

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Simulation Methodologies for Mobile GPUs

Kuba Kaszyk

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2021

Abstract

Graphics Processing Units (GPUs) critically rely on a complex system software

stack comprising kernel- and user-space drivers and Just-in-time (JIT) compilers. Yet,

existing GPU simulators typically abstract away details of the software stack and GPU

instruction set. Partly, this is because GPU vendors rarely release sufficient infor-

mation about their latest GPU products. However, this is also due to the lack of an

integrated CPU/GPU simulation framework, which is complete and powerful enough

to drive the complex GPU software environment. This has led to a situation where

research on GPU architectures and compilers is largely based on outdated or greatly

simplified architectures and software stacks, undermining the validity of the generated

results. Making the situation even more dire, existing GPU simulation efforts are con-

centrated around desktop GPUs, making infrastructure for modelling mobile GPUs vir-

tually non-existent, despite their surging importance in the GPU market. Still, mobile

GPU designers are faced with the challenge of evaluating design alternatives involving

hundreds of architectural configuration options and micro-architectural improvements

under tight time-to-market constraints, to which currently employed design flows in-

volving detailed, but slow simulations are not well suited. In this thesis we develop a

full-system simulation environment for a mobile platform, which enables users to run

a complete and unmodified software stack for a state-of-the-art mobile Arm CPU and

Mali Bifrost GPU powered device, achieving 100% architectural accuracy across all

available toolchains. We demonstrate the capability of our GPU simulation framework

through a number of case studies exploring modern, mobile GPU applications, and op-

timize them using functional simulation statistics, unavailable with other approaches

or hardware. Furthermore, we develop a trace-based performance model, allowing

architects to rapidly model GPU configurations in early design space exploration.

iii

Lay Summary

Computers are found all around us, from large data centers, to mobile phones,

TVs, cars, refrigerators, and many other places. These computers, are made up of

multiple components, one of which, is a Graphics Processing Unit (GPU). GPUs are

the component responsible for drawing images to your screen, however, in recent years,

they have also been used to do similar tasks to the CPU. This thesis focuses primarily

on mobile systems, which typically include any system that has a battery and can

operate away from its main power source.

Designing new computer systems, including GPUs, is expensive and time consum-

ing, especially if things go wrong. It’s therefore critically important to model as many

components as possible, before actually fabricating the chips. One of the most im-

portant modelling tools is simulation, which means that you write a program which

behaves just like the hardware component that you want to model. This program can

then be used to identify any problems with the design, and to predict its performance.

Just like the entire design process, simulation has its challenges. For example,

GPUs operate in a complex environment, and it can be very difficult to re-create a re-

alistic environment to simulate a GPU. The first goal of this thesis is to examine and

develop techniques which would allow us to model GPUs in the exact same environ-

ment as they ultimately execute in. We achieve this by simulating not only the GPU,

but the entire surrounding system.

Another challenge is simulation speed. Programs written to simulate hardware

are often excruciatingly slow, as they have to model a lot of internal components,

especially if you have to model the entire system, as we do when simulating GPUs.

One option to speed up the simulation, is to limit the amount of detail modelled. The

second goal of this thesis is to ensure that modelling the full environment that a GPU

executes in does not slow the simulation down.

Reducing the level of detail is often discounted as a technique, because it limits

the amount of useful information that can be obtained from the simulation. However,

the final goal of this thesis is to ensure that even with the additional cost of simulating

the GPU’s environment, and with the loss of detail when accelerating the simulation,

there is still useful performance information that can be extracted from the simulation

framework. We achieve this goal by splitting the simulation into two phases - the first

one collecting information, and the second analyzing it.

iv

Acknowledgements

There are a number of people I would like to thank for their support during my time as

a PhD student, starting with my supervisor, Björn Franke, for getting me involved in

the topic years before I started my PhD, and his irreplaceable guidance over the years.

I would also like to thank my second supervisor, Mike O’Boyle, for the feedback, and

many valuable discussions.

Deserving a special mention are Harry Wagstaff and Tom Spink, who laid the

groundwork for my own research; Bruno Bodin, for the excitement and mentorship

he brought to the project; and Chris Vasiladiotis and Calum Imrie, for their excellent

company and collaboration.

Finally, I would like to thank my family, in particular my wife, Roksana, and my

daughters, Julia and Sofia, for the patience and understanding they have shown me.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Kuba Kaszyk)

vi

Publications

The following publications have been made during the course of this PhD, some of

which are used as the basis for chapters:

• Kuba Kaszyk, Harry Wagstaff, Tom Spink, Björn Franke, Michael O’Boyle,

Bruno Bodin, Henrik Uhrenholt

“Full-System Simulation of Mobile CPU-GPU Platforms”

In Proceedings of the 2019 IEEE International Symposium on Performance Anal-

ysis of Systems and Software (ISPASS’19), Madison, Wisconsin, February 2019

This publication forms the basis for Chapter 4.

• Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, Josè Cano, Elliot J Crow-

ley, Björn Franke, Amos Storkey, Michael O’Boyle

“Performance aware convolutional neural network channel pruning for embed-

ded GPUs”

In Proceedings of the 2019 IEEE International Symposium on Workload Char-

acterization (IISWC’19), Orlando, Florida, November 2019

This publication forms the basis for case studies presented in Chapter 4.

• Kuba Kaszyk, Björn Franke

“Full-System GPU Design Space Exploration”

Workshop on Modeling & Simulation of Systems and Applications (ModSim

2020)

This publication forms the basis of the machine-learning based approach
presented in Chapter 5.

• Subhankar Pal, Kuba Kaszyk, Siying Feng, Björn Franke, Murray Cole, Michael

O’Boyle, Trevor Mudge, Ronald G. Dreslinski

“HETSIM: Simulating Large-Scale Heterogeneous Systems using a Trace-driven,

Synchronization and Dependency-Aware Framework”

In Proceedings of the 2020 IEEE International Symposium on Workload Char-

acterization (IISWC’20)

vii

Table of Contents

1 Introduction 1
1.1 The Past, Present, and Future of GPUs 1

1.2 The Complexities of GPU Systems 4

1.3 Simulation as a Key Design and Development Tool 5

1.4 Motivation . 7

1.5 Goals . 8

1.6 Thesis Overview . 8

2 Background 11
2.1 Introduction . 11

2.2 How do we program a GPU? . 11

2.2.1 The Software Stack . 12

2.2.2 Low-Level Programming Frameworks 15

2.2.3 High-Level Libraries . 21

2.3 The Arm Mali Bifrost Architecture 23

2.3.1 Overview . 24

2.3.2 Starting a GPU Job . 25

2.3.3 Interaction with the CPU . 25

2.3.4 Details of the Job Manager 25

2.3.5 The Arm Mali Memory System 26

2.3.6 The Bifrost Shader Core . 28

2.3.7 The Clause Based Execution Model 29

2.3.8 Graphics Hardware . 32

2.4 GenSim - A Head Start on Fast Simulation 32

2.4.1 ArcSim . 37

ix

2.5 Captive - Making the most of host hardware 38

2.6 Validating Simulation Through Benchmarking 38

2.6.1 Parboil . 39

2.6.2 Polybench . 39

2.6.3 AMD APP SDK 2.5 . 40

2.6.4 Rodinia . 40

2.6.5 SLAMBench . 41

2.6.6 DeepSmith . 41

2.6.7 SGEMM . 41

2.6.8 Convolutional Neural Network Channel Pruning 44

2.7 Generating New Benchmarks . 46

2.7.1 Measurement . 47

2.8 Conclusion . 48

3 Simulation Background & Related Work 55

3.1 Speed vs. Detail . 55

3.1.1 Cycle-Accurate Simulation 56

3.1.2 Functional Instruction Set Simulation 58

3.1.3 Emulation . 59

3.2 Simulation Environments . 60

3.2.1 User Mode Simulation . 60

3.2.2 Full-System Simulation . 60

3.3 Modelling the Software Stack . 61

3.3.1 Accuracy of the Simulated Software Stack 62

3.3.2 Speed of Simulation . 71

3.3.3 Ease of maintenance as software is updated 72

3.3.4 Usability . 73

3.3.5 Comparison Against Existing Hardware and Software 74

3.4 Performance Modelling Techniques 76

3.4.1 Cycle-Accurate Simulation 76

3.4.2 Trace Based Simulation . 76

3.4.3 Analytical Modelling . 78

3.4.4 Machine Learning and Statistical Modelling 82

3.5 Conclusion . 85

x

4 Full-System Simulation of Mobile CPU/GPU Platforms 87
4.0.1 State-of-the-Art . 88

4.0.2 Contributions . 90

4.1 Our Simulation Approach . 91

4.1.1 CPU Simulation . 92

4.1.2 GPU Simulation . 92

4.2 Instrumentation . 94

4.2.1 Program Execution . 95

4.2.2 System . 95

4.2.3 Control Flow . 95

4.3 Validation and Quantitative Evaluation 95

4.3.1 Validation and Accuracy . 96

4.3.2 Simulation Performance . 98

4.4 Qualitative Evaluation . 100

4.4.1 Accuracy of the Software Stack 101

4.4.2 Speed of Simulation . 103

4.4.3 Ease of maintenance . 103

4.4.4 Usability & Flexibility . 103

4.5 Application Results . 104

4.5.1 Identifying Empty Instruction Slots on the GPU 105

4.5.2 Moving Data Closer to the Core 105

4.5.3 Evaluating the Bifrost Clause Model 106

4.5.4 System Level Results . 107

4.6 Optimizing OpenCL Applications 107

4.6.1 SLAMBench . 107

4.6.2 SGEMM . 108

4.6.3 Performance Aware Convolutional Neural Network Channel

Pruning . 109

4.7 Implementation Details . 122

4.7.1 User-Mode Simulation (CPU) 122

4.7.2 GenC Thumb2 Model . 122

4.7.3 GenC GPU Model . 122

4.7.4 Standalone GPU Hexdump Simulator 124

4.7.5 Fuzz Testing . 124

4.7.6 GenSim & Captive Integration 127

xi

4.8 Summary & Conclusion . 128

5 Fast Performance Modelling 131
5.1 Motivation . 131

5.1.1 The Arm Mali GPU . 133

5.2 Prediction Using Machine Learning 134

5.2.1 A Näive Machine Learning Approach 134

5.2.2 Feature Selection . 135

5.2.3 Principal Component Analysis 136

5.2.4 Manual Feature Modification 136

5.2.5 An Artificial Neural Network Model 137

5.2.6 Conclusions . 137

5.3 REASSEMBLE: A Trace Based Approach to Fast Performance Mod-

elling . 140

5.3.1 Design and Methodology . 141

5.3.2 Validation . 144

5.3.3 Comparison Against State-of-the-Art 147

5.3.4 Design Space Exploration 151

5.3.5 Critical Evaluation . 158

5.3.6 Recent Developments . 165

5.3.7 Conclusion . 167

5.4 Summary . 168

6 Conclusions 169
6.1 Contributions . 170

6.1.1 Full-System GPU Simulation 170

6.1.2 Fast Performance Modelling 170

6.2 Current Limitations . 172

6.2.1 Significant changes to GPU architectures 172

6.2.2 GenSim and Captive Limitations 172

6.2.3 Limitations of the GPU Model 173

6.2.4 Software Availability Assumptions 173

6.3 Future Work . 173

6.3.1 Functional Simulation . 174

6.3.2 Performance Modelling . 174

6.3.3 Power and Area Modelling 175

xii

6.3.4 Applications of Functional Simulation and Fast Performance

Modelling . 176

6.4 The Future of Simulation . 177

6.5 Summary and Final Remarks . 177

A Appendix 179

Bibliography 183

xiii

Chapter 1
Introduction

1.1 The Past, Present, and Future of GPUs

GPUs have become ubiquitous in today’s computing world. They have grown from

being fixed function blocks specific to computing graphics workloads, to general pur-

pose parallel compute accelerators, found in devices ranging from TVs, smartphones

and drones to supercomputers, and are being further specialized for accelerating work-

loads in specific domains. Nvidia, often considered the inventor of the GPU, currently

lists 52 different categories whose applications target GPUs, including but not limited

to Animation, Data Mining, Bioinformatics, Climate Modeling, Computational Fluid

Dynamics, Databases, Computer Vision, and Machine Learning [1], showing just how

pervasive GPUs are in modern day computer science.

The first graphics accelerators emerged in the 1970s, with the introduction of video

shifters in various arcade systems. The 1980s saw the introduction of fully-integrated

graphics display processors for PCs, and in 1986, Texas Instruments released the first

fully programmable graphics processor - the TMS34010 [2]. The TMS34010 was es-

sentially a 32-bit CPU with some graphics-oriented instructions, and brought with it

the first generalized architecture for graphics processing - Texas Instruments Graphics

Architecture (TIGA) [3], which guaranteed that a program written for TIGA, would

work on any TIGA-compatible machine. The late 1980s and 90s saw the emergence

of the first dedicated video cards for PCs used to accelerate fixed-function 2D primi-

tives, with increasing numbers of colors and pixels supported. By the mid-1990s, 3D

graphics had found their way into gaming consoles. At the same time, the OpenGL [4]

and Glide [5] APIs appeared, and slowly hardware support for OpenGL was rolled

out. Towards the late 1990s, DirectX became another popular choice for programming

1

Chapter 1. Introduction 2

Fig. 1.1: GPU market breakdown by device [10].

graphics. In the early 2000s, Nvidia produced the first chip supporting programmable

shading, the GeForce 3, which was used in the original Xbox gaming console [6]. The

shading however, was still focused largely around dispatching fixed-function units of

work. The Nvidia GeForce 8 series GPUs became the first generalized computing

devices and represent Nvidia’s first unified shader architecture [7]. This meant that

all shaders could handle any type of shading task. In 2007, Nvidia introduced the

CUDA platform [8], the earliest widely adopted programming model for GPU com-

puting. This was followed by OpenCL [9]- an open standard developed and supported

by many hardware vendors, with Apple breaking away and releasing Metal, its own

compute and graphics API. In the last decade, GPUs have become increasingly pow-

erful, with graphics driven by gaming and virtual reality, and compute driven by big

data and the emergence of machine learning and computer vision. According to Allied

Market Research, the GPU market size is expected to reach $157.1 billion by 2022,

growing by 35.6% during the 2016-2022 period [10]. Figure 1.1, sourced from the

same report, breaks down the GPU market by device. It shows, that, as a percent-

age, the others category will have the largest growth as a percentage of its current

market share, while smartphones are and will remain the largest category by volume.

Jointly, smartphones and other, newly-developed emerging devices, will far outpace

the remaining categories by 2022.

3 1.1. The Past, Present, and Future of GPUs

The mobile GPU space was until recently dominated by Arm, whose GPUs pow-

ered 52.6% of smartphones sold in 2018, thanks to strong partnerships with Samsung

and Huawei. The mobile GPU space however, is evidently of interest to many leading

companies. Samsung, a leader in the field of mobile devices, has recently partnered

with AMD to create their own in-house GPU, using AMD intellectual property (IP) for

a scalable GPU design [11]. For many years, Apple licensed its GPU IP from Imag-

ination Technologies, and after a brief two-year period of attempting to design GPUs

in house, Apple has once again signed an agreement with Imagination to source future

graphics IP [12]. This announcement comes shortly after Imagination announced its

new, scalable, GPU-of-everything family [13], showing that Imagination GPUs can

target a wide variety of devices and domains. Furthermore, Apple is shifting it’s tech-

nology away from separate chips, having recently announced its first System-on-Chip

(SoC)-based computers with the M1 chip. The M1 chip, similarly to smartphones,

integrates the CPU, GPU, and Neural Processor into a single SoC, sharing memory

between all processing units, and delivering a record performance per watt, and out-

performing high-end Intel processors in raw performance measurements.

The market for AI augmentation, which requires compute and graphics process-

ing locally on device, is estimated to be worth 3.3 trillion dollars [14]. Coupled with

concerns about security and privacy, much of the processing is moving from the cloud

to edge devices. Driven by this unique set of circumstances, vendors are specializing

their embedded GPUs, optimizing not only for graphics, but highly-parallel computer

vision and machine learning applications as well. Computer vision accelerators have

been developed by companies such as Movidius (now part of Intel), and many com-

panies, including Arm and Huawei, are increasingly introducing GPUs optimized for

machine learning, and even adding additional, dedicated chips with the sole purpose

of accelerating machine learning algorithms [15].

GPUs are found all around us - from servers, desktops, and game consoles, to small

mobile GPUs in mobile phones and VR headsets - and they’re continuously being re-

designed and altered to fit emerging applications that require vast parallel compute

capabilities. Figure 1.4 shows the number of vendors designing new machine learning

accelerators alone. Technology is quickly migrating from being server/desktop domi-

nated into the IoT (Internet-of-Things) space, meaning that energy efficient processors

are in high demand. In the future, we’ll see more and more demand for these types of

systems, and it’s critical that we have tools to support their design and development.

Very little of the original graphics-specific GPU design remains visible in modern

Chapter 1. Introduction 4

Fig. 1.2: Modern deep learning compute stacks include multiple libraries, with different

purposes, and using different intermediate representations. (Fig. Source: [16])

multi-purpose parallel GPGPU architectures. GPUs however, have not evolved on their

own. The applications accelerated by GPUs are supported by exceptionally complex

heterogeneous systems, with multiple processors, and convoluted software stacks driv-

ing the applications, which a standalone GPU would not be capable of executing. The

intricacies of systems supporting GPU execution are explored in the following section.

1.2 The Complexities of GPU Systems

Modern GPUs form just one component of complex, heterogeneous systems, with a

CPU, and potentially other accelerators executing in parallel, sharing resources, and

completing mutual tasks, and consideration for this environment must be at the heart of

the design. The systems themselves are growing increasingly complex, with additional

levels of the software stack both co-existing and being layered one on top of the next.

The original GPU compute stack has grown to include multiple abstractions and li-

braries in the software layer, for example, Figure 1.2 shows an abstraction of the deep

learning compute stack. A neural network is specified in a high-level programming

language within a deep learning framework, which is then compiled down into an in-

termediate graph representation, which forms the network. The operations performed

on this network are further compiled into Tensor IR, which is a matrix representation of

the operations to be executed. Only then, these intermediate representations are trans-

5 1.3. Simulation as a Key Design and Development Tool

Fig. 1.3: The number of Machine Learning frameworks has grown dramatically in recent

years. (Fig. Source: [16])

formed into a more traditional programming language, for example C++, from which

point the traditional compute stack, forming the language, compiler, ISA, and architec-

ture, is once again recognizable. But this is just one example - Figure 1.3 shows how

the number of programming frameworks for machine learning has exploded in recent

years.

The software stack doesn’t execute just on the GPU. In fact, only the final, opti-

mized, binary GPU kernel executes on the GPU, while the remainder of the complex

software stack executes entirely on the CPU, demonstrating just how critical the CPU

is to correct and efficient GPU execution - without CPU execution, there is no GPU

execution. A CPU further relies on other system components for correct execution

- timers, interrupt controllers, memory. The only way to completely and correctly ex-

ecute the entire software stack, is to have a complete view of the hardware that the

software executes on. This is true not just for native execution, but also for all tools

used to design and develop GPUs and their software stacks. The following section

introduces simulation - the backbone behind the development of modern GPU devices.

1.3 Simulation as a Key Design and Development Tool

At the heart of GPU design tools, lies simulation. Simulation is a critical component

of any computer architecture design phase. It is increasingly used for designing, pro-

totyping, and testing new hardware. Simulation is also used by systems, compiler, and

Chapter 1. Introduction 6

Fig. 1.4: Both established vendors and startups are designing machine learning accel-

erators. (Source: [16])

software developers to design software before the silicon is available, and can further

be exploited to explain causes and effects which can’t be observed using real hard-

ware. This thesis primarily concerns itself with two types of simulators - functional,

instruction set simulators, and cycle-accurate simulators. Functional, instruction set

simulators model the architecture at the ISA-level, executing instruction-by-instruc-

tion, without any overview of the micro-architecture. Cycle-accurate simulators on the

other hand, follow each instruction through all of the pipeline stages, and at the cost of

simulation speed, have greater observability.

The primary use of simulators is two-fold. Firstly, by computer architects, they are

used to model hardware prior to developing physical chips. In this case, strong focus is

placed on modeling hardware components, and their interactions, in order to accurately

predict hardware power consumption, performance, and area. Most commonly for this

purpose, cycle-accurate simulators are used by computer architects.

Secondly, simulators are used by software developers, who use them to develop ap-

plication and system software prior to hardware becoming available, or using them in

environments where a high number of potential configurations is possible, and where

it would be infeasible to obtain and test all available hardware platforms (e.g. Android

app and system development). In this case, a stronger focus is placed on functional

correctness, and performance prediction, while still important, becomes secondary.

7 1.4. Motivation

Commonly, in software development, functional emulators, or instruction set simula-

tors are used, which trade-off accuracy in the performance model for execution speed.

The following section introduces some of the trade-offs that need to be considered

when simulating GPUs, as well as limitations of existing GPU simulators.

1.4 Motivation

In both of the scenarios described in the previous section, speed is of utmost impor-

tance. When designing hardware, there are infinitely many possible configurations,

and with the high cost of detailed simulation, only a limited number of configurations

can be explored within the timeframe of the development cycle. Software develop-

ers face the problem of long latencies when running simulations and testing different

software implementations. For example, a software developer may want to test a new

piece of software, and executes it in the simulator. In real hardware, this execution

might take a few hundred milliseconds, however in functional simulation, it could take

hours, and in detailed simulation, days, weeks, or months. Now let’s say this software

contains a number of bugs that need to be discovered, and addressed. This is an iter-

ative process, and each bug requires another execution of the software, significantly

extending development time.

GPUs are particularly vulnerable to the issues mentioned, as they are highly-parallel

SIMD machines designed to accelerate parallel workloads. In short, in the same

amount of time as a CPU, they are capable of executing thousands of times more

code, provided that the application is parallelizable. As the host hardware (CPU) that

the GPU simulator is executing on does not have the same parallel capabilities as the

guest (GPU), this has a significant impact on simulation time. Detailed architecture

simulation clearly does not scale to increasingly parallel modern workloads.

Furthermore, in order to execute modern applications with a complex software

stack, and to guarantee accurate binary execution, the supporting software stack must

also be faithfully simulated in full.

Existing state-of-the-art GPU simulators however, primarily focus on detailed mod-

elling of the hardware, while cutting many corners when simulating the software stack

and surrounding system by treating the GPU as a standalone device, simulating the

GPU at levels other than the binary instruction set level, or replacing the software

stack. In addition, simulation speeds associated with detailed simulators make these

simulators unsuitable for modelling modern workloads. Finally, existing state-of-the-

Chapter 1. Introduction 8

art GPU simulators in the open domain are developed around large desktop or server

class GPUs, while leaving a void in the mobile GPU space. These problems are ex-

plored in detail in Section 3.3, while the following section introduces the goals behind

the work presented in this thesis.

1.5 Goals

The work presented in this thesis aims to provide better simulation technology for

GPU-based systems that cut fewer corners, but are faster than existing cycle-accurate

simulators, and which fully supports mobile GPU simulation. In particular, we aim to

develop a simulation system that:

1. Accurately simulates a state-of-the-art mobile GPU in a full-system context, en-

abling the use of unmodified vendor-supplied drivers and JIT compilers, operat-

ing in an unmodified target operating system, and executing unmodified applica-

tions.

2. Supports simulation speeds, which enable the user to execute complete and com-

plex applications typical of modern GPU workloads.

3. Provides useful performance statistics, without the overhead of cycle-accurate

simulation.

The following section outlines how the goals of the thesis are achieved.

1.6 Thesis Overview

With increasingly complex architectures, software stacks, and systems, it is in the in-

terest of all to reduce simulation times, while maintaining an accurate representation

of the system and software stack. This thesis investigates the above issues and solu-

tions through compute applications executing on graphics processing units (GPUs) as

a platform and application of interest in the following manner.

First, we provide an overview of background information in Chapter 2, and an in-

depth exploration of existing problems and solutions in the GPU simulation space in

Chapter 3.

9 1.6. Thesis Overview

After motivating the problems faced in GPU simulation, we present our holistic

solution to modelling GPUs as components of a complete system, allowing us to ac-

curately model the execution of the entire software stack executing both on the CPU

and GPU, which is presented in Chapter 4. Additionally, Section 4.6 demonstrates

applications of the simulator in OpenCL program optimization, by using detail from

the functional simulation to optimize OpenCL applications and explain unexpected

performance behaviour in hardware.

As cycle-accurate simulation of large GPU applications is infeasible using cur-

rent techniques, in Chapter 5, we explore different approaches to fast performance

modelling, including machine-learning based approaches and trace-based simulation.

Building on our holistic approach, we present a novel tuning and trace-based per-

formance modelling framework, which delivers accuracy on-par with existing cycle-

accurate simulators, without compromising on simulation speed. Once again, in Sec-

tion 5.3.4, we present use cases of our simulation framework, through an extensive

design space exploration made possible by our work. We conclude, and suggest future

work in Chapter 6.

Chapter 2
Background

2.1 Introduction

This thesis builds on a significant amount of prior work in the fields of architecture,

programmability, and simulation. This chapter introduces the background concepts

necessary for understanding the content of Chapters 3, 4, and 5. First, Section 2.2 in-

troduces the GPU programming model, presenting the concepts behind OpenCL and

other popular programming frameworks. Next, Section 2.3 describes the Arm Mali

Bifrost architecture, which is the architecture modelled in the work leading to this the-

sis. The GPU simulation framework we develop originates from, and uses components

of existing simulation frameworks, which are described in Section 2.4 and Section 2.5.

Section 2.6 describes the benchmarks used for extensive validation of and experimenta-

tion using the developed GPU simulation framework, and finally, Section 2.7 presents

strategies for collecting data from hardware.

2.2 How do we program a GPU?

GPUs are not standalone devices, and therefore programming a GPU relies on a spe-

cific protocol established between the programmer, CPU, and GPU, often defined in

the form of a programming framework. The programmer first uses CPU code to pre-

pare the data to be consumed, and code to be executed on the GPU - however, even

this isn’t always transparent to the modern day GPU programmer. This section presents

the protocol established by programming frameworks such as OpenCL, and introduces

higher-level programming frameworks where the programmer may not even be aware

that they are executing GPU code. Just as in physical hardware, this software stack

11

Chapter 2. Background 12

GPU Binary

CPU

User Program Kernel Source

Runtime System GPU JIT
Compiler

Kernel Driver

Kernel Descriptor

Page Tables

GPU

Fig. 2.1: A high level overview of a interactions between different components of a

typical GPU software stack. User-provided programs are in green, and the supporting

software stack and resulting binaries are coloured red.

must be faithfully executed in simulation in order to achieve completeness and cor-

rectness.

2.2.1 The Software Stack

Figure 2.1 presents the typical components of a software stack required to execute

programs on the GPU. These comprise the user program, a runtime system, the kernel

device driver, and finally, the native GPU binary.

2.2.1.1 User Program

Traditionally, the user program was a C or C++ program with API calls to the relevant

programming framework, such as OpenCL, or CUDA. There are a number of frame-

works with similar features, so while we provide examples for a number of frame-

works, we only present OpenCL in detail. A sample host-side OpenCL program is

shown in Listing 2.1 and Table 2.1 lists the function calls exposed by the OpenCL

API.

OpenCL host programs typically use a specific pipeline of operations that are sim-

ilar across all OpenCL programs. Firstly, the programmer must identify the available

platforms using the clGetPlaformIDs call. The platform specifies a vendor, name,

version, and available extensions. Based on the platform, the API also allows the pro-

grammer to identify the devices in that platform, using the clGetDeviceIDs call, which

is the next step. Next, an OpenCL context is created, which keeps track of references

and manages all resources used during execution. This is followed by the creation of

13 2.2. How do we program a GPU?

clBuildProgram clEnqueueMigrateMemObjects clGetProgramInfo

clCompileProgram clEnqueueNativeKernel clGetSamplerInfo

clCreateBuffer clEnqueueNDRangeKernel clGetSupportedImageFormats

clCreateCommandQueue clEnqueueReadBuffer clLinkProgram

clCreateContext clEnqueueReadBufferRect clReleaseCommandQueue

clCreateContextFromType clEnqueueReadImage clReleaseContext

clCreateImage clEnqueueTask clReleaseDevice

clCreateKernel clEnqueueUnmapMemObject clReleaseEvent

clCreateKernelsInProgram clEnqueueWriteBuffer clReleaseKernel

clCreateProgramWithBinary clEnqueueWriteBufferRect clReleaseMemObject

clCreateProgramWithBuiltInKernels clEnqueueWriteImage clReleaseProgram

clCreateProgramWithSource clFinish clReleaseSampler

clCreateSampler clFlush clRetainCommandQueue

clCreateSubBuffer clGetCommandQueueInfo clRetainContext

clCreateSubDevices clGetContextInfo clRetainDevice

clCreateUserEvent clGetDeviceIDs clRetainEvent

clEnqueueBarrierWithWaitList clGetDeviceInfo clRetainKernel

clEnqueueCopyBuffer clGetEventInfo clRetainMemObject

clEnqueueCopyBufferRect clGetEventProfilingInfo clRetainProgram

clEnqueueCopyBufferToImage clGetImageInfo clRetainSampler

clEnqueueCopyImage clGetKernelArgInfo clSetEventCallback

clEnqueueCopyImageToBuffer clGetKernelInfo clSetKernelArg

clEnqueueFillBuffer clGetKernelWorkGroupInfo clSetMemObjectDestructorCallback

clEnqueueFillImage clGetMemObjectInfo clSetUserEventStatus

clEnqueueMapBuffer clGetPlatformIDs clUnloadPlatformCompiler

clEnqueueMapImage clGetPlatformInfo clWaitForEvents

clEnqueueMarkerWithWaitList clGetProgramBuildInfo

Table 2.1: A list of functions provided by the OpenCL API.

data structures using the clCreateCommandQueue and clCreateBuffer calls. Transfer

of data to the new buffers is performed using the clEnqueueWriteBuffer call. Fol-

lowing this, the program binary is compiled using the clCreateProgramWithSource,

clBuildProgram, and clCreateKernel API calls. These calls invoke the OpenCL com-

piler. Arguments are then communicated using the clSetKernelArg function. Up until

this point, all of the code has been executed on the CPU, and only now, kernels are

dispatched to the GPU using the clEnqueueNDRangeKernel call. The result of the

kernel is read back from memory by the CPU using the clEnqueueReadBuffer call,

after which all memory is freed.

In many modern programming frameworks there can be multiple layers of what we

consider the user program. For example, the PyTorch framework integrates multiple

libraries and abstracts away the low-level details of dispatching jobs the to the GPU.

In such frameworks the user simply specifies the operation, and optionally the target

hardware, while the underlying libraries perform all necessary API calls. In the case

Chapter 2. Background 14

of a matrix multiplication, the underlying OpenCL implementation can come from the

Arm Compute Library, or it can be generated by TVM, and the implementations can

be vastly different from each other. Even more so than when using plain OpenCL, the

vast majority of the code is executed on the CPU, with the GPU providing powerful

acceleration for specific operations, showcasing how tightly coupled the CPU and GPU

execution are. [17] demonstrates that a lot of the execution time is spent on CPU-

side code, and aims to fuse GPU operations together in order to reduce CPU-GPU

communication overhead.

2.2.1.2 Runtime Library

The runtime library implements the API called by the user program. The runtime

library is linked against the host program binary and at execution time, calls are of-

floaded onto the runtime library. The runtime library performs all data management,

kernel compilation, and communication with the GPU via lower-level kernel drivers.

The runtime library itself is in most cases provided as a binary by the vendor, and

executes on the CPU. This flow is depicted in Figure 2.1.

2.2.1.3 Kernel Device Driver

The device driver is a software component that is integrated into the operating system.

In Linux, this is in the form of a kernel module. The device driver is responsible for

memory allocation, reading from and writing to the GPU’s memory-mapped registers,

raising interrupts, and handling faults. The kernel driver also sets up the page tables

with mappings from virtual to physical addresses. As the CPU and GPU operate using

a shared memory model, the page tables can also be shared between the CPU and GPU.

The kernel driver executes on the CPU and is usually provided by the vendor. In the

case of the Mali Bifrost GPUs, Arm provides the source for the kernel driver so that it

can be integrated into any Linux kernel.

2.2.1.4 GPU Binary

The GPU binary is the only part of the software stack that executes on the GPU, and is

compiled by the OpenCL compiler, which executes on the CPU. The program can be

compiled ahead of time and loaded by the OpenCL runtime, however in the majority

of cases, the kernel source is JIT-compiled. The final binary contains both the kernel

code, which is executed by the GPU cores, as well as a series of descriptors, which

15 2.2. How do we program a GPU?

specify meta- information necessary for executing the kernels. The descriptors include

information such as the number of threads, the workgroup size, and pointers to where

the compute kernel resides in the GPUs virtual memory.

2.2.2 Low-Level Programming Frameworks

Here we explore programming frameworks which directly expose the hardware com-

munication between the CPU and the GPU to the end user. We consider these to be

low-level programming frameworks in contrast with high-level programming frame-

works, which hide away the details of GPU communication and execution.

2.2.2.1 OpenCL [18]

OpenCL is a parallel compute framework targeting heterogeneous platforms. Its most

common targets are GPUs, but OpenCL can also be used to program CPUs, FPGAs,

and any other hardware that complies with the OpenCL standard. OpenCL is devel-

oped by the Khronos Group, a non-profit consortium with dozens of members, includ-

ing but not limited to Arm, AMD, Nvidia, Huawei, and Intel.

OpenCL is considered to be a low-level language, meaning that the programmer

has direct interaction with a lot of hardware components. This is evident during setup

and initialization, where the user has to declare and initialize memory buffers. A sam-

ple OpenCL program is presented in Listing 2.1.

2.2.2.2 OpenGL [19]

OpenGL is a graphics rendering framework, also developed by the Khronos Group. A

sample OpenGL program is presented in Listing 2.2.

2.2.2.3 SYCL [20]

SYCL is a higher-level abstraction of OpenCL, aiming to increase programming pro-

ductivity. In SYCL, not only is the kernel code embedded directly into the host code,

but the compute kernel is also valid C++ code. This means that the code can still be

executed on a CPU in the absence of OpenCL-compliant hardware, which is useful for

portability and debugging. Similarly to OpenCL and OpenGL, it is developed by the

Khronos Group. An example of SYCL code is presented in Listing 2.3.

Chapter 2. Background 16

Listing 2.1: OpenCL vector add example code.
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include <CL/opencl.h>

5

6 const char *kernelSource = "\n" \

This code executes on the GPU.

7 "#pragma OPENCL EXTENSION cl_khr_fp64 : enable \n" \

8 "__kernel void vecAdd(__global double *a, __global double *b, \n" \

9 " __global double *c, const unsigned int n) \n" \

10 "{ \n" \

11 " int id = get_global_id(0); \n" \

12 " if (id < n) \n" \

13 " c[id] = a[id] + b[id]; \n" \

14 "} \n";

15

16 int main(int argc , char* argv[]) { This code executes on the CPU.
17 unsigned int n = 100000;

18 cl_platform_id cpPlatform; // OpenCL platform

19 cl_device_id device_id; // device ID

20 cl_context context; // context

21 cl_command_queue queue; // command queue

22 cl_program program; // program

23 cl_kernel kernel; // kernel

24

25 size_t bytes = n*sizeof(double);

26 double * h_a = (double*)malloc(bytes);

27 double * h_b = (double*)malloc(bytes);

28 double * h_c = (double*)malloc(bytes);

29 [...] // init data

30

31 size_t localSize = 64;

32 size_t globalSize = ceil(n/(float)localSize)*localSize;

33

34

35 cl_int err = clGetPlatformIDs(1, &cpPlatform , NULL);

Interaction with OpenCL runtime begins here.

36 err = clGetDeviceIDs(cpPlatform , CL_DEVICE_TYPE_GPU , 1, &device_id , NULL);

37 context = clCreateContext(0, 1, &device_id , NULL , NULL , &err);

38 queue = clCreateCommandQueue(context , device_id , 0, &err);

39 program = clCreateProgramWithSource(context , 1,

40 (const char **) & kernelSource , NULL , &err);

41 clBuildProgram(program , 0, NULL , NULL , NULL , NULL); This command compiles the kernel.
42 kernel = clCreateKernel(program , "vecAdd", &err);

43

44

45 cl_mem d_a = clCreateBuffer(context , CL_MEM_READ_ONLY , bytes , NULL , NULL);

A GPU view of the host memory buffer is created.

46 cl_mem d_b = clCreateBuffer(context , CL_MEM_READ_ONLY , bytes , NULL , NULL);

47 cl_mem d_c = clCreateBuffer(context , CL_MEM_WRITE_ONLY , bytes , NULL , NULL);

48 err = clEnqueueWriteBuffer(queue , d_a, CL_TRUE , 0, bytes , h_a, 0, NULL , NULL);

49 err |= clEnqueueWriteBuffer(queue , d_b, CL_TRUE , 0, bytes , h_b, 0, NULL , NULL);

50 err = clSetKernelArg(kernel , 0, sizeof(cl_mem), &d_a);

51 err |= clSetKernelArg(kernel , 1, sizeof(cl_mem), &d_b);

52 err |= clSetKernelArg(kernel , 2, sizeof(cl_mem), &d_c);

53 err |= clSetKernelArg(kernel , 3, sizeof(unsigned int), &n);

54

55

56 err = clEnqueueNDRangeKernel(queue , kernel , 1, NULL , &globalSize , &localSize , 0, NULL , NULL);

This command dispatches the kernel to the GPU.

57

58 clFinish(queue); This command waits for the GPU to finish.
59 clEnqueueReadBuffer(queue , d_c, CL_TRUE , 0, bytes , h_c, 0, NULL , NULL);

60

61 clReleaseMemObject(d_a);

62 clReleaseMemObject(d_b);

63 clReleaseMemObject(d_c);

64 clReleaseProgram(program);

65 clReleaseKernel(kernel);

66 clReleaseCommandQueue(queue);

67 clReleaseContext(context);

68 }

17 2.2. How do we program a GPU?

Listing 2.2: OpenGL example code.
1 #include <stdio.h>

2 #include <GL/glut.h>

3

4 void display(void) This code executes on the GPU.
5 {

6 glClear(GL_COLOR_BUFFER_BIT);

7 glColor3f(0.0, 1.0, 0.0);

8 glBegin(GL_POLYGON);

9 glVertex3f(2.0, 4.0, 0.0);

10 glVertex3f(8.0, 4.0, 0.0);

11 glVertex3f(8.0, 6.0, 0.0);

12 glVertex3f(2.0, 6.0, 0.0);

13 glEnd();

14 glFlush();

15 }

16

17

18 int main(int argc , char **argv)

This code executes on the CPU.

19 {

20 printf("hello world\n");

21 glutInit(&argc , argv);

22 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

23

24 glutInitWindowPosition(100,100);

25 glutInitWindowSize(300,300);

26 glutCreateWindow ("square");

27

28 glClearColor(0.0, 0.0, 0.0, 0.0);

29 glMatrixMode(GL_PROJECTION);

30 glLoadIdentity();

31 glOrtho(0.0, 10.0, 0.0, 10.0, -1.0, 1.0);

32

33 glutDisplayFunc(display);

34 glutMainLoop();

35

36 return 0;

37 }

Chapter 2. Background 18

Listing 2.3: SYCL example code.
1 #include <sycl.hpp>

2

3 using namespace cl::sycl

4

5 #define TOL (0.001) // tolerance used in floating point comparisons

6 #define LENGTH (1024) // Length of vectors a, b and c

7

8 int main() {

9 std::vector h_a(LENGTH); // a vector

10 std::vector h_b(LENGTH); // b vector

11 std::vector h_c(LENGTH); // c vector

12 std::vector h_r(LENGTH , 0xdeadbeef); // d vector (result)

13 // Fill vectors a and b with random float values

14 int count = LENGTH;

15 for (int i = 0; i < count; i++) {

16 h_a[i] = rand() / (float)RAND_MAX;

17 h_b[i] = rand() / (float)RAND_MAX;

18 h_c[i] = rand() / (float)RAND_MAX;

19 }

20 {

21 // Device buffers

22 buffer d_a(h_a);

23 buffer d_b(h_b);

24 buffer d_c(h_c);

25 buffer d_r(h_d);

26 queue myQueue;

27 command_group(myQueue , [&]()

28 {

29 // Data accessors

30 auto a = d_a.get_access <access::read >();

31 auto b = d_b.get_access <access::read >();

32 auto c = d_c.get_access <access::read >();

33 auto r = d_r.get_access <access::write >();

34 // Kernel

35 parallel_for(count , kernel_functor([=](id<> item) {

This is the GPU code!

36 int i = item.get_global(0);

37 r[i] = a[i] + b[i] + c[i];

38 }));

39 });

40 }

41 printf("R = A+B+C: %d out of %d results were correct.\n", correct , count);

42 return (correct == count);

43 }

19 2.2. How do we program a GPU?

Listing 2.4: CUDA implementation of SAXPY (Single Precision A*X+Y).
1 #include <stdio.h>

2

3 __global__

4 void saxpy(int n, float a, float *x, float *y) {

This code executes on the GPU.

5 int i = blockIdx.x*blockDim.x + threadIdx.x;

6 if (i < n) y[i] = a*x[i] + y[i];

7 }

8

9

10

11 int main(void) {

This code executes on the CPU.

12 [...]

13 cudaMalloc(&d_x, N*sizeof(float));

The CUDA API is slightly higher level
than OpenCL, and less verbose.

14 cudaMalloc(&d_y, N*sizeof(float));

15 [...]

16 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

17 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

18 saxpy <<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);

19 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

20 [...]

21 cudaFree(d_x);

22 cudaFree(d_y);

23 free(x);

24 free(y);

25 }

2.2.2.4 Vulkan [21]

Vulkan, similarly to the above frameworks, is developed by the Khronos Group. It

provides a lower-level alternative to OpenGL as a 3D graphics API for heterogeneous

systems. It also implements a compute API, which reduces overheads especially when

the results of these compute applications feed into the graphics pipeline. Vulkan is ex-

tremely verbose, with a draw triangle example taking over 1000 lines of code. As there

is no easy way of fitting this into the thesis, we omit the Vulkan example. Examples

can be found in [22].

2.2.2.5 CUDA [23]

CUDA is a proprietary heterogeneous compute programming framework developed

by Nvidia. It’s functionality is similar to OpenCL, however, while OpenCL is an

open standard available on many platforms, CUDA is a proprietary framework only

available for Nvidia GPUs. Traditionally, CUDA is preferred over OpenCL on Nvidia

GPUs, as it is better optimized for Nvidia architectures, however its uses are limited

in the mobile space, as the vast majority of Nvidia GPUs target desktop and server

machines. A CUDA example is presented in Listing 2.4.

Chapter 2. Background 20

Listing 2.5: Example of adding two arrays using Apple’s Metal.
1

2 #include <metal_stdlib >

3 using namespace metal;

4

5

6 kernel void add_arrays(device const float* inA,

This code executes on the GPU.

7 device const float* inB,

8 device float* result ,

9 uint index [[thread_position_in_grid]])

10 {

11 result[index] = inA[index] + inB[index];

12 }

13

14 int main(int argc , const char * argv[]) {

This code executes on the CPU.

15 @autoreleasepool {

16

17

18 id<MTLDevice > device = MTLCreateSystemDefaultDevice();

Metal uses similar concepts to
OpenCL, while being less verbose.

19

20 // Create the custom object used to encapsulate the Metal code.

21 // Initializes objects to communicate with the GPU.

22 MetalAdder* adder = [[MetalAdder alloc] initWithDevice:device];

23

24 // Create buffers to hold data

25 [adder prepareData];

26

27 // Send a command to the GPU to perform the calculation.

28 [adder sendComputeCommand];

29

30 NSLog(@"Execution finished");

31 }

32 return 0;

33 }

34

35 @interface MetalAdder : NSObject

36 - (instancetype) initWithDevice: (id<MTLDevice >) device;

37 - (void) prepareData;

38 - (void) sendComputeCommand;

39 @end

2.2.2.6 Metal [24]

Metal is a proprietary heterogenous compute and 3D graphics programming frame-

work developed by Apple. It is designed to be low overhead and combines compute

and graphics similar to Vulkan.

Metal takes an object-oriented approach, where the user can create custom objects

with specific functions implemented for initializing and loading the data. The main

function of the program is then vastly simplified, taking on a more declarative-style

look. An example of Metal is presented in Listing 2.5.

2.2.2.7 Direct X [25]

Direct X is a collection of APIs for multimedia-related tasks, including 3D graphics

acceleration, developed by Microsoft and available for Microsoft platforms including

21 2.2. How do we program a GPU?

Listing 2.6: Example of drawing a triangle in Direct X
1

2 class DirectXGame : core::DirectXApp

3 {

4 private:

5 Microsoft::WRL::ComPtr <ID3D11Buffer > vertexBuffer;

6 public:

7 DirectXGame(HINSTANCE hInstance);

8 ˜DirectXGame();

9

10 util::Expected <void> init() override; // game initialization

11 void shutdown(util::Expected <void>* expected = NULL) override; // cleans up and shuts the game down (handles

errors)

12 util::Expected <int> update(double dt); // update the game world

13 util::Expected <int> render(double farSeer); // render the scene

14

15 util::Expected <void> initGraphics(); // initializes graphics

16

17 util::Expected <int> run() override; // run the game

18 };

19

20 util::Expected <void> DirectXGame::initGraphics()

21 {

22 // create the triangle

23 graphics::VERTEX triangleVertices[] = { { 0.0f, 0.5f, 0.0f },{ 0.45f, -0.5f, 0.0f },{ -0.45f, -0.5f, 0.0f } };

24

25 D3D11_BUFFER_DESC bd; // set up buffer description

26 bd.ByteWidth = sizeof(graphics::VERTEX) * ARRAYSIZE(triangleVertices);

27 bd.Usage = D3D11_USAGE_DEFAULT;

28 bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;

29 bd.CPUAccessFlags = 0;

30 bd.MiscFlags = 0;

31 bd.StructureByteStride = 0;

32

33 D3D11_SUBRESOURCE_DATA srd = { triangleVertices , 0,0 };

34

35

36

37 if (FAILED(d3d->dev->CreateBuffer(&bd, &srd, &vertexBuffer)))

This command draws the triangle using the GPU.

38 return "Critical Error: Unable to create vertex buffer!";

39

40 return {};

41 }

PCs and gaming platforms. DirectCompute is a compute API integrated into Direct X.

A Dirext X example is presented in Listing 2.6.

2.2.3 High-Level Libraries

High-level libraries that abstract the complexities of low-level APIs have been devel-

oped to increase programmer productivity. Some examples of libraries that support

GPU computation are the Arm Compute Library, TVM, and PyTorch.

2.2.3.1 Arm Compute Library

The Arm Compute Library is an open-source library developed by Arm, which ex-

poses commonly used complex functions, through a high-level C++ API. The library

Chapter 2. Background 22

includes support for both Arm A-class CPUs, where the functions are implemented

using C++, and Arm Mali GPUs, where the functions are implemented using OpenCL.

The provided functions include:

• Basic arithmetic, mathematical, and binary operator functions

• Color manipulation (conversion, channel extraction, and more)

• Convolution filters (Sobel, Gaussian, and more)

• Canny Edge, Harris corners, optical flow, and more

• Pyramids (such as Laplacians)

• HOG (Histogram of Oriented Gradients)

• SVM (Support Vector Machines)

• H/SGEMM (Half and Single precision General Matrix Multiply).

2.2.3.2 TVM

The TVM compiler [26] is an open source deep learning compiler stack for CPUs,

GPUs, and accelerators. It aims to close the gap between the productivity-focused

deep learning frameworks, and performance- or energy-efficiency oriented hardware

backends, by using machine learning to translate high-level operators to optimized,

low-level, kernel code. TVM provides the following features:

• Compilation of deep learning models in Keras, MXNet, PyTorch, Tensorflow,

CoreML, DarkNet into minimum deployable modules on diverse hardware back-

ends.

• Infrastructure to automatically generate and optimize tensor operators on more

backends with better performance.

Similarly to the Arm Compute Library, we use TVM in our characterization of

convolutional neural networks on embedded devices, presented in Section 4.6.2.

23 2.3. The Arm Mali Bifrost Architecture

Fig. 2.2: An overview of the TVM deep learning compiler. (Fig. Source: [26])

2.2.3.3 PyTorch

PyTorch is a prime example of a complex CPU/GPU software stack present in modern

day applications. It is a deep learning framework exposed through the Python pro-

gramming language. Deep learning models are typically invoked by selecting a model

from a library of available neural networks, and providing inputs. Under the hood, Py-

Torch implements a number of backends, for the components of the neural networks,

typically using existing, optimized compute libraries, for example MKL on CPUs, or

the Arm Compute Library and TVM on GPUs.

This section has presented a number of GPU programming frameworks, all of

which are automatically supported in our full-system simulation framework, which

we present in Chapter 4. Now that we have introduced common GPU programming

frameworks, we move on to describing the GPU architecture that the final kernel bina-

ries execute on.

2.3 The Arm Mali Bifrost Architecture

The Mali Bifrost architecture was developed by Arm and has been licensed since 2016,

becoming the primary Arm GPU architecture between 2016 and 2019. At the time of

release, it was a complete re-design of Arm’s line of GPUs, which was preceded by

Chapter 2. Background 24

Fig. 2.3: The Bifrost Architecture. Image reproduced with kind permission from Arm

Ltd. [27]

the Midgard architecture.

The Bifrost architecture introduced a number of new features, such as clause execu-

tion, a scalar ISA, a new core fabric, and quad-based arithmetic units, which overall re-

sulted in a 20% increase in energy efficiency, 40% better performance density, and 20%

bandwidth improvement for the Mali-G71 (Bifrost) over the Mali-T880 (Midgard).

In this section, we provide details of the Arm Mali Bifrost architecture, which is

the GPU architecture modelled in the work presented in this thesis. The figures in this

section are reproduced with the kind permission of Arm Ltd.

2.3.1 Overview

The Mali Bifrost GPU is composed of a scalable number of Shader Cores, a Job Man-

ager, MMU, Tiler Unit, and L2 Cache. In the following sections, we provide details of

GPU components used in the compute pipeline. Graphics-specific hardware is men-

tioned, but not examined in greater detail, as it is not required for understanding this

thesis. An overview of the hardware is provided in Figure 2.3. We start with a general

overview of software execution in GPU hardware, before moving onto the intricacies

of the Bifrost architecture.

25 2.3. The Arm Mali Bifrost Architecture

2.3.2 Starting a GPU Job

A new GPU Job is communicated to the GPU using the CPU-side kernel driver. The

Job Manager receives this request, creates threads, and packs them into threadgroups,

which are dispatched to individual Shader Cores. In the Shader Core, threads are

packed into Warps, which then take turns executing on the Execution Engines. Once

all of the work has been completed, the Job Manager signals back to the CPU.

2.3.3 Interaction with the CPU

The CPU and GPU communicate via three mechanisms - interrupts, memory-mapped

registers, and shared memory. The main memory, which is shared between the CPU

and the GPU, and is hence shared memory, holds all of the information passed be-

tween the CPU and GPU. This is where memory buffers, the GPU kernel binaries,

and all of the Job Descriptors are stored. The memory-mapped registers are used for

communicating state and pointers to the relevant sections of memory from the CPU to

the GPU. Interrupts are used to signal ready states between CPU and GPU. A trace of

the communication between CPU and GPU using memory-mapped registers and inter-

rupts during the Linux boot sequence is presented in Listing 2.7. The Job Manager is

the main hardware component responsible for the GPU-side interaction with the CPU,

and is described next.

2.3.4 Details of the Job Manager

The Job Manager’s primary role is to communicate with the device driver, which is

executing on the CPU. The Job Manager receives a signal from the CPU-side de-

vice driver that a Job is ready to begin executing. This signal is communicated via

the GPU’s control registers. At this point, the Job Manager can start reading values

from memory mapped registers, which were previously written to by the device driver.

These memory mapped registers contain information about the Job configuration, for

example the number of workgroups (the software term for a hardware threadgroup),

their sizes, and their dimensions. They also contain the virtual addresses of memory

buffers which were initialized by the CPU-side program, and virtual addresses pointing

to the GPU kernel binaries, which were compiled by the OpenCL (or other framework)

JIT-compiler. The Job Manager decodes all of this information, creates tasks, and dis-

patches them to the waiting Shader Cores. Upon Job completion, the Job Manager is

Chapter 2. Background 26

responsible for communicating this, as well as any associated state back to the device

driver. Next, we look at the MMU, which is also tightly coupled with the remainder of

the system, as the Bifrost GPU shares physical memory with the CPU.

2.3.5 The Arm Mali Memory System

Memory systems in GPUs fall into two broad categories - discrete desktop GPUs tra-

ditionally have separate, local, and private memories. Smaller, mobile systems on the

other hand, where the GPU is embedded into the same SoC as the CPU, tend to imple-

ment unified memory systems, backed by caches.

Having a separate memory improves performance on discrete GPUs, however it

comes at the cost of power, area, and heat, all of which are tightly constrained on

mobile GPUs.

The Mali series of GPUs, being mobile GPUs tightly coupled with a CPU, embed-

ded into a single SoC, implement a unified memory model. This means that the CPU,

GPU, and possibly other interconnected accelerators, all share the main memory. Fur-

thermore, the Mali GPU is capable of sharing physical, or even virtual address spaces

with the CPU, if the page tables are configured to be shareable.

2.3.5.1 The Bifrost MMU

The Bifrost Architecture has it’s own MMU used for translating virtual addresses to

physical, and for keeping track of the GPU’s multiple address spaces. The dedicated

MMU implements the same translation policies as the Arm-v8 MMU, and can share

page tables with the CPU-side MMU. The MMU also has it’s own interrupt line, which

it can use to raise faults detected during translation.

2.3.5.2 Synchronizing Memory

Bifrost GPUs have two ways of synchronizing memory accesses. The first way is us-

ing the OpenCL CLK GLOBAL MEM FENCE or CLK LOCAL MEM FENCE

directives, which ensure that all global and local memory accesses become visible (re-

spectively). The other mechanism is via atomic operations, which again are exposed

via OpenCL. Atomic operations ensure that memory can be read, modified, and writ-

ten to in a single operation, without interference from other threads. Both of these

mechanisms are communicated to the hardware via dedicated machine instructions.

27 2.3. The Arm Mali Bifrost Architecture

Listing 2.7: Trace of reads from and writes to GPU memory-mapped registers per-

formed by the Device Driver when booting Linux.
1

2

3 GPU READ: offset: 0, base: 8080000 # READ GPU ID

4 GPU READ: offset: 4, base: 8080000 # READ L2 FEATURES

5 GPU READ: offset: 8, base: 8080000 # SUSPEND_SIZE Buffer

6 GPU READ: offset: c, base: 8080000 # TILER FEATURES

7 GPU READ: offset: 10, base: 8080000 # MEM_FEATURES

8 GPU READ: offset: 14, base: 8080000 # MMU_FEATURES

9 GPU READ: offset: 18, base: 8080000 # AS_PRESENT

10 GPU READ: offset: 1c, base: 8080000 # JS_PRESENT

11 GPU READ: offset: c0, base: 8080000 # JS0_FEATURES

12 GPU READ: offset: c4, base: 8080000 # JS1_FEATURES

13 GPU READ: offset: c8, base: 8080000 # JS2_FEATURES

14 GPU READ: offset: cc, base: 8080000 # JS3_FEATURES

15 GPU READ: offset: b0, base: 8080000 # TEXTURE_FEATURES_0

16 GPU READ: offset: b4, base: 8080000 # 1

17 GPU READ: offset: b8, base: 8080000 # 2

18 GPU READ: offset: bc, base: 8080000 # 3

19 GPU READ: offset: a0, base: 8080000 # THREAD_MAX_THREADS

20 GPU READ: offset: a4, base: 8080000 # THREAD_MAX_WORKGROUP_SIZE

21 GPU READ: offset: a8, base: 8080000 # THREAD_MAX_BARRIER_SIZE

22 GPU READ: offset: ac, base: 8080000 # THREAD_FEATURES

23 GPU READ: offset: 100, base: 8080000 # SHADER_PRESENT_LO

24 GPU READ: offset: 104, base: 8080000 # SHADER_PRESENT_HI

25 GPU READ: offset: 110, base: 8080000 # TILER_PRESENT_LO

26 GPU READ: offset: 114, base: 8080000 # TILER_PRESENT_HI

27 GPU READ: offset: 120, base: 8080000 # L2_PRESENT_LO

28 GPU READ: offset: 124, base: 8080000 # L2_PRESENT_HI

29 GPU READ: offset: e00, base: 8080000 # STACK_PRESENT_LO

30 GPU READ: offset: e04, base: 8080000 # STACK_PRESENT_HI

31 [2.480000] mali 8080000.gpu: GPU identified as 0x0 arch 6.0.0 r0p0 status 1

32 GPU READ: offset: 300, base: 8080000 # COHERENCY_FEATURES

33 GPU WRITE: offset: 28, base: 8080000 # GPU_IRQ_MASK

34 GPU WRITE: offset: 24, base: 8080000 # GPU_IRQ_CLEAR

35 GPU WRITE: offset: 1008, base: 8080000 # JOB_IRQ_MASK

36 GPU WRITE: offset: 1004, base: 8080000 # JOB_IRQ_CLEAR

37 GPU WRITE: offset: 2008, base: 8080000 # MMU_IRQ_MASK

38 GPU WRITE: offset: 2004, base: 8080000 # MMU_IRQ_CLEAR

39 GPU WRITE: offset: 30, base: 8080000 # GPU_COMMAND

40 GPU WRITE: offset: 28, base: 8080000 # GPU_IRQ_MASK GPU: RAISE

Chapter 2. Background 28

Fig. 2.4: The programmable Bifrost Shader Core, with surrounding blocks demonstrat-

ing the fixed function rendering pipeline. Image reproduced with kind permission from

Arm Ltd. [28]

2.3.6 The Bifrost Shader Core

The Bifrost Shader Core receives threads from the Compute Thread Creator for com-

pute workloads, or from the Fragment Thread Creator for graphics workloads. These

threads are dispatched to the Execution Engines via the spawn queue. The Execution

Engines execute the binary Shader - i.e., Bifrost machine code, and perform the major-

ity of computations. Specialized operations are offloaded via the Message Fabric onto

one of the additional units within the Shader Core - the Load/Store Unit, the Varying

Unit, the ZS/Blend Unit, and the Texture Unit.

2.3.6.1 Bifrost Execution Engines

In order to improve utilization of the GPU’s funtional units, the Bifrost architecture

implements a quad-vectorization scheme. A typical SIMD architecture is often under-

utilized when operating on types that don’t fit the SIMD unit’s width exactly. For

example, Figure 2.5 shows the utilization of a SIMD architecture executing on a three-

component vector type. Only three out of the four parallel units are utilized in this

29 2.3. The Arm Mali Bifrost Architecture

Fig. 2.5: A generic SIMD architecture operating on a vec3 type. Image reproduced with

kind permission from Arm Ltd. [28]

Fig. 2.6: The Bifrost architecture quad state. Image reproduced with kind permission

from Arm Ltd. [28]

case, leaving the fourth idle. The Bifrost architecture on the other hand, breaks all

operations down into single threads, and then dynamically composes Warps of four

threads.

Bifrost implements a substantial general-purpose register file, comprising 64 32-bit

registers, while allowing maximum thread occupancy. The register file can be accessed

using various data widths from 8-bits to 128.

In addition to general purpose registers, Bifrost also has 2KB of dedicated read-

only memory, called the Fast Access Uniform RAM (FAU RAM), and can inject con-

stants into the instruction cache.

The Bifrost pipeline is presented in Figure 2.7. It comprises two compute stages,

the FMA, and the ADD stages, which can each execute a different set of instructions.

2.3.7 The Clause Based Execution Model

The Bifrost architecture provides a hybrid approach between a VLIW and traditional

architecture through its Clause execution model. A Shader Program is composed of

a number of Clauses. Each Clause is composed of anywhere between one and eight

Instruction Words, and each Instruction Word contains two instructions - one for the

ADD pipeline and the other for the FMA pipeline. Control flow can only take place

Chapter 2. Background 30

Fig. 2.7: Bifrost has two compute pipeline stages, which can pass values directly from

the FMA to the ADD stage, without writing back to the global register file. Image repro-

duced with kind permission from Arm Ltd. [27]

between Clauses, i.e., a control flow instruction, for example a BRANCH or a JUMP,

has to be the last instruction in a Clause. The FMA and ADD pipelines execute in

sequence in that order, and results can be passed directly from the FMA pipeline to the

ADD pipeline, without writing back to the Global Register File. At the instruction set

level, these reads and writes are visible as accesses to temporary registers.

Figure 2.9 depicts a classic instruction execution model. Instructions are executed

in sequence, and before and after each instruction, there is overhead related to decoding

the instruction, as well as reading from and writing to registers. Figure 2.10 depicts

the Clause execution model found in Bifrost. Instructions are bundled into groups,

called Clauses, and any overhead is limited to the Clause boundaries, meaning that

the cost is amortized across a number of instructions. Instructions within a Clause

share resources, for example, Embedded Constants which are injected into the Clause

encoding. Clauses contain Instruction Words, and each Instruction Word contains two

instructions. Instructions within an Instruction Word also share resources, for example

the Register Block, which is part of a two-step encoding for register accesses, and the

base address of the FAU RAM.

31 2.3. The Arm Mali Bifrost Architecture

Fig. 2.8: Temporary Register Access. Image reproduced with kind permission from Arm

Ltd. [29]

Fig. 2.9: Classic Instruction Execution Model. Image reproduced with kind permission

from Arm Ltd. [30]

Fig. 2.10: Clause Execution. Image reproduced with kind permission from Arm Ltd. [30]

Chapter 2. Background 32

2.3.7.1 Message Fabric

The Shader Cores are connected to additional supporting units via the Message Fabric.

These units are the Load/Store Unit, Varying Unit, ZS/Blend Unit, and Texture Unit.

The instruction set exposes the supporting units through specific instructions. This is

depcited in the Shader Core diagram in Figure 2.4.

2.3.7.2 Load/Store Unit

The Load/Store Unit is responsible for performing memory operations. As memory

operations are more expensive than arithmetic operations, memory operations are of-

floaded onto the Load/Store unit, so that the Execution Engine can continue performing

other operations. The Execution Engine will be able to progress the current warp until

the result of the load is needed.

2.3.8 Graphics Hardware

Other units included in the GPU specific to graphics include the Varying Unit, ZS/Blend

Unit, and the Texture Unit. We do not model these in our simulator, and as such, we

do not provide details of these units.

Now that we have discussed the GPU architecture, we move onto describing sim-

ulation infrastructure that our work builds on. In the following section, we describe

GenSim, a simulator generation framework used for both CPU and GPU components

of our simulator.

2.4 GenSim - A Head Start on Fast Simulation

Simulators are expensive to develop, and difficult to optimize. However, once devel-

oped, the core components of a simulator can be re-used for similar architectures, and

only the instruction set needs to be re-implemented. This priniciple of re-use has been

exploited by GenSim [31, 32], a fast, retargetable, full-system simulation framework.

The GenSim framework is provided with a high-level architecture description by the

user, from which it generates a fast instruction set simulator. Not only does it pro-

vide the user with a simulator at negligible engineering cost compared to designing the

simulator from scratch, but it is also capable of simulation at faster than native speeds.

GenSim is used to generate both the CPU and GPU modules presented in this the-

sis. Its internal JIT engine is used as the main engine for the Arm-v7 model, which was

33 2.4. GenSim - A Head Start on Fast Simulation

Fig. 2.11: Overview of Gensim framework (Source: [31]).

used as the CPU architecture in the first version of the full-system simulator. Additions

made to the GenSim models and infrastructure as a part of this thesis are described in

Chapters 4.7.2 and 4.7.3.1.

An overview diagram of GenSim is provided in Figure 2.11. Models used in Gen-

Sim are described in the GenC [31] description language, which is originally based off

of the ArchC [33] architecture description language. The model comprises three com-

ponents - the system description, instruction syntax, and instruction semantics, which

are described next.

2.4.0.1 System Description

The system specification defines characteristics of the architecture such as the endian-

ness, word size, register files, and status flags. An example is shown in Listing 2.8.

Annotation 1© defines the register spaces for the Armv7-A model. The BANK keyword

specifies a register bank, with the type, offset, count, stride, number of elements, el-

ement size, and element stride as parameters. Additionally, specific registers within

the register bank can be specified using the SLOT keyword, for which dedicated access

functions are later generated. Annotation 2© specifies the word size used in the archi-

tecture. The ARCH CTOR denoted by Annotation 3© references the remaining files,

and sets the endianness for the architecture.

Chapter 2. Background 34

Listing 2.8: GenC Armv7a System Description
1

2 AC_ARCH(armv7a)

3 {

4 // General Purpose Registers

5 ac_regspace(64) { 1© The register space defines the register
file, as described by the ISA.6

7 // bank NAME (TYPE, OFFSET, COUNT, REG-STRIDE, # ELEMS, ELEM-SIZE, ELEM-STRIDE)

8 bank RB (uint32 , 0, 16, 4, 1, 4, 4);

9 slot PC (uint32 , 4, 60) PC; Slots are a named view to a specific
register in the register bank.10 slot SP (uint32 , 4, 52) SP;

11 }

12

13 // Floating point registers

14 // Type, offset, count, register stride, element count, element size, element stride

15

16 ac_regspace (256) Multiple register files with different
data types can be defined.17 bank FPSP (float, 0, 32, 4, 1, 4, 4);

18 bank FPDP (double, 0, 32, 8, 1, 8, 8);

19 bank VD (float, 0, 32, 8, 2, 4, 4);

20 [...]

21 }

22

23 // General Flags Standalone registers are defined here.
24 ac_regspace (14) {

25 slot C (uint8 , 1, 0) C;

26 slot Z (uint8 , 1, 1) Z;

27 [...]

28 }

29

30 [...]

31

32 // FSS Regs

33 ac_regspace(16) {

34 slot M (uint8 , 1, 0);

35 slot F (uint8 , 1, 1);

36 [...]

37 }

38

39 [...]

40

41 ac_wordsize 32; 2©

The word size is specified as 32 bits.

42

43 ARCH_CTOR(armv7a) 3©

Here we reference the ISA files, which
contain the ISA syntax description,

set the endianness, and enable
additional features.

44 {

45 ac_isa("armv7a_isa.ac");

46 ac_isa("armv7a_thumb_isa.ac");

47 set_endian("little");

48 set_feature(ARM_SDIV_UDIV , 1);

49 };

50 };

35 2.4. GenSim - A Head Start on Fast Simulation

Listing 2.9: GenC Armv7a Syntax Description
1

2 AC_ISA(arm)

3 {

4 ac_fetchsize 32; 4© The fetch size is defined as 32 bits.
5

6 include("vfpv4.ac"); 5© Additional syntax descriptions can be included,
for example instruction set extensions.7 include("neon.ac");

8

9 ac_format Type_MULT = "%cond:4 %op!:3 %func1!:4 %s:1 %rn:4 %rd:4 %rs:4 %subop2!:1 %func2!:2 %subop1!:1 %rm:4";

10 ac_format Type_SMUL = "%cond:4 0x16:8 %rd:4 0x0:4 %rs:4 0x1:1 %y:1 %x:1 0x0:1 %rm:4"; 6©

The format specifies an encoding for an instruction type.
11

12

13

14 ac_instr<Type_MULT > swp, swpb , mla, mul; 7© Here we define which instructions
belong to an instruction type.

15 ac_instr<Type_SMUL > smulxy;

16

17 ac_asm_map cond 8© Values are mapped to fields in the disassembly.
18 {

19 "eq" = 0;

20 "ne" = 1;

21 "cs"= 2;

22 "cc" = 3;

23 [...]

24 }

25

26 ac_behaviour mul; 9© Instruction behaviour declaration.
27 [...]

28 ac_behaviour smulxy;

29

30

31 ISA_CTOR(armv7a)

32 {

33

34 mul.set_decoder(op=0x00, subop1=0x01, subop2=0x01, func1=0x00, func2=0x00, rn != 15); 10©

Values are provided for some fields
to disambiguate instructions belonging to

an instruction type during decoding.
The disassembly format and a reference to

the instruction semantics is also provided.

35 mul.set_asm("mul%[cond]%sf %reg, %reg, %reg", cond , s, rn, rm ,rs, rd=0x00);

36 mul.set_behaviour(mul);

37

38 [...]

39

40 smulxy.set_decoder(); 11©
41 smulxy.set_asm("smulxy");

42 smulxy.set_behaviour(smulxy);

43 };

44 };

Chapter 2. Background 36

Listing 2.10: GenC Armv7a Semantics Description
1

2 execute(mul)

3 {

4 uint32 t;

5 t = (read_gpr(inst.rm)) * (read_gpr(inst.rs)); 12© Values are read from registers.
6

7 if (inst.s) update_ZN_flags(t); 13© Operation is performed.
8

9 write_register_bank(RB, inst.rn, t); 14© Result is written back to registers.
10 }

11

12 execute(smulxy)

13 {

14 uint32 rm = read_register_bank(RB, inst.rm);

15 uint32 rs = read_register_bank(RB, inst.rs);

16

17 uint32 op1 = inst.x == 0 ? ((uint32)(sint32)(sint16)(rm)) : ((uint32)(sint32)(sint16)(rm >> 16));

18 uint32 op2 = inst.y == 0 ? ((uint32)(sint32)(sint16)(rs)) : ((uint32)(sint32)(sint16)(rs >> 16));

19

20 write_register_bank(RB, inst.rd, op1 * op2);

21 }

2.4.0.2 Instruction Syntax

The syntax file (Listing 2.9) first specifies the word fetchsize (annotation 4©) and op-

tionally, additional files that can contain instruction set extensions (annotation 5©).

Following these, instruction formats within an instruction set are defined. Many in-

structions share a common format, and can therefore be grouped together for a more

compact representation of the instruction set in GenC, as well as for easier and more

efficient decoder generation by GenSim. Annotation 6© implements the TYPE MULT

and TYPE SMUL instruction formats in our Armv7-A model. These instruction types

are used predominantly for swap and multiplication instructions. Each instruction in

this model is 32 bits wide, and the instruction format assigns each of these bits to a

specific field in the instruction format.

Next, all instructions are declared and assigned to an instruction format, as shown

by annotation 7©.

An assembly map can be specified to help with disassembly, as shown by annota-

tion 8©. This map translates numerical values for a specific field to their text equiva-

lents, as specified by the Armv7-A instruction set manual [34].

Following this, instruction behaviours are declared, as shown by annotation 9©.

The behaviours are used for connecting instructions syntax in this file, to their seman-

tics in the semantics description file.

The final component of the syntax file includes instruction syntax definitions, which

assign the encoding, assembly format, behaviour, and any special attributes to each in-

37 2.4. GenSim - A Head Start on Fast Simulation

struction. Annotation 10© defines the MUL instruction, with multiple fields relating

to the instruction format defined in order to differentiate the MUL instruction from

the remaining instructions sharing the TYPE MULT format during decoding. The

SMULXY instruction (annotation 11©) on the other hand is the only one using the

TYPE SMUL format, and therefore needs no additional decode information. In addi-

tion to the decode information, the assembly format, and behaviour are specified. The

behaviour links the instruction syntax to the semantics.

2.4.0.3 Instruction Semantics

The final component, called the execute file, contains the instruction semantics. In-

struction semantics are described in a C-like language, with embedded intrinsics for

accessing registers, memory, and instruction fields. Helper functions can also be spec-

ified in order to share code among instructions. An example is shown in Listing 2.10.

Annotation 12© demonstrates how values are read using intrinsic functions out of the

register state. Annotation 13© shows how the instruction fields are accessed using the

INST struct. Annotation 14© shows how values are written back to the register file fol-

lowing the instruction execution.

2.4.1 ArcSim

GenSim is a heavily modified version of ArcSim [35,36], a simulator originally devel-

oped to simulate the EnCore microprocessor. ArcSim contains multiple components

critical to fast, full-system simulation. First and foremost, it encompasses the fast JIT-

compilation framework that allows Dynamic Binary Translation (DBT) from guest to

host instruction set. Secondly, ArcSim implements the memory model of the guest

CPU, including a functional MMU implementation. Thirdly, ArcSim supports periph-

eral devices, that while may not be necessary in a user-mode simulation, are strict re-

quirements for booting and using Linux. ArcSim serves as the back-end JIT compiler,

core, and system simulator, while the new GenSim additions generate architectural

models specific to the simulated CPU.

In the following section, we describe Captive, a simulator that builds and improves

on ArcSim.

Chapter 2. Background 38

Fig. 2.12: Captive simulation diagram (Fig. Source: [37]).

2.5 Captive - Making the most of host hardware

Captive [37] is an implementation of a cross-architecture virtualization hypervisor. It

takes advantage of host virtualization support for accelerating simulation. Further-

more, Captive leverages the GenSim framework to generate guest specific simulation

modules from high-level GenC descriptions. We use Captive to simulate the CPU

in our full-system GPU simulation system, when using the AARCH64 CPU model.

Figure 2.12 provides an overview of Captive.

Following our discussion of simulation frameworks, the next section will discuss

the benchmarks used in the development and evaluation of our simulation framework,

as well as in use cases showing the potential of the GPU simulator.

2.6 Validating Simulation Through Benchmarking

Benchmarks are key to understanding performance of a program on a specific archi-

tecture, optimizing code, and correctness validation. A number of different benchmark

suites were used in the work leading to this thesis - first for validating the simulator,

then for understanding the performance of the architecture by executing benchmarks

in the simulator and in hardware, and finally, for building a performance model. This

section presents the benchmarks used in the development of the GPU simulator.

A number of considerations guided the selection of benchmarks. First and fore-

most, we looked for existing benchmarks capable of executing in our simulator, real

hardware, and Multi2Sim, which we used for comparison in Chapter 4. While our sim-

ulation approach enables execution of any benchmark, the compiler toolchain required

39 2.6. Validating Simulation Through Benchmarking

for Multi2Sim is no longer available, and therefore we relied on pre-compiled binaries

from the AMD APP SDK. Second, we looked for a variety of benchmarks from dif-

ferent sources and with different coding styles. This allowed us to exercise different

functionalities of the simulator. A final consideration was to select benchmarks com-

monly executed on mobile GPUs. Today, compute capacity of mobile GPUs is most

commonly used for accelerating machine learning and computer vision applications,

therefore a number of selected benchmarks are standard computational and filtering

kernels, which are commonly found in such applications. Convolutional Neural Net-

works and SLAMBench were selected as examples of modern compute applications,

executing on mobile GPUs, and requiring significant CPU-GPU interaction, which

would not be possible to simulate using existing GPU simulators.

While our simulator is capable of executing benchmarks using local memory, mo-

bile GPUs don’t have a dedicated GPU memory, and the Arm Mali GPU Programming

Guide explicitly states that programmers should not use local memory. This is because

local memory in Mali GPUs is implemented by simply copying the data into a differ-

ent part of the main memory. Benchmarks making use of local memory were used for

functional validation of the simulator presented in Chapter 4, however were excluded

from the performance modelling experiments presented in Chapter 5.

2.6.1 Parboil

Parboil [38] is a benchmark suite for scientific and commercial throughput computing

developed at the University of Illinois at Urbana-Champaign. The benchmarks cover a

number of applications, such as image processing, biomolecular simulation, fluid dy-

namics, and astronomy. While these workloads are not necessarily representative of

mobile workloads, they were crucial in validating correctness of our simulation frame-

work, as well as demonstrating the scale and speed of our simulation framework. The

benchmark suite contains C++, CUDA, and OpenCL implementations. As the Arm

Mali GPU supports only OpenCL, we use the OpenCL implementations. Descriptions

of the Parboil benchmarks can be found in Table 2.2.

2.6.2 Polybench

Polybench [39] is a benchmark suite containing static control parts, designed with a

goal of uniformizing the execution and monitoring of kernels typically used in publi-

cations. Key Polybench features include:

Chapter 2. Background 40

• Single file implementation,

• Non-null data initialization,

• Live-out data dump,

• Syntactic constructs to prevent dead code elimination on the kernel,

• Parametric loop bounds in the kernels

• Clear kernel marking using #PRAGMA SCOP and #PRAGMA ENDSCOP delim-

iters.

A summary of the benchmarks can be found in Table 2.3. In this thesis, we use

the OpenCL version of the benchmark suite taken from Polybench-ACC [40]. Poly-

bench contains a number of linear algebra and datamining kernels. While these are not

specifically optimized for mobile GPUs, they are representative of kernels commonly

executed on mobile GPUs - i.e. they use matrix inputs and outputs, and parallelize

matrix operations across GPU hardware.

2.6.3 AMD APP SDK 2.5

The AMD APP SDK provides a number of benchmarks optimized for AMD GPUs,

and was released as part of the software development kit for AMD customers. How-

ever, since they are implemented in OpenCL, they are portable to other GPUs, such

as Arm Mali GPUs, which we model. We use the AMD APP SDK for direct com-

parison against Multi2Sim [41], as binary benchmarks are provided for Multi2Sim,

however the toolchain compatible with Multi2Sim is no longer available for compil-

ing new benchmarks. We use the version provided by the authors of Multi2Sim [42].

Benchmark descriptions can be found in Table 2.4.

2.6.4 Rodinia

Rodinia [43] aims to be a benchmark suite for general purpose accelerators, imple-

menting multiple heterogeneous computing infrastructures including OpenCL, and

CUDA. The benchmarks cover a wide range of parallel communication patterns, syn-

chronization techniques, and power consumption. The benchmarks are listed in Table

2.5. From Rodinia, we select a number of benchmarks that are commonly executed on

mobile GPUs, including NN and BACKPROP.

41 2.6. Validating Simulation Through Benchmarking

Fig. 2.13: Key computational steps of the KFusion algorithm represented as a task

graph. Each task comprises one or more OpenCL kernels as depicted (Source: [46]).

2.6.5 SLAMBench

SLAMBench [44–46] is a benchmarking application for SLAM (Simultaneous Local-

ization and Mapping) algorithms, a critical application in the field of robotics, and

an example of a relevant, real-world, multi-kernel application that can be run using

our framework. The benchmark was developed with mobile systems in mind, and is

available as an application in the Google Play store. The benchmark comprises twelve

different kernels, depicted in Figure 2.13. In Chapter 4, we present results from exe-

cuting the entire SLAMBench benchmarking application in our full-system simulator.

2.6.6 DeepSmith

DeepSmith [47] is a compiler fuzzing framework applied to the OpenCL program-

ming language, designed with the target of discovering bugs in compilers. DeepSmith

automatically scrapes GitHub for OpenCL code, and trains a model by learning the

structure of real world code. From this learned model, DeepSmith can generate pre-

viously unseen, random, OpenCL kernels. We leverage this framework to generate

OpenCL kernels for our performance model, however we encounter limitations to this

approach when used for performance modelling. We describe our efforts in Chapter 5.

An overview diagram of DeepSmith is presented in Figure 2.14.

2.6.7 SGEMM

The SGEMM compute kernel is pervasive in modern day computing, in particular in

the fields of machine learning, image processing, and graph analytics. As it takes

up a majority of the computation time, it is an obvious target for acceleration, and

has been implemented in countless different ways in OpenCL and CUDA for GPU

acceleration. Cedric Nugteren presents a tutorial on SGEMM optimization for Nvidia

Chapter 2. Background 42

Fig. 2.14: Overview of the DeepSmith random kernel generation framework (Source:

[47]).

43 2.6. Validating Simulation Through Benchmarking

Fig. 2.15: Performance achieved by successive optimizations relative to clBlas and

cuBLAS (Source: [48])

Kepler GPUs [48]. We execute the same kernels in our Mali GPU simulator as well as

on real hardware, and we investigate if the kernels follow the same performance trends

on Mali. We present our results in Chapter 4.6.2.

The 10 different versions presented in [48] implement the following (successive)

optimizations:

1. Naive implementation.

2. Tiling in the local memory.

3. Increased work per thread.

4. Wider data-types (vectors).

5. Transposed input matrix and rectangular tiles.

6. 2D register blocking.

7. Wider loads with register blocking.

8. CUDA and Kepler-specific optimisations.

Chapter 2. Background 44

9. Software pre-fetching.

10. Incomplete tiles and support for arbitrary matrix-sizes.

A performance comparison of the final, optimized, version of SGEMM against

clBlas and cuBLAS is shown in Figure 2.15.

2.6.8 Convolutional Neural Network Channel Pruning

Due to their superior recognition accuracy, Convolutional Neural Networks (CNN)

are dominant in several disciplines: computer vision (for image classification [49–51],

image segmentation [52, 53], objects in image detection [54, 55], image style transfer

[56], etc.), speech recognition [57] and natural language processing [58, 59]. In this

section, we present the background information necessary for understanding a case

study, presented in Section 4.6.3, and describe the executed benchmarks.

CNNs are making their way into smaller devices, on mobile phones and home per-

sonal assistant devices. However, current CNN models are still too large for immediate

deployment on resource-constrained devices. Pruning is a widely accepted practice to

make these large models suitable to run on such small devices. It is well understood

in the machine learning community that neural networks can produce good inferences

even after pruning a substantial amount of their internal parameters (weights) [60–62].

In Channel Pruning, entire channels (or filters) are assessed for their importance to de-

termine if these may be removed [63] to produce a slimmer network from the original

one, with minimal drop in inference accuracy. Unlike other pruning methods, this pro-

duces a compact dense network suitable for the already optimized dense convolutional

routines [64].

Several routines exist to perform the convolution operation, although two are dom-

inant across the majority of libraries:

• Direct convolution – this method shifts each filter (channel) one position at a

time over an input image with a deep nested loop. This requires the least amount

of extra memory, which makes it ideal for devices with limited physical memory,

although it is also very slow in terms of computation time.

• General Matrix Multiplication (GEMM) – this method performs the convolution

by unrolling each image patch to convolve over into a column of a larger ma-

trix of unrolled patches, while filters (channels) are unrolled into rows to form a

45 2.6. Validating Simulation Through Benchmarking

second large matrix, in a process known as image2col [65]. The entire convolu-

tional operation over the input image is performed by a single operation of matrix

to matrix multiplication on the two large matrices resulting from the unrolling

process mentioned earlier. This is a very popular approach due to the readily

available, highly optimised matrix multiplication libraries (Blas, CUDA), which

make it fast in practice.

2.6.8.1 Channel Pruning

Current large CNNs require some alteration to make them suitable for deployment on

smaller devices, which often comes in the form of pruning. Weight pruning, through

which some weights based on a signal are reduced to zero [61], is one approach that

works well with accelerators of sparse algebraic operations, although the speedup these

can offer on general purpose devices has been questioned [64]. Another approach for

network size reduction is channel pruning, in which entire channels are eliminated

if their impact is minimal [63], resulting in better performance than other compres-

sion techniques [64], and can be modeled with both accuracy and inference time con-

straints [66].

As a machine learning technique, CNN pruning is generally performed away from

the runtime environment, with the primary metric for the task being inference accuracy.

Retraining the model during the pruning process requires substantially more comput-

ing resources so this is generally performed on other machines than the final inference

device.

Channel Pruning is performed as follows. Assuming the c-th convolutional layer

of a neural network has n filters (channels) ki, i ∈ [1,n] (before pruning). To prune

channel p, with 1 ≤ p ≤ n, the new convolutional layer will have a number of n− 1

channels and each channel ki, i∈ [p+1,n] will be re-indexed to i = i−1. For example,

in a convolutional layer with 128 channels, pruning the 25-th channel will produce

a compact layer with channel 26 becoming channel 25, and so on for the following

channels re-indexing to i−1, thus producing a new convolutional layer with channels

indexed continuously from 1 to 127. This process is repeated for each pruned channel.

As can be observed, by this process the same computation time will be produced no

matter which channel is picked for pruning, so we eliminate channels sequentially for

our inference time analysis.

Chapter 2. Background 46

2.6.8.2 Models

To generalize the observation of pruning patterns we select three popular deep neural

networks prevalent in computer vision for image classification:

• ResNet-50 [67] has 50 layers and consists of residual blocks. There are 23 con-

volutional layers with filters of size 3× 3 and 1× 1 (referred to as ResNet.Li,

where i is the layer index), and interleaved with other layers, such as batch nor-

malization. Although they are indexed, we do not profile their performance here

due to their cost being insignificant. Convolutional layers have a number of fil-

ters between 64 and 2048 [67].

• VGG-16 [68], is a feed-forward network with 13 convolutional layers and 3 fully

connected layers. Each convolution uses 3× 3 size filters. The convolutional

layers are indexed similarly to ResNet, with 0, 2, 5, 7, 10, 12, 17, 19, 24 unique

shapes (where the convolutional layer shape is repeated in the network, it is

considered only once). These convolutional layer have the following number of

filters: 64, 64, 128, 128, 256, 256, 512, 512, and 512 respectively.

• AlexNet [49] is the earliest CNN to win the ImageNet competition by a huge

margin over the previous top machine learning solution. Compared to more re-

cent CNNs this has only 5 convolutional layers, indexed 0, 3, 6, 8, 10 interleaved

by Pooling and Dropout layers. The unpruned convolutional layers have the fol-

lowing number of filters: 64, 192, 384, 256, and 256 respectively.

2.6.8.3 Arm Compute Library

We use CNN implementations provided by the Arm Compute Library, which was de-

scribed in section 2.2.3.1.

2.6.8.4 TVM Compiler

We use CNN implementations provided by TVM, which was described in section

2.2.3.2.

2.7 Generating New Benchmarks

We collect vast amounts of data to validate our prediction efforts, the majority using

compute kernels sourced from benchmark suites presented in Section 2.6. From each

47 2.7. Generating New Benchmarks

benchmark suite, we source a variety of kernels, and execute them with a number

of different inputs. In addition to standard benchmarks suites, we use DeepSmith, a

framework designed to test OpenCL compilers, which is able to generate random, but

real OpenCL kernels. DeepSmith is described in detail in Section 2.6.6.

2.7.1 Measurement

Kernel runtimes on the HIKEY-960 development board are noisy. While the kernel

drivers on the HIKEY-960 do not expose information about the dynamic clock fre-

quency, we see multiple available frequencies in the Linux device tree. Furthermore,

we are able to access temperature monitoring data through the kernel, and observe vari-

ations in temperature on the board which exceed safe limits, prompting the conclusion

that the frequency is being scaled down due to the development board overheating.

Figure 2.17 shows the ranges of results collected from running a GEMM kernel with

various input sizes on the HIKEY-960. The results show that an order of magnitude

difference can be observed in the runtimes using the same kernel and inputs.

We take the following steps to stabilize and filter the runtimes in order to obtain

reproducible results. While the kernel does not expose the option to manually set the

clock frequency, we can force the changes by allowing only specific frequencies in

the device tree. The device tree allows for six different frequencies for the G71 GPU,

and as such, we create six separate device trees with which to boot Linux - each with

a single possible frequency. To keep the board from overheating, we place the board

directly in front of a large office fan, which blows cool air across the surface of the

board (see Figure 2.16). Using this setup however, we still see some variation in exe-

cution times. Figure 2.20 shows the average observed runtimes broken down by GPU

frequency, Figure 2.19 shows the maximum, and Figure 2.18 shows the minimum.

While we can now control the frequency and the temperature of the board, there

are still other sources of variation which we can’t control. The MALI-G71 GPU shares

system resources with the CPU, and as such, GPU performance can be indirectly af-

fected by programs executing on the CPU through resource contention. For example,

as the CPU and GPU share memory, the GPU memory could be paged out due to

memory-intensive CPU programs executing in parallel. Alternatively, since the GPU

communicates with the CPU via memory-mapped registers and interrupts, the GPU

has to wait for the CPU to handle the interrupt, which may not be instant. Future work

on performance modelling could take these factors into account, however for the time

Chapter 2. Background 48

Fig. 2.16: Cooling a Hikey-960 Development Board to reduce effects of throttling due to

temperature fluctuation.

being, we start with modelling just the GPU performance. In our data collection, we

use the highest available frequency (1.037 GHz). We execute each kernel 100 times,

and we take the minimum value as the ground truth, as we believe this to be the run

with the least interference from the remainder of the system.

2.8 Conclusion

This chapter presented information necessary for the understanding of this thesis. Sec-

tion 2.2 introduced the GPU programming model, Section 2.3 introduced the Arm Mali

Bifrost architecture, Section 2.4 and Section 2.5 introduced the supporting simulation

frameworks used in the work leading to this thesis, Section 2.6 presented benchmarks

used to develop and evaluate our GPU simulator, and demonstrate its uses, and finally,

Section 2.7 presented strategies for collecting data from hardware. Chapter 3 continues

with a more detailed analysis of simulation techniques and existing GPU simulation

frameworks, while simultaneously developing the motivation for the work behind this

thesis.

49 2.8. Conclusion

Fig. 2.17: GEMM runtimes vary significantly on each input size.

Fig. 2.18: Minimum GEMM runtimes at fixed GPU frequencies.

Chapter 2. Background 50

Application Description

BFS Bread-First Search Computes the shortest-path cost from a single source to

every other reachable node in a graph of uniform edge

weights by means of a breadth-first search.

CUTCP Distance-Cutoff

Coulombic Potential

Computes the short-range component of Coulombic po-

tential at each grid point over a 3D grid containing

point charges representing an explicit-water biomolecular

model.

HISTO Saturating Histogram Computes a moderately large, 2-D saturating histogram

with a maximum bin count of 255. Input datasets represent

a silicon wafer validation application in which the input

points are distributed in a roughly 2-D Gaussian pattern.

LBM Lattice-Boltzmann

Method Fluid Dy-

namics

A fluid dynamics simulation of an enclosed, lid-driven cav-

ity, using the Lattice-Boltzmann Method.

MM Dense Matrix-Matrix

Multiply

One of the most widely and intensely studied benchmarks,

this application performs a dense matrix multiplication us-

ing the standard BLAS format.

MRI-

GRIDDING

Magnetic Resonance

Imaging - Gridding

Computes a regular grid of data representing an MR scan

by weighted interpolation of actual acquired data points.

The regular grid can then be converted into an image by an

FFT.

MRI-Q Magnetic Resonance

Imaging - Q

Computes a matrix Q, representing the scanner configura-

tion for calibration, used in a 3D magnetic resonance im-

age reconstruction algorithms in non-Cartesian space.

SAD Sum of Absolute Dif-

ferences

Sum of absolute differences kernel, used in MPEG video

encoders. Based on the full-pixel motion estimation algo-

rithm found in the JM reference H.264 video encoder.

SPMV Sparse-Matrix

Dense-Vector Multi-

plication

Computes the product of a sparse matrix with a dense vec-

tor. The sparse matrix is read from file in coordinate for-

mat, converted to JDS format with configurable padding

and alignment for different devices.

STENCIL 3-D Stencil Opera-

tion

An iterative Jacobi stencil operation on a regular 3-D grid.

TPACF Two Point Angular

Correlation Function

TPACF is used to statistically analyze the spatial distribu-

tion of observed astronomical bodies. The algorithm com-

putes a distance between all pairs of input, and generates a

histogram summary of the observed distances.

Table 2.2: Benchmark descriptions for the Parboil benchmark suite. Table replicated

from [38].

51 2.8. Conclusion

Application Description

2mm 2 Matrix Multiplications (D=A.B; E=C.D)

3mm 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)

adi Alternating Direction Implicit solver

atax Matrix Transpose and Vector Multiplication

bicg BiCG Sub Kernel of BiCGStab Linear Solver

cholesky Cholesky Decomposition

correlation Correlation Computation

covariance Covariance Computation

doitgen Multiresolution analysis kernel (MADNESS)

durbin Toeplitz system solver

dynprog Dynamic programming (2D)

fdtd-2d 2-D Finite Different Time Domain Kernel

fdtd-apml FDTD using Anisotropic Perfectly Matched Layer

gauss-filter Gaussian Filter

gemm Matrix-multiply C=alpha.A.B+beta.C

gemver Vector Multiplication and Matrix Addition

gesummv Scalar, Vector and Matrix Multiplication

gramschmidt Gram-Schmidt decomposition

jacobi-1D 1-D Jacobi stencil computation

jacobi-2D 2-D Jacobi stencil computation

lu LU decomposition

ludcmp LU decomposition

mvt Matrix Vector Product and Transpose

reg-detect 2-D Image processing

seidel 2-D Seidel stencil computation

symm Symmetric matrix-multiply

syr2k Symmetric rank-2k operations

syrk Symmetric rank-k operations

trisolv Triangular solver

trmm Triangular matrix-multiply

Table 2.3: Benchmark descriptions for the Polybench benchmark suite. Table replicated

from [39].

Chapter 2. Background 52

Application Description

AESEncryptDecrypt Advanced Encryption Standard encryption and decryption.

BinarySearch Binary search through an array of elements.

BinomialOption European option pricing (financial engineering).

BitonicSort Sorts a sequence of numbers using bitonic sorting algorithm.

BlackScholes Black Scholes model for European option pricing.

BoxFilter Box filter, also known as average or mean filtering for noise reduction in an image.

BoxFilterGL Box filter, also known as average or mean filtering for noise reduction in an image, using OpenGL.

DCT Discrete Cosine Transform used to transform compressions of 1D and 2D signals such as audio,

images, video.

DwtHaar1D Basic one-dimensional Haar Wavelet transform.

EigenValue Eigenvalue decomposition on a symmetric tridiagonal matrix.

FFT Signal conversion traditionally used in engineering, music, science, mathematics.

FastWalshTransform Efficient implementation of Walsh-Hadamard Transform, a generalized class of Fourier trans-

forms.

FloydWarshall Dynamic programming approach to compute the shortest path between each pair of nodes in a

graph.

FluidSimulation2D Lattice-Boltzmann method for simulating a fluid on a 2D grid.

Histogram Assign all values to bins to create a histogram.

HistogramAtomics Assign all values to bins to create a histogram, usign atomic operations on the GPU.

Mandelbrot Fractal curve generated from calculating the mandelbrot set.

MatrixMulImage Matrix multiplication using an image as input.

MatrixMultiplication 2D Matrix Multiplication.

MatrixTranspose Flips matrix over its diagonal.

MemoryOptimizations Kernels copying memory using different primitive data sizes and shapes.

MersenneTwister A widely used pseudorandom number generator.

MonteCarloAsian Option pricing using Monte Carlo analysis.

MonteCarloAsianDP Option pricing using Monte Carlo analysis (double precision).

NBody Simulation of a large number of particles under the influence of physical forces..

PrefixSum Cumulative sum of a sequence of numbers.

QuasiRandomSequence Generates points in the sobol sequence.

RadixSort Radix based sorting algorithm.

RecursiveGaussian Recursive gaussian filtering for digital signal processing.

Reduction Divides array into blocks, sums blocks, then sums the block sums.

ScanLargeArrays Scans arrays of size > 2 ∗MAX BLOCK SIZE, based on prefix sum.

SimpleConvolution Convolution filter used in image processing - blur, smooth effects, or edge detection.

SimpleImage Converts 2D to 3D images.

SobelFilter Sobel edge detection filter.

URNG Generates noise in an image.

Table 2.4: Benchmark descriptions for the AMD APP SDK benchmark suite [42].

53 2.8. Conclusion

Application Description

Leukocyte Detects and tracks rolling white blood cells in video microscopy of

blood cells.

Heart Wall Tracks movement of a mouse heart over ultrasound images.

MUMmerGPU High-throughput parallel pairwise local sequence alignment program.

CFD Solver Unstructured grid finite volume solver for three-dimensional Euler

equations for compressible flow.

LU Decomposition Algorithm to calculate the solutions of a set of linear equations.

HotSpot Tool used to estimate processor temperature based on an architecture

floorplan and simulated power movements.

Back Propagation A machine-learning algorithm that trains the weights of connecting

nodes on a layered neural network.

Needleman-Wunsch Nonlinear global optimization method for DNA sequence alignments.

Kmeans A clustering algorithm used extensively in data-mining.

Breadth-First Search Search algorithm that traverses all connected components in a graph.

SRAD Speckle reducing anisotropic diffusion - a diffusion method for ultra-

sonic and radar imaging applications based on partial differential equa-

tions.

Streamcluster Clustering based on distance from median value.

Particle Filter Statistical estimator of the location of a target object.

PathFinder Dynamic programming method to find a path on 2-D grid.

Gaussian Elimina-

tion

Solves for all of the variables in a linear system.

k-Nearest Neighbors Finds nearest neighbors from unstructured data set based on euclidean

distance.

LavaMD2 Calculates particle potential and relocation due to mutual forces within

a large 3D space.

Myocyte Models heart muscle cell and simulates its behavior.

B+ Tree Search algorithm on an m-ary tree with a variable, but often large num-

ber of children per node.

GPUDWT Discrete wavelet transform - digital signal processing technique.

Hybrid Sort Sorting using two methods - bucketsort and merge-sort.

Hotspot3D Tool used to estimate processor temperature based on an architecture

floorplan and simulated power movements.

Huffman Lossless data compression.

Table 2.5: Benchmark descriptions for the Rodinia benchmark suite [43]

Chapter 2. Background 54

Fig. 2.19: Maximum GEMM runtimes at fixed GPU frequencies.

Fig. 2.20: Average GEMM runtimes at fixed GPU frequencies.

Chapter 3
Simulation Background & Related Work

Simulation has an extensive history, and even in the relatively new GPU space, there

are a number of simulators, which have paved the way for this thesis. This chapter in-

troduces concepts which characterize simulation technology, and on which simulators

are built, while simultaneously providing a qualitative evaluation of existing GPU and

full-system simulators, and performance modelling techniques. The analysis directly

motivates the need for a holistic, fast, full-system approach to GPU simulation, which

is presented in Chapter 4. We begin with considering three main design choices that

developers are faced with when designing a new simulator:

• the level of detail at which the hardware is modelled (Section 3.1),

• the simulation environment (Section 3.2),

• the level of accuracy at which the software stack is modelled (Section 3.3).

In the final section (3.4), we present performance modelling techniques beyond

cycle-accurate simulation, focusing primarily on trace-based, analytical and machine

learning based models. In each of these sections, we discuss existing efforts.

3.1 Speed vs. Detail

Hardware can be modelled at various levels of detail. Here, we present cycle-accurate

simulation, functional instruction set simulation, and emulation, as the evaluated sim-

ulators fall into these categories. Each of these simulation techniques represents a

different point on the simulation trade-off graph between speed and level of detail,

presented in Figure 3.1. To ease comparison of existing GPU simulation approaches

55

Chapter 3. Simulation Background & Related Work 56

Simulator
Full Guest Guest GPU GPU Prog. Perf. Simulation Max. Rel.

System CPU GPU ISA Toolchain Model Model Model Error1

Barra [69]
GPU

N/A
NVIDIA Approx.

Emulated CUDA
Instruction- Execution-

≤ 81.6%
only Tesla Tesla ISA Accurate Driven

GPGPU-Sim [70]
GPU

N/A
NVIDIA- PTX

Custom CUDA
Cycle- Execution-

≤ 50.0%
Only like GT200 SASS Accurate Driven

gem5-GPU [71] Yes x86
NVIDIA PTX

Custom CUDA
Cycle- Execution-

≤ 22.0%
GTX 580 GT200 SASS Accurate Driven

Multi2Sim [41] Yes
x86/Arm/ AMD Everg./S.Isl. AMD GCN1

Custom
OpenCL Cycle- Execution-

≤ 30.0%
MIPS NVIDIA Fermi SASS CUDA Accurate Driven

Multi2Sim Kepler [72] Yes
x86/Arm/

NVIDIA Kepler SASS Custom CUDA
Cycle- Execution-

≤ 200%
MIPS Accurate Driven

ATTILA [73]
GPU

N/A ATTILA ARB Custom OpenGL
Cycle- Execution-

N/A2

Only Accurate Driven

GPUOcelot [74]
GPU

N/A
NVIDIA

PTX Custom CUDA
Instruction- Trace- Not

Only AMD Radeon Accurate Based Evaluated3

HSAemu [75] Yes
Retargetable/

Generic HSAIL Custom OpenCL
Cycle- Execution-

N/A2

Arm-v7A Accurate Driven

GPUTejas [76]
GPU

N/A
NVIDIA PTX

Custom CUDA
Cycle- Trace-

≤ 29.7%
Only Tesla GPUOcelot µ-ops Accurate Driven

MacSim [77] Yes x86
NVIDIA GeForce PTX

Custom CUDA
Cycle- Trace- Not

G80/GT200/Fermi GPUOcelot µ-ops Accurate Driven Evaluated3

TEAPOT [78] Yes Generic
Generic

Emulated Custom OpenGL
Cycle- Trace-

N/A2

Mobile GPU Accurate Driven

QEMU/MARSSx86/
Yes x86

NVIDIA
Generic Custom OpenGL

Cycle- Execution- Not

PTLsim [79] Tesla-like Accurate Driven Evaluated3

GemDroid [80] Yes x86/Arm-v7A ATTILA [73] ARB Custom OpenGL
Cycle- Execution-

N/A2

Accurate Driven

GCN3 Simulator [81] Yes x86 AMD Pro A12-8800B APU GCN3 Vendor ROCM
Cycle- Execution-

˜42%
Accurate Driven

MGPUSim [82] No N/A AMD Radeon R9 NANO GCN3 Custom ROCM
Cycle- Execution-

˜20%
Accurate Driven

Accel-Sim [83] No N/A NVIDIA Volta, Kepler, Pascal, Turing
SASS

Vendor CUDA
Cycle- Execution/Trace-

˜30%
PTX Accurate Driven

Our Simulator Yes
Retargetable/ Retargetable/ Retargetable/

Vendor
Any/ Instruction- Execution-

0.0%
Arm-v7A/v8A Arm Mali-G71 Native Binary OpenCL Accurate Driven

1 Maximum error of a performance metric reported in the original publication.
3 Original publication does not provide an accuracy evaluation against a hardware implementation of the simulated GPU.

Table 3.1: Feature comparison of existing GPU simulators. Our simulator (presented in

chapter 4) is the only full-system CPU/GPU mobile platform simulator capable of hosting

an unmodified GPU software stack and supporting true GPU native code execution.

we provide an overview of features in Table 3.1, including each simulator’s maximum

relative error as reported in their original publications.

3.1.1 Cycle-Accurate Simulation

Each hardware component of a GPU is composed of wires, registers, and gates, form-

ing a physical block. A cycle is an electrical pulse that propagates through this block.

During each cycle, a fixed amount of work can be completed by the hardware. Some

operations require multiple cycles to complete. Cycle-accurate simulators model the

target architecture on a cycle-by-cycle basis. By modeling not only the functional

behaviour, but also the micro-architecture, they are often used to estimate the per-

formance of the modeled system. There are numerous examples in both the CPU

and GPU space, the most common of which are gem5 [71], GPGPUSim [84], and

Multi2Sim [85], and Accel-Sim [83]. Typically, these simulators are implemented in

57 3.1. Speed vs. Detail

Fig. 3.1: Comparison of simulation speed at different levels of abstraction for modelling

SoCs, Source: https://www.design-reuse.com/articles/18418/modelling-

embedded-systems.html

C++, and are most commonly used in later design phases, for example when exploring

various micro-architecture implementations, memory subsystems, power, and energy

consumption. [70, 71, 73, 75–83, 85] are all GPU simulators, which are considered cy-

cle-accurate. Despite this, the error figures in Table 3.1 show that performance pre-

dictions from these simulators are still very far from the actual hardware performance.

From the hardware perspective, some of this error can be explained (but not neces-

sarily justified) by the fact that many existing GPU simulators do not model existing

commercial GPUs, but only simplified GPU architectures [73]. Additional reasons for

the error exhibited by GPU simulators are explored later in this chapter.

Of the existing cycle-accurate simulators, MGPUSim [82] takes the most progres-

sive approach to modelling GPUs, by developing explicit guidelines for developing a

good simulator. By simulating parllel components of the GPU in parallel, the authors

are able to increase the simulation rate by 16.5x and 33.8x relative to Multi2Sim and

GPGPUSim, respectively, while keeping the average error to 5.5%. However, we note

that the accuracy is evaluated on a set of only 7 application benchmarks and four mi-

crobenchmarks. Nevertheless, parallel simulation is a hard problem, and MGPUSim

makes significant progress in solving it.

Recently released Accel-Sim [83] also provides significant improvement over pre-

vious GPU simulators, by being the first Nvidia GPU simulator which can simulate

unmodified binaries at the Shader Assembly (SASS) level. SASS is the native in-

struction set of the GPU, whereas many previous simulators only modelled PTX, an

intermediate representation. This approach, and the simulation infrastructure however,

only apply to Nvidia GPUs. Accel-Sim is further discussed in the trace-based simula-

tion section.

https://www.design-reuse.com/articles/18418/modelling-embedded-systems.html
https://www.design-reuse.com/articles/18418/modelling-embedded-systems.html

Chapter 3. Simulation Background & Related Work 58

Fig. 3.2: A typical fetch, decode, execute loop implemented in interpreted simulators

(Image source: [86])

3.1.2 Functional Instruction Set Simulation

The Instruction Set Architecture (ISA) is an abstract model, which sets out the pro-

cessor’s instruction set, supported data types, registers, and hardware support for ac-

cessing main memory (e.g., page table format and the MMU), without specifying im-

plementation details of the processor. This means that the Instruction Set Architecture

could have different implementations, optimized for different use cases, while still pro-

viding binary compatibility. For example, the Arm-compiled programs are typically

binary compatible across all Arm CPUs, however there are many different implemen-

tations of Arm CPUs, such as Cortex-M processors, which are optimized for energy,

and Cortex-A, which are optimized for performance.

We define a functional instruction set simulator as a simulator designed to mimic

the behaviour of hardware, while modelling architecture-specific details of the hard-

ware - the ISA. For example, an instruction set simulator that decodes instructions and

executes them, without a micro-architectural model is considered to be an instruction

set simulator. By trading off observability, they are able to benefit from faster sim-

ulation speeds than cycle-accurate simulators, and due to this, they are often used in

early design-space exploration, and early-stage software development, before the hard-

ware is available. Some widely used examples include the Arm Fast Models [87], and

QEMU [88]. Many cycle-accurate simulators also have a functional mode, allowing

for faster, less detailed simulations. For the purposes of this thesis, we interchangeably

use the terms instruction set simulator and functional simulator.

Functional, instruction set simulation, can be defined by the technology that it im-

plements - interpretation or dynamic binary translation (DBT). Functional simulators

generally execute in a fetch, decode, then execute fashion, where a guest binary in-

struction is read from the program binary, decoded, following which its semantics are

executed using a pre-defined function. This type of execution is called interpretation,

59 3.1. Speed vs. Detail

Fig. 3.3: Dynamic binary translation is usually implemented in of of these two fashions.

(a) Guest basic blocks are translated on demand. (b) Basic blocks are first executed in

an interpreter, until they become hot, at which point they are translated (Fig. Source:

[86]).

and this fetch, decode, and execute behaviour is a large bottleneck for anything but

the shortest of programs. The loop is depicted in Figure 3.2. GPUOcelot [74] and

Barra [69], as well as the GPU component of our proposed full-system simulation

approach are all GPU simulators implemented using interpretation.

Dynamic binary translation (DBT) is a technique used to overcome this bottleneck

and accelerate simulations. Dynamic binary translators look at short sequences of

code, typically basic blocks, and translate them on the fly from the guest instruction

set into the host instruction set. These translated instructions are then JIT-compiled into

a native binary, often with a one-to-one mapping from guest to host instruction, and

executed. Furthermore, these translations are cached, so that decoding and compilation

only have to occur once, regardless of how many times the basic block executes. Two

different approaches to DBT are presented in Figure 3.3. Many CPU simulators are

implemented using dynamic binary translation, for example [37, 88]. No current GPU

simulator uses dynamic binary translation, however our simulator is implemented in

a framework that would allow for it to be easily extended into a DBT. Captive [37],

which does use DBT and is described in section 2.12, is used for the CPU component

of our full-system simulator.

3.1.3 Emulation

We define an emulator, or an untimed functional simulator, as a type of simulator de-

signed to mimic the behaviour of a certain piece of hardware, without implementing

any architecture or micro-architecture specific features. For example, a software im-

plementation of OpenCL, which intercepts OpenCL calls to a GPU and executes them

Chapter 3. Simulation Background & Related Work 60

on the CPU, would be considered an emulator. This is the technology used in the

Android Emulator [89], as well as TEAPOT [78].

3.2 Simulation Environments

The execution environment of a simulator is critical to its usefulness, faithful repre-

sentation of a real hardware environment, and the accuracy of the end result. In this

section, we discuss two different simulation modes - user-mode, which simulates stan-

dalone applications, and full-system simulation, which executes a full operating system

and supporting software stack within the simulation environment.

3.2.1 User Mode Simulation

User-mode simulation mimics the concept of executing a standalone binary guest pro-

gram within the execution environment of the host system. Most often, the binaries

executing are statically linked, meaning they have no external dependencies. GPU

simulation however, is driven by a software stack, which executes on the CPU. In

this case, the host side CPU programs must be dynamically linked, as they depend on

at least one external library - the runtime (e.g., OpenCL runtime), as well as device

drivers which are part of the kernel. Most existing GPU simulators provide execution

environments in the form of modified runtime libraries, which provide an interface be-

tween the user program and the simulator. This means that often, GPUs are treated

as standalone devices, not modeling any CPU-GPU transactions [90], impacting the

correctness and accuracy of the execution. Furthermore, the practice of maintaining

a software stack specific to the simulator is unsustainable, as presented later in this

chapter.

3.2.2 Full-System Simulation

Full-system simulation, by contrast, simulates an entire guest system within the exe-

cution environment of the host system. Functionally, a full-system simulation should

be indistinguishable from execution in real hardware. The guest system comprises an

operating system and user-space, enabling the user to execute guest programs and in-

teract with them exactly as if it were a real system. A full-system simulator implements

not only the instruction set of the guest CPU, but also a number of peripheral devices

such as timers, IRQ controllers, UART, USB, and others. Many of these devices are

61 3.3. Modelling the Software Stack

required to boot an operating system, while others are implemented for the user’s con-

venience. Another feature of a full-system simulator includes the implementation of a

realistic memory model, including an MMU. Critically, the implementation of a full-

system simulator allows us to couple CPU simulation with accelerators, for example

a GPU. The GPU uses control registers and shared memory to communicate with the

CPU, and requires the host program, runtime library, and device drivers (all executing

on the CPU) to orchestrate and receive jobs.

gem5 [91] provides one of the most popular CPU and memory design platforms. It

is a configurable, cycle-accurate simulator, which provides support for booting a full,

unmodified operating system for Arm, x86, RISC-V, SPARC, and Alpha architectures.

gem5 has been integrated with multiple GPU simulators, as shown in [71, 81, 92].

QEMU [88] is a fast DBT-JIT based instruction set simulator which also supports full-

system simulation. Captive [37], which we use as the CPU simulator in our framework

is similar to QEMU, however it provides additional acceleration by taking advantage

of host resources. Captive is described in Section 2.5. Full-system simulators are

also available from industry, with Synopsys providing the DesignWare Arc Simula-

tion Tools [93], and Arm providing Fast Models [87]. One of the most widely used

full-system simulators is the Android Emulator [89], based on the previously discussed

QEMU, which allows Android developers to test apps on a variety of simulated hard-

ware platforms before deployment.

3.3 Modelling the Software Stack

GPU execution relies on a complex software stack, with numerous components execut-

ing on the CPU including the application code (which can constitute multiple layers),

the runtime (e.g., OpenCL or Vulkan), the JIT-compiler (invoked by the runtime), the

kernel driver (used to communicate between CPU and GPU), and the final binary ex-

ecuting on the GPU. Existing simulation frameworks implement only certain parts of

this software stack.

There are a number of aspects one has to consider when designing a simulator, as

described so far in this section. These design choices have significant consequences, in

terms of speed and accuracy from a hardware perspective, while different simulation

modes allow for different simulation environments. However, just as significant as the

previous two concerns is fast, faithful, and reliable execution of the entire software

stack, which existing GPU simulation approaches fail to deliver. In response, we pro-

Chapter 3. Simulation Background & Related Work 62

pose a holistic approach to tackle many of the existing problems, and prevent new ones

from arising, as described in later chapters. Now, we motivate the need for a fast, func-

tional, full-system GPU simulation framework through an evaluation of related work.

There are numerous motivations, including but not limited to:

1. Accuracy of the simulated software stack.

2. Performance of all simulated components.

3. Ease of maintenance as software is updated.

4. Ease of use and usefulness for end users.

3.3.1 Accuracy of the Simulated Software Stack

From a software perspective, GPU simulation often suffers from the following prob-

lems: (a) instruction sets are not accurately modeled, but approximated by an artificial,

low-level intermediate representation [74,94], and (b) instead of using vendor provided

driver stacks and compilers, GPU simulators often rely on simplified system software,

which may behave entirely differently to original tools, straying from what is executed

in real hardware. [41, 72].

Accurately executing the exact same software stack as is executed in real hardware

in its entirety is critical to achieving an accurate overall simulation result. The GPU

software stack can be broken down into a minimum of five components: the GPU in-

struction set, the device driver, the runtime, the JIT-compiler, and the CPU program. In

modern applications, this can easily increase, with further higher level libraries being

added on top of the CPU program.

Significant error is introduced by the use of outdated or non-standard GPU tool

chains required by several simulators, as is demonstrated in the following examples.

It is more than likely that simplified or non-vendor supplied tool chains used by other

GPU simulators introduce even greater simulation error, as also highlighted in [81].

In this thesis we claim that without a truly accurate GPU simulation model and a

full-system environment, capable of running an unmodified GPU software stack and

applications, it is not possible to gather reliable performance metrics to underpin mo-

bile GPU architecture research.

63 3.3. Modelling the Software Stack

Arith
metic

Cycl
es

Arith
metic

Instr
.

LS Cycl
es

LS In
str

.

Registe
rs

0.0

0.5

1.0

1.5

R
el

at
iv

e
C

ou
nt 1.
00

1.
00

1.
00

1.
00

1.
001.

09

1.
02

0.
57

0.
92 1.

091.
16

0.
98

0.
86 1.

00

1.
00

0.
69

0.
98

0.
57

1.
01

1.
00

0.
69

0.
98

0.
57

1.
01

1.
00

5.6 5.7 6.0 6.1 6.2

Fig. 3.4: MatrixMul: Different versions of Arm’s OpenCL compiler result in substantially

different code for the G-71.

3.3.1.1 GPU Instruction Set

The first software component we discuss is the binary program that executes on the

GPU. When code executes on a GPU, it executes in that specific GPU’s native instruc-

tion set. Despite this, a number of existing GPU simulators replace this component

with an intermediate representation. In the case of GPGPUSim, instead of simulating

the native, binary instruction set, PTX is used as the lowest level software compo-

nent. The AMD GPU simulators originally packaged with gem5, use HSAIL. PTX

and HSAIL, however, have many differences to the native GPU instruction sets. They

are used as an intermediate representation common to all GPUs of the same vendor,

which can then be specialized at JIT-compile time to the host instruction set. As a re-

sult, simulators modelling at this level, are modelling a common format, shared across

GPUs with varying architecture and micro-architecture. Guttierez et al. [81] show that

modelling AMD GPUs at the HSAIL level, results in an average error of 75%, while

changing from IR to the native instruction set lowers this error to 42%, as shown in

Figure 3.6. As we can see from Figure 3.8, there is a large difference in the number of

instructions executed between the two versions of simulator. Obtaining the work item

of the current thread - a unique, global, identifier for the thread is written as just one

instruction in HSAIL. However, in the GCN3 instruction set, the same operation takes

five instructions, including a memory access, which is generally far more expensive

than arithmetic operations. Similarly, as seen in Figure 3.7, loading compute kernel

arguments in HSAIL is abstracted as just one instruction. However, in real execution

Chapter 3. Simulation Background & Related Work 64

Fig. 3.5: Comparison of the GPU kernel execution model and software stack for (a)

a native execution environment, (b) Multi2Sim, (c) GPGPU-Sim, and (d) gem5 with

the Radeon Open Compute software stack. For MultiSim, GPGPU-Sim, and gem5,

we have highlighted non-standard software components thus represent a source of

inaccuracy.

65 3.3. Modelling the Software Stack

Fig. 3.6: Simulation Error Comparing HSAIL IR and GCN3, the native AMD Instruction

Set (figure from Guttierez et al. [81])

Fig. 3.7: HSAIL vs GCN3 kernel address calculation (figure from Guttierez et al. [81])

terms this would take three instructions, including a memory access. These examples

show, that by replacing the native, binary, GPU instruction set, we already lose observ-

ability into the details of the GPU’s architecture and execution, and more critically, it’s

performance.

3.3.1.2 Device Driver (Linux Kernel Driver)

Now that we have understood the significance of executing an accurate binary GPU

program, we move onto the GPU device driver. The GPU device driver acts as the

interface between the CPU and the GPU. It is responsible for all interaction between

the CPU and the GPU, which includes creating and configuring jobs to be dispatched

to the GPU, and handling the transfer of results back to the CPU as well as handling

any faults. At a lower level, this includes mapping and managing memory available to

Fig. 3.8: HSAIL vs GCN3 work item id calculation (figure from Guttierez et al. [81])

Chapter 3. Simulation Background & Related Work 66

the GPU, handling interrupts between the CPU and GPU, and writing to and reading

from the GPU’s memory mapped registers. The GPU we are modelling uses the Arm

Bifrost architecture.

Memory model - In this architecture, the CPU and GPU share memory, and the

GPU has no dedicated memory. Instead, to reduce memory latency, the architecture

implements a complex, multi-level cache hierarchy. The GPU also has it’s own Mem-

ory Management Unit (MMU), which supports multiple address spaces, meaning that

different jobs executing on the GPU can have different virtual-to-physical address map-

pings. In a situation like this, multiple jobs might all be accessing different memory

buffers, or they can be using different virtual address spaces, but access the same phys-

ical address space. Without the device driver mapping this memory and preparing the

page tables, the GPU would have to execute in a flat address space, forcing the simula-

tor developer to make a decision to either use the same address space for all jobs, or to

separate all jobs into different virtual address spaces that don’t map to the same physi-

cal address space - neither of which are realistic. This would have further implications

for TLB modelling, cache modelling, and in the end, would result in an inaccurate

overall cycle count.

Another feature of this shared memory model is that the CPU and GPU can share

page tables, which allows the CPU and GPU to use the same virtual-to-physical address

mappings. Again, without the support of the device driver, modelling this would not

be possible, leading to inaccurate modelling of the cache behaviour.

Multi-kernel workloads - The device driver receives information for job creation

from the OpenCL runtime. This information includes a pointer to the program binary,

pointers to memory buffers, and additional metadata describing the execution modes.

The device driver consolidates all of this information, constructs the necessary data

structures in memory, and once they are all ready, it signals the information to the GPU

by writing values into the GPU’s memory mapped registers. An embedded system with

a CPU and GPU is a highly interactive one. Often, there are multiple kernels executing

on the GPU, and continuously communicating their results to the CPU. For example,

the SLAMBench [44] benchmark suite executes 12 different kernels, but the data and

interaction between them is managed by the CPU. Faithful execution of the device

driver is fundamental to correct modelling of multi-kernel workloads.

Fault Handling - The Bifrost kernel driver is responsible for handling any faults

raised by the GPU. This includes not only any faults resulting from errors, but also

situations that require further dynamic interaction between the CPU and GPU. For

67 3.3. Modelling the Software Stack

example, in cases where a large amount of memory is required by the GPU, a lazy

memory allocation scheme is used, and not all of it is allocated immediately. In these

cases, the driver will allocate a portion of memory, which the GPU will operate on,

and at some point during the execution, the GPU will encounter a translation fault, i.e.

the address it is trying to access isn’t mapped. At this point the GPU will write status

information about the fault to specific memory mapped registers, and then raise an in-

terrupt, signalling that a fault has occurred. The device driver executing on the CPU

will read the information from the registers, handle the fault, by allocating more mem-

ory, updating the page tables, and signalling to the GPU that it can continue. Without

a faithful, full-system simulation, this type of interaction would not be possible.

3.3.1.3 OpenCL Runtime

We have seen how critical it is to accurately and completely execute the GPU binary

and device driver. The next component of the stack is the OpenCL runtime, which

implements the interface visible to the programmer, controlling all aspects of the GPU

execution. The programmer uses specific functions from the OpenCL API in order

to select the OpenCL device, initialize memory buffers, create the OpenCL program,

and dispatch jobs to the GPU. The OpenCL runtime is also used by a number of li-

braries, as the lowest level exposed interface to the GPU. The Arm Compute Library,

for example, implements a number of neural networks, which are implemented as a se-

ries of OpenCL kernels. TVM [26] builds on top of the Arm Compute Library, while

the Lift optimizing compiler [95] compiles higher-level kernels written in a functional

programming language down to OpenCL.

OpenCL isn’t completely transparent however, as it comes with no performance

guarantees, meaning that different configurations of the same program may have dif-

ferent relative performance across different architectures. Furthermore, the vendor-

supplied implementation can include heuristics for optimization, which do not always

perform as expected. One example is automatic workgroup size and shape selection,

which impacts how threads are grouped and scheduled, and which in turn can shift the

performance bottleneck to different GPU components. In this example, the user can

easily take control by specifying the workgroup size, however, we observed further

unexpected performance variation when optimizing Convolutional Neural Networks

(CNNs) on a Mali-G71 GPU. Channel pruning is a technique expected to improve ac-

curacy of CNNs, however, in Figure 3.10, we demonstrate that channel pruning can

result in significantly longer execution times on a Mali-G71 GPU. In Section 4.6.3, we

Chapter 3. Simulation Background & Related Work 68

Fig. 3.9: This is how the programmer specifies to use the GEMM kernel from the Arm

Compute Library.

20 40 60 80 100 120
Number of channels

5

10

15

20

25

30

In
f t

im
e

(m
s) 76

78

92

93
96

97

Fig. 3.10: Execution pattern observed for channel pruning of ResNet-50 layer 16 imple-

mented with Arm Compute Library GEMM on HiKey 970 Mali GPU.

show that this is due to choices made by the OpenCL runtime, which are invisible to

the user.

Some GPU simulators, for example Multi2Sim, replace the native runtime with

a custom, simulator-specific version. However, the implementation of the runtime

library has a significant impact on GPU performance, which cannot accurately be re-

created with custom runtimes. Therefore, simulations executing with a custom runtime

would manifest vastly different behaviour compared to the real hardware platform,

with the fault lying not with the GPU simulator itself, but at a higher level of the

software stack, which drives the GPU simulation.

With modified or completely replaced versions of the OpenCL runtime, we lose

observability over these nuances, and our simulations stray further away from reality.

69 3.3. Modelling the Software Stack

3.3.1.4 OpenCL Compiler

Just as it is critical to execute the real, vendor-provided OpenCL runtime, it is also

critical to execute the real compiler, which is often packaged with the runtime. Com-

piler toolchains develop at a rapid pace. In example, since the release of the Hikey-960

development board, the first development board with a Bifrost GPU, 28 versions of the

OpenCL runtime, compiler, and kernel driver have been released. Successive versions

of the toolchain provide bug fixes and optimizations that could radically change the

generated code, and the execution of it in hardware. As such, it is critical to keep up

to date with the most recent software stack, both for software development and hard-

ware exploration. Our full-system simulator provides full flexibility, as any toolchain

that can be executed on the real hardware can also be executed in simulation. This is

counter to toolchains used by existing state-of-the-art GPU simulators. Multi2Sim re-

places the vendor provided OpenCL runtime and compiler with its own version, which

helps with code generation for the simulator. As such, it is developed with specific

OpenCL features in mind, which inadvertently results in Multi2Sim being forcibly tied

to a specific toolchain. For example, Multi2Sim was developed when AMD toolchain

2.5 was available. Since then, that toolchain was replaced by newer versions, and

is no longer available publicly. However, when using the oldest currently available

versions (2.7, 2.8), different code is generated for the same kernels. The generated

binaries contain different sections. They also contain different instructions, and the

runtime takes advantage of different OpenCL features, all of which prevent the simu-

lation from completing due to missing features in Multi2Sim. As a result of all of these

changes, Multi2Sim is tied to a specific version of the toolchain, which is no longer

available. This problem is further examined in section 3.3.3.

Being tied to a specific toolchain limits the lifespan and usefulness of a simula-

tion framework. Toolchains develop quickly, and problems that architects are working

on may already be solved in software, unbeknownst to the architect, or, the toolchain

may simply be no longer available, preventing users from using the simulation frame-

work. The binary code generated from two different versions of a compiler, from the

same source code, can be vastly different. We compiled a number of different bench-

marks with different versions (5.6, 5.7, 6.0, 6.1, 6.2) of the Arm Mali Bifrost Offline

Compiler, which presents static characteristics of the benchmark. Figure 3.11 shows

the result for the matrix multiplication kernel - a workload commonly accelerated on

GPUs. Each measured category shows differences in the compiler code between ver-

Chapter 3. Simulation Background & Related Work 70

Arith
metic

Cycl
es

Arith
metic

Instr
.

LS Cycl
es

LS In
str

.

Registe
rs

0.0

0.5

1.0

1.5

R
el

at
iv

e
C

ou
nt 1.
00

1.
00

1.
00

1.
00

1.
001.

09

1.
02

0.
57

0.
92 1.

091.
16

0.
98

0.
86 1.

00

1.
00

0.
69

0.
98

0.
57

1.
01

1.
00

0.
69

0.
98

0.
57

1.
01

1.
00

5.6 5.7 6.0 6.1 6.2

Fig. 3.11: The same code compiled by different versions of the compiler can have vastly

different characteristics.

sions of the compiler. We can see from this figure, that the number of arithmetic cycles

can differ by as much as 47%, and the number of load/store cycles by as much as 43%.

As toolchains develop, it is necessary to be able to use them in the simulation. Having

full flexibility and control over the version of the toolchain is a critical component of

any accurate simulation.

3.3.1.5 OpenCL Host Program

OpenCL kernels execute on the GPU, but the setup and dispatch are controlled from

code that is executing on the CPU, and it is important to faithfully execute this compo-

nent as well during a full-system simulation. The user can either explicitly control the

GPU through the OpenCL API, or, as often is the case, a higher-level library can make

the calls to OpenCL.

The Arm Compute Library provides multiple implementations of the same kernel,

optimized for different settings, or inputs. The choice of which one to use will often

depend on dynamic runtime information, held by the code executing on the CPU. Se-

lecting and simulating a specific kernel without this runtime interaction wouldn’t be

representative of a real workload, as the incorrect parameters, and in result, the incor-

rect kernel or kernel configuration could be chosen. For example, there are 22 different

implementations of GEMM (Generalized Matrix Multiplication) in the Arm Compute

Library, and the choice of which one to execute depends on the inputs to the program.

The driver for Direct Convolution, also implemented in the Arm Compute Library,

contains runtime heuristics for optimal workgroup size selection, using the library’s

predictions based on runtime information about the incoming data. Section 3.3.1.3

shows how different versions of convolution can be dispatch from the Arm Compute

71 3.3. Modelling the Software Stack

Library.

OpenCL programs are often interactive with the system, and can delay decisions

until the point of dispatch. For example, the CPU-side program can query the system

to identify how much local memory a system has, or how many different OpenCL

devices are available, before deciding on a specific kernel or configuration to dispatch.

This section has shown that supporting the full software stack through a full-system

simulator is critical to providing a faithful execution environment. However, full-sys-

tem simulation implies that additional, costly simulation is needed. In the next section,

we investigate the performance implications of executing CPU code alongside GPU

code.

3.3.2 Speed of Simulation

Consideration should be given to all components of the simulation, in order to avoid

bottlenecks in the simulator. In the context of GPU simulation, this includes both GPU

and CPU simulation. The size of the software executing on the GPU is relatively small

compared to the CPU. The CPU side software includes the entire operating system with

multiple processes running, the device driver, runtime system, and user code, while

the GPU executes just the kernel code, albeit with thousands of threads executing in a

highly parallel fashion. Using existing CPU-GPU simulators, we have observed that

the CPU simulation quickly becomes a bottleneck for the simulation.

Multi2Sim, for example, is capable of executing some components of a CPU sim-

ulation - it executes the CPU-side user program, and a modified OpenCL driver - but

no Operating System. However the interpreted simulation behind Multi2Sim limits

Multi2Sim’s usefulness on larger workloads. Figure 3.12 shows how the CPU run-

time increases as the size of the input into the GPU kernel increases. At a relatively

modest by today’s standards image size - 1536x1536 - the CPU side of the simulation

is 32 times slower than for the smallest tested image size - 256x256. The Multi2Sim

CPU-GPU framework, while it is a step in the right direction, is limited by it’s CPU

simulation performance.

A fast, full-system GPU simulator not only enables realistic workloads through

executing real software, but also provides simulations that are orders of magnitude

faster than competing frameworks, and enables high volumes of data to be collected in

small amounts of time.

Chapter 3. Simulation Background & Related Work 72

25
6x

25
6

25
6x

51
2

51
2x

51
2

51
2x

76
8

76
8x

76
8

10
24

x7
68

10
24

x1
28

0

12
80

x1
28

0

15
36

x1
53

60
50

100
150

4.76 9.28 18.37 28.02 40.09 51.94
90.79

112.61

160

Sobel Filter Input Dimensions

D
riv

er
R

un
tim

e
(i

n
s)

Multi2Sim

Fig. 3.12: The software stack executing on Multi2Sim.

3.3.3 Ease of maintenance as software is updated

Further complications related to using modified software stacks arise from the in-

evitable need for maintenance of the software stack. Issues arising from not using

the correct version of the compiler were demonstrated in Section 3.3.1.4. We de-

scribed how Multi2Sim replaces the vendor-provided OpenCL runtime and compiler

with it’s own version, which helps with code generation for the simulator. As such,

it is developed with specific OpenCL features in mind, which inadvertently results in

Multi2Sim being forcibly tied to a specific toolchain. For example, Multi2Sim was

developed when AMD toolchain 2.5 was available. Since then, that toolchain was re-

placed by newer versions, and is no longer available publicly. However, when using

the currently available versions (2.7, 2.8), different code is generated for the same ker-

nels. The generated binaries contain different sections, different instructions, and the

runtime also takes advantage of different OpenCL features. Many of these features

weren’t considered during the development of Multi2Sim, and as such, Multi2Sim of-

ten fails to decode, and then execute, binaries that are generated by newer versions of

the toolchain. These missing features aren’t integral components of the GPU architec-

ture itself - rather, they are inherent to the supporting toolchains.

The gem5-APU model [81], also referred to in later chapters as gem5-ROCm, ex-

hibits similar problems, despite being actively maintained. The infrastructure is closely

tied to ROCm 1.6, which is significantly outdated. Additionally, we have found that

much of the infrastructure is tied to deprecated versions of Python and cmake, fur-

ther impacting usability and ease of maintenance. The authors acknowledge this is a

problem, and work is currently underway to implement a solution similar to our own

(presented in 4) in gem5 [96].

By using a full-system simulation framework, we automatically support any and all

73 3.3. Modelling the Software Stack

features provided by any toolchain, including future releases of toolchains, for a given

hardware platform. Using our approach, the software isn’t aware that it is executing in

a simulation, and therefore no simulator-specific code needs to be implemented in the

software stack. The simulator simply sees the executing code as a sequence of machine

instructions, which it decodes and executes.

Critically, a full-system simulator allows the user to update the drivers as and when

they please, just like in a real system. For example, this can be done through the

native package manager, or by downloading the relevant binaries from the vendor, and

placing them in the correct location in the system.

3.3.4 Usability

Usability is an important component of developing a simulator. In order to be able to

efficiently use a simulator, it needs to be as close to the real system as possible. In

the case of our Mali full-system simulator, it is completely indistinguishable from a

real system. The system boots a Linux operating system, uses vendor-provided device

and user space drivers, and inherently supports any workload that can be executed on a

physical device implementing the same architecture. Furthermore, the system provides

fast enough simulation to be interactive.

Existing GPU simulators on the other hand, require far more steps in the setup,

which are not representative of the real system. By default, Multi2Sim requires the

GPU binaries to be pre-compiled, while in the majority of cases GPU kernels are JIT-

compiled at dispatch time to the GPU. This setup adds additional overhead for the

user, and may discourage the user from further exploration. In many cases, kernels

are specialized to the platform that they are executing on during JIT-compilation. The

scope of optimizations when pre-compiling GPU kernels is greatly reduced.

The Arm proprietary simulator operates on hexdumps, which are portions of mem-

ory specifically extracted from GPU execution, which can then be fed through the sim-

ulator. The hexdump format also includes information about interrupts and memory-

mapped registers, which the simulator can then use to dispatch the job. This type of

hexdump however, is not trivial to generate without a full-system. Additional propri-

etary software is required to mimic the interaction of the CPU and GPU via interrupts,

to perform arbitrary memory mappings, to set up page tables, and prepare the memory.

In a full-system simulation, these steps happen automatically, and using only the tools

provided by the vendor as standard. Furthermore, any updates to the software stack are

Chapter 3. Simulation Background & Related Work 74

completely compatible with the simulated system.

GPGPUSim on the other hand requires that Nvidia drivers are installed natively on

the host machine, and the simulator then interacts with these. This however, requires

the user to sacrifice their own host setup in order to use specific versions of the driver

compatible with GPGPUSim. Furthermore, this approach isn’t feasible when modeling

an embedded system, such as an Arm CPU and and Arm GPU. The system would

require Arm-compatible binaries, which couldn’t execute on a typical, x86 host system.

Since our simulator doesn’t model specific components of the software stack, and

instead inherently supports all compatible software through an accurate model of the

underlying hardware, any software stack is inherently supported in our simulator. This

includes support not only for newer versions of OpenCL, but also OpenGL, Vulkan,

and any other new APIs that are being developed. The only requirement for this is that

the user installs the new software, just like in a real system.

The speed of simulation, as described in Section 3.3.2 is also a critical component

of usability. The simulator that we present in this thesis is fast enough to be interactive,

and provides users with feedback at a quick turnaround time.

3.3.5 Comparison Against Existing Hardware and Software

Simulators are key tools used in both pre- and post-silicon environments. Fast simula-

tors provide information in early-design space exploration (for example ISA design),

while slower, more detailed simulators can help guide detailed micro-architectural de-

sign. Simulators are also used extensively by software developers, who are tasked with

developing toolchains and applications for future hardware platforms. Even after fab-

rication, simulators can be used to gain insight and control over the simulated platform

that isn’t available with hardware. Here we briefly outline some of the uses cases for

our simulator that aren’t possible with hardware or existing simulators.

3.3.5.1 Hardware Platforms

Many platforms allow the user to access hardware counters in order to identify hard-

ware utilization, and effects of the executing code on the hardware. These counters

typically show numbers of cycles for various components and cache utilization. These

counters however, are often at too small of a granularity to completely understand the

performance of the CPU or GPU. For example, the counters might report the number

of instructions executed as well as the number of threads, but will provide no informa-

75 3.3. Modelling the Software Stack

tion about how the work is distributed across the threads. Furthermore, in the case of

some systems, like the Arm Mali GPU, software support to read hardware counters is

not included with the publicly available drivers.

Simulation allows the user to inspect the workload at any desired granularity -

for a GPU, this can be at workload, job, threadgroup, warp, or thread level, or even

inspecting individual components of the pipeline. These statistics can be accessed at

any point in time, i.e. the simulation can be stopped at any point of execution, and the

performance counters can be inspected there and then - something that is not possible

with hardware counters.

3.3.5.2 Existing GPU Simulators - an Architectural Perspective

Existing GPU simulators model large, Nvidia and AMD GPUs, but provide no support

for realistic modelling of embedded GPUs such as the Arm Mali. A dedicated sim-

ulation framework is required for modelling such GPUs, as there are key differences

in their architectures, supporting systems, and workloads executed on them. Machine

learning workloads are more than just growing in popularity - they have taken over as

one of the core applications to be accelerated using parallel hardware, such as GPUs.

However, very different parts of these machine learning applications are accelerated

on desktop GPUs compared to embedded GPUs. Let’s consider a personal assistant,

such as Amazon’s Alexa, or Apple’s Siri, which use speech recognition to interact

with humans. Speech recognition is a complex task, which is often implemented using

Convolutional Neural Networks - specialized versions of Deep Neural Networks. Us-

ing neural networks requires two phases - a training phase, where weights are learned

by the model by showing it examples, and an inference phase, where the learned model

is applied to new, incoming data. Training is expensive, often takes months, and re-

quires vast parallelism to even reach these time frames, and hence is performed on

large desktop GPUs, or even clusters of GPUs. Inference on the other hand, is per-

formed close to the user, on an “edge” device, where it benefits from low latency, and

increased security during its interaction with the human. Therefore, once training of

the model is completed, the model is then transferred to an edge device, which per-

forms inference. However, even in this case only simply neural networks are run on

device, and others are transferred to the cloud to yet again run on different devices.

As is evident, even though embedded and desktop GPUs share some characteristics,

they are employed in very different environments, and need to be suited to very differ-

ent tasks, and to optimize hardware for neural networks, both desktop and embedded

Chapter 3. Simulation Background & Related Work 76

GPU simulators are needed. As such, we provide the first ever accurate embedded

GPU simulator available to the public for design and optimization of machine learning

workloads and specialized hardware.

3.4 Performance Modelling Techniques

We have so far only discussed the practicalities and performance of GPU simulators,

but accuracy and speed of the performance model is equally important. In this section,

we discuss different approaches to GPU performance modelling, while searching for

an approach that will not impede high simulation speeds required for executing full

software stacks in a full-system simulation environment.

3.4.1 Cycle-Accurate Simulation

There is a wide variety of performance modelling techniques used in existing simu-

lators. Cycle-accurate simulation has already been introduced, as a detailed model

advancing one cycle at a time. In this type of simulation, the functional execution

and performance prediction are completely coupled, with the performance prediction

arising from detailed modelling of every step of execution. Cycle-accurate simulation

provides the most observability out of the examined approaches, and has the potential

to be completely accurate. However, it suffers from poor performance, is difficult and

time consuming to implement correctly, and difficult to maintain, as each iteration of

the hardware will require vast updates to the model, not only of architectural com-

ponents, but also of the micro-architectural model. Poor performance often results in

only small, unrealistic workloads and micro-benchmarks being executed. Large scale

cycle-accurate modelling is also expensive. The common approach in industry to in-

crease throughput is to run thousands of simulations in parallel, amounting to millions

of hours of compute time on servers.

3.4.2 Trace Based Simulation

Trace based simulators operate in in two phases. In the first phase, a trace is collected.

The trace can contain anything that reflects the execution over time, but generally con-

tains details for each memory access performed, or for instructions executed. Certain

GPU emulators collect information about API calls to the OpenGL runtime. This trace

77 3.4. Performance Modelling Techniques

can then be fed through a timing model in a second phase, which will predict the per-

formance. While the traces can be large and time consuming to generate, they only

need to be collected once. They can also be accelerated by emitting binary traces, us-

ing faster, functional simulators, or by instrumenting code executing on real hardware.

This style of simulation also allows for flexibility in the second phase of the simulation.

For example, when exploring the memory system of a new architecture, a functional

model can be used to collect the trace of a program, and then multiple memory models

can be applied to it in the second phase, to identify the best one.

Trace-based simulation provides a promising alternative to pure execution-driven

cycle-accurate simulation, as the trace collection does not necessarily need to hinder

fast full-system simulation, but still allows for flexibility in the second phase of the

simulation. Furthermore, when combined with other techniques, presented in Chap-

ter 5, we continue to achieve both good performance, and good accuracy relative to

existing solutions.

Accel-Sim is a recently released GPU simulator that is built on the long-standing

GPGPUSim [84]. Accel-sim splits functional and timing simulation of GPGPUSim

into two phases, and implements trace-based simulation. It is most similar to our

approach, presented in Chapter 5, however there are notable differences. Accel-Sim

supports Nvidia GPUs, while we model embedded, mobile GPUs and provide a tracing

plugin for an Arm MALI GPU simulator. Traces for Accel-Sim are generated using a

binary instrumentation tool called NVBit [97]. This is a significant improvement over

previous GPU simulation approaches, as it means that the full vendor-provided soft-

ware stack can be used without modification. However, NVBit only supports Nvidia

GPUs, and requires a physical Nvidia GPU to work. Our simulator on the other hand

uses an existing functional GPU simulator with an interchangeable software stack and

functional model, enabling us to explore not only new hardware configurations, but

also couple them with new software, and use the trace based simulator for optimiz-

ing code using new software stacks. The authors of Accel-sim use microbenchmarks

to identify specific architectural and microarchitectural parameters of the GPU they

are modelling, however this is not possible in our case, as we later demonstrate. In-

stead, we use a regression to tune unknown parameters in our simulator. Furthermore,

we target a different use case than Accel-Sim - while the detail of Accel-Sim allows

for detailed micro-architectural exploration, we trade detail off in exchange for faster

simulation turnaround time.

GPUTejas [76] models a GPU using traces generated with GPUOcelot [74]. GPUO-

Chapter 3. Simulation Background & Related Work 78

celot is a functional simulator that replaces the CUDA runtime library, and function-

ally executes PTX, however it models GPUs at the PTX level, which has been shown

to introduce significant error [98]. Our framework supports a full, native, vendor-

provided software stack. MacSim [77] supports Nvidia GPUs via PTX, and Intel

GPUs [99]. Traces for Intel GPUs are collected using an instrumentation tool built on

GT-Pin [100]. TEAPOT [78] is a trace-based GPU simulator, designed for the evalua-

tion of mobile GPUs and has a cycle accurate GPUmodel for evaluating performance.

TEAPOT supports OPENGLES 1.1/2.0 and runs unmodified Android applications, but

relies on the open-source GALLIUM3D drivers for a generic softpipe GPU.

3.4.3 Analytical Modelling

Analytical models take certain features of execution in hardware and define a cost

model based on those features. The features can be taken from various sources, for

example from hardware counters in order to explain the performance of software on

a given hardware platform, or from high level statistics gathered during functional

simulation to try to predict performance in real hardware.

Early performance analysis for GPUs focused on specific applications, and relied

on constrained programming models and hardware availability. [101] analyzed the per-

formance of dense matrix multiplication on GPUs. [102] presented a novel memory

model for analyzing and improving the performance of GPU-based scientific algo-

rithms. [103] breaks down the cost of using the graphics pipeline for general purpose

computation.

Fig. 3.13: MDM-based performance model. (Fig. Source: [104])

Current state-of-the-art models include MDM [105] (building on GPUMech [106]),

which predict performance using a hybrid trace-based and analytical approach through

interval modelling. The MDM based performance model is depicted in Figure 3.13.

79 3.4. Performance Modelling Techniques

Traces are collected using either hardware or functional simulation. Next, a representa-

tive warp is selected to be used as the basis for data collection for the analytical model.

Cache statistics are provided using a multi-core cache simulator which processes the

traces. The level of detail of the cache simulator is not provided in the MDM publica-

tion. MDM then provides a performance prediction by calculating the steady state of

the kernel execution, minus the side effects of network and DRAM contention.

MDM provides a significant 65x speedup over detailed simulation, when simulat-

ing just one configuration. However, even more importantly, MDM’s approach scales

to large design space explorations, with its speedup over detailed simulation rising to

6371x over 1000 configurations. The timings of MDM compared to detailed simula-

tion are presented in Figure 3.14.

Fig. 3.14: MDM provides a speedup of 65x over a single iteration of detailed simulation,

and 6371x when simulating 1000 configurations, due to its low recurrent cost. (Fig.

Source: [104]).

While this analytical approach provides significant speedup over cycle-accurate

simulation, there is still a significant one-time cost associated with generating the traces

and selecting the representative warp. Crucially, this is only a one-time cost when ex-

ploring certain architectural configurations. However, other experiments, for example

changing the warp size of the architecture, would result in having to once again select

the representative warp.

Another problem encountered by MDM is that selecting a representative warp is

an approximation that will work well for regular applications, however may fall short

when modelling irregular workloads. GPU kernels can read the thread ID, and often

use this mechanism for selecting which threads perform which part of the kernel. If

half of the threads executed one branch of the code, and the other half another branch

of the code, there would be no single representative warp, which would result in a

biased performance prediction.

Taking the above into consideration, we find that a trace-based approach is more

Chapter 3. Simulation Background & Related Work 80

suitable to our requirements, however we leave analytical modelling open for consid-

eration in combination with our approach in future work.

[107] provided the first analytical GPU model available to academia. It is a static

analytical model that can be used without executing the program. The authors propose

that estimating the cost of memory operations is the key component of understand-

ing GPU performance, as application execution time is dominated by memory access

latency. However, as GPUs are massively parallel, this latency can be hidden with par-

allel memory requests. They define two metrics, MWP (Memory Warp Parallelism)

and CWP (Compute Warp Parallelism) as metrics for their analytical model. Mem-

ory warp parallelism is a metric for memory bandwidth consumption, while CWP is a

metric defining how much computation can be done by other warps while one warp is

waiting for values from memory. The analytical model using these metrics provides in-

sights into performance bottlenecks of parallel applications on GPU architectures. This

analytical model achieves an average error of 13.3% on GPU computing applications.

However, the proposed model only estimates the number of dynamic instructions and

memory requests, as the analysis is performed statically. The authors do this by scaling

the number of static instructions in a kernel by the number of data elements. While

this approach can approximate the instruction count, it will vary widely on workloads

that include control flow operations, and especially ones that demonstrate warp diver-

gence. Furthermore, the authors use PTX as an instruction set, and claim that there is

a one-to-one mapping between PTX and the native instruction set, but [81] shows that

this is not the case.

The same authors present an integrated power and performance model using an-

alytical modelling techniques [108]. They use the results of their previous analytical

model [107] as inputs into their analytical model and predict the optimal number of

cores to maximize performance per watt. As this model relies on their previous work,

it has the same limitations, i.e. it does not model a real instruction set, and does not

consider the effects of control flow operations. [109] also builds on the analytical model

presented in [107], by using it within a code skeleton framework for accelerating CPU

code on GPUs.

Similarly, [110] presents an integrated model to predict performance and energy

consumption in order to aid GPU programmers. However, instead of a static approach,

the authors use Ocelot [74] to analyze PTX codes to obtain several input parame-

ters, such as the number of memory transactions and data size. The model considers

instruction-level and thread-level parallelism, and achieves an accuracy of almost 90%

81 3.4. Performance Modelling Techniques

when compared to real hardware. However, as discussed before, Ocelot provides only

an abstraction of GPU model and executes PTX - meaning analytical models such as

this one rely on inaccurate execution details.

3.4.3.1 A micro-benchmark-first approach

[111] presents a micro-benchmark-first approach to designing an analytical model.

Rather than build a model first, like in previous approaches, they design micro-benchmarks,

and design a throughput model for the instruction pipeline, shared memory, and global

memory using the results. This approach allows them to limit the number of factors

that influence the analytical model, by selecting characteristics that most closely cor-

relate with performance. This work also focuses on identifying program bottlenecks,

rather than an overall execution prediction. Furthermore, this work uses dynamic anal-

ysis using statistics collected from the Barra simulator, which in turn executes native

assembly code, rather than PTX, albeit using a modified CUDA runtime.

[112] presents TEG (Timing Estimation Tool for GPU), a tool used to analyze

GPU scaling performance behaviour. It’s primary input source is a CUDA binary,

disassembled using CUBOJDUMP. For more accurate results, in particular when the

kernel contains more complicated control flow, instruction traces generated using the

Barra [69] simulator can be used. The analytical model uses execution latency, multi-

warp issue latency, same-warp issue latency, and memory latency as parameters to

the analytical model. The values for these are obtained using the CLOCK() command

in CUDA kernels. The work claims an error of approximately 10%, however exper-

imental results are limited to micro-benchmarks. Furthermore, the framework does

not consider dynamic scheduling, or a cache model, both of which are found in mod-

ern GPUs. This approach provides two improvements over prior work. Firstly, Barra

executes native assembly code, rather than PTX, and secondly, the analytical model

uses full traces, rather than just end statistics from simulations. However, as discussed

previously, the Barra simulator relies on a software stack vastly different to a vendor-

provided software stack.

[113] used Pareto-optimal curves to prune the search space for GPU optimizations.

However, they did not model memory latency, and assumed that none of the kernels are

memory bound, which in the general case is not a convincing assumption for GPUs, as

many studies have shown that memory is a bottleneck for GPUs.

Chapter 3. Simulation Background & Related Work 82

3.4.3.2 A compiler-based approach

[114] uses compiler based approach, and builds a program dependence graph PDG,

originally presented in [115] as a basis for analytical modelling. Based on the PDG,

they can identify control and data dependencies within a single framework. They also

provide a framework for symbolic execution to help identify data access patterns and

control flow patterns, meaning they can easily estimate control flow divergence, mem-

ory bank conflicts, and memory coalescing, which weren’t considered by previous

approaches. The performance factors are measured in isolation from each other, and

later combined in the model. While this approach proposes major improvements over

previous work, it still relies on an intermediate program representation, and not an

actual program binary.

[116] presents a framework for estimating performance of CUDA kernels in an

automated manner. The authors propose the quadrant-split model, which provides in-

sight on the performance limiting factors of multiple devices with respect to a particular

kernel, with the key feature being different compute-memory bandwidth ratios. The

authors first extract a set of kernel features through automated profiling executions.

Secondly, they extract devices features for the target GPU using micro-benchmarks

and architecture specifications. They use this information to determine the perfor-

mance limiting factor and to estimate the kernel execution time.

[117] is a recent work that presents an analytical modelling framework for multi-

threaded code on multi-core platforms. In this work, a profiler collects micro-architecture-

independent characteristics of a workload’s behaviour. The profile contains per-thread

characteristics, as well as inter-thread interactions, for example synchronization and

shared memory access behaviour. The profile is then used to predict performance on

new multi-core architectures.

3.4.4 Machine Learning and Statistical Modelling

The final fast performance modelling technique considered in this thesis is a machine

learning based approach. Machine learning and statistical approaches identify specific

higher level features and use them to predict performance in hardware. They combine

the performance benefits of faster simulators, with the performance prediction capa-

bilities of more detailed simulators. In addition to the performance benefits, machine

learning models are easy to use, as they don’t require the implementer or user to have

any knowledge of the architecture. However, in order to train a good model and make

83 3.4. Performance Modelling Techniques

an accurate prediction, vast amounts of data are required, which are are often not avail-

able, or require a cycle-accurate simulator or hardware to collect. Furthermore, once a

model has been trained, it is difficult to change it, meaning that while it can be of im-

mense benefit for systems development and software engineering, it can be a difficult

tool to use in architectural and micro-architectural exploration.

To alleviate some of these concerns, machine learning models often combine expert

knowledge in the form of feature selection or a combined machine-learning + analyti-

cal model to reduce training speeds and improve performance predictions. Analytical

models can also make architectural exploration easier, for example by including ar-

chitecture-specific variables that can be directly manipulated by the user. We consider

machine learning based approaches when developing our performance model, and we

present our findings in Chapter 5.

[118] presents a machine learning model using two simulators at different points

on the speed vs. detail curve. At the more detailed, slower end, is a cycle-accurate

simulator, and at the less detailed, faster end is a functional instruction set simulator. A

number of benchmarks are executed using both simulators. A machine learning model

is then built to predict the cycle counts of the cycle accurate simulator using features

extracted from the functional simulations.

Nagasaka et al. [119] present a machine learning model using performance coun-

ters as independent variables in a linear regression. The linear regression is used to

model power in the GPU. The approach achieves average accuracy within 4.7%, how-

ever it requires performance counters to be present. This has two major drawbacks.

Firstly, as the authors themselves point out, performance counters aren’t always avail-

able for all components of the GPU. For example, this work vastly underestimates

power for kernels with texture reads, because of lack of performance counters moni-

toring texture accesses. Furthermore, this approach cannot predict power offline - i.e.

it requires access to hardware for each kernel execution. A further improvement could

be to use a simulator to predict the values of the performance counters for each kernel,

and then use this model to predict power based on the simulation results.

Chen et al. [120] also use a statistical approach to predict power. Instead of a linear

regression, they use tree-based methods, however the largest contribution is using a

simulator instead of hardware. GPGPUSim [121] is used to collect statistics, which

are unavailable with traditional performance counters, overcoming the obstacles en-

countered in [119].

Zhang et al. [122] use a random forest based approach, where they build a model

Chapter 3. Simulation Background & Related Work 84

based on an earlier collected performance and power profile. From this model, they

are able to extract instructive principles, useful both to the GPU programmer as well

as the hardware architect. This is also the first model for an ATI GPU - the previous

models were designed for Nvidia GPUs.

Song et al. [123, 124] present a system-level power-performance efficiency model

for emergent GPU architectures. Their hardware counter based approach uses a com-

bined analytical approach with an artificial neural network, and unlike previous work,

are able to capture non-linear relations between power and performance. Furthermore,

Song et al. are the first to consider the entire system that a GPU operates in, and the

power and performance model also consider the CPU and Operating System.

Boye et al. [125] present GROPHECY++, an extension to GROPHECY [109], by

including a data transfer model. They use a linear model with tunable parameters. The

kernels used are the best kernels identified using GROPHECY.

While previous work has focused around CUDA, Karami et al. [126] present a

statistical performance model for OpenCL workloads, with the aim of identifying per-

formance bottlenecks and reporting them to the programmer. Results are gathered

using CUPTI, a CUDA profiling framework. The analysis uses principal component

analysis, from which the authors extract particular principal components, and relate

them to architectural bottlenecks exacerbated by the code.

Baldini et al. [127] developed a model for estimating GPU performance before

porting a CPU program to GPU. They apply a supervised machine learning algorithm

to dynamic data from instrumented program execution on a CPU. Using this data, they

predict whether or not it is worthwhile porting code from CPU to GPU. They use very

simple, high-level features, similar to our own approach, including the total number

of instructions, the ratio of computation over memory, conditional and unconditional

branches, and a few others. A key difference, is that our statistics are gathered via a

simulator, without the need for changing the program binary and altering the perfor-

mance behaviour of the program. Furthermore, their model requires an initial OpenMP

implementation on the CPU.

Ardalani et al. [128] took a similar approach to Baldini et al. and developed XAPP,

a tool for cross-architecture performance prediction. Furthermore, their tool aims to

predict the actual performance on the GPU, and not just improvement in terms of order

of magnitude. They use more detailed statistics including re-use distance and stride,

a more fine-grained breakdown of instruction types, and information about memory

throughput.

85 3.5. Conclusion

3.5 Conclusion

This chapter introduced concepts which characterize simulation technology, and on

which simulators are built, while simultaneously providing a qualitative evaluation

of existing GPU and full-system simulators and performance modelling techniques.

The analysis shows that advances in GPU simulation have been focused on detailed

modelling of the hardware, while largely ignoring the impact of inaccurate modelling

of the software stack. Some steps have been taken in this direction, for example in

accurate modelling of the GPU instruction set, however corners are still being cut in

modelling the remaining components of the software stack, which is just as critical

when developing a faithful software representation of the execution.

State-of-the-art performance modelling techniques are also focused around cycle-

accurate simulation, with some examples of analytical and machine learning based

modelling also present. However, similarly, none of the existing performance models

support modern, mobile applications, and offer poor performance and accuracy trade-

offs.

These observations inform our decision to develop a full-system simulation frame-

work used to drive GPU simulation, backed with an offline trace-based performance

model. This novel, flexible, holistic approach, solves all of the problems presented

in this chapter. Details of the developed framework can be found in Chapter 4, while

Chapter 5 presents the performance model.

Chapter 4
Full-System Simulation of Mobile

CPU/GPU Platforms

Until this point, this thesis has presented background information, related work, and

motivated the need for a new approach to GPU simulation. This chapter is the first

technical chapter. We start by restating the goals of this thesis, which are to develop a

simulation framework, which:

� Accurately simulates a state-of-the-art mobile GPU in a full-system context, en-

abling the use of unmodified vendor-supplied drivers and JIT compilers, operat-

ing in an unmodified target operating system, and executing unmodified applica-

tions.

� Supports simulation speeds, which enable the user to execute complete and com-

plex applications typical of modern GPU workloads.

� Provides useful performance statistics, without the overhead of cycle-accurate

simulation.

We propose a fundamentally different approach to GPU simulation, avoiding the

motivating issues presented in Chapter 3.

We re-iterate the main limitations of existing GPU simulators: (a) instruction sets

are not accurately modeled, but approximated by an artificial, low-level intermediate

representation [74, 94], (b) GPU simulators do not model existing commercial GPUs,

but only simplified GPU architectures [73], (c) instead of using vendor provided driver

stacks and compilers, GPU simulators often rely on simplified system software, which

87

may behave entirely differently to original tools [41, 72], and (d) GPUs are treated as

standalone devices, not modeling any CPU-GPU transactions [90].

We focus on functional instruction set CPU/GPU simulation, i.e. without detailed

timing information. While this method sacrifices cycle-accuracy, it enables us to im-

prove simulation performance to a level where it is feasible to run complex CPU/GPU

workloads. Such a functional simulator is also a prerequisite to detailed timing sim-

ulation and can still provide useful execution statistics, such as instruction counts,

execution and memory traces, and CPU-GPU transaction details. Simultaneously our

system guarantees optimal GPU feature support, and ensures that our virtual platform

executes identical code to that on physical hardware. Our fast simulation approach also

supports interactive workloads, and new Application Programming Interfaces (APIs)s

(e.g. Vulkan) without additional engineering.

Notable use cases for our full-system CPU/GPU simulation technology are (1)

early GPU design space exploration, where a GPU currently under design can be eval-

uated and (2) virtual platforms for both system and user level software development,

both without producing a physical version. These use cases benefit particularly from

the accuracy and performance that our integrated Central Processing Unit (CPU)/GPU

simulation approach offers.

4.0.1 State-of-the-Art

In order to further motivate our full-system approach to CPU/GPU simulation, we ini-

tially review three popular GPU simulators: GPGPU-Sim [70], Multi2Sim [41, 72],

and gem5 with the GCN3 model and the Radeon Open Compute Software stack [81].

In Figure 4.1 we compare the GPU kernel execution and software stacks for a na-

tive execution environment, our full-system simulation, Multi2Sim, GPGPU-Sim, and

gem5.

In native hardware (Figure 4.1(a)), an OpenCL CPU executable is run in Linux

on an Arm CPU. This executable includes an embedded OpenCL kernel, and loads

a vendor provided runtime library, e.g. libOpenCL.so, to JIT compile the OpenCL

kernel to GPU instructions. This runtime interacts with a GPU device driver–a vendor-

specific kernel module for low-level CPU-GPU interaction–which manages the setup

of GPU jobs. Finally, the GPU executes binary instructions from memory.

Our full-system simulation model (Figure 4.1(b)) implements both the CPU and

GPU completely and accurately. We run the original unmodified executable and the

88

Fig. 4.1: Comparison of the GPU kernel execution model and software stack for (a) a

native execution environment, (b) our full-system simulator, (c) Multi2Sim, (d) GPGPU-

Sim, and (e) gem5 with the Radeon Open Compute software stack. For MultiSim,

GPGPU-Sim, and gem5 we have highlighted non-standard software components that

are different from the vendor-supplied driver stack and thus represent a source of inac-

curacy.

89

original CPU runtime environment for the GPU and GPU driver. Our GPU simula-

tion component completely simulates Arm’s Bifrost architecture, executing the same

binary as the physical GPU implementation in Figure 4.1(a). Our GPU simulator in-

teracts with the simulated CPU and driver executing on the CPU in the same way as its

physical counterpart, making the simulation identical to a physical GPU for the entire

software stack.

Compare this to Multi2Sim in Figure 4.1(c). Multi2Sim’s OpenCL stack differs

substantially from the native stack. OpenCL function invocations are handled by a

non-standard runtime, which is intercepted by the CPU simulator, and redirected to

the GPU simulator to launch the kernel execution.

Tools like Multi2Sim require heavy maintenance as toolchains advance. We have

seen that code compiled by newer versions of AMD’s OpenCL compiler, which the

Multi2Sim toolchain Multi2C relies on, often contains features unsupported in Multi2Sim.

The user then must rely on an outdated (and now unavailable) version of the OpenCL

compiler.

Even with compatible OpenCL tools, it would still be impossible to execute kernels

which rely on host runtime information for compilation. For example, a program might

query how much memory is available on the platform, before deciding the mapping of

data for the executing application.

GPGPU-Sim (Figure 4.1(d)) provides a model for Parallel Thread Execution (PTX)

or SASS execution, where PTX is a scalar low-level, data-parallel virtual Instruction

Set Architecture (ISA) defined by Nvidia, and SASS is the native shader assembly for

Nvidia GPUs. While PTX is an intermediate representation, SASS is closer to the

actual GPU instruction set. However, GPGPU-Sim requires its own runtime libraries

and device drivers, which (a) differ substantially from the vendor supplied libraries,

(b) are not feature complete, and (c) introduce significant accuracy problems.

4.0.2 Contributions

In this chapter we present a full-system simulation environment for a mobile platform,

enabling users to run a complete and unmodified software stack for a state-of-the-art

mobile Arm CPU and Mali-G71 GPU powered device (Section 4.1). In Section 4.2 we

describe our instrumentation efforts, which allow us to collect runtime statistics. We

validate our simulator against a hardware implementation as well as Arm’s stand-alone

GPU simulator, achieving 100% architectural accuracy across all available toolchains

90

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Guest Operating System

Vendor OpenCL Toolchain

Vendor GPU Driver

User Application

GPU Shader

Program

Simulated Arm GPU

Shader

Core

Shader

Core

Shader

Core

Job

Mgr.

Shader

Core

Shader

Core

Shader

Core
MMU

CPU
Core

CPU
Core

CPU
Core

CPU
Core

Simulated Arm CPU

System
Devices

MMU

DevicesMain Memory

Simulated System

Fig. 4.2: Guest applications execute on simulated CPU-GPU platform, running native

Arm Linux with unmodified GPU device drivers. Guest cores map onto host threads.

(Section 4.3). We present a qualitative evaluation in Section 4.4, and demonstrate the

flexibility of our instrumentation in Section 4.5. In Section 4.6, we demonstrate the

capability of our GPU simulation framework in running full-scale modern GPU ap-

plications by optimizing an advanced Computer Vision application using simulated

statistics unavailable with other simulation approaches or physical GPU implementa-

tions. We then make a direct comparison against desktop GPUs, and show that memory

usage is hugely significant to mobile GPU performance. Finally, we use the simula-

tor to examine and explain unexpected performance degradation of a Convolutional

Neural Network workload in hardware. In Section 4.7 we describe the implementation

details of the simulator, and conclude in Section 4.8.

4.1 Our Simulation Approach

Our simulation environment, as shown in Figure 4.2, provides a full-system view of

a CPU/GPU platform. Such an approach also requires additional components to be

emulated including a Memory Management Unit (MMU), interrupt controller, timer

devices, storage and network devices. In order to benefit from existing device drivers,

91

we model the Arm VERSATILE EXPRESS and JUNO platforms, each augmented with

an Arm Mali-G71 GPU.

Both the simulated CPU and GPU are modeled using high-level architecture de-

scriptions [129], and generated using a retargetable simulation framework [130], which

also supports other architectures. They each run in separate threads on the host CPU,

providing concurrent and asynchronous operation. Synchronization between the CPU

and the GPU is provided through implementation of GPU and CPU communication

constructs, for example interrupts and atomic operations.

4.1.1 CPU Simulation

We simulate the CPU through full-system Dynamic Binary Translation (DBT), using

Captive (described in Section 2.5),which boots a Linux kernel and user space com-

piled for ARMV8, from a file system mounted by the simulated storage device. For

complete and accurate modeling, we simulate essential platform devices, ensuring that

our simulator can support a full software stack without simulation-specific adaptation

of any software component.

4.1.2 GPU Simulation

We generate an interpretive GPU simulation module for the programmable GPU Shader

Core (SC)s from the Mali architecture description using GenSim (background in Sec-

tion 2.4 and implementation details in Section 4.7). This generated module implements

the core of the execution engine in the GPU. All other components are implemented in

C++.

4.1.2.1 CPU-GPU Interface

The GPU interfaces with the CPU via memory mapped registers, hardware interrupts,

and memory, through which the simulated GPU exposes its Job Manager (JM) to the

CPU. For GPU compute jobs, the OPENCL driver sets up shader programs in the

shared CPU-GPU memory space, and then signals the GPU by writing to a control

register, indicating that a job is ready for execution. These control registers are read by

the JM, which begins execution.

92

4.1.2.2 Shader Core Simulation

The generated simulator code comprises the instruction decoder and main Execution

Engine (EE)s of the GPU. The interpretive execution model is split into two phases:

(1) decode, and (2) execution. During phase one, the shader program and its associated

metadata are decoded for later use. In phase two, a dispatcher iterates over the job di-

mensions and creates simulated GPU threads. These threads are grouped into “warps”,

where all threads execute in lockstep. Warps are in turn grouped into threadgroups, i.e.

OPENCL workgroups.

4.1.2.3 Performance Optimizations

The simulation is broken up into two stages - decode, and execution. During the de-

code stage, the GPU extensively caches guest code, which is then accessed during the

execution phase. This model ensures that the entire shader program is decoded exactly

once.

In hardware, each SC executes one threadgroup at a time. In our simulator, how-

ever, the number of SCs and host threads is individually configurable. For example,

instead of mapping 8 SCs onto 8 host threads, we can map the executing threadgroups

onto 32 host threads, creating virtual cores.

This necessitates additional measures for managing local storage. The GPU driver

allocates local storage for 8 threadgroups corresponding to the 8 detected SCs. To sup-

port more threadgroups executing in parallel, the simulator allocates additional local

memory for each host thread, outwith the guest system. The original program isn’t

aware of this memory, since it is only simulation memory, and it lives outside of the

GPU’s address space, however for the purposes of functional simulation, this is irrel-

evant, as local memory can only be accessed by the currently executing workgroup.

Local guest memory accesses are intercepted and mapped to host memory, guarantee-

ing functional correctness.

4.1.2.4 Job Manager Simulation

In our GPU simulator the JM operates in its own host simulation thread. It fully im-

plements the functionality of its hardware counterpart such as parsing job descriptors

and orchestrating the operation of the SCs.

93

aa000070
(0.4% dvg.)

aa0000a0

97.95%

aa000330

2.05%

aa000230

aa000300

83.32%aa000250

16.68%

16.68%

aa0001c0

83.32%

Block showing thread divergence

Proportion of threads following
control flow edge

Basic Block

Fig. 4.3: BFS: Our simulator generates a control flow graph pinpointing the divergence

on actual GPU instructions.

4.1.2.5 Memory Management Unit Simulation

Our simulator incorporates a complete software implementation of the GPU’s MMU.

The driver provides the MMU with page table pointers, and the MMU reports errors

(permissions violations, faults) to the driver through memory mapped registers and

interrupts.

4.2 Instrumentation

We previously discussed the high performance overheads of cycle-accurate simulation.

Instead of following this method, our simulator is implemented as a functional instruc-

tion set simulator. However, this approach still allows us to gather useful statistics,

which are described in this section, while maintaining a good simulation rate, enabling

us to execute full, modern, mobile applications.

94

4.2.1 Program Execution

We gather instruction counts and breakdowns, data accesses, and clause information -

statistics directly relating to the executing instructions. From these we see instruction

type ratios, such as ratios of memory instructions to arithmetic, and types of memory

accesses - both vital to understanding performance implications of the executed code.

Each clause is instrumented with detailed metrics at decode time, and during execution,

we record clause frequency. If executing with multiple host threads, this is gathered by

each parallel unit. Metrics can then be viewed either per-core, or can be totalled at job

completion, requiring no further synchronization.

4.2.2 System

The GPU operates as an accelerator, therefore it is vital to understand its interaction

with the rest of the system. The number of pages accessed by the GPU shows the

interaction with the memory system and MMU, which are expensive in terms of per-

formance. Interrupts and system register accesses describe the communication with

the CPU –also a bottleneck.

4.2.3 Control Flow

Control flow execution in the GPU monitors thread divergence, which occurs when

threads within a warp take different paths after a conditional branch. This is a se-

rious performance problem, as if a thread diverges, other threads in the warp must

stall until the diverging thread reconverges. We monitor this by tracking the PC on

clause boundaries, and building a Control Flow Graph (CFG). This CFG shows which

thread executes which path, and identifies diverging threads at their divergence point,

as shown in Figure 4.3.

4.3 Validation and Quantitative Evaluation

First, we present the validation strategy for our simulator against Arm hardware and

a proprietary simulator, achieving 100% architectural accuracy across all available

toolchains. We define architectural accuracy as the accuracy when comparing our sim-

ulation statistics to architecturally exposed state (e.g. instruction counts, instruction

breakdowns, divergence, register accesses, memory accesses) of GPU hardware and

95

Simulated Platform

Arm-v7A/v8A CPU

Arm Mali Bifrost GPU - G71, 8 Cores

Arch Linux (Kernel 4.8.8)

Arm Mali Bifrost DDK r3p0/r9p0

Multi2Sim Eval. Platform x86 CPU, Southern Islands GPU

Evaluation Platform

HIKEY960 - Arm-v8A CPU

Arm Mali Bifrost GPU - G71, 8 Cores

Android-O/Debian Linux

Arm Mali Bifrost DDK r3p0/r9p0

Host Platform 1 Intel(R) Core(TM) CPU i7-4710MQ

(main experiments) 4 cores with HT, 2.50GHz

Host Platform 2 Intel(R) Xeon(R) CPU L7555

(Parallel scaling, Figure 4.7) 32 cores with HT, 1.87GHz

Table 4.1: System configurations for performance evaluation.

proprietary simulator. We then compare our simulator’s performance and effectiveness

against Multi2Sim 5.0, whose approach is most similar to our own. Unless explic-

itly stated, all comparisons against Multi2Sim use Multi2Sim’s functional simulation

mode. Finally, we demonstrate the versatility of our simulator through a series of use

cases. Our evaluation focuses on the widely accepted OPENCL compute API, which

allows for direct comparison with other GPU simulators.

Details of our host and guest platforms are provided in Table 4.1. As different

benchmarks scale in different ways, the default host configuration uses 8 host threads

for GPU simulation. We show additional results for selected benchmarks.

We chose kernels from a variety of benchmark suites. First, we include AMD

APP SDK 2.5 as pre-compiled GPU binaries packaged with Multi2Sim enable direct

comparison. AMD driver 2.5, which Multi2Sim, and its compiler Multi2C, rely on, is

no longer available, and code compiled using newer versions often contains features

unsupported by Multi2Sim. We also report results for Parboil [38] and Rodinia [43]

benchmark suites, which provide larger, more complex workloads. The benchmarks

and inputs are presented in Table 4.2.

4.3.1 Validation and Accuracy

Functional and architectural correctness of our full-system simulation approach has

been established by comparison against the commercially available HIKEY 960 with

96

Suite Benchmark Input Type & Size

Rodinia 3.1 Back Propagation 65536 nodes

Parboil Breadth First 1257001 nodes

Search

AMD APP 2.5 Binary Search 16777216 elements

AMD APP 2.5 Binomial Option 512 samples

AMD APP 2.5 Bitonic Sort 2048 elements

Parboil Cutoff-limited 67 atoms

Coulombic

Potential (cutcp)

AMD APP 2.5 DCT 10000x1000 matrix

AMD APP 2.5 DwtHaar1D 8388608 signal

AMD APP 2.5 Floyd Warshall 256 nodes

AMD APP 2.5 Matrix Transpose 3008x3008 matrix

Rodinia 3.1 Nearest Neighbor 5 records

30 latitude

90 longitude

AMD APP 2.5 Recursive Gaussian 1536x1536 image

AMD APP 2.5 Reduction 9999360 elements

AMD APP 2.5 Scan Large Arrays 1048576 elements

Parboil SGEMM 128x96, 96x160 matrices

AMD APP 2.5 SobelFilter 1536x1536 image

Parboil Sparse Matrix 1138x1138x2596 matrix

Vector Mult. 2596 elements

Parboil Stencil 128x128x32 matrix

100 iterations

AMD APP 2.5 URNG 1536x1536 image

clBLAS SGEMM 1024x1024 matrix

Table 4.2: Benchmarks and data set sizes.

97

a Mali-G71 MP8 GPU. We also validated the GPU part of our simulator against a

detailed proprietary simulator for the target GPU architecture. Our comparisons have

shown complete accuracy for the evaluated benchmarks, for all evaluated metrics. This

is possible only because our simulation is driven by the exact binary that is executed

in hardware, thanks to the full support of a native software stack.

4.3.1.1 Comparison to Hardware

Validation has focused on: (a) Correctness of OPENCL kernel execution on the GPU,

evaluated through extensive testing, (b) correctness of performance metrics, including

instruction counts, instruction breakdowns, clause sizes, data access breakdowns, and

divergence, for which we compare results from our instrumented simulator to hardware

performance counters on the HIKEY 960.

4.3.1.2 Comparison to Reference Simulator

We have also validated our simulator against a proprietary, detailed standalone GPU

simulator. We executed selected kernels on both simulators using an instruction tracing

mode, where individual instructions and their effects are observable. Additionally, we

employed fuzzing techniques for rigorous instruction testing, covering an extensive

range of inputs.

4.3.2 Simulation Performance

Simulation performance is critical when executing interactive applications and running

large scale design space explorations. In this section, we evaluate three key full-system

simulation performance characteristics. First, we measure the GPU simulation speed,

followed by CPU simulation speed, and finally we look at optimiziations to simulation.

The experimental platform is described in Table 4.1.

4.3.2.1 GPU OpenCL Simulation Speed

Figure 4.5 presents execution performance of our GPU simulator relative to Multi2Sim,

where most benchmarks exhibit similar performance levels. Exceptions are Binary-

Search and SobelFilter, where our simulator is up to 10x slower than Multi2Sim, and

sgemm, where our simulator is 8.8x faster. While this disparity is due to implementa-

tion differences between the simulators and simulated architectures, the results demon-

strate that accurate full-system simulation of a GPU platform is feasible and yields

98

BinaryS
earch

BinomialOption

BitonicS
ort

DCT

DwtHaar1D

Matrix
Transpose

Reductio
n

SobelFilte
r

URNG
0

8000

S
lo

w
do

w
n

15
2 27

55

31

7010

18
8 24

67

23
81

23205

28
60

5 17
3

10 12
90

60 13
7

38 22
8

70

GPU Full System

Fig. 4.4: Simulation slowdown relative to the HIKEY960 for GPU only, and for the entire

benchmark (CPU+GPU).

competitive performance. Figure 4.4 shows simulation slowdown over native execu-

tion. The average slowdown is 4561x. This is a much smaller slowdown than 8700x

functional slowdown and 44000x architectural slowdown exhibited by Multi2Sim,

however we should also consider that the hardware modelled by Multi2Sim is a desk-

top GPU, far more powerful than the mobile GPU we model.

Full instrumentation of the GPU simulation generally adds <5% overhead, due to

the approach described in Section 4.2. This means that we provide useful statistics,

with performance similar to Multi2Sim’s, which by default only reports instruction

breakdown and job dimensions. In cycle-accurate mode, Multi2Sim reports additional

statistics, including active execution units, compute unit occupancy, and stream core

utilization, however, in our tests it failed to complete the majority of workloads, due

to large inputs. On smaller workloads, we observe slowdowns of up to 10x over func-

tional simulation.

4.3.2.2 CPU OpenCL Driver Simulation Speed

Full-system GPU simulation, executing the full software stack on the CPU, adds sub-

stantial stress to CPU simulation. Figure 4.6 shows software stack runtimes for So-

belFilter with different input sizes. While Multi2Sim spends >150s on CPU-side ex-

ecution for the largest tested input, our JIT-based CPU simulator executes the entire

stack in <10s, resulting in better performance, while maintaining faithful execution.

Overall, Figure 4.4 shows that slowdown for the entire system over native hardware is

low, averaging only 223x slowdown.

99

BinaryS
earch

BinomialOption

BitonicS
ort

DCT

DwtHaar1D

FloydWarsh
all

Matrix
Transpose

Recursiv
eGaussi

an

Reductio
n

ScanLargeArra
ys

SobelFilte
r

sgemm
ste

ncil
0

2

4
S

pe
ed

up

0.
27

1.
72

2.
66

0.
53 0.
79

0.
20

1.
28

0.
99

1.
07

0.
92

0.
10

8.
79

0.
77

0.
15

1.
44

2.
65

0.
52 0.
79

0.
20 0.

96

0.
98

1.
05

0.
90

0.
09

8.
66

0.
75

w/o instrum. with instrum.

Fig. 4.5: Our simulator’s speed with and without instrumentation, relative to Multi2Sim

functional simulation (=1.0). This graph shows only the GPU component of the simula-

tion.

25
6x

25
6

25
6x

51
2

51
2x

51
2

51
2x

76
8

76
8x

76
8

10
24

x7
68

10
24

x1
28

0

12
80

x1
28

0

15
36

x1
53

60
50

100
150

3.62 3.86 4.25 4.43 4.98 5.43 7.11 7.66 9.64.76 9.28 18.37 28.02 40.09 51.94
90.79

112.61

160

Sobel Filter Input Dimensions

D
riv

er
R

un
tim

e
(i

n
s)

Our simulator Multi2Sim

Fig. 4.6: The software stack executing on our DBT CPU simulator scales exceptionally

well relative to Multi2Sim.

4.3.2.3 Simulation Performance Optimizations

In Figure 4.7 we evaluate the performance optimization introduced in Section 4.1.2.3,

mapping GPU SCs onto multiple host threads. In the worst case, BinarySearch is iter-

ative, with short kernels executing with heavy CPU interaction, limiting improvement.

For SobelFilter, the best case, large thread-group sizes executed for a single kernel en-

able efficient parallel execution, resulting in steady speedup as host threads are added.

4.4 Qualitative Evaluation

This section examines our full-system GPU simulator through the lens of the motiva-

tion presented in Section 3.3, by looking at accuracy of the software stack, re-iterating

key results on the speed of the simulation, discussing the ease of maintenance using

100

1 2 4 8 16 32 64
0
5

10
15
20

1 1.87 3.67 5.08
8.56

14.33

20.88

1 1.27 1.3 1.15 1.03 0.97 0.96

Number of Threads

Sp
ee

du
p

SobelFilter BinarySearch

Fig. 4.7: Increasing the number of host simulation threads yields vast performance

improvements for certain benchmarks.

our technique, and discussing usability and flexibility aspects of full-system simulation

compared to existing approaches.

4.4.1 Accuracy of the Software Stack

Using our full-system approach, the executed software stack is completely unmodified,

meaning the exact same code is executed in simulation and in hardware on both the

CPU and GPU.

4.4.1.1 Device Driver

As the executed software stack is completely unmodified, the device driver executes in

the same way as it would in real hardware, meaning the memory model, multi-kernel

workloads, and fault handling are available out of the box.

Memory Model - The physical memory between the CPU and GPU is shared. In

our implementation, all we need to do to model this is point the base pointer for the

simulated CPU memory and simulated GPU memory to the same physical address in

our model. All address resolution from virtual to physical addresses is handled auto-

matically by the modelled MMU, using the page tables provided by the device driver.

The only synchronization required is that which is defined by the software model - i.e.

barrier operations for the GPU only, and atomic operations, which must lock the mem-

ory for both the CPU and the GPU. Barriers are handled implicitly by the BARRIER

instruction of the Mali instruction set. Barriers are implemented at the workgroup

level, and are implemented by pausing each GPU thread on on the instruction until all

threads in the workgroup reach the same point. Atomic operations are also part of the

native instruction set, and are inserted by the user at the OpenCL level. In our model,

they are handled using STD::LOCK GUARD. In the general case, the structure of the

host program should prevent the CPU and GPU from writing to the same memory si-

101

multaneously, and as such, we do not support locking the same memory address from

both the CPU and the GPU. We however acknowledge, that this may occur in some

applications, in particular if an OpenCL program is executing kernels on both the CPU

and the GPU. If this were the case, in order to capture correct behaviour, the code exe-

cuting on the CPU would also require an explicit atomic operation. A fast and correct

approach to handling such operations in fast simulation is described in [131].

Multi-kernel workloads - Modern day workloads, for example SLAM algorithms

or Deep Neural Networks execute multiple kernels in sequence on the GPU, all dis-

patched via the OpenCL driver on the CPU, with buffers being shared and with in-

termediate computation on the CPU. Simulation of these types of workloads is only

possible with a full, unmodified software stack, and a fast CPU simulator, which is

exactly what is provided by our framework. The scalability of our CPU simulation

compared against Multi2Sim is presented in section 4.3.2.2.

At the time of development, we did not observe multi-kernel workloads, which

execute multiple kernels simultaneously. This feature however is expected to appear

in future updates to the runtime libraries.

Fault Handling - Occasionally, faults can occur during GPU execution. For exam-

ple, an attempted access to an invalid address would result in a translation fault from

the GPU’s MMU. This is communicated via an interrupt raised from the GPU back

to the GPU driver executing on the CPU, where the fault is handled. In our simula-

tion framework, this executes exactly as it would in real hardware using an unmodified

driver stack.

4.4.1.2 OpenCL Runtime

Our simulation framework supports the unmodified OpenCL runtime library, which

can be updated at any time, and behaves identically to the runtime library executing

in real hardware. This means that we can observe subtleties that are not visible when

the driver is emulated or replaced, as first presented in Section 3.3.1.3, and as will be

presented in more detail in Section 4.6.3.5.

4.4.1.3 OPENCL Compiler

Cutting edge research requires the latest tools and software stacks, and the OpenCL

compiler is being continuously updated with the runtime. Our simulation framework

supports any available version of the OpenCL compiler, allowing compiler versions

102

between different platforms to be easily matched. Furthermore, our full-system frame-

work can support the compiler and runtime for any other framework, without the need

to maintain a specific simulator-friendly version separately from the main compiler.

4.4.1.4 Host Program

The host program driving the GPU execution can be executed in our framework with-

out any modification - from a simple OPENCL program, to complex PyTorch applica-

tions with multiple layers of the software stack. We support any binary that is compiled

for the guest CPU architecture.

4.4.2 Speed of Simulation

Our CPU simulation speed can outperform native execution [37], which makes execut-

ing the full software stack feasible. Our GPU simulator is on-par with existing func-

tional GPU simulators, but is capable of providing performance information directly

from the functional simulation, and accurate performance predictions using bolt-on

performance models, which are described in Chapter 5. Details on simulation perfor-

mance are presented in Section 4.3.2.

4.4.3 Ease of maintenance

Core instruction sets rarely change, and when they do, it is generally in the form of

instruction set extensions. Even so, the simulators for both the CPU and GPU in-

struction sets used in our framework are generated from high-level, easy to implement,

architecture descriptions implemented using GenSim, whose details are presented in

Section 2.4. There is no additional maintenance required for any of the software stack.

Any software updates that can be performed in hardware can also be performed in our

full-system simulator.

4.4.4 Usability & Flexibility

When using the simulator in a terminal environment, the user should notice no differ-

ence between our simulated platform and a real hardware platform - aside from the

speed of the GPU. Programs are invoked exactly as they would be using a physical

platform.

103

BinaryS
earch

BinomialOption
DCT

DwtHaar1D

FloydWarsh
all

Matrix
Transpose

Recursiv
eGaussi

an

Reductio
n

ScanLargeArra
ys

SobelFilte
r

URNG

backp
rop bfs

cutcp nn

sgemm
spmv

ste
ncil

0 %

20 %

40 %

60 %

80 %

100 %

Arithmetic Load & Store Nop Control-flow

Fig. 4.8: A breakdown of instruction mixes and empty slots can help us identify bottle-

necks in GPU code.

We implement an ARMV8 CPU and MALI BIFROST GPU, however the simula-

tion methodology extends to any architecture. Furthermore, the use of Captive as the

CPU simulator (described in Section 2.5) enables us to execute any guest architecture

on any host architecture, while GPGPUSim is limited to executing native X86 code.

Such support is particularly critical in modern simulation environments, as the lines

between architectures that were historically developed for mobile devices, and others

for desktops and servers, are becoming blurred.

4.5 Application Results

We demonstrate the versatility of our simulator through a series of use cases. We

first focus on architectural features of Bifrost which would be useful in early design

space exploration. Next, we show the capability of our simulation framework by opti-

mizing an advanced Computer Vision application using simulation statistics. We then

demonstrate how performance optimizations for desktop GPUs inadvertently trigger

bottlenecks on embedded GPUs, and show the significance of efficient memory usage

in mobile GPUs. Finally, we demonstrate the value of the simulator when exploring

channel pruning for convolutional neural networks on embedded GPUs.

104

BinaryS
earch

BinomialOption
DCT

DwtHaar1D

FloydWarsh
all

Matrix
Transpose

Recursiv
eGaussi

an

Reductio
n

ScanLargeArra
ys

SobelFilte
r

URNG

backp
rop bfs

cutcp nn

sgemm
spmv

ste
ncil

0 %

20 %

40 %

60 %

80 %

100 %

Temp
GRF Read

GRF Write
Constant Read

ROM
Main Memory

Fig. 4.9: Data access breakdowns show a complete view of each architecturally visible

level of memory hierarchy.

4.5.1 Identifying Empty Instruction Slots on the GPU

Figure 4.8 shows instruction mixes for OpenCL benchmarks. For example, SobelFil-

ter is a compute-intensive filter with very few empty slots and memory accesses and

almost no control flow. In contrast, the number of empty slots in Reduction and Scan-

LargeArrays indicates low GPU utilization. On average, 50% of instructions are arith-

metic operations, while local memory and control flow each contribute around 10%.

Performance can be substantially improved by reducing the number of empty instruc-

tion slots introduced by the OpenCL toolchain.

4.5.2 Moving Data Closer to the Core

Different types of data storage have various access latencies, which when poorly uti-

lized can lead to colossal drops in performance. Ideally, data should be kept as close

to the GPU’s execution cores as possible. Our simulator shows exact data placement

throughout the hierarchy, and can be used to guide optimization.

Data breakdowns are shown in Figure 4.9. SobelFilter exhibits few main memory

accesses, while the figures for backprop suggest that it could benefit from enhance-

ments to the OPENCL compiler, more registers, or a better algorithm. Fast accesses to

temporary values, constants and ROM dominate. More reads from than writes to global

registers suggest effective reuse of register data. Global memory accesses account for

105

Bac
kpro

p BFS

Bina
rySe

arch

Bino
mia

lOp
tion

Bito
nicS

ortCut
cp DCT

Dwt
Haa

r1D

Floy
dWa

rsha
ll

Mat
rixT

ran
spo

se

Nea
rest

Neig
hbo

r

Rec
ursi

veG
aus

sian

Red
ucti

on

Sca
nLa

rge
Arra

ys
SGE

MM

Sob
elFi

lterSPM
V
Sten

cil
URN

G

1
2
3
4
5
6
7
8

Fig. 4.10: A clause size distribution presents optimization targets and bottlenecks for

the Bifrost clause model.

<10% of accesses, except for a single case, backprop.

4.5.3 Evaluating the Bifrost Clause Model

Clauses contain up to 8 instruction words (16 instructions), which execute uncondition-

ally. Longer clauses are preferable - they reduce global register file accesses through

temporary register use and limit the scope for control flow and thread divergence.

Figure 4.10 shows the distribution of clause sizes for all benchmarks. Several,

including BinomialOption and FloydWarshall exhibit a majority of clauses of size 1

or 2, and occasionally size 8. Others peak at mid-size clauses, e.g. BitonicSort, or are

bimodally distributed, e.g. RecursiveGaussian. Compare this to the instruction mix

in Figure 4.8, where e.g. RecursiveGaussian features a larger fraction of arithmetic

instructions and few empty slots, whereas Reduction is reversed. Overall, kernels with

larger clauses feature fewer empty slots, while short clauses and empty slots show

some correlation.

Potentially, some kernels perform little work between control flow operations, or

the compiler is unable make use of available slots. Benchmarks with shorter clauses

also display a large proportion of memory accesses, suggesting that memory bottle-

necks limit the potential of the clause model. The model might suit graphics work-

loads, as they benefit from additional data processing units and exhibit regular be-

haviour, however re-visiting the model for compute might be worthwhile.

106

Benchmark
Page Ctrl. Reg Ctrl. Reg Interr. Comp.

Acc. Reads Writes Asserted Jobs

BFS 51723 308098 66209 8022 1003

Binomial Option 31 136 70 4 1

SobelFilter 4609 136 70 4 1

Stencil 99603 14795 1982 105 100

Table 4.3: System statistics detail the CPU-GPU interaction.

4.5.4 System Level Results

CPU-GPU communication can account for as much as 76% of execution time [43].

In our full-system environment, we are able to gather system-level statistics unavail-

able to other GPU simulators or hardware. Our approach provides the capability to

observe CPU-GPU interactions, allowing us to monitor memory usage, interrupts, and

control register accesses, presented in Table 4.3 for selected benchmarks. While CPU-

GPU communication is greatly reduced in a shared memory system, our full-system

approach can also be applied to systems where the CPU and GPU aren’t so tightly

coupled.

While SobelFilter exhibits little CPU-GPU interaction, BFS touches more pages,

and involves a higher number of transactions.

Page use differs by up to three orders of magnitude across benchmarks, with stencil

and BFS dominating this metric. BFS is particularly heavy on control interactions

showing an unusually high number of control register accesses and interrupts resulting

from over 1000 individual compute jobs.

This information provides useful system-level profiles of applications. Real-world

examples of how this data is used is presented in Figure 4.6.2.

4.6 Optimizing OpenCL Applications

4.6.1 SLAMBench

We demonstrate the capabilities of our full-system simulator by evaluating the OpenCL

SLAMBENCH [44] computer vision application, which comprises several compute

kernels and dataflow orchestrated by the CPU. In its full configuration, SLAMBENCH

executes 40000 kernels, impossible to simulate with existing GPU simulators out-of-

the-box, due to their limitation to single kernels, tool chain incompatibilities or lack of

107

Arith
metic

Instr
.

Avg. C
lause Size

CF In
str

.

Consta
nt R

eads

Contro
l R

egs.

GRF Acc.

Global LS In
str

.

Interru
pts

Kernels

Local LS In
str

.

NOP In
str

.

Num. C
lauses

Num. W
orkg

roups

Pages A
cc.

ROM Reads

Temp. R
eg. A

cc.
0.0

0.5

1.0

0.
07

0.
97

0.
08

0.
07

0.
42

0.
06

0.
05

0.
47 0.

59

0.
29

0.
07

0.
07 0.

20

0.
10

0.
07

0.
07

0.
02

0.
98

0.
02

0.
02

0.
27

0.
02

0.
01

0.
35 0.

53

0.
19

0.
02

0.
02 0.

11

0.
03

0.
02

0.
02

Fast3 Express

FPS
0

8

3.
36

7.
72

Fig. 4.11: Simulated SLAMBENCH statistics directly relate to HW performance, aiding

the search for optimal configurations.

support for CPU-GPU interactions.

Countless configuration options are available in the benchmark, each with varying

performance. We execute the KFusion benchmark, with standard, fast3, and express

configurations. Figure 4.11 shows metrics for fast3 and express relative to standard.

Both show major improvement. The relative instruction count for each category is at

most 8% for Fast3 and just 2% for Express, while the ratio for local memory instruc-

tions is much higher - 29% for Fast3 and 19% for Express, meaning increased local

memory use relative to total instruction count. In the case of Mali GPUs, using local

memory is discouraged, as local memory is simply mapped to global memory. Again,

our full-system modelling technique can apply to any type of system, and the results

may have different implications for GPUs with discrete memory.

Our metrics can easily guide us to a good solution, without requiring hardware.

While we cannot predict the exact frame rate, the simulated metrics suggest successive

improvement between standard, Fast3, and Express. This is truly the case - Fast3 is

3.35 times faster than standard and Express is 7.72 times faster than standard.

4.6.2 SGEMM

[132] shows that optimizations applied to the same code targeting different archi-

tectures result in greatly different performance relative to hand-tuned code. This is

exacerbated in mobile GPUs, whose architectures are completely different to desktop

GPUs [95]. We evaluate this claim through six SGEMM kernels ([48], [133]), a core

component of linear algebra and machine learning applications, which are increasingly

moving to mobile devices. Starting with (1), the kernels in Figure 4.12 are iteratively

108

Arithmetic Instr.
CF Instr.

Const. Read

Global LS Instr.

Global Reg. File
Local LS Instr.

NOP Instr.

Num. Clauses
ROM Mem.

Temp. Reg. Acc.
0

1

2

3

0.
78

0.
79

0.
85

0.
64

0.
71

0.
00

0.
97

0.
83

0.
86

1.
55

0.
85

0.
93

1.
00

0.
04

0.
72

7.
98

1.
08

0.
95

0.
87

1.
95

0.
97

0.
96 1.
09

0.
69 0.

96

4.
71

1.
30

0.
99 1.
12

0.
49

0.
48

0.
51

0.
32

0.
01 0.

36

1.
18

0.
20

0.
24

0.
23

1.
91

0.
98

0.
96 1.
11

0.
69 0.

97

4.
72

1.
30

0.
99 1.
14

0.
431.

00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1:Naive 2:LocalMemTiling 3:MoreWork/Thread 4:WiderDataTypes 5:TransInput 6:2DRegBlocking

Mali Runtime
0

1

0.
28

0.
15

0.
52

0.
04

0.
54

1.
00

NVidia Runtime
0
1
2
3
4
5
6 5.

77
2.

10
1.

05 1.
38

1.
24

1.
00

Fig. 4.12: Mali simulation statistics for different versions of SGEMM compared against

native Mali, and Nvidia K20m runtimes. All statistics are normalized to SGEMM6, the

slowest kernel on Mali.

optimized for NVIDIA GPUs. There is no correlation between speedups on Mali and

Nvidia, indicating vastly different architectures.

Again, simulation statistics directly relate to native runtimes, and we see that the

optimal solution on Mali (4) executes far fewer instructions than the slowest version

(6). Between (5) and (6), arithmetic and control flow instruction counts are similar,

however (5) is almost twice as fast as (6). Interestingly, (6) meant to increase register

usage, but the increase is just 3% on Mali. Instead, (6) greatly reduces local, and

increases global memory accesses relative to (5). (4) almost completely avoids global

memory, shifting instead to local memory. This supports the claim in [134], that data

movement in mobile platforms is a major contributor to execution time and cost.

4.6.3 Performance Aware Convolutional Neural Network Channel

Pruning

While exploring Convolutional Neural Networks (CNNs) in parallel to our simulation

work, we encountered unexplained hardware performance variations. In this section,

we provide a brief overview of CNNs, followed by execution results from hardware.

We then use our functional simulator to explain some unexpected results seen in hard-

ware.

Due to their superior recognition accuracy, CNNs are dominant in several disci-

plines: computer vision (for image classification [49–51], image segmentation [52,53],

objects in image detection [54, 55], image style transfer [56], etc.), speech recogni-

tion [57] and natural language processing [58, 59].

These solutions are making their way into smaller devices, on mobile phones and

home personal assistant devices. However, current CNN models are still too large

for immediate deployment on resource-constrained devices. Pruning is a widely ac-

cepted practice to make these large models suitable to run on such small devices. It is

109

well understood in the machine learning community that neural networks can produce

good inferences even after pruning a substantial amount of their internal parameters

(weights) [60–62]. In Channel Pruning, entire channels (or filters) are assessed for

their importance to determine if these may be removed [63] to produce a slimmer net-

work from the original one, with minimal drop in inference accuracy. Unlike other

pruning methods, this produces a compact dense network suitable for the already op-

timized dense convolutional routines [64]. The details of Convolutional Neural Net-

works and Channel Pruning are provided in Section 2.6.8.

The parallel nature of computations required by neural networks exposes GPUs as

the compute unit of choice, including on mobile and embedded systems for superior

FLOPS per watt performance. Dominant in this space are Arm Mali GPUs and Nvidia

embedded Jetson GPUs, each programmed via different computing libraries (OpenCL

and CUDA). These are called by higher level libraries, such as the Arm Compute

Library (ACL) and cuDNN. However, little is known about the performance of these

libraries on custom deep learning workloads.

We ran a different neural networks with varying levels of pruning on a number of

Mali and Nvidia mobile platforms. When executed on a mobile GPU, we find that

uninstructed channel pruning can hurt performance dramatically, up to 2× slowdown

in some cases when pruning just 12% of layer channels. We develop the case that

inference time on the target device should also be considered when producing smaller

networks through channel pruning.

In this study we expose the characteristics of higher level libraries used for deep

neural network computations on embedded GPUs, showing their unintuitive behavior

in response to changes to convolutional layer size. We experiment with two deep learn-

ing libraries - the Arm Compute Library and TVM, observing unintuitive performance

patterns caused by their internal heuristics. Intrigued by these observations, we take

an in-depth perspective by highlighting these patterns using our Mali GPU simulator

where we find that bad splits of convolutional workload into multiple kernels adds sub-

stantial overhead, hurting performance. Additional results from Nvidia GPUs can be

found in [135].

Our findings are relevant in both the systems and machine learning communities.

First, it is important to understand the impact of pruning on inference time, not just

classification accuracy, and to identify how the number of channels can be calibrated

to improve on both metrics simultaneously. Second, designing new neural network

architectures for specific devices should consider the best sizes of convolutional layers

110

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=7

Prune=15

Prune=31

Prune=63

1.2x 1.0x 0.9x 0.9x 1.2x 0.9x 1.0x 1.0x 0.9x 0.9x 1.0x 1.0x 1.0x 1.0x 1.0x 0.8x 1.1x 1.2x 0.8x 0.9x 1.1x 0.8x 1.1x

1.4x 1.7x 1.0x 1.0x 1.2x 1.5x 1.3x 1.1x 1.1x 1.1x 1.3x 1.2x 1.2x 1.3x 1.1x 1.1x 1.1x 1.3x 1.0x 1.0x 1.2x 1.1x 1.1x

1.6x 1.7x 1.0x 1.1x 1.7x 1.5x 1.3x 1.2x 1.1x 1.1x 1.3x 1.2x 1.2x 1.3x 1.2x 1.1x 1.1x 1.5x 1.4x 1.1x 1.3x 1.3x 1.4x

1.6x 1.7x 1.2x 1.1x 1.9x 1.5x 1.3x 1.2x 1.1x 1.1x 1.3x 1.4x 1.2x 1.3x 1.2x 1.2x 1.1x 1.5x 1.4x 1.1x 1.3x 1.3x 1.4x

1.6x 1.7x 1.2x 1.1x 1.9x 1.5x 1.3x 1.2x 1.1x 1.1x 1.3x 1.4x 1.2x 1.3x 1.2x 1.3x 1.1x 1.5x 1.5x 1.1x 1.3x 1.3x 1.4x

1.0

1.2

1.4

1.6

1.8 M
axim

um
 slow

dow
n [x tim

es]

Fig. 4.13: Potential slowdown in execution time of pruned network layers compared to

original large model when pruning a number of channels (Prune) from the initial number

of channels for each convolutional layer of ResNet-50. Performance observed when

running on a mobile GPU (Mali G72).

20 40 60 80 100 120
Number of channels

5

10

15

20

25

30

In
f t

im
e

(m
s)

Fig. 4.14: Inference time of a convolutional layer of ResNet-50 run with the Arm Com-

pute Library with varying amount of channel pruning.

for each library and hardware, thus building specialized networks for each runtime en-

vironment. And third, library heuristics for workload optimization should be revisited

to capture the increasing variation of neural networks and computing devices.

In this analysis we make the following contributions:

• We expose the behavior of two popular deep learning libraries on varying con-

volutional layer sizes across four different devices.

• These run-time performances are analyzed in-depth through a GPU simulator

to understand the built-in heuristics for optimizations and how this performs

unjustified splits of workload hurting performance.

111

4.6.3.1 Channel Pruning

In this work we perform channel pruning without considering the accuracy impact, but

our channel pruning approach has the same effect on inference time as when done with

accuracy conditions.

Observing the execution time of different pruning levels of a ResNet-50 convolu-

tional layer on a Mali G72 GPU implemented with the Arm Compute Library (Fig-

ure 4.14) shows a pattern with two parallel staircases. This can have severe conse-

quences depending on which performance step the pruned layer falls on. In fact, prun-

ing risks introducing slowdown in execution time, with pruned networks potentially

running slower than the original unpruned larger network, if libraries and hardware

performance are not considered in the pruning process. This situation is presented in

Figure 4.13 for running an implementation of pruning with the Arm Compute Library

using the GEMM method on the HiKey 970. Pruning at a distance of only 64 chan-

nels can match a performance step that introduces up to 2× slowdown in execution

time compared to the initial layer (unpruned). Intuitively, some performance steps will

offer speedups, but having some levels of pruning that can lead to slowdowns is haz-

ardous and contrary to our expectation that using pruning (fewer network parameters

and operations) will produce an universally faster network for any device and with any

deep learning libraries.

This unintuitive behavior of deep learning computing libraries, each driven by their

own internal optimisations is what motivates this exploration. In the following sections

we expose the optimal number of channels for a few deep neural networks, with a range

of deep learning libraries and on various devices, expressing the speed-ups achievable

by performance aware pruning.

4.6.3.2 Arm Compute Library using the Direct Convolution

In many cases where memory is tightly limited, Direct Convolution is the only op-

tion to implement a convolutional layer, due to GEMM expanding the matrix of input

patches, which requires almost one order of magnitude more memory for a 3×3 filter,

as in the ResNet-50 and in other networks. Here we empirically explore the heuristics

adopted in the ACL for these optimizations.

Figure 4.17 shows that these heuristics lead to three execution levels alternating for

different channel sizes of ResNet-50 layer 15. Having a linear pattern was expected,

since each channel incrementally adds extra work in the deep nested loop of Direct

112

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.1x 0.2x 0.7x 0.2x 0.3x 0.2x 0.9x 0.4x 0.5x 0.4x 0.9x 0.4x 1.1x 0.5x 0.5x 0.4x 1.1x 0.4x 0.9x 0.5x 0.4x 0.6x 1.0x

1.1x 1.2x 1.1x 1.4x 1.1x 0.9x 1.1x 0.6x 0.7x 0.6x 1.1x 0.6x 1.2x 0.7x 0.9x 0.7x 1.3x 0.7x 1.0x 0.9x 0.6x 1.1x 1.1x

1.1x 1.3x 1.2x 1.5x 1.2x 1.0x 1.1x 1.0x 1.0x 1.0x 1.1x 1.0x 1.2x 1.0x 1.0x 1.0x 1.3x 1.0x 1.1x 1.0x 1.0x 1.1x 1.1x

1.2x 1.6x 1.4x 1.5x 1.7x 1.2x 1.2x 1.0x 1.0x 1.2x 1.2x 1.1x 1.2x 1.0x 1.0x 1.1x 1.4x 1.1x 1.1x 1.0x 1.0x 1.1x 1.3x

1.7x 2.7x 2.2x 1.7x 4.0x 1.5x 1.4x 1.1x 1.1x 1.4x 1.4x 1.2x 1.3x 1.0x 1.0x 1.2x 1.5x 1.2x 1.2x 1.0x 1.0x 1.1x 1.3x

1.7x 5.9x 7.1x 2.0x 9.2x 3.5x 2.5x 1.2x 1.2x 3.0x 2.1x 1.5x 1.5x 1.1x 1.1x 1.4x 1.7x 1.4x 1.3x 1.0x 1.1x 1.2x 1.4x

1.7x 5.9x 7.1x 3.0x 9.2x 16.9x 12.5x 1.5x 1.5x 16.4x 15.4x 2.9x 2.2x 1.2x 1.2x 2.8x 2.5x 2.8x 1.6x 1.1x 1.1x 1.4x 1.7x

2

4

6

8

10

12

14

16

M
axim

um
 speedup [x tim

es]

Fig. 4.15: Speedups observed when pruning at different distances within each layer of

ResNet-50 using the Arm Compute Library Direct convolution implementation running

on the HiKey 970.

VGG.L0

VGG.L2

VGG.L5

VGG.L7

VGG.L10

VGG.L12

VGG.L17

VGG.L19

VGG.L24

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 0.9x 0.8x 0.8x 1.0x 1.2x 1.2x 1.2x 1.3x

1.0x 1.1x 1.1x 1.1x 1.2x 1.4x 1.4x 1.4x 1.5x

1.1x 1.1x 1.1x 1.1x 1.2x 1.4x 1.4x 1.4x 1.5x

1.3x 1.3x 1.2x 1.2x 1.2x 1.4x 1.4x 1.5x 1.5x

2.2x 2.0x 1.4x 1.4x 1.3x 1.5x 1.5x 1.5x 1.5x

6.9x 8.1x 2.2x 2.2x 1.5x 1.8x 1.6x 1.6x 1.6x

6.9x 8.1x 13.9x 14.7x 2.2x 2.6x 1.8x 1.9x 1.9x

2

4

6

8

10

12

14

M
axim

um
 speedup [x tim

es]

Fig. 4.16: Speedups observed when pruning at different distances within each layer of

VGG-16 using the Arm Compute Library Direct convolution implementation.

0 100 200 300 400 500
Number of channels

0

10

20

30

40

50

60

70

In
f t

im
e

(m
s)

1.9x

Fig. 4.17: Execution pattern observed for channel pruning of ResNet-50 layer 14 imple-

mented with Arm Compute Library Direct Convolution on HiKey 970 Mali GPU.

113

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.3x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 0.9x 1.0x 1.0x 1.0x 0.9x 1.0x 0.8x 0.9x 1.0x

1.2x 1.5x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 0.9x 1.0x 1.1x

1.2x 1.5x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.3x 1.0x 1.0x 1.2x 1.3x

1.2x 1.5x 1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.3x 1.0x 1.0x 1.0x 1.3x 1.5x 1.0x 1.2x 1.3x

1.5x 1.5x 2.2x 1.1x 1.9x 1.8x 1.2x 1.0x 1.0x 1.3x 1.2x 1.1x 1.0x 1.0x 1.3x 1.1x 1.1x 1.2x 1.3x 1.7x 1.0x 1.2x 1.3x

2.2x 2.4x 2.5x 1.6x 1.9x 2.6x 1.9x 1.1x 1.2x 2.4x 1.9x 1.3x 1.4x 1.1x 1.3x 1.4x 1.5x 1.4x 1.4x 1.7x 1.1x 1.4x 1.6x

2.2x 2.4x 2.5x 2.2x 1.9x 5.2x 4.1x 1.3x 1.3x 3.5x 3.4x 3.2x 1.9x 1.2x 1.3x 2.7x 2.0x 2.8x 2.0x 1.8x 1.1x 1.6x 2.4x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
axim

um
 speedup [x tim

es]

Fig. 4.18: Speedups observed when pruning at different distances within each layer of

ResNet-50 using the Arm Compute Library GEMM implementation running on HiKey

970.

convolution, however the three execution levels with up to 1.9× performance differ-

ence is unintuitive, and we explore this further in this section with the GPU simulator.

Pruning by just one channel for most of ResNet-50 layers shows a sub-unit speedup

(or in actual terms a slowdown) as presented in Figure 4.15, going as low as 0.2×
speedup or 80% drop in performance, which is substantial. This indicates to us that

optimization heuristics in the ACL are tuned for the standard shape of most popular

neural networks, with even a small drop in the number of channels per layer lead-

ing to bad decisions from the built-in optimizer. A similar situation is observed for

VGG-16 evaluated under the same conditions with the Direct Convolution of ACL

(Figure 4.16). Similar patterns were observed when running both on the HiKey 970

and on the Odroid XU4. Considering that Direct Convolution is generally slower than

all the other methods, it is understandable that not much development effort has been

invested in optimizing this, although for many small devices with limited memory

space this may be the only method that can actually execute at all.

4.6.3.3 Arm Compute Library using the GEMM method

A more popular and faster approach for performing the convolutional workload is

through GEMM which is also available in ACL. We run the pruned layers with a

GEMM implementation, observing some unintuitive patterns.

Figure 4.19 presents the execution time pattern for layer 16 of ResNet-50. Al-

though we see similiar steps to those in the cuDNN implementation (which uses an

optimised GEMM variant), this implementation of ACL presents two parallel stair-

cases. Also observed from this is that each level is in groups of 4 which matches the

114

20 40 60 80 100 120
Number of channels

5

10

15

20

25

30

In
f t

im
e

(m
s) 76

78

92

93
96

97

Fig. 4.19: Execution pattern observed for channel pruning of ResNet-50 layer 16 imple-

mented with Arm Compute Library GEMM on HiKey 970 Mali GPU.

size of vectorization, with channels 93 to 96 executing in 14 ms, while near channel

sizes 92 and 97 jumping to 23 ms. Another observation is that between 76 and 78

channels (with only just 2 channels difference) inference time is improved from 20.12

ms to 10.996 ms, a 1.83× speedup between the two sizes.

An even wider gap in inference time between close number of channels is observed

for layer 45, with 2036 channels inference is performed in 19.69 ms, while for 2024

channels this is performed in 7.67 ms, with a speedup of 2.57×, as presented in Fig-

ure 4.20.

Similarly to previous implementations, GEMM achieves a speedup of 5× for some

layers of ResNet-50 for different levels of pruning (Figure 4.18). Relevant to observe

here is that there is no slowdown in the vicinity of the initial number of channels as

observed for the Direct convolution, showing that heuristics for this optimization are

uniformly modeled for different sizes. This is also observed for the other two networks

VGG-16 (Figure 4.21) and AlexNet (Figure 4.22).

4.6.3.4 TVM OpenCL Code Generator

An atypical behavior pattern is observed with code generated by the TVM library. This

shows a hybrid behavior between the Direct Convolution implementation of ACL and

the GEMM implementation of ACL. Figure 4.25 presents the execution time of pruned

layer 14 from ResNet-50. While most channel counts are optimised with the GEMM

implementation, there is a significant number of optimization calls instructed to use

115

0 250 500 750 1000 1250 1500 1750 2000
Number of channels

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
f t

im
e

(m
s)

2.6x

Fig. 4.20: Large gap in inference time between small variations in the number of chan-

nels using the GEMM implementation with Arm Compute Library on layer 45 of ResNet-

50.

VGG.L0

VGG.L2

VGG.L5

VGG.L7

VGG.L10

VGG.L12

VGG.L17

VGG.L19

VGG.L24

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.1x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

1.4x 2.2x 1.2x 1.2x 1.1x 1.1x 1.0x 1.0x 1.2x

1.5x 2.5x 2.0x 1.8x 1.3x 1.5x 1.1x 1.1x 1.3x

1.5x 2.5x 4.2x 3.1x 2.3x 2.8x 1.5x 1.4x 1.9x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
axim

um
 speedup [x tim

es]

Fig. 4.21: Speedups observed when pruning at different distances within each layer of

VGG-16 using the Arm Compute Library GEMM implementation.

direct convolution which we know is generally slower, independent of the underlying

hardware specifications. These occasional bad decisions are also observed on the other

Mali platforms (Odroid XU4), leading to dramatic drops in performance, up to 13× as

observed from Figure 4.24 for some layers. This may also be due to the version of the

library, with dynamic developments happening in this space.

4.6.3.5 Channel Pruning Observed Through GPU Simulation

Through the use of higher level libraries, like the ACL, we lose observability that we

would normally have when working directly with OpenCL. To understand all the calls

and kernel management performed by the Arm Compute Library for different sizes of

a convolutional layer, as well as lower-level details about the execution in hardware,

116

AlexNet.L0

AlexNet.L3

AlexNet.L6

AlexNet.L8

AlexNet.L10

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

Prune=63

Prune=127

1.0x 1.0x 1.0x 1.0x 1.0x

1.2x 1.0x 1.0x 1.0x 1.0x

1.2x 1.1x 1.0x 1.1x 1.1x

1.2x 1.1x 1.0x 1.1x 1.1x

1.6x 1.1x 1.1x 1.2x 1.2x

2.2x 1.5x 1.2x 1.4x 1.3x

2.2x 2.5x 1.3x 1.8x 1.8x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
axim

um
 speedup [x tim

es]

Fig. 4.22: Speedups observed when pruning at different distances within each layer of

AlexNet using the Arm Compute Library GEMM implementation.

Kernel Name No Arithm. Instr. No Mem. Instr.

im2col3x3 nhwc 1,365,198 212,152

reshape to columns 44,183,104 3,615,808

gemm mm 706,713,280 36,267,840

gemm mm 106,006,992 5,440,176

Table 4.4: Arm Compute Library execution for layer 16 of ResNet-50 with 92 output

channels.

we executed the workloads in our full-system Mali GPU simulator [136].

As observed in previous experiments, there are unexplained performance differ-

ences when we vary the number of channels. In this section, we present our analysis of

simulation results for GEMM and Direct Convolution implementations using the Mali

GPU Simulator, and relate these directly to runtimes on the Hikey-970.

4.6.3.6 Simulating the GEMM Method

The GEMM method is performed with the 32-bit Arm Compute Library Bifrost im-

plementation. In hardware (Figure 4.20), we observe that inference time dramatically

drops when using 93 channels vs. 92 channels, and increases again between layer con-

figurations with 96 and with 97 channels. We developed an OpenCL profiling tool,

which instruments OpenCL calls. Using our profiling tool, we can see that all dis-

patched kernels are the same between the two versions. Upon further inspection with

our GPU simulator we can see that when using 93 channels, the number of jobs dis-

patched to the GPU is the same as the number of OpenCL calls made (OpenCL calls

were observed with a profiling tool). However, when using 92 channels, additional

117

Kernel Name No Arithm. Instr. No Mem. Instr.

im2col3x3 nhwc 1,379,034 214,458

reshape to columns 44,183,104 3,615,808

gemm mm 848,055,936 43,521,408

Table 4.5: Arm Compute Library execution for layer 16 of ResNet-50 with 93 output

channels.

Kernel Name No Arithm. Instr. No Mem. Instr.

im2col3x3 nhwc 1,420,542 221,376

reshape to columns 44,183,104 3,615,808

gemm mm 848,055,936 43,521,408

Table 4.6: Arm Compute Library execution for layer 16 of ResNet-50 with 96 output

channels.

jobs are dispatched to the GPU, meaning that the OpenCL runtime makes the decision

to split the work. In Figure 4.23 we show the differences in number of jobs executed,

as well as additional system-level results. Additional job creation and dispatch requires

further communication between the CPU and GPU, and adds to the initialization cost

on the GPU. This overhead often outweighs the benefits of dispatching workloads to

accelerators. The difference in executed instructions is shown in Tables 4.4 and 4.5

for 92 and 93 channels and similarly for configurations with 96 and 97 channels in

Tables 4.6 and 4.7. While the im2col and reshape to columns kernels remain rel-

atively steady while we vary the number of channels, the number of instructions in

the gemm mm kernel increases by 4.35%. The bulk of the computation for the gemm mm

kernel however, is done in the first kernel, while the second kernel is responsible for

only 13% of the computation, showing the scope for improvement.

4.6.3.7 Simulating the Direct Convolution Method

In the direct convolution implementation, we no longer see differences in the number

of jobs dispatched, however we still see differences in performance. OpenCL work-

group size selection is critical to performance, as it heavily impacts scheduling and

caching on the GPU. [137] shows that auto-tuning the OpenCL work group size pro-

vides mean speedup of 3.79x over the baseline configuration. In our experiments, the

118

Kernel Name No Arithm. Instr. No Mem. Instr.

im2col3x3 nhwc 1,434,378 223,682

reshape to columns 44,183,104 3,615,808

gemm mm 848,055,936 43,521,408

gemm mm 35,335,664 1,813,392

Table 4.7: Arm Compute Library execution for layer 16 of ResNet-50 with 97 output

channels.

Control Register Reads

Control Register Writes

Interrupts
Jobs

0

1

2

92 Channels 93 Channels 96 Channels 97 Channels

Runtime

0

5

10

15

20

Fig. 4.23: Relative System-Level Results for the GEMM implementation using 96 and

97 channels compared to runtimes on Hikey-970 board.

selection of the work group size for the dispatched OpenCL programs is left to the

Arm Compute Library, and is completely invisible to the user. Examining channels

90-93, we see a wide range of reported runtimes, despite the fact that the number of

executed instructions only increases by approximately one percent with each added

channel. However, we observe different work-splitting paradigms between succes-

sive layer sizes. As shown in Table 4.8, the slower instances (91,93), use work group

dimensions 1x1x8, while 90 and 92 channels use 2x1x8 and 4x1x1 respectively. Auto-

tuning of the workloads and examining the effects of scheduling and caching have been

left for future work.

119

ResNet.L0

ResNet.L1

ResNet.L2

ResNet.L3

ResNet.L5

ResNet.L11

ResNet.L12

ResNet.L13

ResNet.L14

ResNet.L15

ResNet.L16

ResNet.L24

ResNet.L25

ResNet.L26

ResNet.L27

ResNet.L28

ResNet.L29

ResNet.L43

ResNet.L44

ResNet.L45

ResNet.L46

ResNet.L47

ResNet.L48

Prune=1

Prune=3

Prune=7

Prune=15

Prune=31

1.9x 0.0x 1.0x 0.0x 1.5x 0.2x 1.2x 0.0x 0.1x 0.1x 0.7x 0.0x 1.2x 0.2x 0.2x 1.1x 1.2x 1.1x 0.4x 0.0x 0.2x 3.1x 0.7x

8.6x 0.2x 1.0x 0.2x 1.5x 1.5x 4.3x 0.0x 0.2x 0.9x 1.0x 0.1x 1.2x 0.2x 0.2x 1.1x 1.2x 1.1x 1.0x 0.2x 3.0x 4.2x 0.9x

8.8x 0.3x 1.2x 0.6x 1.5x 1.5x 5.1x 0.0x 0.2x 0.9x 1.2x 0.8x 1.2x 0.2x 0.2x 1.3x 1.3x 1.3x 1.5x 0.2x 3.0x 4.2x 0.9x

9.8x 0.6x 1.4x 0.8x 1.9x 1.6x 7.8x 0.9x 0.2x 0.9x 1.2x 1.2x 1.2x 0.2x 0.3x 1.3x 1.3x 1.3x 1.5x 0.2x 3.2x 6.5x 1.0x

13.9x 3.8x 1.9x 3.3x 2.9x 2.6x 7.8x 1.1x 0.2x 1.3x 1.5x 1.2x 1.2x 0.3x 0.3x 1.4x 1.3x 1.4x 1.5x 0.2x 3.3x 6.6x 1.0x

2

4

6

8

10

12 M
axim

um
 speedup [x tim

es]

Fig. 4.24: Speedups observed when pruning at different distances within each layer of

ResNet-50 using a TVM library implementation on HiKey 970.

0 100 200 300 400 500
Number of channels

0

100

200

300

400

500

In
f t

im
e

(m
s)

10.5x

Fig. 4.25: Layer 14 of ResNet-50 implemented with TVM OpenCL. Many sizes are

untuned out of the box, showing a large variation due to uninstructed heuristics on

HiKey 970.

120

Number of X Y Z Relative Executed Measured

Channels GPU Instructions HW Time

90 2 1 8 1.0 167.8716

91 1 1 8 1.011 198.0468

92 4 1 1 1.023 168.8311

93 1 1 8 1.034 202.7299

Table 4.8: Arm Compute Library Direct Convolution work group sizes identified using

GPU Simulator vs. Runtime measured on Hikey-970.

4.6.3.8 Discussion

Our exploration highlights some important limitations in deep learning libraries, show-

ing that pre-designed heuristics fail for some arbitrary sizes of neural networks. As

seen, pruning a number of channels can introduce slowdown rather than speedup, thus

hurting performance, so these levels of pruning should be avoided. However, as ex-

pected, other pruning levels will run faster than the initial network configuration, where

the library produces efficient GPU kernels. These optimal configurations can be found

by profiling the kernel execution. These observations are relevant for pruning to the

right number of channels and avoiding those levels that instruct optimizations which

hurt performance. Instead by profiling, we can reduce the search space to the ones with

superior speedup to test for accuracy in the network size-inference accuracy trade-off.

Runtime optimal neural networks can be generated by coupling profiled performance

on device with convolutional inference accuracy of pruned layers to instruct the best

pruning level. We have initiated work in this direction showing that both execution

time and inference accuracy can be considered simultaneously for efficient network

compression to a target device [66], although other research directions in library opti-

mization and hardware design can also be considered.

From this exploration we find that no optimal library exists to outperform across

all neural network layers. Neither Arm Compute Library, nor TVM dominates even

with their auto-tuning enabled. Future solutions integrating optimizations from across

different deep learning libraries could adapt their computation based on network and

layer configuration to improve execution wit hardware aware performance.

121

4.7 Implementation Details

This section dives deeper into the implementation details of the simulation framework,

explaining further what we did, how we did it, and identifying supporting work.

4.7.1 User-Mode Simulation (CPU)

The original development efforts around this work were focused on the Mali Midgard

GPUs, which preceded Bifrost. At the time, the GPU OpenCL driver (and all de-

pendent libraries) was taken from an Odroid-XU3 development board, and the first

simulation infrastructure was developed as a user-mode simulation with dynamically

loaded libraries. For simple programs this can work, however we found this approach

to be unsustainable in the long-term, as it required manually copying libraries from a

real platform into our simulation space every time a library was missing. User-mode

simulation also doesn’t allow us to execute the Linux kernel, into which the GPU

drivers are integrated. As such, we moved to full-system simulation.

4.7.2 GenC Thumb2 Model

The libraries taken from the Odroid-XU3 were compiled for Arm’s Thumb-2 instruc-

tion set, for which there was no GenC model at the time. Naturally, executing the code

from the Odroid-XU3 board in the simulator, required us to implement the Thumb-

2 GenC model, and as such, it is a contribution to this thesis. The Thumb-2 model

added additional instructions to the Thumb instruction set, and also added 32-bit in-

structions, which are interleaved with the 16-bit Thumb instruction set. This required

the addition of additional decode infrastructure able to identify the difference between

16 and 32 bit instructions, which we implemented. Furthermore, we implemented the

Thumb-2 model, which included 30 new instruction formats, and 206 Thumb-2 in-

structions. Encoding such a model, with the necessary improvements in infrastructure

was a multi-month project, the fruits of which can be found at gensim.org/home.

4.7.3 GenC GPU Model

GenC is a flexible, but easy language, and can support the majority of GPU features

in its description. We described the GPU instruction set in GenC, allowing us to auto-

matically generate the execution core. Other components of the GPU, for example job

dispatch, thread grouping, and scheduling, are implemented in C++, similarly to how

122

gensim.org/home

GenSim uses auto-generated instruction set modules, but a hand-coded engine. We

add an additional layer to the auto-generation, as the entire syntax description is auto-

generated from an HTML version of the Bifrost Instruction Set Architecture Reference

Manual. The majority of instruction semantics are also described in GenC, with some

exceptions for features which are not supported by GenC, such as reading program

descriptors. The program descriptors are nested structures of arbitrary length, stored

in memory, which cannot currently be described in GenC. Instruction semantics which

are not described in GenC, are implemented in C++. Future work could include gen-

erating the semantics from a description in the reference manual as well. For this, the

reference manual would need to contain parse-able descriptions of instruction seman-

tics, for example in GenC, or using formal models, as proposed in [138]. GenC support

for additional metadata, such as program descriptors could be a further addition.

4.7.3.1 Indirect Register Access

Bifrost uses indirect register addressing in its instruction set. Instructions are packed

into instruction words, which contain:

• An FMA pipeline instruction.

• An ADD pipeline instruction.

• A register block description,

• An FAU RAM index.

Rather than addressing register directly, each instruction can address one of seven

fields with the register block. These fields in turn specify whether the instruction will

read values from:

• The register file,

• clause constants,

• directly from a previous instruction,

• a NULL value,

• or the FAU RAM.

123

Describing the infrastructure for decoding this flow possible in GenC. The general

purpose register file, FAU RAM, and pipeline registers are all described as part of the

system specification in GenC. Listing 4.1 shows the Bifrost system description. Anno-

tation 1© shows the general purpose register file, 2© shows the FAU RAM definition,

and 3© shows the pipeline registers. The semantics file then defines a helper function

for decoding the register block, which is shown in Listing 4.2. Embedded constants

and the FAU RAM are read-only state that reside in dedicated caches, which are au-

tomatically filled in from the program descriptors. The program descriptors are nested

structures of arbitrary length, which cannot currently be described in GenC. As such,

the decoder for the program descriptors is implemented in C++, and additional in-

trinsics are defined to access the FAU RAM and embedded constants from the GenC

model.

4.7.4 Standalone GPU Hexdump Simulator

For functional verification against the reference simulator (kindly provided by Arm),

we developed a standalone mode for our GPU simulator, where execution is driven

from a hexdump of program memory. The hexdump includes the program shader,

descriptors, and a trace of system register accesses and interrupts. The hexdump format

is used by our reference simulator, making the two simulators binary compatible.

4.7.5 Fuzz Testing

Debugging a simulator is a time consuming and not always rewarding process. Instruc-

tion implementations can sometimes work correctly in 90% of cases, but sporadically,

on certain inputs, may operate incorrectly. In order to support debugging efforts and

improve resilience of the simulator, we developed an instruction fuzzer, which allows

us to use the GPU assembly format to automatically test specific instructions with ei-

ther randomized, or specifically selected inputs.

To use the fuzz testing infrastructure, the user provides the assembly format for the

instruction which is to be fuzz tested. This includes the instruction name, the registers

accessed, and any additional modifiers, which can for example specify the data type.

Next, the driver for the fuzz testing framework matches the provided assembly for-

mat to an assembly template. The assembly template is the simplest possible Bifrost

assembly program, which can capture the instruction execution. The template also en-

sures that the program is sensible, i.e. it provides a harness for providing inputs to a

124

Listing 4.1: GenC Bifrost System Description
1

2 AC_ARCH(bifrost)

3 {

4 // General Purpose Registers

5 ac_regspace(256) 1© The register space defines the register
file, as described by the ISA.6 {

7 bank RB16 (uint16 , 128, 2, 2, 0);

8 bank RB32 (uint32 , 64, 4, 4, 0);

9 bank RB64 (uint64 , 32, 8, 8, 0);

10

11 bank RBF (float, 64, 4, 4, 0);

12 bank RBD (double, 32, 8, 8, 0);

13

14 slot PC (uint32 , 4, 63) PC;

15 slot SP (uint32 , 4, 52) SP;

16 }

17

18 ac_regspace(16384) 2© We define the Bifrost FAU RAM
as a register space.

19 {

20 bank FAU32 (uint32 , 512, 4, 4, 0);

21 bank FAU64 (uint64 , 256, 8, 8, 0);

22 bank FAUF (float, 512, 4, 4, 0);

23 bank FAUD (double, 256, 8, 8, 0);

24 }

25

26 // Pipeline Registers

27 ac_regspace (28) { 3©
Here we define pipeline registers, along
with their shadow copies, so that current

and previous values can be preserved.28 slot PFMA32 (uint32 , 4, 0) PFMA32;

29 slot TFMA32 (uint32 , 4, 8) TFMA32;

30 slot PADD32 (uint32 , 4, 16) PADD32;

31

32 slot PFMA64 (uint64 , 8, 0) PFMA64;

33 slot TFMA64 (uint64 , 8, 8) TFMA64;

34 slot PADD64 (uint64 , 8, 16) PADD64;

35

36 slot PFMAF (float, 4, 0) PFMAF;

37 slot TFMAF (float, 4, 8) TFMAF;

38 slot PADDF (float, 4, 16) PADDF;

39

40 slot PFMAD (double, 8, 0) PFMAD;

41 slot TFMAD (double, 8, 8) TFMAD;

42 slot PADDD (double, 8, 16) PADDD;

43

44 slot SIDEBAND32 (uint32 , 4, 24);

45 }

46

47 ac_regspace(1){ Here we define a runtime flag that
specifies if the PC was written to.48 slot WRITES_PC(uint8 , 1, 0) WRITES_PC;

49 }

50

51 ac_wordsize 32;

52

53 ARCH_CTOR(bifrost) Here we refer to the ISA files,
which describe instruction syntax.54 {

55 ac_isa("bifrost_fma32_isa.ac");

56 ac_isa("bifrost_add32_isa.ac");

57 ac_isa("bifrost_fma64_isa.ac");

58 ac_isa("bifrost_add64_isa.ac");

59 set_endian("little");

60 };

61 };

125

Listing 4.2: GenC Bifrost Instruction Semantics
1

2 execute(fma_64_IMAD_i64)

3 {

4

5

6

Three values are read from registers, FAU RAM, or embedded
constants, as specified by the instruction encoding.

7 uint64 val = read_regblock_fma_01_64_t_u64(inst.access_type_0 , inst.src0_global);

8 uint64 val1 = read_regblock_fma_01_64_t_u64(inst.access_type_1 , inst.src1_global);

9 uint64 val2 = read_regblock_fma_23_64_t_u64(inst.access_type_2 , inst.src2_global);

10

11 uint64 result = (val * val1) + val2; The IMAD operation is performed.
12

13 write_register(TFMA64 , result); The result is written to
a temporary register.

14 }

15

16

17 helper uint64 read_regblock_fma_01_64_t_u64(uint8 access_type , uint32 src)

18 {

19 switch(access_type)

20 {

21 case 0:

22 return read_register_bank(RB64 , src); Read from the register file.
23 case 1:

24 return read_register_bank(RB64 , src);

25 case 3:

26 return (uint64)0; Read zero constant.
27 case 4:

28 {

29 if (src < 7)

30 return fau_local_read_64(src); Read from local memory.
31 else if (src < 128)

32 return ec_read_64(src); Read embedded constant.
33 else

34 return fau_read_64(src); Read from FAU RAM.
35 }

36 case 5:

37 return (uint64)0;

38 case 6:

39 return read_register(PFMA64); Read from temp FMA register.
40 case 7:

41 return read_register(PADD64); \textbf{ Read from temp ADD register.}

42 default:

43 {

44 trap();

45 return (uint64)0;

46 }

47 }

48 return (uint64)-1;

49 }

126

single instruction, and reading the output value. The driver then inserts the provided

assembly instruction into the template, and generates random values to populate the

registers used as arguments to the instruction. The hexdump is then executed using

both our simulator (using the standalone hexdump mode), and the reference simulator,

and results are compared. If the results are identical, the test passes, otherwise, a bug

is recorded. We typically execute the fuzz tester with at least 10 random values, for

each possible configuration of the instruction (which can number in the hundreds for

complex instructions).

4.7.6 GenSim & Captive Integration

The GPU simulator is designed to work coupled with a CPU simulator inside a full

system simulation framework, which enables correct execution of the complete soft-

ware stack, and in turn, a faithful simulation of the GPU. We integrate the GPU both

with the GenSim simulation framework, which uses the ARMV7-A CPU model, and

with Captive, which takes further advantage of host virtualization infrastructure, and

uses the AARCH64 CPU model. The integration is similar across both frameworks,

and the GPU implementation remains the same.

4.7.6.1 GPU Device

The Mali GPU is defined as a device within the simulation framework, similarly to

other, already existing devices, such as timers, memory controllers, interrupt con-

trollers, network and storage devices, and many more. This can be seen in Figure

4.3 shows the definition of the Mali GPU within the Captive VIRT platform specifica-

tion. 4© defines the base address of the GPU’s system registers. 5© defines the GPU

ID, which is stored in a hardware register, and queried by the Bifrost kernel driver. 6©
provides a map of available job slots. Mali uses job slot 2 for OpenCL kernel execu-

tion, which we enable by passing in the value 8, which in binary is an on bit in the

third position, with other bits off (0b100). 7© defines the interrupts. The Mali GPU

uses three interrupts in the generic interrupt controller (GIC) - one for the GPU, one

for the GPU’s Job Controller, and one for the GPU’s MMU. 8© shows how the GPU

is registered in the system. This can easily be related to the device tree used when

booting Linux within our simulation framework. Listing 4.4 shows the entry for the

Mali GPU in the device tree. 9© and 10© show that the GPU’s system registers start at

address 0X8080000 and take up 0X4000 bytes. 11© shows the interrupt assignment for

127

Listing 4.3: Mali Device Definition
1

2 mali = new Mali(0x08080000 , 4© The GPU is registered at the address
specified in the device tree.3 0x60000001 , 5©

This is the GPU ID for the Mali-G71.
4 8, 6©

Number of shader cores.

5 hcfg.gpu_num_host_threads ,

6 3,

7 &gic0 ->get_irq_line (46), // GPU 7©

The interrupts registered as
specified in the device tree.

8 &gic0 ->get_irq_line (44), // JOB

9 &gic0 ->get_irq_line (45), // MMU

10 false, // Dump Shader

Various metric collection options
are exposed to the user.

11 hcfg.gpu_metrics , // Metrics

12 hcfg.gpu_warp_metrics ,

13 hcfg.gpu_append_metrics ,

14 hcfg.gpu_mem_tracing ,

15 hcfg.gpu_icache_tracing ,

16 hcfg.gpu_tracing , // Tracing

17 hcfg.gpu_fast_tracing , // Fast Tracing

18 hcfg.gpu_disasm , // Disasm

19 false, // Logging

20 false, // Special Log

21 false, // Timing

22 false, // Replay

23 stringer); // Stringer device for communicating to host from guest

24 cfg.devices.push_back(GuestDeviceConfiguration(0x08080000 ,*mali)); 8©

Listing 4.4: Mali Linux Device Tree Entry
1

2 gpu@8080000 { 9© The GPU address.
3

4 compatible = "arm,malit602", "arm,malit60x", "arm,malit6xx","arm,mali -midgard";

5 reg = <0x0 0x08080000 0x0 0x4000 >; 10© The GPU physical address space and size.
6 interrupts = <0 44 4 0 45 4 0 46 4>; 11©

GPU->CPU interrupt sources registered in Linux Kernel.
7 interrupt -names = "JOB", "MMU", "GPU";

8 };

the GPU.

4.8 Summary & Conclusion

In this chapter we have presented the first ever fully retargetable full-system simulator

supporting an unmodified software stack for a commercially available, state-of-the-art

mobile GPU, fulfilling the first goal of this thesis:

�3 To develop a simulation framework, which accurately simulates a state-of-the-

art mobile GPU in a full-system context, enabling the use of unmodified vendor-

supplied drivers and JIT compilers, operating in an unmodified target operating

system, and executing unmodified applications.

Its validated instruction-accurate performance model enables more accurate in-

sights into the GPU’s operation than with simulators claiming cycle-accuracy for crudely

128

approximated architectures and non-standard runtime environments. Our full-system

approach will ensure a long-lasting simulator, requiring little maintenance as new

toolchains are released. While we draw on several known simulation techniques, we

have demonstrated the feasibility of accurate full-system CPU/GPU simulation at per-

formance levels better than those of existing simulators with inaccurate supporting

software stacks, fulfilling the second goal of this thesis:

�3 To develop a simulation framework, which supports simulation speeds that en-

able the user to execute complete and complex applications typical of modern

GPU workloads.

Our simulation approach enables us to gain insights into mobile GPU workloads

including system-level transactions between the CPU and GPU - inaccessible using

other GPU simulation approaches. Our simulator can characterize mobile GPU appli-

cations with accuracy unavailable using existing GPU simulators and provides a most

useful tool to researchers and developers alike, fulfilling the third goal for our simula-

tion framework:

�3 To develop a simulation framework, which provides useful performance statis-

tics, without the overhead of cycle-accurate simulation.

However, further improvements can still be made. While the functional simula-

tor can provide some insights regarding application performance, it does not provide

the flexibility desired by architects. Chapter 5 builds and improves on the framework

presented in this chapter, by exploring numerous techniques for fast performance mod-

elling, and developing a configurable, novel trace-based approach, where the model is

tuned against existing hardware. The configurable parameters in the trace-based simu-

lator allow for both architectural and micro-architectural flexibility in developing GPU

designs.

129

130

Chapter 5
Fast Performance Modelling

One of the key uses for simulators is performance modelling, however, as we have al-

ready discussed, (1) simulating large design spaces using detailed simulators is infea-

sible, and (2) simulating modern applications driven by real software stacks is not pos-

sible using existing cycle-accurate simulators. Chapter 4 demonstrated that our full-

system simulation framework already provides useful insights into Arm Mali Bifrost

GPU performance, achieving the third goal of this thesis:

�3 To develop a simulation framework, which provides useful performance statis-

tics, without the overhead of cycle-accurate simulation.

The simulator provides insights into application performance, but it does not pro-

vide the flexibility desired by architects. For example, architects may want to explore

how performance changes if we change the number of cores, or the warp size, but the

functional simulator will tell us very little if we change these configurations. How can

we improve on this goal?

After motivating the requirement for fast modelling in Section 5.1, we examine two

approaches to fast modelling - first machine-learning based modelling in Section 5.2,

followed by trace-driven simulation in Section 5.3, both of which are used in combi-

nation with our full-system simulator presented in Chapter 4.

5.1 Motivation

Fuelled by fierce competition in the mobile phone market, mobile GPUs evolve at

a rapid pace. For example, between 2012 and 2016, Arm developed four different

generations of the Mali Midgard GPU architecture with a total of twelve different

131

Midgard Bifrost Valhall

T720 T760 T820 T830 T860 T880 G71 G72 G31 G51 G52 G76 G57 G77 G68 G78

Warp Size (#) N/A N/A N/A N/A N/A N/A 4 4 4 4 8 8 16 16 16 16

EEs (#) N/A N/A N/A N/A N/A N/A 3 3 2 1 or 3 3 3 1 1 1 1

Cores (#) 1-8 1-16 1-4 1-4 1-16 1-16 1-32 1-32 1-6 1-3 1-6 4-20 1-6 7-16 6 7-24

L1C (KB) 16 16 16 16 16 16 16 16 4 16 16 16 16 16 16 16

L2C (KB) 64-256 256-2048 32-256 32-256 256-2048 256-2048 128-2048 128-2048 32-512 32-512 32-512 512-4096 64-512 512-2048 512-2048 512-2048

Max Workgroup (#) 256 256 256 256 256 256 384 384 512 768 768 768 1024 1024 1024 1024

Year 2014 2014 2015 2015 2015 2016 2016 2017 2018 2016 2018 2018 2019 2019 2020 2020

Variants (#) 3 4 1 3 1 3 3 3 1 2 3 3 1 2 None Yet 1

Table 5.1: Evolution of Arm GPU architectures from Midgard through Bifrost to Val-

hall. While new architectures are introduced every 4-5 years, GPU variants for different

market segments or with feature improvements appear on a bi-annual release cycle.

Common changes include scaling the number of cores, execution engines, warp size,

and cache size.

GPU variants. Between 2016 and 2018, Arm released three generations of the Bifrost

GPU architecture, with six different variants of the GPU, and have since moved onto

the Valhall architecture, of which there are already three variants available. Further

revisions of these GPU architectures have been released by customers of Arm’s GPU

IP, which feature different numbers of cores, core frequencies, and L2 cache sizes. The

evolution of Arm GPUs and all recent variants is described in Table 5.1.

The fast succession of mobile GPU designs dramatically increases the pressure on

the early GPU design and development phase, where key architecture parameters, con-

figuration options and micro-architectural decisions are evaluated before commencing

implementation. GPU design teams are presented with a large number of possible de-

sign options – even before considering the effects of the surrounding components of

the System-on-Chip (SoC) – such as memory and CPU – both of which impact on

GPU performance, and which can also be customized. Traditional detailed simulation

approaches, which require substantial development effort and are slow in their use, are

not sustainable. Instead, what is needed are flexible and scalable tools supporting chip

designers in early GPU Design Space Exploration (DSE), providing approximate yet

reliable estimates of a GPU design under consideration.

Short design cycles require architects to rapidly explore the design space, but by

definition, cycle-accurate simulators, which are the primary tool, contradict this re-

quirement. Furthermore, GPUs operate as accelerators linked to a CPU and a tightly

coupled software stack, however existing detailed GPU simulators are not fast or flexi-

ble enough to execute complete multi-kernel applications with heavy CPU-GPU inter-

132

action. At the same time, programmers must already start developing software drivers,

compilers, and applications, before the designs are finalized, and long before any chip

is eventually fabricated.

Cycle-accurate simulation however, is only a strong requirement when evaluating

micro-architectural improvements. The majority of these designs on the other hand,

are iterative, meaning that the overall design of the GPU remains the same, with new

GPU families only introduced every couple of years. Instructions may be added, the

warp size or core count may be changed, but all members of the same architecture

family will share the majority of the instruction set. We argue that for early, iterative

DSE, the requirement for cycle accuracy can be relaxed, and cycle-accurate models

can be replaced with faster models exhibiting good performance prediction.

5.1.1 The Arm Mali GPU

Between 2014 and 2020, Arm released 16 different GPUs, all with varying architec-

tural and micro-architectural configurations. The variants are presented in Table 5.1.

Each of these have been further configured by Arm’s customers, with at least 34 vari-

ants having been implemented at the time of writing. However, these GPUs all belong

to just three GPU families - Midgard, Bifrost, and Valhall. Within a GPU family, the

architecture remains largely the same, with minor variations to the instruction set, and

some micro-architectural improvements. However, as presented in Section 5.3.4, op-

timizations to the pipeline or memory have far less impact on performance than the

high-level architectural decisions which are at the forefront of designing different vari-

ants of GPUs. These parameters include both configurations that are exposed to the

customer, for example the cache size and number of cores, as well as configurations

decided by Arm, for example the number of execution engines per core and the number

of threads per warp. Simulating these different variants is necessary, however detailed

simulation is not required to predict the performance of different GPU variants within

a single family.

In order to demonstrate potential variations, we turn back to the Arm Bifrost GPU

architecture, and the MALI-G71 GPU, which we use as the baseline for our model.

The architecture features up to 32 unified SCs, and a single logical L2 GPU cache that

is split into several fully coherent physical cache segments. Full system coherency sup-

port and shared main memory tightly couples the GPU and CPU memory systems. For

this, Bifrost features a built-in MMU supporting AArch64 and LPAE address modes.

133

A central Job Manager interacts with the driver stack and orchestrates GPU jobs.

Shader Core (SC)s are blocks consisting of Execution Engine (EE)s–three in the

Mali-G71–and a number of data processing units, linked by a messaging fabric.

The EEs are responsible for executing the programmable shader instructions, each

including an arithmetic processing pipeline as well as all of the required thread state.

The arithmetic units implement a vectorization scheme to improve functional unit

utilization. Threads are grouped into bundles of four (a “quad”), which fill the width

of a 128-bit data processing unit. Further details can be found in Section 2.3.

5.2 Prediction Using Machine Learning

Modern advances in machine learning have clearly shown its value, however there are

significant trade-offs to consider when developing machine learning based models. On

one hand, many machine learning models are available out of the box, and can easily be

used to train a performance model, which then provides rapid performance predictions.

However, even with the availability of models, there is still significant work required

to build a good predictor. Features to be used in the model must be carefully selected,

and vast amounts of data must be collected to achieve accurate predictions without

over-fitting.

Once this effort has been made, and an accurate predictor has been developed, the

information available from the model is still limited - while providing a performance

prediction, the model offers no explanation for the prediction. Furthermore, the pa-

rameters used as weights in the machine learning model are not necessarily easy to

comprehend, and therefore cannot be modified by humans to predict changes in per-

formance when changing the characteristics of the architecture or executing program.

In our efforts to build a machine learning based model, we rely on metrics already

available to us from our functional, full-system simulator as described in Chapter 4.

5.2.1 A Näive Machine Learning Approach

Our initial approach attempts to simply use the outputs of the functional simulation

directly in a linear regression model. We use attributes listed in Table 5.2 without any

pre-processing. We use the pre-packaged linear regression model from WEKA [139],

with 10-fold cross-validation. It is immediately clear however, that this approach does

not give good results, with a Mean Absolute Percent Error (MAPE) of 703%. The

134

equation for predicting runtime is presented in Equation 5.1.

Runtime = 1.3global ls i + 2×10−1nop i − 4×10−1c f i

− 3×102 barriers + 1.4×103div warps + 2×10−1temp reg r

− 1×10−1gr f r − 2×10−1gr f w + 1×10−1const reads

+ 5.6×104ctrl reg w − 1.1×106interrupts − 6.0×105

(5.1)

Attribute

Global Load/Store Instructions

NOP Instructions

Number of Clauses Executed

FAU RAM Reads

Executed Instruction Count

Constant Reads

GRF Reads

Control Flow Instructions

GRF Writes

Arithmetic Instructions

Temporary Register Reads

Local Load/Store Instructions

Barriers Hit

Divergent Warps

Pages Touched

Number of Workgroups

Divergence Percentage

Number of Control Registers Read

Number of Interrupts

Number of Control Registers Written

Table 5.2: Attributes sourced from functional simulation.

5.2.2 Feature Selection

The first step in building a machine learning predictor is to examine the available data.

The functional simulator makes available 20 different parameters characterizing GPU

execution. The graphs in Figure 5.1 show clear correlation between the runtime and

some, but not all of the modelled attributes. The visual perception is reinforced by

numerical values for correlation listed in Table 5.4. The most strongly correlated

attributes are focused around instruction counts and breakdown of instruction types.

135

These correlations reinforce the idea in Chapter 4 that statistics gathered during func-

tional simulation can be used to make valid performance comparisons.

We use the correlation as an attribute selector for our machine learning model,

choosing the five attributes which correlate most strongly with measured runtimes. The

new feature set comprises: Global Load/Store Instructions, NOP Instructions, Number

of Clauses Executed, FAU RAM Reads, and Executed Instruction Count. However,

this approach results in significantly worse performance than the naiv̈e model, with a

MAPE of 1398%.

5.2.3 Principal Component Analysis

Another popular technique used for feature selection and dimensionality reduction is

Principal Component Analysis (PCA). A reduction in the dimensions of the dataset

results in the features presented in Table 5.3. Once again however, the resulting error

using PCA is much higher than the baseline model, at 2296% error.

3×10−1exec i + 3×10−1fau r + 3×10−1grf r + 3×10−1const r + 3×10−1grf w

- 5×10−1ctrl reg w - 5×10−1interrupts - 5×10−1ctrl reg r - 3×10−1avg clause size - 3×10−1div warps

4×10−1div warps + 4×10−1barriers - 3×10−1global ls i + 3×10−1div pct - 3×10−1ctrl reg r

- 7×10−1wkgrps - 5×10−1avg clause size + 4×10−1div pct - 3×10−1pages - 2×10−1temp regs

6×10−1pages + 5×10−1local ls i - 2×10−1avg clause size - 2×10−1wkgrps + 2×10−1cf i

- 6×10−1div pct - 5×10−1wkgrps + 3×10−1 temp regs - 3×10−1local ls i + 3×10−1pages

- 5×10−1div pct - 5×10−1pages + 4×10−1barriers + 3×10−1div warps - 3×10−1temp regs

Table 5.3: Principal components created through Principal

Component Analysis on the full dataset.

5.2.4 Manual Feature Modification

The default outputs from the functional simulator make no reference to any of the

inherent parallelism found in GPUs, exposing only aggregated counts of instruction

types. Instead, we rely on the machine learning model to identify the hidden relation-

ships between the functional simulation output and GPU performance. We can how-

ever, approximate the effect of using multiple parallel units using the information at

hand. To do this, we modify the instruction counts for all different types of instructions

to account for the dynamic workgroup size, and number of concurrent workgroups ex-

ecuting on the GPU. We extract the workgroup size using the functional simulator -

the GPU driver compiles the workgroup dimensions into the job descriptor. Each GPU

core can execute one workgroup at a time, so the number of concurrently executing

136

workgroups is 8. The workgroup size has a significant impact on the performance of

a kernel. A small workgroup size means that the GPU’s parallel capabilities are be-

ing under-utilized. Larger workgroup sizes on the other hand enable the GPU to hide

the latency of long memory operations by scheduling instructions from different warps

during memory stalls. Furthermore, all threads in a workgroup will share the L1 cache,

which is beneficial to applications with strong locality. When modifying the features,

we first calculate the average number of instructions per workgroup, by dividing the

total number of instructions by the workgroup size. We use these manually processed

features in the following experiments.

Total Instruction Latency = #Instructions/#Workgroups∗d#Workgroups/8e (5.2)

5.2.5 An Artificial Neural Network Model

Artificial Neural Networks (ANNs) are inspired by the structure of the human brain,

with multiple input neurons connected to an output via a network of multiple hidden

layers. Each connection applies a weight calculation, finally resulting in the predicted

output from the final layer. Neural networks can handle more complex relationships

between input and prediction than linear regression, as they can handle arbitrarily deep

feature sets and non-linear relationships. For example, when identifying people in an

image, each layer of the neural network can apply to a different feature of the human

face - shape of the head, placement of eyes and nose, or length of hair. Predicting

GPU performance can be similarly complex. The performance of a GPU is a complex

function of a number of hardware and software features, which are not necessarily

linear.

We use the multi-layer perceptron model in WEKA to train and test a neural net-

work for predicting GPU performance. We once again train and test the model with

six different inputs - first with no modification, feature selection using correlation, and

dimensionality reduction using PCA. These experiments are then repeated with manu-

ally modified features to account for the parallelism in the GPU. Error results from the

predictors are presented in Table 5.5.

5.2.6 Conclusions

The best average error we were able to achieve across our benchmarks is 222% error,

training the ANN model using the manually modified feature set. This however, is

137

(a) Arith Inst (b) Global L/S Inst (c) Local L/S Inst (d) CF Inst

(e) NOP Inst (f) Const Reads (g) FAU Acc (h) Temp Reg Reads

(i) GRF Reads (j) GRF Writes (k) Barriers (l) Executed Inst

(m) Exec Clauses (n) Clause Size (o) Divergent Warps (p) Workgroups

(q) Ctrl Reg Reads (r) Ctrl Reg Writes (s) Interrupts (t) Pages Accessed

Fig. 5.1: Correlations between parameters collected using functional simulation and

runtimes measured using hardware.

138

Correlation Attribute

9.5×10−1 Global Load/Store Instructions

9.3×10−1 NOP Instructions

9.0×10−1 Number of Clauses Executed

8.3×10−1 FAU RAM Reads

8.1×10−1 Executed Instruction Count

8.1×10−1 Constant Reads

8.0×10−1 GRF Reads

7.1×10−1 Control Flow Instructions

6.8×10−1 GRF Writes

5.9×10−1 Arithmetic Instructions

3.4×10−1 Temporary Register Reads

1.7×10−1 Local Load/Store Instructions

1.5×10−1 Barriers Hit

1.2×10−1 Divergent Warps

0.9×10−1 Pages Touched

0.5×10−1 Number of Workgroups

0.3×10−1 Divergence Percentage

0.2×10−1 Number of Control Registers Read

0.2×10−1 Number of Interrupts

−0.01×10−1 Number of Control Registers Written

Table 5.4: Correlation of each attribute sourced from functional simulation with mea-

sured runtime.

still too high to make accurate performance predictions for GPUs. Furthermore, this

model provides a performance prediction for a single GPU, without the possibility of

exploring the design space.

There is no single method for identifying how much data is required for a machine

learning algorithm to be effective, without first having the data. We can however, look

at existing data sets which have been used in machine learning. One notable example

is the 2006 Netflix competition [140], where researchers were competing to design the

best collaborative filtering algorithm that would predict user ratings for films. Netflix

released a dataset with over 100 million data points. A prize wasn’t awarded until

2009 [141]. While datasets used in machine learning can be smaller, predicting GPU

performance is a non-linear task with multiple unknown variables, likely requiring a

far larger dataset than we have collected. We identify two main reasons for which our

machine learning model does not perform as well as we would like - the quantity and

quality of the data, and the level of detail modelled by the functional simulator.

In order to overcome the difficulties of collecting a large number of OPENCL ker-

nels, we opted to use DeepSmith, which can automatically generate random collections

139

Inputs LR Prediction Error ANN Prediction Error

Naı̈ve Inputs 706 567

Feature Selection - Corr. 1398 333

Feature Selection - PCA 2296 584

Manually adjust data 452 229

Manually adjust data + Feature Selection - Corr. 2969 335

Manually adjust data + Feature Selection - PCA 3355 634

Table 5.5: Error of Linear Regression and ANN models with different approaches to

feature selection. Error measured using MAPE.

of kernels. At first, this appeared to be a promising approach to quickly generate large

amounts of data, however on closer examination, we realized that the kernels generated

by DeepSmith are not necessarily representative of real OPENCL kernels. For exam-

ple, the kernels could often perform unnecessary computation, which wouldn’t be used

in the output, and would be optimized away by the compiler. In addition, many of the

generated OPENCL kernels are similar to each other, which creates a strong bias for

a specific type of kernel in a machine learning model. Finally, many of the generated

kernels are short, executing just a few instructions. This not only creates a bias for the

machine learning model, but also makes it difficult to discern between kernels, as there

is a lot of noise created by startup and dispatch of the kernel.

We observe that manually modifying the feature set to consider the GPU’s parallel

hardware capacity significantly reduces the prediction error. However, this is the limit

to what we can do with functional features. In reality, the effects of warp scheduling

and cache effects, which are not captured by our model, will have a dramatic impact

on the end-to-end latency of the execution. In order to capture this, we develop a trace-

based approach to GPU performance modelling, described in the following section.

5.3 REASSEMBLE: A Trace Based Approach to Fast Per-
formance Modelling

In this section, we propose a multi-phased approach to simulation, with a fast, full-

system, functional simulation backed by an offline trace-based approach. By con-

sciously limiting the detail of both the functional and trace based models, and tuning

unknown parameters against a ground truth, we are able to make performance predic-

tions that correlate strongly with real results, and are characterized by near-perfect rank

correlation - both valuable metrics for early DSE. We present REASSEMBLE, a trace-

140

based approach with automatic parameter tuning achieving an average performance

two orders of magnitude faster than existing cycle-accurate simulators. Furthermore,

we demonstrate its usefulness in program optimization and iterative hardware design.

The remainder of this section is structured as follows: Section 5.3.1 describes the

design of our system, followed by an extensive evaluation in Section 5.3.2, compari-

son against state-of-the-art in Section 5.3.3, a comprehensive design space exploration

in Section 5.3.4, a critical evaluation of the presented work in Section 5.3.5. In Sec-

tion 5.3.6, we compare our work against recent developments in the field, and conclude

in Section 5.3.7.

5.3.1 Design and Methodology

(a) A performance model is automatically
tuned for the root member of a GPU architec-
ture family, here the Mali Bifrost G71 GPU.

(b) The tuned model from the first phase
can be used to estimate the performance
of GPU variants, e.g. Mali Bifrost G72 by
changing the human-interpretable high-level
parameters(∆s).

Fig. 5.2: REASSEMBLE’s tuning and deployment phases.

Our simulation framework takes a functional first approach, where the user exe-

cutes the target program in a full-system, functional GPU simulator [136]. During ex-

141

ecution, the simulator generates traces, which are then fed into an offline trace-based

simulator. The trace-based simulator parses the traces, simulates the execution, and

provides a performance prediction. Unknown micro-architectural parameters are tuned

using a set of 60 different kernel and input combinations listed in Table 5.8, similarly

to tuning approaches used in [142, 143, 143, 144].

5.3.1.1 Functional Simulation

In order to explore the performance of a real device, with a complete software stack

executing on it, we extend our existing full-system, functional GPU simulator [136],

capable of executing unmodified binaries, with trace generation capabilities. Func-

tional simulation only needs to be executed once for each program - it validates the

functional correctness of the program, and generates the execution trace. This trace

can later be re-used across multiple architectural configurations in the performance

model. We use a similar trace format to [145]. This trace differentiates between mem-

ory, barrier, and arithmetic instructions, captures the PC, memory addresses of reads

and writes, and the associated thread id. It does not however differentiate between

different arithmetic instructions, as most of these will take the same number of cycles

to complete. The trace also does not capture which core the thread is executing on, as

this is a parameter that will be captured and applied when processing the trace.

5.3.1.2 Trace Based Simulator

The trace based simulator processes the trace in accordance with an architectural view

of the GPU, as shown in Figure 5.2b. Critical components of the architecturally visible

micro-architecture are modelled, for example branch divergence and memory coalesc-

ing - however, in order to maintain a fast simulation rate, only the micro-architectural

details that have the most impact, and are common among the majority of GPUs are

selected. Caches are approximated using a re-use distance model [146], and warp

scheduling is implemented using the first-available method. A list of the most sig-

nificant features impacting performance and details of their implementations in the

simulator can be found in Table 5.6. For the baseline model, the remaining micro-ar-

chitectural details are tuned to a hardware platform, depicted in Figure 5.2a. While

these details are not individually modelled, their effects are compounded into metrics

relating to arithmetic and memory latencies. The tuner and trace-driven simulator are

completely decoupled from each other, meaning that the baseline micro-architectural

parameters can also be provided to the trace-driven simulator directly by the user. The

142

traces can be piped directly from the functional simulator to the trace-driven simulator

in order to provide a seamless simulation environment.

5.3.1.3 Tuning Unknown Parameters

Details of the majority of micro-architectural parameters and features in mobile GPUs

are never released by the vendor. Furthermore, debug tools containing access to hard-

ware counters are not readily available to the public. Specifically designed microbench-

marks also do not provide the answers that we need, as is shown in subsection 5.3.5.

These problems pose significant challenges when designing accurate simulators. How-

ever, we find that these details can be successfully aggregated into latency ratios be-

tween the arithmetic pipeline, components of the memory hierarchy, and the remaining

known parameters. We approach this problem by tuning unknown parameters against

existing hardware as the ground truth, where known parameters are taken directly from

vendor specifications.

Our design flow, depicted in Figure 5.2a is as follows. First we obtain results

from execution in hardware, which we use as our ground truth. We then configure our

trace based simulator with publicly available parameters, i.e. the cache organization,

number of cores, number of execution engines. The remaining parameters - arithmetic

latency, L1 cache hit latency, L1 cache miss latency, and L2 cache miss latency, are

unknown for two reasons. First, as already mentioned, micro-architectural details are

not publicly available, and second, because rather than representing an absolute cycle

count, these numbers should be thought of as weights, which impact the model through

their relative ratios. These unknown parameters are tuned by iteratively executing the

traces through the trace based simulator, updating the parameters on each iteration.

Where the user has expert knowledge, initial values or ranges can be provided as a

starting point to reduce the tuning space. The parameters are updated using binary

search, using results from the trace-based simulator as inputs. We tune one parameter

at a time in order to reduce the search space, starting with the parameters with the

largest range. Once all parameters have converged, the entire flow is executed again,

in order to tune all parameters relative to each other.

Initial likely parameter ranges are provided by the user. We use benchmark subset-

ting [147] to both accelerate the training phase, and to avoid over-fitting the model to

the benchmarks.

Once all parameters have converged, the tuned model can be used for software

optimization on the tuned target, or new variants of the GPU design can be explored,

143

Feature Implementation Flexibility

Warp Size
Publicly Available

Variable

Core Count
Execution Engine Count
Cache Organization

Arithmetic Throughput (Ratio)
LearnedMemory Latency (Ratio)

Cache Latencies (Ratios)

Branch Divergence Implemented in Trace Based Simulator

Fixed
Memory Coalescing

Cache Replacement Policy Approximated Using Re-use Distance

Scheduling Approximated with First Available

Table 5.6: Main GPU features implemented, the sources for
their configurations and their flexibility within REASSEMBLE.

Detail of Simulator MAPE

Arithmetic, Memory, Barrier Operations, Warp Divergence 74
+ L1 Re-use Distance Based Cache Model 53
+ L2 Re-use Distance Based Cache Model 44
+ Memory Coalescing 39

Table 5.7: Incrementally adding new features to REASSEM-
BLE’s trace-driven simulator helps us understand the relative
benefits of modelling each additional implemented detail.

by changing any of the variable parameters, as depicted in 5.2b.

5.3.2 Validation

In this section, we demonstrate our validation efforts. First, we evaluate our approach

against existing hardware platforms by tuning our model to the HIKEY-960 develop-

ment board with a MALI-G71 GPU. Then, we predict the performance of a HIKEY-

970 development board with a MALI-G72 GPU and an ODROID-C4 development

board with a MALI-G31 GPU using the tuned model. We continue with a software

optimization case study and present performance results.

5.3.2.1 Validating against hardware

We first validate our approach against the HIKEY-960 development board. To develop

the model, we follow the steps outlined in Figure 5.2a.

We start with the tuning phase by executing a set of benchmarks, listed in Table 5.8,

on the HIKEY-960 development board in order to obtain a hardware reference.

Next, we execute the exact same set of benchmarks in the full-system, functional

GPU simulator, which generates traces during functional execution. We feed the

144

Fig. 5.3: Hikey-960 Block Diagram. Source: [148]

traces through our trace-based simulator with fixed known architectural parameters and

ranges of potential values for the unknown parameters, which we call ∆s. While we

do not explicitly know any of the parameters, we are able to assume the role of the ex-

pert through comparisons to CPU technology. In addition to the GPU, the HIKEY-960

contains four A53 CPU cores, and four A73 CPU cores, as shown in Figure 5.3. We

assume that CPUs and GPUs packaged together in the same System-on-Chip (SoC)

will be implemented using similar technology, and therefore will implement similar

micro-architectural parameters. Furthermore, CPUs and the GPUs sharing the same

memory will experience the same memory access latency. Micro-architectural bench-

marks for the A53 CPU (using 7-zip 1 and sbc-bench 2) revealed latencies of 3ns,

15ns, and 143ns for the L1 Cache, L2 Cache, and memory, respectively, which we use

as starting parameters for the tuner.

We measure error using MAPE, as shown in Equation 5.3, where At represents the

actual value, and Ft the predicted value.

M =
1
n

n

∑
t=1

∣∣∣∣At−Ft

At

∣∣∣∣ (5.3)

The best tuned configurations for minimizing error, maximizing correlation, and

maximizing rank correlation with the HIKEY-960 are listed in Table 5.9. The best

configuration exhibits near perfect correlation and rank correlation.

Using the model tuned against the HIKEY-960 with the MALI-G71 GPU, we enter

the deployment phase and make predictions for the HIKEY-970 with the MALI-G72
17-cpu.com/cpu/Cortex-A53.html
2https://github.com/ThomasKaiser/sbc-bench

145

GPU and the ODROID-C4 with the MALI-G31 GPU. Once again, we don’t explicitly

know the implementation details of the GPUs, so we rely on micro-benchmarks to

provide parameters into our model.

sbc-bench reveals that the ODROID-C4 with the G31 has a significantly improved

memory bandwidth (2.23x) and memory latency (0.6x) over the HIKEY-960. We use

these parameters as scaling factors for memory-related latencies in our model. We fur-

ther make the assumption that an iteration of G71 would have an improved arithmetic

latency, and so we select 0.8 as a scaling factor. We use the same methodology to

derive the parameters for the HIKEY-970 with the G72. The configuration parameters

are presented in Table 5.9, on which the model achieves 45.27% error for the G31 and

43.01% for the G72.

Suite Benchmark Kernels

Polybench-ACC

2mm mm2 kernel 1, mm2 kernel 1
3mm mm3 kernel1
atax atax kernel1,atax kernel2
correlation mean kernel, std kernel, reduce kernel
covariance reduce kernel
gemm gemm
gemver gemver kernel 1, gemver kernel 2, gemver kernel 3
gesummv gesummv

Rodinia backprop bpnn adjust weights ocl

AMD APP SDK 2.5

BlackScholes –
MemoryOptimizations copy1Dfloat4, copy2Dfloat, copy2Dfloat4, NoCoal, Split
MersenneTwister MersenneTwister
SimpleConvolution SimpleConvolution

clBLAS (Tutorial [48]) GEMM1 GEMM1

Table 5.8: Kernels used in testing and tuning the performance
model. We use multiple inputs and shapes where the kernels
allow for it.

Origin Arith.
Latency

Store
Latency L1H L1M L2M MAPE Correlation Rank

Corr.

Micro-benchmark (G71) 2 4 3 15 143 66.48 0.96 0.88

Tuned (G71)
1 1 1 61 123 39.19 0.73 0.85
1 1 1 10 325 204.31 0.92 0.83
1 1 1 122 123 50.81 0.61 0.86

Predicted (G72) 1 1 1 42.0 86.0 43.01 0.82 0.89

Predicted (G31) 0.8 0.44 0.44 26.84 54.12 45.27 0.87 0.93

Table 5.9: Parameters for the MALI-G71 are tuned using
micro-benchmark results as a starting point. The tuned
model is then used to predict the performance of the MALI-
G31 and MALI-G72 with good accuracy.

146

5.3.2.2 Program Modification

REASSEMBLE can effectively be used for program optimization for new targets be-

fore silicon is available, offering not only integration with a full-system simulation

framework indistinguishable from hardware, but also a faster turnaround time than

cycle-accurate simulation. Figure 5.4 demonstrates the effectiveness of using rank

correlation to evaluate program behaviour. Ten different source code changes are ap-

plied to a baseline GEMM program, originating from the Polybench benchmark suite.

When ranking these programs by estimated cycle count, nine cases are within one of

the measured rank, and one is within two. The only significant outlier is modified

version H, which both changes the default data-type from float to float4, and increases

the workgroup size. On its own, changing data from float to float4 (version F) sig-

nificantly increases the runtime, due to the increased amount of memory read and

written. Increasing the workgroup size provides the scheduler for each core a larger

number of warps to schedule. This is helpful in hiding the latency of memory opera-

tions, by scheduling ready warps during memory stalls. Conversely, a larger number

of warps simultaneously reading wide data structures from memory increases memory

contention, possibly up to the point of the Shader Cores stalling. This means that ver-

sion H exhibits both positive (increasing workgroup size) and negative (float4 datatype)

interference. The predicted time for H is 71112ns, while the actual measured time is

93322ns, meaning the error is just 23% - less than the average error of our model. The

main reason H is a significant outlier in the rank estimation is due to a tightly packed

space, where the measured runtimes of A,B,D,H,I,J are all within 15% of each other.

However, we still see that the general trend is correct. Further improvements could

be made to the model in order to reduce this error, for example, training the model

with additional data, adding new micro-architectural features, or explicitly modelling

memory bandwidth.

5.3.3 Comparison Against State-of-the-Art

Now, we compare our simulator against existing state-of-the-art simulators, first cycle-

accurate simulators, and then against fast performance modelling techniques.

Despite the fact that our simulator is only prototyped in pure Python, with no ad-

ditional acceleration, there is a clear performance benefit over existing detailed GPU

simulators. As an interpreted language, Python is slower than compiled languages

such as C++ or Go, and we are confident that an optimized compiled implementation

147

Version Description Measured Measured Predicted Diff.
Cycles Rank Rank

A Baseline GEMM 86 515 2 2 0
B Add arithmetic instructions 92 618 4 5 1
C Barriers in inner loop 138 535 8 8 0
D Barriers in outer loop 90 663 3 4 1
E Poor workgroup shape 65×65×5×5 190 587 9 9 0
F Change data to float4 263 513 10 10 0
G Add large # of arithmetic instructions 1 374 746 11 11 0
H float4 data, larger workgroup size 98 891 6 1 −5
I Change data to int 85 984 1 2 1
J Barrier in outer loop, small workgroups 93 332 5 7 2
K Introduce warp divergence 124 274 7 6 −1

Table 5.10: Performance, rank, and predicted rank for 11 vari-
ations of a GEMM kernel. Predicted rank using REASSEMBLE
closely matches actual. Visualization provided in Figure 5.4.

0 2 4 6 8 10 12
Measured Rank

0

2

4

6

8

10

12

Es
ti

m
at

ed
R

an
k

A

B

C

D

E
F

G

H
I

J
K

Fig. 5.4: Measured vs. predicted rank on variations of GEMM. Details in 5.10

will provide significant further benefits. A performance comparison against existing

simulators is presented in Figure 5.5.

Similarly to a cycle-accurate simulator, our trace-based model can be modified in

order to add additional features, while still relying on the tuned performance model for

the original hardware. In the absence of hardware, tuning can be performed using a

detailed, existing simulator. While this is an added development cost, the performance

benefits of REASSEMBLE are clear, and the cost would be quickly recouped.

Accel-Sim is most similar to our approach, presented in Chapter 5, however there

are notable differences. Accel-Sim supports Nvidia GPUs, while we model embedded,

mobile GPUs and provide a tracing plugin for an Arm MALI GPU simulator. Traces

for Accel-Sim are generated using a binary instrumentation tool called NVBit [97],

which only supports Nvidia GPUs, and requires a physical Nvidia GPU to work. Our

simulator on the other hand uses an existing functional GPU simulator with an in-

terchangeable software stack and functional model, enabling us to explore not only

148

new hardware configurations, but also couple them with new software, and use the

trace based simulator for optimizing code using new software stacks. Furthermore,

we target a different use case than Accel-Sim - while the detail of Accel-Sim allows

for detailed micro-architectural exploration, we trade detail off in exchange for faster

simulation turnaround time. For example, using our model we can quickly explore the

effects of changing the warp size or number of cores, however we have no insight into

performance of registers or interface bottlenecks.

Analytical models provide another performance modelling alternative to cycle-ac-

curate simulation. Existing solutions were discussed in Section 3.4.3. Amongst these,

MDM [104], which takes an interval modelling approach is currently considered state-

of-the-art.

MDM shares many similarities with our own approach, as it also relies on traces

collected using either functional simulation or hardware in the first phase. In the sec-

ond phase however, MDM uses a nearest neighbour algorithm to select a representative

warp. While we acknowledge that this approach can significantly speed up the perfor-

mance prediction, we are also concerned that selecting a representative warp is only

valid for regular applications. Irregular applications, which can execute many differ-

ent branches of code, will not have a representative warp, and as such, we choose to

faithfully model each warp.

In its third phase, MDM runs the traces through a cache simulator, and in its fourth

and final phase, MDM predicts the performance using an analytical model. In our case,

we replace the cache simulator with a re-use distance model, which provides significant

performance benefits over detailed cache modelling. The re-use distance model is a

component of our trace-based simulation, meaning each trace is only processed once

per simulation.

The configurable parameters of our simulator also differ from MDM. Our focus

on high-level parameters such as core counts, number of execution engines per core,

and warp size, as well as micro-architectural ∆ parameters is driven by real-world

observation of the GPU design space, as presented in Table 5.1. As MDM provides

a more detailed view of the memory, we envision using MDM to explicitly represent

some of our ∆ parameters in future work.

The MDM model has not been publicly released, and it models a different architec-

ture to our own, therefore we were not able to directly compare it against REASSEM-

BLE. However, from published literature we know that MDM provides a 65x speedup

over detailed simulation on a single execution, and a 6371x speedup when simulat-

149

100 101 102 103

Simulation Rate (KIPS)

0

10

20

30

40

Er
ro

r
(%

)

Multi2Sim 5.0

GPGPU-Sim 3.x

Accel-Sim(E)

Accel-Sim(T)

MGPUSim

REASSEMBLE

Fig. 5.5: REASSEMBLE provides two orders of magnitude
improvement on simulation rate over detailed simulators with
an accuracy comparable to GPGPUSim-3.x. Average error
for REASSEMBLE was calculated using MAPE. MAPE for
competing simulators were extracted from [83]. Additionally,
gem5-APU with HSAIL and GCN3 exhibits 75% and 42% er-
ror [81], respectively, however the publications do not provide
a simulation rate.

ing 1000 configurations, due to its low recurrent cost. REASSEMBLE falls within this

range, with 2-3 orders of magnitude improvement over existing cycle-accurate simula-

tors. MDM reports a 40% prediction error, which again, is on-par with our approach.

1 2 4 6 8 12 16 20 24 28 32
Cores

0

1

2

3

4

Pr
ed

ic
te

d
Sp

ee
du

p

(a)

1 2 3 4 5 6 7 8
Execution Engines

0

1

2

(b)

4 8 12 16
Warp Size

0

1

2

(c)

64 128
Line Size (B)

0

1

2

(d)

16 20 24 32
L1 Cache Size (KB)

0

1

2

(e)

512 640 768 896 1024
L2 Cache Size (KB)

0

1

2

Pr
ed

ic
te

d
Sp

ee
du

p

(f)

0.5 1.0 1.5 2.0
Relative Arithmetic Latency

0

1

2

(g)

0.67 1.0 2.0
Relative L1 Cache Latency

0

1

2

(h)

0.6 0.8 0.93 1.0
Relative L1 Miss Latency

0

1

2

(i)

0.7 0.8 0.9 1.0
Relative L2 Miss Latency

0

1

2

(j)

Fig. 5.6: MALI architecture characterization using REASSEMBLE. Gray shows mea-
sured baseline, blue shows predicted variants. In isolation, increasing core counts is
most beneficial, while increasing execution engines and warp size are only beneficial in
certain cases. Reducing memory latency is more beneficial than optimizing the arith-
metic pipeline.

150

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G72 <1 <1 <1 <1 1.51∗

1 1 1 1 1 1.35
2 1 0.67 1 0.9 1.41
3 1 0.67 0.8 1 1.37
4 1 0.67 0.8 0.8 1.48
5 1 0.5 1 0.8 1.5
6 1 0.5 0.87 0.8 1.51
7 1 0.5 0.8 0.8 1.53
8 0.5 1 1 1 1.45
9 0.5 1 0.87 1 1.46

10 0.5 0.5 0.8 1 1.5
11 0.5 0.5 0.8 0.9 1.55
12 0.4 0.67 0.87 0.8 1.61
13 0.4 0.67 0.8 0.72 1.69
14 0.3 0.67 0.67 0.72 1.74
15 0.3 0.4 0.8 0.8 1.65

Table 5.11: 12 SCs, 3 EEs, Warp Size 4, Cache Line Size 64

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G72 <1 <1 <1 <1 1.51∗

16 1 1 1 1 1.61
17 1 0.67 1 0.9 1.68
18 1 0.67 0.8 1 1.64
19 1 0.67 0.8 0.8 1.75
20 1 0.5 1 0.8 1.74
21 1 0.5 0.87 0.8 1.76
22 1 0.5 0.8 0.8 1.77
23 0.5 1 1 1 1.73
24 0.5 1 0.87 1 1.76
25 0.5 0.5 0.8 1 1.81
26 0.5 0.5 0.8 0.9 1.87
27 0.4 0.67 0.87 0.8 1.95
28 0.4 0.67 0.8 0.72 2.04
29 0.3 0.67 0.67 0.72 2.09
30 0.3 0.4 0.8 0.8 2.02

Table 5.12: 12 SCs, 3 EEs, Warp Size 4, Cache Line Size 128

5.3.4 Design Space Exploration

In this section, we demonstrate the flexibility of our simulator in exploring different

potential configurations for next generation GPUs, anchored against our trained MALI-

G71 model, and identify configurations that offer better predicted performance to area

trade-offs. Unless otherwise defined, ∆ parameters in this section are presented as

fractions relative to the baseline MALI-G71, whose ∆s are all 1.0.

5.3.4.1 Mali Architecture Characterization

We first consider each exposed component in isolation from any other changes. All

explored configurations are presented in Figure 5.6 as variants of the MALI-G71 GPU,

which we extensively refer to in this section. The data presented will be benchmark

151

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G72 <1 <1 <1 <1 1.51∗

31 1 1 1 1 1.38
32 1 0.67 1 0.9 1.48
33 1 0.67 0.8 1 1.43
34 1 0.67 0.8 0.8 1.57
35 1 0.5 1 0.8 1.56
36 1 0.5 0.87 0.8 1.58
37 1 0.5 0.8 0.9 1.51
38 1 0.5 0.8 0.8 1.59
39 0.5 1 1 1 1.46
40 0.5 1 0.87 1 1.47
41 0.5 0.5 0.8 1 1.51
42 0.5 0.5 0.8 0.9 1.58
43 0.4 0.67 0.87 0.8 1.62
44 0.4 0.67 0.8 0.72 1.69
45 0.3 0.67 0.67 0.72 1.78

Table 5.13: 8 SCs, 5 EEs, Warp Size 4, Cache Line Size 64

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G72 <1 <1 <1 <1 1.51∗

46 1 1 1 1 1.23
47 1 0.67 1 0.9 1.29
48 1 0.67 0.8 1 1.25
49 1 0.67 0.8 0.8 1.37
50 1 0.5 1 0.8 1.38
51 1 0.5 0.87 0.8 1.39
52 1 0.5 0.8 0.9 1.34
53 1 0.5 0.8 0.8 1.4
54 0.5 1 1 1 1.27
55 0.5 1 0.87 1 1.3
56 0.5 0.5 0.8 1 1.34
57 0.5 0.5 0.8 0.9 1.42
58 0.4 0.67 0.87 0.8 1.41
59 0.4 0.67 0.8 0.72 1.47
60 0.3 0.67 0.67 0.72 1.53

* value measured, not predicted

Table 5.14: 8 SCs, 3 EEs, Warp Size 8, Cache Line Size 64

dependent, however we have chosen a representative sample of workloads, and we are

interested in the average performance improvement. The data presented in the tables

is the average of all examined benchmarks.

Shader Cores – Selecting the number of cores is a customization exposed to Arm’s

customers. Currently, variants of the G71 containing 8 and 20 cores are in existence.

In our simulator, we see a clear performance benefit while increasing the number of

cores (Figure 5.6a), and a drop in performance when decreasing the number of cores.

However, the returns are diminishing. Adding 8 cores to the baseline system offers

only 1.83× speedup while decreasing the number of cores down to one drops the per-

formance to 0.15 of the baseline (7× slowdown).

Execution Engines – Scaling the number of execution engines (Figure 5.6b) shows

152

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G31 <1 <1 <1 <1 0.25∗

61 1.0 1.0 1.0 0.8 0.18
62 1.0 1.0 1.0 0.6 0.2
63 1.0 1.0 1.0 0.4 0.23
64 1.0 1.0 0.8 0.6 0.2
65 1.0 1.0 0.8 0.4 0.23
66 1.0 0.67 1.0 0.6 0.2
67 1.0 0.67 1.0 0.4 0.23
68 1.0 0.67 0.8 0.8 0.18
69 1.0 0.67 0.8 0.4 0.23
70 0.5 1.0 1.0 0.8 0.19
71 0.5 1.0 1.0 0.6 0.22
72 0.5 1.0 0.8 0.8 0.19
73 0.5 1.0 0.8 0.4 0.25
74 0.5 0.67 1.0 0.6 0.22
75 0.5 0.67 1.0 0.4 0.25

Table 5.15: 2 SCs, 2 EEs, Warp Size 4, Cache Line Size 64

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G31 <1 <1 <1 <1 0.25∗

76 1.0 1.0 1.0 0.6 0.24
77 1.0 1.0 1.0 0.4 0.27
78 1.0 1.0 0.8 0.6 0.24
79 1.0 0.67 1.0 0.8 0.22
80 1.0 0.67 1.0 0.6 0.24
81 1.0 0.67 0.8 0.8 0.22
82 1.0 0.67 0.8 0.6 0.24
83 0.5 1.0 1.0 0.8 0.24
84 0.5 1.0 1.0 0.6 0.26
85 0.5 1.0 0.8 0.8 0.24
86 0.5 1.0 0.8 0.4 0.3
87 0.5 0.67 1.0 0.8 0.24
88 0.5 0.67 1.0 0.6 0.27
89 0.5 0.67 0.8 0.8 0.24
90 0.5 0.67 0.8 0.6 0.27

Table 5.16: 2 SCs, 2 EEs, Warp Size 4, Cache Line Size 128

a mixed result on the other hand. There is in fact a decrease in performance when

selecting four execution engines, despite this providing additional compute capacity

over the default three. Scaling the number of execution engines is a valid concern

for Arm, and scaling down can be observed in the efficiency-oriented MALI-G31,

with two execution engines, and MALI-G51, with two different shader cores - one

containing a single execution engine and the other containing three.

Warp Size – Scaling the warp size (Figure 5.6c) is similarly affected to scaling

execution engines. While it adds further compute capacity, there is varied benefit. For

example, changing the warp size to 8 provides 1.23× speedup, but increasing further

to a warp size of 12 results in only 1.04× speedup relative to the baseline. This is due

to the fact that in these variants we do not increase the L1 cache size, while increasing

compute significantly, increasing pressure on the L1 cache, and reducing the impact of

153

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G31 <1 <1 <1 <1 0.25∗

91 1.0 1.0 1.0 0.8 0.23
92 1.0 1.0 1.0 0.4 0.29
93 1.0 1.0 0.8 0.6 0.26
94 1.0 0.67 1.0 0.8 0.23
95 1.0 0.67 1.0 0.6 0.26
96 1.0 0.67 1.0 0.4 0.29
97 1.0 0.67 0.8 0.6 0.26
98 0.5 1.0 1.0 0.8 0.25
99 0.5 1.0 1.0 0.4 0.32
100 0.5 1.0 0.8 0.6 0.28
101 0.5 1.0 0.8 0.4 0.32
102 0.5 0.67 1.0 0.8 0.25
103 0.5 0.67 1.0 0.4 0.33
104 0.5 0.67 0.8 0.6 0.29
105 0.5 0.67 0.8 0.4 0.33

Table 5.17: 4 SCs, 1 EE, Warp Size 4, Cache Line Size 64

GPU
Variant

Relative
Arithmetic ∆

Relative
L1C Hit ∆

Relative
L1C Miss ∆

Relative
L2C Miss ∆

Predicted
Speedup

G71 1 1 1 1 –
G31 <1 <1 <1 <1 0.25∗

106 1.0 1.0 1.0 0.8 0.14
107 1.0 1.0 1.0 0.6 0.16
108 1.0 1.0 0.8 0.8 0.15
109 1.0 1.0 0.8 0.6 0.17
110 1.0 1.0 0.8 0.4 0.19
111 1.0 0.67 1.0 0.6 0.17
112 1.0 0.67 1.0 0.4 0.2
113 1.0 0.67 0.8 0.6 0.17
114 1.0 0.67 0.8 0.4 0.2
115 0.5 1.0 1.0 0.6 0.18
116 0.5 1.0 1.0 0.4 0.21
117 0.5 1.0 0.8 0.6 0.18
118 0.5 0.67 1.0 0.6 0.18
119 0.5 0.67 1.0 0.4 0.21
120 0.5 0.67 0.8 0.6 0.18

* value measured, not predicted

Table 5.18: 2 SCs, 1 EE, Warp Size 8, Cache Line Size 64

increasing the warp size. Scaling the warp size has been observed in the MALI-G76

and G52 to eight threads, and again in the new VALHALL architecture, with 16 threads

executing in a warp. The configurations are presented in Table 5.1.

Caches – Scaling both the L1 (Figure 5.6e) and L2 (Figure 5.6f) cache sizes in

isolation, on average, provides no benefit over the baseline cache size. However, we

note with reference to Table 5.1 that L1 cache sizes have remained consistent across

all instances of the MALI architecture, with the exception of the energy-optimized

MALI-G31, and the range for available cache sizes only tends to change every couple

of iterations, as seen in Table 5.1. Furthermore, inspecting the cache sizes on the

G71-MP8 and G71-MP12 using CLINFO, a standard OpenCL-based tool, we can

see that L2 cache sizes are fixed to 512K in both instances. Increasing the cache line

154

size (Figure 5.6d) however, from 64 bytes to 128 bytes in both the L1 and L2 caches

provides a speedup of 1.22×, particularly benefiting applications which operate on

wide data structures.

∆s – The MALI GPU is far less sensitive to changes in the relative ∆s, which

relate to improvements in the micro-architecture, or changes in the clock frequency.

Arithmetic throughput would have to be improved by 50% in exchange for just 1.08×
speedup (Figure 5.6g). Similarly, memory latency would need to be reduced by 30%

for a similar 1.14× speedup (Figure 5.6j).

5.3.4.2 Designing the MALI G72-MP12

This section presents GPU configurations discovered using REASSEMBLE, during the

design of a G72-like GPU. In addition to micro-architectural optimizations to the G72,

we also discover configurations that achieve similar or better performance implement-

ing different architectural characteristics, and as such providing different performance

to area trade-offs.

We consider likely combinations of architectural and micro-architectural parame-

ters. For example, we know from the previous section that increasing the number of

cores is effective, while increasing the number of execution engines or warp size is only

beneficial in certain cases. Furthermore, we know that by modifying the ∆s, we can

model further micro-architectural improvements in addition to architectural changes.

For the purpose of this case study, we place ourselves back in time, in the early

design stages of the MALI-G72. Our only design requirement is a next generation

GPU with 1.5× speedup, and we have the capacity for both architectural and micro-

architectural improvements to the GPU. We carefully design a search space, and using

our tuned model, we make small modifications to the variable parameters.

Due to limited information, we do not explicitly model area in our model, however

of the three architectural parameters that we model - shader cores, execution engines,

and warp, reducing the number of shader cores will have the largest area impact, as

each core includes execution engines, which in turn contain the execution logic repli-

cated for each thread in a warp. Additionally, shader cores contain L1 cache slices. An

overview of the GPU can be found in Section 2.3.

We draw starting points for the design from Figure 5.6. A GPU with no modifica-

tions other than increasing the number of cores from 8 to 12, provides 1.35× speedup

over the G71-MP8. Scaling the number of execution engines per core from three to

five provides similar speedup of 1.38×. Increasing the warp size from four to eight

155

provides 1.23× speedup. Increasing the cache line size from 64 to 128 bytes provides

1.22× speedup. Changes to the micro-architecture, described in our model as changes

in relative ∆s can bridge the gap between the architectural changes to the baseline, and

the target of 1.5× speedup.

Tables 5.11, 5.12, 5.13, 5.14 show the explored configurations in the second phase

of the DSE. For each selected configuration from Figure 5.6, we explore additional

micro-architectural parameters. We scale the relative ∆s, by a fraction of the original

configuration, and also explore various combinations of different relative ∆s.

12 Shader Cores – Table 5.11 shows a configuration with 12 shader cores. A

number of variants fall close to the target of 1.5×. Variant 5 does so, by keeping

the arithmetic and L1C Miss ∆s the same, but reducing the L1C Hit and L2C Miss

∆s to 0.5 and 0.8 respectively. Variant 10 arrives at a similar result, using a different

configuration - by improving arithmetic, L1C Hit, and L1C Miss (0.5,0.5,0.8), but

keeping the L2C Miss ∆ constant at 1.0.

12 Shader Cores + 128 byte cache line – Table 5.12, which additionally modifies

the cache line size, predicts far better performance than the target 1.5×.

Five Execution Engines Per Core– Table 5.13 shows a different approach, and

instead of scaling the number of shader cores, the number of execution engines is

increased. A number of variants fall close to the target of 1.5×, for example variant

37, which reduces the ∆s for L1C Hit, L1C Miss, and L2C Miss to 0.5, 0.8, and 0.9

respectively, in addition to using five execution engines per core. However, variant 36

also stands out here, as the micro-architectural configuration is identical to variant 6

in Table 5.13 - but provides a predicted 1.58x speedup instead of 1.51×. Rather than

increasing the core count by 4 like variant 6, variant 36 instead increases the number of

execution engines, in total adding 16. Even when discounting graphics specific logic,

the shader core contains an L1 cache and significant additional logic - and therefore

area. Accounting for this in addition to performance gains, configurations with five

execution engines provide a more area-efficient design point.

Warp Size 8 – Table 5.14 increases the warp size in combination with multiple vari-

ations of the micro-architecture. The data here shows that making additional changes

to the micro-architecture has a smaller impact when combined with increasing the

warp size, than when changing other architectural parameters. Variant 60 falls close to

the target improvement of 1.5×, however this requires significant improvements to the

micro-architecture, with ∆s of 0.3, 0.67, 0.67, and 0.72 for Arithmetic, L1C Hit, L1C

Miss, and L2C Miss respectively. However, this does not necessarily mean that in-

156

creasing the warp size is a bad idea - on the contrary, it may suggest that other changes

to the architecture may be needed to fully benefit from a larger warp size.

5.3.4.3 Designing the MALI G31-MP2

This section presents GPU configurations discovered using REASSEMBLE, during the

design of a G31-like GPU - focusing on the lower end of the market. We discover

GPUs similar to the G31, however there are also many alternatives which closely

match the performance of the G31, with potentially much lower area.

To lower the cost, such a GPU would require a reduced area at the price of a perfor-

mance reduction. Reduced area can be achieved through reducing the number of cores

or execution engines, as well as by reducing the cache sizes. As this is still an iteration

of the G71, we also include micro-architectural improvements in our DSE, modelled

through our ∆ parameters. Our goal in this study is to explore options for reducing the

area, while maximizing the performance. We draw starting points from Figure 5.6. We

use a measured performance of 0.25 for the MALI-G31, as our performance target.

Results are presented in Tables 5.15, 5.16, 5.17, 5.18.

Two Shader Cores – Reducing the number of cores and execution engines is an

obvious starting point. Table 5.15 presents a configuration of two cores and two exe-

cution engines per core, with different variations of micro-architectural improvement.

Of these, the best performance predicted as 0.25 of the MALI-G71, is achieved by vari-

ant 75, whose arithmetic, L1C Hit, and L2C Miss ∆s are 0.5, 0.67, and 0.4 respectively.

The L1C Miss ∆ remains constant at 1.

Two Shader Cores + 128 byte cache line – Increasing the line size from 64 to 128

provides consistent improvement of around 0.05 (Table 5.16), which has a significantly

smaller impact than making the same change with 12 cores and 3 execution engines

(Table 5.12). We expect that at the L1 level, large cache lines are more beneficial with

a larger number of execution engines, and similarly, at the L2 level are more beneficial

with a larger number of cores, as both of these imply more warps executing in parallel,

and a higher chance of two warps accessing the same cache line.

Four Shader Cores + One Execution Engine Per Core – A GPU with four shader

cores with one execution engine each will have a larger footprint than a GPU with two

shader cores and two execution engines per core, due to each shader core containing

and L1 cache. However, rather than being a poor configuration, it provides a different

point in the design space, as the additional area is compensated by better performance.

Variant 103 in Table 5.17 provides a performance of 0.33 and variant 75 in Table 5.15

157

provides a performance of 0.25, relative to the baseline. 103 is a four core, one exe-

cution engine configuration, and 75 contains two cores, two execution engines. The

micro-architectural ∆s are the same across both.

Warp Size 8 – Table 5.18 presents results of our DSE over configurations contain-

ing two shader cores, one execution engine per core, and 8 threads per warp. In terms

of area, this configuration will be the cheapest of all explored configurations. However,

this results in performance loss, as the relative performance is significantly lower than

for more expensive configurations.

Overall, variants 73 and 75 came closest to the G31 in terms of performance and

area cost. However, configurations in Table 5.16 and (d) provide low area solutions

which match, or nearly match the target performance, demonstrating scope for lower

cost GPUS.

5.3.5 Critical Evaluation

In this section, we critically review our work, explaining some of the unexpected re-

sults, and contrasting against existing approaches.

5.3.5.1 Why aren’t targeted microbenchmarks used to tune specific parameters
of the model?

Fig. 5.7: Results of microbenchmark to identify number of MSHRs on Nvidia GTX470
GPU. Source: [146]

Targeted microbenchmarks are commonly used to identify architectural parame-

ters in GPUs, as can be seen in [146] and [149], where the authors identify the number

of miss status holding registers (MSHRs) on an Nvidia GTX470 GPU and an Nvidia

Titan X GPU, respectively. MSHRs are registers that hold information about outstand-

ing memory accesses, setting a constraint on how many accesses can be in-flight at

158

Fig. 5.8: Results of microbenchmark to identify number of MSHRs on Mali-G71 GPU.

Listing 5.1: OpenCL microbenchmark to identify number of MSHRs per Shader Core.
1
2 __kernel void mshr_mb(__global float *input , __global float *output)
3 {
4 int gid = get_global_id(0);
5 if (gid % 4 == 0) { // One thread in a warp requests memory
6 for (int i = 0; i < NUM_LOADS; i++) {
7 // Calculate load address to new cache line
8 output[gid] = input[16 * (gid + i * NUM_WARPS*4)];
9 }

10 }
11 return;
12 }

any particular moment. Each time memory is requested, an MSHR is filled in with

details of the requested cache line. Once all of the MSHRs are full, no further memory

requests can be made, and the GPU can only process non-memory instructions. If a

memory instruction is encountered, the warp stalls, until an MSHR is freed.

The results of the study in [146] are presented in Figure 5.7. Each warp in the

first 10 warps can make memory requests to 6 separate cache lines before stalling.

Following this, warps 11 and 12 can request 5 cache lines in parallel, warps 13 through

16 can request 4, and so on. The authors interpret this as 64 MSHRs being available

per core, with each warp being able to use 6, however as this information isn’t public,

they acknowledge that this behaviour can be the result of undocumented components

of the GPU.

Similarly to Nvidia GPUs, there is no available information regarding the micro-

architectural details of Mali GPUs. We attempt to identify the number of MSHRs

in a Mali-G71 core in a similar way, by performing a configurable number of non-

overlapping loads without dependences. The kernel we invoke is shown in Listing 5.1,

159

which we have translated directly from the CUDA kernel in [146]. In our experiments,

we measure the latency for up to 16 loads per warp, allowing for potential increases

in the number of MSHRs since the Nvidia GTX470 was released in 2010. Our results

are presented in Figure 5.8, however they do not provide the same clarity that the

microbenchmark executed on an Nvidia GPU does.

Firstly, we see that there is a lot of noise in the data, despite our best efforts to

reduce it (details on reducing noise are in Section 2.7). As the number of warps in-

creases, this error becomes more pronounced, partly obscuring the obvious steps that

we see with the Nvidia data. Secondly, there is no specific trend to follow. With a

single warp, there is a clear increase in latency after 9 loads. With two warps on the

other hand, there are immediate increases in latency after each of the first four loads,

before the latency drops again. Finally, after 11 loads, we see a permanent increase in

latency, however this is still obscured by variation in the data. Increasing the number

of warps to 3 and 4 shows further variation. From this data, it is not possible to identify

the number of MSHRs.

We believe the significant noise in our measurements to be a product of the full-

system environment that the Mali GPU operates in, as well as the lack of established

performance monitoring and debug tools for embedded GPUs. First of all, our exe-

cution environment is significantly different to Nvidia’s. While the Nvidia kernel pre-

sented in [146] accesses dedicated GPU memory, our kernel accesses global memory,

which is shared with CPU, and is subject to system noise. We believe one compo-

nent of the system noise may be cache coherency, however we leave this exploration

as future work. Secondly, there is a significant difference in the availability and ma-

turity of performance measuring and debugging tools between the two GPUs. The

Nvidia benchmark was executed with CUDA, which exposes performance counters to

the user, and allows reading hardware performance counters within the compute ker-

nel source. Reads from the performance counter were inserted around the body of the

kernel, discounting any overhead from kernel dispatch. We, on the other hand, use

OpenCL, which only provides a global timer that measures end to end execution of the

entire kernel. Even if OpenCL did provide additional measurement tools, hardware

counters for the Mali GPU are not publicly available. This study demonstrates that

using microbenchmarks is not a feasible method of determining micro-architectural

parameters of Mali GPUs.

160

5.3.5.2 What causes the predicted performance drop when scaling Execution
Engines and Warp Size in Figure 5.6?

Fig. 5.9: Speedup as we increase the number of Execution Engines per core, and
proportionally increase the size of the L1 and L2 caches.

Execution Engines - Increasing the number of EEs increases the compute capacity

of the GPU. Each EE can process one warp at a time, so increasing the number of EEs

from three to four allows four warps to execute simultaneously instead of three. How-

ever, this also means that additional memory requests can be issued by these warps,

increasing the pressure on caches and memory, and the experiment presented in Fig-

ure 5.6 does not increase the cache sizes. We suspect that cache oversubscription

causes the dips in performance at 4 and at 8 EEs per core. To confirm this, we repeat

the experiment, while simultaneously increasing the size of the L1 and L2 cache, pro-

portionally to the number of execution engines per core. The results of this experiment,

presented in Figure 5.9, show that increasing the cache sizes along with the number of

EEs no longer causes unexpected performance loss at 4 and 8 EEs.

Fig. 5.10: Speedup following increasing the warp size, proportionally increasing the
cache size, and increasing the cache line size to 96 bytes.

161

Fig. 5.11: Speedup following increasing the warp size, proportionally increasing the
cache size, and increasing the cache line size to 128 bytes.

Warp Size - Increasing the warp size also increases the compute capacity of the

GPU, however with different tradeoffs to increasing the number of EEs. Most im-

portantly, all threads in a warp operate in lockstep, meaning that well balanced ap-

plications, in particular compute-bound applications, benefit from larger warp sizes,

while divergent workloads can see severe performance reductions. Larger warp sizes

can also benefit memory-bound applications, as memory requests originating from the

same warp can be merged into a single memory request, provided that all threads are

requesting the same cache line. This means that a warp with a warp with 4 threads will

need to issue four times as many memory requests as a warp with 16 threads - provided

that the cache line size is large enough. This in turn reduces bandwidth pressure on

the lower level caches and main memory. Figure 5.10 and Figure 5.11 show average

speedups across our simulated benchmarks, when increasing the warp size, propor-

tionally increasing the L1 and L2 cache sizes, and increasing the cache line size to 96

bytes and 128 bytes, respectively.

5.3.5.3 How do we ensure that a trace-based GPU simulation can be accurate
when hardware changes can impact the critical path and the trace itself,
especially on irregular workloads?

Our simulation infrastructure is separated into two distinct phases. First, our fast, func-

tional simulator collects execution traces for each thread, which store architecturally

visible events. Next, these traces are fed through a trace-based performance model.

As the traces only record architecturally visible information, they are completely un-

aware of any hardware changes, and our modelled hardware cannot modify their state.

Organization of threads into warps and workgroups, as well as any scheduling are all

performed in the second, trace-based phase of the simulation.

162

5.3.5.4 Would it be possible for the simulation to lead to a suboptimal design
due to all the approximations used? If so, how can users detect/avoid
this?

We do not claim that the simulator will always provide an optimal design, and in

fact, we promote it as an early design space exploration tool, which can help identify

the most promising and filter out the least promising architectural configurations. We

presented an anticipated use case in Section 5.3.4, where we explored the design space

for various iterations of the Mali-G71 GPU, and rather than selecting a single, optimal

point, we selected the most promising candidates. In the next phase of the design

exploration, we would anticipate using a more detailed simulator to investigate these

points further, saving a significant amount of time by not needing to simulate all of the

discarded points in the design space exploration in detail.

5.3.5.5 Where does the remaining error come from, and what can be done to
improve it in future versions of REASSEMBLE?

We are selective in the hardware components that we model, focusing on the compo-

nents that are most likely to impact performance. The remaining error likely comes

from a variety of sources. As we do not have access to performance counters, we

plot the absolute error of each benchmark against metrics obtained from the functional

phase of our simulation in Figure 5.12.

We first look at the size and shape of the dispatched job, by inspecting the number

of workgroups (Figure 5.12a) and the workgroup sizes (Figure 5.12b). We see lit-

tle correlation however, between these features and the absolute error, as benchmarks

with both small and large workgroup sizes, and small and large overall numbers of

workgroups can exhibit error across the spectrum.

We turn our attention instead, to the types of instructions executed (Figure 5.12c).

Once again, there is a lot of variation in the benchmarks that exhibit between 0 and

100% error. We note however, that there is very little variation in the benchmarks that

exhibit more than 100% error. All of these benchmarks execute a very small number

of instructions, compared to all other benchmarks. We do note however, that these

benchmarks contain control flow instructions amongst the executed instructions. We

first hypothesize, that given the presence of control flow instructions, undocumented

effects of warp divergence may be responsible for the poor accuracy. However, when

plotting the percentage of divergent warps against the absolute error (Figure 5.12d),

we see that benchmarks with similar amounts of divergence can exhibit both low and

163

(a) (b)

(c) (d)

Fig. 5.12: We plot the absolute error of REASSEMBLE’s performance prediction across
our benchmarks, relative to features collected during the functional simulation phase.

high error. The presence of control flow instructions however, can also point us in a

different direction. One component, which we do not model, but can have an impact

on kernels with control flow, is the instruction cache.

To demonstrate the impacts of the instruction cache, we develop two microbench-

marks executing the same task of adding two vectors, but with different implemen-

tations. Both use a single thread, the first contains a number of addition operations

sequentially in the source code, while the second adds the same number of elements in

a loop. The results are presented in Figure 5.14, and show that the sequential version

consistently takes 65% longer to execute than the loop version, in the examined range

of 1000 to 1950 elements added.

Other components which we don’t model include memory bandwidth (we assume

no constraints) and dependency tracking. These, along with other features will be

carefully considered along their performance/accuracy tradeoffs in future versions of

REASSEMBLE.

164

Fig. 5.14: We compare two different implementations of vector addition. Both use a
single thread, the first contains a number of addition operations sequentially in the
source code, while the second adds the same number of elements in a loop.

5.3.6 Recent Developments

This section discusses a recent industry-track publication from Nvidia, describing their

efforts in designing NVArchSim, a fast, yet accurate GPU simulator - Need for Speed:

Experiences Building a Trustworthy System-Level GPU Simulator [150].

NVArchSim was developed at Nvidia over the past 7 years, concurrently to the

work described in this thesis, with the support of a large modelling team, and with

access to proprietary information unavailable to others. Coupled with their methodol-

ogy, and perseverance, this has enabled them to develop a simulator that is orders of

magnitude faster than existing, publicly available GPU simulators (see Figure 5.15),

while only exhibiting an average 17% error.

This number is higher than would be expected from an in-house development team,

however the authors provide an interesting insight, that largely matches our own expe-

riences - that complete accuracy is not critical to make good performance predictions.

The authors argue “that overly precise and/or overly slow architectural models hamper

an architect’s ability to evaluate new features within a reasonable time frame, hurting

productivity.” They further claim, that accurate, but slow simulators, are unlikely to be

adopted, because they are not able to simulate large enough workloads, which are of

interest to computer architects. Just as in the case of REASSEMBLE, NVArchSim is not

the only tool in Nvidia’s toolbox, and there are cases when other tools may be more

appropriate. Like us, they provide correlation metrics, and focus on balancing speed

165

and accuracy, only including more detail in their model when a) there is a significant

improvement in accuracy, and b) the improvement in accuracy related to more detailed

modelling does not significantly impact performance.

There are many other similarities in our approaches. First of all, NVArchSim takes

a trace based approach to performance modelling. Their traces are captured using

NVBit [97], similar to Accel-Sim.

Secondly, NVArchSim also uses a CPU model to drive the execution, however their

simulation is not executed in full-system mode - instead, the CPU execution begins on

encountering a specific token in the trace, which then executes a (modified) CUDA

driver. This approach would not be suitable for a mobile GPU, as it does not provide a

method of accurately sharing memory between the CPU and the GPU.

Contrasting to our own approach, the authors of NVArchSim do not tune their

model to existing hardware, instead relying on proprietary information for architectural

and micro-architectural parameters. This is a luxury that few in the field of GPU

simulation have, and one that is inconceivable in the space of mobile GPU simulation.

While there is some public knowledge of Nvidia and AMD GPUs, public information

about Arm, Apple, or Qualcomm GPUs is non-existent.

We also note, that we do not tune every model that we evaluate. We only tune

our model against the Mali-G71 baseline. Following the tuning phase, we are able to

accurately predict the performance Mali-G72 and Mali -G31 GPUs, by just modifying

the exposed parameters.

5.3.6.1 Potential Improvements to REASSEMBLE

Two features in NVArchSim stand out, that could potentially provide significant im-

provements to REASSEMBLE. The first is dependency tracking. The authors express

their surprise at the effectiveness of dependency tracking in both increasing the ac-

curacy, as well as reducing simulation time. While some benefit to accuracy was

expected, the scale of it was not. Furthermore, the performance improvement was

unexpected, and resulted from the significant reduction in memory stalls, which are

costly not only in real hardware, but in simulation as well. While we have included

dependency tracking as a feature in our tracing format, we have not yet implemented it

in REASSEMBLE, anticipating that it would be expensive in terms of simulation time.

It appears however, that this is an interesting case where more accurate modelling also

results in performance improvements.

Another performance improvement implemented in NVArchSim, is the complete

166

Fig. 5.15: NVArchSim is orders of magnitude faster than GPGPUSim, taking at most a
day to execute workloads which can take over a year with GPGPUSim. Figure source:
[150].

elimination of busy-ticking, which can result in significant overhead during simulation.

While our model avoids some busy-ticking by modelling fewer components, it is still

present, and could be further reduced.

5.3.7 Conclusion

While mobile GPUs evolve at a rapid pace with manufacturers releasing between two

and three new designs each year, most of these designs are incremental. Nonetheless,

GPU architects are faced with evaluating large design spaces to identify the next best

configuration, to which current tools, created specifically for validation, are not well-

suited.

In this section, we presented REASSEMBLE, a trace-driven simulator aiming at

early and incremental design space exploration. We demonstrated the usefulness of

the simulator in step by step selection of architectural configurations as well as for

pre-silicon program optimization. Our framework achieves performance at least two

orders of magnitude faster than cycle-accurate simulation, with a tuned error of 39%.

Future work will focus on further bridging the gap between cycle-accurate and fast

simulation, taking advantage of analytical and machine learning models to augment

trace-based simulation, providing further flexibility in the designs, as well as specific

use cases, such as DSE of machine learning and computer vision enabled mobile GPUs

([135, 151]).

167

5.4 Summary

At the start of the chapter, we reflected on the goals and targets of the thesis, in partic-

ular on the third goal:

�3 To develop a simulation framework, which provides useful performance statis-

tics, without the overhead of cycle-accurate simulation.

We recognized that while the simulation framework already provides useful per-

formance insights, further flexibility and detail would significantly improve the frame-

work for computer architects. Furthermore, existing cycle-accurate simulators don’t

provide the necessary infrastructure to execute full, multi-kernel workloads with com-

plete accuracy. In this chapter, we explored machine learning, and trace-driven ap-

proaches to faster simulation with a complete software stack, and presented REASSEM-

BLE, a trace-driven simulator that can be effectively tuned to existing hardware. The

presented framework further improves the already achieved goals of developing a fast

framework, which provides useful performance statistics.

168

Chapter 6
Conclusions

This thesis has identified a number of problems with existing GPU simulation frame-

works, including but not limited to:

1. Existing GPU simulators often model approximated GPUs.

2. Existing GPU simulators often replace, approximate, or ignore significant com-

ponents of the software stack.

3. Existing GPU simulators do not support environments required for simulating

modern applications executing on mobile GPUs.

These problems lead to GPU architects relying on tools that are difficult to use

and maintain, and that lead in inaccurate modelling of GPU execution. We sought to

address these concerns by developing a framework with the following characteristics:

�3 Accurately simulates a state-of-the-art mobile GPU in a full-system context, en-

abling the use of unmodified vendor-supplied drivers and JIT compilers, operat-

ing in an unmodified target operating system, and executing unmodified applica-

tions.

�3 Supports simulation speeds, which enable the user to execute complete and com-

plex applications typical of modern GPU workloads.

�3 Provides useful performance statistics, without the overhead of cycle-accurate

simulation.

Chapter 3 motivates the problems faced in the implementation, development, and

use of existing GPU simulators. Chapter 4 provides a holistic approach for accurate

modelling, ease of development, and future-proofing against any changes to software

stacks. Chapter 4 also presents real life uses cases of the functional GPU simulator for

performance modelling, hi-lighting the importance of full-system simulation. Chap-

ter 5 then explores different methods of fast performance modelling, and presents a

novel, high-level, trace-based simulation approach combined with automatic tuning of

169

unknown parameters.

6.1 Contributions

The underlying goals of this thesis are to improve simulation environments and fast

performance modelling for GPUs. Existing solutions treat GPUs as standalone devices,

and lack the capability to execute the software stack in a fast simulation environment.

These detailed simulators are also too slow to explore large design spaces. This thesis

presents a methodology and tool for fast GPU simulation in a full-system environment,

along with a trace-based early-design space exploration focused performance model.

The explored topics result in improvements over state-of-the-art GPU simulators,

and open up the field for significant future work, presented in Section 6.3.

6.1.1 Full-System GPU Simulation

Existing GPU simulators do not accurately model the software stack, which intro-

duces inaccuracies in the performance prediction, impacts maintenance and usability,

and prevents simulation of modern day applications. Motivated by these issues, we

developed a holistic full-system approach to GPU simulation, which faithfully exe-

cutes the entire software stack using high-speed GPU simulation. Not only does this

enable completely accurate simulation of the final GPU binary, but it also allows for

easy maintenance of the simulation infrastructure, and enables simulation of complete

end-to-end workloads typical of modern day GPU applications. Finally, full-system

simulation is critical when simulating devices which operate using a shared memory

model, as is the case with Arm GPUs.

In addition to completely and accurately executing the entire software stack, our

fast simulation framework is scalable thanks to fast execution of the CPU-side code

driving the GPU applications, which isn’t the case for existing GPU simulators. Fig-

ure 6.1 recaps the performance benefits of our simulation framework relative to Multi2Sim.

Figure 6.2 once again demonstrates the ability to execute multi-kernel applications

with significant CPU and GPU interaction using our simulation framework.

6.1.2 Fast Performance Modelling

This thesis explores a number of fast performance modelling techniques, and due to

the uncovered shortcomings of machine learning based performance modelling tech-

niques, presents a novel fast, trace-driven performance model automatically tuned to

170

25
6x

25
6

25
6x

51
2

51
2x

51
2

51
2x

76
8

76
8x

76
8

10
24

x7
68

10
24

x1
28

0

12
80

x1
28

0

15
36

x1
53

60
50

100
150

3.62 3.86 4.25 4.43 4.98 5.43 7.11 7.66 9.64.76 9.28 18.37 28.02 40.09 51.94
90.79

112.61

160

Sobel Filter Input Dimensions

D
riv

er
R

un
tim

e
(i

n
s)

Our simulator Multi2Sim

Fig. 6.1: A recap of the software stack executing on our DBT CPU simulator scales
exceptionally well relative to Multi2Sim.

Arith
metic

Instr
.

Avg. C
lause Size

CF In
str

.

Consta
nt R

eads

Contro
l R

egs.

GRF Acc.

Global LS In
str

.

Interru
pts

Kernels

Local LS In
str

.

NOP In
str

.

Num. C
lauses

Num. W
orkg

roups

Pages A
cc.

ROM Reads

Temp. R
eg. A

cc.
0.0

0.5

1.0

0.
07

0.
97

0.
08

0.
07

0.
42

0.
06

0.
05

0.
47 0.

59

0.
29

0.
07

0.
07 0.

20

0.
10

0.
07

0.
07

0.
02

0.
98

0.
02

0.
02

0.
27

0.
02

0.
01

0.
35 0.

53

0.
19

0.
02

0.
02 0.

11

0.
03

0.
02

0.
02

Fast3 Express

FPS
0

8

3.
36

7.
72

Fig. 6.2: Simulated SLAMBENCH statistics directly relate to HW performance, aiding
the search for optimal configurations.

existing hardware, REASSEMBLE. This technique accurately predicts GPU perfor-

mance, but also provides flexibility to the user to explore different GPU designs, by

modifying the tuning parameters. The technique was extensively verified by tuning

the performance model against an existing hardware platform, and achieving 39% er-

ror, which is on-par with many existing detailed GPU simulators, with two orders of

magnitude improvement in simulation speed. Following this, the parameters in the

performance model were modified to represent a different, existing GPU within the

same architecture family. The predicted performance error was within a similar range

to the original trained model - 43% error for the predicted Mali-G72 model relative to

real hardware, and 45% for the Mali-G31 relative to real hardware. Figure 6.3 recaps

the performance and accuracy benefits of REASSEMBLE.

The next section introduces improvements and future work relating to both the

full-system simulation framework and to the GPU performance model.

171

100 101 102 103

Simulation Rate (KIPS)

0

10

20

30

40

Er
ro

r
(%

)

Multi2Sim 5.0

GPGPU-Sim 3.x

Accel-Sim(E)

Accel-Sim(T)

MGPUSim

REASSEMBLE

Fig. 6.3: REASSEMBLE provides two orders of magnitude
improvement on simulation rate over detailed simulators with
an accuracy comparable to GPGPUSim-3.x. Average error
was calculated using MAPE. Metrics for remaining simulators
were extracted from [83].

6.2 Current Limitations

The work described in this thesis provides clear benefits over existing solutions, how-

ever we take the time to identify potential limitations of this work.

6.2.1 Significant changes to GPU architectures

The performance model is tuned against an existing hardware implementation, and

theoretically could also be trained against an existing detailed model. However, if the

GPU architectures were to change significantly, both the traced based model and the

tuning infrastructure around it would have to be re-designed.

6.2.2 GenSim and Captive Limitations

Captive is currently optimized to execute Arm code on x86 architectures, with specific

guest components, such as the Arm MMU, mapped onto the host. While this could

be extended to other architectures, MMUs that are significantly different may not map

well. Furthermore, Captive uses GenSim to generate its CPU model, which has certain

limitations. For example, there is limited built-in provision for modelling branch delay

slots, context-sensitive instruction decoding, and out-of-order execution.

Similarly for automatic generation of the GPU simulator from GenSim, we have

already found certain GPU features that cannot easily be described, such as accessing

specific internal descriptors that are not part of the instruction set, and are not accessi-

ble without a known reference to main memory. Future work could look at extending

172

this, but with each iteration of the architecture, new features should be anticipated.

6.2.3 Limitations of the GPU Model

We currently do not model any graphics components of the GPU. Furthermore, as

graphics rendering relies on different hardware, the presented trace-based performance

model is not immediately applicable to graphics workloads. Additionally, sometimes

graphics-specific instructions are used in compute applications, for example for load-

ing images into GPU memory. These compute applications would not execute in our

simulation environment.

The performance model presented in this thesis provides a good accuracy to per-

formance tradeoff, however the model is not capable of detailed micro-architectural

investigation. Instead, our model should be used to identify interesting points in the

design space exploration to explore further using a detailed model. An interesting next

step could be unifying the trace format of our model and an existing detailed GPU

simulator, for example Accel-Sim, which is already capable of trace-based simulation.

This would enable a seamless transition between the first stage preliminary design

space exploration, and the more detailed second stage.

6.2.4 Software Availability Assumptions

While our technique is evaluated using an Arm Mali Bifrost GPU, and an Arm-v8

based CPU, we believe it to be extensible to other architectures. We assume that a

vendor-provided binary runtime is available, in our case the Arm Mali OpenCL driver,

which is available from the Arm website. We also rely on publicly available kernel

driver source code, which we compile into the Linux kernel.

6.3 Future Work

This thesis only scratches the surface of what is possible with full-system simulation

and fast performance modelling, and our hope is that it will provide a stepping stone

for future work. This section outlines the potential next steps to be taken to advance

the state of full-system and GPU simulation, as well as exploration that could be done

using the current state of the simulator.

173

6.3.1 Functional Simulation

6.3.1.1 Graphics Simulation

This thesis has focused on simulating compute functionality. However, graphics simu-

lators are few and far between, and both the academic community and industry would

benefit from the availability of a hardware simulator capable of faithfully modelling

graphics. This full-system approach presented in this thesis paves the way for graph-

ics simulation, by inherently supporting any graphics software stack executing on the

modelled hardware. This work could lead to a research paper on the topic, and is
an enabling technology for further graphics architecture research.

6.3.1.2 Accelerating GPU Simulation

The simulator developed during this thesis is an interpreted, functional simulator.

However, it has largely been developed using the GenSim simulator generation frame-

work, which generates simulators supporting JIT-compilation into host code. Extend-

ing GenSim to fully support GPU execution would open up the possibility to JIT-

compile GPU code to CPU code. Further extensions to GenSim could open up the

possibility to JIT-compile guest GPU code onto a host GPU, while maintaining in-

struction accuracy of the guest GPU. This work could lead to a research paper on
the topic.

6.3.2 Performance Modelling

6.3.2.1 Microbenchmarks and Performance Measurement Techniques for Mobile
GPU

Collecting performance data on mobile GPUs is challenging, due to numerous sources

of noise, and lack of mature debugging and performance measuring tools. A study

identifying all of the sources of noise, and learning how to fully mitigate them would

be of great benefit to the mobile systems community. This work could lead to a
research paper on the topic.

6.3.2.2 Full-System Performance Modelling

This thesis lays the groundwork for full-system simulation of CPU/GPU platforms,

however the performance modelling focuses only on GPU performance modelling. A

natural extension to this would be modelling the performance of the entire system,

including the CPU and the shared memory, as the end-to-end application always con-

tains both the CPU and the GPU. This area is of growing importance as chip designers

174

move towards single-board computers such as the Apple M1. This work could lead to
a research paper on the topic, and is an enabling technology for further systems
research.

6.3.2.3 Flexible Tracing and Trace Simulation

Trace based simulation aims to alleviate the cost of detailed simulation, but trace col-

lection and trace processing can in itself be quite expensive. However, different fea-

tures collected in the trace can have different costs associated with them, and provide

varying improvement to the accuracy. Flexible tracing and trace processing software

could provide the infrastructure to generate and simulate the same trace at multiple

granularities - for example by including or omitting specific features based on the cost

and accuracy they provide. This work could lead to a research paper on the topic,
and is an enabling technology for further architecture research.

6.3.2.4 Analytical Modelling

While the fast modelling techniques in this thesis are focused around trace-driven sim-

ulation, analytical modelling provides an alternate method of performance modelling.

Current analytical models appear to work well on regular applications and architec-

tures. Further work could explore the accuracy of existing analytical models on irregu-

lar workloads, as well as provide extensions and generalizations for tiled architectures,

with parallelism present at numerous granularities. This work could lead to a re-
search paper on the topic, and is an enabling technology for further architecture
research.

6.3.2.5 Automating Performance Modelling

The performance models used in this thesis are manually included. Enabling the user

to describe the performance impacts of different instructions or different GPU features

using the GenSim model would allow for the automation of performance modelling.

This work could lead to a research paper on the topic, and is an enabling technol-
ogy for further architecture research.

6.3.3 Power and Area Modelling

GPU performance must be carefully balanced against power consumption and area,

especially in mobile GPUs, which will have strict thermal limits. The performance

175

model could be extended to include power modelling using existing information al-

ready collected by the functional GPU simulator, such as memory accesses, cache hit

rate, and register usage. Area models can be incorporated at multiple granularities, as

demonstrated in 5.3. This work could lead to a research paper on the topic.

6.3.4 Applications of Functional Simulation and Fast Performance
Modelling

6.3.4.1 Redundancy Analysis

GPUs execute thousands of threads in parallel, which largely execute the same code

across all threads. Often, the only difference results from a single load from the input

buffers, meaning that the vast majority of the executed code is redundant. Redun-

dancies like these can be identified using functional instruction set simulation. The

performance benefits can be modelled using fast performance modelling techniques.

This work could lead to a research paper on the topic.

6.3.4.2 Application-Specific Instruction Set Extensions

A growing number of applications are using GPUs, with Nvidia listing 52 different

categories including, but not limited to, Animation, Data Mining, Bioinformatics, and

Computer Vision. Many of these applications will execute specific patterns of instruc-

tions, or would benefit from specific instructions that do not yet exist. Instruction set

extensions can easily be modelled using our GenSim-driven Full-System Simulation

Framework. The performance benefits of these extensions can be modelled using fast

simulation techniques presented in this thesis. This work could lead to a research
paper on the topic.

6.3.4.3 Optimal Hardware Mapping

Chapter 5.3 presents different hardware configurations achieving the same predicted

performance. A complete design space exploration over the space could reveal multi-

ple candidates for optimal hardware implementations. The performance model could

also be used to explore different mappings of software on the same hardware, includ-

ing re-compilation, making use of idle units, and re-purposing of existing units for new

applications. This work could lead to a PhD thesis.

176

6.4 The Future of Simulation

The future of computer architecture relies heavily on simulation. Simulators are critical

to the initial steps of designing a new architecture, optimizing the micro-architecture,

and developing software before the hardware is available. This thesis introduced an ap-

proach to fast and accurate modelling of systems with multiple components, however,

it only scratches the surface of simulating larger, emerging systems. A standard car

already has dozens of chips inside it. Autonomous cars, which are still in their infancy

have hundreds more - in the future, one could imagine vast networks of autonomous

cars communicating with each other in order to share information in real time and avoid

accidents, rather than relying only on computer vision techniques. Such vast systems,

with potentially millions or billions of nodes will require simulation infrastructure that

has not yet been invented, and will require new and innovative simulation techniques.

Other questions that should be asked is how we’ll simulate completely new and unseen

architectures? The rise of quantum computing has the potential to completely re-invent

certain sub-fields of computer science, where fast simulation will be just as critical as

it is for existing architectures.

6.5 Summary and Final Remarks

This thesis has identified problems with existing GPU simulators and provides a holis-

tic approach for overcoming these problems using a fast, full-system simulation envi-

ronment. Alongside the full-system simulation, this thesis presents fast performance

modelling techniques necessary for advancing modern day architectures and applica-

tions.

177

178

Appendix A
Appendix

179

Fig. A.1: PyPy [152] is a fast, alternative implementation if Python. Instead of re-imple-
menting our simulator in C++ to achieve performance improvements, we measured our
simulator’s performance using PyPy instead of the standard Python interpreter.

Fig. A.2: The parser is a potential bottleneck in our simulator. The parser takes around
10% of the total REASSEMBLE execution time. This could be alleviated by executing the
parser in parallel.

180

Fig. A.3: This figure shows the relative costs of our performance model. The cost of
functional execution without tracing, with tracing, the execution of REASSEMBLE, and
the size of trace files in the current version of REASSEMBLE.

Fig. A.4: REASSEMBLE uses a tracing format similar to [145]. A sample trace is pre-
sented in this figure.

181

Fig. A.5: This figure shows a detailed breakdown of the simulation rate for all of the
simulated benchmarks.

182

Bibliography

[1] Nvidia GPU Applications. https://www.nvidia.com/en-us/data-center/

gpu-accelerated-applications/catalog/. Accessed: 2020-01-16.

[2] K.M. Guttag, T.M. Albers, M.D. Asal, and K.G. Rose. The tms34010: an em-

bedded microprocessor. IEEE Micro, 8(3):39–52, 1988.

[3] Mike Asal, Graham Short, Tom Preston, Richard Simpson, Derek Roskell, and

Karl Guttag. The texas instruments 34010 graphics system processor. IEEE

Computer Graphics and applications, 6(10):24–39, 1986.

[4] George S Carson. Standards pipeline: The OpenGL Specification. ACM SIG-

GRAPH Computer Graphics, 31(2):17–18, 1997.

[5] Glide API. http://glide.sourceforge.net/. Accessed : 2020-01-20.

[6] Michael Macedonia. The gpu enters computing’s mainstream. Computer,

36(10):106–108, 2003.

[7] Erik Lindholm and Stuart Oberman. The nvidia geforce 8800 gpu. In 2007

IEEE Hot Chips 19 Symposium (HCS), pages 1–17. IEEE, 2007.

[8] Ian Buck. Gpu computing with nvidia cuda. In ACM SIGGRAPH 2007 courses,

pages 6–es. 2007.

[9] Aaftab Munshi. The OpenCL Specification. In 2009 IEEE Hot Chips 21 Sym-

posium (HCS), pages 1–314. IEEE, 2009.

[10] Allied Research GPU Markets. https://www.alliedmarketresearch.com/

graphic-processing-unit-market. Accessed: 2020-01-16.

183

https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
http://glide.sourceforge.net/
https://www.alliedmarketresearch.com/graphic-processing-unit-market
https://www.alliedmarketresearch.com/graphic-processing-unit-market

[11] AMD Samsung GPU. https://www.counterpointresearch.com/amd-

ready-shake-mobile-gpu-market/. Accessed: 2020-01-16.

[12] Imagination Apple IP Agreement. https://www.eetimes.com/

imagination-gets-back-into-apple/. Accessed: 2020-01-16.

[13] Imagination GPU of Everything. https://www.eetimes.com/imagination-

unveils-new-128-wide-alu-gpu-of-everything-family/. Accessed:

2020-01-16.

[14] Qualcomm AI. https://www.qualcomm.com/invention/artificial-

intelligence. Accessed: 2020-01-16.

[15] Arm GPU AI. https://www.eetimes.com/arm-gpu-gets-more-ai-

muscle/. Accessed: 2020-01-16.

[16] Thierry Moreau. The Past, Present, and Future of Deep Learning Acceleration

Stacks. Arm Research Summit, 2019.

[17] John Magnus Morton, Kuba Kaszyk, Lu Li, Jiawen Sun, Christophe Dubach,

Michel Steuwer, Murray Cole, and Michael F. P. O’Boyle. Delayrepay: De-

layed execution for kernel fusion in python. In Proceedings of the 16th ACM

SIGPLAN International Symposium on Dynamic Languages, DLS 2020, page

43–56, New York, NY, USA, 2020. Association for Computing Machinery.

[18] Khronos group : Opencl. https://www.khronos.org/opencl/. Accessed:

2021-10-30.

[19] Khronos group : Opencl. https://www.khronos.org/opengl/. Accessed:

2021-10-30.

[20] Khronos group : Sycl. https://www.khronos.org/sycl/. Accessed: 2021-

10-30.

[21] vulkan.org. vulkan.org. Accessed: 2021-10-30.

[22] Github: Khronos group : Vulkan examples. https://github.com/

KhronosGroup/Vulkan-Samples. Accessed: 2021-10-30.

[23] Cuda zone. https://developer.nvidia.com/cuda-zone. Accessed: 2021-

10-30.

184

https://www.counterpointresearch.com/amd-ready-shake-mobile-gpu-market/
https://www.counterpointresearch.com/amd-ready-shake-mobile-gpu-market/
https://www.eetimes.com/imagination-gets-back-into-apple/
https://www.eetimes.com/imagination-gets-back-into-apple/
https://www.eetimes.com/imagination-unveils-new-128-wide-alu-gpu-of-everything-family/
https://www.eetimes.com/imagination-unveils-new-128-wide-alu-gpu-of-everything-family/
https://www.qualcomm.com/invention/artificial-intelligence
https://www.qualcomm.com/invention/artificial-intelligence
https://www.eetimes.com/arm-gpu-gets-more-ai-muscle/
https://www.eetimes.com/arm-gpu-gets-more-ai-muscle/
https://www.khronos.org/opencl/
https://www.khronos.org/opengl/
https://www.khronos.org/sycl/
vulkan.org
https://github.com/KhronosGroup/Vulkan-Samples
https://github.com/KhronosGroup/Vulkan-Samples
https://developer.nvidia.com/cuda-zone

[24] Apple developer metal. https://developer.apple.com/metal/. Accessed:

2021-10-30.

[25] Direct x. https://developer.nvidia.com/directx. Accessed: 2021-10-

30.

[26] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,

Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos

Guestrin, and Arvind Krishnamurthy. Tvm: An automated end-to-end optimiz-

ing compiler for deep learning. In Proceedings of the 13th USENIX Conference

on Operating Systems Design and Implementation, OSDI’18, page 579–594,

USA, 2018. USENIX Association.

[27] Jem Davies. The Bifrost GPU architecture and the ARM Mali-G71 GPU. In

HotChips, August 2016.

[28] The mali gpu: An abstract machine, part 4 - the bifrost shader core.

https://community.arm.com/arm-community-blogs/b/graphics-

gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-

part-4---the-bifrost-shader-core. Accessed: 2021-10-30.

[29] The bifrost quad: Replacing ilp with tlp. https://www.anandtech.com/

show/10375/arm-unveils-bifrost-and-mali-g71/2. Accessed: 2021-10-

30.

[30] Bitesize bifrost 1: The benefits of clause shaders. https://community.

arm.com/arm-community-blogs/b/graphics-gaming-and-vr-

blog/posts/bitesize-bifrost-1-the-benefits-of-clause-shaders.

Accessed: 2021-10-30.

[31] Harry Wagstaff. From High Level Architecture Descriptions to Fast Instruction

Set Simulators. PhD thesis, The University of Edinburgh, School of Informatics,

2015.

[32] Harry Wagstaff, Tom Spink, and Björn Franke. Automated isa branch coverage

analysis and test case generation for retargetable instruction set simulators. In

Proceedings of the 2014 International Conference on Compilers, Architecture

and Synthesis for Embedded Systems, CASES ’14, New York, NY, USA, 2014.

Association for Computing Machinery.

185

https://developer.apple.com/metal/
https://developer.nvidia.com/directx
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-4---the-bifrost-shader-core
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-4---the-bifrost-shader-core
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/the-mali-gpu-an-abstract-machine-part-4---the-bifrost-shader-core
https://www.anandtech.com/show/10375/arm-unveils-bifrost-and-mali-g71/2
https://www.anandtech.com/show/10375/arm-unveils-bifrost-and-mali-g71/2
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/bitesize-bifrost-1-the-benefits-of-clause-shaders
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/bitesize-bifrost-1-the-benefits-of-clause-shaders
https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/bitesize-bifrost-1-the-benefits-of-clause-shaders

[33] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano

Araujo, and Edna Barros. The archc architecture description language and tools.

International Journal of Parallel Programming, 33(5):453–484, 2005.

[34] ARM Holdings. Arm architecture reference manual, armv7-a and armv7-r edi-

tion. Arm Holdings, 2014.

[35] Tom Spink, Harry Wagstaff, Björn Franke, and Nigel Topham. Efficient code

generation in a region-based dynamic binary translator. In Proceedings of the

2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for

Embedded Systems, LCTES ’14, page 3–12, New York, NY, USA, 2014. Asso-

ciation for Computing Machinery.

[36] I. Böhm, B. Franke, and N. Topham. Cycle-accurate performance modelling in

an ultra-fast just-in-time dynamic binary translation instruction set simulator. In

2010 International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation, pages 1–10, 2010.

[37] Tom Spink, Harry Wagstaff, and Björn Franke. A retargetable system-

level {DBT} hypervisor. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), pages 505–520, 2019.

[38] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen

Chang, Nasser Anssari, Geng D. Liu, and Wen-mei W. Hwu. Parboil: A revised

benchmark suite for scientific and commercial throughput computing. Techni-

cal Report IMPACT-12-01, University of Illinois at Urbana-Champaign, March

2012.

[39] Louis-Noël Pouchet et al. Polybench: The polyhedral benchmark suite. URL:

http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

[40] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and

John Cavazos. Auto-tuning a high-level language targeted to gpu codes. In

2012 innovative parallel computing (InPar), pages 1–10. Ieee, 2012.

[41] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.

Multi2Sim: A simulation framework for CPU-GPU computing. In Proceedings

of the 21st International Conference on Parallel Architectures and Compilation

Techniques, PACT ’12, pages 335–344, New York, NY, USA, 2012. ACM.

186

[42] AMD Staff. OpenCL and the AMD APP SDK v2.5 (Multi2Sim Bench), 2014.

[43] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-

neous computing. In Proceedings of the 2009 IEEE International Symposium

on Workload Characterization (IISWC), IISWC ’09, pages 44–54, Washington,

DC, USA, 2009. IEEE Computer Society.

[44] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul

H. J. Kelly, Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle, Graham

Riley, Nigel Topham, and Steve Furber. Introducing SLAMBench, a perfor-

mance and accuracy benchmarking methodology for SLAM. In IEEE Intl. Conf.

on Robotics and Automation (ICRA), May 2015. arXiv:1410.2167.

[45] Bruno Bodin, Harry Wagstaff, Sajad Saecdi, Luigi Nardi, Emanuele Vespa,

John Mawer, Andy Nisbet, Mikel Luján, Steve Furber, Andrew J Davison,

et al. Slambench2: Multi-objective head-to-head benchmarking for visual slam.

In 2018 IEEE International Conference on Robotics and Automation (ICRA),

pages 1–8. IEEE, 2018.

[46] Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff, Govind Sreekar

Shenoy, Murali Krishna Emani, John Mawer, Christos Kotselidis, Andy Nisbet,

Mikel Luján, Björn Franke, Paul H. J. Kelly, and Michael F. P. O’Boyle. Inte-

grating algorithmic parameters into benchmarking and design space exploration

in 3d scene understanding. In Ayal Zaks, Bilha Mendelson, Lawrence Rauch-

werger, and Wen-mei W. Hwu, editors, Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation, PACT 2016, Haifa, Is-

rael, September 11-15, 2016, pages 57–69. ACM, 2016.

[47] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Deep-

smith: Compiler fuzzing through deep learning, 2018.

[48] Cedric Nugteren. myGEMM. https://github.com/cnugteren/myGEMM. GitHub

Repository (accessed 2018-07-30).

[49] Sergey Ioffe and Christian Szegedy. Imagenet classification with deep convo-

lutional neural networks. In International Conference on Machine Learning,

pages 448–456, 2015.

187

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[51] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely connected

convolutional networks. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2261–2269, July 2017.

[52] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for seman-

tic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3431–3440, June 2015.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In Nassir Navab, Joachim

Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image

Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–

241, Cham, 2015. Springer International Publishing.

[54] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(6):1137–1149, June 2017.

[55] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. Deep resid-

ual learning for image recognition. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[56] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convo-

lutional neural networks. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2414–2423, June 2016.

[57] Ying Zhang, Mohammad Pezeshki, Philemon Brakel, Saizheng Zhang, César

Laurent, Yoshua Bengio, and Aaron C. Courville. Towards end-to-end speech

recognition with deep convolutional neural networks. In INTERSPEECH, 2016.

[58] Yoon Kim. Convolutional neural networks for sentence classification. In The

Conference on Empirical Methods in Natural Language Processing, 2014.

[59] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional

neural network for modelling sentences. In In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics, 2014.

188

[60] Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal

network construction with back-propagation. In D. S. Touretzky, editor, Ad-

vances in Neural Information Processing Systems 1, pages 177–185. Morgan-

Kaufmann, 1989.

[61] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149, 2015.

[62] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In Advances in Neural Information

Processing Systems, pages 1135–1143, 2015.

[63] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very

deep neural networks. In International Conference on Computer Vision (ICCV),

volume 2, page 6, 2017.

[64] Jack Turner, José Cano, Valentin Radu, Elliot J Crowley, Michael O’Boyle, and

Amos Storkey. Characterising across-stack optimisations for deep convolutional

neural networks. In Proc IISWC. IEEE, 2018.

[65] Yangqing Jia. Learning semantic image representations at a large scale. PhD

thesis, UC Berkeley, 2014.

[66] Jack Turner, Elliot J Crowley, Valentin Radu, José Cano, Amos Storkey, and

Michael O’Boyle. Distilling with performance enhanced students. CoRR, 2018.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[68] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In International Conference on Learning Repre-

sentations, 2015.

[69] Sylvain Collange, David Defour, and David Parello. Barra, a parallel functional

GPGPU simulator. In 18th Annual IEEE/ACM International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Sys-

tems, MASCOTS, 2010.

189

[70] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.

Aamodt. Analyzing CUDA workloads using a detailed GPU simulator. In IEEE

International Symposium on Performance Analysis of Systems and Software,

ISPASS 2009, April 26-28, 2009, Boston, Massachusetts, USA, Proceedings,

pages 163–174. IEEE Computer Society, 2009.

[71] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. gem5-gpu:

A heterogeneous CPU-GPU simulator. IEEE Computer Architecture Letters,

14(1):34–36, Jan.-June 2015.

[72] Xun Gong, Rafael Ubal, and David R. Kaeli. Multi2Sim Kepler: a detailed

architectural GPU simulator. In Proceedings of International Symposium on

Performance Analysis of Systems and Software, ISPASS. IEEE, April 2017.

[73] V. M. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and Espasa E. ATTILA:

a cycle-level execution-driven simulator for modern GPU architectures. In Pro-

ceedings of IEEE International Symposium on Performance Analysis of Systems

and Software, ISPASS-2006, pages 231–241. IEEE, March 2006.

[74] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. A characterization

and analysis of PTX kernels. In Proceedings of the 2009 IEEE International

Symposium on Workload Characterization (IISWC), IISWC ’09, pages 3–12,

Washington, DC, USA, 2009. IEEE Computer Society.

[75] Jiun-Hung Ding, Wei-Chung Hsu, BaiCheng Jeng, Shih-Hao Hung, and Yeh-

Ching Chung. HSAemu - a full system emulator for HSA platforms. 2014

International Conference on Hardware/Software Codesign and System Synthe-

sis (CODES+ISSS), pages 1–10, 2014.

[76] Geetika Malhotra, Seep Goel, and Smruti R. Sarangi. GpuTejas: A parallel

simulator for GPU architectures. In 21st International Conference on High Per-

formance Computing, HiPC 2014, Goa, India, December 17-20, 2014, pages

1–10. IEEE Computer Society, 2014.

[77] H.Kim, J.Lee, N.B.Lakshminarayana, J.Sim, J.Lim, and T.Pho. MacSim: A

CPU-GPU heterogeneous simulation framework. Technical report, Georgia In-

stitute of Technology, 2012.

190

[78] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis.

TEAPOT: A toolset for evaluating performance, power and image quality on

mobile graphics systems. In Proceedings of the 27th International ACM Con-

ference on International Conference on Supercomputing, ICS ’13, pages 37–46,

New York, NY, USA, 2013. ACM.

[79] Po-Han Wang, Gen-Hong Liu, Jen-Chieh Yeh, Tse-Min Chen, Hsu-Yao Huang,

Chia-Lin Yang, Shih-Lien Liu, and James Greensky. Full system simulation

framework for integrated CPU/GPU architecture. In Technical Papers of 2014

International Symposium on VLSI Design, Automation and Test, VLSI-DAT

2014, Hsinchu, Taiwan, April 28-30, 2014, pages 1–4. IEEE, 2014.

[80] Nachiappan Chidambaram Nachiappan, Praveen Yedlapalli, Niranjan

Soundararajan, Mahmut Taylan Kandemir, Anand Sivasubramaniam, and

Chita R. Das. GemDroid: A framework to evaluate mobile platforms. In

The 2014 ACM International Conference on Measurement and Modeling of

Computer Systems, SIGMETRICS ’14, pages 355–366, New York, NY, USA,

2014. ACM.

[81] Anthony Gutierrez, Bradford Beckmann, Alexandru Dutu, Joseph Gross, John

Kalamatianos, Onur Kayiran, Michael LeBeane, Matthew Poremba, Brandon

Potter, Sooraj Puthoor, Mark Wyse, Jieming Yin, Akshay Jain, Tim Rogers,

Xianwei Zhang, and Matt Sinclair. Lost in abstraction: Pitfalls of analyzing

GPUs at the intermediate language level. In Proceedings of The 24th IEEE

International Symposium on High-Performance Computer Architecture, HPCA,

February 2018.

[82] Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane

Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.

Mgpusim: Enabling multi-gpu performance modeling and optimization. In Pro-

ceedings of the 46th International Symposium on Computer Architecture, pages

197–209, 2019.

[83] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers. Accel-sim: An extensible

simulation framework for validated gpu modeling. In 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA), pages 473–

486, 2020.

191

[84] Tor M Aamodt, Wilson WL Fung, Inderpreet Singh, Ahmed El-Shafiey, Jimmy

Kwa, Tayler Hetherington, Ayub Gubran, Andrew Boktor, Tim Rogers, Ali

Bakhoda, et al. Gpgpu-sim 3. x manual, 2012.

[85] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.

Multi2sim: a simulation framework for cpu-gpu computing. In 2012 21st In-

ternational Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 335–344. IEEE, 2012.

[86] Thomas Spink. Efficient cross-architecture hardware virtualisation. PhD thesis,

The University of Edinburgh, School of Informatics, 2017.

[87] Arm. Fast Models. https://developer.arm.com/tools-and-software/

simulation-models/fast-models. Accessed : 2020-01-20.

[88] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proceedings

of the Annual Conference on USENIX Annual Technical Conference, ATEC ’05,

pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

[89] Android. Android emulator. https://developer.android.com/studio/

run/emulator. Accessed : 2020-01-20.

[90] Sangpil Lee and Won Woo Ro. Parallel GPU architecture simulation framework

exploiting work allocation unit parallelism. In 2012 IEEE International Sympo-

sium on Performance Analysis of Systems & Software, Austin, TX, USA, 21-23

April, 2013, ISPASS, pages 107–117. IEEE, 2013.

[91] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, So-

mayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH computer archi-

tecture news, 39(2):1–7, 2011.

[92] Rene De Jong and Andreas Sandberg. Nomali: Simulating a realistic graphics

driver stack using a stub gpu. In 2016 IEEE International Symposium on Per-

formance Analysis of Systems and Software (ISPASS), pages 255–262. IEEE,

2016.

[93] Synopsys. Designware. https://www.synopsys.com/designware-

ip/processor-solutions/arc-development-tools/simulation-

tools.html. Accessed : 2020-01-20.

192

https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://www.synopsys.com/designware-ip/processor-solutions/arc-development-tools/simulation-tools.html
https://www.synopsys.com/designware-ip/processor-solutions/arc-development-tools/simulation-tools.html
https://www.synopsys.com/designware-ip/processor-solutions/arc-development-tools/simulation-tools.html

[94] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic

warp formation and scheduling for efficient GPU control flow. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 40, pages 407–420, Washington, DC, USA, 2007. IEEE Computer So-

ciety.

[95] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and

Christophe Dubach. High performance stencil code generation with lift. In

Proceedings of the 2018 International Symposium on Code Generation and Op-

timization, pages 100–112. ACM, 2018.

[96] Mattew Poremba, Alexandru Dutu, Gaurav Jain, Pouya Fotouhi, Michael Boyer,

and Bradford M. Beckmann. Towards full-system discrete gpu simulation.

[97] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit:

A dynamic binary instrumentation framework for nvidia gpus. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 372–383, 2019.

[98] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kalamatianos,

O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair, M. Wyse, J. Yin,

X. Zhang, A. Jain, and T. Rogers. Lost in abstraction: Pitfalls of analyzing gpus

at the intermediate language level. In 2018 IEEE International Symposium on

High Performance Computer Architecture (HPCA), pages 608–619, 2018.

[99] Prasun Gera, Hyojong Kim, Hyesoon Kim, Sunpyo Hong, Vinod George, and

Chi-Keung CK Luk. Performance characterisation and simulation of intel’s inte-

grated gpu architecture. In 2018 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 139–148. IEEE, 2018.

[100] Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk,

Sohaib Sajid, and Martha A Kim. Fast computational gpu design with gt-pin.

In 2015 IEEE International Symposium on Workload Characterization, pages

76–86. IEEE, 2015.

[101] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the

efficiency of gpu algorithms for matrix-matrix multiplication. In Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 133–137, 2004.

193

[102] Naga K Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha. A memory

model for scientific algorithms on graphics processors. In Proceedings of the

2006 ACM/IEEE conference on Supercomputing, pages 89–es, 2006.

[103] Weiguo Liu, Wolfgang Muller-Wittig, and Bertil Schmidt. Performance predic-

tions for general-purpose computation on gpus. In 2007 International Confer-

ence on Parallel Processing (ICPP 2007), pages 50–50. IEEE, 2007.

[104] L. Wang, M. Jahre, A. Adileho, and L. Eeckhout. Mdm: The gpu memory

divergence model. In 2020 53rd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 1009–1021, 2020.

[105] Lu Wang, Magnus Jahre, Almutaz Adileh, and Lieven Eeckhout. Mdm: The

gpu memory divergence model. Mars, 13(6):0, 2013.

[106] Jen-Cheng Huang, Joo Hwan Lee, Hyesoon Kim, and Hsien-Hsin S Lee.

Gpumech: Gpu performance modeling technique based on interval analysis. In

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 268–279. IEEE, 2014.

[107] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture

with memory-level and thread-level parallelism awareness. In Proceedings of

the 36th annual international symposium on Computer architecture, pages 152–

163, 2009.

[108] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance

model. In Proceedings of the 37th annual international symposium on Computer

architecture, pages 280–289, 2010.

[109] Jiayuan Meng, Vitali A Morozov, Kalyan Kumaran, Venkatram Vishwanath,

and Thomas D Uram. Grophecy: Gpu performance projection from cpu code

skeletons. In SC’11: Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE,

2011.

[110] Cheng Luo and Reiji Suda. A performance and energy consumption analytical

model for gpu. In 2011 IEEE ninth international conference on dependable,

autonomic and secure computing, pages 658–665. IEEE, 2011.

194

[111] Yao Zhang and John D Owens. A quantitative performance analysis model for

gpu architectures. In 2011 IEEE 17th international symposium on high perfor-

mance computer architecture, pages 382–393. IEEE, 2011.

[112] Junjie Lai and André Seznec. Break down gpu execution time with an analyt-

ical method. In Proceedings of the 2012 Workshop on Rapid Simulation and

Performance Evaluation: Methods and Tools, pages 33–39, 2012.

[113] Shane Ryoo, Christopher I Rodrigues, Sam S Stone, Sara S Baghsorkhi, Sain-

Zee Ueng, John A Stratton, and Wen-mei W Hwu. Program optimization space

pruning for a multithreaded gpu. In Proceedings of the 6th annual IEEE/ACM

international symposium on Code generation and optimization, pages 195–204,

2008.

[114] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and

Wen-mei W. Hwu. An adaptive performance modeling tool for gpu architec-

tures. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’10, page 105–114, New York, NY,

USA, 2010. Association for Computing Machinery.

[115] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program depen-

dence graph and its use in optimization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[116] Elias Konstantinidis and Yiannis Cotronis. A practical performance model

for compute and memory bound gpu kernels. In 2015 23rd Euromicro Inter-

national Conference on Parallel, Distributed, and Network-Based Processing,

pages 651–658. IEEE, 2015.

[117] Sander De Pestel, Sam Van den Steen, Shoaib Akram, and Lieven Eeckhout.

Rppm: Rapid performance prediction of multithreaded workloads on multicore

processors. In 2019 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 257–267. IEEE, 2019.

[118] Björn Franke. Fast cycle-approximate instruction set simulation. In Proceed-

ings of the 11th international workshop on Software & compilers for embedded

systems, pages 69–78, 2008.

195

[119] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and Satoshi

Matsuoka. Statistical power modeling of gpu kernels using performance coun-

ters. In International conference on green computing, pages 115–122. IEEE,

2010.

[120] Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. Statistical

gpu power analysis using tree-based methods. In 2011 International Green

Computing Conference and Workshops, pages 1–6. IEEE, 2011.

[121] Wilson WL Fung, Ivan Sham, George Yuan, and Tor M Aamodt. Dynamic warp

formation and scheduling for efficient gpu control flow. In Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, pages

407–420. IEEE Computer Society, 2007.

[122] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. Performance and power analysis of

ati gpu: A statistical approach. In 2011 IEEE Sixth International Conference on

Networking, Architecture, and Storage, pages 149–158. IEEE, 2011.

[123] Shuaiwen Song and Kirk Cameron. System-level power-performance efficiency

modeling for emergent gpu architectures. In Proceedings of the 21st interna-

tional conference on Parallel architectures and compilation techniques, pages

473–474, 2012.

[124] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. A simplified

and accurate model of power-performance efficiency on emergent gpu architec-

tures. In 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing, pages 673–686. IEEE, 2013.

[125] Michael Boyer, Jiayuan Meng, and Kalyan Kumaran. Improving gpu perfor-

mance prediction with data transfer modeling. In 2013 IEEE International Sym-

posium on Parallel & Distributed Processing, Workshops and Phd Forum, pages

1097–1106. IEEE, 2013.

[126] Ali Karami, Sayyed Ali Mirsoleimani, and Farshad Khunjush. A statistical per-

formance prediction model for opencl kernels on nvidia gpus. In The 17th CSI

International Symposium on Computer Architecture & Digital Systems (CADS

2013), pages 15–22. IEEE, 2013.

196

[127] Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu performance

from cpu runs using machine learning. In 2014 IEEE 26th International Sympo-

sium on Computer Architecture and High Performance Computing, pages 254–

261. IEEE, 2014.

[128] Newsha Ardalani, Clint Lestourgeon, Karthikeyan Sankaralingam, and Xiaojin

Zhu. Cross-architecture performance prediction (xapp) using cpu code to pre-

dict gpu performance. In Proceedings of the 48th International Symposium on

Microarchitecture, pages 725–737, 2015.

[129] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cris-

tiano Araujo, and Edna Barros. The ArchC architecture description language

and tools. International Journal of Parallel Programming, 33(5):453–484, Oct

2005.

[130] Harry Wagstaff, Miles Gould, Björn Franke, and Nigel Topham. Early partial

evaluation in a JIT-compiled, retargetable instruction set simulator generated

from a high-level architecture description. In Proceedings of the 50th Annual

Design Automation Conference, DAC ’13, pages 21:1–21:6, New York, NY,

USA, 2013. ACM.

[131] Martin Kristien, Tom Spink, Brian Campbell, Susmit Sarkar, Ian Stark, Björn

Franke, Igor Böhm, and Nigel Topham. Fast and correct load-link/store-

conditional instruction handling in dbt systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 39(11):3544–3554,

2020.

[132] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach. Per-

formance portable gpu code generation for matrix multiplication. In Proceed-

ings of the 9th Annual Workshop on General Purpose Processing using Graph-

ics Processing Unit, pages 22–31. ACM, 2016.

[133] Cedric Nugteren. Clblast: A tuned opencl blas library. arXiv preprint

arXiv:1705.05249, 2017.

[134] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarung-

nirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies,

Parthasarathy Ranganathan, and Onur Mutlu. Google workloads for consumer

197

devices: Mitigating data movement bottlenecks. In Proceedings of the Twenty-

Third International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’18, pages 316–331, New York, NY,

USA, 2018. ACM.

[135] V. Radu, K. Kaszyk, Y. Wen, J. Turner, J. Cano, E. J. Crowley, B. Franke,

A. Storkey, and M. O’Boyle. Performance aware convolutional neural network

channel pruning for embedded gpus. In 2019 IEEE International Symposium on

Workload Characterization (IISWC), pages 24–34, 2019.

[136] Kuba Kaszyk, Harry Wagstaff, Tom Spink, Björn Franke, Mike O’Boyle, Bruno

Bodin, and Henrik Uhrenholt. Full-system simulation of mobile cpu/gpu plat-

forms. In 2019 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 68–78. IEEE, 2019.

[137] Chris Cummins, Pavlos Petoumenos, Michel Steuwer, and Hugh Leather. Au-

totuning opencl workgroup size for stencil patterns. CoRR, abs/1511.02490,

2015.

[138] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon

French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Pe-

ter Sewell. ISA semantics for armv8-a, risc-v, and CHERI-MIPS. Proc. ACM

Program. Lang., 3(POPL):71:1–71:31, 2019.

[139] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H Witten. The weka data mining software: an update. ACM

SIGKDD explorations newsletter, 11(1):10–18, 2009.

[140] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD

cup and workshop, volume 2007, page 35. Citeseer, 2007.

[141] Andreas Töscher, Michael Jahrer, and Robert M Bell. The bigchaos solution to

the netflix grand prize. Netflix prize documentation, pages 1–52, 2009.

[142] A. Adileh, C. González-Álvarez, J. Miguel De Haro Ruiz, and L. Eeckhout.

Racing to hardware-validated simulation. In 2019 IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages 58–67,

2019.

198

[143] Nicolas Derumigny, Fabian Gruber, Théophile Bastian, Christophe Guillon,

Louis-Noel Pouchet, and Fabrice Rastello. From micro-ops to abstract re-

sources: constructing a simpler cpu performance model through microbench-

marking, 2020.

[144] Anthony Gutierrez, Joseph Pusdesris, Ronald G Dreslinski, Trevor Mudge,

Chander Sudanthi, Christopher D Emmons, Mitchell Hayenga, and Nigel Paver.

Sources of error in full-system simulation. In 2014 IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages 13–22.

IEEE, 2014.

[145] S. Pal, K. Kaszyk, S. Feng, B. Franke, M. Cole, M. O’Boyle, T. Mudge, and

R. G. Dreslinski. Hetsim: Simulating large-scale heterogeneous systems using a

trace-driven, synchronization and dependency-aware framework. In 2020 IEEE

International Symposium on Workload Characterization (IISWC), pages 13–24,

2020.

[146] Cedric Nugteren, Gert-Jan Van den Braak, Henk Corporaal, and Henri Bal. A

detailed gpu cache model based on reuse distance theory. In 2014 IEEE 20th In-

ternational Symposium on High Performance Computer Architecture (HPCA),

pages 37–48. IEEE, 2014.

[147] Vignesh Adhinarayanan and Wu-chun Feng. An automated framework for char-

acterizing and subsetting gpgpu workloads. In 2016 IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages 307–

317. IEEE, 2016.

[148] Hikey 960 soc reference manual. https://github.com/96boards/

documentation/blob/master/consumer/hikey/hikey960/hardware-

docs/HiKey960_SoC_Reference_Manual.pdf. Accessed: 2021-11-02.

[149] Mahmoud Khairy, Akshay Jain, Tor M. Aamodt, and Timothy G. Rogers. Ex-

ploring modern GPU memory system design challenges through accurate mod-

eling. CoRR, abs/1810.07269, 2018.

[150] Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin, Yaosheng Fu, Niladrish

Chatterjee, Nan Jiang, and David Nellans. Need for speed: Experiences build-

ing a trustworthy system-level gpu simulator. In 2021 IEEE 27th International

199

https://github.com/96boards/documentation/blob/master/consumer/hikey/hikey960/hardware-docs/HiKey960_SoC_Reference_Manual.pdf
https://github.com/96boards/documentation/blob/master/consumer/hikey/hikey960/hardware-docs/HiKey960_SoC_Reference_Manual.pdf
https://github.com/96boards/documentation/blob/master/consumer/hikey/hikey960/hardware-docs/HiKey960_SoC_Reference_Manual.pdf

Symposium on High Performance Computer Architecture (HPCA), pages 868–

880. IEEE, 2021.

[151] S. Saeedi, B. Bodin, H. Wagstaff, A. Nisbet, L. Nardi, J. Mawer, N. Melot,

O. Palomar, E. Vespa, T. Spink, C. Gorgovan, A. Webb, J. Clarkson, E. To-

musk, T. Debrunner, K. Kaszyk, P. Gonzalez-De-Aledo, A. Rodchenko, G. Ri-

ley, C. Kotselidis, B. Franke, M. F. P. O’Boyle, A. J. Davison, P. H. J. Kelly,

M. Luján, and S. Furber. Navigating the landscape for real-time localization

and mapping for robotics and virtual and augmented reality. Proceedings of the

IEEE, 106(11):2020–2039, 2018.

[152] Eli Biham and Jennifer Seberry. Pypy: another version of py. eSTREAM,

ECRYPT Stream Cipher Project, Report, 38:2006, 2006.

200

	cover sheet
	PhD_Thesis_Final.pdf

