → ∞,
which are consistent with the numerics. The first line segment coincides with part of the Myers-Perry
boundary; the second line segment starts at the Myers-Perry boundary and ends at the upper limit of
the j2 = −nj1 solution (4.129) (blue line in the plots); the third line segment ends at the upper limit
of the j2 = 0 solution (4.109) (pink line in the plots).

For j2 > 0 the numerics indicate that there are also three boundary segments, although from the
plots displayed here only two are apparent. The first is a line segment given by part of the Myers-Perry
boundary j2 = 1− j1 for 0 < j1 < un < 3/4; the third line segment is18 (red line on the plots)

j2 =
n

n+ 2
(−j1 + sn) ,

3

4
< vn < j1 < sn .

19 (4.141)

The second segment is a curve which joins these two lines although it is not visible on the plots (we
will not study this here). Note that j1 = 3/4 corresponds to where the balanced black ring and the
Myers-Perry moduli space boundaries meet.

18The blue and red lines are parallel, intersect the j2 axis at equal and opposite values of j2, and the red line ends
at (sn, 0) and the blue line ends at (rn,−nrn). In fact, one can check that the blue, red and pink lines correspond to
extremal λH = 0, λD →∞, solutions to the moduli space equations.

19The value of vn seems to be close to the intersection of the upper curve for the black ring moduli space with the
line defined in (4.141). This is given by vn = 2+3n

4
√
n+n2

and is what has been plotted for the endpoint of that line.
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It is interesting to note that for both the j2 = 0 and j2 = −nj1 singly spinning special cases that
we studied analytically one has the bound

|j1|+ |j2| <

√
1 +

1

|n|
. (4.142)

It is tempting to conjecture that this bound is satisfied for all doubly spinning unbalanced black lenses
(although the moduli space does not fill out the whole of this region as can be seen from the plots).
Indeed inspecting the plots, this inequality seems to be saturated for the part of the moduli space
boundary between j2 = 0 and j2 = −nj1 illustrated by the pink line segments in Figure 4.6, which
correspond to extremal λH = 0, λD →∞ solutions.

We now return to the question of regular black lenses, i.e., solutions in the moduli space of unbal-
anced black lenses which also obey the balance condition (4.83). For all the points sampled in Figures
4.6 and 4.7 we find that C defined in (4.83) is positive. We have also performed further searches by
numerically solving (4.78), (4.79) and (4.83) for n = 1, 2, 3, 10, 100, sampling (j1, j2) in a square grid
in the region −1 ≤ j2 ≤ 1, 0 ≤ j1 ≤ 1.5 with a spacing of 0.015. For all points we find at least one of
the inequalities λH > 0, λD > 0, (3.138), (3.139) is violated. We therefore conclude that regular black
lenses do not exist in this class.

4.7 Discussion

In the previous chapter we looked at the problem of classifying regular, asymptotically flat, stationary,
vacuum black holes in D dimensions with D−3 commuting axial Killing fields. The method we derived
allowed us to construct metric data on the axis along with the corresponding moduli space equations.
In this chapter we have applied this method to various special cases in which it is possible to fully
solve the moduli space equations. In particular, for rod structures corresponding to the Kerr black
hole, the Myers-Perry black holes and the known doubly spinning black rings, we find that the resulting
moduli space of regular solutions coincide precisely with that of the known solutions. Thus our analysis,
together with Theorem 4, provides a proof of uniqueness of these solutions within their class of rod
structures (of course, for the Kerr case we recover the classic no-hair theorem). These proofs are
constructive in the sense that we also obtain the metric and associated Ernst or twist potentials on the
axes and horizon.

We have also presented evidence that black holes with lens space L(n, 1) topology do not exist, for
the simplest possible rod structure (see Figure 4.5). Our evidence is based on an analytic proof that
the conical singularities on the inner axis rod cannot be removed for two different singly spinning cases
(J2 = 0 and J2 + nJ1 = 0), together with numerical evidence for the generic doubly spinning case. In
particular, based on the examples studied in this chapter, we conjecture that any solution to the black
lens moduli space equations (4.78), (4.79) will give C > 0 and hence violate the balance condition
(4.83). Of course, it would be desirable to provide a fully analytic proof of this, ideally by solving the
moduli space equations together with the balance (regularity) condition. Perhaps this could be achieved
by finding an alternate parameterisation of the moduli space.

It is interesting to compare our results to analogous supersymmetric solutions in five-dimensional
minimal supergravity. In that case, regular L(n, 1) black lenses and S3-black holes with 2-cycles in the
DOC are known [110, 108, 109, 111], demonstrating that at least in the presence of supersymmetry,
non-trivial rod structures can be realised. In fact, a complete classification of asymptotically flat,
supersymmetric and biaxisymmetric black hole and soliton solutions has been obtained, revealing an
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infinite class of new black hole/ring/lens solutions with 2-cycles in the DOC [107, 149]. A natural
physical explanation for the existence of such configurations is that the presence of a Maxwell field allows
magnetic flux to ‘support’ the 2-cycles. Indeed, even in the absence of a black hole, this theory possesses
supersymmetric soliton solutions, i.e., asymptotically flat, stationary, everywhere regular spacetimes
with positive energy, which posses 2-cycles supported by magnetic flux [117]. Furthermore, some of the
aforementioned supersymmetric S3-black hole spacetimes with non-trivial topology can be interpreted
as black holes sitting in such soliton spacetimes [111, 149].

The supersymmetric classification reveals that the only regular supersymmetric solutions with the
rod structure studied in the present chapter (see Figure 4.5) is the original L(2, 1) black lens for
|n| = 2 [108] and the black ring for n = 0 [105] (the supersymmetric L(n, 1) black lenses for |n| > 2
necessarily posses extra finite axis rods [109, 107]). Therefore, at least for |n| = 2, one expects that
regular near-supersymmetric black lenses should exist.20 In contrast, here we have found that regular
|n| = 2 vacuum black lenses do not exist. A simple physical interpretation of this is that rotation alone
is not sufficient to support non-trivial topology, although the presence of a sufficiently strong magnetic
flux is. Indeed, this is consistent with the non-existence of vacuum soliton spacetimes. Perhaps this
suggests that the same goes for more complicated rod structures with a single horizon. If so then the
black ring would be an exceptional case for which rotation alone is sufficient to support non-trivial
topology.

In the next chapter we consider the case of minimal supergravity in more detail and in particular we
adapt the method from the previous chapter into this setting, essentially reproducing the same results.

20Existence of soliton and non-extremal black hole solutions, with potential conical singularities on the inner axis rods,
has been recently proven in this theory [97].
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Chapter 5

Constructing Minimal Supergravity
Solutions Using Integrability

5.1 Introduction

In this chapter we will consider AF, stationary and biaxisymmetric solutions in five-dimensional minimal
supergravity. Supersymmetric solutions in this class are fully classified [107], and as we have shown in
Chapter 3, it is possible to write down equations determining the moduli space of any vacuum solutions,
at least in principle. However this leaves generic charged black holes relatively poorly understood. It is
reasonable to expect that given any particular solution in minimal supergravity, there should be a family
of generic charged solutions containing it. This implies that there are a wide range of unknown regular,
non-supersymmetric solutions arbitrarily close to the known families of supersymmetric solutions. For
example we know that supersymmetric black lens and “bubbling” black hole spacetimes exist [108, 109,
110, 111], however their non-supersymmetric counterparts are yet to be constructed.

Our aim in this chapter is to develop a similar classification result in this theory as we have done
in vacuum gravity in Chapter 3. That classification theory was possible because of the fact that the
vacuum Einstein equations are integrable, ultimately a consequence of the equations reducing to a
gravitating 2-dimensional harmonic map with a coset target space SL(3,R)/SO(3). In the minimal
supergravity case there is a similar harmonic map, this time with target space G2(2)/SO(4). As with the
vacuum theory this leads to a pair of linear PDEs whose integrability condition implies the equations of
motion of the theory (BZ pair). We shall see that by integrating these PDEs on the axes and horizons
we are able to derive various metric and gauge field data in these regions, together with constraints on
the moduli space of solutions, just as we did in the vacuum case.

5.2 Background

Consider five-dimensional Minimal supergravity (M,g, F ) with action given by

S =

∫
R ? 1− 2F ∧ ?F − 8

3
√

3
F ∧ F ∧ A, (5.1)

with where A is defined (at least locally) via F = dA. Varying this action with respect to the metric g
and the gauge potential A gives the following equations of motion

RAB = 2F C
A FBC −

1

3
F 2gAB, (5.2)
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d ? F +
2√
3
F ∧ F = 0, dF = 0, (5.3)

where A,B = 0, . . . , 4. We now restrict to the class of solutions with a stationary vector k and 2
commuting axial KVFs mi, i = 1, 2. As we’ve seen previously, this means that the metric can then be
written in Weyl-Papapetrou coordinates (ρ, z, xA)

g = gAB(ρ, z)dxAdxB + e2ν(ρ,z)(dρ2 + dz2), (5.4)

where xA = (t, φi) for ∂t = k, ∂φi = mi and det gAB = −ρ2. Note also that all elements of F other
than FpA = −FAp (p = ρ, z) vanish (see e.g. [92]).

The equations in this sector of MSG are equivalent to a gravitating harmonic map defined on the
orbit space M̂ := M/(R × U(1)2) with coset target space G/H := G2(2)/(SL(2,R) × SL(2,R)),
where G2(2) is the non-compact (split) real form of the group G2. The equations for the Killing part of
the metric and gauge potential can be written as

d ?2 J = 0, J = ρ dMM−1, (5.5)

where ?2 is the Hodge dual on M̂ , or equivalently

∂ρU + ∂zV = 0,

U = ρ∂ρMM−1, V = ρ∂zMM−1,
(5.6)

for some M ∈ G/H satisfying detM = 1. We will give this coset representative M explicitly in the
next section.

These equations are of the same form as the vacuum Einstein equations for g, except with detM = 1
instead of det g = −ρ2 (compare (5.6) with (3.3),(3.4)), and indeed the equation for ν is again given
by (3.5). Therefore the supergravity equations are integrable in the same sense as the vacuum Einstein
equations in that they can be written as the integrability condition of an auxiliary linear system. We
will cover this in more detail in Section 5.3.

In this chapter we will perform a general analysis of this linear system for AF solutions, in particular
on the boundary of the orbit space, following closely the analysis in Chapter 3.

5.2.1 Coset representative

The expression for M comes from reducing the spacetime (M,g, F ) over the two axial KVFs i.e. over
a U(1)2 subgroup of the isometry group. From this perspective g can be rewritten as

g =

(
−ρ2γ−1 + ωiω

i ωi
ωi γij

)
(5.7)

where γ = det γij and ωi = γijω
j. We can describe the Maxwell field F using ψi and µ defined by

dψi = − 2√
3
ιiF,

dµ = −εijψidψj −
2√
3
ι1ι2 ? F,

(5.8)

where ιi = ιmi and ε12 = 1. The 1-forms on the RHS of these equations are closed by equation (5.3)
and can be used to fully reconstruct F (see e.g. [152]). It will also be necessary to define the twist
potential

dχi = Ωi + ψi(3dµ+ εjkψjdψk) (5.9)
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where the twist 1-forms Ωi are given by

Ωi = ?(m1 ∧m2 ∧ dmi) = −γρ−1γij ?2 dωj. (5.10)

The equation for χi is integrable using (5.2). These potentials are only defined up to the gauge
transformations

ψi → ψi + ψ
(0)
i ,

µ→ µ− εijψ(0)
i ψj + µ(0)

χi → χi + 3ψ
(0)
i µ− εjkψ(0)

j ψk(ψi + 2ψ
(0)
i ) + χ

(0)
i

(5.11)

for constants ψ
(0)
i , µ(0), χ

(0)
i .

We will construct M using a 14-dimensional fundamental representation of the Lie algebra g2,
written in terms of a basis of 7× 7 matrices denoted by {m j

i ,n
i, li,pi,q, r

i, t}1. To write things in a
convenient way we also introduce the homomorphisms ι : SL(3,R)→ G2(2) and ι0 : GL(2,R)→ G2(2)

(we slightly abuse notation here and throughout this chapter by referring to G2(2) and g2 when strictly
speaking we mean their representations). These are given by

ι[A] =

A 0 0
0 AT−1 0
0 0 1

 , ι0[B] = ι

[(
B 0
0 (detB)−1

)
,

]
(5.12)

where A ∈ SL(3,R) and B ∈ GL(2,R). The images of ι and ι0 are the subgroups given by exponen-
tiating the subalgebras 〈m j

i ,n
i, li〉 ∼= sl3 and 〈m j

i 〉 ∼= gl2 respectively. Finally we can define

M = STM0S, S = exp (ψir
i) exp (µq) exp (χin

i), (5.13)

where
M0 = ι0(γij). (5.14)

M is dependent on the gauges chosen for the potentials. Under the gauge transformations (5.11), S
transforms as

S → SS(0), S(0) = exp (ψ
(0)
i ri) exp (µ(0)q) exp (χ

(0)
i ni). (5.15)

This means that M transforms as M → (S(0))TMS(0) leaving the harmonic map equations (5.6)
unchanged, as expected.

It is helpful to see how a harmonic map formulation of vacuum gravity comes out in the vacuum
limit. Taking ψi and µ to vanish implies that M can be written as

M = exp (χin
i)
TM0 exp (χin

i) = ι[Φ], (5.16)

where

Φ =

(
γij + γ−1χiχj −γ−1χi
−γ−1χj −γ−1

)
. (5.17)

This is the well-known coset representative for five-dimensional vacuum gravity [58]; we see that the
MSG coset representative contains two copies of this in the vacuum limit. Note that in the vacuum
case in Chapter 3 we did not use Φ and instead just used the fact that g satisfies the harmonic map
equations (albeit with det g = −ρ2).

1We use the notation of [153] which also gives the explicit form of these basis elements along with their commutation
relations.
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5.2.2 Adapted basis for an axis rod

We can also write the metric and potentials in coordinates adapted to the non-vanishing KVFs on
particular axis rods. We consider an axis rod I and define a basis for the KVFs adapted to this rod
(eµ, v), µ = 0, 1 with eµ = (k, u) where v = vimi is the rod vector and u = uimi is an independent
vector defined such that 2

A =

(
u1 u2

v1 v2

)
∈ SL(2,Z). (5.18)

Then g can be written in this adapted basis as

g̃ =

(
hµν − ρ2h−1wµwν ρ2h−1wµ

ρ2h−1wν −ρ2h−1

)
. (5.19)

In addition one can define analogous potentials to (5.8) and (5.9) with respect to this adapted basis.
These are φµ, ν and bµ, defined by

dφµ = − 2√
3
ιeµF, dν = −εστφσdφτ −

2√
3
ιe0ιe1 ? F

dbµ = Θµ + φµ(3dν + εστφσdφτ ),

(5.20)

where
Θµ = ?(e0 ∧ e1 ∧ deµ). (5.21)

We can relate the metric in this adapted basis to that in the standard basis (5.7) through

[γij] = A−1

(
h11 − ρ2h−1(w1)2 ρ2h−1w1

ρ2h−1w1 −ρ2h−1

)
(A−1)T , γ = −ρ2h11h

−1, (5.22)

and

ωi = A i
j ω̃

j, [ω̃i] =

(
h01h

−1
11

h01h
−1
11 w1 − w0

)
. (5.23)

Similarly, we can relate the Maxwell potentials in this adapted basis to those in the standard basis (5.8)
by using

uidψi = dφ1,

vidψi =
ρ2h−1

1− ρ2hwµwµ
[wνdφν + ρ−1 ?2 (dν + εστφσdφτ )],

2√
3
ι1ι2 ? F = γρ−1 ?2 (dφ0 − ωidψi),

(5.24)

where wµ = hµνwν .
Finally, it is also helpful to record some results about how the basis elements of the Lie algebra g2

interact with the change of basis matrix A3:

LriL−1 = (A−1) j
i r

j, LqL−1 = q, LniL−1 = (A−1) j
i n

j,

LpiL
−1 = A i

j pj, LtL−1 = t, LliL
−1 = A i

j lj

Lm j
i L
−1 = A i

km
l
k (A−1) l

j .

(5.25)

2In Chapter 3, we also allow for detA = −1 (3.15), however here we restrict to the case detA = 1 without loss of
generality.

3We note that some of the indices in these expressions are contracted with other indices of the same type. This is
because the g2 basis elements do not transform as their i, j labels might suggest. It is nonetheless convenient to give
them these indices as a way to organise the matrices and write down the coset representative M (5.16).
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The 7 × 7 transformation matrix L is given by L = ι0[A]. Note that these relations essentially just
encode information about the commutation relations between all the basis elements and m j

i .

5.3 BZ equations

As we discussed, the fact that the equations in this theory (5.6) take a similar form to the vacuum
equations means that they can be reformulated as the integrability condition of a certain auxiliary linear
pair of PDEs. These are the BZ equations [64, 65]

(ρ∂ρ − µ∂z)Ψ = UΨ, (µ∂ρ + ρ∂z)Ψ = VΨ, (5.26)

where U, V are matrices defined in (5.6), Ψ is a complex matrix and k = z + (µ2 − ρ2)/(2µ) is a
spectral parameter which defines µ(k) on a 2-sheeted Riemann surface.

There are a few general statements that we can make without using the exact form of M, which
closely follow the results in the vacuum case. We define the ± sheets of the Riemann surface as in the
vacuum case, using k as a local coordinate. This definition is equivalent to the fact that

µ+ ∼ 2(k − z), µ− ∼ −ρ2/(2(k − z)), (5.27)

as ρ → 0. Next we see that there is a continuity condition between these sheets at the branch points
k = z ± iρ

Ψ+ = Ψ−, k = z ± iρ. (5.28)

The BZ system also possesses an involution symmetry

Ψ− =MΨT−1
+ B(k), (5.29)

where B(k) is an invertible symmetric matrix. The main value in this expression is that it allows us to
mostly ignore the linear system (5.26) on the − sheet; given a solution to Ψ+ we can then trivially find
a solution for Ψ− using the above symmetry.

Taking the trace of the BZ system and using the fact that detM = 1 shows that det Ψ is indepen-
dent of the Weyl coordinates and hence

det Ψ = f(k), (5.30)

for some f . Evaluating this on the ± sheets and imposing continuity at the branch points implies
f+ = f−. Note that generically both Ψ± are invertible. Thus taking the trace of the involution
transformation implies

detB = f(k)2. (5.31)

5.4 Linear system on the axis

Now we consider the limit of the BZ equations (5.26) on the axis ρ = 0. We shall shortly see that
Ů = limρ→0 U and V̊ = limρ→0 V/ρ exist on all components of the axis and horizons. Thus we
can evaluate the linear system as ρ → 0 using (5.27) and find that the only equation not involving
ρ-derivatives of Ψ+ is

2(z − k)∂zΨ̊+ = ŮΨ̊+, (5.32)

where Ψ̊± = limρ→0 Ψ±. In this section we will integrate this ODE along the z-axis and find Ψ̊+ on
the axes and horizons.
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5.4.1 Horizon limit

On a horizon rod IH , M is smooth in ρ2 near the axis with a non-singular limit (since γij is finite and

non-singular). This means that Ů = 0 and V̊ is finite on a horizon rod Ia and so one can solve (5.32)
trivially to find

Ψ̊a
+ = Ma(k), on Ia, (5.33)

for some arbitrary matrix Ma.

5.4.2 Axis rod limit

On axis rods, S (5.13) is still smooth in ρ2 near the axis with a non-singular limit S̊. However M0 no
longer has a finite limit, so it is less clear that Ů and V̊ exist. We now demonstrate that they are still
well-defined.

Finiteness of Ů and V̊

From the definition of M in terms of S and M0 one finds

J = ρ dMM−1 = STDST−1, (5.34)

where
D := ρ

[
(dSS−1)T + dM0M−1

0 +M0dSS−1M−1
0

]
. (5.35)

Using the commutation relations for g2 and the definitions of the potentials µ (5.8) and χi (5.9), one
can show that

dSS−1 = dψir
i − 2√

3
(ι1ι2 ? F )q + Ωin

i,

dM0M−1
0 = dγikγ

kjm j
i ,

M0dSS−1M−1
0 = dψiγ

ijrj − 2√
3
γ−1 (ι1ι2 ? F )q− ρ−1 ?2 dωini.

(5.36)

At this point it is helpful to start using a basis adapted to the axis rod we are considering. g can
then be written as (5.19) and we can introduce various potentials as in (5.20). Similarly to the vacuum
case we will assume these variables adapted to the axis rod are smooth in ρ2 up to that rod. To relate
these quantities to those defined in the standard basis above we have the expressions (5.24) which we
can take the ρ→ 0 limits of to give

uidψi = ∂zφ1dz +O(ρ),

vidψi = ρh−1(∂zν + εστφσ∂zφτ )dρ+O(ρ2),

2√
3
ι1ι2 ? F = γρ−1(∂zφ0 − ω̃1∂zφ1)dρ+O(ρ2).

(5.37)

Finally we use the fact that ωi must be smooth in ρ2 up to the axis rod from (5.23) to write

ρ−1 ?2 dωi = ρ−1∂zω
idρ+O(1), (5.38)

which in turn implies that Ωi = O(ρ) using (5.10).
Combining these relations with the terms in (5.36), we see that the z component of each 1-form is

at least O(1) and the ρ component O(ρ−1). These 1-forms sum to give D (5.35) along with a factor
of ρ. Since S has a finite axis limit, this means that Ů and V̊ are well-defined as claimed.
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Determining Ů

In order to write down Ů explicitly we need to consider the ρ components of these 1-forms in more
detail. Using (5.37) in (5.36), we see that

∂ρSS
−1 = O(ρ),

∂ρM0M−1
0 = ρ−1tiv

jm j
i +O(ρ),

M0∂ρSS
−1M−1

0 =− ρ−1(∂zν + εστφσ∂zφτ )v
iri

− ρ−1(∂zφ0 − ω̃1∂zφ1)q− ρ−1∂zω
ini +O(ρ).

(5.39)

where

t = A−1t̃, t̃ =

(
−2w1

2

)
. (5.40)

This implies that

D̊ρ = tiv
jm j

i − (∂zν + εστφσ∂zφτ )v
iri − (∂zφ0 − ω̃1∂zφ1)q− ∂zωini, (5.41)

where we define D̊ρ := limρ→0Dρ. Note that the various metric components and potentials we use
here are strictly speaking their ρ→ 0 axis limits.

Next we need to find S̊. To do this we solve for the potentials in the standard basis (5.8), (5.9) on
axis. Using (5.37) and the fact that (Ωi)z = 0 on axis, we see that

ψi(z) = (A−1) 1
i φ1(z), ν(z) = 0, χ(z) = 0, (5.42)

up to gauge transformations (5.11). Combining this with the transformation relations for the g2 basis
elements (5.25), we find that

S̊ = LT eφ1r
1

LT −1S(0), (5.43)

where we have allowed for the possibility of a more general set of gauges for the potentials by including
a S(0) factor (5.15). Note that for a globally defined set of potentials this expression defines S(0) for this
particular axis rod. From the definition of D and U We know that Ů = S̊T D̊ρ(S̊

T )−1 and so defining

Ỹ = eφ1p1LD̊ρL
−1e−φ1p1 , we can write

Ů = (S(0))TL−1Ỹ L(S(0))T −1, (5.44)

where we have used the fact that pi = (ri)T .
In order to evaluate Ỹ , we first need the fact that

∂zbµ = 2wµ + φµ(3∂zν + εστφσ∂zφτ ), (5.45)

which comes from the definition of bµ (5.20) after using the result that Θµ = 2wµdz + O(ρ). Then
using (5.41) one can express Ỹ as

Ỹ = ∂z
[
Cm 2

1 + 2zm 2
2 +Rr2 +Qq− ω̃ini

]
,

C := (φ2
1Q− b1), R := (φ1Q− ν)

Q := −(φ0 − φ1ω̃
1),

(5.46)

where we have used the transformation rules (5.25) and commutation relations of the g2 basis elements.
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It is convenient at this point to fix the gauges of the adapted basis potentials (φµ, ν, bµ). We will do
this in line with the gauge choices for baµ in Chapter 3. Namely for finite axis rods we set these potentials
to vanish at the lower rod point and to vanish on the semi-infinite axis rods at infinity. Explicitly we
impose the conditions

φaµ(za−1) = 0, lim
z→−∞

φLµ(z) = 0, lim
z→∞

φRµ (z) = 0,

νa(za−1) = 0, lim
z→−∞

νL(z) = 0, lim
z→∞

νR(z) = 0,

baµ(za−1) = 0, lim
z→−∞

bLµ(z) = 0, lim
z→∞

bRµ (z) = 0,

(5.47)

where we have temporarily reinstated rod labels a which run over finite axis rods Ia = (za−1, za). Note
that because of the gauge conditions on φ1 in particular, we have the following expressions for S(0),
derived from (5.43),

S(0)
a = S̊(za−1), S

(0)
L = lim

z→−∞
S̊(z), S

(0)
R = lim

z→∞
S̊(z). (5.48)

Solving for Ψ̊+

Now that we know Ů , we can solve for Ψ̊+ using (5.32). We begin by writing Ψ̊+ as

Ψ̊+ = (S(0))TX, X = L−1X̃L. (5.49)

Then the equation for Ψ̊+ (5.32) can be written in terms of X̃, Ỹ as

∂zX̃X̃
−1 =

Ỹ

2(z − k)
, (5.50)

where Ỹ is given in (5.46).
Using (5.46), we find a solution for X̃ ∈ G2(2) of the form

X̃ = X̃0 exp (Rr2) exp (Qq) exp (Nin
i). (5.51)

for

X̃0 = ι0

[(
1 C
0 2(z − k)

)]
, (5.52)

N1 = −ω̃1,

N2 = Q(φ1 − 3νQ)− (b0 − b1ω̃
1) + 2(z − k)ω̃2.

(5.53)

To demonstrate that does solve equation (5.50), one must also use the fact that w0 = w1ω̃
1 − ω̃2, a

consequence of (5.23).
Therefore the most general solution for Ψ̊+(z, k) is given by

Ψ̊a
+ = (S(0)

a )TXaMa (5.54)

where Xa is given by (5.49), (5.51), Ma is some arbitrary matrix function of k and we have reinstated
the label a for axis rod Ia.
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5.5 Solving for the metric and potentials

5.5.1 Continuity conditions

At each rod point we impose that Ψ̊+ must be continuous in z. For z = za, this condition is given by

Ψ̊a
+(za, k) = Ψ̊a+1

+ (za, k). (5.55)

Using the solutions on the axis and horizon rods (5.54), (5.33), one can then relate Ma and Ma+1

MaM
−1
a+1 =


[(S

(0)
a )TXa(za)]

−1 Ia axis, Ia+1 horizon

(S
(0)
a+1)TXa+1(za) Ia horizon, Ia+1 axis

[(S
(0)
a )TXa(za)]

−1[(S
(0)
a+1)TXa+1(za)] Ia, Ia+1 axes

. (5.56)

Using these expressions one can calculate MaM
−1
b for arbitrary rods Ia and Ib, which will necessarily

be an element of G2(2).

5.5.2 Asymptotics

The asymptotic analysis for this theory will closely follow the analysis in Chapter 3 for the vacuum
theory with matrices appropriately redefined in terms of M rather than g.

First consider Minkowski space. In this case

γ̄ij = diag (µ, ρ2µ−1), ω̄i = 0, F̄ = 0,

µ =
√
ρ2 + z2 − z,

(5.57)

This implies that we can take ψi = µ = χi = 0 (µ here is the potential (5.8), not to be confused with
the function defined above) and so S̄ = 1 which implies that M =M0 = ι(γ̄). Using this and (5.26),
one can solve for Ψ̄+(r, θ, k) to find

Ψ̄+ = ι0[ diag (µ− µ+, ρ
2µ−1 + µ+))]N̄(k) (5.58)

where N̄ is an arbitrary matrix function of k which we take to be invertible.
Now consider an AF solution. To do this analysis it is convenient to introduce polar coordinates

(r, θ) where
ρ = r sin θ, z = r cos θ, (5.59)

and 0 ≤ θ ≤ π. Then AF solutions obey

γij = γ̄ij +

(
O(1) O(r−1)
O(r−1) O(1)

)
, ωi = O(r−2), F = O(r−1) (5.60)

as r → ∞. This implies that µ = χi = O(1) as r → ∞ and we can choose a gauge for ψi such that
ψi = O(r−1)4.

Next we consider solving the BZ system (5.26) for these AF spacetimes. The equations can be
written in polar coordinates as

∂rΨ = YrΨ, Yr =
r sin2 θS − µT
µ2 + r2 sin2 θ

,

∂θΨ = YθΨ , Yθ =
r sin θ(µS + rT )

µ2 + r2 sin2 θ
,

(5.61)

4See section IV of [92] for further details
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where S = r∂rMM−1 and T = sin θ∂θMM−1. Consider a solution for Ψ of the form

Ψ = Ψ̄∆, (5.62)

where ∆ is a new matrix function of (k, r, θ). From (5.61) it follows that

(∂r∆)∆−1 = Υr, Υr ≡ Ψ̄−1(Yr − Ȳr)Ψ̄,
(∂θ∆)∆−1 = Υθ , Υθ ≡ Ψ̄−1(Yθ − Ȳθ)Ψ̄.

(5.63)

One can calculate these Υ matrices for the + sheet using the solution for Minkowski space Ψ̄ (5.58)
and the expansion of an AF metric (5.60). Using this one can show that Υr+ = O(r−1),Υθ+ = O(r−2)
which implies that asymptotically ∆+ must be only a function of k. This can be written as

∆+ =

{
NR +O(r−1), 0 ≤ θ < θ∗

NL +O(r−1), θ∗ < θ ≤ π
, (5.64)

where NR,L are matrix functions of k which we take to be invertible and θ∗ is defined by cos θ∗ = Re(k)
r

.
These N matrices are in general different because Υ+ is discontinuous across θ = θ∗; instead one should
impose the continuity condition

lim
ε→0+

Ψ±(r, θ∗ − ε, k) = lim
ε→0+

Ψ∓(r, θ∗ + ε, k), (5.65)

since as one follows the contour at infinity, k moves through the branch cut of the Riemann surface at
θ = θ∗ and the sheet of Ψ swaps. Now combining this condition with the involution symmetry (5.29),
one finds that

NR(k)T−1B(k)NL(k)−1 = lim
r→∞

Ψ̄T
+(r, θ−∗ , k)M(r, θ∗)

−1Ψ̄+(r, θ+
∗ , k)

= N̄T ι0[ diag (−2k, 2k)]N̄ ,
(5.66)

where in going to the second line we have used the form of Ψ̄ (5.58) and the asymptotics of M for an
AF spacetime.

Now that we have an asymptotic solution for Ψ+ for an AF spacetime, we want to relate this to our
axis solutions Ψ̊+ (5.54). As |z| → ∞, Ψ̊R,L

+ should approach the solution for an AF spacetime (5.62),
in other words we impose

lim
r→∞

Ψ̊R
+(r, k)−1Ψ̄+(r, 0, k)NR(k) = 1

lim
r→∞

Ψ̊L
+(−r, k)−1Ψ̄+(r, π, k)NL(k) = 1.

(5.67)

In order to evaluate this limit we need the |z| → ∞ behaviour of Ψ̊R,L
+ . We have already noted that as

r →∞, µ and χi are O(1) and we have chosen a gauge such that ψi vanishes. In addition, (φµ, ν, bµ)
on the left and right semi-infinite rods as |z| → ∞ (5.47) and the asymptotic conditions imply that
ω̃i = O(|z|−2). Using these asymptotic behaviours we find

MR = ι0[ diag (1, 2k)]N̄NR

ML = ι0[ diag (−2k,−1)]N̄NL,
(5.68)

where we have taken uR = (0,−1), i.e. (5.18)

AR =

(
0 −1
1 0

)
. (5.69)

116



Combining this with (5.66) gives

C := MLB
−1MT

R = ι0[ diag (1,−1)] (5.70)

providing a relation between ML and MR, which doesn’t involve the matrices N̄ ,NR or NL. Note that
this precise form for C depends on the form of our particular axis solutions X̃R and X̃L.

Finally one can define Fa matrices according to5

Fa := MaB
−1MT

a = [MLM
−1
a ]−1C[MaM

−1
R ]T . (5.71)

The first equality in this expression dictates that Fa must be symmetric for each a. The second equality
gives an expression for Fa that can be evaluated explicitly using the expressions for MaM

−1
b found

previously (5.56). Furthermore since MaM
−1
b , C ∈ G2(2) it follows that Fa ∈ G2(2) and in particular

detFa = 1.

5.5.3 Branch point compatibility conditions

Horizon Rods

The branch point compatibility condition (5.28) on horizon rods is given by

Ψ̊+(z, z) = Ψ̊−(z, z). (5.72)

The involution condition (5.29) can then be used to express Ψ̊− in terms of Ψ̊+, and so the above
equation can be written as

Ψ̊+(z, z) = M̊(z)Ψ̊+(z, z)T−1B(z), (5.73)

where M̊ = limρ→0M. Using the fact that Ψ̊a
+(z, k) = Ma(k) on horizon rods and rearranging gives

M̊(z) = Fa(z), (5.74)

where Fa is given in (5.71).

Axis Rods

M, and so Ψ−, is not well-defined on axis rods which means that slightly more care must be paid to
this case in order to recover metric data. Instead of considering Ψ− on axis we will consider E−Ψ−
where

E = ι0

[(
1 0
0 µ−1

)]
LST−1. (5.75)

E−Ψ− then has a well-defined axis limit. To demonstrate this consider the involution condition (5.29)
with this factor of E− included

E−Ψ− = (E−M)ΨT−1
+ B. (5.76)

Clearly the axis limit of E−Ψ− is well-defined if the axis limit of E−M is well-defined. We can calculate
this explicitly to find

M̂ := lim
ρ→0

(E−M) = ι0

[(
h11 0

2(z − k)w1h
−1 −2(z − k)h−1

)]
LT−1S̊, (5.77)

5These Fa are defined without a minus sign in contrast to (3.111).
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where we have used the fact that µ− → −ρ2/(2(k − z)) as ρ → 0 and the form of the metric in the
basis adapted to axis rod we are considering (5.19).

Now note that E+Ψ+ = E−Ψ− at k = z ± iρ (a small variation of identity (5.28)). So using this
and taking first the ρ→ 0 limit of (5.76) and then the k → z limit one finds that

lim
k→z

[
E̊+Ψ̊+

]
= lim

k→z

[
M̂Ψ̊T−1

+ B
]
. (5.78)

There follows a slightly convoluted calculation, using the axis solution (5.54), the commutation relations
of the algebra g2 and a relation for ω̃1 (5.23). However in the end one finds a rather simple relation
between Fa and the metric and potentials on an axis rod Ia

F̃a = BT ι0[ha]B, B = exp (φaµr
µ+1) exp (νaq) exp (baµn

µ+1) (5.79)

where F̃a := (KLa)Fa(KLa)
T ,

K = ι

0 0 1
1 0 0
0 1 0

 , (5.80)

and we have reinstated rod labels.

5.6 Classification theorem and moduli space of solutions

We can summarise the results of the previous sections in the following theorem, analogous to Theorem
8 (we suppress the rod labels for legibility):

Theorem 9. Consider a spacetime in 5-dimensional minimal supergravity as in Theorem 5.

1. The general solution (hµν(z), φµ(z), ν(z), bµ(z)) on an axis rod is given by solving (5.79) where
F̃ = (KL)F (KL)T . This solution can be written explicitly in terms of the components of F̃ as

hµν = F̃ 4+µ 4+ν − 1

F̃ 33
F̃ 4+µ 3F̃ 3 4+ν ,

φµ =
1

F̃ 33

(
−F̃ 35

F̃ 34

)
, ν = − F̃ 37

√
2F̃ 33

,

bµ =
1√

2(F̃ 33)2

(
F̃ 35F̃ 37 −

√
2F̃ 31F̃ 33

−F̃ 34F̃ 37 −
√

2F̃ 32F̃ 33

)
,

(5.81)

In particular, this implies

dethµν =
1

F̃ 33
. (5.82)

2. The general solution (γij(z), ψi(z), µ(z), χi(z)) on a horizon rod is given by solving (5.74). This
solution can be written explicitly in terms of the components of F as

γij = F 3+i 3+j − 1

F 33
F 3+i 3F 3 3+j,

ψi =
1

F 33

(
−F 35

F 34

)
, µ = − F 37

√
2F 33

,

χi =
1√

2(F 33)2

(
F 35F 37 −

√
2F 31F 33

−F 34F 37 −
√

2F 32F 33

)
,

(5.83)
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In particular, this implies

det γij =
1

F 33
. (5.84)

In both cases F (k) are the matrices defined by (5.71) and the components of F and F̃ are FMN and
F̃MN respectively with M,N = 1, . . . 7. The solution depends on the following ’moduli’: rod lengths
for each finite rod; rod vectors for each finite axis rod; ω̃i evaluated at the endpoints of each axis
rod; for each finite axis rod the potentials (φµ(z), ν(z), bµ(z)) evaluated at each upper endpoint and
similarly for the single endpoints of the semi-infinite axis rods.

Proof. The equations (5.79), (5.74) follow from the analysis in the previous section. Multiplying the
exponentials out and using the explicit basis representatives of g2 one can determine these particular
relations in terms of the components of F and F̃ . Note that we use the fact that F33 and F̃33

can’t vanish on the relevant rods since that would correspond to a singularity of the metric, with the
determinant of either γij or hµν diverging.

The dependence of the solution on the specific moduli mentioned above comes directly from the
construction of F (5.71) in terms of the axis solution to Ψ+ , (5.56), (5.54). There are only constants
associated to the potentials for a single endpoint per axis rod because we fixed a gauge (5.47).

Remarks.

1. Alternate forms of the general solution can be obtained by replacing Fa(k) with Fa(k)T for some
a ∈ {1, . . . , n+ 1} which are equivalent since the Fa(k) are symmetric.

2. q and any linear combination of either ri or ni are nilpotent. This means that matrix exponentials
of any terms of these types remain polynomial in the coefficients of the basis elements. This
implies from (5.79), (5.74) that the metric components and potentials on each rod are rational
functions of z.

3. In general, regularity of the axes imposes further constraints on these moduli from the conditions
for the removal of conical singularities. We will not discuss these further here though they were
dealt with at length in Chapter 3 and the analysis is identical in this case.

We now illustrate this theorem by applying the method described to the simplest possible rod
structure, that of flat space.

5.6.1 Example: flat space

Flat space in five dimensions has two rods: the left rod IL = (−∞, z1) with rod vector vL = (0, 1) and
the right rod IR = (z1,∞) with rod vector vR = (1, 0). This rod structure is illustrated in Figure 5.1.

(0, 1) (1, 0)

Figure 5.1: The Rod structure for five-dimensional flat space.

Using the rod point continuity conditions (5.56) and the definition of Fa (5.71), we find that

FL = C[MLM
−1
R ]T , FR = [MLM

−1
R ]−1C

MLM
−1
R = XL(z1)−1(S

(0)
R )T−1(S

(0)
L )TXR(z1)

(5.85)
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We are free to impose the following conditions on the gauge potentials ψi, µ, χi [92]

lim
|z|→∞

ψi(z) = 0,

lim
z→−∞

µ(z) = 0, lim
z→−∞

χi(z) = 0.
(5.86)

This means that at infinity on IL these potentials vanish, and so from (5.48) we find that S
(0)
L = 1. We

also know that µ and χi are constant along axis rods (5.42) and continuous at rod points. Therefore

they must vanish at infinity on IR along with ψi, implying that S
(0)
R = 1.

Using this result in (5.85) and after lengthy manipulations we can write F̃L as a product in the
following form

F̃L = LT ι0[f ]R,
L = exp (Air

i) exp (Bq) exp (Cin
i),

R = exp (Iir
i) exp (Jq) exp (Kin

i),

(5.87)

for particular functions Ai, B, Ci, Ii, J,Ki and a 2×2 matrix f (which we shall not present here). Using
this we can immediately solve for the metric and potentials on the axis rods from (5.79), up to the
symmetry of F̃L. Imposing this symmetry (i.e. L = R, fT = f) together with consistency conditions
coming from the metric being asymptotically flat (3.180), and the potentials being in a particular gauge
(5.47), one can solve for the moduli of the solution. These are given by

φL,Rµ (z1) = 0, νL,R(z1) = 0, bL,Rµ (z1) = 0, ω̃iL,R(z1) = 0, (5.88)

where we have also used (5.23) and (5.45). The metric and potentials on IL can also be solved explicitly
to give

φLµ(z) = 0, νL(z) = 0, bLµ(z) = 0, ω̃iL(z) = 0

hLµν(z) = diag (−1,−2(z − z1)),
(5.89)

which is indeed the solution for flat space on IL. We can find the solution for flat space on IR in the
same way by considering F̃R.

This proves the non-trivial result that the only AF, stationary, biaxisymmetric solution in five-
dimensional minimal supergravity with the same rod structure as flat space is flat space itself. This result
can be proved through other methods, for example by using the fact that the spacetime associated with
this rod structure cannot have any 2-cycles. Combining this with the Smarr relation in five-dimensional
minimal supergravity (see e.g. [154]) we see that the mass must vanish and so by the positive mass
theorem the solution is flat space.

5.6.2 Vacuum limit

As we discussed in Section (5.2.1), the harmonic map for minimal supergravity reduces in the vacuum
limit (taking all the Maxwell potentials to be constant) to two copies of a vacuum harmonic map.
Equivalently the G2(2) matrices we are dealing with reduce down to a direct sum of two SL(3,R)
matrices in the image of the map ι (5.12). This means that our results of the last few sections
that allow us to solve for the metric and potentials on axis can be applied to the vacuum case in an
appropriate limit. Note that we do not expect this to reproduce the formalism of Chapter 3 since this
vacuum harmonic map is not the same as the one previously considered.
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To start with, we can consider the vacuum limit of the solution for Ψ̊+. The horizon rod case is
trivial (5.33). In the axis limit case (5.54) one finds that

X̃ → ι0

[(
1 −b1

0 2(z − k)

)]
exp(−ω̃1n1 + (2(z − k)ω̃2 − (b0 − b1ω̃

1))n2), (5.90)

S(0) → exp(χ
(0)
i ni). (5.91)

Note that both of these matrices are now in the image of the map ι, as stated above. This means that
now F and F̃ are in the image of ι as well and so the results of Theorem 9 can be somewhat refined.
For an axis rod we find

hµν → F̃ 4+µ 4+ν , bµ → −
(
F̃ 31

F̃ 32

)
, (5.92)

and for a horizon

γij → F 3+i 3+j, χi → −
(
F 31

F 32

)
. (5.93)

This allows one to start solving for axis metric data in the vacuum theory, given a particular rod
structure. Using this we have, for example, derived the solution for the doubly rotating Myers-Perry
black hole. However, this formalism is in practice less useful than the one developed in Chapter 3 since
the constraints on the moduli in this version are more complicated. This ultimately seems to be because
of the fact that the harmonic map in the previous chapter was fully covariant with respect to all the
KVFs whereas this one is only covariant with respect to the axial KVFs. As a result the moduli that
the solutions are written in terms of can be rather unnatural choices (for example ω̃i evaluated at rod
points), which makes solving moduli space equations significantly more challenging.

5.7 Discussion

In this chapter we have considered the classification of stationary, AF and biaxisymmetric solutions to
five-dimensional minimal supergravity. This theory of gravity is integrable, meaning that the equations
governing it can be recovered as the integrability conditions of a pair of linear PDEs (BZ equations).
Following a very similar method to the one presented in Chapter 3, we were able to use these equations
to derive a general expression for the metric and various potentials on each axis and horizon component,
see Theorem 9. These solutions are written in terms of a set of moduli governing the spacetime which
can be constrained using a variety of consistency conditions on the metric and potentials. We applied
these methods to the rod structure corresponding to flat space and by solving for the metric data and
moduli were able to demonstrate that flat space is the unique spacetime with this rod structure.

There is clearly much work still to be done using the formalism developed in this chapter. It would be
interesting to see how easily one could derive (and consequently provide uniqueness theorems for) other
known solutions such as the 1-bubble soliton [115, 116] or the Cvetič-Youm black hole [98]. Extending
this for more complicated rod structures would probably start to present some serious calculational
difficulties, since even with the flat space rod structure things are already far from trivial. If some of
these difficulties were overcome however, there are a large class of supersymmetric solutions without
known non-supersymmetric limits which would be interesting to investigate. Of particular interest would
be to consider the rod structure for the simplest L(n, 1) black lens (see Figure 4.5). A supersymmetric
solution realising this rod structure is known [108], however as we demonstrated in Chapter 4, it has
no corresponding regular vacuum solution. Using the methods developed in this chapter would provide
a chance to bridge this gap by constructing a charged non-supersymmetric black lens.
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