
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Methods for the analysis of

oscillatory integrals and

Bochner-Riesz operators

Reuben Wheeler

Doctor of Philosophy
University of Edinburgh

2021



Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(Reuben Wheeler)

2



To Rachel and Byron

3



Lay summary

Think of the signal emitted from speakers when we play a piece of music. This signal may be
altered, for example by removing the bass frequencies. Such an alteration is an example of a
(Fourier) multiplier operator applied to the signal. This multiplier removes the bass frequencies
with a multiplication by 0, the remaining frequencies are multiplied by 1 to be preserved.
Bochner-Riesz operators are also multiplier operators, rather than a sharp multiplier which
jumps from 0 to 1, they have additional regularity. We consider when these operators are
well behaved. For example, in what sense is the returned signal to be understood as piece
of music? Is the sound evenly distributed through the piece’s duration? Are there deafening
peaks? This behaviour is expressed in terms of certain operator bounds. The study of Bochner-
Riesz operators is a long-standing problem in harmonic analysis dating back to the 1930s and
has strong connections to other fundamental areas of research in the field, namely Fourier
restriction, the Kakeya problem, and local smoothing for the wave equation. One of the major
themes in this thesis concerns how we might extend the definition of Bochner-Riesz operators to
particular curved or flat surfaces. We classify curved surfaces defining Bochner-Riesz operators
which display behaviour like the classical Bochner-Riesz operators. For certain surfaces with
flat components, we show that the behaviour of the corresponding operators differs substantially
from what might be expected according to standard tests. This extends work of Mockenhoupt,
using restriction estimates to obtain operator bounds. Carrying out the standard test on Lp

boundedness requires the adaptation of a nuanced technique of Arkhipov, Chubarikov, and
Karatsuba, which was originally brought to bear on Tarry’s problem in number theory, for
bounding oscillatory integrals.

Let us consider an oscillating sum. We start with 1. If we add to this number − 1
2 , one

may verify we are left with 1
2 . If we now add to this 1

4 , we obtain 3
4 . Taking − 1

8 from this
we have 5

8 . We may continue this procedure through as many steps as we like, even ask what
happens as we approach an infinite number of steps in the procedure. One of the things we can
observe is that the positive and negative terms in the sum display some cancellation. What
we have outlined is an example of an oscillating sum. For other sums, the oscillation can be
more complicated. We might ask, ‘which are the most significant parts of the oscillating sum?’
or ‘what bounds can we obtain for the sum?’ Oscillating sums (or, more generally, oscillatory
integrals) are important objects of study in harmonic analysis, for instance they appear in our
analysis of Bochner-Riesz operators. We make use of a variety of methods for understanding
the effects of oscillation on such sums. In particular, we extend a proof of Hickman and Wright
which bounds oscillatory sums by splitting up different sized pieces of the sum and presenting a
novel categorisation of the small number of large pieces. We also make use of nuanced bounds of
Arkhipov, Chubarikov, and Karatsuba, who are able to abound oscillatory sums by considering
them in a suitable average sense. Finally, we also make use of bounds of Phong and Stein, who
obtain bounds oscillatory sums which are expressed in terms of clusters of polynomial roots.
With our later results on the structure of polynomial roots, we are able to recover the bounds
of Hickman and Wright by an application of the estimates of Phong and Stein.

Finding the roots of polynomials is a task familiar to many. We are taught methods to
find the roots of linear and quadratic equations of the form 3x + 5 = 0 and x2 + 2x − 3 = 0.
For higher order equations with more terms, for example the unwieldy equation x10 + 700x4 −
200x3−100x2 +10x−1 = 0, the situation is much more complicated. Nevertheless, it is possible
to figure out roughly where the roots can be found and how close different roots can get to
each other. For example, just by looking at the previous polynomial equation featuring x10,
our results reveal that at most 5 roots can get close to each other. More specifically, our results
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characterise the different types of structure that can occur when the powers of x are fixed and
the coefficients can vary. This analysis extends work of Kowalski and Wright characterising
the structure of ‘small’ and ‘large’ collections of roots, similar to how we might think of the
distinction between the sun and the space that lies beyond its surface. Our work uncovers a
richer picture, showing how roots appear in multiple strata, akin layers of the sun and the orbits
of planets.
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Abstract

For a smooth surface Γ of arbitrary codimension, one can consider the Lp mapping properties
of the Bochner-Riesz multiplier

mΓ,α(ζ) = dist(ζ,Γ)αφ(ζ)

where α > 0 and φ is an appropriate smooth cutoff function. Even for the sphere Γ = SN−1,
the exact Lp boundedness range remains a central open problem in Euclidean harmonic anal-
ysis. We consider the Lp integrability of the Bochner-Riesz convolution kernel for a particular
class of surfaces (of any codimension). For a subclass of these surfaces the range of Lp integra-
bility of the kernels differs substantially from the Lp boundedness range of the corresponding
Bochner-Riesz multiplier operator. Extending work of Mockenhoupt, we then establish a range
of operator bounds, which are sharp in the α exponent, under the assumption of an appropriate
L2 restriction estimate. Hickman and Wright established sharp oscillatory integral estimates,
associated with a particular class of surfaces, and derived restriction estimates. We extend this
work to certain curves of standard type and corresponding surfaces of revolution. These surfaces
are discussed as an explicit class for which we have Lp → Lp boundedness of the corresponding
Bochner-Riesz operators.

Understanding the structure of the roots of real polynomials is important in obtaining stable
bounds for oscillatory integrals with polynomial phases. For real polynomials with exponents
in some fixed set,

Ψ(t) = x+ y1t
k1 + . . .+ yLt

kL ,

we analyse the different possible root structures that can occur as the coefficients vary. We
first establish a stratification of roots into tiers containing roots of comparable sizes. We then
show that at most L non-zero roots can cluster about a point. Supposing additional restrictions
on the coefficients, we derive structural refinements. These structural results extend work of
Kowalski and Wright and provide a characteristic picture of root structure at coarse scales.
As an application, these results are used to recover the sharp oscillatory integral estimates of
Hickman and Wright, using bounds for oscillatory integrals of Phong and Stein.
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Introduction

In this thesis, we explore aspects of two central areas in Harmonic Analysis: Bochner-Riesz
operators and oscillatory integrals.

Bochner-Riesz operators are classical Fourier multiplier operators associated with the surface
Γ = SN−1. With mBR(ζ) :=

(
1− |ζ|2

)α
+

, the operator TmBR,α is defined by

̂TmBR,αf = mBR,α(ζ)f̂(ζ).

These operators have been studied since the 1930’s, [Boc35], and arise concerning fundamental
questions about the summability of Fourier series and integrals. These questions have played
an important role in the development of the field of harmonic analysis and Bochner-Riesz
operators display deep connections to other fundamental areas of research, namely Fourier
restriction, local smoothing for the wave equation, and the Kakeya problem. The Bochner-Riesz
conjecture, concerning the Lp → Lp boundedness of these operators, remains a central open
problem. In Part I, we consider Bochner-Riesz operators associated with smooth surfaces, Γ,
which may be of co-dimension greater than 1. Intimately connected with the study of Bochner-
Riesz operators is the Fourier restriction problem, where surface curvature plays a critical role.
Despite the connection between the research of Bochner-Riesz operators and the restriction
problem, our study reveals some interesting differences in the implications of curvature in the
two areas; in Bochner-Riesz flatness at isolated points has no clear effect on the Lp boundedness
of the operator but flatness of the whole surface significantly alters the Lp boundedness of the
operator, whilst in restriction flatness at isolated points impacts the Lp boundedness of the
operator and flatness of the whole surface ensures only trivial restriction estimates are possible.

Harmonic analysis is riven with oscillatory integrals, a typical oscillatory integral can be
written ∫

eiΦ(ξ)φ(ξ)dξ.

We refer to Φ as the phase and φ as the amplitude. Most evident is the Fourier transform
of a function, which is an oscillatory integral with a linear phase. Another interesting kind
of oscillatory integral appears out of the extension operator, which is dual to the restriction
operator. In this thesis, various oscillatory integrals will play an essential role in our analysis
and we use a variety of methods for their study. Classical techniques for bounding oscillatory
integrals include the non-stationary phase lemma, the method of stationary phase, and van der
Corput’s lemma. We make liberal use of each of these, including a lesser used variant of van
der Corput’s lemma found in [ACK08]. There is a more geometric sibling of van der Corput’s
lemma due to Phong and Stein, [PS97], which expresses bounds on oscillatory integrals with
phase Φ in terms of certain cluster estimates involving the roots of Φ′—i.e. the stationary points.
Combined with these tools, there are some more nuanced methods we appeal to. In Section 4.2,
we adapt a method of Arkhipov, Chubarikov, and Karatsuba, taken from [ACK79], to determine
if our Bochner-Riesz kernel KΓ,α ∈ Lp. Whilst using the aforementioned variant of van der
Corput’s estimate, this technique relies on controlling oscillatory integrals in an average sense.
A refined method for bounding the Fourier transform of particular surface supported measures,
decomposing the integral on dyadic scales and obtaining suitable control at exceptional scales
where the phase degenerates, due to Hickman and Wright, [HW20], is extended in Part II.

In Part III, we carry out a structural analysis of the roots of real polynomials with exponents
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0 = k0 < k1 < . . . < kL taken from some fixed set,

Ψ(t) = x+
L∑
j=1

yjt
kj .

Locating roots of polynomials has a long history in mathematics, pre-dating all of the techniques
discussed above. There can, however, be no explicit formualae for the solution of polynomials
of degree at least 5. Nevertheless, numerical techniques provide algorithms for the increasingly
precise approximation of roots. Our interest in locating polynomial roots is motivated in part
by the applications to oscillatory integrals, via the estimates of Phong and Stein, and previous
work of Kowalski and Wright [KW12]. For our applications, understanding the overall structure
and approximate location of roots is sufficient. In particular, to recover the oscillatory integral
bound of Hickman and Wright, we will show that the roots of Ψ are stratified into at most L
separated tiers and, furthermore, for a suitable small parameter ε > 0 and any non-zero root,
w, of Ψ,

B(w, ε|w|)

can contain at most L other roots of Ψ, counted with multiplicity. Finally, in Chapter 9, we
recover the bounds of Hickman and Wright via our results on polynomial root structure and
the oscillatory integral bounds of Phong and Stein.

12



Preliminaries

We here recall some classical results that we will require use of in this document. First, we
recall the non-stationary phase lemma.

Lemma 0.0.1. Suppose that φ ∈ C∞c (Rn), Φ ∈ C∞(Rn) and |∇Φ(ξ)| & 1 for ξ ∈ suppφ, then,
with

I(λ) :=

∫
eiλΦ(ξ)φ(ξ)dξ,

we have that

|I(λ)| .M |λ|−M (1 + ‖Φ‖CM+1(suppφ))
M‖φ‖CM (suppφ) |suppφ| ,

for all M ∈ N.

Let us also recall the classical Riesz-Thorin interpolation theorem, as found in [SW71].

Theorem 0.0.2. Let T be a linear operator for which

‖Tf‖q0 ≤ C0‖f‖p0

‖Tf‖q1 ≤ C1‖f‖p1
,

for some p0 ≤ p1, 1 ≤ pj , qj ≤ ∞. Then, for θ ∈ [0, 1], there exists a constant Cθ = C1−θ
0 Cθ1

for which
‖Tf‖qθ ≤ Cθ‖f‖pθ

for all f ∈ L1 and 1
pθ

= 1−θ
p0

+ θ
p1
, 1
qθ

= 1−θ
q0

+ θ
q1

.

We also make use of the weak-type Young’s inequality; see, for instance, [Tao].

Theorem 0.0.3. Suppose that h1 ∈ Ls,∞(RL) with s ∈ (1,∞). Then, for p, r ∈ (1,∞) with
1
p + 1

s = 1 + 1
r and h2 ∈ Lp(RL), h2 ∗ h1 ∈ Lr(RL) with

‖h2 ∗ h1‖Lr ≤ ‖h1‖Ls,∞‖h2‖Lp .
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A generalised van der Corput estimate

We will make use of van der Corput’s lemma throughout this document.

Lemma 0.0.4. Suppose that we have Φ ∈ C∞ and, for some k ≥ 1,
∣∣Φ(k)(t)

∣∣ 1
k ≥ κ for t ∈ [a, b],

with the additional hypothesis that Φ′ monotonic in the case that k = 1. Then we have the bound∣∣∣∣∣
∫ b

a

e2πiΦ(t)dt

∣∣∣∣∣ . min
{

(b− a), κ−1
}
.

There is also the following simple corollary of the above, which we also refer to as van der
Corput’s lemma.

Lemma 0.0.5. Suppose that we have Φ ∈ C∞ and, for some k ≥ 1,
∣∣Φ(k)(t)

∣∣ 1
k ≥ κ for t ∈ [a, b],

with the additional hypothesis that Φ′ monotonic in the case that k = 1. Then, for φ ∈ C∞c
with suppφ ⊂ (a, b), we have the bound∣∣∣∣∣

∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ . min
{

(b− a), κ−1
}
‖φ′‖1.

In particular ∣∣∣∣∣
∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ . min
{

(b− a), κ−1
}
‖φ′‖∞(b− a).

The versions of the lemma we utilise do not require the exact specification of which derivative
of the phase is bounded below in size. To avoid this specification, we require that the phase
satisfies suitable monotonicity properties. A model is a polynomial, which is monotone, with
monotone derivatives, on finitely many intervals partitioning its domain. The following result
is adapted from [ACK08].

Lemma 0.0.6. Let Φ : R→ R be a smooth function such that, for some k ≥ 1,

inf
t∈[a,b]

∣∣∣Φ(k)(t)
∣∣∣ ≥ c sup

t∈[a,b]

∣∣∣Φ(k)(t)
∣∣∣ > 0, (0.0.1)

for some c > 0, with Φ′ monotone on a bounded number of intervals in the case the k = 1.

Given the bound inft∈[a,b]

∑k
j=1 |

Φ(j)(t)
j! |

1
j ≥ κ we have that∣∣∣∣∣

∫ b

a

e2πiΦ(t)dt

∣∣∣∣∣ .k min
{
κ−1, (b− a)

}
.

Remark 0.0.7. Lemma 0.0.6 is stated in greater generality in [ACK08], with more specific
monotonicity conditions on Φ′. However, the assumption (0.0.1), which provides the required
monotonicity, is sufficient for our present purposes.

Proof. There is nothing to prove in the case that k = 1, since we can apply the classical van
der Corput lemma on each of the intervals where Φ′ is monotone. Henceforth, we suppose that
k ≥ 2.

Firstly, we use the fact that Φ(k)(t) is bounded away from 0 on [a, b]. As a consequence of
this, we see that Φ(k−1) is strictly monotonic on [a, b] and, in particular, there are at most two
intervals on which Φ(k−1)(t) is of constant sign. We consider each of these intervals separately.

Continuing as before, if Φ(j+1) is of constant sign on (a′, b′) then Φ(j) is strictly monotonic
on (a′, b′) and there are at most 2 connected subintervals of (a′, b′) on which Φ(j)(t) has constant
sign. This recursive procedure ensures that we can (up to finitely many excluded points) cover
[a, b] by at most 2k open intervals J upon which Φ(j)(t) is of constant sign for each j. For
each of these intervals J = (ã, b̃) and each derivative j, we can see by smoothness of Φ and

monotonicity of the derivatives, that infJ
∣∣Φ(j)(t)

∣∣ = min
{∣∣Φ(j)(ã)

∣∣ , ∣∣∣Φ(j)(b̃)
∣∣∣}. We know that
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∑k
j=1 |

Φ(j)(t)
j! |

1
j ≥ κ so that mint∈{ã,b̃}max1≤j≤k |Φ

(j)(t)
j! |

1
j & κ. For the j0 which realises this

expression, we then know that inft∈J
∣∣Φ(j0)(t)

∣∣ 1
j0 & κ and we can apply the classical van der

Corput’s estimate to bound the integral over J ⊂ (a, b). Summing the resulting estimates over
all subintervals J , of which there are finitely many, gives the result.

Corresponding with the second van der Corput estimate, we have the following corollary of
Lemma 0.0.6.

Lemma 0.0.8. Let Φ : R→ R be a smooth function with inft∈[a,b]

∣∣Φ(k)(t)
∣∣ ≥ c supt∈[a,b]

∣∣Φ(k)(t)
∣∣ >

0, for some c > 0, with Φ′ monotone on a bounded number of intervals if k = 1, and φ be a

smooth function with suppφ ⊂ (a, b). Given the bound inft∈[a,b]

∑k
j=1 |

Φ(j)(t)
j! |

1
j ≥ κ, we have

that ∣∣∣∣∣
∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ .k min
{

(b− a), κ−1
}
‖φ′‖L1 .

In particular, we have that∣∣∣∣∣
∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ . min
{

(b− a), κ−1
}

(b− a)‖φ′‖L∞ .

Proof. By the fundamental theorem of calculus, we see that∫ b

a

e2πiΦ(t)φ(t)dt =

∫ b

a

e2πiΦ(t)

∫ t

a

φ′(s)dsdt

=

∫ b

a

∫ b

s

e2πiΦ(t)dtφ′(s)ds

so then ∣∣∣∣∣
∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ ≤ sup
a≤s≤b

∣∣∣∣∣
∫ b

s

e2πiΦ(t)dt

∣∣∣∣∣
∫ b

a

|φ′(s)|ds

.k min
{

(b− a), κ−1
}∫ b

a

|φ′(s)|ds.
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Notation

For 1 ≤ p ≤ ∞, we denote by Lp the space of Lp integrable functions on RN . More generally,
a function f ∈ Lp(Γ, µ) if

‖f‖Lp =

(∫
Γ

|f(x)|p dµ(x)

) 1
p

<∞,

with the understanding that, in the case of p = ∞, the integral is to be understood as an
essential supremum. We also denote by Lp,∞ = Lp,∞(RN ) the space of weak-Lp functions:
f ∈ Lp,∞(RN ) if

‖f‖Lp,∞ = sup
λ>0

λ
∣∣{x ∈ RN ; |f(x)| > λ}

∣∣ 1
p <∞.

We denote by Bm(x, r) the Euclidean ball of radius r centred at x in Rm, or simply B(x, r)
if the dimension is clear. We use the notation

F (f) (ξ) = f̂(ξ) =

∫
e−2πiξ·xf(x)dx,

for the Fourier transform and likewise for the inverse Fourier transform we write

F−1 (g) (x) = ǧ(x) =

∫
e2πix·ξg(ξ)dξ.

We denote by S = S (Rn) the class of Schwartz functions, a function ϕ : Rn → C is an
element of S if it is infinitely differentiable and

|∂αφ(x)| ≤ Cα,M |x|−M ,

for all multi-indices α ∈ Nn0 and M ∈ N0. We denote by S ′ the space of tempered distributions.
These are the bounded linear functionals on S . For Λ ∈ S ′, we define its Fourier transform
as a distribution by

Λ̂(ϕ) = Λ(ϕ̂).

We also denote by σ̂Sm−1 the Fourier transform of the surface measure of the sphere Sm−1:

σ̂Sm−1(x) =

∫
Sm−1

e2πix·ωdσ(ω).

Similarly, for a Borel measure, µ, on RN of bounded variation, we define its Fourier transform
by

µ̂(x) =

∫
e2πix·ωdµ(ω).

For the Lebesgue measure on Rn, we sometimes denote this by µRn . We deviate from
convention in this way as typically throughout this document, λ will be used to denote a real
factor in the phase of an oscillatory integral. Often, the Lebesgue measure will be written
classically as a density dx.

Throughout this document C will be used to denote a constant, its value may change from
line to line. We use the notation X . Y or Y & X if there exists some implicit constant C
such that X ≤ CY . When we wish to highlight the dependence of the implied constant C on
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some other parameter, say C = C(M), we will use the notation X .M Y . We use the notation
X � Y or Y � X if there exists some suitable large constant D such that DX ≤ Y .

For p ∈ (1,∞) we denote by Mp the space of Borel measurable functions m for which the
multiplier operator defined a priori by

f 7→ F−1
(
m · f̂

)
is bounded from Lp to Lp, we denote by ‖m‖Mp

the norm of the operator, Tm, thus defined.
We do not use vector notation and, at different points 0 will be used to denote zero as a

scalar, a zero vector, or the zero matrix. Each of these uses should be clear from context and
the use will typically be highlighted with a set containment reference.

We will write the co-dimension of surfaces appearing throughout Part I as L = L̃ + L′.

Typically, in what follows x, y, and z will denote points in Rn, RL̃, and RL′ , respectively. Since
we may have that L′ = 0 but integrate with respect to dz we follow the convention that, when
L′ = 0, RL′ = R0 = {0} and dz is the counting measure. Similarly for S0, which we regard as
the set {−1, 1} equipped with the counting measure.
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Part I

Bochner-Riesz operators
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Chapter 1

Introduction

In Part I, we will be considering Fourier multiplier operators in N dimensions. These will be
defined with respect to surfaces of dimension n and co-dimension L, with N = n+ L.

The disc multiplier operator SR is defined by

SRf(x) =

∫
BR

e2πix·ξ f̂(ξ)dξ,

or more simply by

ŜRf = f̂(ξ)1BR ,

where BR is the unit ball of radius R centred at the origin. This multiplier arises in the question
of whether the integral ∫

|ξ|<R
f̂(ξ)e2πiξ·xdξ

converges to the function f as R→∞, in some appropriate sense, for example in Lp.
As we establish in Section 2.1, when one studies Fourier multiplier operators Tm, with a

compactly supported multiplier m, T̂m(f)(ξ) = m(ξ)f̂(ξ), a necessary condition for Tm to be
bounded on Lp(RN ) is that the kernel K = m̌ ∈ Lp.

Since 1BR ∈ L∞, it is a consequence of Plancherel’s theorem that SR ∈M2(RN ). Further-
more, corresponding kernel, 1̌BR is an element of Lp for

L+ n

L+ n
2

< p.

By the above necessary condition, and the fact real valued multipliers define operators which
are self-dual, we see that T1BR can define a bounded operator on Lp only for

L+ n

L+ n
2

< p <
L+ n
n
2

,

where the left and right terms in the inequality are dual exponents. Historically, it was conjec-
tured that the disc multiplier defined a bounded operator on Lp for

L+ n

L+ n
2

< p <
L+ n
n
2

. (1.0.1)

The disc multiplier conjecture is true in one dimension; the multiplier is an element ofMp(R)
for all 1 < p < ∞. To verify this one may write 1(−R,R) = 1(−∞,0)(· − R) − 1(−∞,0](· + R).
Each of these two terms in the sum for the multiplier defines an operator which is a modulation
followed by a Hilbert transform, these are bounded on Lp(R), [Rie28].

It is a famous result of Fefferman that the disc multiplier is not an element of Mp(RN ) for
N ≥ 2 and p 6= 2 [Fef71], disproving the disc multiplier conjecture in dimensions N ≥ 2.

In a remarkable paper of Heo, Nazarov, and Seeger, [HNS11], they show that the natural
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necessary condition m̌ ∈ Lp is also sufficient for Tm to be bounded on Lp in the range 1 <

p < 2(N−1)
N+1 , whenever m is a compactly supported radial multiplier. The radial multiplier

conjecture states that for radial multipliers m, m̌ ∈ Lp implies Tm is bounded on Lp holds in
the range 1 < p < 2N

N+1 , i.e. below the critical exponent from the (disproved) disc multiplier
conjecture.

Further canonical examples of compactly supported radial multipliers are the classical
Bochner-Riesz multipliers. The Bochner-Riesz multipliers can be viewed as regularised ver-
sions of the disc multiplier, they are given by

mα
R(ξ) =

(
1− |ξ|

2

R2

)α
+

.

These multipliers are α-Hölder, although they are still singular at the boundary ∂BR. The
corresponding convolution kernel Kα = m̌α is well known to lie in Lp for

p > pα,N =
2N

N + 1 + 2α
;

see [Her54].
The Bochner-Riesz conjecture states that, for α > 0, the Bochner-Riesz operator is bounded

on Lp if and only if

α > (n+ 1)

∣∣∣∣1p − 1

2

∣∣∣∣− 1

2
.

For α > 0, this may be equivalently stated as

L+ n

L+ n
2 + α

< p <
L+ n
n
2 − α

.

The radial multiplier conjecture is a significant generalisation of the Bochner-Riesz con-
jecture. However, the result in [HNS11] gives no new improvements on the Bochner-Riesz
conjecture.

It can easily be established the classical Bochner-Riesz multiplier operator and the multiplier
operator with multiplier (1−|ζ|)α+ are mutually bounded.1Furthermore, observe that, for α > 0,
the multiplier (1 − |ζ|)α+ has the same regularity as |1 − |ζ||α = d(ζ, Sn)α. The latter are the
multipliers we generalise.

We let Γ denote a smooth surface in RN of codimension L. The generalised Bochner-Riesz
operator we will consider is given by, for ζ ∈ Rn+L,

mΓ,α(ζ,Γ) = d(ζ,Γ)αφΓ(ζ), (1.0.2)

for some φΓ ∈ Cc(RN ) with suppφΓ ∩ Γ non-empty. We wish to determine for which p the
multiplier mα,Γ ∈Mp(RN ).

Our approach in Part I takes multiple directions. First, in Chapter 3, we work to establish
that mΓ,α ∈ Mp for smooth surfaces Γ, provided suitable L2 restriction estimates hold. This
extends work of Mockenhoupt, [Moc90]. Extending a method of Hickman and Wright, we also
provide a specific class of surfaces to which restriction estimates hold. These surfaces are the
(symmetric) curves of standard type found in [SW78] and associated surfaces of revolution. A
model for these surfaces, and the case considered by Hickman and Wright, are given by

Γ =
{
ξ, |ξ|d1 , . . . , |ξ|dL ; |ξ| < 1

}
, (1.0.3)

for some choice of even 2 ≤ d1 < d2 < . . . < dL. As a corollary of this restriction estimate and
the previous result that restriction implies Bochner-Reisz, we obtain Lp → Lp bounds for the
Bochner-Riesz operator associated with these surfaces.

For the aforementioned class of surfaces, modelled by (1.0.3), in Chapter 4, we investigate
the sharpness of the above results. We determine precisely for which p the kernel m̌Γ,α ∈ Lp.
In the first instance, the work of Section 4.1 relies on classical stationary phase analysis in a

1This can be verified by the application of Lemma 2.1.5.
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restricted region of RN ; we derive pointwise lower bounds m̌Γ,α to determine the necessary
condition for m̌Γ,α ∈ Lp,

m̌Γ,α ∈ Lp =⇒ p >
L+ n

L+ α+ n
2

.

To complete the analysis of where m̌Γ,α ∈ Lp, in Section 4.2 we seek upper estimates on
‖m̌Γ,α‖Lp and this requires more modern methods. In particular, we are able to make use of
a method of Arkhipov, Chubarikov, and Karatsuba, to bound oscillatory integrals in an Lp

average sense; this method was introduced in [ACK79] and allows us to establish the sufficient
condition for m̌Γ,α ∈ Lp,

p >
L+ n

L+ α+ n
2

=⇒ m̌Γ,α ∈ Lp.

In Section 4.3, using our analysis of where m̌Ψ,α ∈ Lp, we discuss the sharpness of our operator
bounds. For a particular class of surfaces we consider, the the range of α such that the Bochner-
Riesz kernel KΓ,α = m̌Ψ,α ∈ Lp differs from the range of α for which mΨ,α ∈Mp. To conclude
Part I, we consider this case, and present a test which properly captures the critical α-exponent.
These examples are instances of smooth surfaces Γ which are contained in a proper subspace
of RN . Model surfaces are given by

Γ =

{(
ξ,
|ξ|d1

d1!
, . . . ,

|ξ|dL̃
dL̃!

, 0

)
∈ Rn × RL̃ × RL

′
; |ξ| < 1

}
, (1.0.4)

where 2 ≤ d1 < d2 < . . . < dL̃ are even and 1 ≤ L̃ < L. In particular, we show the following.

Proposition. Let Γ be given by (1.0.4) such that L̃ < L, d1 < d2, < . . . , < dL̃, and d1 ≥
n(L̃ + 1). Define D = d1 + d2 + . . . + dL̃. We set q′

2 = 1 + D
n . For 1 < p ≤ q or q′ ≤ p < ∞,

TmΓ,α
is bounded on Lp if and only if L̃+n

L̃+α+n
2

< p < L̃+n
L̃−α+n

2

.

To conclude the introduction, we now define the surfaces of standard type that we will pay
particular attention to throughout Part I. The surfaces described at (1.0.3) and (1.0.4) should
consistently be kept in mind as models.

Definition 1.0.1. The class of surfaces S0 is given as follows. This class contains surfaces

Γ = {(ξ,Ψ(|ξ|)) ; |ξ| < 4δ} ,

where δ is some suitable small parameter and Ψ = (ψ1, . . . , ψL) : (−4δ, 4δ) → R is a smooth
function with components satisfying the following. There exist 1 ≤ L̃ ≤ L and even indices
d1 < d2 < . . . < dL̃ for which

ψj(r) =
rdj

dj !
+ εj(r),

where εj(r) is a higher order remainder term according with Taylor’s theorem, for which we
additionally assume2 that

ε
(di)
j (0) = 0, for i > j. (1.0.5)

Additionally, for L̃ < j ≤ L, we set
ψj(r) = 0.

More specifically, the control we have on the higher order remainder terms εj(r) is given as
follows, provided δ is small enough. We have that εj : (−4δ, 4δ)→ R is a smooth function such
that, for 0 ≤ i ≤ dj, ∣∣∣ε(i)

j (r)
∣∣∣� |r|dj−i

and, for i > j, ∣∣∣ε(di)
j (r)

∣∣∣� 1.

2This is a technical assumption we require to ensure that the graphing functions and their derivatives are
suitably linearly independent.
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Corresponding to the surfaces in the class S0 are those surfaces which are essentially linear
transformations of these, which we now define.

Definition 1.0.2. We define the class of radial surfaces S, which are of dimension n and
codimension L, as follows. Each element of S can be expressed as

Γ = {(ξ,Ψ(|ξ|)); |ξ| < 4δ} ⊂ Rn × RL, (1.0.6)

where δ is some suitably small parameter and Ψ(r) = (ψ1(r), ψ2(r), . . . , ψL(r)) is a smooth
symmetric function on R which satisfies the following. First we require that Ψ(0) = Ψ′(0) = 0.
We also require that, for

L̃ := dim span {ψj ; j = 1, . . . , L} ,
we have that L̃ ≥ 1

and L̃ = sup
M≥2

dim span
{
ψMj ; j = 1, . . . , L

}
,

(1.0.7)

where ψMj (r) :=
∑M
l=0

ψ
(l)
j (0)

l! rl. We define dL̃ to be the smallest M such that

L̃ = dim span
{
ψMj ; j = 1, . . . , L

}
.

In other words, the class S of surfaces that we consider are those radial surfaces Γ for which
there exist Taylor approximants of finite order which characterise any linear dependence of
the graphing functions ψ1, ψ2, . . . , ψL. For example, they include the surfaces S0 if we relax
the condition (1.0.5). The surfaces thus parametrised include certain curves of standard type
defined in [SW78].
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Chapter 2

A preliminary study

In this chapter, we make a preliminary study of the Bochner-Riesz multipliers, mΓ,α, which
we defined previously; we derive a related graphical Bochner-Riesz multiplier, mΨ,α, and give
an explicit expression of the corresponding convolution kernel m̌Ψ,α. First, in Section 2.1, we
introduce some classical lemmas for multiplier operators. Then, in Section 2.2, we outline the
procedure that shows the mutual boundedness of the Bochner-Riesz multipliers mΓ,α and the
graphical Bochner-Riesz multpliers mΨ,α. Finally, we express the kernel, KΨ,α = m̌Ψ,α, and
establish some preliminary estimates on its size.

2.1 Multiplier lemmas

Lemma 2.1.1. Real valued multipliers m define operators Tm which are self dual.

Proof. Using Fubini’s theorem, for any f, g ∈ S we see that

〈Tmf, g〉 =

∫ (∫
e2πix·ξ f̂(ξ)m(ξ)dξ

)
g(x)dx =

∫
f̂(ξ)m(ξ)ĝ(ξ)dξ

=

∫ (∫
e−2πix·ξf(x)dx

)
m(ξ)ĝ(ξ)dξ =

∫
f(x)

(∫
e−2πix·ξm(ξ)ĝ(ξ)dξ

)
dx

=

∫
f(x)

(∫
e2πix·ξm(ξ)ĝ(ξ)dξ

)
dx = 〈f, Tmg〉 .

Therefore T ∗m = Tm.

We will also make use of de Leeuw’s Theorem, which we now state. A short proof can be
found in [Jod71].

Theorem 2.1.2. Suppose that m ∈ Mp(Rn) and k < n in Rn. Then, with mx defined by
mx(y) = m(x, y) for x ∈ Rk, y ∈ Rn−k, mx ∈ Mp(Rn−k) for almost every x. In particular,
mx ∈Mp for those x such that (x, y) is a Lebesgue point of m for almost every y.

As discussed in the introduction, we have the following important test for the Lp → Lp

boundedness of a compactly supported multiplier operator.

Lemma 2.1.3. For a Fourier multiplier operator, Tm, with a compactly supported multiplier
m, a necessary condition for Tm to be bounded on Lp(RN ) is that the kernel K = m̌ ∈ Lp.

Proof. Take a Schwartz function ϕ with ϕ̂(ξ) = 1 for ξ ∈ suppm so that Tmϕ = m̌. If Tm is
bounded on Lp, then

‖m̌‖Lp . ‖ϕ‖p <∞.
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Lemma 2.1.4. Boundedness of multipliers is preserved under invertible affine transformations.
Suppose that m ∈Mp and define m̃(ξ) = m(T (ξ)) for some invertible affine transformation T ,
then m̃ ∈Mp with

‖m̃‖Mp
= ‖m‖Mp

.

Proof. For a ∈ Rn, we define the modulation operator Ma by Ma(f)(x) = e2πia·xf(x). Mod-
ulation preserves Lp norms. For R ∈ GL(Rn), we define the rescaling operators NR by
NR(f) = |detR| f(Rx).

Let m ∈ Mp. We write T (ξ) = Rξ + a, for some matrix R ∈ GL(Rn). We let m̃(ξ) =

m ◦ T (ξ). Observe that F (Ma ◦NRt(f)) (η) = f̂(R−1(η − a)).
Take f ∈ S

F−1
(
m̃f̂
)

(x) =

∫
e2πix·ξm(T (ξ))f̂(ξ)dξ

=

∫
e2πix·R−1(η−a)m(η)f̂(R−1(η − a))|det(R)|−1dη

=

∫
e2πi(R−1)

t
x·(η−a)m(η)F (Ma ◦NRt(f)) (η)dη

= e2πi(R−1)
t
x·(−a)Tm (Ma ◦NRt(f))

((
R−1

)t
x
)
|det(Rt)−1|

=
(
N(Rt)−1 ◦M−a (Tm (Ma ◦NRt(f)))

)
(x).

From this we establish that
‖m̃‖Mp = ‖Tm̃‖Lp→Lp

≤ ‖N(Rt)−1‖‖M−a‖‖Tm‖‖Ma‖‖NRt‖

= ‖Tm‖Lp→Lp = ‖m‖Mp
,

since ‖N(Rt)−1‖Lp→Lp‖NRt‖Lp→Lp = 1. Likewise, ‖Tm‖Lp→Lp ≤ ‖Tm̃‖Lp→Lp .

We now turn to a simple but important lemma.

Lemma 2.1.5. Boundedness of multipliers is preserved by multiplication by C∞c functions: if
m ∈Mp and ψ ∈ C∞c , then ψm ∈Mp and

‖ψm‖Mp
≤ ‖m‖Mp

‖ψ̌‖1.

Proof. Let m ∈Mp, and take f ∈ S . We see that F−1
(
ψf̂
)

= ψ̌ ∗ f ∈ S so that,

‖F−1
(
mψf̂

)
‖p ≤ ‖m‖Mp

‖ψ̌ ∗ f‖p ≤ ‖m‖Mp
‖ψ̌‖1‖f‖p,

by Young’s inequality.

2.2 Multiplier reductions

Certain reductions are necessary to carry out effective calculations with the Bochner-Riesz
multipliers. We present these in this section, working to establish Lemma 2.2.3, which reduces
the study of the Bochner-Riesz multipliers given by Definition 2.2.1 to the graphical Bochner-
Riesz multipliers given by Definition 2.2.2.

In this section we will be working in RN = Rn ×RL, for ζ ∈ RN , we write ζ = (ξ, η), where
ξ ∈ Rn and η ∈ RL.

Definition 2.2.1. For a smooth surface Γ and some α > 0,

mΓ,α(ζ) = d(ζ,Γ)αφΓ(ζ)

is called the Bochner-Riesz multiplier with exponent α > 0. Here φΓ is some appropriate bump
function whose support intersects Γ.
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Definition 2.2.2. Suppose
ΓΨ = {(ξ,Ψ(ξ)); |ξ| < 4δ}

is a smooth surface expressible near the origin as the graph of smooth Ψ with Ψ(0) = 0 and
∇Ψ(0) = 0. The (graphical) Bochner-Riesz multiplier is given by

mΨ,α(ζ) = mΨ,α(ξ, η) = φ(ξ)|η −Ψ(ξ)|αχ(η −Ψ(ξ)),

where φ and χ are smooth cutoff functions with φ(0) = χ(0) = 1, suppφ ⊂ Bn(0, δ), and
suppχ ⊂ BL(0, δ), for some suitable small δ.

Provided δ is chosen sufficiently small, we have the following.

Lemma 2.2.3. The Bochner-Riesz multiplier mΓ,α given by Definition 2.2.1 is an element of
Mp if and only if the multipliers mΨ,α given by Definition 2.2.2 are elements of Mp, for all
Ψ which, up to a translation and change of coordinates, locally graph Γ∩ suppφΓ and are such
that

∇Ψ(0) = 0,Ψ(0) = 0.

Here φ and χ are smooth, compactly supported, and radial bump functions with suppφ ⊂
Bn(0, δ), suppχ ⊂ BL(0, δ), which can be taken uniformly over our choice of graphing function
Ψ. Additionally, if we consider δ as a small variable parameter, which is implicitly related to φ
in Definition 2.2.2, we may consider φ with

‖φ‖C2 . δ−2.

Before proving Lemma 2.2.3, we state a lemma which is central to its proof.

Lemma 2.2.4. For
Γ = {(ξ,Ψ(ξ)); |ξ| < 4δ} ,

where Ψ(0) = 0 and ∇Ψ(0) = 0, the map

ζ 7→ d(ζ,Γ)α

|η −Ψ(ξ)|α

has a positive smooth extension to Γ∩B(0, δ), provided δ is chosen sufficiently small. Further-
more, since the function is positive, the map

ζ 7→ |η −Ψ(ξ)|α

d(ζ,Γ)α

is also smooth.

Let us see how Lemma 2.2.3 follows before proving this result.

Proof of Lemma 2.2.3. Let us first suppose that mΓ,α ∈ Mp. Firstly, we require that, for all
ζ ∈ Γ∩suppφΓ, B(ζ, δ)∩Γ, after a rotation and translation, which we denote by T , is expressible
as a segment about the origin of the graph {(ξ,Ψ(ξ)); |ξ| < 4δ} with ξ ∈ Rn, Ψ ∈ C∞c (Rn;RL),
Ψ(0) = 0, ∇Ψ(0) = 0. We can do this since Γ is a smooth embedded manifold. Now, for
some ζ1 ∈ Γ ∩ suppφΓ, we set m1(ζ) = χ1(ζ)mΓ,α, where χ1 ∈ C∞c (RN ) is a cutoff function
with suppχ1 ⊂ B(ζ1, 2δ). More specifically, if we denote pξ and pη projection onto the ξ and
η coordinates, respectively, we choose χ1 so that χ1(Tζ) = φ(pξ(Tζ))χ(pη(Tζ) − Ψ(pξ(Tζ))),
with φ and χ as in Definition 2.2.2. If TmΓ,α is bounded on Lp, then Tm1 is bounded on Lp, by
Lemma 2.1.5 and Lemma 2.1.4. Furthermore, by Lemma 2.1.4, if we make the above change of
coordinates corresponding to the graphical expression of B(ζ1, 4δ) ∩ Γ, to the multiplier, m1,
its operator norm is preserved. The multiplier m1 = m · χ1 is not yet amenable to simple
calculations, due to the appearance of the factor d(ζ,Γ)α. We can make further improvements
using Lemma 2.1.5. According with our above discussion of Lemma 2.1.4, we henceforth suppose
that Γ is expressed as the graph of Ψ.
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We note that, for ζ /∈ Γ

d(ζ,Γ)αχ1(ζ)φΓ(ζ) =
d(ζ,Γ)α

|η −Ψ(ξ)|α
|η −Ψ(ξ)|αχ1(ζ),

so that, if we can show that, in the support of χ1,

ζ 7→ d(ζ,Γ)α

|η −Ψ(ξ)|α
(2.2.1)

defines a smooth function, then this suffices to establish that n(ζ) = n(ξ, η) = |η−Ψ(ξ)|αχ1(ζ),
which is precisely the multiplier specified in Definition 2.2.2, is an Lp multiplier. We know,
from Lemma 2.2.4, that (2.2.1) is smooth. This concludes the first half of the proof.

It remains to show that mΨ,α ∈Mp for all Ψ which locally graph Γ implies that mΓ,α ∈Mp.
So, let us suppose that mΨ,α ∈Mp for all Ψ which locally graph Γ. We begin with a partition of
unity {χj}j∈J , where suppχj ⊂ B(ζj , δ/2) for some choice of ζj ∈ Γ ∩ suppφΓ. As previously,
corresponding to each element of this partition is a linear map, Tj , and a graphing function Ψj .
We find that

‖mΓ,αχj‖Mp
= ‖mΓ,α(T−1

j ·)χj(T
−1
j ·)‖Mp

.

We now make use of Lemma 2.1.5. First, note the the above map, (2.2.1), and its reciprocal
are smooth, by Lemma 2.2.4. We also see that

χj(T
−1
j ·) = φ(ξ(·))χ(η −Ψj(ξ(·)))χj(T−1

j ·).

Bringing this all together with Lemma 2.1.5, we find that

‖mΓ,α‖Mp ≤
∑
j∈J
‖mΓ,αχj‖Mp =

∑
j

‖mΓ,α(T−1
j ·)χj(T

−1
j ·)‖Mp

.
∑
j

‖|η(·)−Ψ(ξ(·))|αχj(T−1
j ·)‖Mp

.
∑
j

‖mΨj ,α‖Mp
,

proving our claim.
We did not previously specify our choice of φ. However, we may choose φ with

φ(ξ) = φ0(δ−1ξ)2 (2.2.2)

where φ0 is a compactly supported bump function such that suppφ0 ⊂ Bn(0, 1) and φ0(ξ) = 1
for |φ| ≤ 1

2 . Thus we have that

‖φ‖C2 . δ−2.

Now we turn to the proof of the critical lemma, that the map (2.2.1) is smooth.

Proof of Lemma 2.2.4. One can use the fundamental theorem of calculus to bound differences
of the form to obtain bounds of the form |f(ξ)− f(ξ′0)| . ‖f‖C1 |ξ0− ξ′0|. We do so throughout
this proof.

We denote by B̃ the ball Bn(0, δ) and note that for ζ = (ξ, η) ∈ B, ξ ∈ B̃. Throughout this
proof ε > 0 is a suitable small constant. Provided we take δ sufficiently small, any choice of ε
can be made. Note that, for ζ such that φ(ξ)χ(η − Ψ(ξ)) 6= 0, we have, by the fundamental
theorem of calculus, that |η| ≤ δ + |Ψ(ξ)| ≤ δ + C‖Ψ‖C1(suppφ)δ ≤ ε, provided we choose δ
small enough.

Throughout this proof, we understand ∇Ψ(ξ) to be an n × L matrix whose jth column is
given by ∇ψj(ξ). It is a simple matter to verify the following bound. For any given ε > 0,

provided we choose δ sufficiently small, for ω ∈ B̃

‖∇Ψ(ω)‖RL→Rn ≤ ε and , ‖∇Ψ(ω)‖Rn→RL ≤ ε, (2.2.3)
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where the relevant linear operators are defined naturally by the left and right action of the
matrix, respectively. More precisely, we have that

sup
ξ∈B̃
‖∇Ψ(ξ)‖RL→Rn ≤ ε

and likewise for the other norm. We also have that

‖Ψ‖C2(B̃) . 1. (2.2.4)

Finally, by making a sufficiently small choice of δ,

|Ψ(ξ)| ≤ |Ψ(0)|+ Cδ‖Ψ‖C1(B̃) ≤ ε for ξ ∈ Bn(0, δ). (2.2.5)

Away from Γ, smoothness of the map

ζ 7→ d(ζ,Γ)α

|η −Ψ(ξ)|α

is directly apparent since the function is the quotient of two smooth functions, where the
denominator is non-zero. We must show it has a smooth extension to Γ. In fact, it suffices to
prove that the function S, with

S(ζ) =
d(ζ,Γ)2

|η −Ψ(ξ)|2
,

has a smooth extension to Γ such that S(ζ) > 0. The desired result follows, since we then have
that S

α
2 > 0 is also smooth by the chain rule and likewise for S−

α
2 .

Recall the notation ζ = (ξ, η). Let us denote by F the function (ζ, ω) 7→ d(ζ, (ω,Ψ(ω))2 =
|ξ − ω|2 + |η −Ψ(ω)|2. We first establish the existence of a unique map ξ0 : B → Rn such that
for each ζ ∈ B d(ζ,Γ) = d

(
ζ, (ξ0(ζ),Ψ(ξ0(ζ)))

)
; the function ξ0 characterises the nearest point

on Γ to a given ζ. Since Γ is smooth , we see that those points ω for which F (ζ, ω) = d(ζ,Γ)2

are stationary points of F (ζ, ·), as they give local minima. If ξ0 is a stationary point of F (ζ, ·),
then

∇ωF (ζ, ·)(ξ0) = 2(ξ0 − ξ)t + 2∇Ψ(ξ0)(η −Ψ(ξ0))t = 0. (2.2.6)

In order to show that ξ0 is uniquely defined, suppose that ξ′0 is also a stationary point of F (ζ, ·).
Then [

(ξ0 − ξ)t +∇Ψ(ξ0)(η −Ψ(ξ0))t
]
−
[
(ξ′0 − ξ)t +∇Ψ(ξ′0)(η −Ψ(ξ′0))t

]
= 0.

In particular, using (2.2.3), (2.2.4), (2.2.5), and the fundamental theorem of calculus, we may
find that

|ξ0 − ξ′0| ≤
∣∣(∇Ψ(ξ0)−∇Ψ(ξ′0)) ηt

∣∣+
∣∣∇Ψ(ξ′0)Ψ(ξ′0)t −∇Ψ(ξ0)Ψ(ξ0)t

∣∣
=
∣∣(∇Ψ(ξ0)−∇Ψ(ξ′0)) ηt

∣∣
+
∣∣∣∇Ψ(ξ′0) ((Ψ(ξ′0)−Ψ(ξ0)) + Ψ(ξ0))

t − ((∇Ψ(ξ0)−∇Ψ(ξ′0)) +∇Ψ(ξ′0)) Ψ(ξ0)t
∣∣∣

≤
∣∣(∇Ψ(ξ0)−∇Ψ(ξ′0)) ηt

∣∣+
∣∣∣∇Ψ(ξ′0) (Ψ(ξ′0)−Ψ(ξ0))

t
∣∣∣+
∣∣(∇Ψ(ξ′0)−∇Ψ(ξ0)) Ψ(ξ0)t

∣∣
. ε‖Ψ‖C2(B̃)|ξ0 − ξ

′
0|,

. ε|ξ0 − ξ′0|. (2.2.7)

Recall that ε parameter, taken from the bounds (2.2.3) and (2.2.4), can be made arbitrarily
small by our choice of δ. Thus, for δ sufficiently small, the inequality (2.2.7) can only hold for
ξ0 − ξ′0 = 0. That is, there exists a unique ξ0 = ξ0(ζ) such that d(ζ,Γ) = d(ζ, (ξ0,Ψ(ξ0)).

We now establish that the map ζ 7→ ξ0(ζ) is smooth. This follows by the implicit function
theorem. Let us denote by G the vector valued function 1

2∇ωF :

G(ζ, ω) = (ξ − ω)t +∇Ψ(ω)(η −Ψ(ω))t.
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Because ξ0 is a stationary point of F (ζ, ·), the function ξ0(ζ) is given implicitly by the equation
G(ζ, ξ0) = 0. It can be seen that G is smooth, and

DωG(ζ, ·)(ω) = −I −Dω

(
∇ΨΨt

)
(ω) +Dω

(
∇Ψηt

)
(ω).

We now use the fact that |η| < ε. As a consequence of the control on Ψ, (2.2.3), (2.2.4), and
(2.2.5), it can be seen that, for ω ∈ B̃

‖DωG(ζ, ·)(ω)‖Rn→Rn ≥ 1− ‖Dω

(
∇ΨΨt

)
(ω)‖Rn→Rn − εC‖Ψ‖C2(B̃) ≥

1

2
,

provided δ is chosen sufficiently small. Therefore, by the implicit function theorem ξ0 is a
smooth function of ζ, since ∇Ψ(0) = 0 and Ψ(0) = 0, and, for ω ∈ B̃,

‖DωG(ζ, ·)(ω)‖Rn→Rn ≥
1

2
.

Now we complete the proof that S has a smooth extension to Γ, where

S(ζ) =
d(ζ,Γ)2

|η −Ψ(ξ)|2
=
|ξ − ξ0(ζ)|2 + |η −Ψ(ξ0(ζ))|2

|η −Ψ(ξ)|2
.

We use the implicit formula defining ξ0 to show this. By definition,

F (ζ, ξ0(ζ)) = |ξ − ξ0(ζ)|2 + |η −Ψ(ξ0(ζ))|2

and the implicit formula, (2.2.6), tells us that

2
(
ξ − ξ0(ζ)t

)
= 2∇Ψ(ξ0(ζ))(η −Ψ(ξ0(ζ))t.

Thus, if we can find a smooth function G0 > 0 such that

|η −Ψ(ξ0(ζ))| = G0(ζ)|η −Ψ(ξ)|,

then, using the implicit formula (2.2.6),

F (ζ, ξ0(ζ)) =
(
1 + |∇Ψ(ξ0(ζ))|2

)
G0(ζ)2 |η −Ψ(ξ)|2 ,

and we can see that ζ 7→ S(ζ) = F (ζ, ξ0(ζ))/|η −Ψ(ξ)|2 is smooth and bounded away from 0,
provided |∇Ψ(ξ0(ζ))| < 1, which is possible if we choose δ small enough.

To show that |η−Ψ(ξ0(ζ))| = G0(ζ)|η−Ψ(ξ)|, we expand the left hand term using the implicit
formula for ξ0, (2.2.6). We can replace instances of (ξ − ξ0(ζ)) with (η − Ψ(ξ0(ζ))∇Ψ(ξ0(ζ))t.
We find that

H(ζ) := (η −Ψ(ξ0(ζ)))

= [η −Ψ(ξ)] + [Ψ(ξ)−Ψ(ξ0(ζ))]

= [η −Ψ(ξ)] +

[∫ 1

0

(ξ − ξ0(ζ))∇Ψ
(
ξ0(ζ) + s(ξ − ξ0(ζ))

)
ds

]
= [η −Ψ(ξ)] +

[∫ 1

0

(η −Ψ(ξ0(ζ))∇Ψ(ξ0(ζ))t∇Ψ
(
ξ0(ζ) + s(ξ − ξ0(ζ))

)
ds

]
= [η −Ψ(ξ)] +H(ζ)

[∫ 1

0

∇Ψ(ξ0(ζ))t∇Ψ
(
ξ0(ζ) + s(ξ − ξ0(ζ))

)
ds

]
.

We can rearrange the equation to see that

H(ζ)

(
I −

∫ 1

0

∇Ψ(ξ0(ζ))t∇Ψ
(
ξ0(ζ) + s(ξ − ξ0(ζ))

)
ds

)
= [η −Ψ(ξ)] .
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Note that, for ξ ∈ B̃,∥∥∥∥∫ 1

0

∇Ψ(ξ0(ζ))t∇Ψ(ξ0(ζ) + s(ξ − ξ0(ζ)))ds

∥∥∥∥ . δ � 1,

so that
(
I −

∫ 1

0
∇Ψ(ξ0(ζ))t∇Ψ(ξ0(ζ) + s(ξ − ξ0(ζ)))ds

)
is invertible with a smooth inverse. We

then see that

H(ζ) = (η −Ψ(ξ))

(
I −

∫ 1

0

∇Ψ(ξ0(ζ))t∇Ψ(ξ0(ζ) + s(ξ − ξ0(ζ)))ds

)−1

. (2.2.8)

We sought to find a smooth function G with |H(ζ)| = |η −Ψ(ξ0)| = G(ζ)|η −Ψ(ξ)|. From
the above, we know that

G(ζ) =

∣∣∣∣∣ (η −Ψ(ξ))

|η −Ψ(ξ)|

(
I −

∫ 1

0

∇Ψ(ξ0(ζ))t∇Ψ(ξ0(ζ) + s(ξ − ξ0(ζ)))ds

)−1
∣∣∣∣∣ ,

which is smooth for ζ ∈ B because H is smooth, | · | is smooth away from 0, and∣∣∣∣ (η −Ψ(ξ))

|η −Ψ(ξ)|

∣∣∣∣ = 1.

2.3 Bochner-Riesz kernels

Recall the reductions of Section 2.2. We consider the graphical Bochner-Riesz operators with
multipliers given by

mΨ,α(ζ) = mΨ,α(ξ, η) = φ(ξ)|η −Ψ(ξ)|αχ(η −Ψ(ξ)).

Working with this multiplier, whose expression is more amenable to direct calculation, we can
now express the corresponding convolution kernel. We then establish a relationship between the
kernels for surfaces in the class S and surfaces in the class S0, which were defined at Definitions
1.0.1 and 1.0.2. This will reduce a large part of our analysis to the class S0.

Multiplier operators are expressible as convolution operators. We turn our sights to the
convolution kernel of Tm, KΨ,α = m̌Ψ,α, as given by Definition 2.2.2. Observe that

KΨ,α(x, y, z) =

∫
RL

∫
Rn
e2πi(x·ξ+(y,z)·η)mΨ,α(ξ, η)dξdη

=

∫
RL

∫
Rn
e2πi(x·ξ+(y,z)·η)φ(ξ)|η −Ψ(ξ)|αχ(η −Ψ(ξ))dξdη

=

∫
RL

∫
Rn
e2πi(x·ξ+(y,z)·(η+Ψ(ξ)))φ(ξ)|η|αχ(η)dξdη

= Aα(y, z)

(∫
Rn
e2πi(x·ξ+(y,z)·Ψ(ξ))φ(ξ)dξ

)
(2.3.1)

= Aα(y, z)k(x, y, z),

where

k(x, y, z) =

∫
Rn
e2πi(x·ξ+(y,z)·Ψ(ξ))φ(ξ)dξ

and

Aα(y, z) =

∫
RL
e2πi(y,z)·η|η|αχ(η)dη.

Note that if Ψ(ξ) is a graphing function for one of the surfaces in S0, its final L′ coordinates
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are 0. In this case, k(x, y, z) is simply a function of (x, y). For surfaces in S such that L̃ < L,
we would prefer to be able to work in this framework and, later in this section, we outline how
a linear change of variables puts us in this setting. Where we are considering the class S0,
k(x, y, z) is independent of z, so we will instead write

k(x, y) =

∫
Rn
e2πi(x·ξ+y·ΨL̃(ξ))φ(ξ)dξ.

Obtaining pointwise control k is a delicate matter. Indeed, in establishing that KΨ,α ∈ Lp
for specified p, we do not use pointwise control, instead adapting the method from [ACK08] to
control the measure of regions for which the kernel has a specified size. Obtaining pointwise
control on Aα is more routine, and we here state and prove bounds that we will use through
this document.

Lemma 2.3.1. For large |(y, z)|, α 6= 0 with α /∈ 2N,

|Aα((y, z))| ∼ |(y, z)|−L−α. (2.3.2)

For large |(y, z)|, and all α > 0,

|Aα((y, z))| . |(y, z)|−L−α. (2.3.3)

Proof. For ease of notation, we suppose that L′ = 0 so that we seek bounds on

A(y) :=

∫
e2πiy·η|η|αχ(η)dη.

One can easily see that the analysis also works in the L′ > 0 case. Before we proceed, let us
recall that for the distribution, Λα, with

Λα(ϕ) =

∫
RL
|η|αϕ(η)dη,

we have that Λ̂α, regarded as a tempered distribution, agrees with the function cα|y|−L−α away
from the origin, i.e.

Λ̂α(ϕ) =

∫
RL
ϕ(y)cα

1

|y|L+α
dy

for ϕ with 0 /∈ suppϕ, with cα 6= 0 if α /∈ 2N; see p. 363 of [IMG64]. To make use of this fact,
we introduce a cutoff function a0, with supp a0 ⊂ B(0, ε) with a0(y) = 1 for y ∈ B(0, ε/2). We
consider the tempered distribution χΛα, with

χΛα(f) =

∫
|η|αχ(η)f(η)dη.

We see that χΛα can be regarded as the function η 7→ |η|αχ(η). Therefore, if we regard χ̂Λα
as a function, we see that

Aα = χ̂Λα.

Now we write
χ̂Λα

= χ̂ ∗ Λ̂α

= χ̂ ∗
(

Λ̂α (a0 + (1− a0))
)

= χ̂ ∗
(
a0Λ̂α

)
+ χ̂ ∗

(
(1− a0)Λ̂α

)
= E1 + χ̂ ∗

(
(1− a0)Λ̂α

)
, (2.3.4)
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where
E1 = χ̂ ∗

(
a0Λ̂α

)
. (2.3.5)

We later establish E1 as an error term. The term (1 − a0)Λ̂α from (2.3.4) is supported away
from the origin, and we know know that Λ̂α coincides with the function cα|y|−L−α away from
the origin. Thus, we see that

χ̂ ∗
(

(1− a0)Λ̂α

)
(y)

=

∫
RL
χ̂(y − w)(1− a0(w))cα

1

|w|L+α
dw

=

∫
|y−w|≤ε|y|

χ̂(y − w)cα
1

|w|L+α
dw + E2(y),

where

E2(y) =

∫
|y−w|>ε|y|

χ̂(y − w)(1− a0(w))cα
1

|w|L+α
dw. (2.3.6)

We later establish E2 as an error term. A further splitting shows that∫
|y−w|≤ε|y|

χ̂(y − w)cα
1

|w|L+α
dw

= cα
1

|y|L+α

∫
|y−w|≤ε|y|

χ̂(y − w)dw

+E3(y),

where

E3(y) = cα

∫
|y−w|≤ε|y|

χ̂(y − w)

(
1

|w|L+α
− 1

|y|L+α

)
dw. (2.3.7)

We will show that E3 is an error term. Finally, we write

cα
1

|y|L+α

∫
|y−w|≤ε|y|

χ̂(y − w)dw

= cα
1

|y|L+α

∫
χ̂(y − w)dw

+E4(y),

where

E4(y) = cα
1

|y|L+α

∫
|y−w|>ε|y|

χ̂(y − w)dw. (2.3.8)

Note that

cα
1

|y|L+α

∫
χ̂(y − w)dw

= cα
1

|y|L+α
χ(0).

The above presents a decomposition

Aα(y) = cα
1

|y|L+α
+ E1(y) + E2(y) + E3(y) + E4(y).

To complete the proof, we show that, for 1 ≤ j ≤ 4,

|Ej(y)| ≤ |cα|
5

1

|y|L+α
.
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Let us first consider E3, (2.3.7). We recall that

E3(y) = cα

∫
|y−w|≤ε|y|

χ̂(y − w)

(
1

|w|L+α
− 1

|y|L+α

)
dw.

Let us set g(r) = r−L−α. We can see that

1

|w|L+α
− 1

|y|L+α

=

∫ 1

0

(|w| − |y|) g′ (|y|+ r (|w| − |y|)) dr.

As such, we find, using the Schwartz decay of χ̂, that

|E3(y)| .m
∫
|y−w|≤ε|y|

(1 + |y − w|)−m
∫ 1

0

||w| − |y|| ||y|+ r (|w| − |y|)|−L−α−1
drdw

. ε|y|
∫
|y−w|≤ε|y|

1

|y|L+α+1
(1 + |y − w|)−mdw

. ε
1

|y|L+α
,

so that

|E3(y)| ≤ |cα|
5|y|L+α

,

provided we choose ε small enough.
Let us now consider E1, here we must use the distributional definition of convolution and

the Fourier transform. We set χ̂y = χ̂(y − ·) = χ̌(· − y). Considering a0Λ̂α as a distribution,
we find that we can express (2.3.5) as

E1(y) = χ̂ ∗
(
a0Λ̂α

)
=
(
a0Λ̂α

)
(χ̂y)

= Λ̂α(a0χ̂y)

= Λα (F (a0χ̌(· − y)))

=

∫
|w|α

∫
â0(w − z)e2πiz·yχ(z)dzdw.

We can see that
1

(2πi|y|)2
∆ze

2πiz·y = e2πiz·y.

We use this to integrate by parts and find that∫
â0(w − z)e2πiz·yχ(z)dz

=
1

(2πi|y|)2m

∫
â0(w − z)∆m

z

(
e2πiz·y)χ(z)dz

=
1

(2πi|y|)2m

∫ ∑
β∈I

(−1)|β1|∂β1
z â0(w − z)e2πiz·y∂β2

z χ(z)dz,

where the finite sum is taken over a finite set of multi-indices I with elements (β1, β2) ∈ NL×NL.
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One can see that, with f1 := ∂β1
z â0 ∈ S and f2 := ∂β2

z χ ∈ S so that supp f2 ⊂ suppχ, we have∫
|f1(w − z)f2(z)| dz

.
∫

suppχ

(1 + |w − z|)−L−1−dαedz

. (1 + |w|)−L−1−dαe.

Thus, we find that
|E1(y)|

=

∫
|w|α

∣∣∣∣∫ â0(w − z)e2πiz·yχ(z)dz

∣∣∣∣ dw
.m

1

|y|2m

∫
|w|α(1 + |w|)−L−1−dαedw

� 1

|y|L+α
,

provided we choose 2m > L+ α and |y| � 1 sufficiently large. In particular, we may find that

|E1(y)| ≤ |cα|
5|y|L+α

.

Let us now consider E2, (2.3.6). We have that

|E2(y)| =

∣∣∣∣∣
∫
|y−w|>ε|y|

χ̂(y − w)(1− a0(w))cα
1

|w|L+α
dw

∣∣∣∣∣
.m

∣∣∣∣∣
∫
|y−w|>ε|y|

|y − w|−m 1

|w|L+α
dw

∣∣∣∣∣
.

∣∣∣∣∣
∫
|y−w|>ε|y|

(ε|y|)−m 1

|w|L+α
dw

∣∣∣∣∣
. (ε|y|)−m,

� |y|−L−α,

so that

|E2(y)| ≤ |cα|
5|y|L+α

,

provided we choose m > L+ α and y sufficiently large, dependent on ε.
Let us now consider E4, (2.3.8). We see that, by choosing m ≥ L+ 1,

|E4(y)|

.m
1

|y|L+α

∫
|y−w|>ε|y|

(1 + |y − w|)−mdw

.ε
1

|y|L+α+1
.

In particular, we have that

|E4(y)| ≤ |cα|
5|y|L+α

,

provided we choose y large enough depending on ε.
This completes the proof.
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The two main aspects of our analysis in Part I concern whether mΨ,α ∈ Mp and whether
m̌Ψ,α ∈ Lp. In particular, we consider this question for surfaces in the class S (Definition 1.0.2).
However, in practice, it is useful to restrict our attention to the class S0 and we will use the
following lemma to do so.

Lemma 2.3.2. For functions Ψ graphing Γ ∈ S, i.e. satisfying the spanning assumption
(1.0.7), there exists an invertible matrix R and a function Ψ̃ = ΨR = (ψ̃1, . . . , ψ̃L̃, 0, . . . , 0)

which graphs Γ̃ ∈ S0.

Proof. Recall that dL̃ was defined to be the smallest M such that

L̃ = dim span
{
ψMj ; j = 1, . . . , L

}
holds. Here ψMj (t) :=

∑M
l=0

ψ
(l)
j (0)

l! tl is a Taylor approximation of ψj . Consider the dL̃ × L
matrix MΨ whose columns are given by the vectors(

ψ′j(0), . . . , ψ
(dL̃)
j (0)

)t
,

for 1 ≤ j ≤ L. Using the spanning assumption L̃ = dim span{ψdL̃1 , . . . , ψ
dL̃
L }, from (1.0.7), we

find the following. Applying a sequence of elementary column elimination operations, we see
that there exists an L× L invertible matrix R, with

MΨR = MΨ̃,

where MΨ̃ is in reduced column echelon form. Furthermore, MΨ̃ is the matrix corresponding

to function Ψ̃ = (ψ1, . . . , ψL)R =
(
ψ̃1, . . . , ψ̃L

)
, i.e. the columns of MΨ̃ are given by

(
ψ̃′j(0), . . . , ψ̃

(dL̃)
j (0)

)t
.

We see that the functions ψ̃L̃+1, ψ̃L̃+2, . . . , ψ̃L are 0, which is again a consequence of the spanning

assumption 1.0.7. For the remaining ψ̃j , since the corresponding matrix is in reduced column

echelon form with rank L̃, we have that there exist d1 < d2 < . . . < dL̃ such that ψ̃
(dj)
j (0) = 1,

for 0 ≤ l ≤ dL̃ with l < dj , and, for j′ > j, ψ̃
(dj′ )

j (0) = 0. It is then a consequence of Taylor’s

theorem that Ψ̃ describes an element Γ̃ ∈ S0.
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Chapter 3

Fourier restriction

It is well known that the Bochner-Riesz conjecture is connected to another fundamental area
of Euclidean harmonic analysis: the Fourier restriction problem. In this context, the problem
concerns the precise Lp(RN )→ Lq(Γ, σΓ) mapping properties of the restriction operator Rf =

f̂ |Γ, where σΓ denotes surface measure on Γ. Even in the original setting of Γ = SN−1, as
proposed by Stein in the mid 1960’s, the Fourier restriction problem is unresolved for N ≥ 3.
In this chapter, we introduce the Fourier restriction problem and its relation to the Bochner-
Riesz conjecture. In particular, in Section 3.3, we show that sharp Bochner-Riesz estimates
follow from restriction estimates.

Progress with the Bochner-Riesz conjecture has historically paralleled progress with the
restriction conjecture. Tao established that the Bochner-Riesz conjecture implies the restriction
conjecture on the sphere, [Tao99]; the table contained therein also outlines some of the parallel
progress in these two areas.

It is well known that sharp Lp estimates for Bochner-Riesz multiplier operators, TmΨ,α
,

follow from L2 Fourier restriction estimates for Γ;(∫ ∣∣∣f̂(ζ)
∣∣∣2 φΓ(ζ)dσΓ

) 1
2

≤ C‖f‖Lq(RN ). (3.0.1)

The implication that restriction implies sharp Bochner-Riesz estimates and surrounding ideas
date back to Fefferman’s thesis, where the analysis is for the sphere Γ = SN−1; see [Fef70].

In practice, we will work with local restriction estimates at small scales. We use a function
Ψ which, after a rotation and translation graphs a small section of Γ chosen such that Ψ(0) = 0
and ∇Ψ(0) = 0. The relavant local restriction estimate is(∫ ∣∣∣f̂(ξ,Ψ(ξ))

∣∣∣2 φ(ξ)dξ

) 1
2

≤ C‖f‖Lq(RN ). (3.0.2)

Recall that we defined mΓ,α only for α > 0. For varieties Γ of arbitrary codimension we
have the following result of G. Mockenhoupt, [Moc90].

Theorem 3.0.1. Suppose that Γ ⊂ RN is a smooth surface and the restriction inequality (3.0.1)
holds. Then, for 1 < p ≤ q or q′ ≤ p <∞, the Bochner-Riesz multiplier mΓ,α defined in (1.0.2)
with α > 0 defines a multiplier operator TmΓ,α

which is bounded on Lp for

α > (n+ L)

∣∣∣∣1p − 1

2

∣∣∣∣− L

2
.

We extend this result to the case of smooth surfaces Γ ⊂ RN which are contained in a
proper affine subspace of RN . In this case, there may only be a restriction estimate in a
suitable subspace. Suppose that Γ ⊂ P for some affine subspace P of dimension Ñ . We
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consider Γ̃ ⊂ RÑ to be the corresponding embedding and consider the L2 restriction inequality(∫ ∣∣∣f̂(ζ)
∣∣∣2 φΓ̃(ζ)dσΓ̃

) 1
2

≤ C‖f‖Lq(RÑ ), (3.0.3)

where σΓ̃ is the surface measure on Γ̃ ⊂ RÑ and φΓ̃ = φΓ|P is the restriction of φΓ to P .

Theorem 3.0.2. Let Γ ⊂ RN be a smooth surface such that Γ ⊂ P for some proper affine

subspace P , which is of dimension Ñ . Let Γ̃ be the corresponding embedding of Γ into RÑ .

Suppose that the Lq
(
RÑ
)
→ L2(Γ̃, σΓ̃) restriction inequality (3.0.3) holds. Then, for 1 < p ≤ q

or q′ ≤ p < ∞, the Bochner-Riesz multiplier mΓ,α given by (1.0.2) with α > 0 defines a
multiplier operator TmΓ,α

which is bounded on Lp if

α > (n+ L̃)

∣∣∣∣1p − 1

2

∣∣∣∣− L̃

2
.

Remark 3.0.3. In the case that L′ = 0, L̃ = 1 the condition

α > max

{∣∣∣∣∣Ñp − Ñ

2

∣∣∣∣∣− L̃

2
, 0

}

is the classical necessary condition in the Bochner-Riesz problem.

The following L2 restriction estimate was established by J. Hickman and J. Wright in the
algebraic case, [HW20]. Their proof has been extended here to cover the symmetric curves of
standard type and their surfaces of revolution. We provide a proof in Section 3.2.

Theorem 3.0.4. With Γ ∈ S0, graphed by Ψ with d1 such that d1 ≥ n(L̃ + 1), then the

restriction inequality (3.0.3) holds if q′

2 ≥ 1 + D
n , where D =

∑L̃
j=1 dj.

One expects this proposition to hold without the extra condition d1 ≥ n(L̃ + 1). For the
curves described by the equation (1.0.4) when n = 1 and L̃ = L, this is indeed the case; see
[DM87], which gives the corresponding restriction estimate.

3.1 A brief introduction to Fourier restriction

The restriction phenomenon is well studied in harmonic analysis. The question is whether,
for f ∈ Lp(Rn), the Fourier transform of f can meaningfully be restricted to a proper subset,
Γ ⊂ Rn.

When studying the restriction phenomenon we seek a priori inequalities of the form

‖f̂‖Lq(Γ,µ) ≤ C‖f‖Lp(Rn), for f ∈ S ,

for some choice of Borel measure µ. The restriction operator can then be defined as the
continuous extension of this operator.

For restriction to smooth hypersurfaces, it turns out that curvature plays a pivotal role. An
extreme example of the role of curvature in restriction estimates is that of a smooth surface
with a segment supported in an affine hyperplane. Testing extension estimates, which are dual
to restriction estimates, and using the fact the extension operator remains constant along fibres
normal to the surface shows that no non-trivial restriction estimates hold for these surfaces. We
present this analysis at Example 3.1.3. Similarly, for algebraic surfaces which are not totally
flat, the nature of the degeneracy of the surface plays a role in what restriction estimates are
possible.1

Definition 3.1.1. The extension operator, E, is defined a priori, i.e. on the class of Schwartz
functions, by g 7→ ĝσ, g ∈ S (Rn).

1Consider, for example, the condition (3.1.4), coming from our later Knapp example, as D increases for L = 1
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We now express the duality between restriction and extension, with a third dual formulation
of restriction estimates. For a proof, see, for instance, [SM13].

Proposition 3.1.2. In the following, σ is some measure of bounded variation supported in Rn.
The following three estimates are equivalent,

‖f̂‖L2(σ) ≤ A‖f‖Lp(Rn), f ∈ S (Rn), (3.1.1)

‖ĝσ‖Lp′ (Rn) ≤ A‖g‖L2(σ), g ∈ S (Rn), (3.1.2)

‖h ∗ σ̂‖Lp′ (Rn) ≤ A
2‖h‖Lp(Rn), h ∈ S (Rn). (3.1.3)

A well known case of the restriction phenomenon is the famous Tomas restriction theorem
[Tom75], which is an L2 restriction inequality for Sn−1 equipped with its surface measure:

‖f̂‖L2(SN−1) ≤ ‖f‖Lp(RN ),

for 1 ≤ p < 2N+2
N+3 . The inequality was extended to include the endpoint p = 2N+2

N+3 by Stein,
with a proof using analytic interpolation. Critical these proofs is the non-vanishing Gaussian
curvature of the sphere, which leads to a certain order of decay in the Fourier transform of the
surface measure. In particular, the range of valid Lp exponents is determined exactly by the
order of decay.

As an extreme example, we now show how flat surfaces may satisfy no restriction estimates.

Example 3.1.3. For smooth surfaces Γ ⊂ P , where P is some affine hyperplane, no non-trivial
restriction estimate to Γ holds. In particular, the only L2 restriction estimate that holds to Γ,
with respect to (localised) surface measure, is the L1 → L2(σΓ) restriction estimate. To see this,
we consider the corresponding extension estimate (see Proposition 3.1.2). We choose non-zero
f ∈ C∞c (RN ) with supp f ⊂ P such that, after a rotation and translation, Γ is expressible as the

graph of a function Ψ(ξ) =
(

Ψ̃(ξ), 0, . . . , 0
)

for |ξ| < δ. The corresponding extension estimate

we consider is
‖Ef‖Lq(RN ) . ‖f‖L2(RN ,σΓ) ,

where

Ef(x, y, z) =

∫
|ξ|<δ

e2πi(x,y,z)·(ξ,Ψ(ξ))f(ξ)
(√

1 + |∇Ψ(ξ)|2
)
dξ.

Now we observe that, for all z′ and z,

Ef(x, y, z) = Ef(x, y, z′),

since (x, y, z)·
(
ξ, Ψ̃(ξ), 0, . . . , 0

)
= (x, y, z′)·

(
ξ, Ψ̃(ξ), 0, . . . , 0

)
. Thus we have that the extension

operator (applied to f) is constant along fibres normal to the surface. As such, the only way
that ‖Ef‖Lq(RN ) < ∞ is that Ef = 0 or q = ∞. In the case that q < ∞, we thus find that E
is the zero operator, which is a contradiction.

Another example for the role of curvature in restriction is given by the model surfaces
discussed in the introduction. Let

Γ =
{

(ξ, |ξ|d1 , . . . , |ξ|dL̃ , 0); |ξ| < 4δ
}
⊂ Rn × RL̃ × RL

′
,

whose graphing function Ψ is given by (1.0.4) with d1 < d2 < . . . < dL̃ even. Then a necessary
condition for the restriction inequality (3.0.3) to hold is

q′

2
≥ 1 +

D

n
, (3.1.4)

where D =
∑L̃
j=1 dj . This follows from a standard Knapp example, which we now provide.

Example 3.1.4. To test the restriction inequality, we consider a one parameter family of
1 ≥ gε ≥ 0 with gε ∈ C∞c (Rn) and supp gε ⊂ B(0, ε) with gε(ξ) = 1 for |ξ| ≤ ε/2. We consider
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the extension formulation of the estimate (see Proposition 3.1.2) and test whether the inequality

‖Egε‖Lq′ (RÑ ) ≤ C ‖gε‖L2(φ(ξ)dξ) (3.1.5)

holds. One can easily see that, in the region where |yj | � ε−dj for each j and |x| � ε−1,
|Egε(x, y)| ∼ 1. One can thus see, since the phase is near vanishing for (x, y) in the region just
mentioned, that

ε
− 1
q′

(
n+
∑L̃
j=1 dj

)
. ‖Egε‖Lq′ .

We also have that
‖gε‖L2(φ(ξ)dξ) ∼ ε

−n2 .

Considering the inequality (3.1.5) for gε as ε→ 0, we obtain a necessary condition

q′

2
≥ 1 +

D

n
,

as desired.

Regarding the Fourier restriction problem for (a neighbourhood of the origin of) the moment
curve,

(t, t2, t3, . . . , td),

there is the initial result of Drury, [Dru85], which tells us that the restriction inequality (3.0.1)
holds for q′ ≥ d(d + 1). In the field, it was not known that this result was sharp until the
discovery of an earlier publication, [ACK79], where the necessary condition q′ ≥ d(d + 1) had
been established.

3.2 An L2 restriction theorem for radial surfaces of stan-
dard type

In this section, we present a proof of Theorem 3.0.4, the statement of which is recalled below.
The proof is due to Jonathan Hickman and Jim Wright, [HW20]. We work along the lines of
the classical fractional integration proof of restriction and make use of the weak-type Young’s
inequality, Theorem 0.0.3

Let us recall the statement of Theorem 3.0.4, which is an L2 restriction result for surfaces
Γ ∈ S0 (Definition 1.0.1).

Theorem. With Γ ∈ S0, graphed by Ψ with such that d1 ≥ n(L̃ + 1), then (3.0.3) holds if
q′

2 ≥ 1 + D
n , where D =

∑L̃
j=1 dj.

Proof. To apply the weak-type Young’s inequality it will suffice to verify the following decay
on the measure µ

|µ̂(x, y)| ≤ C min
j=1,...,L

|yj |
− n
dj . (3.2.1)

For now, let us suppose that the estimate (3.2.1) holds and see how the result follows. We later
return to (3.2.1), which we obtain as a corollary of Theorem 5.0.5. We now work to establish
the estimate

‖µ̂ ∗ f‖Lp′ ≤ C‖f‖Lp ,

which, by Proposition 3.1.2, is equivalent to Lp → L2 Fourier restriction. Indeed, let us consider
the convolution

µ̂ ∗ f(x, y) =

∫
Rn
Ky−z ∗ fz(x)dz,

where Ky(x) = µ̂(x, y) and fz(x) = f(x, z). The bounds

‖Ky ∗ g‖L2(Rn) ≤ C‖g‖L2(Rn)

and ‖Ky ∗ g‖L∞(Rn) ≤ C min
j=1,...,L

|yj |
− n
dj ‖g‖L1(Rn)
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are easily verified. The first follows because g 7→ Ky ∗ g is a Fourier multiplier operator, with
multiplier m(ξ) = φ(ξ)e2πiy·Ψ(ξ), whose multiplier is uniformly bounded in y. The second is
obtained by a direct application of Young’s inequality and the L∞ bound

‖Ky‖L∞(Rn) ≤ C min
j=1,...,L

|yj |
− n
dj .

For p ∈ [1, 2] we may interpolate, using Riesz-Thorin interpolation (Theorem 0.0.2), between
the L1 → L∞ and L2 → L2 bounds. For p ∈ [1, 2], by choosing θ ∈ [0, 1] with 1

p = 1−θ
1 + θ

2 ,

that is 1− θ = 2
p − 1, we see that

‖Ky ∗ g‖Lp′ (Rn) ≤ C
(

min
j=1,...,L

|yj |
− n
dj

) 2−p
p

‖g‖Lp .

Now, one can easily verify that
(

minj=1,...,L |yj |
− n
dj

) 2−p
p ∈ Lr,∞(RL̃) for r = p

2−p
D
n . Given

this, we may apply Minkowski’s inequality and the weak-type Young’s inequality to see that

‖µ̂ ∗ f‖Lp′ =

∥∥∥∥∥
∥∥∥∥∫

Rn
Ky−z ∗ fz(x)dz

∥∥∥∥
Lp
′
x (Rn)

∥∥∥∥∥
Lp
′
y (RL̃)

≤
∥∥∥∥∫

Rn
‖Ky−z ∗ fz(x)‖

Lp
′
x
dz

∥∥∥∥
Lp
′
y

≤ C

∥∥∥∥∥∥∥
∫
Rn

∣∣∣∣∣
(

min
j=1,...,L

|yj − zj |
− n
dj

) 2−p
p

∣∣∣∣∣
− n
D ( 2−p

p )

‖fz‖Lp dz

∥∥∥∥∥∥∥
Lp
′
y

≤ C ‖f‖Lp(RN ) ,

provided 1 + 1
p′ = 1

p + n
D

(
2−p
p

)
, i.e. 2

p′ = 1 + D
n . By interpolation with the trivial L1 → L∞

estimate, ‖f ∗ µ̂‖∞ ≤ ‖f‖1‖µ̂‖∞ ≤ ‖f‖1µ(RN ), we have that f 7→ f ∗ µ̂ is bounded from Lp to
Lp
′

for all 2
p′ ≥ 1 + D

n .

To prove the key decay estimate (3.2.1) we perform polar integration to see that

µ̂(x, y) =

∫ ∫
e2πi(rx·ω+

∑L̃
j=1 yjψj(r))φ(rω)rn−1drdσ(ω).

The essential estimate is given by Theorem 5.0.52, which gives the bound∣∣∣∣∫ e2πi(rx·ω+
∑L̃
j=1 yjψj(r))φ0(r)rn−1dr

∣∣∣∣ ≤ C min
1≤j≤L

|yj |
− n
dj . (3.2.2)

Integrating over the sphere, we then find that

|µ̂(x, y)| ≤ C ′ min
j=1,...,L

{
1

|yj |
n
dj

}
,

which is all that we require.

3.3 Restriction implies Bochner-Riesz

In this section, we work to establish Theorem 3.0.2. This result concerns the Lp-boundedness
of a Bochner-Riesz operators defined relative to certain smooth surfaces. Under the assumption

2Note that Theorem 5.0.5 uses slightly different notation: it is expressed in terms of (x, y) ∈ R× RL, rather

than (x · ω, y) ∈ R× RL̃.
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that an appropriate restriction estimate holds with respect to a smooth surface Γ, we establish
boundedness of the corresponding operator.

The surfaces Γ we consider may be contained in a proper affine subspace P ⊂ RN of
dimension Ñ < N . In this case, a rotation and translation are all that is required to ensure

that Γ ⊂ RÑ × {0} ⊂ RÑ × RL′ . Henceforth, we may suppose without loss of generality that
Γ is expressed in this way.

We approach the study of the Bochner-Riesz operator defined with respect to these surfaces
locally, considering segments ΓΨ which, after a translation and change of coordinates, give a
section of Γ as a graph. We may additionally choose the graphing function Ψ = (ΨL̃, 0) ∈
RL̃×RL′ such that ΨL̃(0) = 0 and ∇ΨL̃(0) = 0. This notation represents a slight change from
previous sections, as we here need to work without reference to the 0 components, and our

ΨL̃ : Rn → RL̃ corresponds to the first L̃ non-vanishing coordinates.
In this section we prove Theorem 3.0.2, whose statement we now recall. The theorem is a

corollary of Theorem 3.3.2, the graphical multiplier reduction, Lemma 2.2.3, and Lemma 3.3.1,
which is a restriction reduction.

Theorem. Let Γ ⊂ RN be a smooth surface such that Γ ⊂ P for some proper affine subspace

P , which is of dimension Ñ . Let Γ̃ be the corresponding projection of Γ onto RÑ . Suppose

that the Lq
(
RÑ
)
→ L2(Γ̃, σΓ̃) restriction inequality (3.0.3) holds. Then, for 1 < p ≤ q or

q′ ≤ p <∞, the Bochner-Riesz multiplier mΓ,α given by (1.0.2) with α > 0 defines a multiplier
operator TmΓ,α

which is bounded on Lp if

α > (n+ L̃)

∣∣∣∣1p − 1

2

∣∣∣∣− L̃

2
.

Before turning to Theorem 3.3.2, let us show how the local restriction to fine segments of
the surface, are related to the restriction estimate appearing in Theorem 3.0.2.

Lemma 3.3.1. The Lp(RÑ )→ L2(Γ̃, φΓ̃(ζ)dσΓ̃) restriction inequality∣∣∣∣∫ ∣∣∣f̂(ζ)
∣∣∣2 φΓ̃(ζ)dσΓ̃(ζ)

∣∣∣∣ 1
2

≤
∣∣∣∣∫

RÑ
|f(ζ)|p dζ

∣∣∣∣ 1
p

holds if and only if the local restriction inequalities∣∣∣∣∫ ∣∣∣f̂(ξ,ΨL̃(ξ))
∣∣∣2 φ(ξ)dξ

∣∣∣∣ 1
2

≤
∣∣∣∣∫

RÑ
|f(ζ)|p dζ

∣∣∣∣ 1
p

,

where φ is given as in Lemma 2.2.3 for all ΨL̃ which, after a rotation and translation, graphs

a segment of Γ̃ ∩ suppφΓ̃(·, 0).

Proof. Let us first suppose that we have the local restriction inequalities. Recall that we chose
φ ∈ C∞c (Rn) with suppφ ⊂ Bn(0, δ) for some suitable small δ. We now take a partition of
unity {χj ; j ∈ J }, where each χj(ζ) = 1 for ζ ∈ B(ζj , δ/4) and suppχj ⊂ B(ζj , δ/2) for finitely

many ζj ∈ Γ̃ ∩ suppφΓ̃, and
∑
χj(ζ) = 1 for ζ ∈ Γ̃ ∩ suppφΓ̃. We see that, for ζ ∈ Γ̃,

f̂(ζ) =
∑

f̂j(ζ),

where fj = f ∗ χ̌j . As discussed in Section 2.2 to each χj is a linear map, Tj , which is the

combination of a rotation and translation, such that TjB(ζj , 4δ) ∩ Γ̃ can be expressed as the
graph of a function ΨL̃,(j) with ΨL̃,(j)(0) = 0 and ∇ΨL̃,(j)(0) = 0. For ξ ∈ suppφ, we see that

|∇ΨL̃,(j)(ξ)| <
1
2 . We see that

∣∣∣∣∣∣∣
∫ ∣∣∣∣∣∣
∑
j

f̂j(ζ)

∣∣∣∣∣∣
2

φΓ̃(ζ)dσΓ̃(ζ)

∣∣∣∣∣∣∣
1
2
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.
∑
j

∣∣∣∣∫ ∣∣∣f̂j(ζ)
∣∣∣2 φΓ̃(ζ)dσΓ̃(ζ)

∣∣∣∣ 1
2

.
∑
j

∣∣∣∣∫ ∣∣∣f̂j(T−1
j ζ)

∣∣∣2 φΓ̃(T−1
j ζ)dσΓ̃j

(ζ)

∣∣∣∣ 1
2

.
∑
j

∣∣∣∣∫ ∣∣∣f̂j(T−1
j (ξ,ΨL̃,(j)(ξ)))

∣∣∣2 φΓ̃(T−1
j (ξ,ΨL̃,(j)(ξ))

√
1 + |∇ΨL̃,(j)(ξ)|2dξ

∣∣∣∣ 1
2

.
∑
j

∣∣∣∣∫ ∣∣∣f̂(T−1
j (ξ,ΨL̃,(j)(ξ)))

∣∣∣2 φ(ξ)dξ

∣∣∣∣ 1
2

.
∑
j

∥∥∥F−1
(
f̂(T−1

j ·)
)∥∥∥

Lp(RÑ )

∼ ‖f‖Lp(RÑ ) .

The reverse implication is simpler, after a rotation and translation T , we apply Hölder’s
inequality to see that (∫

|f̂(ξ,ΨL̃(ξ))|2φ(ξ)dξ

) 1
2

.

(∫
|f̂(ξ,ΨL̃(ξ))|2φΓ̃(T−1(ξ,ΨL̃(ξ))

√
1 + |∇ΨL̃(ξ)|2dξ

) 1
2

.

(∫
|f̂(T (ζ))|2φΓ̃(ζ)dσΓ̃

) 1
2

. ‖f‖Lp(RÑ ) .

Theorem 3.3.2. Provided δ is chosen sufficiently small, we have the following. Let

ΓΨ = {(ξ,ΨL̃(ξ), 0) ; |ξ| < 4δ ∈ Rn} ⊂ Rn × RL̃ × RL
′

and
Γ̃ΨL̃

= {(ξ,ΨL̃(ξ)) ; ξ ∈ Rn, |ξ| < 4δ} ⊂ Rn × RL̃

be the corresponding projection onto RÑ . Suppose that, for p̃ = max{p, p′}, the L2 → Lp̃

extension inequality (∫ ∫
|Eg(x, y)|p̃ dxdy

) 1
p̃

≤ C
(∫
|g(ξ)|2 φ(ξ)dξ

) 1
2

extension holds, where

Eg(x, y) =

∫
e2πi(x,y)·(ξ,ΨL̃(ξ))g(ξ)φ(ξ)dξ.

Then the Bochner-Riesz multiplier m = mΨ,α with

m(ζ) = |η −Ψ(ξ)|αφ(ξ)χ(η −Ψ(ξ)),

is an element of Mp for

α > max

{∣∣∣∣∣Ñp − Ñ

2

∣∣∣∣∣− L̃

2
, 0

}
.

Remark 3.3.3. Critical to the behaviour of the operator that we are considering is the os-
cillation of the kernel, for large |y| this oscillation is captured by the k(x, y) term. We must
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carefully analyse the effect of this oscillation. In particular, we will utilise extension estimates
for an (x, y) region where the mass of the kernel is concentrated.

Proof. Provided δ is chosen small enough, we have that

‖ΨL̃‖C1(suppφ)
≤ 1

2L
. (3.3.1)

We first prove the result for p ≥ 2. The full range of estimates is then a consequence of
duality, Lemma 2.1.1.

By a kernel decomposition, we work to isolate the main piece of the operator in what follows.
We start with a dyadic partition of the kernel, in positive dyadic scales of |(y, z)|. Let us recall
that K(x, y, z) = A(y, z)k(x, y), where

k(x, y) =

∫
e2πi(x·ξ+y·ΨL̃(ξ))φ(ξ)dξ

and

A(y, z) =

∫ ∫
e2πi(y,z)·(η,λ)|(η, λ)|αχ(η, λ)dηdλ.

We let ψ0 ∈ C∞c (RL) with ψ0(y, z) = 1 for |(y, z)| ≤ 1
2 , ψ0(y, z) = 0 for |(y, z)| ≥ 1, and, for

l ≥ 1, define
ψl(y, z) := ψ0(2−l(y, z))− ψ0(2−l+1(y, z))

so that
∑
l≥0 ψl(y, z) = 1 for all (y, z) ∈ RL. We can write, for l ≥ 1, ψl(y, z) = ψ(2−l(y, z)),

where
ψ(y, z) = ψ0(y, z)− ψ0(2(y, z)).

It is seen that suppψ ⊂ B(0, 1)\B(0, 1
4 ).

We write
K(x, y, z) =

∑
l≥0

ψl(y, z)A(y, z)k(x, y) =
∑
l≥0

Kl(x, y, z).

We define the operators Tl by
Tlf = f ∗Kl.

We first consider the operator T0. We set ψ̃0(y, z) = A(y, z)ψ0(y, z). We will insert a cutoff
function, χ0, in the first argument of the kernel K0:

K0(x, y, z) = ψ̃0(y, z)k(x, y)

= K1
0 (x, y, z) +K2

0 (x, y, z),

where

K1
0 (x, y, z) = ψ̃0(y, z)

(
χ0(x)

∫
e2πi(x·ξ+y·ΨL̃(ξ))φ(ξ)dξ

)
,

K2
0 (x, y, z) = ψ̃0(y, z)

(
(1− χ0(x))

∫
e2πi(x·ξ+y·ΨL̃(ξ)))φ(ξ)dξ

)
.

For (x, y, z) ∈ suppK2
0 , provided χ0 is chosen appropriately, the phase appearing in the integral

expansion of k(x, y) has no critical points in the integrand’s support. We may choose smooth
χ0 with

1 ≥ χ0 ≥ 0 with χ0(x) = 1 for |x| ≤ 1 and χ0(x) = 0 for |x| ≥ 2. (3.3.2)

For |x| ≥ |y|, which is true for the x and y in the support of K2
0 , where we know 1 ≤ |x|

and |y| ≤ 1, we show that

|k(x, y)| =
∣∣∣∣∫ e2πi(x·ξ+y·ΨL̃(ξ))φ(ξ)dξ

∣∣∣∣ ≤ CM,ΨL̃
(1 + |x|)−M . (3.3.3)

This follows by an application of the non-stationary phase lemma. Indeed, setting Φ(ξ) =
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x
|x| · ξ + y

|x| ·ΨL̃(ξ) we have

|k(x, y)| =
∣∣∣∣∫ e2πi|x|Φ(ξ)φ(ξ)dξ

∣∣∣∣ ,
with |∇Φx,y(ξ)| ≥

∣∣∣ x|x| ∣∣∣ − ∣∣∣ y|x| ∣∣∣ |∇ΨL̃(ξ)| ≥ 1 − L‖ΨL̃‖C1(suppφ) ≥ 1
2 , using (3.3.1), for ξ ∈

suppφ for those x, y in the support of K2
0 . For (x, y, z) ∈ suppK2

0 , we also have the control
‖Φ‖CM+1(suppφ) .M 1 + ‖ΨL̃‖CM+1(suppφ) and ‖φ‖CM .M 1 so that, by an application of the
non-stationary phase lemma, Lemma 0.0.1, together with the trivial estimate |k(x, y)| ≤ C, we
have (3.3.3).

We define the operators T 1
0 and T 2

0 by

T 1
0 f(x, y) = f ∗K1

0 (x, y), T 2
0 f(x, y, z) = f ∗K2

0 (x, y, z).

By choosing M = N + 1, we then see that

‖K2
0‖1 ≤ C. (3.3.4)

Therefore, by Young’s inequality, ‖T 2
0 f‖p ≤ C‖f‖p.

The operator f 7→ K1
0 ∗ f is also given by convolution with an L1 kernel K1

0 . Indeed,

‖K1
0‖1 ≤ C, (3.3.5)

since K1
0 is bounded and compactly supported. By Young’s inequality it follows that ‖T 1

0 f‖p ≤
‖K1

0‖1‖f‖p. By the triangle inequality we then have that ‖T0f‖p ≤ C‖f‖p.
We now consider the operators Tl, defined by convolution with the kernels Kl(x, y, z) =

A(y, z)ψl(y, z)k(x, y). We know that |A(y, z)| ≤ C|(y, z)|−L−α, so we write

A(y, z)ψl(y, z) = 2−l(L+α)
(

2l(L+α)ψl(y, z)A(y, z)
)

and define ψ̃l by
ψ̃l(y, z) = 2l(L+α)ψl(y, z)A(y, z).

We then have the L∞ bound

‖ψ̃l‖L∞ ≤ C2l(L+α) 1

2(l+1)(L+α)
=

C

2L+α
,

which is uniform in l. We wish to obtain operator bounds on f 7→ f ∗ Kl. To do so we will
find the operator bound for convolution with the kernel determined by k(x, y, z)ψ̃l(y, z) and
multiply the resultant bounds by 2−l(L+α).

We first carry out a rescaling, which will allow for a uniform treatment of operator pieces.
To find an appropriate rescaling we briefly suppose that A(y, z) = c

|(y,z)|L+α . In truth, A is

not homogoneous, but assuming it to be so will help us to identify the right rescaling. Under

this assumption we have that ψ̃l(y, z) = c2l(L+α)

|(y,z)|l(L+α)ψl(y, z). Most importantly, ψ̃l(y, z) =

ψhom(2−l(y, z)), where ψhom(y, z) := c
|(y,z)|L+αψ(y, z).

We look to find operator bounds for the operators Tl which are given by

Tlf(x, y, z) =

∫ ∫ ∫
ψ̃l(y − u, z − v)k(x− t, y − u)f(t, u, v)dtddudv

=

∫ ∫
ψhom(2−l(y − u, z − v))k(x− t, y − u)f(t, u, v)dtdudv.

Changing variables we find that
Tlf(x, y, z)

=

∫ ∫ ∫
ψhom(2−ly − u, 2−lz − v)k(2l(2−lx− t), 2l(2−ly − u))f(2lt, 2lu, 2lv)2l(n+L)dtdudv
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= 2l(n+L)T̃lf2l(2
−lx, 2−ly, 2−lz),

where

T̃lf(x, y, z) =

∫ ∫ ∫
ψhom(y − u, z − v)k(2l(x− t), 2l(y − u))f(t, u, v)dtdudv

and f2l(t, u, v) = f(2lt, 2lu, 2lv).

Since
‖f

2l
‖Lp

‖f‖Lp = 2−
lN
p , we also see that

‖Tl‖Lp→Lp = sup
‖f‖Lp≤1

‖Tlf‖Lp = 2lN2
lN
p sup
‖f‖Lp≤1

‖T̃lf2l‖Lp

= 2lN sup

‖f
2l
‖Lp≤2

− lN
p

‖T̃l
(

2
lN
p f2l

)
‖Lp = 2lN‖T̃l‖Lp→Lp .

This reduces the problem to the study of the operators T̃l with kernels K̃l(t, u, v) = ψhom(u, v)k(2lt, 2lu).
We assumed that A(y, z) = c

|(y,z)|L+α . In truth, the relation obtained from such homoge-

neous A, ψ̃l(y, z) = ψhom(2−l(y, z)), does not hold. We indicate the required modifications. We

define ψl,h(y, z) := ψ̃l(2
l(y, z)) so that ψ̃l(y, z) = ψl,h(2−l(y, z)). It is seen that

suppψl,h ⊂ suppψ and ‖ψl,h‖L∞ ≤ C, (3.3.6)

hold uniformly in l. The above calculations may be repeated with the operator T̃l now rightly
given by

T̃lf(x, y, z) = K̃l ∗ f(x, y, z)

=

∫ ∫ ∫
ψl,h(y − u, z − v)k(2l(x− t), 2l(y − u))f(t, u, v)dtdudv. (3.3.7)

The bounds we now seek are those

‖T̃l‖Lp→Lp . Cl (3.3.8)

such that 2−l(L+α)2lNCl is summable over l ∈ N.
As in our treatment of T0, we begin with a kernel decomposition. We write

K̃l(x, y, z) = K̃1
l (x, y, z) + K̃2

l (x, y, z),

where

K̃1
l (x, y, z) := ψl,h(y, z)χ0(x)k(2lx, 2ly)

and K̃2
l (x, y, z) := ψl,h(y, z)(1− χ0(x))k(2lx, 2ly).

(3.3.9)

Here χ0 was defined at (3.3.2). So we now define the operators T̃ 1
l and T̃ 2

l by

T̃ 1
l f(x, y, z) = K̃1

l ∗ f(x, y, z), T̃ 2
l f(x, y, z) = K̃2

l ∗ f(x, y, z).

To analyse the operator piece corresponding with the kernel K̃2
l , we again make use of the

non-stationary phase lemma. Indeed, we expand

k(2lx, 2ly) =

∫
e2πi2l|x|Φx,y(ξ)φ(ξ)dξ,

where
Φx,y(ξ) =

x

|x|
· ξ +

y

|x|
·ΨL̃(ξ).

This phase factor, Φx,y, is exactly the same as we saw in the analysis of (3.3.3), where we used

the non-stationary phase lemma. We also know that |x| ≥ 1 and |y| ≤ 1 for (x, y, z) ∈ supp K̃2
l .
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For these, (x, y, z), we also have the control ‖Φx,y‖CM+1(suppφ) .M 1 + ‖ΨL̃‖CM+1(suppφ) and
‖φ‖CM (suppφ) .M 1. We then apply the non-stationary phase lemma, Lemma 0.0.1, which
gives the bound

|k(2lx, 2ly)| .M
1

(1 + |2lx|)M )
.

Recall from (3.3.6) that we have a uniform bound on ‖ψl,h‖L∞ ≤ C and we also know
suppψl,h = suppψ is compact so that

‖K̃2
l ‖L1 . 2−lM , (3.3.10)

provided M > n, where the constant is uniform in l. We choose M = N + 1 > Ñ . For such M

we also have that M > Ñ
p + n

2 . By Young’s Inequality, this gives

‖T̃ 2
l f‖Lp . 2−lM‖f‖Lp ≤ 2

−l
(
Ñ
p +n

2

)
‖f‖Lp . (3.3.11)

The operator T̃ 1
l is local. Indeed, we see that supp K̃1

l ⊂ suppχ0 × supp ψ̃0 ⊂ [−2, 2]n ×
[−1, 1]L. Let us now take a standard tiling of RN—up to a set of measure 0—by translates of an
open hypercube of width 100, we denote this tiling by Q. We also refer to the family of fattened
cubes Q∗, where each element of Q∗ has width 101 and corresponds to an element of Q with
the same centre. The family Q∗ forms a cover of RN and there exists a corresponding partition
of unity: there exist functions χQ ∈ C∞c (RN ) such that suppχQ ⊂ Q∗ and

∑
Q∈Q χQ = 1. For

each Q ∈ Q, we set fQ = f · χQ. We have that supp K̃1
l ∗ fQ ⊂ Q∗ + [−2, 2]n × [−1, 1]L ⊂ Q̃,

where Q̃ is the cube of width 105 which has the same centre as Q. The distance between the
centres of non-adjacent cubes Q is at least 200. As such, if Q1, Q2 ∈ Q are not adjacent, then
the functions T 1

0 (fQ1
) and T 1

0 (fQ2
) have disjoint support, contained in Q̃1 and Q̃2, respectively.

It follows that

‖K̃1
l ∗ f‖

p
p =

∥∥∥∥∥∥K̃1
l ∗

 ∑
Qj∈Q

fQj

∥∥∥∥∥∥
p

p

=

∥∥∥∥∥∥
∑
Qj∈Q

χ
Q̃j
K̃1
l ∗
(
fQj
)∥∥∥∥∥∥
p

p

(3.3.12)

.N
∑
Qj∈Q

∥∥∥K̃1
l ∗
(
fQj
)∥∥∥p
p
,

since finitely many cubes Q̃j overlap: those which correspond with adjacent Qj . In particular,

to show that
∥∥∥T̃ 1

l f
∥∥∥p
p
. Cpl ‖f‖pp it is sufficient to prove the inequality

∥∥∥T̃ 1
l fQj

∥∥∥p
Lp(Q̃j)

≤ Cpl ‖fQj‖
p
p

for functions fQj with supp fQj ⊂ Q∗j (⊂ Q̃j) coming from our partitionQ∗. For ease of notation,

henceforth in our analysis of T̃ 1
l we consider functions f = fQ, supported in some Q∗ ∈ Q∗. At

stages in the proof when the support becomes relevant we will replace f with fQ to make this
apparent.

The operator T̃ 1
l , which is local, corresponds (via our prior rescaling) with the most signifi-

cant portion of the kernel K at scale |(y, z)| ∼ 2l. In our analysis of this part of the operator,
we must consider the effect of the oscillation of the kernel carefully.

The appearance of the x variable away from the argument of k in the expression for K̃1
l (x−

t, y−u, z−v), (3.3.9), would present a technical difficulty preventing the application of extension
estimates if we were to simply proceed with the proof. However, we have already established
that this piece of the operator is local and now require only local estimates. To avoid the
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aforementioned technical difficulty, we write

K̃1
l (x− t, y − u, z − v) = ψl,h(y − u, z − v)χ0(x− t)k(2l(x− t), 2l(y − u))

= K̃11
l (x− t, y − u, z − v) + K̃12

l (x− t, y − u, z − v),

where
K̃11
l (x, y, z) :=ψl,h(y, z)k(2lx, 2ly)

and K̃12
l (x, y, z) :=ψl,h(y, z) (χ0(x)− 1) k(2lx, 2ly).

We define T̃ 11
l f(x, y, z) = f ∗ K11

l (x, y, z) and T̃ 12
l f(x, y, z) = f ∗ K12

l (x, y, z). Note that

K̃12
l = −K̃2

l and we previously established the L1 bound (3.3.10) using the non-stationary
phase lemma, which may be equivalently stated

‖K̃12
l ‖1 . 2−lM ,

with M = N + 1 > Ñ
p + n

2 chosen as previously. By Young’s inequality, this shows that∥∥∥T̃ 12
l fQj

∥∥∥
Lp(Q̃j)

. 2−lM‖fQj‖p. (3.3.13)

For any choice Q ∈ Q, we will apply Fubini’s Theorem to analyse the operator fQ 7→
(fQ)∗ K̃11

l . We know that fQ is supported in the cube Q∗. We here write, f = fQ, emphasising
Q wherever it becomes relevant,

K̃11
l ∗ f(x, y, z)

=

∫
k(2l(x− t), 2l(y − u))ψl,h(y − u, z − v)f(t, u, v)dµRN (t, u, v)

=

∫ (∫
e2πi(2l(x−t)·ξ+2l(y−u)·ΨL̃(ξ))φ(ξ)dξ

)
ψl,h(y − u, z − v)f(t, u, v)dµRN (t, u, v)

=

∫ (∫
e2πi(2lx·ξ+2l(y−u)·ΨL̃(ξ))

(∫
e−2πi(2lt·ξ)f(t, u, v)dt

)
φ(ξ)dξ

)
ψl,h(y−u, z−v)dµRL(u, v)

=

∫ (∫
e2πi(2lx·ξ+2l(y−u)·ΨL̃(ξ))f̂u,v(2

lξ)φ(ξ)dξ

)
ψl,h(y − u, z − v)dµRL(u, v),

where fu,v(t) = f(t, u, v).

Let us define f lu,v(t) = 2−lnfu,v(2
−lt) so that F

(
f lu,v

)
(ξ) = f̂u,v(2

lξ). We then see that

K̃11
l ∗ f(x, y, z) =

∫ ∫
E(f̂ lu,v)(2

lx, 2l(y − u))ψl,h(y − u, z − v)dudv,

where, according with Lemma 3.3.1, the extension operator is given by

Eg(x, y) =

∫
e2πi(x·ξ+y·ΨL̃(ξ))g(ξ)φ(ξ)dξ.

The expression ‖T̃ 11
l f‖p

Lp(Q̃)
may now be bounded. We denote by Pz the orthogonal pro-

jection onto the (x, y)-plane. We use Minkowski’s inequality, then the bounded extension of
Q̃ in the z-coordinate, then repeatedly apply Hölder’s inequality, together with an L2 → Lp

extension estimate and Plancherel’s identity to find that

‖T̃ 11
l f‖p

Lp(Q̃)

=

∫
Q̃

∣∣∣∣∫ E
(
f̂ lu,v

)
(2lx, 2l(y − u))ψl,h(y − u, z − v))dµRL(u, v)

∣∣∣∣p dµRN (x, y, z)
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.

(∫ (∫
Q̃

∣∣∣E (f̂ lu,v) (2lx, 2l(y − u))
∣∣∣p dµRN (x, y, z)

) 1
p

dµRL(u, v)

)p

.

∫ (∫
Pz(Q̃)

∣∣∣E (f̂ lu,v) (2lx, 2l(y − u))
∣∣∣p dµRÑ (x, y)

) 1
p

dµRL(u, v)

p

. 2−lÑ

∫ (∫
2lPz(Q̃)

∣∣∣E (f̂ lu,v) (x, y − 2lu)
∣∣∣p dµRÑ (x, y)

) 1
p

dµRL(u, v)

p

. 2−lÑ

(∫ (∫ ∣∣∣f̂ lu,v(ξ)∣∣∣2 φ(ξ)dξ

) 1
2

dµRL(u, v)

)p

. 2−lÑ

(∫ (∫ ∣∣∣f̂ lu,v(ξ)∣∣∣2 dξ) 1
2

dµRL(u, v)

)p

= 2−lÑ

(∫ (∫ ∣∣2−lnf(2−lt, u, v)
∣∣2 dt) 1

2

dµRL(u, v)

)p

= 2−lÑ2−
lnp
2

(∫ (∫
|fQ(t, u, v)|2 dt

) 1
2

dµRL(u, v)

)p

. 2−lÑ2−
lnp
2

(∫
|fQ(t, u, v)|2 dµRN (t, u, v)

) p
2

. 2−lÑ2−
lnp
2

∫
|f(t, u, v)|p dµRN (t, u, v). (3.3.14)

Combining the bounds (3.3.13) and (3.3.14), since we chose M = N + 1 > Ñ
p + n

2 , we find that

‖T̃ 1
l ‖Lp(Q∗)→Lp(Q̃) ≤ ‖T̃ 11

l ‖Lp(Q∗)→Lp(Q̃) + ‖T̃ 12
l ‖Lp(Q∗)→Lp(Q̃) . 2−

lÑ
p 2−

ln
2 .

Since T̃ 1
l is local, we thus have that

‖T̃ 1
l ‖Lp→Lp . 2−

lÑ
p 2−

ln
2 .

In (3.3.11) we chose M = N + 1 > Ñ
p + n

2 so we may now find, for l ∈ N, that∥∥∥T̃l∥∥∥
Lp→Lp

≤
∥∥∥T̃ 1

l

∥∥∥
Lp→Lp

+ ‖T̃ 2
l ‖Lp→Lp . 2−

lÑ
p 2−

ln
2 .

Thus we have the bound Cl we were seeking for (3.3.8). By the rescaling, we see that

‖Tl‖Lp→Lp . 2−l(L+α)2lN
(
‖T̃ 1

l ‖Lp→Lp + ‖T̃ 2
l ‖Lp→Lp

)
. 2−l(L+α)2lN2

−lÑ
p 2−

ln
2

= 2−l(L̃+α−Ñ(1− 1
p )+n

2 ).

This expression is summable in l precisely when L̃+α−Ñ(1− 1
p )+ n

2 = L̃+α−Ñ(1− 1
p )+ Ñ−L̃

2 =
L̃
2 + α+ Ñ

p −
Ñ
2 > 0, i.e. for α > Ñ

2 −
Ñ
p −

L̃
2 .

By Lemma 2.1.1, TmΨ,α
is self dual. For p > 2 we thus have that mΨ,α ∈ Mp for α >

Ñ
(

1− 1
p

)
− Ñ

2 −
L̃
2 = Ñ

2 −
Ñ
p −

L̃
2 . This concludes the proof that, provided we have the

appropriate L2 → Lp̃ extension estimate and α > max
{∣∣∣ Ñ2 − Ñ

p

∣∣∣− L̃
2 , 0
}

, that mΨ,α ∈ Mp.
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Chapter 4

A test for Lp→ Lp boundedness

To determine the sharpness of the above results on the p and α for which mΓ,α ∈Mp, we carry
out a natural test for the Lp → Lp boundedness of the corresponding operator. In this section,
for the class of surfaces S defined in the introduction (Definition 1.0.1), we determine precisely
the range of p exponents for which KΨ,α ∈ Lp.

To recall, a model for the surfaces we consider in this context are those considered in
[Whe20]. These are given as graphs by{(

ξ, |ξ|d1 , |ξ|d2 , . . . , |ξ|dL
)
∈ Rn × RL; |ξ| < δ

}
and {(

ξ, |ξ|d1 , |ξ|d2 , . . . , |ξ|dL̃ , 0
)
∈ Rn × RL̃ × RL

′
; |ξ| < δ

}
,

where 2 ≤ d1 < d2 < . . . < dL are even and L̃ ≥ 1. The more general surfaces we consider can
essentially be thought of as (linear transformations of) smooth perturbations of these model
surfaces.

Theorem 4.0.1. We consider Γ ∈ S. For α > 0 with α /∈ 2N, the convolution kernel KΨ,α =
m̌Ψ,α ∈ Lp(RN ) if and only if p > L+n

L+α+n
2

.

The proofs of necessity and sufficiency in Theorem 4.0.1 are different. The kernel KΨ,α is
given as an oscillatory integral with an explicit phase. To prove that

KΨ,α ∈ Lp =⇒ p >
L+ n

L+ α+ n
2

, (4.0.1)

we restrict our attention to a region where the critical point of the phase is non-degenerate
and use stationary phase techniques to obtain pointwise estimates on the size of the kernel. To
obtain the sufficient condition

p >
L+ n

L+ α+ n
2

=⇒ KΨ,α ∈ Lp, (4.0.2)

we adapt methods developed in work by V. Chubarikov, G. I. Arkhipov, and A. Karatsuba,
[ACK79], which were used to settle a problem arising from Tarry’s problem in Number Theory.
Rather than pointwise control on the size of the kernel, we form a dyadic partition of space
according to its size and estimate the measure of elements of the partition.

Lemma 4.0.2. To prove Theorem 4.0.1 for some L̃, it suffices to consider only those surfaces
which are in the class S0, given at Definition 1.0.1.

In the following proof of Lemma 4.0.2, we use the atypical notation (x, y) ∈ Rn × RL. It
is this proof and the arguments contained therein that justify the notation we typically use of

(x, y, z) ∈ Rn×RL̃×RL′ . With the notation (x, y) ∈ Rn×RL, we write the product expression
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for the kernel, (2.3.1), as

KΨ,α(x, y) = Aα(y)

∫
Rn
e2πi(x·ξ+y·Ψ(ξ))φ(ξ)dξ.

Proof of Lemma 4.0.2. We have that KΨ,α(x, y) = Aα(y)k(x, y), where

Aα(y) =

∫
RL
e2πiy·η|η|αχ(η)dη and k(x, y) =

∫
Rn
e2πi(x·ξ+y·Ψ(ξ))φ(ξ)dξ.

With R as in Lemma 2.3.2, we set ỹ = y(R−1)∗ and Ψ̃ = ΨR to see that

k(x, y) = k̃(x, ỹ),

where

k̃(x, y) =

∫
Rn
e

2πi
(
x·t+

∑L̃
j=1 yj ψ̃j(t)

)
φ(ξ)dξ,

since
x · t+ y ·Ψ(t) = x · t+ y · Ψ̃(t)R−1 = x · t+ (y(R−1)∗) · Ψ̃(t).

We denote by S0 the (x, y)-region with suitably large |y| ∼ |y(R−1)∗|, such that we can use
the comparison

|A(ỹ)| ∼ |ỹ|−L−α ∼ |ỹR∗|−L−α = |y|−L−α ∼ |A(y)|. (4.0.3)

Let S̃0 be the corresponding region under the change of variables (x, y) 7→ (x, y(R−1)∗). We can
make the change of variables ỹ = y(R−1)∗ in the Lp integration of KΨ,α(x, y) = k(x, y)A(y).
The change of variables has a constant Jacobian. Using the comparison (4.0.3), it is simply
verified that

KΨ,α ∈ Lp(S0) ⇐⇒ KΨ̃,α

(
S̃0

)
,

where Γ̃ is expressed as a graph by

Γ̃ =
{

(ξ, ψ̃1(ξ), ψ̃2(ξ), . . . , ψ̃L̃(ξ), 0, . . . , 0); |ξ| < δ
}
.

It remains to consider the mutual Lp boundedness of the kernels on the complements, Sc0
and S̃c0, where we have |y| . 1: with S1 := Sc0 and S̃1 := S̃c0 its image under the change of

variables ỹ = y(R−1)∗ in the y-coordinate: we must show KΨ,α ∈ Lp(S1) ⇐⇒ KΨ̃,α(S̃1). In

fact, we routinely show that KΨ,α ∈ Lp(S1) and KΨ̃,α ∈ L
p(S̃1) for all 1 ≤ p ≤ ∞ using an

L∞ estimate on KΨ,α and the method of non-stationary phase. We show this for KΨ,α, the
analysis may be repeated for KΨ̃,α. Let us set S10 to be the region where |y| . 1 and |x| . 1

and S11 to be the region where |y| . 1 and |x| � 1. Since KΨ,α is bounded and |S10| . 1, we
see that KΨ,α ∈ Lp(S10) for all 1 ≤ p ≤ ∞. For (x, y) ∈ S11, we work by the method of non-

stationary phase. Set Φ(t) = 1
|x|

(
x · t+

∑L̃
j=1 yjψj(t)

)
. One can easily see that, for t ∈ suppφ,

|∇Φ(t)| & 1 and ‖Φ‖Cn+2(suppφ) . 1. Therefore, by the non-stationary phase lemma, Lemma
0.0.1, we have that ∣∣∣∣∫ e2πi|x|Φ(t)φ(t)dt

∣∣∣∣ . 1

|x|n+1
.

Integrating 1
|x|n+1 × 1 over S11 shows that KΨ,α ∈ Lp(S11).

To prove Theorem 4.0.1, in Section 4.1 we prove the implication (4.0.1) for surfaces Γ ∈ S0

and in Section 4.2 we prove the implication (4.0.2) for surfaces Γ ∈ S0. By Lemma 4.0.2, this
will give 4.0.1.
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4.1 A necessary condition for K ∈ Lp; the implication
(4.0.1)

Recall from Section 2.3 the Bochner-Riesz kernels we are considering,

KΨ,α(x, y, z) = Aα(y, z)

∫
Rn
e2πi(x·ξ+y·ΨL̃(|ξ|))φ(ξ)dξ. (4.1.1)

Recall also Lemma 2.3.1, which tells us that, provided α /∈ 2N, for large (y, z),

|A(y, z)| ∼ 1

|(y, z)|L+α
. (4.1.2)

Here, according with the reductions of Section 2.2 and the statement of Lemma 2.2.3, the
function φ is chosen with suppφ ⊂ [−δ, δ]n and we also have that ‖φ‖C2 . δ−2 for some suitable
small parameter δ.

Proposition 4.1.1. We consider surfaces Γ ∈ S0. Provided the implicit δ parameter is taken
sufficiently small and α /∈ 2N, with KΨ,α given as in (4.1.1),

KΨ,α ∈ Lp =⇒ p >
L+ n

L+ α+ n
2

. (4.1.3)

Proposition 4.1.1 is a direct corollary of the following lemmas, corresponding to the n = 1
case and n ≥ 1 case.

Lemma 4.1.2. Provided suppφ ⊂ [−δ, δ] with sufficiently small δ in the definition of the
Bochner-Riesz multiplier, we have the following. We define the region

R =

{
(x, y) ∈ R1+L;

δ1
2
≤ |x|
|y1|
≤ δ1,

|yi|
|y1|
≤ δ1 for i ≥ 2,

y1 ≥ CLrg, yi ≥ 1 for i ≥ 2, x ≤ −1

}
,

(4.1.4)

where the parameter δ1 is some sufficiently small constant and the parameter CLrg is some
sufficiently large constant. For (x, y) ∈ R,

|k(x, y)| & |x|− 1
2 . (4.1.5)

Lemma 4.1.3. The region R is given as

R =

{
(x, y) ∈ Rn+L;

δ1
2
≤ |x|
|y1|
≤ δ1,

|yi|
|y1|
≤ δ1 for i ≥ 2,

y1 ≥ CLrg, yi ≥ 1 for i ≥ 2, |x| ≥ 1

}
,

(4.1.6)

the parameter δ1 is some sufficiently small constant, the parameter CLrg is some sufficiently
large constant. For (x, y) ∈ R,

|k(x, y)| & |x|−n2 . (4.1.7)

The analysis is simpler in the n = 1 case, as reflected in the proof of Lemma 4.1.2. For
n ≥ 1, we extend the argument, though there are additional technicalities present in the proof
of Lemma 4.1.3.

Before proceeding with the proofs of Lemma 4.1.2 and Lemma 4.1.3, let us show how
Proposition 4.1.1 follows.

Proof of Proposition 4.1.1. Recall the product expression (4.1.1) and our size estimate on A(y)
for large y, (4.1.2). Together with the estimate (4.1.7), we can use this to estimate ‖KΨ,α‖pLp(R×RL′ ).
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We see that ∫
R×RL′

|KΨ,α(x, y)|p dµRN (x, y, z) &
∫
R

1

|y|p(L+α)

1

|x|pn2
µRÑ (x, y)

∼
∫ ∞
D

rn+L−1r−p(L+α+n
2 )dr,

which is finite if and only if p(L+ α+ n
2 ) > n+ L.

Proof of Lemma 4.1.2. As we will see, our choice of parameters is such that the phase in the
integral defining k(x, y) has a unique and isolated critical point. We work by the method of
stationary phase. We choose γ such that

γ|x| = γd1y1

(d1 − 1)!
and define λ := 2πγ|x|.

With Φ(ξ) = 2π (xξ + y ·Ψ(ξ)) we see that

Φ(γξ) = λΦ0(ξ),

where

Φ0(ξ) :=

(
−ξ +

ξd1

d1

)
+

1

λ

y1ε1(γξ) +
L̃∑
j=2

yjψj(γξ)

 .

The principal term in Φ0 is the left bracketed term. The principal term suggests that Φ0 has a
unique positive critical point ξ0 which is close to 1. We now set the scaffold for our stationary
phase analysis, upon which we later fix our proof construction.

We have that

k(x, y) =

∫
eiΦ(ξ)φ(ξ)dξ = γ

∫
eiλΦ0(γ−1ξ)φ(γ(γ−1ξ))γ−1dξ

= γ

∫
eiλΦ0(ξ)φ(γξ)dξ.

Using a cutoff function a to localise about ξ0, we see that

k(x, y) = γeiλΦ0(ξ0)

∫
eiλ(Φ0(ξ)−Φ0(ξ0))φ(γξ)a(ξ − ξ0)dξ + E1(x, y),

where our first error term E1 is defined by

E1(x, y) := γ

∫
eiλΦ0(ξ)φ(γξ)(1− a(ξ − ξ0))dξ. (4.1.8)

The critical point ξ0 is isolated and, as such, is non-degenerate. For ξ near ξ0 we expect that

Φ(ξ)− Φ(ξ0) ≈ 1

2!
Φ(2)(ξ0)(ξ − ξ0)2.

Informed by this, we will make a change of variables ξ 7→ τ(ξ), where τ(ξ) is such that

Φ(ξ)− Φ(ξ0) =
1

2!
Φ(2)(ξ0)τ(ξ)2. (4.1.9)

According with this change of variables, corresponding to each τ will be a unique ξτ = ξ(τ).
Note that ξ(0) = ξ0. With J(τ) denoting the appropriate Jacobian factor, we find that

k(x, y)

= γeiλΦ0(ξ0)

∫
eiλ

1
2! Φ

(2)(ξ0)τ2

φ(γξτ )a(ξτ − ξ0)J(τ)dτ + E1(x, y)
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= kp(x, y) + E1(x, y) + E2(x, y),

where the principal part is given by

kp(x, y) := γeiλΦ0(ξ0)

∫
eiλ

1
2! Φ

(2)(ξ0)τ2

φ(γξ0)a(0)J(0)dτ (4.1.10)

and our second error term is given by
E2(x, y)

:= γeiλΦ0(ξ0)

∫
eiλ

1
2! Φ

(2)(ξ0)τ2

[φ(γξτ )a(ξτ )J(τ)− φ(γξ0)a(0)J(0)] dτ. (4.1.11)

Looking to the principal part of k, (4.1.10), we will see that φ(γξ0)a(0) = 1. By setting

τ̃ =
√
λΦ(2)(ξ0)τ , we then find

|kp(x, y)| = γJ(0)√
λΦ(2)(ξ0)

∣∣∣∣∫ ei
1
2! τ̃

2

dτ̃

∣∣∣∣ ∼δ1 1

|x| 12
.

Thus, if we can show that, for j ∈ {1, 2},

|Ej(x, y)| � 1

|x| 12
, (4.1.12)

with a suitable constant, then the result follows as k(x, y) = kp(x, y) + E1(x, y) + E2(x, y).
Before establishing the desired control, (4.1.12), on the error terms let us more precisely

consider what appears above. We did not specify the control on the error terms in the phase
or establish that there is a unique critical point of Φ0. Also, we did not show that the implicit
change of variables ξ 7→ τ in (4.1.9) was well defined or give the explicit Jacobian factor J(τ).
Let us now do so. The sequencing of the following analysis reflects the sequential dependence
of parameters δ2 (later to appear), δ, δ1, and, finally, CLrg.

Observe that γ, which we defined at the start of the proof, is such that γ =
(
− (d1−1)!x

y1

) 1
d1−1 ∼

δ
− 1
d1−1

1 ∼δ1 1. For the phase error from Φ0,

θ0(ξ) :=
1

λ

y1ε1(γξ) +

L̃∑
j=2

yjψj(γξ)

 , (4.1.13)

we now observe that, for ξ ∈ suppφ(γ−1·) and l ∈ {0, 1, 2},

|θ(l)
0 (ξ)| ≤ εδ|ξ|d1−l, (4.1.14)

where εδ can be made arbitrarily small provided δ is chosen sufficiently small. Recall that
λ = 2πy1γ

d1/(d1 − 1)!, |yj | ≤ δ1|y1|, and note γ . 1. For 2 ≤ j ≤ L̃, l ∈ {0, 1, 2}, and
ξ ∈ suppφ(γ−1·) ⊂ [−γ−1δ, γ−1δ], we see that, by Taylor’s theorem,

| 1
λ
yjγ

lψ
(l)
j (γξ)| ≤ γ−d1γlδ1|ψ(l)

j (γξ)|

. γdj−d1 |ξ|dj−l

� |ξ|d1−l, (4.1.15)

provided δ � 1 is chosen sufficiently small. Similarly, by Taylor’s theorem, for ξ ∈ suppφ(γ−1·)
and l ∈ {0, 1, 2}, we have that

y1

λ

∣∣∣γlε(l)
1 (γξ)

∣∣∣ =
y1

λ

∣∣∣∣γlψ(l)
1 (γξ)− γl (γξ)

d1−l

(d1 − l)!

∣∣∣∣
� |ξ|d1−l, (4.1.16)

52



provided we take δ � 1 sufficiently small, as discussed in Definition 1.0.1 for the class S0.
Summing (4.1.15) and (4.1.16) gives the desired bound (4.1.14). We also have the following
constant bounds on θ0. For l ∈ {0, 1, 2, 3, 4} and ξ ∈ suppφ(γ−1·),

|θ(l)
0 (ξ)| . C1, (4.1.17)

for some fixed C1 > 0. The proof of (4.1.17) is analogous to the proof of (4.1.14) and is omitted.
With this control on the phase error, we can make the above analysis rigorous.

Firstly, we observe that Φ′0 has a unique critical point, ξ0, because |θ(2)
0 (ξ)| ≤ εδ|ξ|d1−2 and,

in particular, since d1 is even, Φ(2)(ξ) = (d1 − 1)ξd1−2 + θ
(2)
0 (ξ) > 0 for non-zero ξ ∈ suppφ(γ·)

and Φ′0(0) = −1 < 0. Furthermore, we can verify that

3

4
≤ ξ0 ≤

5

4
. (4.1.18)

Indeed, for now, let us claim that, for |ξ − 1| ≥ 1
4 ,

| − 1 + ξd1−1| & |ξ|d1−1.

Given the claim, provided the δ we later fix is chosen sufficently small, we see that, for |ξ−1| ≥ 1
4 ,

with ξ 6= 0
|Φ′(ξ)| &

∣∣−1 + ξd1−1
∣∣− |θ′0(ξ)| & |ξ|d1−1 > 0,

by (4.1.14). It remains to prove our claim. To see this, let us consider ξ ≥ 5
4 . We observe that

1 ≤
(

4
5ξ
)d1−1

and write

ξd1−1 − 1

≥ ξd1−1 −
(

4

5
ξ

)d1−1

& ξd1−1.

Likewise, for 0 ≤ ξ ≤ 3
4 , 1 ≥

(
4
3ξ
)d1−1

so that

1− ξd1−1

& ξd1−1.

For ξ ≤ 0,
1− ξd1−1 & −ξd1−1.

We now consider the change of variables we claimed implicitly at (4.1.9). Observe that

Φ0(ξ)− Φ0(ξ0) =

∫ 1

0

(ξ − ξ0)Φ′0(ξ0 + s(ξ − ξ0))ds

= −
∫ 1

0

d

ds
(1− s) (ξ − ξ0)Φ′0(ξ0 + s(ξ − ξ0))ds

=
1

2!
Φ

(2)
0 (ξ0)(ξ − ξ0)2G(ξ − ξ0),

where

G(ξ − ξ0) =

∫ 1

0

2 (1− s) Φ
(2)
0 (ξ0 + s(ξ − ξ0))

Φ
(2)
0 (ξ0)

ds.

One can see that, for ξ ∈ supp a(· − ξ0), G(ξ) > 0. The implicit change of variables (4.1.9) is
thus given explictly by ξ 7→ τ(ξ) = (ξ − ξ0)

√
G(ξ − ξ0). We see that

dτ

dξ
(ξ) =

√
G(ξ − ξ0) + (ξ − ξ0)

G′(ξ − ξ0)

2
√
G(ξ − ξ0)

.
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We will make our choice of cutoff function a with sufficiently small support to ensure that, for
ξ ∈ supp a(· − ξ0),

dτ

dξ
(ξ) ∼ 1. (4.1.19)

We see that the Jacobian factor is given by

J(τ) =
dξ

dτ
(τ) =

√
G(ξτ − ξ0)

G(ξτ − ξ0) + (ξτ − ξ0)G
′(ξτ−ξ0)

2

.

Note that

J(0) =

√
G(0)

G(0) + 0
= 1.

For ξ ∈ supp a, we require explicit control on G and its derivatives. We choose a preliminary
bound δ ≤ δ0 so that the constant εδ < 1/2, where εδ is the error parameter in (4.1.14), for
all δ ≤ δ0. We later fix δ. We also suppose the following preliminary structure for our cutoff
function a ∈ C∞c (R): supp a ⊂ [− 1

4 ,
1
4 ].

First, we bound G(ξ̃). Recall that

Φ0(ξ) =

(
−ξ +

ξd1

d1

)
+ θ0(ξ).

For ξ̃ ∈ supp a and s ∈ [0, 1], 1
2 ≤ |ξ0 + sξ̃| ≤ 3

2 . In particular, for these s, |ξ0 + sξ̃| ∼ |ξ0|. We

can see that, for ξ̃ ∈ supp a

|G(ξ̃)| =

∣∣∣∣∣
∫ 1

0

2 (1− s) Φ
(2)
0 (ξ0 + sξ̃)

Φ
(2)
0 (ξ0)

ds

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ 1

0

2 (1− s)
(

(d1 − 1)|ξ0 + sξ̃|d1−2 + |θ(2)
0 (ξ0 + sξ̃)|

)
(d1 − 1)|ξ0|d1−2 − |θ(2)

0 (ξ0)|
ds

∣∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1

0

3 (1− s) (d1 − 1)|ξ0 + sξ̃|d1−2

(d1 − 1)|ξ0|d1−2/2
ds

∣∣∣∣∣
∼
∣∣∣∣∫ 1

0

3 (1− s) |ξ0|d1−2

|ξ0|d1−2
ds

∣∣∣∣
∼ 1.

Similarly,

|G(ξ̃)| ≥

∣∣∣∣∣∣
∫ 1

0

2 (1− s)
(

(d1 − 1)|ξ0 + sξ̃|d1−2 − |θ(2)
0 (ξ0 + sξ̃)|

)
(d1 − 1)|ξ0|d1−2 + |θ(2)

0 (ξ0)|
ds

∣∣∣∣∣∣
≥

∣∣∣∣∣
∫ 1

0

2 (1− s) 1
2 (d1 − 1)|ξ0 + sξ̃|d1−2

3|ξ0|d1−2/2
ds

∣∣∣∣∣
∼ 1.

We will also make use of upper bounds on the size of G′, G′′, and G′′′. We can see that, for
ξ̃ ∈ supp a,

|G′(ξ̃)| ≤

∣∣∣∣∣∣
∫ 1

0

2 (1− s)
(

(d1 − 1)(d1 − 2)|ξ0 + sξ̃|d1−3 + |θ(3)
0 (ξ0 + sξ̃)|

)
(d1 − 1)|ξ0|d1−2 − |θ(2)

0 (ξ0)|
ds

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
∫ 1

0

2 (1− s)
(

(d1 − 1)(d1 − 2)|ξ0 + sξ̃|d1−3 + |θ(3)
0 (ξ0 + sξ̃)|

)
(d1 − 1)|ξ0|d1−2 − |θ(2)

0 (ξ0)|
ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ 1

0

2 (1− s)
(

3
2 (d1 − 1)(d1 − 2)|ξ0 + sξ̃|d1−3

)
1
2 (d1 − 1)|ξ0|d1−2

ds

∣∣∣∣∣∣
∼

∣∣∣∣∣∣
∫ 1

0

2 (1− s)
(
ξd1−3
0

)
|ξ0|d1−2

ds

∣∣∣∣∣∣
∼ 1.

Likewise for G′′ and G′′′. We write these bounds explicitly: for ξ̃ ∈ supp a,

0 < c0− ≤ |G(ξ̃)| ≤ c0+, |G′(ξ̃)| ≤ c1, |G′′(ξ̃)| ≤ c2, |G′′′(ξ̃)| ≤ c3. (4.1.20)

We can now verify (4.1.19). It is here we will fix our choice of cutoff function a, with
supp a ⊂ [−δ2, δ2], where 0 < δ2 <

1
4 is taken sufficiently small so that δ2

c1
2
√
c0−
≤ √c0+ and

δ2
c1

2
√
c0+
≤ √c0−/2. We see that, for ξ ∈ supp a(· − ξ0),

∣∣∣∣dτdξ (ξ)

∣∣∣∣ =

∣∣∣∣∣√G(ξ − ξ0) + (ξ − ξ0)
G′(ξ − ξ0)

2
√
G(ξ − ξ0)

∣∣∣∣∣
≤ √c0+ + δ2

c1
2
√
c0−
≤ 2
√
c0+

and ∣∣∣∣dτdξ (ξ)

∣∣∣∣ =

∣∣∣∣∣√G(ξ − ξ0) + (ξ − ξ0)
G′(ξ − ξ0)

2
√
G(ξ − ξ0)

∣∣∣∣∣
≥ √c0− − δ2

c1
2
√
c0+

≥ √c0−/2.

We must track more than the support properties of a, we later use the fact that

‖a‖C2 . δ−2
2 , (4.1.21)

which we can see if we define
a(ξ) = a0(δ−1

2 ξ)

for some fixed a0 ∈ C∞c (R) with supp a0 ⊂ [−1, 1] and a0(ξ) = 1 for ξ ∈ [− 1
2 ,

1
2 ]. By this

definition, we also see that supp (1− a(·)) ⊂ (−∞, δ22 ] ∪ [ δ22 ,∞).
The next part of our analysis concerns the appropriate choice of δ. We previously supposed

δ was subject to the condition εδ <
1
2 when we obtained bounds for G and its derivatives and

also that it was sufficiently small for (4.1.18) to hold. Now, we have fixed δ2 the δ we choose
must be sufficiently small to ensure |ξ0 − 1| ≤ δ2/4, with some additional conditions that we
will set out momentarily. Recall that we previously showed, at (4.1.18), that |ξ0 − 1| ≤ 1

4 . For
1
4 ≥ |ξ̃| ≥ δ2/4, we can write

Φ′(1 + ξ̃) = Φ′(1) + ξ̃

∫ 1

0

Φ′′(1 + sξ̃)ds.

We can see by (4.1.14) that |Φ′(1)| ≤ εδ. Likewise, for 1
4 ≥ |ξ̃| ≥ δ2/4 and s ∈ [0, 1],

(d1−1)

(
3

4

)d1−2

−εδ
(

5

4

)d1−2

≤ inf
|1−ξ|∈[δ2/4,

1
4 ]
|(d1−1)ξ|d1−2− sup

|1−ξ|∈[δ2/4,
1
4 ]

|θ′′0 (ξ) ≤ Φ′′(1+sξ̃)
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so that ∫ 1

0

Φ′′(1 + sξ̃)ds ≥ c > 0,

provided our later choice of δ sufficiently small depending on d1. Therefore, for 1
4 ≥ |ξ̃| ≥ δ2/4,∣∣∣Φ′(1 + ξ̃)

∣∣∣
≥ |ξ̃|

∣∣∣∣∫ 1

0

Φ′′(1 + sξ̃)ds

∣∣∣∣− |Φ′(1)|

≥ cδ2/4− εδ.

We now fix choose δ sufficiently small so this final term is > cδ2/8, which shows that ξ0 ∈
(1− δ2/4, 1 + δ2/4) and, further, for ξ ∈ [ 3

4 ,
5
4 ]\(1− δ2/4, 1 + δ2/4),

|Φ′(ξ)| > cδ2/8.

By monotonicity of Φ′, we then have that, for all ξ ∈ suppφ(γ·)\(1− δ2/4, 1 + δ2/4),

|Φ′0(ξ)| & δ2.

If |ξ − ξ0| > δ2/2, then |ξ − 1| > δ2/4, since |ξ0 − 1| < δ2/4. Therefore, for ξ ∈ suppφ(γ·) ∩
supp (1− a(· − ξ0)),

|Φ′0(ξ)| & δ2. (4.1.22)

To recall, we used preliminary bounds on δ2 and δ to control G, G′, and G′′. We then fixed
δ2 sufficiently small so that the change of variables was well controlled by (4.1.19). We then
fixed δ sufficiently small to ensure that ξ0 was close to 1 and the size of Φ′0 was controlled away
from ξ0. We must now choose δ1 sufficiently small to ensure that F (0) = 1, this gives us our
principal term (4.1.10).

To obtain the principle term (4.1.10), we require that φ(γξ0) = 1 and also that a(0) = 1.

Because γ =
(
− (d1−1)!x

y1

) 1
d1−1 ∼ δ

1
d1−1

1 and ξ0 ∼ 1, the first of these conditions is ensured by

now fixing δ1 sufficiently small. The second condition is true for any choice of smooth cutoff a
about the origin.

Having captured the principal term, kp, we turn our consideration to the error terms. First,
for E1, which we gave at (4.1.8), we can use the bound on (4.1.22) on Φ′0 and the non-stationary
phase lemma, Lemma 0.0.1, to see that

|E1(x, y)| .δ2 λ−1 .δ1 |x|−1. (4.1.23)

Let us now analyse the error E2 coming from the change of variables, (4.1.11). Setting
F (τ) = φ(γξτ )a(ξτ − ξ0)J(τ), we can write

E2(x, y) = γeiλΦ0(ξ0)

∫
eiλ

1
2! Φ

(2)(ξ0)τ2

(F (τ)− F (0)) dτ.

We find that

|E2(x, y)| = γ

∣∣∣∣∫ eiλ
1
2! Φ

(2)(ξ0)τ2

∫ 1

0

τF ′(sτ)dsdτ

∣∣∣∣
= γ

∣∣∣∣∫ 1

0

∫
eiλ

1
2! Φ

(2)(ξ0)τ2

τF ′(sτ)dτds

∣∣∣∣
= γ

∣∣∣∣∫ 1

0

∫
1

iλΦ(2)(ξ0)

d

dτ

(
eiλ

1
2! Φ

(2)(ξ0)τ2
)
F ′ (sτ) dτds

∣∣∣∣
≤ γ 1

λΦ(2)(ξ0)

∫ 1

0

∫
|sF ′′ (sτ)| dτds
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.δ1
1

|x|
‖F ′′‖L∞ |suppF ′′(·)| . (4.1.24)

Recall from (4.1.19) that, for ξ ∈ supp a(· − ξ0),

dτ

dξ
(ξ) ∼ 1.

Thus we see that J(τ) = dξ
dτ ∼ 1 for τ ∈ supp a(ξ(·)) and also supp a(ξ(·)) ⊂ [−Cδ2, Cδ2] ⊂

[−1, 1]. Using the fact that J(τ) = dξ
dτ , we consider the derivatives of F (τ) = φ(γξτ )a(ξτ −

ξ0)J(τ). We have that

F ′(τ) = γJ(τ)φ′(γξτ )a(ξτ − ξ0)J(τ) + φ(γξτ )J(τ)a′(ξτ − ξ0)J(τ) + φ(γξτ )a(ξτ − ξ0)J ′(τ)

= γφ′(γξτ )a(ξτ − ξ0)J(τ)2 + φ(γξτ )a′(ξτ − ξ0)J(τ)2 + φ(γξτ )a(ξτ − ξ0)J ′(τ).

Furthermore,
F ′′(τ)

= γ2φ′′(γξτ )a(ξτ − ξ0)J(τ)3 + γφ′(γξτ )a′(ξτ − ξ0)J(τ)3 + γφ′(γξτ )a(ξτ − ξ0)2J ′(τ)J(τ)

+γφ′(γξτ )a′(ξτ − ξ0)J(τ)3 + φ(γξτ )a′′(ξτ − ξ0)J(τ)3 + φ(γξτ )a′(ξτ − ξ0)2J ′(τ)J(τ)

+γφ(γξτ )a(ξτ − ξ0)J ′(τ)J(τ) + φ(γξτ )a′(ξτ − ξ0)J ′(τ)J(τ) + φ(γξτ )a(ξτ − ξ0)J ′′(τ).

Thus, if we can find a suitable L∞ bound for all the terms appearing in this sum, then we can
obtain an L∞ bound for F ′′. Our choice of φ in Section 2.2, at (2.2.2), ensured that

‖φ‖C2 . δ−2.

We also have that
‖a‖C2 . δ−2

2 ,

as we previously discussed at (4.1.21). Recall that

J(τ) =

√
G(ξτ − ξ0)

G(ξτ − ξ0) + (ξτ − ξ0)G
′(ξτ−ξ0)

2

.

We already established that |J(τ)| . 1. We now see

J ′(τ)

=
1

2

G′(ξτ − ξ0)√
G(ξτ − ξ0)

(
G(ξτ − ξ0) + (ξτ − ξ0)G

′(ξτ−ξ0)
2

)J(τ)

−

(
G′(ξτ − ξ0) + G′(ξτ−ξ0)

2 + (ξτ − ξ0)G
′′(ξτ−ξ0)

2

)√
G(ξτ − ξ0)(

G(ξτ − ξ0) + (ξτ − ξ0)G
′(ξτ−ξ0)

2

) J(τ),

so that, from our bounds on G, (4.1.20), and our choice of δ2
c1

2
√
c0+
≤ √c0−/2

|J ′(τ)|

.
c1√

c0−
(
c0− − δ2 c12

)J(τ)

+

(
c1 + c1

2 + δ2
c2
2

)(√
c0− − δ2 c12

) J(τ)

. 1.

57



The situation is analogous for J ′′. We thus find that

‖F ′′‖L∞(a) .δ,δ2 1. (4.1.25)

To summarise, we have shown that

k(x, y) = kp(x, y) + E1(x, y) + E2(x, y),

where

|kp(x, y)| ∼δ1
1

|x| 12
,

|E1(x, y)| .δ2
1

|x|
,

as we established at (4.1.23), and

|E2(x, y)| .δ,δ1,δ2
1

|x|
,

which we obtain from (4.1.24) and (4.1.25). The desired result follows by taking CLrg large

enough so that |E1(x, y)| � |x|− 1
2 ∼ |kp(x, y)| and |E2(x, y)| � |x|− 1

2 , which is possible since
|x| & δ1|y1| & δ1CLrg.

Proof of Lemma 4.1.3. The proof is similar to the n = 1 case. However, since we will be
carrying out stationary phase analysis with respect to one dimensional oscillatory integrals,
we must first use polar integration. In order that the resulting oscillatory integrals can be
expressed with explicit phases, we use the asymptotic expansion for the surface measure of the
sphere. As such, we will need to analyse additional error terms.

First, we write

k(x, y) =

∫
e2πi(x·ξ+y·ΨL̃(|ξ|))φ(ξ)dξ∫ ∞

0

∫
Sn−1

e2πi(x·(rω)+y·ΨL̃(r))φ(rω)dσ(ω)rn−1dr∫ ∞
0

e2πi
∑L̃
j=1 yjψj(r)

∫
Sn−1

e2πirx·ωdσ(ω)φ0(r)rn−1dr∫ ∞
0

e2πi
∑L̃
i=1 yjψj(r)σ̂(2πrx)φ0(r)rn−1dr,

where φ0 is such that φ0(|ξ|) = φ(ξ). We now rescale, choosing γ such that γ|x| = γd1y1

(d1−1)! and

setting γρ = r, we see that

γn
∫ ∞

0

e2πi
∑L̃
j=1 yjψj(γρ)σ̂(2πγρx)φ0(γρ)ρn−1dρ.

We use the asymptotic expression for the Fourier transform of the surface measure of the sphere

σ̂(2πrx) =
1

|rx|n−1
2

(
c+e

2πir|x| + c−e
−2πir|x| + Eσ(rx)

)
,

for |rx| & 1, where the c− and c+ are non-zero constants and |Eσ(rx)| ≤ C|rx|−1; see, for
instance, [Ste93]. We will use a cutoff function b, with small support about the origin, to

split the region of integration about |ρ|x| 12 | ∼ δ3, for some small δ3 later to be fixed. More
specifically, we take b(r) = b0(δ−1

3 r) for some fixed b0 ∈ C∞c with b0(r) = 1 for |r| ≤ 1
2 and

b0(r) = 1 for |r| ≥ 1. This will ensure we can apply asymptotic expansion of σ̂ and also provide
an error term coming from integration near the origin. In particular, we find that

k(x, y) = γn
∫ ∞

0

e2πi
∑L
j=1 yjψj(γρ)σ̂(2πγρx)φ0(γρ)ρn−1b(ρ|x| 12 )dρ
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+γn
∫ ∞

0

e2πi
∑L
j=1 yjψj(γρ)σ̂(2πγρx)φ0(γρ)ρn−1(1− b(ρ|x| 12 ))dρ

= γn
∫ ∞

0

e2πi
∑L
j=1 yjψj(γρ)σ̂(2πγρx)φ0(γρ)ρn−1b(ρ|x| 12 ))dρ

+
γn

|x|n−1
2

∫
e2πi(

∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 Eσ(γρx)(1− b(ρ|x| 12 ))dρ

+
γn−

n−1
2

|x|n−1
2

c+

∫ ∞
0

e2πi(γρ|x|+
∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 (1− b(ρ|x| 12 ))dρ

+
γn−

n−1
2

|x|n−1
2

c−

∫
e2πi(−γρ|x|+

∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 (1− b(ρ|x| 12 ))dρ.

So far, the final term is the principal term. Indeed, let us set

E0(x, y) := γn
∫ ∞

0

e2πi
∑L
j=1 yjψj(γρ)σ̂(2πγρx)φ0(γρ)ρn−1b(ρ|x| 12 )dρ, (4.1.26)

E−1(x, y) :=
γn

|x|n−1
2

∫ ∞
0

e2πi(
∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 Eσ(γρx)(1− b(ρ|x| 12 ))dρ, (4.1.27)

and

E−2(x, y) :=
γ
n+1

2

|x|n−1
2

c+

∫ ∞
0

e2πi(γρ|x|+
∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 (1− b(ρ|x| 12 ))dρ. (4.1.28)

Also, we set

k0(x, y) :=
γ
n+1

2

|x|n−1
2

c−

∫
e2πi(−γρ|x|+

∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 (1− b(ρ|x| 12 ))dρ.

We know that
k(x, y) = k0(x, y) + E0(x, y) + E−1(x, y) + E−2(x, y).

Working as in the one dimensional case, by splitting k0(x, y) = kp(x, y) + E1(x, y) + E2(x, y),
we show that

|k0(x, y)| ∼ 1

|x|n2
.

Finally, we will show that, for l ∈ {−2,−1, 0},

|El(x, y)| � 1

|x|n2
.

We set λ = 2πρ|x| and

Φ0(ρ) = −ρ+
ρd1

d1
+

1

λ

(
ψ1(γρ)− (γρ)d1

d1!

)
+

1

λ

L∑
j=2

yjψj(γρ).

To reflect the structure of the above proof, let us set

φx(γρ) = φ0(γρ)ρ
n−1

2 (1− b(ρ|x| 12 )). (4.1.29)

We have that

k0(x, y) =
c−γ

n+1
2

|x|n−1
2

∫
eiλΦ0(ρ)φx(γρ)dρ.

The phase λΦ0 is exactly the same we considered in the one dimensional case. As such, much
of the above analysis can be carried through. In particular, we will carry out a decomposition

59



with respect to the unique critical point, ρ0, of Φ0. As before, we have that

3

4
≤ ρ0 ≤

5

4
. (4.1.30)

We may find that k0(x, y) = kp(x, y)+E1(x, y)+E2(x, y), where the error terms E1 and E2

are defined as we did in the one dimensional case; the original definitions for E1 and E2 were
given at (4.1.8) and (4.1.11), respectively. These terms are now given by

kp(x, y) :=
c−γ

n+1
2

|x|n−1
2

eiλΦ0(ρ0)

∫
eiλ

1
2! Φ

(2)(ρ0)τ2

φx(γ(ρ0))a(0)J(0)dτ, (4.1.31)

E1(x, y) :=
c−γ

n+1
2

|x|n−1
2

∫
eiλΦ0(ρ)φx(γ(ρ))(1− a(ρ− ρ0))dρ, (4.1.32)

and
E2(x, y) (4.1.33)

:=
c−γ

n+1
2

|x|n−1
2

eiλΦ0(ρ0)

∫
eiλ

1
2! Φ

(2)(ρ0)τ2

[φx(γ(ρτ ))a(ρτ − ρ0)J(τ)− φx(γ(ρ0))a(0)J(0)] dτ.

In our proof of Lemma 4.1.2, much of the analysis does not refer to properties of the
amplitude φ, but the key things we used were suppφ ⊂ [−δ, δ], ‖φ‖C2 . δ−2 and φ(γξ0) ∼ 1
(actually, we used that φ(γξ0) = 1). For ξ ∈ supp(1−a(·−ρ0)), we established at (4.1.22) that

|Φ′0(ρ)| & δ2 (4.1.34)

only using the fact that suppφ ⊂ [−δ, δ]. We previously used this along with the non-stationary
phase lemma to obtain the bound (4.1.23) on E1 and here the amplitude φ made an (implicit)
contribution to the analysis in the lemma’s application. Presently, we must be more exact
and integrate by parts explicitly to understand the contribution of φx to E1. The exact same
method is used to bound E−2, and we refer the reader to our later proof of the bound (4.1.40).
The proof of (4.1.40) can be repeated to provide the same bound for E1, though the implicit
constant will have a δ2 dependence coming from (4.1.34). In particular, we can show that

|E1(x, y)| .δ2,δ3,δ1
1

|x|n+1
2

. (4.1.35)

Regarding the error term E2 and the contribution of φx, (4.1.29), the bounds we work with
correspond in the previous proof to (4.1.24). With the same change of variables ρ 7→ τ we made
in the previous proof, presently we define

F (τ) := φx(γ(ρτ ))a(ρτ − ρ0)J(τ),

where J(τ) = dρ
dτ (τ). In the one dimensional proof, F (τ) was given by φ(γξτ )a(ξτ − ξ0)J(τ).

In obtaining the bound (4.1.24), the information we used about φ was, in essence, the support
condition suppφ ⊂ [−δ, δ]. To properly establish E2 as an error term, we derived a bound with
‖F ′′‖L∞ .δ,δ1,δ2 1 as a factor in (4.1.24). Here we saw a contribution of ‖φ‖C2 .δ 1 to the

bound on ‖F ′′‖L∞ . Due to the presence of the (1 − b(|x| 12 ·)) factor, we no longer have this
global C2-norm control on (4.1.29),

φx(γρ) = φ0(γρ)ρ
n−1

2 (1− b(ρ|x| 12 )).

Indeed, one can verify that we only have

‖φx‖C2 .δ,δ1,δ2,δ3 |x|. (4.1.36)

However, despite this we can still show that

‖F ′′‖L∞ .δ,δ1,δ2 1.
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Indeed, note that if b′(ρ|x| 12 ) 6= 0, then δ3
2 |x|

− 1
2 ≤ |ρ| ≤ δ3|x|−

1
2 < 1

4 . However, supp a(·−ρ0) ⊂
[ 1
2 ,

3
2 ], by (4.1.30) and the fact a has small support. From this it follows that

‖φx‖C2(supp a(·−ρ0)) . (1 + ‖φ0‖C2)‖b‖∞

. δ−2,

which is sufficient for the desired L∞ bound on F ′′. Thus we have that

|E2(x, y)| .δ,δ1,δ2,δ3
1

|x|n+1
2

. (4.1.37)

Let us consider the error term E0 coming from the region of integration close to the origin,
(4.1.26). It is here that our choice of the δ3 parameter will be important. This parameter
appears defining b(r) := b0(δ−1

3 r), for some cutoff function b0 ∈ C∞c with b0(r) = 1 for |r| ≤ 1
2

and b0(r) = 1 for |r| ≥ 1. We see that

|E0(x, y)| =
∣∣∣∣γn ∫ ∞

0

e2πi
∑L
j=1 yjψj(γρ)σ̂(2πγρx)φ0(γρ)ρn−1b(ρ|x| 12 )dρ

∣∣∣∣
.

∣∣∣∣∣∣γn
∫ δ3|x|−

1
2

0

ρn−1dρ

∣∣∣∣∣∣
.δ1

δn3
|x|n2

. (4.1.38)

We now consider the error term E−1 coming from the asymptotic remainder, (4.1.27). Using
the fact that, |Eσ(rx)| ≤ C|rx|−1, we see that

|E−1(x, y)| = γn

|x|n−1
2

∣∣∣∣∫ e2πi(
∑L
j=1 yjψj(γρ))φ0(γρ)ρ

n−1
2 Eσ(γρx)(1− b(ρ|x| 12 ))dρ

∣∣∣∣
.

γ
n+1

2

|x|n−1
2

∣∣∣∣∣
∫ δγ−1

δ3
2 |x|−1

ρ
n−1

2 |ρx|−1dρ

∣∣∣∣∣
.

γ
n+1

2

|x|n+1
2

(δγ−1)
n−1

2

∼δ1,δ
1

|x|n+1
2

. (4.1.39)

We also consider the error term E−2, (4.1.28), which is defined by an integral with non-

stationary phase. We let λ = 2πγ|x| as previously and write the phase Φ+(ρ) = ρ+ ρd1

d1
+θ0(ρ),

where

θ0(ρ) :=
1

λ

y1

(
ψ1(γρ)− (γρ)d1

d1!

)
+

L̃∑
j=1

yjψj(γρ)

 .

The phase error θ0 is defined exactly as in the one dimensional case, (4.1.13), and we have the
same control (4.1.14). In particular, for ρ ∈ suppφx, it is easy to verify that |Φ′+(ρ)| & 1. We
can use integration by parts to express

E−2(x, y) =
c+γ

n+1
2

|x|n−1
2

∫ ∞
0

1

iλΦ′+(ρ)

d

dρ

(
eiλΦ+(ρ)

)
φx(γρ)dρ

=
c+γ

n+1
2

|x|n−1
2

∫ ∞
0

eiλΦ+(ρ) d

dρ

(
1

iλΦ′+(ρ)
φx(γρ)

)
dρ
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=
c+γ

n+1
2

|x|n−1
2

∫ ∞
0

1

iλΦ′+(ρ)

d

dρ

(
eiλΦ+(ρ)

) d

dρ

(
1

iλΦ′+(ρ)
φx(γρ)

)
dρ

=
c+γ

n+1
2

|x|n−1
2

∫ ∞
0

eiλΦ+(ρ) d

dρ

(
1

iλΦ′+(ρ)

d

dρ

(
1

iλΦ′+(ρ)
φx(γρ)

))
dρ.

Using the fact that |Φ′+(ρ)| & 1, ‖φx(γ·)‖C2 .δ,δ1,δ2,δ3 |x|, and ‖Φ+‖C3(suppφx) . 1, we thus
find

|E−2(x, y)| .δ,δ1,δ2,δ3
c+γ

n+1
2

|x|n−1
2

|suppφx|
1

λ2
|x|

.δ3,δ1
1

|x|n+1
2

. (4.1.40)

To summarise, we have decomposed

k(x, y) = kp(x, y) + E1(x, y) + E2(x, y) + E0(x, y) + E−1(x, y) + E−2(x, y).

Recall the principal term kp, which we defined at (4.1.31), is given by

kp(x, y) =
c−γ

n+1
2

|x|n−1
2

eiλΦ0(ρ0)

∫
eiλ

1
2! Φ

(2)(ρ0)τ2

φx(γ(ρ0))a(0)J(0)dτ.

We see for φx, (4.1.29), that

φx(γ(ρ0))a(0)J(0) = φ0(γρ)ρ
n−1

2
0 (1− b(ρ0|x|

1
2 ))

= φ0(γρ)ρ
n−1

2
0 ∼ 1,

as we will show that
δ3 < ρ0|x|

1
2 . (4.1.41)

Therefore

|kp(x, y)| ∼δ1
1

|x|n2
.

We now fix δ3 sufficiently small, according with (4.1.38), to ensure that

|E0(x, y)| ≤ |kp(x, y)|
10

.

Finally, summing the bounds (4.1.35), (4.1.37), (4.1.39), and (4.1.40), we see that

|E−2(x, y) + E−1(x, y) + E1(x, y) + E2(x, y)|

.δ,δ1,δ2,δ3
1

|x|n+1
2

.

We can thus ensure, provided we take CLrg sufficiently large, that

|E−2(x, y) + E−1(x, y) + E1(x, y) + E2(x, y)| ≤ 4

10
|kp(x, y)|,

because |kp(x, y)| ∼ |x|−n2 and |x| 12 &δ1 |y1|
1
2 ≥ C

1
2

Lrg. A large choice of CLrg will also ensure

that (4.1.41) holds, since ρ0|x|
1
2 &δ1 C

1
2

Lrg, which can be made sufficiently large. This completes
the proof.
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4.2 A sufficient condition for K ∈ Lp; the implication
(4.0.2)

In this section, for surfaces Γ ∈ S, we work to establish sufficient conditions for the Bochner-
Riesz kernel, given at (4.1.1), to be an element of Lp. By Lemma 4.0.2, without loss of generality,
in this section, we may restrict our attention to the surfaces in class S0.

Proposition 4.2.1. We consider Γ ∈ S0 and the corresponding kernel KΨ,α. If p > L+n
L+α+n

2
,

then the kernel
KΨ,α ∈ Lp(RN ).

One of the main results that we make use of in this section is a version of van der Corput’s
lemma we proved in the preliminary part of this document, Lemma 0.0.8. Let us recall its
statement.

Lemma. Let Φ : R→ R be a smooth function for which there exists k ∈ N with

inf
t∈[a,b]

∣∣∣Φ(k)(t)
∣∣∣ ≥ c sup

t∈[a,b]

∣∣∣Φ(k)(t)
∣∣∣ > 0,

for some c > 0, and φ be a smooth function with suppφ ⊂ (a, b). Additionally, we assume that
Φ′ is monotonic on boundedly many intervals in the case that k = 1. Given the bound

inf
t∈[a,b]

k∑
j=1

∣∣∣∣Φ(j)(t)

j!

∣∣∣∣
1
j

≥ κ,

we have that ∣∣∣∣∣
∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ .k min
{

(b− a), κ−1
}
‖φ′‖L1 .

In particular, we have that∣∣∣∣∣
∫ b

a

e2πiΦ(t)φ(t)dt

∣∣∣∣∣ . min
{

(b− a), κ−1
}

(b− a)‖φ′‖L∞ .

For the surfaces in S0 from Definition 1.0.1, it is easily verified, provided δ is chosen suffi-
ciently small, that, for t ∈ I = [−δ, δ],

1

2
≤ |ψ(dl)

l (t)| ≤ 2,

and, for 1 ≤ j ≤ L̃ with j 6= l, |ψ(dl)
j (t)| ≤ ε,

(4.2.1)

for some small parameter ε to be made explicit in the course of our analysis. The parameter δ
is some small constant to be made explicit in the course of the proof.

The following is a model for our main result.

Proposition 4.2.2. We consider the algebraic variety

Γ =

{(
ξ,
ξd1

d1!
,
ξd2

d2!
, . . . ,

ξdL̃

dL̃!
, 0, . . . , 0

)
;−δ < ξ < δ

}
,

where 2 ≤ d1 < d2 < . . . < dL̃ are even. If p > L+1
L+α+ 1

2

, then the (graphical) Bochner-Reisz

kernel
KΨ,α(x, y, z) = k(x, y)A(y, z) ∈ Lp(RN , dxdydz).

In higher dimensions, for n ≥ 1, we have the more general Proposition 4.2.1. We state and
prove the simpler Proposition 4.2.2 first as the core ideas are set in clearer relief in this setting.

The specific application of van der Corput’s lemma which we make use of to prove Propo-
sition 4.2.2 is clarified by the following lemma.
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Lemma 4.2.3. With Φx,y(t) := xt+
∑L̃
j=1 yjt

dj/dj !, and

k(x, y) =

∫
e2πiΦx,y(t)φ(t)dt,

we have the following. If H(x, y) ≥ κ > 0, where

H(x, y) = inf
t∈[−δ,δ]

dL̃∑
j=1

∣∣∣∣∣Φ(j)
x,y(t)

j!

∣∣∣∣∣
1
j

,

then
|k(x, y)| . κ−1,

in the region |y| & |x|, |y| � 1.

In higher dimensions, the lemma corresponding to Lemma 4.2.3 has a more complicated
statement and proof. Indeed, we will require the following to prove Proposition 4.2.1, where we
must make use of a new cutoff function η.

Lemma 4.2.4. With Φ(r) = Φx,y,±(r) := ±|x|r +
∑L̃
j=1 yjψj(r). We define

H(x, y) = inf
r∈[0,δ]

dL̃∑
j=1

∣∣∣∣Φ(j)(r)

j!

∣∣∣∣
1
j

.

If H(x, y) ≥ κ, then we have that∣∣∣∣∣
∫ ∞

0

e2πiΦ(r) 1

|rx|n−1
2

η(|x|r)φ0(r)rn−1dr

∣∣∣∣∣ . κ−1 1

|x|n−1
2

.

We require the following lower bound on H, which is evident in the polynomial case.

Lemma 4.2.5. For |y| & 1, we have that H(x, y) & |y|
1
d
L̃ .

Proof. We prove this by relating H to the quantity

H̃1(x, y) = max
j=1,2,...,dL̃

inf
t∈I

∣∣∣Φ(j)
x,y(t)

∣∣∣ .
We show that this, which is clearly homogeneous, is bounded strictly away from 0 on the sphere.
We first show that it is non-vanishing on the sphere.

The non-vanishing comes by considering the dj derivatives. If

H̃1(x, y) = max
j=1,2,...,dL̃

inf
t∈I

∣∣∣Φ(j)
x,y(t)

∣∣∣ = 0,

then, in particular,

inf
t∈I

∣∣∣Φ(dL̃)
x,y (t)

∣∣∣
= inf
t∈I

∣∣∣∣∣∑
l<L

ylψ
(dL̃)
l (t) + yLψ

(dL̃)
L (t)

∣∣∣∣∣ = 0.

Therefore, using our observation from (4.2.1) that |ψ(dL̃)
l (t)| ≤ ε for l < L and 1

2 ≤ |ψ
(dL̃)
L (t)| ≤

2, we find that 1
2 |yL| ≤ (L− 1)ε|y|.

Next, we see that

inf
t∈I

∣∣∣∣∣ ∑
l<L−1

ylψ
(dL−1)
l (t) + yLψ

(dL−1)
L (t) + yL−1ψ

(dL−1)
L−1 (t)

∣∣∣∣∣ = 0,
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so that, since 1
2 ≤ |ψ

(dL−1)
L−1 (t)| ≤ 2,

∣∣∣ψ(dL−1)
l (t)

∣∣∣ ≤ ε for l < L− 1, and
∣∣∣ψ(dL−1)
L (t)

∣∣∣ ≤ 2, we find

that
1

2
|yL−1| ≤ ((L− 2) + 4(L− 1))ε|y|.

Continuing in this fashion, we find for each 1 ≤ l ≤ L that

|yl| . ε|y|,

so that |y| . ε|y|. As a consequence, provided ε is chosen small enough, we must have that
y = 0. Further, we find that x = 0, since inft∈I |Φ′(t)| = |x| = 0.

To show that inf(x,y)∈SN−1 H̃1(x, y) > 0 we suppose by way of contradiction that there

exists a sequence zn ∈ SN−1 with H̃1(zn) → 0. Passing to a subsequence if necessary we
can assume that zn → z ∈ SN−1. We see that, for 1 ≤ j ≤ dL̃, by choosing tn such that

inft∈I

∣∣∣Φ(j)
zn (t)

∣∣∣ =
∣∣∣Φ(j)
zn (tn)

∣∣∣, we have

H̃1(zn) ≥ inf
t∈I

∣∣∣Φ(j)
zn (t)

∣∣∣ =
∣∣∣Φ(j)
zn (tn)

∣∣∣ ≥ ∣∣∣Φ(j)
z (tn)

∣∣∣− ∣∣∣Φ(j)
z (tn)− Φ(j)

zn (tn)
∣∣∣

≥ inf
t∈I

∣∣∣Φ(j)
z (t)

∣∣∣− C|zn − z|.
Taking the maximum over j shows that

H̃1(zn) ≥ H̃1(z)− C|zn − z|.

We know that H̃1(z) 6= 0 and |zn − z| → 0 so taking n → ∞ we obtain a contradiction,

0 > 0. Therefore, we can conclude inf(x,y)∈SN−1 H̃1(x, y) > 0. As a consequence of this and

homogeneity, we have that H̃1(x, y) & |(x, y)| ≥ |y|.
Now relating H to the homogenous H̃1, which is non-vanishing on the sphere, shows that

H(x, y) & |y|
1
d
L̃ . Indeed, if H̃1(x, y) & 1, which we have if |y| & 1, then there exists t∗ =

t∗(x, y) ∈ I and a suitable j0 so that

H(x, y) = Ht∗(x, y) =

dL̃∑
j=1

∣∣∣∣Φ(j)(t∗)

j!

∣∣∣∣
1
j

≥ max
j=1,...dL̃

∣∣∣∣Φ(j)(t∗)

j!

∣∣∣∣
1
j

≥
∣∣∣∣Φ(j0)(t∗)

j0!

∣∣∣∣
1
j0

≥
(

inf
t∈I

∣∣∣∣Φ(j0)(t)

j0!

∣∣∣∣)
1
j0

=
(
H̃1(x, y)

) 1
j0 &

(
H̃1(x, y)

) 1
d
L̃ & |y|

1
d
L̃ .

Now let us establish the oscillatory integral estimate we make use of in the model one
dimensional case, with a polynomial phase.

Proof of Lemma 4.2.3. Suppose that H(x, y) ≥ κ > 0. We must have that (x, y) 6= 0. Let the
index 0 ≤ m ≤ L be chosen maximally so that ym 6= 0. Then we know that

∣∣Φ(dm)(ξ)
∣∣ = |ym| 6=

0 so that the van der Corput estimate, Lemma 0.0.8, can be applied. In particular, we find that∣∣∣∣∫ e2πiΦx,y(t)φ(t)dt

∣∣∣∣ . κ−1.

With Lemma 4.2.3 proved, we can prove the model case, Proposition 4.2.2.
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Proof of Proposition 4.2.2. We prove the result in the case that p < 2, the full result follows
since we also have that KΨ,α ∈ L∞. Throughout, we will use the bounds on Aα, |Aα(y, z)| ∼
(1 + |(y, z)|)−L−α from Lemma 2.3.1.

The main region for our analysis is

R :=
{

(x, y) ∈ RÑ ; |x| . |y| and |y| � 1.
}
.

In the region

R0 :=
{

(x, y) ∈ RÑ ; |x| � |y| and |x| � 1
}
,

we can use the non-stationary phase lemma, Lemma 0.0.1. We find that, for (x, y) ∈ R0,∥∥∥∥ 1

|x|
Φ(·)

∥∥∥∥
Cn+2(suppφ)

. 1,

so that ∣∣∣∣∫ e2πiΦ(t)φ(t)dt

∣∣∣∣ . 1

|x|n+1
.

In particular, using the fact that |Aα(y, z)| . (1 + |(y, z)|)−L−α, we can see that

‖KΨ,α‖Lp(R0×RL′ ) .
∫
R0×RL′

1

|x|p(n+1)

1

(1 + |(y, z)|)p(L+α)
dµRN (x, y, z) <∞.

For the region

R−1 :=
{

(x, y) ∈ RÑ ; |(x, y)| . 1
}
,

we can easily verify that
‖KΨ,α‖Lp(R−1×RL′ ) <∞.

To estimate
‖KΨ,α‖Lp(R×RL′ ) ,

we partition on dyadic scales |(y, z)| ∼ 2m and H(x, y) ∼ 2l. We know that, in the region R,

|y| � 1 and we also know from Lemma 4.2.5 that H(x, y) & |y|
1
d
L̃ . Therefore, we know that

the only dyadic scales we must consider are non-negative. Using the van der Corput estimate,
Lemma 4.2.3, we find that ∫

R×RL′
|KΨ,α(x, y, z)|p dµRN (x, y, z)

.
∑
m≥0

∑
l≥0

∫
H(x,y)∼2l, |(y,z)|∼2m, |x|.|y|

1

(1 + |(y, z)|)p(L+α)
|k(x, y)|p dµRN (x, y, z)

.
∑
m≥0

∑
l≥0

2−pm(L+α)2−lp
∫
H(x,y)∼2l, |(y,z)|∼2m, |x|.|y|

dµRN (x, y, z)

.
∑
m≥0

∑
l≥0

2−pm(L+α)2−lp2mL
′
Jl,m,

where

Jl,m =

∫
H(x,y)∼2l, |x|.|y|.2m

dµRÑ (x, y).

We use two estimates on the size of Jl,m. The first estimate is the trivial estimate

Jl,m . 2m(L̃+1). (4.2.2)

Where H(x, y) = inft∈I
∑dL̃
j=1

∣∣Φ(j)(t)/j!
∣∣ 1
j ∼ 2l, we will take a collection of . 2l sample
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points Tl ⊂ [0, δ]. For one of these sample points tj(x, y), we will show that

|Φ′(tj(x, y))| . 2l.

From this it follows that{
(x, y); H(x, y) ∼ 2l, |x| . |y| . 2m

}
⊂
⋃
tj∈Tl

{
(x, y); |Φ′(tj)| . 2l, |x| . |y| . 2m

}
,

where the right hand side is expressed as a finite union of . 2l sets. For a fixed tj , since

Φ′(tj) = x+
∑L̃
i=1 yiψ

′
i(tj), we can make a change of x 7→ x̃ = Φ′(tj), which has unit Jacobian,

to see that

Jl,m .
∑
tj∈Tl

∫
|Φ′(tj)|.2l, |y|.2m

dµRÑ (x, y)

.
∑
tj∈Tl

2mL̃
∫
|x̃|.2l

dx̃

. 22l2mL̃. (4.2.3)

The bounds (4.2.2) and (4.2.3) are comparable precisely when 2l = m. Splitting the summation
at this point, we find that ∫

R×RL′
|KΨ,α(x, y, z)| dµRN (x, y, z)

.
∑
m≥0

∑
l≥m2

2−pm(L+α)2−lp2mL
′
Jl,m

+
∑
m≥0

∑
m
2 >l≥0

2−pm(L+α)2−lp2mL
′
Jl,m

.
∑
m≥0

∑
l≥m2

2−pm(L+α)2−lp2mL
′
2m(L̃+1)

+
∑
m≥0

∑
m
2 >l≥0

2−pm(L+α)2−lp2mL
′
22l2mL̃

.
∑
m≥0

2m(L+1)2−pm(L+α+ 1
2 ).

This last expression is finite if and only if

p >
L+ 1

L+ α+ 1
2

.

It remains to discuss the sample points: we must define Tl with |Tl| . 2l such that, where
H(x, y) ∼ 2l, there exists tj(x, y) ∈ Tl with |Φ′(tj)| . 2l. This is in fact a simple consequence
of Taylor’s theorem. We first choose t∗ = t∗(x, y) such that

2l ∼ H(x, y) = Ht∗(x, y) =

dL̃∑
i=1

∣∣∣∣Φ(i)(t∗)

i!

∣∣∣∣
1
i

.

Thus, we find that, for 0 ≤ i ≤ dL̃ − 1,∣∣∣Φ(i+1)(t∗)
∣∣∣ . 2(i+1)l
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In particular, expanding the polynomial Φ′ as a Taylor series about t∗, we see that

Φ′(t∗ + h) =

dL̃−1∑
i=0

Φ(i+1)(t∗)

i!
hi

so that, if |h| . 2−l, then

|Φ′(t∗ + h)| .
dL̃−1∑
i=0

2l(i+1)2−li ∼ 2l.

If we then set tj(x, y) = 2−l[2lt∗(x, y)], we have |tj(x, y)− t∗(x, y)| . 2−l, so that

|Φ′(tj(x, y))| . 2l.

Therefore, if we take as our sample points the set

Tl =
{

0, 2−l, . . . , 2−l[2lδ]− 2−l, 2−l[−2lδ]
}
,

we are done.

Proceeding from the above arguments, we may now turn our sights to the higher dimensional
case, proving Lemma 4.2.4 and Proposition 4.2.1 in turn.

Proof of Lemma 4.2.4. The proof requires the division of (x, y) space so that we can apply
the van de Corput estimate, Lemma 0.0.8. Henceforth, until stated otherwise, we denote by
Φ = Φx,y,± the phase appearing in the integral expansion we are interested in. To recall,

Φ(r) = Φx,y,±(r) := ±|x|r +

L̃∑
j=1

yjψj(r).

Likewise we denote by H(x, y) the quantity

H(x, y) = inf
r∈[0,δ]

dL̃∑
j=1

∣∣∣∣Φ(j)(r)

j!

∣∣∣∣ ,
where the phase Φ, dL̃, and δ depend implicitly on the surface Γ under consideration.

The main regions are those defined as follows. Let

R1 = {(x, y) |x| . |y1|; |y1| � |yj | for j > 1; |y1| � 1} ,

R2 = {(x, y) |x|, |y1| . |y2|; |y2| � |yj | for j > 2; |y2| � 1} ,
...

RL = {(x, y) |x|, |y1|, . . . , |yL−1| . |yL|; |yL| � 1} .

We are free to choose the constants in the � inequalities as we wish, with the remaining
conditions on all of the . inequalities chosen so that the regions Rl cover the whole of the
region where |y| & |x| and |y| � 1.

We now show that for each one of these regions the van de Corput estimate can be applied.

Although we introduced the quantity H(x, y) = infr∈I
∑dL̃
j=1

∣∣∣∣Φ(j)
x,y(r)

j!

∣∣∣∣, we must also work with

reference to Hdl(x, y) = infr∈I
∑dl
j=1

∣∣∣∣Φ(j)
x,y(r)

j!

∣∣∣∣, for 1 ≤ l ≤ L̃. We show that H(x, y) ∼ Hdl(x, y)

in the regions Rl, for 1 ≤ l ≤ L̃.
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Now we verify that, in the region Rl,

inf
r∈I

∣∣∣Φ(dl)(r)
∣∣∣ ≥ c sup

r∈I

∣∣∣Φ(dl)(r)
∣∣∣ . (4.2.4)

Noting that the even dl ≥ 2, it is seen that

Φ(dl)(r) =

L∑
j=1

yjψ
(dl)
j (r),

since |yj | � |yl| for j > l and
∣∣∣ψ(dl)
j (r)

∣∣∣ ≤ ε for j < l. We can then see, using the bound (4.2.1)

on |ψ(dl)
l (r)|, that ∣∣∣Φ(dl)(r)

∣∣∣ ≥ 1

2
|yl| − (L− l)ε|y| −

∑
j>L

2|yj | ≥
1

4
|yl|, (4.2.5)

provided ε is chosen small enough, since |yj | � |yl| for j > l. Trivially, in Rl, we have∣∣∣Φ(dl)(r)
∣∣∣ . |yl|. (4.2.6)

The desired inequality (4.2.4) follows from (4.2.5) and (4.2.6).
In Rl we also see that, for j > dl,∣∣∣∣Φ(j)(r)

j!

∣∣∣∣
1
j

.

∣∣∣∣ylj!
∣∣∣∣ 1
j

.

∣∣∣∣ yldl!
∣∣∣∣ 1
dl

∼ inf
r∈I

∣∣∣∣Φ(dl)(r)

dl!

∣∣∣∣
1
dl

. H(x, y).

It follows that Hdl(x, y) ∼ H(x, y).
Thus in each of the regions Rl for l ≥ 1 we can apply our van de Corput estimate, Lemma

0.0.8, with k = dl and, further, we have that H(x, y) ∼ Hdl(x, y).
For (x, y) ∈ Rl, when we apply Lemma 0.0.8 we see that, if H(x, y) ≥ κ, then∣∣∣∣∣

∫ ∞
0

e
2πi
(
±r|x|+

∑L̃
i=1 yiψi(r)

)
1

|rx|n−1
2

η(|x|r)φ0(r)rn−1dr

∣∣∣∣∣
.d ‖φ̃′‖L1 min

{
1, κ−1

}
,

where φ̃(r) = 1

|rx|
n−1

2

η(|x|r)φ0(r)rn−1 = 1

|x|
n−1

2

η(|x|r)φ0(r)r
n−1

2 . We see that

φ̃′(r) =
1

|x|n−1
2

(
|x|η′(|x|r)φ0(r)r

n−1
2

+η(|x|r)φ′0(r)r
n−1

2 +
n− 1

2
η(|x|r)φ0(r)r

n−3
2

)
so that

‖φ̃′‖L1 ≤ 1

|x|n−1
2

∫ ∣∣∣|x|η′(|x|r)φ0(r)r
n−1

2

∣∣∣ dr
+

1

|x|n−1
2

∫ ∣∣∣η(|x|r)φ′0(r)r
n−1

2

∣∣∣ dr
+

1

|x|n−1
2

∫ ∣∣∣∣n− 1

2
η(|x|r)φ0(r)r

n−3
2

∣∣∣∣ dr
.

1

|x|n−1
2

(
|x||x|−

n−1
2 |x|−1 + 1 +

(
1 + |x|−

n−1
2

))
∼ 1

|x|n−1
2

.

This completes the proof since the union of Rl is the desired region, where |x| . |y| and
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|y| � 1.

Proof of Proposition 4.2.1. We prove that

k(x, y)(1 + |(y, z)|)−L−α ∈ Lp(RN , dxdydz)

which, combined with bounds on Aα, (2.3.2) and |Aα| ≤ C, gives the desired result. We show
the result for p ≤ 2, the full range of p follows because Lp ∩ L∞ ⊂ Lq for all q ∈ [2,∞].

We first consider the regions where the kernel k(x, y)(1 + |(y, z)|)−(L+α) contributes what
can be considered error terms in the Lp integration. The first of these is the region R0, where
|x| � |y|. The next region is R−1, where |x| . min{1, |y|}. The remaining region, where
1 . |x| . |y| and |y| � 1, is the main region R. Trivially, we always have the estimate
|k(x, y)| ≤ C.

In the region R0, we consider the phase function

Φ̃x,y(t) =
1

|x|
(x · t+ y ·Ψ(t)) ,

for which ‖Φ̃x,y‖Cn+2(B(0,δ))
. 1 and

∣∣∣∇Φ̃x,y(t)
∣∣∣ & 1, for |t| ≤ δ. Therefore, by the non-

stationary phase lemma, Lemma 0.0.1,

|k(x, y)| =
∣∣∣∣∫ e2πi|x|Φ̃x,y(t)φ(t)dt

∣∣∣∣ . 1

|x|n+1
.

Integrating the resulting estimate we see∫
R0×RL′

|k(x, y)|p(1 + |(y, z)|)−p(L+α)dxdydz

.
∫
R0×RL′

1

(1 + |x|)(n+1)p

1

(1 + |(y, z)|)p(L+α)
dµRN (x, y, z),

which is finite.
Next, we see for R−1 that∫

R−1×RL′
|k(x, y)|p(1 + |(y, z)|)−p(L+α)dµRN (x, y, z)

.
∫
|x|.1

1dx

∫ ∫
(1 + |(y, z)|)−p(L+α)dydz <∞.

So far, we have established that

k(x, y)A(y, z) ∈ Lp(R0, dxdydz) and k(x, y)A(y, z) ∈ Lp(R−1, dxdydz),

for all 1 ≤ p ≤ ∞. It remains for us to prove that

k(x, y)A(y, z) ∈ Lp(R, dxdydz).

Using polar integration and writing φ(t) = φ0(|t|) we expand

k(x, y) =

∫
e2πi(x·t+y·ΨL̃(|t|))φ(t)dt

=

∫ ∫
e2πi(x·rω+y·ΨL̃(r))φ0(r)dσ(ω)rn−1dr

=

∫
e2πiy·ΨL̃(r)σ̂(rx)φ0(r)rn−1dr.

For n = 1 we have that σ̂(rx) = e2πir|x| + e−2πir|x|. For n > 1 we use the asymptotic
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expansion for σ̂

σ̂(rx) =
1

|rx|n−1
2

(
c+e

2πir|x| + c−e
−2πir|x| + Eσ(rx)

)
,

for |rx| & 1, where the c− and c+ are non-zero constants and |Eσ(rx)| ≤ C|rx|−1; see, for
example, Chapter 8 of [Ste93]. To make use of this we introduce a cut-off function, η. We
choose η such that η(r) = 0 for r ≤ 1

2 and η(r) = 1 for r ≥ 1. We see

k(x, y)

= E1(x, y) + I(x, y),

where

E1(x, y) =

∫ ∞
0

e2πi
∑L̃
i=1 yiψi(r)σ̂(rx)(1− η(|x|r))φ0(r)rn−1dr

and

I(x, y) =

∫ ∞
0

e2πi
∑L̃
i=1 yiψi(r)σ̂(rx)η(|x|r)φ0(r)rn−1dr.

Let us look first to I(x, y). Using the asymptotic expansion, we see that

I(x, y)

= I+(x, y) + I−(x, y) + E2(x, y),

where

I+(x, y) = c+

∫ ∞
0

e
2πi
(
r|x|+

∑L̃
i=1 yiψi(r)

)
1

|rx|n−1
2

η(|x|r)φ0(r)rn−1dr,

I−(x, y) = c−

∫ ∞
0

e
2πi
(
−r|x|+

∑L̃
i=1 yiψi(r)

)
1

|rx|n−1
2

η(|x|r)φ0(r)rn−1dr,

E2(x, y) =

∫ ∞
0

e
2πi
(∑L̃

i=1 yiψi(r)
)

1

|rx|n−1
2

Eσ(rx)η(|x|r)φ0(r)rn−1dr.

The main terms are I+ and I−. The phases we consider are thus

Φx,y,−(r) = −r|x|+
L̃∑
i=1

yiψi(r)

and

Φx,y,+(r) = r|x|+
L̃∑
i=1

yiψi(r).

We estimate the contributions of the terms I+(x, y) and I−(x, y) separately. We apply the van
der Corput estimate, Lemma 4.2.4, to bound the oscillatory integrals. Since the analysis is the
same in either case, we only present the argument for I+(x, y), with the relevant phase denoted

by Φ = Φx,y = Φx,y,+. We use the quantity H(x, y) = infr≤δ
∑dL̃
j=1

∣∣∣∣Φ(j)
x,y(r)

j!

∣∣∣∣ 1
j

.

To carry out the Lp integration of I+(x, y)(1+ |(y, z)|)−(L+α), we perform a dyadic partition

on scales H(x, y) ∼ 2l and |y| ∼ 2m. By Lemma 4.2.5 we have H(x, y) & |y|
1
d
L̃ . It follows

that, for (x, y, z) ∈ R, the indices l,m ≥ 0, provided |y| � 1 with a suitable constant in
the main region R. When H(x, y) ∼ 2l, we have as a consequence of Lemma 4.2.4 that
|I+(x, y)|p . 1

|x|p
n−1

2

2−lp. Thus we see

∫
|I+(x, y)|p 1

(1 + |(y, z)|)p(L+α)
dµRN (x, y, z)
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.
∑
m≥0

∑
l≥0

2−lp
∫

2l−1<H(x,y)≤2l;max{|x|,|z|}.|y|∼2m

1

|x|pn−1
2

1

(1 + |y|)p(L+α)
µRN (x, y, z)

+
∑
m≥0

∑
l≥0

2−lp
∫

2l−1<H(x,y)≤2l;|x|.|y|∼2m.|z|

1

|x|pn−1
2

1

(1 + |z|)p(L+α)
µRN (x, y, z)

.
∑
m≥0

∑
l≥0

2−lp2−pm(L+α)2L
′m

∫
2l−1<H(x,y)≤2l,|x|.|y|∼2m

1

|x|pn−1
2

µRÑ (x, y)

=
∑
m≥0

∑
l≥0

2−lp2−mp(L+α)2L
′mJl,m,

where

Jl,m =

∫ ∫
2l−1<H(x,y)≤2l;|x|.|y|∼2m

1

|x|pn−1
2

dxdy.

We split the sum into two and write∑
m≥0

∑
l≥0

2−lp2−mp(L+α)2L
′mJl,m = S1 + S2,

where
S1 =

∑
l≥0

2−pl
∑

m≥2l,0

2−pm(L+α)2L
′mJl,m

and
S2 =

∑
l≥0

2−pl
∑

2l>m≥0

2−pm(L+α)2L
′mJl,m.

We provide two different estimates on the size of Jl,m. The first estimate is the trivial
estimate

Jl,m ≤
∫ ∫

|y|.2m,|x|.2m

1

|x|pn−1
2

dxdy

≤ 2mL2mn−p(
n−1

2 )m. (4.2.7)

The second estimate requires a little more care and it is here we work by the method used
in [ACK79]. We now work via polar integration.

Since H(x, y) ∼ 2l we will later show that there exists some

rj ∈ Tl :=

{
0,

1

2l
, . . . ,

1

2l
[2lδ]− 1

2l
,

1

2l
[2lδ]

}
such that |Φ′(rj)| . 2l. Indeed, as before, we choose rj(x, y) = 1

2l

[
2lr∗(x, y)

]
, where

dL̃∑
i=1

∣∣∣Φ(i)(r∗(x, y))
∣∣∣ 1
i

= inf
r∈[0,δ]

dL̃∑
i=1

∣∣∣Φ(i)(r)
∣∣∣ 1
i

.

We claim that
|Φ′(rj(x, y))| . 2l. (4.2.8)

Let us for now assume that (4.2.8) holds and show how the result follows. We later return to
the proof of this claim. As a consequence, we see that{

(x, y); H(x, y) ∼ 2l, |y| ∼ 2m, |s| . |y|
}

⊂
⋃
rj∈Tl

{
(sω, y); |Φ′(rj)| . 2l, |y| ∼ 2m, |s| . |y|

}
.

For each j, we will make the change of variables s 7→ s̃ = Φ′(rj) = |x| +
∑L̃
i=1 yiψ

′
i(s),

where s = |x| in the following polar integration. The change of variables has unit Jacobian. We
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denote by e1 the vector (1, 0, . . . , 0) ∈ Rn and see that

Jl,m =

∫ ∫ ∫
2l−1<H(sω,y)≤2l,|y|∼2m,s.|y|

1

sp
n−1

2

dσ(ω)sn−1dsdy

.
[2lδ]∑
j=0

∫ ∫ ∫
|Φ′sω,y(rj)|.2l,|y|.2m,

1

sp
n−1

2

dσ(ω)sn−1dsdy

∼
[2lδ]∑
j=0

∫ ∫
|Φ′se1,y(rj)|.2l,|y|.2m,

sn−1−pn−1
2 dsdy

∼
[2lδ]∑
j=0

∫ ∫
|s̃|.2l,|y|.2m

∣∣∣∣∣∣s̃−
L̃∑
i=1

yiψ
′
i(rj)

∣∣∣∣∣∣
n−1−pn−1

2

ds̃dy

.
[2lδ]∑
j=0

∫ ∫
|s̃|.2l,|y|.2m

|s̃|n−1−pn−1
2 +

∣∣∣∣∣∣
L̃∑
i=1

yiψ
′
i(rj)

∣∣∣∣∣∣
n−1−pn−1

2

 ds̃dy

. 2l
∫
|y|.2m

(
2l(n−p

n−1
2 ) + 2l2m(n−1−pn−1

2 )
)
dy

. 22l2L̃m
(

2l(n−1−pn−1
2 ) + 2m(n−1−pn−1

2 )
)
,

We use this last estimate in the case that 2l ≤ m, in which case we see that

Jl,m . 22l2L̃m2m(n−1−pn−1
2 ). (4.2.9)

We use this bound to see that

S1 =
∑
l≥0

2−pl
∑

m≥2l,0

2−pm(L+α)2L
′mJl,m

.
∑
m≥0

2−pm(L+α)2Lm2m(n−1−pn−1
2 )

∑
0≤l≤m2

22l2−pl

.
∑
m≥0

2−pm(L+α)2Lm2m(n−1−pn−1
2 )2m2−p

m
2 ,

which is finite if p > L+n
L+α+n

2
.

Using the trivial bound (4.2.7), we see that

S2 =
∑
l≥0

2−pl
∑

2l>m≥0

2−pm(L+α)2L
′mJl,m

=
∑
m≥0

2−pm(L+α)2mL2mn−pm(n−1
2 )

∑
2l>m≥0

2−pl

.
∑
m≥0

2−pm(L+α)2mL2mn−pm(n−1
2 )2−p

m
2 ,

which is finite if p > L+n
L+α+n

2
.

The analysis may be repeated for the contribution of I−(x, y).
It remains to consider the contribution of the error terms. For E2, we have that

|E2(x, y)| =

∣∣∣∣∣
∫ ∞

0

e2πi(
∑L
i=1 yiψi(r)) 1

|rx|n−1
2

Eσ(rx)η(|x|r)φ0(r)rn−1dr

∣∣∣∣∣
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≤ C 1

|x|n−1
2

1

|x|

∫ 1

1
2 |x|−1

r−1r
n−1

2 dr ∼ 1

|x|n+1
2

.

For E1, we find

|E1(x)| =
∣∣∣∣∫ ∞

0

e2πi
∑L
i=1 yiψi(r)σ̂(rx)(1− η(|x|r))φ0(r)rn−1dr

∣∣∣∣
.
∫ |x|−1

0

rn−1dr ∼ 1

|x|n
.

Since we know in either case that |x| & 1, we see |Ei(x, y)| . 1

|x|
n+1

2

for each i.

Of course, we also have the bound |Ei(x, y)| ≤ C for each i. Performing polar integration,
we find that

‖Ei(x, y)(1 + |(y, z)|)−L−α‖pLp(R,dxdydz)

.
∫ ∫ ∫

(1 + |(y, z)|)−p(L+α)(1 + |x|)−p
n+1

2 dxdydz

∼
∫ ∞

1

r(n+L−1)−p(L+α+n+1
2 )dr,

which is finite if p > n+L
L+α+n+1

2

. In particular, this is true if p > n+L
L+α+n

2
. To conclude, in the

region R, we have made the decomposition

k(x, y)A(y, z)

= I+(x, y)A(y, z) + I−(x, y)A(y, z) + E1(x, y)A(y, z) + E2(x, y)A(y, z)

and we proved that each of the summands is in Lp(R, dxdydz) for p > L+n
L+α+n

2
. Applying the

triangle inequality establishes the required result.
Let us finally return to the proof of (4.2.8). Recall that we chose r∗ with

dL̃∑
i=1

∣∣∣Φ(i)(r∗)
∣∣∣ 1
i

= inf
r∈[0,δ]

dL̃∑
i=1

∣∣∣Φ(i)(r)
∣∣∣ 1
i

.

Recall also that we took rj = 1
2l

[
2lr∗

]
, for which |rj − r∗| ≤ 2−l. Now observe that, for

1 ≤ i ≤ dL̃,

|Φ(i)(r∗)| . 2li.

Before we can apply Taylor’s theorem, we must leverage this bound to adequately control the
remainder term. We work with reference to the same regions Ra which we introduced in the
proof of Lemma 4.2.4. To recall, these were

R1 = {(x, y) |x| . |y1|; |y1| � |yj | for j > 1; |y1| � 1} ,

R2 = {(x, y) |x|, |y1| . |y2|; |y2| � |yj | for j > 2; |y2| � 1} ,
...

RL = {(x, y) |x|, |y1|, . . . , |yL−1| . |yL|; |yL| � 1} .

Let us fix an a and consider (x, y) ∈ Ra, then we can write

Φ(da)(r) = ya +

L̃∑
i=1

yiε
(da)
i (r) +

L̃∑
i=a+1

yi
rdi−da

(di − da)!
.

We know by definition of S0 (Definition 1.0.1) that, provided δ has been chosen sufficiently

small |ε(da)
i (r)| � 1 for 0 ≤ r ≤ δ. We also know that |yb| . |ya| and, for b > a, |yb| � |ya|.
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Therefore, for 0 ≤ r ≤ δ, ∣∣∣Φ(da)(r)
∣∣∣ ∼ |ya|

and we know, since H(x, y) ∼ 2l, that

|ya| ∼
∣∣∣Φ(da)(r∗)

∣∣∣ . 2lda .

Using this, we can establish suitable control on the error term coming from Taylor’s theorem.
In particular, we find that

Φ′(r∗ + h) =

da−1∑
i=0

Φ(i+1)(r∗)hi + θ(h),

where
|θ(h)| . hda sup

ξ∈[r∗−h,r∗+h]

∣∣∣Φ(da+1)(r)
∣∣∣ . hda |ya| . hda2lda .

Therefore, if we choose rj = 2−l[2lr∗], since |rj − r∗| . 2−l and H(x, y) ∼ 2l,

|Φ′(rj)| .

(
dã−1∑
i=0

2l(i+1)2−li

)
+ 2−lda2lda ∼ 2l.
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4.3 Sharp Bochner-Riesz estimates

To conclude this part, we observe that there is a class of surfaces for which the range of p
such that the Bochner-Riesz kernel KΨ,α = m̌Ψ,α ∈ Lp differs from the Lp boundedness range
for TmΨ,α

. These examples are instances of smooth surfaces Γ that are contained in a proper
affine subspace, P ⊂ RN . In this case it is well known that the Fourier restriction inequality
(3.0.1) can not hold for any 1 < q; see Example 3.1.3 in Section 3.1. Nevertheless, a restriction
inequality may hold within the ambient subspace. For the surfaces in S in Definition 1.0.2 such
that L̃ < L, this is indeed the case.

In fact, the sharp result we have is slightly stronger than how it was stated in the introduc-
tion, as we established a restriction estimate for surfaces in S0 and also precisely determined
the range of p for which KΨ,α ∈ Lp.

Proposition 4.3.1. Let Γ ∈ S0 with graphing function Ψ such that L̃ < L, d1 < d2, < . . . , <

dL̃, and d1 ≥ n(L̃ + 1). We set q′

2 = 1 + D
n . For 1 < p ≤ q or q′ ≤ p < ∞, TmΨ,α is bounded

on Lp if and only if L̃+n
L̃+α+n

2

< p < L̃+n
L̃−α+n

2

.

It is easily seen for α < n
2 that L̃+n

L̃+α+n
2

≥ L+n
L+α+n

2
if L̃ ≤ L, with strict inequality if L̃ 6= L.

Indeed, with α < n
2

L̃+ n

L̃+ α+ n
2

− L̃+ L′ + n

L̃+ L′ + α+ n
2

=
1

(L̃+ α+ n
2 )(L+ α+ n

2 )

(
(L̃+ n)(L̃+ L′ + α+

n

2
)− (L̃+ L′ + n)(L̃+ α+

n

2
)
)

=
1

(L̃+ α+ n
2 )(L+ α+ n

2 )

(
(L̃+ n)L′ − L′(L̃+ α+

n

2
)
)
≥ 0,

with strict inequality if L′ ≥ 1. Hence, for the smooth surfaces in Theorem 4.0.1 with L̃ < L,
the Lp boundedness range for TmΨ,α

differs from the Lp integrability range of KΨ,α.
It is useful to consider the situation in terms of the reciprocal, 1

p , of the Lp exponents. We

have a line of critical indices ( 1
p , α) coming from the KΨ,α ∈ Lp test. We also have a distinct

line of critical indices ( 1
p , α) coming from Theorem 3.0.2. The situation is rendered in Figure

4.1. In particular, for 2 < p <∞, the sketch indicates the range of exponents(
1

p
, α

)
for which the Bochner-Riesz operator is bounded. Above the critical line connecting

(
0,
n

2

)
and

(
1

2
,− L̃

2

)
,

provided we have an L2 → Lp extension estimate, the Bochner-Riesz operator is bounded.
Below this critical line, the operator is unbounded. However, the critical line for the KΨ,α ∈ Lp
test is the line connecting (

0,
n

2

)
and

(
1

2
,−L

2

)
,

which is below the critical line for the operator. Marked on the figure is the vertical line
extending from the inverse of the critical exponent for L2 → Lp extension.

Proposition 4.3.1 is obtained as a corollary of Theorem 3.0.4 (which is the restriction esti-
mate), Theorem 3.0.2, and Theorem 4.0.1. Let us recall Theorem 3.0.2.

Theorem. Let Γ ⊂ RN be a smooth surface such that Γ ⊂ P for some proper affine subspace

P , which is of dimension Ñ . Let Γ̃ be the corresponding projection of Γ onto RÑ . Suppose

that the Lq
(
RÑ
)
→ L2(Γ̃, σΓ̃) restriction inequality (3.0.3) holds. Then, for 1 < p ≤ q or
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(a) 1
p
vs α

(b) Key

Figure 4.1: Indices
(

1
p , α

)
for which mΨ,α ∈Mp or KΨ,α ∈ Lp
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q′ ≤ p <∞, the Bochner-Riesz multiplier mΓ,α given by (1.0.2) with α > 0 defines a multiplier
operator mΓ,α ∈Mp if

α > (n+ L̃)

∣∣∣∣1p − 1

2

∣∣∣∣− L̃

2
.

Let us also recall the statement of Theorem 4.0.1.

Theorem. Consider Γ as given as a neighbourhood about the origin of the graph given by
(1.0.6). Then the convolution kernel KΨ,α = m̌Ψ,α ∈ Lp(RN ) if and only if p > L+n

L+α+n
2

.

Proof of Proposition 4.3.1. By Theorem 3.0.4, we see that the Lq → L2 restriction inequality
(3.0.3) also holds as an Lp → L2 inequality for 1 < p ≤ q. Therefore, we can apply Theorem

3.0.2 to see that, where 1 < p ≤ q or q′ ≤ p < ∞, Tm is bounded on Lp for L̃+n
L̃+α+n

2

< p <

L̃+n
L̃−α+n

2

.

To prove the converse, instead of considering the multiplier

m(ξ, η, λ) = |(η, λ)−Ψ(ξ)|αχ ((η, λ)−Ψ(ξ))φ(ξ),

we restrict this continuous multiplier to V = Rn+L̃, corresponding to λ = 0. de Leeuw’s

theorem, [dL65], tells us that if m ∈ Mp(RN ), then m|V ∈ Mp(Rn+L̃). This is the Bochner-

Riesz multiplier on Rn+L̃ corresponding to the surface Γ̃ =
{

(ξ, Ψ̃(ξ)); ξ ∈ Rn
}

. We apply

Theorem 4.0.1 to see that the corresponding kernel is in Lp only for p > L̃+n
L̃+α+n

2

. By duality,

we must also have p < L̃+n
L̃−α+n

2

for Tm to be bounded on Lp.
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Part II

Uniform oscillatory integral
estimates
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Chapter 5

Uniform oscillatory integral
estimates

In this chapter, we work to extend work of J. Hickman and J. Wright regarding bounds for
certain oscillatory integrals. These oscillatory integrals appeared previously in Section 3.2,
arising in our derivation of L2 restriction estimates for the surfaces in the class S0 (Definition
1.0.1). They arose as the Fourier transform of the surface measures for Γ ∈ S0. As we have seen
with the application to restriction estimates, obtaining uniform estimates on such oscillatory
integrals has important applications. Such estimates can also be used to obtain sublevel set
estimates for the phase; see, for instance [KW12]. We will later return to some of the estimates
we here consider: in Part III they are recovered in the polynomial case, by an analysis of
polynomial root structure.

We now consider the one dimensional oscillatory integral

I(x, y) =

∫ ∞
0

e2πi(rx+
∑L
j=1 yjψj(r))φ0(r)rn−1dr,

where Φx,y(r) = Φ(r) = xr +
∑L
j=1 yjψj(r), where the ψj correspond with the class S0 in

Definition 1.0.1. Here (x, y) ∈ R× RL. We recall that

ψj(r) =
rdj

dj !
+ εj(r),

where εj(r) is a higher order remainder term.
Under suitable restrictions, we work to establish uniform estimate

|I(x, y)| ≤ C min
j=1,...,L

|yj |
− n
dj . (5.0.1)

Note that we also have the inequality |I(x, y)| . 1, since φ0 has compact support, although
we make no use of this. One can also see that (5.0.1) is trivial in the case that y = 0, if we
interpret 0−1 =∞.

Remark 5.0.1. The estimate 5.0.1 is sharp in the following sense. For each 1 ≤ j ≤ L, we
consider those (x, y) such that, yj 6= 0, x = 0 and yj′ = 0 for j′ 6= j. It is a simple matter to
verify that in this region, provided |yj | & 1,

|I(x, y)| ∼ |yj |
− n
dj .

This is essentially a special case of our later Proposition 9.0.1.

The following is a result of Hickman and Wright, in the polynomial case. We have extended
their proof to cover the (radial) curves of standard type. We also later extend their method
to establish some stronger uniform bounds, at the cost of stronger restrictions on the region of
(x, y) ∈ R× RL for which the corresponding estimate holds.
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Theorem 5.0.2. The estimate (5.0.1) holds uniformly over (x, y) ∈ R × RL, provided d1 ≥
n(L+ 1).

Proof. Suppose that d1 ≥ n(L+ 1). Note that, provided δ is chosen sufficiently small defining
φ, (2.2.2), using Taylor’s theorem to bound the higher order term, εj , we can write each

ψ
(ι)
j (r) =

rdj−ι

(dj − ι)!
+ ε

(ι)
j (r),

where |ε(ι)
j (r)| �

∣∣∣∣ rdj−ι

(dj − ι)!

∣∣∣∣ for 0 ≤ ι ≤ dj and r ∈ suppφ0 ⊂ [−δ, δ].
(5.0.2)

To begin with, we rescale. We set σ = min1≤j≤L |yj |
− 1
dj and ψ̃j(s) = σ−djψj(σs). Making the

change of variables σs = r and using the definition of the ψ̃j , we find that

I(x, y) =

∫ ∞
0

e2πi(rx+
∑L
j=1 yjψj(r))φ0(r)rn−1dr

= σn
∫ ∞

0

eiΦw,z(s)φ0(σs)sn−1ds,

where

Φw,z(s) = ws+
L∑
j=1

zjσ
−djψj(σs),

with w = 2πσx and zj = 2πσdjyj , for 1 ≤ j ≤ L. We now seek to prove that, with

J(x, y) :=

∫ ∞
0

eiΦw,z(s)φ0(σs)sn−1ds,

|J(x, y)| . 1,

uniformly over (x, y) ∈ RN , which gives the desired result. Note that max1≤j≤L |zj | ∼ 1.
Let us now decompose the integral over dyadic scales. We choose a bump function χ0 with

χ0(s) = 1 for |s| ≤ 1
2 and χ0(s) = 0 for |s| ≥ 1. For l ≥ 1, we set χl(s) = χ0(2−ls)−χ0(2−l+1s).

We can see that
∑
l≥0 χl(s) = 1 and also that χl(s) = χ(2−ls), where χ(s) = χ0(s/2)− χ0(s).

Also, suppχ ⊂ [−2,−1/2] ∪ [1/2, 2]. We see that

J(x, y) =
∑
l≥0

Jl(x, y),

where

Jl(x, y) :=

∫ ∞
0

eiΦw,z(s)φ0(σs)sn−1χl(s)ds

= 2ln
∫ ∞

0

eiΦw,z(2lt)φ0(2lσt)tn−1χ(t)dt.

For l = 0, we can use the trivial bound

|J0(x, y)| . 1.

To bound the oscillatory integrals Jl(x, y) for l ≥ 1, we must get a handle on the phase. We set

Φl(t) := Φw,z(2
lt) = 2lwt+

L∑
j=1

2ldjzj
(
2−ldjσ−djψj(σ2lt)

)

= 2lwt+
L∑
j=1

2ldjzjψ̃j,l(t),

81



where
ψ̃j,l(t) = 2−ldjσ−djψj(σ2lt).

We can also write

ψ̃j,l(t) =
tdj

dj !
+ ε̃j,l(t),

where
ε̃j,l(t) = 2−ldjσ−djεj(σ2lt).

It is a simple matter to verify from (5.0.2) that

|ε̃(ι)
j,l (s)| �

∣∣∣∣ sdj−ι

(dj − ι)!

∣∣∣∣ for 0 ≤ ι ≤ dj and s ∈ suppφ0(2lσ·) ∩ suppχ. (5.0.3)

As a consequence, for t ∈ suppφ0(2lσ·) ∩ suppχ, and 0 ≤ ι ≤ L+ 1,∣∣∣ψ̃(ι)
j,l (t)

∣∣∣ ∼ ∣∣tdj−ι∣∣ ∼ 1.

We can also see that
‖Φ′′l ‖Cn(suppφ0(2lσ·)∩suppχ) . 1, (5.0.4)

uniformly in l. We now work to establish that∑
l≥0

|Jl(x, y)| . 1.

We will find that, for all but finitely many exceptional indices l, the oscillatory integral Jl has
a well controlled non-stationary phase and we have strong bounds on Jl. For the exceptional
indices, bounding Jl requires more care.

Let us first define the set of exceptional indices L′. We include l = 0 and, for l ≥ 1, we also
include in L′ those indices l for which

inf
t∈suppχ

|Φ′l(t)| . 2l.

We find that there are finitely many exceptional indices for which such a relationship holds,
with the number of exceptional indices uniformly bounded over (x, y) ∈ RN . Indeed, let us first
choose t∗ such that

min
t∈suppχ

|Φ′l(t)| = |Φ′l(t∗)| .

Before continuing, let us introduce some new notation. We may henceforth denote w by z0

and 1 by d0, although we still write z = (z1, z2, . . . , zL). Likewise, we set ψ̃0,l(s) = 2ls so that

Φ(s) =
∑L
j=0 zjψ̃j,l(s). Now fixing 1 ≤ j∗ ≤ L such that

max
1≤j≤L

∣∣∣2ldjzjψ̃′j,l(t∗)∣∣∣ =
∣∣∣2ldj∗ zj∗ ψ̃′j∗,l(t∗)∣∣∣ ,

we evidently have that ∣∣∣2ldj∗ zj∗ ψ̃′j∗,l(t∗)∣∣∣ & 2ld1 ,

since max1≤j≤L |zj | ∼ 1 and ψ̃′j∗,l(t
∗) ∼ 1. Therefore, in order to have that

inf
t∈suppχ

|Φ′l(t)| . 2l,

there must exist 0 ≤ j′ ≤ L with j′ 6= j∗ such that∣∣∣2ldj′ zj′ ψ̃′j′,l(t∗)∣∣∣ & 2ld1 .
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In particular, we find that
2ldj′ |zj′ | ∼ 2ldj∗ |zj∗ | > 0. (5.0.5)

For fixed (w, z) = (z0, z1, . . . , zL), there are at most finitely many indices where such a com-
parison may hold. Specifically, for a suitable fixed number a the only integers l for which the
relation (5.0.5) might hold are those

l ∈
[

1

dj′ − dj∗
log2

(
|zj∗ |
|zj′ |

)
− a

2
,

1

dj′ − dj∗
log2

(
|zj∗ |
|zj′ |

)
+
a

2

]
.

We now establish the estimate
|Jl(x, y)| . 1,

which we will use to estimate the contribution of the terms indexed by the exceptional L′ to
our estimate on |J(x, y)|. This bound is trivial for l = 0. For l ≥ 1 we proceed as follows.
Recall from (5.0.3) that, for t ∈ suppφ0(2lσ·) ∩ suppχ

ψ̃
(ι)
j,l (t) =

tdj−ι

(dj − ι)!
+ ε̃

(ι)
j,l (t),

where
∣∣∣ε̃(ι)
j,l (t)

∣∣∣� ∣∣∣ tdj−ι(dj−ι)!

∣∣∣. One can see that, for 2 ≤ ι ≤ L+ 1,

Φ
(ι)
l (t) =

L∑
j=1

2ldjzjψ̃
(ι)
j,l (t)

=
L∑
j=1

2ldjzj
tdj−ι

(dj − ι)!
+ θ

(ι)
l (t),

where θl(t) =
∑L
j=1 2ldjzj ε̃

(ι)
j,l (t). Note that, for t ∈ suppφ0(2lσ·) ∩ suppχ∣∣∣tιθ(ι)

l (t)
∣∣∣ ∼ ∣∣∣θ(ι)

l (t)
∣∣∣� max

1≤j≤L
2ldj |zj |.

For 2 ≤ ι ≤ L+ 1, we write

tιΦ
(ι)
l (t) =

L∑
j=1

2ldjzj
tdj

(dj − ι)!
+ tιθ

(ι)
l (t).

In matrix form, we have that
t2Φ

(2)
l (t)

t3Φ
(3)
l (t)
...

tL+1Φ
(L+1)
l (t)

 = M


2ld1z1

td1

(d1−1)!

2ld2z2
td2

(d2−1)!

...

2ldLzL
tdL

(dL−1)!

+


t2θ

(2)
l (t)

t3θ
(3)
l (t)
...

tL+1θ
(L+1)
l (t)

 ,

where
M(b, j) = (dj − 1)(dj − 2) . . . (dj − b).

We claim that M is invertible. Given this claim, we see that, for t ∈ suppχ, since |t| ∼ 1,

max
2≤ι≤L+1

∣∣∣Φ(ι)(t)
∣∣∣ ∼ max

2≤ι≤L+1

∣∣∣tιΦ(ι)(t)
∣∣∣ ∼

∣∣∣∣∣∣∣∣∣∣


t2Φ

(2)
l (t)

t3Φ
(3)
l (t)
...

tL+1Φ
(L+1)
l (t)


∣∣∣∣∣∣∣∣∣∣
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& detM

∣∣∣∣∣∣∣∣∣∣∣


2ld1z1

td1

(d1−1)!

2ld2z2
td2

(d2−1)!

...

2ldLzL
tdL

(dL−1)!



∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣


t2θ

(2)
l (t)

t3θ
(3)
l (t)
...

tL+1θ
(L+1)
l (t)


∣∣∣∣∣∣∣∣∣∣
.

We know that, for t ∈ suppφ0(2lσ·) ∩ suppχ,∣∣∣∣∣∣∣∣∣∣


t2θ

(2)
l (t)

t3θ
(3)
l (t)
...

tL+1θ
(L+1)
l (t)


∣∣∣∣∣∣∣∣∣∣
� max

1≤j≤L
2ldj |zj | ∼ detM

∣∣∣∣∣∣∣∣∣∣∣


2ld1z1

td1

(d1−1)!

2ld2z2
td2

(d2−1)!

...

2ldLzL
tdL

(dL−1)!



∣∣∣∣∣∣∣∣∣∣∣
.

We also know that max1≤j≤L |zj | ∼ 1 so that max1≤j≤L 2ldj |zj | & 2ld1 . Therefore, for t ∈
suppφ0(2lσ·) ∩ suppχ,

max
2≤ι≤L+1

∣∣∣Φ(ι)(t)
∣∣∣ ∼ max

1≤j≤L
2ldj

∣∣zjtdj ∣∣
∼ max

1≤j≤L
2ldj |zj | & 2ld1 .

We can now apply the van der Corput estimate, Lemma 0.0.8,1 to find that

|Jl(x, y)|

. 2ln2−
ld1
L+1

∫ (
2lσ
∣∣φ′0(2lσt)tn−1χ(t)

∣∣+
∣∣φ0(2lσt)(n− 1)tn−2χ(t)

∣∣) dt
+2ln2−

ld1
L+1

∫ ∣∣φ0(2lσt)tn−1χ′(t)
∣∣ dt

. 2ln2−
ld1
L+1 ,

since if suppφ′0(2lσ·) ∩ suppχ 6= ∅, then 2lσ ∼ 1. By assumption, d1 ≥ n(L+ 1), so that upon
taking the finite sum, ∑

l∈L′
|Jl(x, y)| . 1.

It remains to bound those terms with non-stationary phases: Jl(x, y) for l /∈ L′. Here we
expect to have stronger control on Jl(x, y). We integrate by parts. Specifically, we define the
operator Tl by

Tlg(t) =
1

iΦ′l(t)

dg

dt
(t)

so that T ∗l h(t) = − d
dt

(
1

iΦ′l(·)
h
)

(t). Then

|Jl(x, y)| = 2ln
∣∣∣∣∫ eiΦl(t)φ0(2lσt)tn−1χ(t)dt

∣∣∣∣
= 2ln

∣∣∣∣∫ Tn+1
l

(
eiΦl(·)

)
(t)φ0(2lσt)tn−1χ(t)dt

∣∣∣∣
= 2ln

∣∣∣∣∫ eiΦl(t)(T ∗l )n+1
(
φ0(2lσ(·))(·)n−1χ(·)

)
(t)dt

∣∣∣∣
≤ 2ln

∫ ∣∣(T ∗l )n+1
(
φ0(2lσ(·))(·)n−1χ(·)

)
(t)
∣∣ dt

1In fact, a certain hypothesis, which amounts to a monotonicity assumption on (finitely many) subintervals
of suppφ0 ⊂ [−δ, δ], must be satisfied. However, with a simple case splitting procedure, the lemma is applicable
here. The interested reader is referred to the proofs of Lemmas 4.2.3 and 4.2.4.
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. 2ln
1

2l(n+1)

(
1 + ‖Φ′′l ‖Cn(suppφ0(2lσ·)∩suppχ)

)n+1 (
1 + ‖φ0(2lσ(·))‖Cn+1(suppχ)

)
. 2−l,

since |Φ′l(t)| | & sl in the region of integration, ‖Φ′′l ‖Cn(suppφ0(2lσ·)∩suppχ) . 1 from (5.0.4) and,

if suppφ′0(2lσ·) ∩ suppχ 6= ∅, then 2lσ ∼ 1.
Bringing these bounds together, we have that

|I(x, y)| = σn |J(x, y)|

≤ σn
∑
l∈L′
|Jl(x, y)|+

∑
l≥0,l/∈L′

|Jl(x, y)|


. σn

1 +
∑
l≥0

2−l

 . σn,

which is what we require.
It remains to show that M is invertible, where

M(b, j) = (dj − 1)(dj − 2) . . . (dj − b).

We see that the jth column of M is the evaluation of the vector valued function

v(t) =


(t− 1)

(t− 1)(t− 2)
...

(t− 1) . . . (t− L)


at the point t = dj . Considering the Maclaurin expansion of (t− 1)−1v(t), we can also write

v(t) =
t− 1

t
M̃


t/1!
t2/2!

...
tL/L!

 ,

where M̃ is a lower triangular matrix with non-zero diagonal entries. As a triangular matrix
with non-zero diagonal entries, the matrix M̃ is invertible. With

w(t) =


t/1!
t2/2!

...
tL/L!

 ,

we see that
dim span {v(k1), v(k2), . . . , v(kL)}

= dim span

{
k1 − 1

k1
M̃w(k1),

k1 − 2

k2
M̃w(k2), . . . ,

kL − 1

kL
M̃w(kL)

}
= dim span

{
M̃w(k1), M̃w(k2), . . . , M̃w(kL)

}
= dim span {w(k1), w(k2), . . . , w(kL)}

= L,

since points on the moment curve are in general position. Therefore, M is invertible.

If we pay careful attention to the proof, then we see that it relies in determining which of
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the summands defining the phase,

Φ(t) =
L∑
j=0

yjψj(t),

are substantial in a given region |t| ∼ 2−lσ for l ≥ 1. We previously considered uniform
oscillatory integral estimates over all (x, y) ∈ RN . If we introduce further restrictions on the
region of RN under consideration, then we can ensure that some of the phase’s summands are
insubstantial in the above proof. In particular, we are able to obtain the following refinement
of Theorem 5.0.2.

Proposition 5.0.3. For 1 ≤ m ≤ L we define, with d0 = 1,

Rm :=
{

(y0, y) ∈ R× RL; |yj |
1
dj ≤ |ym|

1
dm for all 0 ≤ j ≤ L

}
.

The estimate (5.0.1) holds uniformly over (y0, y) ∈ Rm, provided dm ≥ n(L−m+ 1).

Remark 5.0.4. Note that the regions Rm do not cover RN , as they exclude the region where

|x| = |y0| > |yj |
1
dj for 1 ≤ j ≤ L.

Similarly, we have the following generalisation of Theorem 5.0.2.

Theorem 5.0.5. For 1 ≤ m ≤ L we define

Sm :=
{
y ∈ RL; |yj |

1
dj ≤ |ym|

1
dm for all 1 ≤ j ≤ L

}
.

For 1 ≤ m ≤ L, the estimate (5.0.1) holds uniformly over (x, y) ∈ R × Sm, provided
dm ≥ n(L −m + 2). In particular, (5.0.1) holds over all non-zero (x, y) ∈ R1 × RL provided
d1 ≥ n(L+ 1).

We prove Proposition 5.0.3, noting the essential difference with our previous proof of The-
orem 5.0.2. The modifications to these proofs then necessary to prove Theorem 5.0.5 will then
be made apparent to the reader, and we provide only an outline.

Proof of Proposition 5.0.3. Let us consider (x, y) ∈ Rm. We proceed as above. Set σ =

|ym|−
1
dm and, for 0 ≤ j ≤ L, ψ̃j(s) = σ−djψj(σs). We set w = z0 = σx, d0 = 1, and

zj = σdjyj and then see that max0≤j≤L |zj | ≤ |zm| = 1.
With χl and Φw,z defined as previously, we find that

I(x, y) = σn
∑
l≥0

Jl(x, y),

where

Jl(x, y) :=

∫ ∞
0

eiΦw,z(s)φ0(σs)sn−1χl(s)ds

= 2ln
∫ ∞

0

eiΦw,z(2lt)φ0(2lσt)tn−1χ(t)dt.

To bound the oscillatory integrals Jl(x, y), we must get a handle on the phase, Φw,z(2
l·). We

set

Φl(t) := Φw,z(2
lt) = 2lwt+

L∑
j=1

2ldjzj

(
2−ldj ψ̃j(2

lt)
)

= 2lwt+
L∑
j=1

2ldjzjψ̃j,l(t),

where
ψ̃j,l(t) = 2−ldjσ−djψj(2

lσt)
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=
tdj

dj !
+ ε̃j,l(t),

where ε̃j,l(t) = 2−ldjσ−djεj(2
lσt). Now we will see the essential difference from the above proof.

We here define

θl(t) :=
m−1∑
j=0

2ldjzj
tdj

dj !
+

L∑
j=1

2ldjzj ε̃j,l(t). (5.0.6)

In our analysis of the exceptional indices, θl will be treated as an error term in the phase.
We consider the ι derivative of the phase, where 1 ≤ ι ≤ L − m + 1. One can see that, for
t ∈ suppφ0(2lσ·), ∣∣∣∣∣∣∣∣

m−1∑
j=0
dj≥ι

2ldjzj
tdj−ι

(dj − ι)!

∣∣∣∣∣∣∣∣ . 2ldm−1 .

Therefore, for l ≥ l0 for some sufficiently large l0, we have that, for t ∈ suppχ ∩ suppφ0(2lσ·),∣∣∣∣∣∣∣∣
m−1∑
j=0
dj≥ι

2ldjzj
tdj−ι

(dj − ι)!

∣∣∣∣∣∣∣∣� 2ldm . max
1≤j≤L

2ldj |zj |,

since 2ldm−1 � 2ldm . As previously, provided δ is chosen sufficiently small, we also have that∣∣∣∣∣∣
L∑
j=1

2ldjzj ε̃
(ι)
j,l (t)

∣∣∣∣∣∣� max
1≤j≤L

2ldj |zj |.

Thus we see that, for t ∈ suppχ ∩ suppφ0(2lσ·) and l ≥ l0,∣∣∣tιθ(ι)
l (t)

∣∣∣ ∼ ∣∣∣θ(ι)
l (t)

∣∣∣� max
1≤j≤L

2ldj |zj | = max
1≤j≤L−m+1

2ldm+j−1 |zm+j−1|, (5.0.7)

since |zm| = 1 ≥ max0≤j≤L |zj |. As such, another distinction we make in this proof is that we
also include in the exceptional set L′ those 0 ≤ l ≤ l0 for a suitable l0.

For 0 ≤ l ≤ l0, one can easily see that

|Jl(x, y)| . 2l0n .l0 1.

For those l > l0, the elements of L′ are defined as previously to be chosen to be those indices l
such that

inf
t∈suppχ∩suppφ0(2lσ·)

|Φ′l(t)| ≤ 2l.

For l ∈ L′ with l > l0, we find as before that, for 1 ≤ ι ≤ L−m+ 1,

Φ
(ι)
l (t) =

L∑
j=0

2ldjzjψ̃
(ι)
j,l (t)

=
L∑

j=m

2ldjzj
tdj−ι

(dj − ι)!
+ θ

(ι)
l (t),

where θl(t) is given by (5.0.6). We write, for 1 ≤ ι ≤ L−m+ 1,

tιΦ
(ι)
l (t) =

L∑
j=m

2ldjzj
tdj

(dj − ι)!
+ tιθ

(ι)
l (t).
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We can express this in matrix form. We have that
t1Φ

(1)
l (t)

t2Φ
(2)
l (t)
...

tL−m+1Φ
(L−m+1)
l (t)

 = M


2ldmzm

tdm

(dm−m)!

2ldm+1z2
tdm+1

(dm+1−1)!

...

2ldLzL
tdL

(dL−1)!

+


t1θ

(1)
l (t)

t2θ
(2)
l (t)
...

tL−m+1θ
(L−m+1)
l (t)

 ,

where
M(b, j) = (dm+j−1 − 1)(dm+j−1 − 2) . . . (dm+j−1 − b).

As previously, we can verify that M is invertible. Thus, we find that, for t ∈ suppχ, since
|t| ∼ 1,

max
1≤ι≤L−m+1

∣∣∣Φ(ι)(t)
∣∣∣ ∼ max

1≤ι≤L−m+1

∣∣∣tιΦ(ι)(t)
∣∣∣ ∼

∣∣∣∣∣∣∣∣∣∣


t1Φ

(1)
l (t)

t2Φ
(2)
l (t)
...

tL−m+1Φ
(L−m+1)
l (t)


∣∣∣∣∣∣∣∣∣∣

& detM

∣∣∣∣∣∣∣∣∣∣∣


2ldmzm

tdm

(dm−1)!

2ldm+1zm+1
tdm+1

(dm+1−1)!

...

2ldLzL
tdL

(dL−1)!



∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣


t1θ

(1)
l (t)

t2θ
(2)
l (t)
...

tL−m+1θ
(L−m+1)
l (t)


∣∣∣∣∣∣∣∣∣∣
.

Using the bound (5.0.7), we see that, for t ∈ suppφ0(2lσ·) ∩ suppχ,∣∣∣∣∣∣∣∣∣∣


t1θ

(1)
l (t)

t2θ
(2)
l (t)
...

tL−m+1θ
(L−m+1)
l (t)


∣∣∣∣∣∣∣∣∣∣
� max

1≤j≤L−m+1
2ldm+j−1 |zm+j−1|

∼ detM

∣∣∣∣∣∣∣∣∣∣∣


2ldmzm

tdm

(dm−1)!

2ldm+1zm+1
tdm+1

(dm+1−1)!

...

2ldLzL
tdL

(dL−1)!



∣∣∣∣∣∣∣∣∣∣∣
∼ max

1≤j≤L−m+1
2ldm+j−1 |zm+j−1|

It follows that

inf
t∈suppχ∩suppφ0(σ2l·)

max
1≤ι≤L−m+1

∣∣∣Φ(j)
l (t)

∣∣∣ & max
1≤j≤L−m+1

2ldm+j−1 |zm+j−1| & 2ldm .

Therefore, by van der Corput’s lemma, we see that for the exceptional L′ with l ≥ l0,

|Jl(x, y)| . 2ln2−
ldm

L−m+1 . 1,

provided dm ≥ n(L −m + 1). As before, we also have summable bounds on the remaining Jl
with l /∈ L′.

Proof of Theorem 5.0.5. The situation is wholly analogous to the above proofs, so we simply
provide an outline. To prove the required bound in the region Sm, one may work as follows.
Rescale the integral and carry out a dyadic decomposition of the integration, J =

∑
l≥0 Jl.

The heart of the analysis takes place on (finitely many) exceptional dyadic pieces, Jl. For each
of these, one defines the error term θl for the phase, analogously to the proof of Proposition

5.0.3. To bound the exceptional |Jl| . 2ln2−
ldm

L−m+2 , we work exactly as in our proof of Theorem
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5.0.2: we can use van der Corput’s lemma, with reference to derivatives of the phase of order ι,
where 2 ≤ ι ≤ L−m+ 2. The remaining dyadic pieces, which have non-stationary phase, can
be bounded using integration by parts. Provided n(L −m + 2) ≤ dm, we obtain the desired
bound.

Remark 5.0.6. Other refinements of Theorem 5.0.2 are possible. For example, if |yj | � |ym|
for j > m, then, in the support of φ0, the corresponding terms yjr

kj are dominated by ymr
km

so that those yjr
kj with j > m can not substantially contribute to any cancellation in the phase.

Further consideration of this and other possible refinements are left to the reflective reader.
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Part III

The structure of polynomial roots
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Chapter 6

Introduction

In this part, we make a structural analysis of the roots of real polynomials. We show how
roots are stratified in separated tiers and provide further analysis to bound how many roots
can cluster about a point. Though our analysis is carried out over R, we expect that the
proofs contained herein are valid over other fields. We consider real polynomials, in particular,
because understanding the root structure of real polynomials has applications in obtaining
uniform oscillatory integral estimates.

This analysis is inspired by work of Kowalski and Wright, [KW12], and an unpublished
oscillatory integral estimate of Hickman and Wright [HW20], Theorem 5.0.2, which we refor-
mulate for this part at Theorem 6.0.5. It takes the perspective of root clusters, in the spirit of
the famous oscillatory integral estimates of Phong and Stein, [PS97].

Consider the polynomial

Ψ1(t) = x+ y1t+ y2t
2 + . . . yLt

L.

We know, by the fundamental theorem of algebra, that Ψ1 has L roots, counted with multi-
plicity. In particular, for some small ε > 0, we know that, for any non-zero root w, at most L
roots are contained in B(w, ε|w|), which is, of course, trivial. Now consider the polynomial

Ψk(t) = Ψ1(tk).

Corresponding to each root of w of Ψ1, we see that there are k roots of Ψk, these are the kth
roots of w. As before, we also have that, for some small ε > 0, and for any non-zero root w, at
most L roots are contained in B(w, ε|w|). See Figures 6.1 and 6.2 for a sketch of the roots of
Ψ1 and Ψk, respectively, in the case that L = 4, k = 5, and

Ψ1(t) = yL(t− h1)(t− h2)(t− h3)(t+ h4).

More specifically, these figures are sketches of root structure in the case where h1 � h2 ≈ h3 �
h4 > 0. The dotted black circle corresponds to roots with modulus h1. The solid blue lines
correspond to roots with modulus close to h2. The dashed red line corresponds with roots of
modulus h4. However, for any choice hj one can see we have the following. For some suitable
small ε > 0 and for any non-zero root w′ of Ψk, there are at most L = 4 roots contained
in B(w′, ε|w′|). This particular example reflects polynomial root structure more generally, as
outlined in the Theorem 6.0.1.

Theorem 6.0.1. We fix a set of exponents 0 = k0 < k1 < k2 < . . . < kL and consider
real polynomials whose exponents are drawn from this set. For any real polynomial Ψ(t) =
x+ y1t

k1 + y2t
k2 + . . .+ yLt

kL with yL 6= 0, we have the following structure.
The roots of Ψ are stratified into s tiers of roots T1, T2, . . . , Ts, where 1 ≤ s ≤ L. The tiers

are separated in the sense that, if we take wi ∈ Ti, then

|w1| � |w2| � . . .� |ws|.

At most L non-zero roots can cluster about a root: there is some suitable small parameter

91



Figure 6.1: The roots of Ψ1. Figure 6.2: The roots of Ψk.

ε such that, for all 0 6= w ∈ Ti, there are at most L roots of Ψ in B(w, ε|w|), counted with
multiplicity.

Let us recall the following structural result of Kowalski and Wright, Theorem 1.6 of [KW12].
Note that this result found applications in bounding oscillatory integrals and discrete exponen-
tial sums and for bounding the measure of sublevel sets of polynomials.

Theorem 6.0.2. Let

Ψ(t) = akLt
kL + akL−1t

kL−1 + . . .+ a0 = ad
∏
j

(t− zj)

be a complex polynomial with maxl |al| = 1. Suppose that the coefficients satisfy 0 < γ ≤ |akL−k|
and |akL−j | ≤ δj(γ), 0 ≤ j ≤ k−1 for some 0 ≤ k ≤ kL, where δj is some suitably small constant
for each 0 ≤ j ≤ k − 1. Then there are exactly k large roots z1, z2, . . . , zk and the remaining
roots are bounded. In particular, with ordered roots |z1| ≥ |z2| ≥ . . . ≥ |zkL |, we have that(

γ

maxj δj

) 1
kL

. |z1|, . . . , |zk| and |zk+1|, . . . , |zkL | . 1.

Beyond Theorem 6.0.1, analogous to Theorem 6.0.2, we are able to obtain the following
refined structural result.

Theorem 6.0.3. We fix a set of exponents 0 = k0 < k1 < k2 < . . . < kL and consider certain
polynomials whose exponents are drawn from this set. We consider real polynomials

Ψ(t) = x+ y1t
k1 + y2t

k2 + . . .+ yLt
kL

with yL 6= 0 and max1≤j≤L |yj | = 1. Let γ ∈ (0, 1]. We suppose, additionally, that there exists
m such that

|ym|
1
km ≥ γ,

and, for n > m, |yn|
1
kn ≤ δ,

(6.0.1)

where δ = δ(γ) > 0 is some suitably small constant. We have the following refined structure
for the roots of Ψ.

The roots of Ψ may be stratified into s = s(1) + s(2) tiers of roots T1, T2, . . . , Ts, where
1 ≤ s ≤ L, which are ordered and separated in the sense that, if we take wi ∈ Ti, then

|w1| � |w2| � . . .� |ws|.
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Furthermore, the tiers have the following additional structure.
We refer to each tier Tr with 1 ≤ r ≤ s(1) as a large tier. For all roots w in a large tier Tr,

|w| &γ 1. At most L−m+ 1 large roots can cluster about a point: there is some suitable small
parameter ε such that, for all w ∈ Tr with 1 ≤ r ≤ s(1), there are at most L −m + 1 roots of
Ψ in B(w, ε|w|).

In the case that s(2) ≥ 1, we have the following improvement. We refer to any Tr with
s(1) < r ≤ s(1) + s(2) as a small tier. For any root w in a small tier, |w| .γ 1. For any
non-zero w taken from a small tier, w ∈ Tr with s(1) < r ≤ s(1) + s(2), B(w, ε|w|) can contain
at most m roots. For any root w in a large tier, B(w, ε|w|) can contain at most L−m roots.

Remark 6.0.4. Other explicit refinements of the structure theorem, which are amenable to
direct calculation, are possible. These refinements can be achieved according with our tier height
estimation procedure, Lemma 8.1.1.

As mentioned above, we use these structural results to obtain bounds on oscillatory integrals
with polynomial phases. We consider polynomial phases

Φ(t) = xt+
y1

k1 + 1
tk1+1 +

y2

k2 + 1
tk2+1 + . . .+

yL
kL + 1

tkL+1,

with 1 < k1 < k2 < . . . < kL,
(6.0.2)

with yL 6= 0. Given our main structure result, Theorem 6.0.3, we can make use of bounds
for oscillatory integrals due to Phong and Stein, Theorem 6.0.6. We are thus able to provide
an alternative proof of the following oscillatory integral estimate due to Hickman and Wright,
[HW20], which was considered in a slightly different formulation at Theorem 5.0.2.

Theorem 6.0.5. For oscillatory integrals

I(x, y) =

∫
R
eiΦ(t)dt

with phases Φ given by (6.0.2), we have that

|I(x, y)| . min
j=1,2,...,L

|yj |
− 1
kj+1 ,

provided k1 ≥ L.

A cluster, C, is a non-empty subcollection of roots of Φ′. We make use of the following result
of Phong and Stein, [PS97].

Theorem 6.0.6. Suppose that Φ, (6.0.2), is a real polynomial such that yL 6= 0 and Φ′ has
roots z1, z2, . . . , zk, counted with multiplicity. Then we have the oscillatory integral estimate

|I(x, y)| =
∣∣∣∣∫

R
eiΦ(t)dt

∣∣∣∣ ≤ Ck max
j

min
C3zj

1(
|yL|

∏
l/∈C |zj − zl|

) 1
|C|+1

,

where the maximum is taken over roots zj and the minimum over clusters of roots, C ⊂
{z1, z2, . . . , zk}, such that zj ∈ C.

In fact, our refined structural statement, Theorem 6.0.3 can be applied to obtain a refined
oscillatory integral estimate. Hickman and Wright established the previous estimate, Theorem
6.0.5 and, as we saw in Part II, their method of proof is sufficient to establish the below result.
The following is close to being a reformulation of Theorem 5.0.5.

Theorem 6.0.7. For oscillatory integrals

I(x, y) =

∫
R
eiΦ(t)dt

with phases Φ given by (6.0.2) and amplitude φ ∈ C∞c (R), we have that

|I(x, y)| . min
j=1,2,...,L

|yj |
− 1
kj+1 , (6.0.3)
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provided k1 ≥ L. More generally, if maxj |yj |
1
kj = |ym|

1
km , then

|I(x, y)| . min
j=1,2,...,L

|yj |
− 1
kj+1 ,

provided km ≥ L−m+ 1.

The structural analysis of polynomial roots in this part is expected to hold with respect
to polynomials over fields other than R. This corresponds with the arguments in [KW12],
which are presented for non-Archimedean fields but also hold over R. Wright has developed a
framework for the study of oscillatory integrals over fields other than R and proved analogues
of the Phong-Stein cluster bound for such oscillatory integrals. Using bounds for oscillatory
integrals over C from [Wri20], one could obtain a complex analogue of Theorem 6.0.7; the proof
would be the same as the proof of Theorem 6.0.7, as the root structure we make use of depends
only on the size of the coefficients.

Theorem 6.0.8. We consider complex oscillatory integrals

I(x, y) =

∫
C
e(Φ(t))φ(t)dt,

with φ ∈ C∞c (C) and e(z) = ei(<(z)+=(z)). The phases Φ we consider are given by

Φ(z) = xz +
y1

k1 + 1
zk1+1 + . . .+

yL
kL + 1

zkL+1,

with x, y1, . . . , yL ∈ C and yL 6= 0. We have that

|I(x, y)| . min
j=1,2,...,L

|yj |
− 2
kj+1 , (6.0.4)

provided k1 ≥ L. More generally, if maxj |yj |
1
kj = |ym|

1
km , then

|I(x, y)| . min
j=1,2,...,L

|yj |
− 2
kj+1 ,

provided km ≥ L−m+ 1.

Remark 6.0.9. Note that we have the exponents 2
kj+1 appearing on the right hand side of

(6.0.4), in distinction to the real case. This is a natural feature of complex oscillatory integrals,
as examples in [Wri20] show.

The primary structural result, Theorem 6.0.1, is not framed for explicit computation. For
example, it makes reference to the relative size of non-zero roots rather than their actual
size. For applications, explicit size estimates are desirable. Indeed, we outline a procedure
for estimating the size of roots in Lemma 8.1.1 and it is this procedure which allows us to
strengthen the statement of Theorem 6.0.1 to the refined structural result, Theorem 6.0.3.

There is one final component of our structural investigations. Our analysis for tier strati-
fication suggests the consideration of a factorised polynomial expression, with distinct factors
corresponding to distinct root tiers. For monic polynomials, Ψ, we analyse such a factorisation
in Section 8.2. We find that the factorisation is quantifiably close to the original polynomial Ψ.
Furthermore, the root structure of Ψ is essentially preserved by its rough factorisation.

Theorem. We consider monic polynomials

x+ y1t
k1 + . . .+ yL−1t

kL−1 + tkL .

There exists a polynomial Ψ̃ =
∏s
l=1 Ψ̃l(t) which roughly factorises Ψ in the following sense.

The polynomial Ψ̃l has roots, T̃l, which are all of mutually comparable magnitude. Further-
more, for any choice of roots wj ∈ T̃j, we have that

|w1| � |w2| � . . .� |ws|.
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There exists a covering, N(R), of the roots, R ⊂ C, of Ψ which satisfies the following. Each
connected component of N(R), which we call a cell, is given by a ball. Each cell containing
non-zero roots contains at most L roots. For a cell B containing exactly m roots of Ψ, B
contains exactly m roots of Ψ̃.

For t /∈ N(R),

|Ψ(t)− Ψ̃(t)| � |Ψ(t)|. (6.0.5)

Remark 6.0.10. The constant in (6.0.5) can be made arbitrarily small provided the tier regime,
which we define in Section 7.1, is specified with sufficiently strong separation between tiers.

6.1 Overview

The critical observation that forms the foundation of Part III is that many of the symmetric
functions of the roots of Ψ are vanishing. Those that are far from vanishing determine the size
of the roots. Additionally, they tell us how many roots might cluster about a point. We denote
the roots of Ψ by R, they may appear with multiplicity. For at most L non-zero critical indices
j ∈ {D1, D2, . . . , DL}, we have that

Sj(R) =
∑
|S|=j
S⊂R

∏
z∈S

(−z) 6= 0.

In particular, these indices are given by D1 = kL−kL−1, D2 = kL−kL−2, . . ., DL = kL−k0 =
kL. Throughout, we work with reference to these symmetric functions, as well as those which
are vanishing.

In Section 6.2, we introduce notation. In Section 6.3, we present a model example for
root structure and its relation to the polynomial coefficients (corresponding to the symmetric
functions).

The core of our structural analysis is developed in Chapter 7. Indeed, Sections 7.1, 7.2, and
7.3 contain the proof of the main structure Theorem 6.0.1. This analysis pays no great heed to
the polynomial coefficients, x, y1, . . . , yL. Indeed, the structural results we obtain in Chapter 7
depend implicitly on the coefficients.

In Section 7.1, we use the vanishing of certain Sj to provide a stratification of the roots into
tiers and formulate the symmetric equations with respect to these tiers.

In Section 7.2 we characterise how clustering might occur within a given tier T . Here,
we analyse the simultaneous (near) vanishing of particular Sj(T ) and determine when this is
inconsistent with many roots being close together. For this part of the analysis, we form a
series expansion of particular Sj(T ) in terms of highlighted roots, which we suppose are close
together. Section 7.3 contains the derivation of the distinguished root expansion that we use
to prove Theorem 7.2.1, which concerns the root structure in a single tier.

In Chapter 8, we build on the tools developed in Chapter 7 to reveal more explicit root
structure in specific instances. In Section 8.1, we outline an algorithm for estimating the
heights of root tiers. This height estimation procedure can then be applied to polynomials
satisfying the hypotheses of the refined structure Theorem 6.0.3. The result we thus obtain
feeds directly into our previous work to give Theorem 6.0.3 as a corollary. Section 8.2 provides
an explicit rough factorisation, Ψ̃ =

∏s
l=1 Ψ̃l(t), of monic polynomials Ψ. We show that the

roots of Ψ and the roots of Ψ̃ almost coincide.
Chapter 9 contains a proof of Theorem 6.0.7 and presents some more refined oscillatory

integral estimates. We also give examples for the sharpness of some of the oscillatory integral
estimates, these examples are also examples of the sharpness of the structure theorems.

6.2 Notation

We here introduce some of the notation that we will be using throughout Part III. We use ε
throughout, often with indexing subscripts, for error terms that appear in the analysis, where
we can have suitable control on their size. Any ε that appears will be the sum of (signed)
products of k roots, for some k, with size bounds adapted to an appropriate scale.

95



To account for repeated roots, it should be understood that we are working with multi-sets.
For example, {1, 1, 1} should be considered a 3-element (multi-)set. One would more formally
write this multi-set as {1(1), 1(2), 1(3)}, indexing set elements by their multiplicity, so we can
properly speak about distinct set elements. Another example is the fundamental theorem of
algebra, which may be expressed as follows. If Ψ is a degree kL polynomial, then the (multi-)set
of roots of Ψ, which we denote by R, contains kL elements.

We use R to denote the roots of Ψ. We also use C, T , and S to denote appropriate
subcollections of roots. We use K and D to denote sets of integer indices, these will be specified
but should be thought of as the exponents of terms in Ψ and the differences between these
exponents.

Throughout, we fix some ordering of the roots of Ψ(t) = x+ y1t
k1 + y2t

k2 + . . .+ yLt
kL :

|z1| ≥ |z2| ≥ . . . ≥ |zkL |. (6.2.1)

Later, we will use the notation w1, w2, . . . , wkL when we wish to take an arbitrary enumeration
of the roots of Ψ.

Definition 6.2.1. Throughout, we consider elementary symmetric functions of (a subset of)
roots of Ψ,

Sj(A) =
∑

S⊂A,|S|=j

∏
z∈S

(−z),

where A is some subset of the roots of Ψ.

6.3 A model example for root structure

Working by example, we now give an indication of the possible root structure of a particular Ψ
and see how this relates to the coefficients. We consider Ψ with

Ψ(t) = y2

2∏
j=1

(
tk1 − αk1

j

)
.

Note that all real polynomials x + y1t
k1 + y2t

2k1 can be expressed in this way. The roots of
the polynomial Ψ are easily recognised: they appear as the k1th roots of αk1

1 and αk1
2 . There

are some qualitatively different scenarios for the structure of these roots. These depend on the
relative size of α1 and α2. They also depend on the cancellation between αk1

1 and αk1
2 . Without

loss of generality, suppose that |α1| ≥ |α2|. In the case of positive α1 and α2 with k1 = 9,
the roots of Ψ are sketched in Figure 6.3. Throughout the remainder of this section, ε is some
suitably small fixed parameter.

Let us first consider the case where α2 = 0 and α1 6= 0. Here, the are two tiers of roots.

There are k1 repeated 0 roots and if we divide out the corresponding factor tk1 from Ψ we are
left with the polynomial y2(tk1 − αk1

1 ), from which the location of the non-zero roots can be
observed directly as the k1th roots of −Sk1(R) = −y1

y2
= αk1

1 . The non-zero roots are in T1 and

the tier T2 consists of all zero roots. In this case, for roots w ∈ T1, B(w, ε|w|) contains only
the root w. Later on, being able to decouple equations for large and small roots in a similar
fashion will critically allow us to analyse the structure of roots in distinct tiers.

The case that αk1
1 is close to −αk1

2 , in particular, |αk1
1 + αk1

2 | � |α
k1
1 |. The roots of

Ψ appear in one tier and they are close to being the 2k1th roots of −αk1
1 α

k1
2 : there are

2k1 = k2 roots wj with |wj | ∼ |α1|—such roots are in tier T1. Within T1 the roots are
separated in the sense that, for roots w ∈ T1, B(w, ε|w|) contains only the root w. Note

that the coefficients of t0, tk1 , and t2k1 in Ψ reflect this behaviour in the fact that
∣∣∣ xy2

∣∣∣ 1
2k1

=

|S2k1(R)|
1

2k1 =
∣∣∣αk1

1 α
k1
2

∣∣∣ 1
2k1 �

∣∣∣αk1
1 + αk1

2

∣∣∣ 1
k1

= |Sk1(R)|
1
k1 =

∣∣∣y1

y2

∣∣∣ 1
k1

.

The case where |α1| is comparable to |α2| but the tk1 coefficient of Ψ, −y2

(
αk1

1 + αk1
2

)
,

does not display significant cancellation, i.e. |αk1
1 + αk1

2 | ∼ |α
k1
1 |. This scenario has one tier
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Figure 6.3: The roots of Ψ for k1 = 9 and positive αj .

of roots, T1 = {z1, z2, . . . , zk2}. Here, all the roots are of comparable size and B(w, ε|w|)
contains at most two roots for any root w ∈ T 1. Two roots which might get close are
those roots which share the same argument if αk1

1 and αk1
2 are real valued with the same sign.

The coefficients of t0, tk1 , and t2k1 in Ψ reflect this behaviour in the fact that∣∣∣∣ xy2

∣∣∣∣ 1
2k1

= |S2k1(R)|
1

2k1 =
∣∣∣αk1

1 α
k1
2

∣∣∣ 1
2k1 ∼

∣∣∣αk1
1 + αk1

2

∣∣∣ 1
k1

=

∣∣∣∣y1

y2

∣∣∣∣ 1
k1

= |Sk1(R)|
1
k1 .

Finally, we consider the case where 0 6= |α2| � |α1|. Here roots of Ψ appear in two
tiers: there are k1 roots wj,2 with |wj,2| = |α2|—such roots are in tier T2—and the remaining
k1 roots wl,1 satisfy |wl,1| = |α1|—such roots are in tier T1. Within each tier the roots are
separated in the sense that, B(w, ε|w|) contains only one root for any root w ∈ T j . We
also have separation between tiers: given roots w1,∈ T1 and w2 ∈ T2, |w1| � |w2|. Note that
the coefficients of t0, tk1 , and t2k1 in Ψ reflect this behaviour in the fact that

|S2k1(R)|
1

2k1 =

∣∣∣∣ xy2

∣∣∣∣ 1
2k1

= |α1α2|
1
2 <

∣∣∣∣y1

y2

∣∣∣∣ 1
k1

= |Sk1(R)|
1
k1 =

∣∣∣αk1
1 + αk1

2

∣∣∣ 1
k1 ∼ |α1|

and

|Sk1
(T2)|

1
k1 = |α2| ∼

∣∣∣∣∣ αk1
1 α

k1
2

αk1
1 + αk1

2

∣∣∣∣∣
1
k1

=

∣∣∣∣ xy1

∣∣∣∣ 1
k1

=

∣∣∣∣S2k1
(R)

Sk1
(R)

∣∣∣∣ 1
k1

�
∣∣∣∣y1

y2

∣∣∣∣ 1
k1

=
∣∣∣αk1

1 + αk1
2

∣∣∣ 1
k1 ∼ |α1| = |Sk1

(T1)|
1
k1 .

These last equations correspond to the separation of certain height estimates. Such height
estimates will not form a part of our initial structural analysis, but we eventually consider
them more explicitly in Section 8.1.
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Chapter 7

Implicit root structure

In this chapter, we work to uncover some of the root structure of real polynomials

Ψ(t) = x+ y1t
k1 + . . .+ yLt

kL ,

with exponents taken from a fixed set {0, k1, . . . , kL}. Throughout, we denote the set of roots
of Ψ by R. Essentially, as there are at most L+1 non-vanishing coefficients, we will find that at
most L roots can coalesce about a point. Throughout this chapter, our analysis will be carried
out with respect to particular reference heights, h1, h2, . . . , hL, which depend implicitly on a
given polynomial Ψ. We postpone the discussion of more explicit tools for locating roots to
Chapter 8.

7.1 Root tier stratification

In this section, we work to stratify the roots into tiers. The stratification of roots is suggested
by the example in Section 6.3. With this in mind, we define certain reference heights hj for the
roots. Before proceeding, let us introduce some useful indexing notation.

Definition 7.1.1. We set

d0(R) = 0, d1(R) = kL − kL−1, . . . dL(R) = k1 − k0, and

D0(R) = d0(R), D1(R) = d0(R) + d1(R), . . . DL(R) = d1(R) + . . .+ dL(R).
(7.1.1)

We also set D(R) = {0, D1(R), . . . , DL(R)}.

Note that Dj(R) = kL− kL−j , although we expressed it slightly differently in the definition
to emphasise that it is the sum of consecutive di.

Throughout this section, we will be working with reference to all roots, R, and so we
suppress the argument of Dj = Dj(R) and dj = dj(R). Similarly, in this section, we set
D = D(R). We also write d(j) = dj and D(j) = Dj .

Definition 7.1.2. According with the root ordering, (6.2.1), we define the reference heights
h1 = |z1|, h2 = |zD(1)+1|, h3 = |zD(2)+1|, . . . , hL = |zD(L−1)+1|.

The following Lemma 7.1.3 shows exactly why our Definition 7.1.2 is a sensible one.

Lemma 7.1.3. Suppose that, for some 1 ≤ j ≤ kL, Sj(R) = 0. Then |zj+1| ∼ |zj |.
As a consequence, since Sj(R) = 0 for j /∈ D = {0, D1, D2, . . . , DL}, we have that

h1 = |z1| ∼ |z2| ∼ . . . ∼ |zD(1)|,
h2 = |zD(1)+1| ∼ |zD(1)+2| ∼ . . . ∼ |zD(2)|,

...

hL = |zD(L−1)+1| ∼ |zD(L−1)+2| ∼ . . . ∼ |zD(L)|.

(7.1.2)
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Proof. Suppose that Sj(R) = 0 and consider the corresponding root zj . There are two cases to
consider. In the case that |zj | = 0, the desired comparison follows directly from the inequality
|zj+1| ≤ |zj | = 0.

It remains to consider the case that zj 6= 0. The largest root outwith {z1, z2, . . . , zj} is zj+1.
Additionally, the largest j − 1 roots within {z1, z2, . . . , zj} are z1, z2, . . . , zj−1. Thus we find
that

0 = |Sj | ≥ |(−z1)(−z2) . . . (−zj)| −
(
kL
j

)
|z1 . . . zj−1zj+1|.

Rearranging and dividing through by |(−z1)(−z2) . . . (−zj)| gives the desired inequality.

Remark 7.1.4. The constants of comparison we obtain in (7.1.2) can be chosen to depend on
the indices k1, k2, . . . , kL.

In the statement of Theorem 6.0.1, we said that tiers of roots are well separated. It is
thus natural, and in accordance with Lemma 7.1.3, to define the tiers of roots relative to the
separation of the reference heights.

Definition 7.1.5. If we have that

h1 ∼ h2 ∼ . . . ∼ hl(1)

� hl(1)+1 ∼ . . . ∼ hl(1)+l(2)

...

� hl(1)+...+l(s−1)+1 ∼ . . . ∼ hl(1)+...+l(s) = hL,

then we define the tiers as follows. First, let l(0) = 0 and L(i) = l(0) + l(1) + . . .+ l(i). Then
we set

Ti =
{
zD(L(i−1))+1, zD(L(i−1))+2 . . . , zD(L(i))

}
.

We also define the reference height for the tiers by

h(Tr) = hL(r−1)+1.

This definition establishes the first part of our structure theorem, Theorem 6.0.1. Indeed,
by Lemma 7.1.3, we have that, for any choice of wi ∈ Ti

|w1| � |w2| � . . .� |ws|.

Remark 7.1.6. The choice of separation constants defining the tier regime must be suitably
strong. Having a well separated tier regime will ensure we have suitable control on error terms.
In this section, up to an error term, we derive explicit equations for the symmetric functions
of roots in a given tier. The error terms must be small enough to feed into our later Theorem
7.2.1. For the rough factorisation of monic Ψ, Theorem 8.2.2, the definition of a tier regime
requires much stronger separation, as we will see in Section 8.2.

Analogous to Definition 7.1.1, it will be useful to have distinguished indices for each tier.
These distinguished indices will later allow us to pick out critical symmetric functions of roots
within each tier.

Definition 7.1.7. In the tier Tr, we set

d0(Tr) = 0, d1(Tr) = dL(r−1)+1, d2(Tr) = dL(r−1)+2, . . . dl(r)(Tr) = dL(r), and

D0(Tr) = 0, D1(Tr) = d0(Tr) + d1(Tr), . . . Dl(r)(Tr) = d1(Tr) + . . .+ dl(r)(Tr).
(7.1.3)

There is an appropriate L(Tr) = l(r) = L(r)−L(r−1). Note that Dl(r)(Tr) = |Tr| = D(L(r))−
D(L(r − 1)), and we also denote this by D(Tr).

If T = Tr, then the distinguished indices for the symmetric functions in T are given by
D(T ) =

{
0, D1(T ), . . . , DL(T )(T )

}
.
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We now present the main result of this section, this lemma characterises the critical sym-
metric functions with respect to roots within each tier.

Lemma 7.1.8. According with Definition 7.1.5, fix a tier T = Tr.
For the positive critical indices j ∈ D(T ),

Sj(T ) = cj(T ) + εj(T ),

where |εj(T )| � h(T )j and

cj(T ) =
SD(L(r−1))+j(R)

SD(L(r−1))(T1 ∪ T1 ∪ . . . Tr−1)
.

For j /∈ D(T ), with 1 ≤ j ≤ |T |, we have that

Sj(T ) = εj(T ),

where |εj(T )| � h(T )j.

Proof. We consider the symmetric functions of order D(L(r − 1)) + j for 1 ≤ j ≤ D(T ). For
ease of notation, we set D = D(L(r− 1)) and we denote the reference height h(T ) = hL(r−1)+1

by h.
Splitting the sum defining symmetric functions according to the size of the summands, we

have that
SD+j(R) = SD(T1 ∪ T2 ∪ . . . ∪ Tr−1)Sj(T ) +

∑
|S′|=D+j

∏
z∈S′

(−z), (7.1.4)

where the sum in S ′ ⊂ R is taken over S ′ ∩ (T1 ∪ T2 ∪ . . . Tr−1 ∪ Tr)c 6= ∅. Any S ′ appearing in
this proof should be understood as subject to these restrictions. Note that

|SD(T1 ∪ T2 ∪ . . . ∪ Tr−1)| = |z1z2 . . . zD|.

Every product appearing in ∑
|S′|=D+j

∏
z∈S′

(−z)

contains at least one root, z, outwith T1∪T2∪ . . .∪Tr and, for any such z, |z| � h. The largest
D + j − 1 roots are z1, z2, . . . , zD+j−1. Thus we see that∣∣∣∣∣∣

∑
|S′|=D+j

∏
z∈S′

(−z)

∣∣∣∣∣∣� |z1z2 . . . zD+j−1h| .

Normalising and rearranging (7.1.4) we thus see that

Sj(T ) = SD(T1 ∪ T1 ∪ . . . ∪ Tr−1)−1SD+j(R) + εj(T ),

where
εj(T ) = −SD(T1 ∪ T1 ∪ . . . ∪ Tr−1)−1

∑
|S′|=D+j

∏
z∈S′

(−z).

To conclude, we observe that

|εj(T )| � |zD+1zD+2 . . . zD+j−1h| ∼ hj ,

as required.

7.2 Root structure within tiers

Recall how we defined the tiers of roots in Definition 7.1.5, which immediately gives the sepa-
ration between tiers and part of Theorem 6.0.1. In the regime with tiers T1, T2, . . . , Ts, we have
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that
h(T1)� h(T2)� . . .� h(Ts),

where h(Tr) = maxw∈Tr |w|. To complete the proof of Theorem 6.0.1, we must establish the
structure of roots within a tier. In this section, we prove Theorem 7.2.1, which, combined with
Lemma 7.1.8, gives the structure Theorem 6.0.1.

If there are any zero roots, these will all fall in the smallest tier and they necessarily coincide.
What remains is to consider tiers containing non-zero roots. To this end, let us fix T = Tr
for some r such that h(T ) = hL(r−1)+1 > 0. For ease of notation, throughout this section, we
denote by h the reference height for roots in Tr, h = h(Tr) = hL(r−1)+1. With care, we can
leverage the statement of Lemma 7.1.8 to determine how roots in T may cluster about a point.

Recall from Lemma 7.1.8 that, for j /∈ D(T ), Sj(T ) is near vanishing. The following theorem
tells us what kind kind of clustering can occur according to how many symmetric functions of T
are far from vanishing. In particular, we consider what happens when the symmetric functions,
Sj(T ), are near vanishing away from some (unspecified) set of exceptional indices D̃(T ) ⊂ D(T ).

Theorem 7.2.1. Suppose that, for 0 ≤ j ≤ D(T ),

Sj(T ) = εj(T ), for j /∈ D̃(T ),

where |εj(T )| � hj and D̃(T ) ⊂ D(T ). Then at most L̃(T ) := |D̃(T )|−1 ≤ |D(T )|−1 = L(T )
roots in T can cluster about a point. More precisely, there is is some suitably small ε > 0 such
that, for any root w ∈ T , we have |w| ∼ h > 0 and B(w, εh) contains at most L̃(T ) roots
wi ∈ T .

We have as a corollary of Theorem 7.2.1 and Lemma 7.1.8 the following structure theorem,
of which Theorem 6.0.1 is a special case.

Theorem 7.2.2. We fix a set of exponents 0 = k0 < k1 < k2 < . . . < kL and consider
real polynomials whose exponents are drawn from this set. For any real polynomial Ψ(t) =
x+ y1t

k1 + y2t
k2 + . . .+ yLt

kL with yL 6= 0, we have the following.
We suppose that the polynomial coefficients (x, y) are such that we are in the tier regime

indexed by (l1, l2, . . . , ls) in Definition 7.1.5.
The roots of Ψ are stratified into s tiers of roots T1, T2, . . . , Ts, where 1 ≤ s ≤ L. The tiers

are separated in the sense that, if we take wi ∈ Ti, then

|w1| � |w2| � . . .� |ws|.

At most L(Tr) = lr ≤ L non-zero roots can cluster about a root: there is some suitable small
parameter ε such that, for all 0 6= w ∈ Tr, there are at most L(Tr) = lr roots of Ψ in B(w, ε|w|).

We have expressed Theorem 7.2.1 in a slightly more general form than is required to prove
Theorem 6.0.1. As a black box, Theorem 7.2.1 can give improvements to our main structure
Theorem 6.0.1. Indeed, if it is applied with reference to our later Proposition 8.1.2, we can
obtain 6.0.3. It is for this reason we have framed the theorem in terms of critical indices D̃,
rather than D, since some of the symmetric functions indexed by D might still be close to
vanishing. Nevertheless, all of the tildes appearing in this section can safely be ignored on
first reading under the assumption that there is only one tier as all of the essential ideas are
contained in this case.

In this section, roots in T are not ordered in terms of size: w1, w2, . . . , wD(T ) is some
enumeration of the roots in T . Our analysis works by highlighting some of these roots, h ⊂ T ,
which we will assume are close together. We expand the symmetric functions in terms of
these highlighted roots. We will recover some structural statements about the roots from the
highlighted expansions. We denote the excluded roots by e = T \h .

First, we state the following lemma, which is verified at a glance.

Lemma 7.2.3. Let h ⊂ T with |h | = m. Then

SD(T )−m(T ) =

min{m,D(T )−m}∑
l=0

Sl(h)SD(T )−m−l(e).
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Since we will be investigating highlighted roots that are close together, we distinguish one of
these roots to further refine the expansion. By a suitable recursive procedure, which is outlined
in Section 7.3, we can apply Lemma 7.2.3 to obtain the following.

Lemma 7.2.4. Set

am(j) = (−1)j−1

(
m− 1 + j

m− 1

)
.

Suppose we have m highlighted roots h = {w1, w2, . . . , wm} ⊂ T . Then,

SD(T )−m(T ) = (−wm+1)(−wm+2) . . . (−wD(T ))

+

D(T )−m∑
j=1

am(j)(−w1)jSD(T )−m−j(T ) + εD(T )−m,

where
|εD(T )−m| . max

w,w′∈h
|w − w′|hD(T )−m−1,

if m ≥ 2 and εD(T )−m = 0 if m = 1.

Remark 7.2.5. It may appear that there is an error in the statement of Lemma 7.2.4, due
to the apparent double counting of certain expressions. However, these are accounted for in
the error term. The reason we desire such a series expansion is because those expressions
SD(T )−m−j(T ) are much more explicit than, for example, SD(T )−m−j(e). Indeed, we can relate
SD(T )−m−j(T ) to the coefficients of our original polynomial via Lemma 7.1.8 and we have no
such tools for SD(T )−m−j(e) or Sj(h).

Recall Definition 7.1.7, the definition of distinguished indices for a tier, D(T ). It will also
be necessary to count backwards from D(T ) to 0 and pick out corresponding critical symmet-
ric functions of roots in the tier. We make the following further definition of distinguished
exponents for a given tier T = Tr.

Definition 7.2.6. We set k0(T ) = 0,

k1(T ) = dL(r), k2(T ) = dL(r) + dL(r)−1, . . . kL(T )(T ) = dL(r) + . . .+ dL(r−1)+1. (7.2.1)

Note that kL(T )(T ) = D(T ). We denote by K(T ) these exponents. Note that

K(T ) = D(T )−D(T ) = {D(T ), D(T )−D1(T ), . . . , 0} .

According with Theorem 7.2.1, if we have L̃(T ) + 1 distinguished indices 0 = D̃0(T ) <

D̃1(T ) < . . . < D̃L̃(T )(T ) = D(T ), given as D̃(T ) ⊂ D(T ), then, corresponding with the above,

we set K̃(T ) = D(T )− D̃(T ). Naturally, we enumerate K̃(T ) by 0 = k̃0 < k̃1 < . . . < k̃L̃(T ).

With this notation and our series expansion tools, we are now ready to carry out the analysis
of how roots can cluster within T .

Proof of Theorem 7.2.1. In this proof, we use the notation D = D(T ) = |T |, L̃ = L̃(T ) =

|D̃(T )| − 1, D̃(j) = D̃j(T ), k̃j = k̃j(T ).
We suppose, by way of contradiction, that, given some small ε > 0, there exist roots

w1, w2, . . . , wL̃+1 ∈ B(w1, εh) ∩ T . Working with the symmetric functions SD−1(T ), SD−2(T ),
. . . , SD−(L̃+1)(T ) we will derive a system of equations which has no solution.

We can apply Lemma 7.2.4 to obtain the following. For highlighted roots h ⊂ {w1, w2, . . . , wL̃+1} ⊂
T containing m elements, we have

SD−m(T ) = (−wm+1)(−wm+2) . . . (−wD) +
D−m∑
j=1

am(j)(−w1)jSD−m−j(T ) + εD−m(h),
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where |εD−m(h)| � hD−m. For m+ 1 ≤ l ≤ L̃+ 1, replacing instances of (−wl) with (−w1) +
((−wl)− (−w1)) and observing that |wl − w1| ≤ εh, we find that

SD−m(T )

= (−w1)L̃+1−m(−wL̃+2)(−wL̃+3) . . . (−wD) +
D−m∑
j=1

am(j)(−w1)jSD−m−j(T ) + ε
(1)
D−m,

where |ε(1)
D−m| . εhD−m.

Dividing through by (−w1)L̃+1−m, we obtain

(−w1)m−(L̃+1)SD−m(T )

= (−wL̃+2) . . . (−wD) +
D−m∑
j=1

am(j)(−w1)j+m−(L̃+1)SD−m−j(T ) + ε
(2)
D−m,

where |ε(2)
D−m| . εhD−(L̃+1).

Many of the terms appearing in the above sum are near vanishing. To pick out the significant
terms, we observe D −m− j ∈ D̃(T ) requires that j = D(T )− D̃i(T )−m for 0 ≤ i ≤ L̃. The

relevant set of indices j is precisely the positive elements of K̃(T )−m. Thus, we find

(−w1)m−(L̃+1)SD−m(T )

=(−wL̃+2) . . . (−wD) +
D−m∑

j∈K̃(T )−m
j≥1

am(j)(−w1)j+m−(L̃+1)SD−m−j(T )

+ε
(3)
D−m,

(7.2.2)

where ε
(3)
D−m is an error term with |ε(3)

D−m| . εhD−(L̃+1). The normalised symmetric functions

appearing in the sum are precisely (−w1)k̃i−(L̃+1)SD̃(L̃−i)(T ) where D̃(L̃−i) ∈ D̃ and D̃(L̃−i) <
D −m. Observe that, from Lemma 7.2.4, am(0) = (−1) so that, if D −m ∈ D̃, then (7.2.2)
can be rearranged to

ε
(4)
D−m

=(−wL̃+2) . . . (−wD) +
D−m∑

j∈K̃(T )−m
j≥0

am(j)(−w1)j+m−(L̃+1)SD−m−j(T ), (7.2.3)

where ε
(4)
D−m is an error term with |ε(4)

D−m| � hD−(L̃+1). In fact, (7.2.3) is valid for all m since,

if D −m /∈ K̃, then |(−w1)m−(L̃+1)SD−m(T )| � hD−(L̃+1).
We set

~v =


(−wL̃+2)(−wL̃+3) . . . (−wD)

(−w1)k̃1−(L̃+1)SD(L̃−1)

...

(−w1)k̃L̃−(L̃+1)SD̃(L̃−L̃)

 , ~ε =


ε

(4)
D−1
...

ε
(4)

D−(L̃+1)

 .

Bringing the equations (7.2.3) for 1 ≤ m ≤ L̃+ 1 together, we have a matrix equation

~ε = M~v, (7.2.4)

with M as specified below. Recall, from Lemma 7.2.4, that am(j) = (−1)j−1
(
m−1+j
m−1

)
so that

am(j −m) = (−1)j−m−1
(
j−1
m−1

)
.
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Let us first give an example of M . When L̃ = 2, and k̃1 > 3 we have

M =

 1 (−1)k̃1−2 (−1)k̃2−2

1 (−1)k̃1−3(k̃1 − 1) (−1)k̃2−3(k̃2 − 1)

1 (−1)k̃1−4 1
2 (k̃1 − 2)(k̃1 − 1) (−1)k̃2−4 1

2 (k̃2 − 2)(k̃2 − 1)

 .

Let us give an example of M when it contains some zero entries. This happens, for example,
if L̃ = 2 and k̃2 > 3 but k̃1 = 2. In this case,

M =

 1 (−1)k̃1−2 (−1)k̃2−2

1 −1 (−1)k̃2−3(k̃2 − 1)

1 0 (−1)k̃2−4 1
2 (k̃2 − 2)(k̃2 − 1)

 .

In general, M is an (L̃+ 1)× (L̃+ 1) matrix. According with (7.2.3), we must be sensitive
to whether K̃ −m contains negative elements distinct from −m (as these do not appear in the
sum). To account for these, it is useful to express

am(k̃b −m) =

(
k̃b − 1

m− 1

)
=

1

(m− 1)!

m−1∏
i=1

(k̃b − i). (7.2.5)

For b ≥ 1, the expression on the right hand side of (7.2.5) is equal to 0 when k̃b < m. If

b ≥ 1 and k̃b − (L̃ + 1) < 0, then, for m > k̃b,
1

(m−1)!

∏m−1
i=1 (k̃b − i) = 0. Observe also that

1 = (−1)−m−1

(m−1)!

∏m−1
i=1 (0 − i). Thus, for 1 ≤ m ≤ L̃ + 1 and 1 ≤ b ≤ L̃ + 1 the matrix entry

M(m, b) is given by

M(m, b) =
(−1)k̃b−1−m−1

(m− 1)!

m−1∏
i=1

(k̃b−1 − i). (7.2.6)

We claim that M is invertible. Let us suppose, for now, that the claim holds and see how
the result follows. Using the fact that M is invertible, we find from (7.2.4) that

|~ε| ∼ hD−(L̃+1).

Throughout, we have tracked error terms so that |~ε| � hD−(L̃+1). As such, we have a contra-
diction. Therefore, B(w1, ε|w1|) can contain at most L̃ roots.

Let us now prove the claim. First, lets multiply the jth column of M by (−1)k̃j and call the

resulting matrix M̃ . We work to show the column vectors of M̃ are linearly independent via a
Taylor expansion. Observe that the columns of M̃ are evaluations of the vector polynomial

~p(t) =


1

−(t− 1)
1
2! (t− 1)(t− 2)

...

(−1)L̃ 1
L̃!

(t− 1)(t− 2) . . . (t− L̃)


at the points t = 0, k̃1, . . . k̃L̃. Considering the Maclaurin expansion, we can express p(t) as a
matrix transformation of the curve,

~q(t) =


1
t

1
2! t

2

...
1
L̃!
tL̃

 .
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Note that, since the jth component of ~p is a degree j − 1 polynomial, we can write

~p(t) = T~q(t),

where T is an upper triangular matrix. It is easy to see that, along the diagonal, the entries are
non-zero, so that T is invertible. It is well known that L̃ distinct points on the moment curve

~r(t) =


t

1
2! t

2

...
1

(L̃)!
tL̃


are in general position. We thus see that

dim span
{
~q(0), ~q(k̃1), . . . , ~q(k̃L̃)

}
= 1 + dim span

{
~r(k̃1), . . . , ~r(k̃L̃)

}
= L̃+ 1.

We also know, since T is invertible, that

dim span
{
T~q(0), T~q(k̃1), . . . , T~q(k̃L̃)

}
= dim span

{
~q(0), ~q(k̃1), . . . , ~q(k̃L̃)

}
= L̃+ 1.

Therefore, the column vectors of M̃ are linearly independent, completing the proof that M̃ ,
and thus M , is invertible.

7.3 A series expansion lemma; proof of Lemma 7.2.4

In this section, we work to prove our main series expansion Lemma 7.2.4. The work is of a
rather combinatorial flavour. Lemma 7.2.4 is a corollary of Lemmas 7.3.1 and 7.3.2.

Lemma 7.3.1. For m highlighted roots, h, including w1 and D −m excluded roots e = T \h,
the symmetric function SD−m(T ) can be expressed as

SD−m(T ) = SD−m(e) +
D−m∑
j=1

am(j,m)(−w1)jSD−m−j(T ) + εD−m,

where |εD−m| . maxw,w′∈h |w − w′|hD−m, if D ≥ m ≥ 2, and εD−m = 0, if m = 1. The
coefficients am(j,m) are outlined in the following. We first set b = max{1,m− (D −m) + 1}.
We have that am(·, ·) is the solution of the below recurrence relation:

am(1,m) =

(
m

m− 1

)
, am(1,m− 1) =

(
m

m− 2

)
, . . . , am(1, b) =

(
m

b− 1

)
,

am(1, l) = 0, for l ≤ b− 1 or l ≥ m+ 1,

am(j + 1, l) = am(j, l − 1), for l ≤ b− 1 or l ≥ m+ 1,

am(j + 1, l) = −
(

m

l − 1

)
am(j,m) + am(j, l − 1), for b ≤ l ≤ m.

(7.3.1)

In the case that m ≤ D − m, i.e. b = 1, we include a figure representing a step of the
recursion for those 1 ≤ l ≤ m. Figure 7.1 represents the dynamics taking us one step from
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{am(j,m), . . . , am(j, 1)} to {am(j + 1,m), . . . , am(j + 1, 1)}, where each arrow represents addi-
tion. We suppress the first argument of am.

Figure 7.1: A step of the recursion (7.3.1).

Lemma 7.3.2. Let am(·, ·) satisfy the recurrence relation (7.3.1). For b ≤ l ≤ m and 1 ≤ j ≤
D −m,

am(j, l) = (−1)j−1

(
m− 1 + j

l − 1

)(
m− 1 + j − l

j − 1

)
. (7.3.2)

In particular,

am(j,m) = (−1)j−1

(
m− 1 + j

m− 1

)
,

for 1 ≤ j ≤ D −m.

Now we turn to the derivation of our desired series expansion in terms of the above specified
recurrence relation.

Proof of Lemma 7.3.1. Take m highlighted roots h = {w1, w2, . . . , wm}. We work from Lemma
7.2.3, which gives

SD−m(T )− SD−m(e) =

min{D−m,m}∑
l=1

Sl(h)SD−m−l(e).

We perform an iterative procedure to obtain the recurrence relation (7.3.1). It is obtained
by expressing each of the highest order Sj(e) in terms of lower order Sl and each Sj−l(h) in
terms of a distinguished root w1. One step of this procedure corresponds to first replacing
the instance of Sj(e) with the largest index j with Sj(T )−

∑
Si(h)Sj−i(e) and then replacing

instances of Si(h) with
(
m
i

)
(−w1)j−l + εi(h), where |εi(h)| . maxw,w′∈h |w − w′|hi−1.

Let us first consider the simpler case of m = 1. We see that

SD−1(T )− SD−1(e) = (−w1)SD−2(e) = a′1(1, 1)(−w1)SD−2(e).

This gives our initialisation of the recurrence relation, with a′1(1, 1) = 1 with a′1(1, l) = 0 for
l 6= 1. To begin the recurrence, we substitute SD−2(e) = SD−2(T )−(−w1)SD−3(e), which gives

SD−1(T )− SD−1(e) = (−w1)SD−2(T )− (−w1)2SD−3(e)

= a′1(2, 2)(−w1)SD−2(T ) + a′1(2, 1)(−w1)2SD−3(e),
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so that a′1(2, 2) = a′1(1, 1) = 1 and a′1(2, 1) = −1 = −a′1(1, 1) +a′1(1, 0). This continues until we
have eliminated all appearances of the Sl(h) and Sl(e) for l > 1, the recurrence relation is seen
to be a′1(j + 1, 1) = −a′1(j, 1) = −a′1(j, 1) + a′1(j, 0) for j ≤ D − 1 and a′(j + 1, l) = a′(j, l − 1)
for l 6= 1.

In the case where m ≥ 2, it is harder to work with exact expressions, so we will introduce
appropriate error terms. We distinguish the root w1 ∈ h . Note that, wherever Sl(h) appears,
we can write Sl(h) =

(
m
l

)
(−w1)l + εl(h), where |εl(h)| . maxw,w′∈h |w − w′|hl−1, if m ≥ 2.

This is seen by replacing any instance of wj for 2 ≤ j ≤ m with wj = w1 + (wj −w1): the term
resulting from the difference on the right hand side of this equation is cast into to the error
term εl(h).

For our initialisation, we first modify all terms featuring highlighted roots by introducing
an appropriate error and find that

SD−m(T )− SD−m(e) =

min{m,D−m}∑
l=1

Sl(h)SD−m−l(e)

=

min{m,D−m}∑
l=1

(
m

l

)
(−w1)lSD−m−l(e) +

min{m,D−m}∑
l=1

εl(h)SD−m−l(e)


=
∑
l≥1

a′m(1,m+ 1− l)(−w1)lSD−m−l(e) + ε
(0)
D−m, (7.3.3)

where a′m(1, l) =
(
m
l

)
for 1 ≤ l ≤ min{m,D − m} and a′m(1, l) = 0 for l > min{m,D − m}

or l ≤ 0. Here ε
(0)
D−m :=

∑min{m,D−m}
l=1 εl(h)SD−m−l(e) is easily verified to satisfy the required

error bound |ε(0)
D−m| . maxw,w′∈h |w − w′|hD−m−1. Note that, although Sj(e) appearing in

the sum (7.3.3) is not defined for j > D − m or j < 0, the corresponding terms should not
be considered as part of the sum since the corresponding coefficients are 0. We write the
initialisation as an infinite series expansion in this way because it makes the expression of our
recursion more convenient.

As the first step of the recursion, we will use the equation

SD−m−1(e) = SD−m−1(T )−
min{m,D−m−1}∑

j=1

Sj(h)SD−m−1−j(e)

= SD−m−1(T )−
∑
j∈Z

1I1(j)

(
m

j

)
(−w1)jSD−m−1−j(e) + ε

(0,1)
D−m−1(h), (7.3.4)

where I1 = [1,min{m,D −m− 1}] and ε
(0,1)
D−m−1 :=

∑
j∈Z 1I1(j)εj(h)SD−m−1−j(e) satisfies

|ε(0,1)
D−m−1(h)| . max{w,w′∈h} |w − w′|hD−m−2.

To carry out the first step of our recursive procedure, we substitute (7.3.4) into (7.3.3). We
end up with

SD−m(T )− SD−m(e)

= a′m(1,m)(−w1)SD−m−1(T ) +
∑
j∈Z

1I1(j)

(
m

j

)
(−a′m(1,m))(−w1)j+1SD−m−1−j(e)

+a′m(1,m)(−w1)ε
(0,1)
D−m−1(h)

+
∑
l≥2

a′m(1,m+ 1− l)(−w1)lSD−m−l(e) + ε
(0)
D−m(h)

= a′m(1,m)(−w1)SD−m−1(T ) +
∑
j∈Z

1I1(j)

(
m

j

)
(−a′m(1,m))(−w1)j+1SD−m−1−j(e)

+
∑
j≥1

a′m(1,m− j)(−w1)j+1SD−m−1−j(e) + ε
(1)
D−m(h)
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=
∑
l≤0

a′m(2,m+ 1− l)(−w1)l+1SD−m−1−l(T )

+
∑
l≥1

a′m(2,m+ 1− l)(−w1)l+1SD−m−1−l(e) + ε
(1)
D−m(h)

where |ε(1)
D−m(h)| � hD−m and

a′m(2,m+ 1− l) = −1I1(l)

(
m

l

)
a′m(1,m) + a′m(1,m− l). (7.3.5)

The procedure continues. The recurrence relation we get is

a′m(j + 1,m+ 1− l) = −1Ij (l)
(
m

l

)
a′m(j,m) + a′m(j,m− l), (7.3.6)

where
Ij := [1,min {m,D −m− j}], (7.3.7)

where, if min {m,D −m− j} < 1, (7.3.7) should be understood as a void interval, i.e. Ij = ∅.
The indicator function 1Ij appearing in (7.3.6) simply ensures that we do not pick up any
symmetric functions below S0(T ) in our series expansion.

Looking at (7.3.6) and (7.3.7), we can see that, for j ≥ D−m, a′m(j+ 1, l) = a′m(j, l) for all
l. This reflects the fact that we can only carry out the iteration procedure, where we replace
instances of SD−m−j(e) with SD−m−j(T ), an error, and terms involving SD−m−j′(e) for j′ > j,
D −m− 1 times. The derived series expansion for SD−m(T )− SD−m(e) is

SD−m(T )− SD−m(e)

=
∑
l≤0

a′m(2,m+ 1− l)(−w1)l+1SD−m−1−l(T ) +
∑
l≥1

a′m(2,m+ 1− l)(−w1)l+1SD−m−1−l(e)

+ε
(1)
D−m(h)

=
∑
l≤0

a′m(3,m+ 1− l)(−w1)l+2SD−m−2−l(T ) +
∑
l≥1

a′m(3,m+ 1− l)(−w1)l+2SD−m−2−l(e)

+ε
(2)
D−m(h)

= . . .

=
∑
l≤0

a′m(j′+1,m+1−l)(−w1)l+j
′
SD−m−j′−l(T )+

∑
l≥1

a′m(j′+1,m+1−l)(−w1)l+j
′
SD−m−j′−l(e)

+ε
(j′)
D−m(h).

Taking j′ = D −m− 1, we find that

SD−m(T )− SD−m(e) =
∑
l≤0

a′m(D −m,m+ 1− l)(−w1)l+D−m−1S1−l(T )

+
∑
l≥1

a′m(D −m,m+ 1− l)(−w1)l+D−m−1S1−l(e) + ε
(D−m−1)
D−m (h)

=
∑
l≤0

a′m(D−m,m+1−l)(−w1)l+D−m−1S1−l(T )+a′m(D−m,m)(−w1)D−mS0(e)+ε
(D−m−1)
D−m (h)

=
∑

m−D+2≤l≤1

a′m(D −m+ l − 1,m)(−w1)l+D−m−1S1−l(T ) + ε
(D−m−1)
D−m (h).

Now observe that, for l ≤ 0, a′m(j+1,m+1− l) = a′m(j,m− l), by definition (7.3.6). Therefore,
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for l ≤ 0, a′m(j′,m+ 1− l) = a′m(j′ + l − 1,m). In particular, we have

SD−m(T )− SD−m(e)

=
∑

1≤j≤D−m

a′m(j,m)(−w1)jSD−m−j(T ) + ε
(D−m−1)
D−m (h).

One can easily see that the recurrence relation (7.3.6) differs from the recurrence relation
(7.3.1). However, the terms that appear in the series expansion are a′m(j,m) for 1 ≤ j ≤ D−m
and it can be verified that these coincide with the same am(j,m).

Proof of Lemma 7.3.2. We want to show that, for b ≤ l ≤ m and 1 ≤ j ≤ D −m,

am(j, l) = (−1)j−1

(
m− 1 + j

l − 1

)(
m− 1 + j − l

j − 1

)
, (7.3.8)

where am satisfies the recurrence relation (7.3.1). This is true for j = 1 by definition. We now
work by induction. We must show that the right hand side of (7.3.8) satisfies the recurrence
relation (7.3.1). We apply the relevant forward expression to see that, for b ≤ l ≤ m and j ≥ 1,

−
(

m

l − 1

)
(−1)j−1

(
m− 1 + j

m− 1

)
+ (−1)j−1

(
m− 1 + j

l − 2

)(
m+ j − l
j − 1

)

= (−1)j
(

m!

(l − 1)!(m− l + 1)!
· (m− 1 + j)!

j!(m− 1)!
− (m+ j − 1)!

(m+ j − l + 1)!(l − 2)!
· (m+ j − l)!

(j − 1)!(m− l + 1)!

)
= (−1)j

(
(m− 1 + j)!

(l − 1)!(m+ j − l + 1)!

)(
m(m+ j − l + 1)!

(m− l + 1)!j!
− (m+ j − l)!(l − 1)

(j − 1)!(m− l + 1)!

)
= (−1)j

(
(m− 1 + j)!

(l − 1)!(m+ j − l + 1)!

)(
(m+ j − l)!
j!(m− l + 1)!

)
(m(m+ j − l + 1)− (l − 1)j)

= (−1)j
(

(m− 1 + j)!

(l − 1)!(m+ j − l + 1)!

)(
(m+ j − l)!
j!(m− l + 1)!

)
((m+ j)(m+ 1− l))

= (−1)j
(
m+ j

l − 1

)(
m+ j − l

j

)
,

as required.
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Chapter 8

Explicit root structure

In Section 7.1, we introduced certain reference heights. These reference heights provided an
essential scaffold for our root structure analysis. Nevertheless, the tools developed so far tell
us nothing explicit about even the size of the reference heights. The reference heights were
given in terms of the size of certain roots and thus depended implicitly on the coefficients of our
polynomial Ψ. In this section, we establish an explicit toolkit for estimating reference heights,
from which we are then able to obtain refined structural statements.

We also consider the rough factorisation of monic Ψ into polynomials corresponding with
each tier. We provide an explicit factorised polynomial Ψ̃(t) =

∏s
r=1 Ψ̃r(t). Our analysis results

in a further tool for root finding, in that a suitable small neighbourhood of the roots of the
polynomial factor Ψ̃l will contain the roots of Ψ in the tier Tl.

8.1 Root tier stratification

We have defined the tier structure in terms of reference heights about which we have no a priori
information. The following lemma outlines a useful procedure for estimating the reference
heights in an unknown regime.

In this section, we prove our explicit tool for estimating the heights of roots, Lemma 8.1.1.
We also prove Theorem 6.0.3. This is a direct corollary of our later Proposition 8.1.2 considered
with reference to Theorem 7.2.1.

Lemma 8.1.1. We fix a set of exponents k1 < k2 < . . . < kL and consider polynomials

Ψ(t) = x+ y1t
k1 + . . .+ yLt

kL ,

with yL 6= 0. The roots of Ψ are structured into tiers, T1, T2, . . . Ts, according with Theorem
6.0.1. There exists an algorithm outputting a sequence of height estimates η1 ≥ η2 ≥ . . . ≥ ηa,
where 1 ≤ s ≤ a ≤ L, which satisfy the following.

Associated with η1, η2,. . . ηa are indices 0 = α(0), α(1), α(2), . . . , α(a) such that

η
D(α(j))−D(α(j−1))
j =

∣∣∣∣ yL−α(j)

yL−α(j−1)

∣∣∣∣ .
For each 0 ≤ b < a, we proceed by setting

ηb+1 = max
α(b)<j≤L

∣∣∣∣ yL−j
yL−α(b)

∣∣∣∣ 1
D(j)−D(α(b))

=

∣∣∣∣yL−α(b+1)

yL−α(b)

∣∣∣∣ 1
D(α(b+1))−D(α(b))

.

There exist 0 = β(0), β(1), β(2), . . . β(s) = a such that

ηj ∼ h(Tr), for β(r − 1) < j ≤ β(r).

Furthermore, α(β(r)) = L(r), with the lj and L(j) defined as in Definition 7.1.5.
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We can reformulate the previous comparison as follows: for α(j) with L(r−1)+1 ≤ α(j) ≤
L(r),

ηj ∼ h(Tr). (8.1.1)

Proof. Suppose we are in the regime indexed by (l1, l2, . . . , ls), as in Definition 7.1.5. We can
easily verify that ∣∣SD(L(i))(R)

∣∣ ∼ h(T1)D(T1) . . . h(Ti)D(Ti). (8.1.2)

Indeed, (−z1)(−z2) . . . (−zD(L(i))) is the term of largest magnitude appearing in the sum SD(L(i))(R)

and it is comparable in magnitude to h(T1)D(T1) . . . h(Ti)D(Ti). Since they must include a root
from a smaller tier, all the remaining terms in the sum SD(L(i))(R) are bounded in magnitude
by

h(T1)D(T1) . . . h(Ti)D(Ti)−1h(Ti+1)� h(T1)D(T1) . . . h(Ti)D(Ti).

Similarly, note that, for L(t− 1) + 1 ≤ j ≤ L(t),

|SD(j)(R)| . h(T1)D(T1)h(T2)D(T2) . . . h(Tt−1)D(Tt−1)h(Tt)D(j)−D(L(t−1)). (8.1.3)

Set

η1 = max
1≤j≤L

|SD(j)(R)|
1

D(j) = |SD(α(1))(R)|
1

D(α(1)) =

∣∣∣∣yL−α(1)

yL

∣∣∣∣ 1
D(α(1))

.

Since all roots are bounded in magnitude by h(T1) and, from (8.1.2), SD(L(1))(R) ∼ h(T1)D(L(1)),
we then see that η1 ∼ h(T1).

Next, we set

η2 = max
α(1)<j≤L

∣∣∣∣ SD(j)(R)

SD(α(1))(R)

∣∣∣∣
1

D(j)−D(α(1))

=

∣∣∣∣SD(α(2))(R)

SD(α(1))(R)

∣∣∣∣
1

D(α(2))−D(α(1))

=

∣∣∣∣yL−α(2)

yL−α(1)

∣∣∣∣ 1
D(α(2))−D(α(1))

.

Having determined η1, η2, . . ., ηi and corresponding α(1), α(2), . . ., α(i) < L, we set

ηi+1 = max
α(i)<j≤L

∣∣∣∣ SD(j)(R)

SD(α(i))(R)

∣∣∣∣
1

D(j)−D(α(i))

(8.1.4)

=

∣∣∣∣SD(α(i+1))(R)

SD(α(i))(R)

∣∣∣∣
1

D(α(i+1))−D(α(i))

=

∣∣∣∣yL−α(i+1)

yL−α(i)

∣∣∣∣ 1
D(α(i+1))−D(α(i))

.

We wish to ensure that at least one height estimate corresponds to every reference height.
This is ensured provided hl(r) � hl(r)+1 for each 1 ≤ r ≤ s with suitable constants in Definition
7.1.5. In the procedure defined above, we show that each yL−L(t) appears in one of the expres-
sions for ηj , (8.1.4). Furthermore, for terms picked up in the procedure, the bound (8.1.3) can
be upgraded to a comparison. We show this inductively.

First, take the largest 0 ≤ α(β1 − 1) such that α(β1 − 1) < L(1). Observe that

∣∣SD(L(1))(R)
∣∣ 1
D(L(1)) =

∣∣∣∣yL−L(1)

yL

∣∣∣∣ 1
D(L(1))

∼ h(T1),

by (8.1.2). Thus we can see, by definition of our height estimates, that, if α(β1 − 1) > 0, then∣∣SD(α(β1−1))

∣∣ 1
D(α(β1−1)) & h(T1). Considering (8.1.3), we then see that either α(β1 − 1) = 0 or∣∣SD(α(β1−1))

∣∣ 1
D(α(β1−1)) ∼ h(T1). (8.1.5)

We now wish to show that α(β1) = L(1). Suppose for contradiction that α(β1) > L(1). Set
h̃ = h(T2) and h = h(T1). We know that h̃ � h. Using the equations (8.1.3) and (8.1.5) to
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bound the size of the symmetric functions in terms of height estimates, we see that

ηβ1
=

∣∣∣∣ yL−α(β1)

yL−α(β1−1)

∣∣∣∣ 1
D(α(β1))−D(α(β1−1))

=

∣∣∣∣ SD(α(β1))(R)

SD(α(β1−1))(R)

∣∣∣∣
1

D(α(β1))−D(α(β1−1))

.

∣∣∣∣∣ h̃D(α(β1))−D(L(1))hD(L(1))

hD(α(β1−1))

∣∣∣∣∣
1

D(α(β1))−D(α(β1−1))

≤

∣∣∣∣∣ h̃D(α(β1))−D(L(1))

hD(α(β1))−D(L(1))
hD(α(β1)))−D(α(β1−1))

∣∣∣∣∣
1

D(α(β1))−D(α(β1−1))

� h =
∣∣∣hD(L(1))−D(α(β1−1))

∣∣∣ 1
D(L(1))−D(α(β1−1))

∼
∣∣∣∣ SD(L(1))(R)

SD(α(β1−1))(R)

∣∣∣∣
1

D(L(1))−D(α(β1−1))

=

∣∣∣∣ yL−L(1)

yL−α(β1−1)

∣∣∣∣ 1
D(L(1))−D(α(β1−1))

.

This contradicts the definition of ηβ1 , so we must have that α(β1) = L(1). Furthermore, for
0 = β(0) < i ≤ β(1) = β1,

ηi ∼ h(T1).

We proceed inductively. Fix some index r. Suppose that β(r−1) is such that α(β(r̃)) = L(r̃)
for 1 ≤ r̃ ≤ r − 1 and, for 1 ≤ r̃ < r and β(r̃ − 1) < i ≤ β(r̃),

ηi ∼ h(Tr̃). (8.1.6)

We then choose βr maximally so that α(β(r− 1)) = L(r− 1) ≤ α(βr − 1) < L(r). Similarly to
our proof of (8.1.5), it is routine to verify that∣∣∣∣ yL(r)

yL(r−1)

∣∣∣∣ 1
D(L(r))−D(α(β(r−1)))

=

∣∣∣∣ SD(L(r))(R)

SD(α(L(r−1))(R)

∣∣∣∣
1

D(L(r))−D(α(β(r−1)))

∼ h(Tr),

we easily see that, for β(r − 1) < i ≤ β(r),

ηi ∼ h(Tr). (8.1.7)

As a consequence of (8.1.6) and (8.1.7), we find that, for β(r − 1) < i ≤ β(r),

|SD(α(i))(R)| =

∣∣∣∣∣
i∏
l=1

η
D(α(l))−D(α(l−1))
i

∣∣∣∣∣
∼ h(T1)D(T1)h(T2)D(T2) . . . h(Tr−1)D(Tr−1)h(Tr)D(α(i))−D(L(r−1)). (8.1.8)

As previously, we now wish to show that α(βr) = L(r). Suppose, then, to find a contradiction,
that α(βr) > L(r). Similarly to (8.1.8), we find, setting h = h(Tr) and h̃ = h(Tr+1), that

ηβr =

∣∣∣∣ yL−α(βr)

yL−α(βr−1)

∣∣∣∣ 1
D(α(βr))−D(α(βr−1))

=

∣∣∣∣ SD(α(βr))(R)

SD(α(βr−1))(R)

∣∣∣∣
1

D(α(βr))−D(α(βr−1))

.

∣∣∣∣ h(T1)D(T1)h(T2)D(T2) . . . h(Tr)D(Tr)h(Tr+1)D(α(βr))−D(L(r))

h(T1)D(T1)h(T2)D(T2) . . . h(Tr−1)D(Tr−1)h(Tr)D(α(βr−1))−D(L(r−1))

∣∣∣∣
1

D(α(βr))−D(α(βr−1))
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∼

∣∣∣∣∣hD(L(r))−D(L(r−1))h̃D(α(βr))−D(L(r))

hD(α(βr−1))−D(L(r−1))

∣∣∣∣∣
1

D(α(βr))−D(α(βr−1))

=

∣∣∣∣∣hD(α(βr))−D(α(βr−1)) h̃
D(α(βr))−D(L(r))

hD(α(βr))−D(L(r))

∣∣∣∣∣
1

D(α(βr))−D(α(βr−1))

� h ∼
∣∣∣∣ yL(r)

yL(r−1)

∣∣∣∣ 1
D(L(r))−D(α(β(r−1)))

,

which contradicts the definition of ηβr .

We can use the procedure from Lemma 8.1.1 to obtain the refined structural result, Theorem
6.0.3. Here, with additional restrictions on the coefficients, we have stronger control on the root
structure as a consequence of the explicit estimates for the reference heights. The following
proposition feeds directly into our result on the structure of roots within a given tier, Theorem
7.2.1, to give the refined structural result, Theorem 6.0.3, as a corollary.

Proposition 8.1.2. Fix the set of exponents k1 < k2 < . . . < kL. We consider polynomials

Ψ(t) = x+ y1t
k1 + . . .+ yLt

kL

such that
max

1≤j≤L
|yj |

1
kj ≤ 1.

Take some γ ∈ (0, 1] and suppose, additionally, that

|ym|
1
km ≥ γ,

and, for n > m,

|yn|
1
kn ≤ δ,

for some m and some suitably small δ = δ(γ) > 0. Then the roots of Ψ can be classified into
large and small tiers T1, . . . Ts(1) and Ts(1)+1, . . . Ts(1)+s(2) which satisfy the following.

First, we have that 0 ≤ s(1) ≤ s(1) + s(2) = s ≤ L and, additionally s(1) ≤ L −m + 1. If
s(2) ≥ 1, then s(1) ≤ L−m.

We refer to those tiers Tr with 1 ≤ r ≤ s(1) as the large tiers. For any root w in a
large tier, we have that |w| &γ 1. In the case that s(2) ≥ 1, we refer to those tiers Tr with
s(1) + 1 ≤ r ≤ s(1) + s(2) as the small tiers. For any root w in a small tier, we have that
|w| .γ 1.

The tiers are well separated: for any choice of wj ∈ Tj, we have that

|w1| � |w2| � . . .� |ws|.

Finally, we have the following. In the case that s(2) ≥ 1, we have that L(s(1)) = L−m. If
s(2) = 0, then, ls(1) ≥ m and, for L−m < L(s− 1) + j < L,∣∣SD(L(s−1)+j)(R)

∣∣� h(T1)D(T1)h(T2)D(T2) . . . h(Ts)D(L(s−1)+j)−D(L(s−1)).

Before proceeding with the proof of Proposition 8.1.2, let us show how Theorem 6.0.3 is
obtained as a corollary.

Proof of Theorem 6.0.3. Proposition 8.1.2 already gives the large and small tiers, and the re-
quired control on their size. It remains to determine the way in which roots may cluster. To
do so, we work with reference to the final paragraph of the proposition’s statement.

Let us first consider the case that s(2) ≥ 1. Here we can see, since L(s(1)) = L −m, that
for 1 ≤ r ≤ s(1), lr ≤ L(s(1)) ≤ L−m. Therefore |D(Tr)| − 1 = lr ≤ L−m and, by Theorem
7.2.1, B(w, ε|w|) contains at most L −m roots for any root w in a large tier Tr. Likewise, for
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s(1) + 1 ≤ r ≤ s(1) + s(2), lr ≤ L − L(s(1)) = m so that, for any root w in a small tier Tr,
B(w, ε|w|) contains at most m roots.

In the case that s(2) = 0, we work as follows. We consider a tier Tr. If lr ≤ L−m+ 1, then,
as above, one has that for any root w the tier Tr, B(w, ε|w|) contains at most L−m+ 1 roots.
Otherwise, L(r) ≥ lr > L −m + 1 so that L(s) − L(r) = L − L(r) < m − 1. Since ls ≥ m we
must then have that r = s because otherwise we would have m ≤ ls ≤ L(s) − L(r) < m − 1.
According with Lemma 7.1.8, for 1 ≤ j ≤ ls, we then approximate SDj(Ts)(Ts) by

SD(L(s−1)+j)(R)

SD(L(s−1))(T1 ∪ . . . ∪ Ts−1)
.

In particular, we have for 1 ≤ j ≤ ls that∣∣∣∣SDj(Ts)(Ts)− SD(L(s−1)+j)(R)

SD(L(s−1))(T1 ∪ . . . ∪ Ts−1)

∣∣∣∣� h(Ts)Dj(Ts).

Combining this with Proposition 8.1.2, for L−m < L(s− 1) + j < L, we see that∣∣SDj(Ts)(Ts)∣∣� h(Ts)j .

From this, it is a matter of counting to see that at most L−m+1 non-trivial symmetric functions
Sj(Ts) are substantial: we can choose D̃(Ts) ⊂ D(Ts) in Theorem 7.2.1, with |D̃(Ts))| − 1 ≤
L−m+ 1, so that, for j /∈ D̃(Ts), |Sj(Ts)| � h(Ts)j . Therefore, by Theorem 7.2.1, for any root
w, B(w, ε|w|) contains at most L−m+ 1 roots.

Proof of Proposition 8.1.2. We consider what the supposed conditions tell us under the height
estimation procedure, Lemma 8.1.1. We obtain a sequence of reference heights η1, η2, . . . and
corresponding indices α(1), α(2), . . . satisfying the conditions of that lemma.

In the case that m = L, there is nothing to prove. The height estimates are all .γ 1. We
set s(1) = 0 so that L(s(1)) = 0 and each tier is a small tier. In what follows, we consider the
case m < L.

Firstly, observe that
∣∣∣ymyL ∣∣∣ 1

D(L−m) ≥
∣∣∣γkm
δkL

∣∣∣ 1
D(L−m) � 1, provided δ is sufficiently small. As

such, we are guaranteed to pick up a number of large height estimates ηj &γ 1.
Let 0 ≤ i0 be chosen maximally so that α(i0) ≤ L−m. We either have that α(i0) = L−m

or α(i0) < L−m and we first split our analysis by these cases. Since, for n > m,∣∣∣∣ymyn
∣∣∣∣ 1
D(L−m)−D(L−n)

&γ 1

it is easy to see that
ηmax{i0,1} &γ 1.

In the first case, where L − α(i0) = m, note that i0 ≥ 1. We then observe that, provided
we choose δ is chosen sufficiently small depending on γ, for 1 ≤ j < m,∣∣∣∣ yjym

∣∣∣∣ 1
D(L−j)−D(L−m)

≤
∣∣∣∣ 1

γkm

∣∣∣∣ 1
D(L−j)−D(L−m)

�
∣∣∣∣ γkm

δkL−α(i0−1)

∣∣∣∣
1

D(L−m)−D(α(i0−1))

≤
∣∣∣∣ ym
yL−α(i0−1)

∣∣∣∣ 1
D(L−m)−D(α(i0−1))

= ηi0 , (8.1.9)

by definition of the height estimates. Thus we see that either ηi0+1 � ηi0 or, if ηi0+1 & ηi0 , we

must have that ηi0+1 =
∣∣∣ xym ∣∣∣ 1

D(L)−D(L−m)

.

We now consider what happens in the height estimation procedure in the case that α(i0) <
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L−m. We observe that, for 1 ≤ j < m,∣∣∣∣ yj
yL−α(i0)

∣∣∣∣ 1
D(L−j)−D(α(i0))

≤
∣∣∣∣ 1

yL−α(i0)

∣∣∣∣ 1
D(L−j)−D(α(i0))

�
∣∣∣∣ ym
yL−α(i0)

∣∣∣∣ 1
D(L−m)−D(α(i0))

, (8.1.10)

where one can verify that the last inequality holds because it is satisfied in the extreme:∣∣∣∣ 1

δkL−α(i0)

∣∣∣∣ 1
D(L−j)−D(α(i0))

�
∣∣∣∣ γkj

δkL−α(i0)

∣∣∣∣
1

D(L−m)−D(α(i0))

.

Thus, in the case that α(i0) < L −m, we necessarily have that ηi0+1 =
∣∣∣ x
yL−α(i0)

∣∣∣ 1
D(L)−D(α(i0))

and α(i0 + 1) = L, since we have specified that ym contributes to no height estimate by the
condition α(i0) < L−m.

We continue our analysis by splitting according to the control between height estimates
η(i0) and η(i0 + 1). Firstly, we analyse the situation where η(i0 + 1) � η(i0), which can only
occur if L −m = α(i0). Secondly, we analyse the situation where either η(i0 + 1) & η(i0) or
where i0 = 0, which can occur with L−m = α(i0) or with L−m > α(i0).

The first scenario is where η(i0 + 1) � η(i0). Here, we have that α(i0) = L −m. This is
the s(2) ≥ 1 case. According with Lemma 8.1.1, we choose s(1) so that the large tiers Tr, for
1 ≤ r ≤ s(1) are those corresponding with the height estimates η1, η2, . . . , ηi0 . We must have,
by (8.1.1) from Lemma 8.1.1, that L(s(1)) = α(i0) = L−m. We can also see that

ηi0 =

∣∣∣∣ ym
yL−α(i0−1)

∣∣∣∣ 1
D(L−m)−D(α(i0−1))

&γ 1,

and, by Lemma 8.1.1, for roots w in large tiers,

|w| &γ 1.

There are also small tiers of roots: following Lemma 8.1.1, these are the tiers corresponding
with the height estimates ηi0+1, ηi0+2, . . . ηa. It is easy to see that 1 &γ ηi0+1, since

ηi0+1 =

∣∣∣∣yL−α(i0+1)

ym

∣∣∣∣ 1
D(α(i0+1))−D(L−m)

≤
∣∣∣∣ 1γ
∣∣∣∣ 1
D(α(i0+1))−D(L−m)

,

and, by Lemma 8.1.1, for roots w in small tiers,

|w| .γ 1.

In the second scenario, η(i0) ∼ η(i0 + 1) or there is only one height estimate and α(1) =
L. In either case, α(i0 + 1) = L, as we previously showed how, in this case, we must have

ηi0+1 =
∣∣∣ xym ∣∣∣ 1

D(L)−D(L−m)

. This is the s(2) = 0 case, where all tiers are large. By Lemma 8.1.1,

ls ≥ α(i0 +1)−α(i0) ≥ L− (L−m) = m. In this case, to conclude the proof, we must establish
control the size of the symmetric functions SD(L−j)(R) for 1 ≤ j < m. For these j, note that
L− j > L−m ≥ L− ls = L(s− 1). We work to show that that, for 1 ≤ j < m,∣∣SD(L−j)(R)

∣∣� h(T1)D(T1)h(T2)D(T2) . . . h(Ts)D(L−j)−D(L(s−1)).

Because we know that ηi0+1 =
∣∣∣ x
yL−α(i0)

∣∣∣ 1
D(L)−D(L−α(i0))

is the final height estimate,

ηi0+1 ∼ h(Ts), (8.1.11)
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by Lemma 8.1.1. We claim that that, for 1 ≤ j < m,∣∣∣∣ yj
yL−α(i0)

∣∣∣∣ 1
D(L−j)−D(L−α(i0))

� h(Ts). (8.1.12)

Assuming for now that (8.1.12) holds, also using the inequality (8.1.1) from the statement of
Lemma 8.1.1, we see that, for 1 ≤ j < m,

∣∣SD(L−j)(R)
∣∣ =

∣∣∣∣ yjyL
∣∣∣∣

=

∣∣∣∣yα(1)

yL

∣∣∣∣ . . . ∣∣∣∣ yL−α(i0)

yL−α(i0−1)

∣∣∣∣ ∣∣∣∣ yj
yL−α(i0)

∣∣∣∣
� h(T1)D(T1) . . . h(Ts−1)D(Ts−1)h(Ts)D(L−j)−D(L(s−1)),

which, after reindexing, is the desired error bound. To see this, we consider 1 ≤ j′ < ls such
that L− (L(s− 1) + j′) = ls − j′ < m: we set j = L− (L(s− 1) + j′), which ranges between 1
and m− 1, as in the proposition’s statement.

To conclude, we prove our claimed inequality (8.1.12). In the case that L − α(i0) = m,
this is a direct consequence of (8.1.9) upon observing from Lemma 8.1.1 that ηi0 ∼ h(Ts).
In the case that α(i0) < L − m, we use (8.1.10) and Lemma 8.1.1: if i0 = 0, then there

is one height estimate η1 =
∣∣∣ xyL ∣∣∣ 1

kL ≥
∣∣∣ymyL ∣∣∣ 1

D(L−m) �
∣∣∣ yj
yL−α(i0)

∣∣∣ 1
D(L−j)−D(L−α(i0))

, if i0 ≥ 1,

then ηi0+1 ≥
∣∣∣ ym
yL−α(i0)

∣∣∣ 1
D(L−m)−D(α(i0)) �

∣∣∣ yj
yL−α(i0)

∣∣∣ 1
D(L−j)−D(L−α(i0))

. Referring to (8.1.11), the

inequality follows.

Remark 8.1.3. As for Proposition 8.1.2, Lemma 8.1.1 and the procedure it outlines can be
used to obtain other refinements of the main structural result, Theorem 6.0.1. For example, if
we had that ∣∣∣∣yL−1

yL

∣∣∣∣ 1
d(1)

�
∣∣∣∣yL−2

yL−1

∣∣∣∣ 1
d(2)

� . . .�
∣∣∣∣ xy1

∣∣∣∣ 1
d(L)

> 0,

then we would have L tiers of roots which are separated and, for sufficiently small ε and some
root z ∈ R, B(z, ε|z|) contains only the root z.

8.2 Rough factorisation

For notational reasons, we consider monic polynomials in this section:

Ψ(t) =

L∑
j=0

yjt
kj ,

where k0 = 0 and yL = 1. In this section, we provide a rough factorisation of monic polynomials
with a well separated tier structure. To this end, let us suppose that throughout this section
we are in the regime indexed by (l1, l2, . . . , ls), as in Definition 7.1.5. Here there are s tiers, T1,
. . ., Ts, containing D(T1) = |T1|, . . ., D(Ts) = |Ts| roots, respectively. The tier regime may be
roughly characterised by

h(T1)� h(T2)� . . .� h(Ts), (8.2.1)

for some suitable choice of constants.
Recall the definition of the kj(Tr) exponents for a given tier, Definition 7.2.6. More explicitly,

for 0 ≤ j ≤ lr, we can write kj(Tr) = kL−L(r)+j − kL−L(r). Recall also the Definition 7.1.7 of
the distinguished indices Dj(Tr), which we can write more explicitly as Dj(Tr) = D(L(r− 1) +
j)−D(L(r − 1)) = kL−L(r−1) − kL−L(r−1)−j .

116



Definition 8.2.1. If we are in the regime given in Definition 7.1.5 indexed by (l1, l2, . . . , ls),
then, for 1 ≤ j ≤ s, we define the monic polynomial

Ψ̃j(t) :=
1

yL−L(j−1)

lj∑
i=0

yL−L(j)+it
ki(Tj). (8.2.2)

We define the rough factorisation of Ψ(t) by

Ψ̃(t) :=
s∏
j=1

Ψ̃j(t). (8.2.3)

We denote the roots of Ψ̃j by T̃j and the roots of Ψ̃ by R̃.

Away from the zeros of the polynomial, the rough factorisation, (8.2.3), we seek should be
quantifiably close to the original Ψ. Furthermore, the root structure of Ψ and the root structure
of its rough factorisation should be closely related. In particular, we have Theorem 8.2.2.

Theorem 8.2.2. There exists a polynomial Ψ̃ =
∏s
l=1 Ψ̃l(t), with Ψ̃l(t) given by (8.2.2), which

roughly factorises Ψ in the following sense.
The polynomial Ψ̃l has roots, T̃l, which are all of comparable magnitude. Furthermore, for

roots wj ∈ T̃j, we have that
|w1| � |w2| � . . .� |ws|.

There exists a covering, N(R), of the roots, R ⊂ C, of Ψ which satisfies the following. Each
connected component of N(R), which we call a cell, is given by a ball. Each cell containing
non-zero roots contains at most L roots. For a cell B containing exactly m roots of Ψ, B
contains exactly m roots of Ψ̃.

For t /∈ N(R),

|Ψ(t)− Ψ̃(t)| � |Ψ(t)|.

The analysis in this section requires strong separation of the height estimates in the spec-
ification of the tier regime, Definition 7.1.5, as we will see. It should be noted, however, that
the results of Chapter 7 do not require such strong separation, although this is not something
we specify in this thesis. All of the results in this section should be understood as valid with
respect to a tier regime specified with sufficiently strong separation in (8.2.1).

To begin with, let us bound the difference of Ψ(t) and Ψ̃(t).

Lemma 8.2.3. With
E(t) := Ψ̃(t)−Ψ(t), (8.2.4)

we have that, for each 1 ≤ r ≤ s and h(Tr+1)� |t| . h(Tr), that

|E(t)| ≤ εf

(
r∏
i=1

h(Ti)D(Ti)

)
|t|
∑s
j=r+1 D(Tj), (8.2.5)

including for r = s and r = 1, subject to the understanding that h(T0) = ∞ and h(Ts+1) = 0.
Here the constant εf can be taken arbitrarily small, provided we make a suitably strong choice
of separation constants in the specification of the tier regime, (8.2.1).

Proof. For 1 ≤ i ≤ lj , we wish to estimate∣∣∣∣ yL−L(j)+i

yL−L(j−1)

∣∣∣∣ .
As a consequence of the height estimation lemma, Lemma 8.1.1, we have that∣∣∣∣ yL−L(j)+i

yL−L(j−1)

∣∣∣∣ . h(Tj)Dlj−i(Tj). (8.2.6)

We use this to bound the error term.
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We can write

Ψ̃(t) =

s∏
j=1

1

yL−L(j−1)

 lj∑
ij=0

yL−L(j)+ij t
kij (Ts)

 .

To avoid a proliferation of nested sub and super-scripts, we will sometimes write i(j) and l(j)

in place of ij and lj , respectively. If we expand the above product expression for Ψ̃, we obtain a
sum that we will refer to throughout this proof. Each term in the resulting sum can be indexed
by (i1, i2, . . . , is), where the index ij ranges over {0, 1, . . . , lj} for each 1 ≤ j ≤ s.

We first consider those terms which sum to Ψ. For 1 ≤ a ≤ s one can see that the term
indexed by (0, 0, . . . , ia, la+1, la+2, . . . , ls), with 0 ≤ ia < la is exactlya−1∏

j=1

yL−L(j)

yL−L(j−1)

( 1

yL−L(a−1)
yL−L(a)+i(a)t

ki(a)(Ta)

)( s∏
i=a+1

tkl(i)(Ti)

)

= yL−L(a)+i(a)t
kL−L(a)+i(a) .

As an example, corresponding to a = s, we have that the term indexed by (0, 0, . . . , 0, is) iss−1∏
j=1

yL−L(j)

yL−L(j−1)

( 1

yL−L(s−1)
yL−L(s)+i(s)t

ki(s)(Ts)
)

= yi(s)t
ki(s) .

We also have that the term indexed by (l1, l2, . . . , ls) is(
s∏
i=1

tkl(i)(Ti)

)
= tkL .

In this way, we have uniquely indexed all of the terms appearing in the expansion of Ψ(t). The

remaining terms are exactly those which sum to E(t) = Ψ̃(t)−Ψ(t). Before proceeding to bound
E, let us consider the size of the terms we have just indexed. This will inform us as to the bounds
we should shoot for on the error term. For the term indexed by (0, 0, . . . , ia, la+1, la+2, . . . , ls),
we see using (8.2.6) that it is bounded in magnitude

.

a−1∏
j=1

h(Tj)Dlj (Tj)

(h(Ta)Dl(a)−i(a)(Ta)|t|ki(a)(Ta)
) s∏

j=a+1

|t|kl(j)(Tj)
 .

Now, if we are considering h(Tr+1)� |t| . h(Tr), for 1 ≤ a ≤ L, these terms can be uniformly
bounded

.

 r∏
j=1

h(Tj)Dlj (Tj)

 s∏
j=r+1

|t|kl(j)(Tj)
 =

 r∏
j=1

h(Tj)D(Tj)

 |t|∑s
j=r+1 D(Tj).

In what follows, we consider those terms that we did not specify as summing to Ψ above.
We refer to these as the remainder terms. Let us fix 1 ≤ r ≤ s and consider

h(Tr+1)� |t| . h(Tr). (8.2.7)

As above, for the term indexed by (i1, i2, . . . , is), we can estimate the size of each of the s
factors using (8.2.6) and (8.2.7). For 1 ≤ j ≤ r,∣∣∣∣ 1

yL−L(j−1)
yL−L(j)+i(j)t

ki(j)(Tj)
∣∣∣∣ . h(Tj)D(Tj). (8.2.8)
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For r < j ≤ s, ∣∣∣∣ 1

yL−L(j−1)
yL−L(j)+i(j)t

ki(j)(Tj)
∣∣∣∣ . h(Tr)D(Tj). (8.2.9)

To bound E as an error term, we require stronger control on the remainder terms. We observe
that those terms summing to E are indexed by (i1, i2, . . . , is), such that if a is the smallest
index such that ia 6= 0 (or a = 0 if no such index ij exists), then there exists a minimal a′ > a
for which ia′ < la′ . The corresponding term isa−1∏
j=1

yL−L(j)

yL−L(j−1)

( 1

yL−L(a−1)
yL−L(a)+i(a)t

ki(a)(Ta)

) s∏
j=a+1

1

yL−L(j−1)
yL−L(j)+i(j)t

ki(j)(Tj)

 .

For each of these remainder terms, one of the factors appearing in the above expression will
allow us to establish the error bound. Let us now fix some remainder term and its corresponding
index (i1, . . . , is). We split our analysis according to whether r ≤ a < s or 1 ≤ a < r.

If r ≤ a < s, then, using (8.2.6) and the fact that |t| � h(Tr+1) ≥ h(Ta′), we can strongly
bound the factor indexed by ia′∣∣∣∣ 1

yL−L(a′−1)
yL−L(a′)+i(a′)t

ki(a′)(Ta′ )
∣∣∣∣ . h(Ta′)Dl(a′)−i(a′)(Ta′ )tki(a′)(Ta′ )

� |t|kl(a′) = |t|D(Ta′ ),

since Dl(a′)−i(a′) > 0. Putting this together with (8.2.8) and (8.2.9), we can bound the magni-
tude of the remainder term indexed by (i1, . . . , is)

�

 r∏
j=1

h(Tj)Dlj (Tj)

 |t|D(Ta′ )

∣∣∣∣∣∣
s∏

j=r+1,j 6=a′

1

yL−L(j−1)
yL−L(j)+i(j)t

ki(j)(Tj)

∣∣∣∣∣∣
.

 r∏
j=1

h(Tj)Dlj (Tj)

∣∣∣∣∣∣
s∏

j=r+1

|t|D(Tj)

∣∣∣∣∣∣ .
If 1 ≤ a < r, then we can strongly bound the factor indexed by ia∣∣∣∣ 1

yL−L(a−1)
yL−L(a)+i(a)t

ki(a)(Ta)

∣∣∣∣� h(Ta)kl(a) = h(Ta)D(Ta),

since |t| . h(Tr) � h(Ta) and ki(a)(Ta) > 0. Therefore, also using (8.2.8) and (8.2.9), we can
bound the remainder term indexed by (i1, . . . , is)

�

 r∏
j=1,j 6=a

h(Tj)Dlj (Tj)

(h(Ta)D(Ta)
) s∏

j=r+1

|t|Dlj (Tj)

 .

Summing the bounds on each of the remainder terms gives the desired estimate.

For a given tier, Tr, there are two important scale parameters appearing in the previous
analysis. Provided the separation in (8.2.1) is strong enough, we can set our fine parameter εf
in Lemma 8.2.3 as small as we like. The other important parameter appearing in our analysis
is the coarse scale parameter εc, which we now define. We choose εc > 0 so that, according
with Theorem 7.2.2, at most L(Tr) roots from Tr can appear in the ball B(w, 3εch(Tr)) for any
choice of w ∈ Tr.

Before giving the proof of our main result, we require a covering lemma. This covering
lemma essentially provides a partition of the roots into clusters of size up to L, with strong
separation between distinct clusters. In place of clusters, which are finite collection of roots,
we use cells, which are suitable open balls containing these roots. The proof gives a recursive
construction of these cells. Associated with this construction are a well separated sequence of

119



parameters, εf � ε1 � ε2 � . . .� εL � εL+1 � εc, which we now define.

Definition 8.2.4. We set ε1 = ε
1
L

f and, for 1 ≤ j ≤ L, we set εj+1 = ε
1
L
j .

Remark 8.2.5. We can achieve strong separation of the parameters εj provided we start from
a suitable fine error parameter, εf . Indeed, to have that εj � εj+1 and εL � εc, the two things
we require are that

εj/εj+1 = ε
1− 1

L
j = ε

L−1

Lj

1 � 1

and

εL+1 = ε
1

LL

1 � εc.

This is possible provided we can take εf sufficiently small, which is something we can achieve
if we specify the tier regime with strong separation of the reference heights.

Definition 8.2.6. For points w1, . . . , wa ∈ C, we denote by A(w1, . . . , wa) their arithmetic
mean:

A(w1, . . . , wa) :=
1

a

a∑
i=1

wi.

We can now state our root cell covering lemma.

Lemma 8.2.7. There exists a covering, N(R), of the roots, R, of Ψ which satisfies the follow-
ing.

Each connected component of N(R), which we call a cell, B, contains only roots from
one tier. Furthermore, if a cell B contains only the roots w1, . . . , wb in the tier Tr, then
B = B(A(w1, . . . , wb), εbh(Tr)). For cells containing non-zero roots, each cell can contain at
most L roots.

For distinct cells B = B(A(w1, . . . , wb), εbh(Tr)) and B′ = B(A(w′1, . . . , w
′
b′), εb′h(Tr)) with

b ≥ b′,
d(B,B′) ≥ 1

4
εb+1h(Tr).

In particular, for any root w′ outwith the cell B = B(A(w1, . . . , wb), εbh(Tr)) and any root
w ∈ B,

|w − w′| & εb+1h(Tr).

Figure 8.1 is a sketch of 4 nearby root cells from a root cell covering. Roots are marked
with a cross. Note that the larger cells are at a larger distance from adjacent cells.

Figure 8.1: Four cells from a root cell covering.

Proof. Let us carry out the construction in each tier separately. Let T = Tr for some r and let
h = h(Tr) denote the corresponding reference height.

The construction is first outlined with reference to a particular choice of w1 ∈ T . For each
w1 ∈ T , we construct an appropriate ball N(w1) containing w1 and a number of other roots in
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T . The root cell covering N(R) in the lemma statement is then given as the union of the balls
N(w1).

For now, let us fix some w1. If for all remaining w′ ∈ T , |w1 − w′| ≥ ε2h, then we set
N(w1) = B(w1, ε1h).

Continuing the construction, it remains to consider the case where there exists w2 with
|w1 − w2| < ε2h. Fix some choice of such w2. We then divide our analysis with reference to
A (w1, w2) = w1+w2

2 . If, for all remaining w′ ∈ R, we have that |w′ − A (w1, w2) | ≥ ε3h, then
we set N(w1) = B(A (w1, w2) , ε2h). Otherwise, distinct from w1 and w2, there exists w3 such
that |w3 −A (w1, w2) | ≤ ε3h and we continue as previously, fixing some choice of w3 and then
working with reference to A (w1, w2, w3) and the scale ε4h.

The procedure continues; we consider the distance of remaining roots to the average of
the roots already picked up by our procedure. Since there are finitely many roots, we know
that the construction will terminate and we will refer to the resulting balls as terminal. For
each choice of w1, we construct a terminal ball N(w1) = B(A (w1, w2, . . . , wb) , εbh). By
definition, the terminal ball N(w1) is constructed so that, for w′ ∈ R with w′ /∈ N(w1),
|w′ −A (w1, w2, . . . , wb)| ≥ εb+1h.

For each w1 ∈ T , we can construct a ball N(w1) following the above procedure. The root
cell covering N(R) is simply given as the union of the sets N(w1). It remains to show that each
connected component of N(R) is given by a ball containing at most L(T ) roots, in particular
that it is given by N(w1) for some w1.

Let us first determine how close roots wj in a cell are to its centre. From the cellB(A(w1, . . . , wb), εbh(Tr)),
we take the root wa. We see that

|wa −A(w1, . . . , wb)| ≤ |wa −A(w1, . . . , wa))|+
b∑

j=a+1

|A(w1, . . . , wj−1)−A(w1, . . . , wj)|

= |wa −
1

a
((a− 1)A(w1, . . . , wa−1) + wa) |

+
b∑

j=a+1

1

j
|jA(w1, . . . , wj−1)− ((j − 1)A(w1, . . . , wj−1) + wj)|

=
a− 1

a
|wa −A(w1, . . . , wa−1)|+

b∑
j=a+1

1

j
|A(w1, . . . , wj−1)− wj |

≤ a− 1

a
εah(Tr) +

b∑
j=a+1

1

j
εjh(Tr)

≤ b− 1

b
εbh(Tr). (8.2.10)

We can verify that the construction of the terminal balls takes at most L(T ) steps. Indeed,
suppose that this were not the case and consider the step from L(T ) to L(T )+1. We then know
we can find L(T ) + 1 roots w1 . . . wL(T )+1 contained in B

(
A
(
w1, w2, . . . , wL(T )+1

)
, εL(T )+1h

)
.

This contradicts the regime specific structure theorem, Theorem 7.2.2, since

B
(
A
(
w1, w2, . . . , wL(T )+1

)
, εL(T )+1h

)
⊂ B

(
w1, 3εL(T )+1h

)
⊂ B (w1, εch)

and B (w1, εch) contains at most L(T ) roots.
We are now able to show that each cell of N(R) is a ball. To this end, let us take two

terminal balls B = B(A(w1, . . . , wb), εbh(Tr)) and B′ = B(A(w′1, . . . , w
′
b′), εb′h(Tr)) obtained

by the construction outlined above. We suppose that these balls are such that

B(A(w1, . . . , wb), εbh(Tr)) ∩B(A(w′1, . . . , w
′
b′), εb′h(Tr)) 6= ∅. (8.2.11)

Without loss of generality, suppose that b′ ≤ b. We find that, for any wa′ ∈ {w′1, . . . , w′b′},

|w′a −A(w1, . . . , wb)|
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≤ |w′a −A(w′1, . . . , w
′
b′)|+ |A(w′1, . . . , w

′
b′)−A(w1, . . . , wb)|

≤ b′ − 1

b′
εb′h(Tr) + εb′h(Tr) + εbh(Tr)

< εb+1h(Tr). (8.2.12)

In particular, we must have that w′a ∈ {w1, . . . , wb}, because otherwise the construction we
outlined above must continue to account for wa′ . Therefore {w′1, . . . , w′b′} ⊂ {w1, . . . , wb}. It is
then easy to verify that B′ ⊂ B. This is obvious if b = b′. To show this when b′ < b, let us take
any complex number w ∈ B′. Relating w to B′ and B′ to w′1, which we know is an element of
B′ and of B, we find that

d(w,A(w1, . . . , wb))

≤ d(w,A(w′1, . . . , w
′
b′)) + d(A(w′1, . . . , w

′
b′), w

′
1) + d(w′1, A(w1, . . . , wb))

≤ εb′h(Tr) +
b′ − 1

b′
εb′h(Tr) +

b− 1

b
εbh(Tr)

< εbh(Tr),

so that w ∈ B. Therefore, B′ ⊂ B.
In fact, the above argument showing that cells are given by terminal balls can be strength-

ened. We can show that distinct cells are strongly separated. In particular, to conclude, we
show that, for cells B = B(A(w1, . . . , wb), εbh(Tr)) and B′ = B(A(w′1, . . . , w

′
b′), εb′h(Tr)) with

b′ ≤ b,
d(B,B′) & εb+1h(Tr).

Let us suppose, for a contradiction, that there exists a complex number

w ∈ B
(
A(w1, . . . , wb),

1

3
εb+1h(Tr)

)
∩B

(
A(w′1, . . . , w

′
b′),

1

3
εb′+1h(Tr)

)
. (8.2.13)

We find that
d(w′1, A(w1, . . . , wb))

≤ d(w′1, A(w′1, . . . , w
′
b′)) + d(A(w′1, . . . , w

′
b′), w) + d(w,A(w1, . . . , wb))

≤ b′ − 1

b′
εb′h(Tr) + εb′h(Tr) + εbh(Tr)

< εb+1h(Tr).

This inequality contradicts our assumption that B = B(A(w1, . . . , wb), εbh(Tr)) was a ter-
minal ball, since it implies that the construction should continue to account for the root
w′1 /∈ {w1, . . . , wb}. Therefore (8.2.13) can not hold and, in particular,

d(B,B′) ≥ 1

4
εb+1h(Tr).

Lemma 8.2.8. The roots, T̃j, of the polynomial Ψ̃j(t) are all comparable in magnitude to h(Tj).

Proof. This is a simple consequence of Lemma 8.1.1, which can be applied with reference to Ψ
or to Ψ̃j . In either case, we see exactly the same expressions appearing as height estimates and
the lemma tells us that these are comparable to h(Tj).

We are now ready to prove Theorem 8.2.2.

Proof. In the case that s = 1, the factorisation is our initial polynomial and there is nothing to
prove. Henceforth, we suppose that s > 1.

We make use of Lemma 8.2.8 and consider the factorisations of Ψ(t) and Ψ̃(t) in terms of
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their roots:

Ψ(t) =
s∏
j=1

∏
w∈Tj

(t− w) and Ψ̃(t) =
s∏
j=1

Ψ̃j(t) =
s∏
j=1

∏
w̃∈T̃j

(t− w̃). (8.2.14)

Throughout, we appeal to the regime specific structure theorem, Theorem 7.2.2, and the root
cell covering lemma, Lemma 8.2.7. Let us consider a specific t /∈ N(R) with |t| ∼ h(Tr). By the
definition of our covering in Lemma 8.2.7, the closest t can be to a root w ∈ Tr is ε1h(Tr) and,
furthermore, we can check that there are at most L(Tr) roots w with ε1h(Tr) < |t−w| < εch(Tr).
Indeed, if w ∈ Tr ∩ B(t, εch(Tr)), then B(t, εch(Tr)) ⊂ B(w, 3εch(Tr)), which can contain at
most L(Tr) roots, by Theorem 7.2.2 and our definition of εc. The remaining roots in Tr are
roots w′ /∈ B(t, εch(Tr)) and we know there are at least D(Tr)− L(Tr) of these. We thus find,
using the factorisation (8.2.14), that, for t /∈ N(R) with |t| ∼ h(Tr),

|Ψ(t)| &
(
εD(Tr)−L(Tr)
c ε

L(Tr)
1 h(Tr)D(Tr)

) s∏
i=r+1

h(Tr)D(Ti)
r−1∏
i=1

h(Ti)D(Ti)

� εfh(Tr)D(Tr)+D(Tr+1)+...+D(Ts)
r−1∏
i=1

h(Ti)D(Ti),

provided εf has been taken small enough, since ε
L(Tr)
1 ε

D(Tr)−L(Tr)
c = ε

L(Tr)
L

f ε
D(Tr)−L(Tr)
c � εf .

We now have an explicit lower estimate on the size of Ψ(t) for t /∈ N(R). It is now possible to
make sense of Lemma 8.2.3 as an error expression. Indeed, for |t| ∼ h(Tr), we see that

|E(t)| ≤ εfh(Tr)D(Tr)+D(Tr+1)+...+D(Ts)
r−1∏
i=1

h(Ti)D(Ti), (8.2.15)

so that for |t| ∼ h(Tr) with t /∈ N(R),

|E(t)| � |Ψ(t)|.

In particular, for t /∈ N(R),

Ψ̃(t) = Ψ(t) + E(t) 6= 0

so that, for the roots of Ψ̃,
R̃ ⊂ N(R).

It remains for us to show that each cell of N(R) contains the same number of roots of Ψ and

Ψ̃. If there was no error term and all roots were isolated, this would be easy as both functions
would be equal to zero on R ⊂ N(R). In fact, the argument requires more precision. In order
to account for the error term and cells containing multiple roots, we must consider the size of
the functions Ψ and Ψ̃ at a suitable distance from the roots R. In particular, we estimate the
size of the functions close to the boundary of N(R). We know that R ⊂ N(R) and also that

R̃ ⊂ N(R), which will allow us to estimate the size of the functions using their factorisations,
(8.2.14).

For the remainder of the proof, we fix a cell B = B(u,R), containing m roots, with centre

u and radius R = εmh(Tr). We consider the size of the functions Ψ and Ψ̃ at the boundary of
B∗, where B∗ = B(u, 2R) is the double of B. For t ∈ ∂B∗, using the factorisation (8.2.14) and
the fact that d(t, B) = εmh(Tr) with B containing m roots,

|Ψ(t)| . εmmh(Tr)D(Ts)+...+D(Tr)
r−1∏
i=1

h(Ti)D(Ti). (8.2.16)

By the covering Lemma 8.2.7, we can verify that points on ∂B∗ are well separated from cells
other than B. Indeed, d(∂B∗, B) = R = εmh(Tr) and, if we take a distinct cell B′, then Lemma
8.2.7 tells us that d(B,B′) ≥ 1

4εm+1h(Tr) so that d(∂B∗, B′) & εm+1h(Tr). In particular, since
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R̃ ⊂ N(R), for t ∈ ∂B∗ and any root w̃′ ∈ T̃r with w̃′ /∈ B,

|w′ − t| & εm+1h(Tr). (8.2.17)

We also note that, by Theorem 7.2.2, for t ∈ ∂B∗, B(t, εch(Tr)) can contain at most L(Tr)
roots of Ψ̃. Let us now suppose that the given cell, B, contains only m̃ < m roots of Ψ̃. For
t ∈ ∂B∗ ⊂ N(R)c, there can be at most L(Tr)− m̃ roots w̃′ /∈ B for which w̃′ ∈ B(t, εch(Tr)).
We know that, for t ∈ ∂B∗, |t| ∼ h(Tr). Therefore, for t ∈ ∂B∗, using the factorisation (8.2.14)
and also the distance estimate (8.2.17),

∣∣∣Ψ̃(t)
∣∣∣ & (εD(Tr)−L(Tr)

c εm̃mε
L(Tr)−m̃
m+1 h(Tr)D(Tr)

)
h(Tr)D(Ts)+...+D(Tr+1)

r−1∏
i=1

h(Ti)D(Ti)

&
(
εD(Tr)−L(Tr)
c εm−1

m ε
L(Tr)−(m−1)
m+1 h(Tr)D(Tr)

)
h(Tr)D(Ts)+...+D(Tr+1)

r−1∏
i=1

h(Ti)D(Ti)

� εmmh(Tr)D(Ts)+...+D(Tr)
r−1∏
i=1

h(Ti)D(Ti), (8.2.18)

because ε
D(Tr)−L(Tr)
c ε

L(Tr)−(m−1)
m+1 � εm. This contradicts (8.2.15): considering (8.2.16) and

(8.2.18) together, we have that

|E(t)| &
∣∣∣Ψ̃(t)

∣∣∣− |Ψ(t)| � εmmh(Tr)D(Ts)+...+D(Tr)
r−1∏
i=1

h(Ti)D(Ti).

Therefore, B must contain m roots of Ψ̃.
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Chapter 9

Oscillatory integral estimates

In this section, we prove the oscillatory integral estimates given by Theorems 6.0.5 and 6.0.7.
Let us first present an example which shows why the condition kL−s ≥ s + 1 is required in
Theorem 6.0.7.

Proposition 9.0.1. For k ≥ m, define Φ(t) by

Φ(0) = 0 and Φ′(t) = yL(tk − 1)L−m+1. (9.0.1)

We set y1 = . . . ym−1 = 0, the remaining (x, y) parameters are defined implictly by Φ′(t) =

x+
∑L
j=m yjt

(j−m+1)k. For this polynomial, we have that∣∣∣∣∫ eiΦ(t)dt

∣∣∣∣ & |ym|− 1
L−m+2 ,

for (x, y) in a region R containing arbitrarily large ym. In particular, for the estimate (6.0.3)
to hold in the region R, we require that k = km ≥ L−m+ 1.

Remark 9.0.2. Proposition 9.0.1 is a direct consequence of the following (equivalent) propo-
sition, which amounts to a change in notation, and our testing the inequality

|ym|−
1

L−m+2 . |ym|−
1

km+1 ,

as |ym| → ∞. The inequality leads to the necessary condition km ≥ L−m+ 1.

Proposition. Here, we set L̃ = L−m+ 1. For k ≥ m, define Φ(t) by

Φ(0) = 0 and Φ′(t) = yL̃(tk − 1)l. (9.0.2)

The (x, y) parameters are defined implictly by Φ′(t) = x+
∑L̃
j=1 yjt

jk. For this polynomial, we
have that ∣∣∣∣∫ eiΦ(t)dt

∣∣∣∣ & |y1|−
1
l+1 ,

for (x, y) in a region R containing arbitrarily large y1.

Proof. Note that Φ′ has l roots at each of the kth roots of unity. The parameters x and y
are defined implicitly by the equation (9.0.2). For example, x = yL̃(−1)l. Henceforth, we vary
|y1| & 1 (corresponding to varying yL̃). We also see that

Φ(l+1)(1) = yL̃

∏
w∈R,w 6=1

(w − 1) = eπi(k−1)yL̃, (9.0.3)

where R is the set of roots of Φ′.
Stationary phase analysis will be used to analyse the contributions to the oscillatory integrals

from the integration about the real critical points of the phase. Note that 1 is a real critical
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point with multiplicity l (this may also be true for −1 if k is even). We are interested in taking
large y1. Heuristically, we expect to have an asymptotic expression for I(x, y) as the sum of
one or two oscillating terms, depending on whether −1 is also a critical point of the phase. In
particular, we hope to find that, in some appropriate sense,

I(x, y) ∼ c−1e
iΦ(−1) 1

|Φ(l+1)(−1)|
1
l+1

+ c1e
iΦ(1) 1

|Φ(l+1)(1)|
1
l+1

,

with c1 a non-zero real constant.
Let us now carry out this procedure explicitly. It is natural to expand Φ about the critical

points and then find suitable local coordinates adapted to the degeneracy of the critical point.
We integrate by parts to obtain

Φ(1 + t)− Φ(1) = t

∫ 1

0

Φ′(1 + st)ds

= t

∫ 1

0

(−1)l

l!

dl

dsl
(
(1− s)l

)
Φ′(1 + st)ds

=
tl+1

l!

∫ 1

0

(1− s)lΦ(l+1)(1 + st)ds

=
tl+1

(l + 1)!
Φ(l+1)(1)G(t)

= λtl+1G(t),

where G(t) = (l + 1)
∫ 1

0
(1 − s)l Φ(l+1)(1+st)

Φ(l+1)(1)
ds and λ = 1

(l+1)!Φ
(l+1)(1) = c

(l+1)!yL̃, by (9.0.3).

Note that G(0) = 1. We restrict our attention to yL̃ > 0 or yL̃ < 0, depending on l and k, to
ensure that λ > 0.

Let us set u = tG(t)
1
l+1 . We show that this defines a sensible change of variables for |t| ≤ δ1,

where δ1 is some suitable small parameter. We see that

du

dt
= G(t)

1
l+1 +

t

l + 1
G′(t)G(t)−

l−1
l . (9.0.4)

For |t| ≤ δ1, we easily see that du
dt ∼ 1, so the change of variables is well defined. Indeed,

G(0) = 1, G(t) ∼ 1, and |G′(t)| . 1, for sufficiently small |t| < δ1. Thus, for |t| < δ1, we have

that du
dt ∼ 1. Corresponding to each u ∈ [−δ1G(−δ1)

1
l+1 , δ1G(δ1)

1
l+1 ], there is a unique t = t(u).

Indeed, the whole situation regarding G is wholly analogous to the proof of Proposition 4.1.1
and we omit these details. We define the Jacobian factor

h(u) =
dt

du
=

1

G(t(u)))
1
l+1 + t

l+1G
′(t(u))G(t(u))−

l−1
l

.

We introduce a bump function φ ∈ Cc(R) with suppφ ⊂ [−δ1, δ1] and φ(t) = 1 for |t| ≤ δ1/2
to localise the oscillatory integral about the critical points. In the case that k is even, there are
two critical points, at 1 and −1, and

I(x, y) =

∫
eiΦ(t)dt

=

∫
eiΦ(t)(1− φ(1 + t)− φ(−1 + t))dt+

∫
eiΦ(t)φ(1 + t)dt+

∫
eiΦ(t)φ(−1 + t)dt

=: Ierr(x, y) + I−1(x, y) + I1(x, y). (9.0.5)

Recall from (9.0.3) that Φ(l+1)(1) = cyL̃. Set λ = c
(l+1)!yL̃ = 1

(l+1)!Φ
(l+1)(1). We get

I1(x, y) = eiΦ(1)

∫
ei(Φ(1+t)−Φ(1))φ(t)dt
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= eiΦ(1)

∫
ei

ul+1

(l+1)!
Φ(l+1)(1)φ(t(u))h(u)du

= eiΦ(1)

∫
eiλu

l+1

φ(t(u))h(u)du

= eiΦ(1)

∫
eiλu

l+1

F (u)du

= eiΦ(1)

∫
eiλu

l+1

F (0)du+ eiΦ(1)

∫
eiλu

l+1

(F (u)− F (0)) du,

where F (u) = φ(t(u))h(u). The expression is the sum of a principal term and an error term,
p1(yL̃) + e1(yL̃), where

p1(yL̃) = eiΦ(1)

∫
eiλu

l+1

F (0)du.

We control the error carefully by a dyadic decomposition and bounds obtained from the inte-
gral’s non-stationary phase. The argument works provided we take yL̃ large enough.

We take a bump function ψ0 ∈ C∞c (R) with ψ0(u) = 1 for |u| ≤ E and ψ0(u) = 0 for
|u| > 2E, for some large constant E. Additionally, we set ψ(u) = ψ0(u)− ψ0(2u) and ψj(u) =
ψ(2−ju) so that 1 =

∑
j≥0 ψj(u). Then we see that

e1(yL̃) =

∫
eiλu

l+1

(F (u)− F (0)) du

= λ−
1
l+1

∫
eiv

l+1
(
F (λ−

1
l+1 v)− F (0)

)
dv

= λ−
1
l+1

∑
j≥0

∫
eiv

l+1
(
F (λ−

1
l+1 v)− F (0)

)
ψj(v)dv

=
∑
j≥0

Ij(x, y).

For j = 0 we see that, provided yL̃ (and correspondingly λ) is taken large enough, by
continuity of F ,

|I0(x, y)| = λ−
1
l+1

∣∣∣∣∫ eiv
l+1
(
F (λ−

1
l+1 v)− F (0)

)
ψ0(v)dv

∣∣∣∣
= λ−

1
l+1

∫ ∣∣∣(F (λ−
1
l+1 v)− F (0)

)
ψ0(v)

∣∣∣ dv
� λ−

1
l+1 . (9.0.6)

Next, we see

Ij(x, y) = λ−
1
l+1

∫
eiv

l+1
(
F (λ−

1
l+1 v)− F (0)

)
ψj(v)dv

= λ−
1
l+1 2j

∫
ei2

j(l+1)ul+1
(
F (λ−

1
l+1 2ju)− F (0)

)
ψ(u)du.

Utilising the non-stationary phase, we can integrate by parts. However, note that, in order

to have λ−
1
l+1 2ju ∈ suppF ⊂ B(0, δ1) for u ∈ suppψ ⊂ A 1

4E,2E
(0), we require λ−

1
l+1 2j−2E ≤

δ1. For these small j, we must be more careful in our integration by parts, because of the

contribution of the function F (λ−
1
l+1 2j ·). In fact, let us more precisely integrate by parts

twice. We see that

|Ij(x, y)| = 2j
∣∣∣∣∫ ei2

j(l+1)ul+1
(
F (λ−

1
l+1 2ju)− F (0)

)
ψ(u)du

∣∣∣∣
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= 2j
∣∣∣∣∫ 1

(l + 1)2j(l+1)ul
d

du

(
ei2

j(l+1)ul+1
)(

F (λ−
1
l+1 2ju)− F (0)

)
ψ(u)du

∣∣∣∣
= 2j

∣∣∣∣∫ ei2
j(l+1)ul+1 d

du

((
F (λ−

1
l+1 2ju)− F (0)

) 1

(l + 1)2j(l+1)ul
ψ(u)

)
du

∣∣∣∣
= 2j

∣∣∣∣∫ 1

(l + 1)2j(l+1)ul
d

du

(
ei2

j(l+1)ul+1
) d

du

((
F (λ−

1
l+1 2ju)− F (0)

) 1

(l + 1)2j(l+1)ul
ψ(u)

)
du

∣∣∣∣
= 2j

1

((l + 1)2j(l+1))2

∣∣∣∣∫ ei2
j(l+1)ul+1 d

du

(
1

ul
d

du

((
F (λ−

1
l+1 2ju)− F (0)

) 1

ul
ψ(u)

))
du

∣∣∣∣
≤ 2j

1

((l + 1)2j(l+1))2

∫ ∣∣∣∣ ddu
(

1

ul
d

du

((
F (λ−

1
l+1 2ju)− F (0)

) 1

ul
ψ(u)

))∣∣∣∣ du
. 2j

1

22j(l+1)

∫
suppψ

∥∥∥F (λ−
1
l+1 2j ·)− F (0)

∥∥∥
L∞(suppψ)

du (9.0.7)

+2j
1

22j(l+1)

∫
suppψ

(
λ−

1
l+1 2j

∥∥∥F ′(λ− 1
l+1 2j ·)

∥∥∥
L∞(suppψ)

+ λ−
2
l+1 22j

∥∥∥F ′′(λ− 1
l+1 2j ·)

∥∥∥
L∞(suppψ)

)
du.

(9.0.8)
We need to bound the sum of these terms over j ≥ 1.

We readily obtain an error bound on the terms in (9.0.8). Here we use the bounds ‖F ′‖L∞ .
1 and ‖F ′′‖L∞ . 1, which can be established as previously for (4.1.25). Then, by ensuring yL̃
is large enough, we see that, the sum over j ≥ 1 of (9.0.8) is∑

j≥1

2j
1

22j(l+1)

(
λ−

1
l+1 2j + λ−

2
l+1 22j

)

.
∑
j≥1

23j 1

24j
λ−

1
l+1 � 1. (9.0.9)

To bound the sum over j ≥ 1 of the remaining term, (9.0.7), we split the summation. We

first choose j0 large enough so that, for j ≥ j0, 2j

22j(l+1) � 1. In particular, using the bound
‖F‖L∞(suppψ) . 1, we then bound the corresponding piece of the sum of (9.0.7) by

.
∑
j≥j0

2j
2j

22j(l+1)
� 1. (9.0.10)

Now, since j0 is fixed, provided yL̃ is chosen large enough depending on j0, ‖F (λ−
1
l+1 2j ·) −

F (0)‖L∞(suppψ) � 1 for 1 ≤ j ≤ j0, by continuity, so that summing the remaining expression
from (9.0.7), we have the bound

.
∑

1≤j≤j0

2j
1

2j(l+1)
‖F (λ−

1
l+1 2j ·)− F (0)‖L∞(suppψ) � 1. (9.0.11)

Bringing together the bounds (9.0.6), (9.0.9), (9.0.10), and (9.0.11), we have that

|e1(yL̃)| � λ−
1
l+1 .

In the case that k is even, there is another principal term, e−1, for which our above analysis
bounding e1(yL̃) can be repeated. In particular, for j ∈ {−1, 1}, we can find that

|ej(yL̃)| � λ−
1
l+1 . (9.0.12)

We must still consider the error term Ierr, (9.0.5). For t /∈ B(1, δ12 )∪B(−1, δ12 ), it is easy to
see that |Φ′(t)| & |yL̃|δ1. To analyse Ierr, which is conditionally convergent by truncation with
a smooth cutoff, we dyadically decompose the integration. We use the same partition of unity
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∑
j≥0 ψj(t) = 1 as above. We have that

Ierr(x, y) = lim
a→∞

a∑
j=0

Ierr,j(x, y),

where

Ierr,j(x, y) =

∫
eiΦ(t)(1− φ(1 + t)− φ(−1 + t)))ψj(t)dt.

We use that principle of non-stationary phase to bound each of the summands. Making the
change of variables s = 2−jt and setting yL̃Φj(s) = 2−jklΦ(2js), we see that, for j > 1,

Ierr,j(x, y) = 2j
∫
ei2

jklΦj(s)(1− φ(1 + 2js)− φ(−1 + 2js))ψ(s)ds.

For j ≥ 1, and |s| ∼ 1, we can see that
∣∣Φ′j(s)∣∣ & 1 and also ‖Φj‖C2(suppψ) . 1. Note that, for

s ∈ suppψ, since |s| ∼ E for some large E, s /∈ suppφ(1 + 2j ·) ∪ φ(−1 + 2j ·). Therefore, for
j ≥ 1, by the non-stationary phase lemma, Lemma 0.0.1,

|Ierr,j(x, y)| . 2j
1

2jkl
1

|yL̃|
. (9.0.13)

It remains to consider the term Ierr,0(x, y). We previously discussed how, for j = 0, |Φ′0(s)| & δ1
over the region of integration. Thus we can apply the non-stationary phase lemma to see that

|Ierr,0(x, y)| .δ1
1

|yL̃|
. (9.0.14)

Summing the bounds (9.0.13) and (9.0.14), we obtain that

|Ierr(x, y)| .δ1
1

|yL̃|
.

In particular, provided we take yL̃ large enough (depending on δ1),

|Ierr(x, y)| � λ−
1
l+1 . (9.0.15)

When we have taken all the error terms into account we have that

I(x, y) = Ierr(x, y) + p1(yL̃) + e1(yL̃) + p−1(yL̃) + e−1(yL̃),

with

p1(yL̃) = eiΦ(1)

∫
eiλu

l+1

F (0)du

and, accounting for the fact there is no critical point at −1 if k is odd,

p−1(yL̃) = 12Z(k)eiΦ(−1)

∫
eiλu

l+1

F (0)du.

From the bounds (9.0.12) and (9.0.15) we have that

|Ierr(x, y) + e1(yL̃) + e−1(yL̃)| � λ−
1
l+1 .

In the case that k is odd, we see that |p1(yL̃)| ∼ λ−
1
l+1 so that

|I(x, y)| ∼ λ−
1
l+1 ,

as desired. In the case that k is even, we must consider the interaction of p1(yL̃) and p−1(yL̃).
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We then see that Φ is odd from

Φ(0) = 0 and Φ′(t) = yL̃(tk − 1)L−m+1.

Thus we have that Φ(−1) = −Φ(1) and, by considering the real component of eiΦ(1), we see
that

∣∣eiΦ(1) + eiΦ(−1)
∣∣ ∼ 1 so that

|I(x, y)| & |p1(yL̃) + p−1(yL̃)| − |Ierr(x, y) + e1(yL̃) + e−1(yL̃)| ∼ λ−
1
l+1 .

In either case,

|I(x, y)| & λ−
1
l+1 . (9.0.16)

Let us now turn to the proof of the oscillatory integral bounds of Hickman and Wright.

Proof of Theorems 6.0.5 and 6.0.7. We first give the proof in the case that km ≥ L (Theorem
6.0.5) and later give the technical case splitting required to obtain the result when km ≥ L−m+1
(Theorem 6.0.7).

Without loss of generality, we can prove the result for Φ as in (6.0.2) chosen such that

max1≤j≤L |yj | = 1. To see this, suppose we have a phase Φ̃ = Φ̃x̃,ỹ of the same form as

(6.0.2), where ỹ ∈ RL is unrestricted. We wish to show |J(x̃, ỹ)| . minj |ỹj |
− 1
kj+1 , where

J(x̃, ỹ) =
∫
eiΦ̃(s)ds, with Φ̃(s) = x̃s + ỹ1

k1+1s
k1+1 + . . . + ỹL

kL+1s
kL+1. By making a change

of variables in the s coordinate, it suffices to prove |J(x, y)| . 1, where J(x, y) =
∫
eiΦ(s)ds,

with Φ(s) = xs + y1

k1+1s
k1+1 + . . . + yL

kL+1s
kL+1 such that max1≤j≤L |yj | = 1. Indeed, we set

σ = maxj |ỹj |
1

kj+1 and make the change of variables σs = t in the integral expression for J .

Writing Φ̃(s) in terms of t we see that

Φ̃(t) = x̃t+
ỹ1

k1 + 1
tk1+1 + . . .+

ỹL
kL + 1

tkL+1

= xs+
y1

k1 + 1
sk1+1 + . . .+

yL
kL + 1

skL+1,

where x = σ−1x̃ and yj = σ−(kj+1)ỹj . By definition of σ, max1≤j≤L |yj | = 1.
We now use the root structure Theorem 6.0.1 to prove the desired inequality

|J(x, y)| =
∣∣∣∣∫ eiΦ(t)dt

∣∣∣∣ . 1.

Let us consider the case where max1≤j≤L |yj |
1
kj = |ym|

1
km = 1. Here, the appropriate cluster

estimate to consider is the km-cluster estimates, namely the bound we desire is obtained with
a suitable choice of C such that |C| = km. We work to show that, for any zj , there exists a
km-cluster C such that ∏

l/∈C

|zj − zl| & |z1z2 . . . zkL−km |. (9.0.17)

Once this has been established we note that

|z1z2 . . . zkL−km | & |SkL−km | =
∣∣∣∣ymyL

∣∣∣∣ =

∣∣∣∣ 1

yL

∣∣∣∣
so that we can apply the Phong and Stein estimate, Theorem 6.0.6, to establish that

|J(x, y)| .
(

1

|yLz1z2 . . . zkL−km |

) 1
km+1

. 1.

By Theorem 6.0.1, given a root of Φ′, z, there are at most L other roots in B(z, ε|z|), where

130



ε is some suitable small constant. For a root zj /∈ B(z, ε|z|),

|zj − z| ≥ max{ε|z|, |zj | − |z|}. (9.0.18)

We now take an arbitrary root z and construct an appropriate km-cluster containing z. The
cluster we will construct will depend on what tier z is in. If there are not enough roots smaller
than z, then we will just put the smallest km roots in the cluster. As we will see, this will
necessarily include all those roots in B(z, ε|z|). If there are many roots smaller than z, we will
choose our cluster to contain all roots in B(z, ε|z|), with the remaining elements taken to be
any small roots.

Recall that D(Ti) = |Ti|. Let r be chosen such that z ∈ Tr. In the case that D(Tr) +
D(Tr+1) + . . . + D(Ts) ≤ km then we choose our cluster C = {zkL , zkL−1, . . . , zkL−km+1} ⊃
Tr ∪ Tr+1 ∪ . . . ∪ Ts so that ∏

j /∈C

|z − zj | ∼ |z1z2 . . . zkL−km |.

It remains to consider the case that D(Tr) + D(Tr+1) + . . . + D(Ts) > km. After taking
roots Cr = B(z, ε|z|) ∩ Tr, any choice of km − |Cr| roots from Tr ∪ . . . ∪ Ts suffices to complete
our cluster C. Indeed, we find, by (9.0.18), that∏

zj /∈C

|z − zj |

=

 ∏
zj∈T1∪T2∪...∪Tr−1

|z − zj |

 ∏
j /∈C,zj∈Tr∪Tr+1∪...∪Ts

|z − zj |


&ε
(
|z1z2 . . . zD(T1)+...+D(Tr−1)|

) (
|z|D(Tr)+...+D(Ts)−km

)
& |z1z2 . . . zkL−km |.

For these calculations to be valid we require that there are enough spaces in C to contain
all of those roots in B(z, ε|z|), we require |C| = km ≥ L, which is true by assumption.

Now, we consider the case where we can weaken the condition on km to km ≥ L−m+ 1. It
is here we apply Theorem 6.0.3. Recall |ym| = 1. Set δ0 = 1. Since |ym| ≥ δ0, Theorem 6.0.3
applies relative to |ym| and δ0 provided that,

δ1 ≥ |yn|
1
kn , for n > m,

with a suitable constant δ1 = δ(δ0) > 0. However, in general we only have that 1 ≥ |yn|
1
kn

for n > m. Nevertheless, we will still be able to apply Theorem 6.0.3 by a suitable inductive
procedure. Let m(0) = m, δ0 = 1, and δ1 = δ(δ0) be as above. Suppose, for induction,
that m(0) < m(1) < . . . < m(j) and δ0, δ1, . . . , δj have already been defined by the inductive

procedure and that |ym(j)|
1

km(j) > δj = δ(δj−1). There are two cases. In the first case, the
coefficients are such that

|yn|
1
kn ≤ δj+1, for n > m(j),

where δj+1 = δ(δj) is such that Theorem 6.0.3 applies relative to the coefficient |ym(j)| > δ
km(j)

j .
If we are in this case, we terminate the inductive procedure. Otherwise, in the second case,

there exists some m(j + 1) > m(j) such that |ym(j+1)|
1

km(j+1) > δj+1, and we proceed with the
induction. The process must terminate, since there are finitely many coefficients. We can thus

apply Theorem 6.0.3 relative to some |ym′ |
1

k
m′ > γ′, for some m′ ≥ m, with

|yn|
1
kn ≤ δ(γ′), for n > m′.

By Theorem 6.0.3 we know that at most L−m′ + 1 ≤ L−m+ 1 roots can be contained in
B(w, ε|w|) for roots w in the large tiers Tr. It is also a consequence of that theorem that there
are at most km′ roots in the small tiers, with such roots |w| .δm′ 1. By our assumption, we
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also know that km ≥ L −m + 1 so that km′ ≥ L −m′ + 1. The above argument thus carries
through, constructing appropriate km′ -clusters C such that∏

l/∈C

|zj − zl| & |z1z2 . . . zkL−km′ |.

Once this has been established we note that

|z1z2 . . . zkL−km′ | & |SkL−km′ | =
∣∣∣∣ym′yL

∣∣∣∣ &δ1,...,δm′−1

∣∣∣∣ 1

yL

∣∣∣∣ .
The result follows by applying the Phong-Stein estimate, Theorem 6.0.6.

If we further restrict the region we consider, it is possible to strengthen the oscillatory
integral bound (6.0.3).

Proposition 9.0.3. Set

I(x, y) =

∫
eiΦ(t)dt.

Then, it is possible to bound

|I(x, y)| . εmin |yj |
− 1
kj+1 ,

provided we take |x| � max |yj |
1

kj+1 with a sufficiently large constant depending on ε.

Proof. We rescale as we have done previously, setting s = σt where σ = maxj |yj |
1

kj+1 and
ỹj = σ−(kj+1)yj . Note that, after rescaling, |x̃| � 1 by our assumption. It suffices for us to
prove that

|J(x̃, ỹ)| =
∣∣∣∣∫ eiΦ̃(s)ds

∣∣∣∣ . ε,

provided |x̃| � 1 with a large enough constant.

By Lemma 8.1.1, we know that all roots of Φ̃′ are comparable to

η =

∣∣∣∣ x̃ỹL
∣∣∣∣ 1
kL

.

Given a root z, we can construct a singleton cluster such that∏
j /∈C

|z − zj | ∼ ηkL−1 � ηkL−km & |SkL−km | =
∣∣∣∣ 1

ỹL

∣∣∣∣ .
Applying the Phong-Stein bound then gives the required result.
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[Moc90] G. Mockenhoupt, Singuläre integrale vom Bochner-Riesz type, Ph.D. thesis, Univer-
sität Siegen, 1990.

[PS97] D.H. Phong and E.M. Stein, The Newton polyhedron and oscillatory integral operators,
Acta Math. 179 (1997), 105–152.

[Rie28] Marcel Riesz, Sur ies fonctions conjuguées, Mathematische Zeitschrift 27 (1928),
218–244.

133



[SM13] Wilhelm Schlag and Camil Muscalu, Classical and multilinear harmonic analysis,
vol. 1, Cambridge University Press, 2013.

[Ste93] Elias M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscilla-
tory integrals., Princeton Math. Series, Princeton U. Press, 1993.

[SW71] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, 1971.

[SW78] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull.
Amer. Math. Soc. 84 (1978), no. 6, 1239–1295.

[Tao] T. Tao, An epsilon of room, i: Real analysis, Graduate Studies in Mathematics, vol.
117, Amer. Math. Soc.

[Tao99] , The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math.
J. 96 (1999), no. 2, 363–375.

[Tom75] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math.
Soc. 81 (1975), 477–478.

[Whe20] R. Wheeler, A note on the Lp integrability of a class Bochner-Riesz kernels, J. Fourier
An. Appl. 26 (2020), no. 86.

[Wri20] James Wright, A theory of complex oscillatory integrals: A case study, 2020.

134


	Lay summary
	Abstract
	Acknowledgements
	Publications
	Introduction
	Preliminaries
	Notation
	I Bochner-Riesz operators
	Introduction
	A preliminary study
	Multiplier lemmas
	Multiplier reductions
	Bochner-Riesz kernels

	Fourier restriction
	A brief introduction to Fourier restriction
	An L2 restriction theorem for radial surfaces of standard type
	Restriction implies Bochner-Riesz

	A test for LpLp boundedness
	A necessary condition for KLp
	A sufficient condition for KLp
	Sharp Bochner-Riesz estimates


	II Oscillatory integrals
	Uniform oscillatory integral estimates

	III Polynomial root structure
	Introduction
	Overview
	Notation
	A model example for root structure

	Implicit root structure
	Root tier stratification
	Root structure within tiers
	A series expansion lemma

	Explicit root structure
	Root tier stratification
	Rough factorisation

	Oscillatory integral estimates


