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Abstract

A longstanding goal in computer vision research is to develop methods that are

simultaneously applicable to a broad range of prediction problems. In contrast to this,

models often perform best when they are specialized to some task or data type. This

thesis investigates the challenges of learning models that generalize well over multiple

unknown or anomalous modes and domains in data, and presents new solutions for

learning robustly in this setting.

Initial investigations focus on normalization for distributions that containmultiple sources

(e.g. images in different styles like cartoons or photos). Experiments demonstrate the

extent to which existing modules, batch normalization in particular, struggle with such

heterogeneous data, and a new solution is proposed that can better handle data from

multiple visual modes, using differing sample statistics for each.

While ideas to counter the overspecialization of models have been formulated in sub-

disciplines of transfer learning, e.g. multi-domain and multi-task learning, these usually

rely on the existence of meta information, such as task or domain labels. Relaxing this

assumption gives rise to a new transfer learning setting, called latent domain learning in

this thesis, in which training and inference are carried out over data from multiple visual

domains, without domain-level annotations. Customized solutions are required for this,

as the performance of standard models degrades: a new data augmentation technique

that interpolates between latent domains in an unsupervised way is presented, alongside



a dedicated module that sparsely accounts for hidden domains in data, without requiring

domain labels to do so.

In addition, the thesis studies the problem of classifying previously unseen or anomalous

modes in data, a fundamental problem in one-class learning, and anomaly detection

in particular. While recent ideas have been focused on developing self-supervised

solutions for the one-class setting, in this thesis new methods based on transfer learning

are formulated. Extensive experimental evidence demonstrates that a transfer-based

perspective benefits new problems that have recently been proposed in anomaly detection

literature, in particular challenging semantic detection tasks.



Lay Summary

Deep learning has enabled automated systems to make difficult decisions, for example

telling which object is shown in an image. Depending on the task, computer systems now

make such decisions with better accuracy than the average human. However, algorithmic

models of the world often only perform well on narrowly defined problems. This thesis

explores concepts and ideas, typically associated with a subcategory of machine learning

research called transfer learning, that aim to venture beyond this.

One important problem in transfer learning is to understand images that depict the same

objects in different styles, for example dogs that appear as photos or cartoons, known

as multi-domain learning in the literature. Existing solutions typically assume that the

type of style, or domain, an image is associated with, is known a priori. Evidence in

this thesis shows that when such information is not included in the data, then standard

computational techniques struggle with making the right predictions.

New ideas are proposed that improve methods in such circumstances: through new

normalizations, which standardize data and allow the training of bigger, more expressive

models; through new augmentations, which combine images in data to produce new

ones to learn from; or through new modules, pluggable into models for classification.

This thesis also investigates the detection of unusual images in data. This could be

new objects that previously were not in the dataset, uncommon poses or shapes, or new

domains — e.g. sketches of cats, where before there were only photos of them.
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Chapter 1

Introduction

Computer vision has advanced rapidly over the last decade, achieving impressive

performance in tasks like image classification (Krizhevsky et al., 2012) or instance

segmentation (He et al., 2017). Learning several tasks concurrently however often

presents models with considerable difficulty (Vandenhende et al., 2020), and best model

performances are typically achieved when learning objectives can be narrowly defined.

An important goal in computer vision is to design models that can process data from

multimodal distributions, which Vuorio et al. (2019) define as spanning multiple input

and label domains. Datasets collected from such distributions contain different relevant

subsets, or “modes”— for example they may include both grayscale and colored images,

scenes captured during day and night (Sultani et al., 2018), or in multiple weather

conditions (Pitropov et al., 2021).

Learning joint models over visually diverse subsets introduces different challenges, such

as deciding between which modes to share and how to balance them (Bilen and Vedaldi,

2017). This thesis empirically investigates limitations of existing models when dealing

with multimodal data, and presents new methods that improve learning in such settings.



The type of multimodality focused on here should be distinguished from the problem of

learning over data from multiple modalities (Ngiam et al., 2011; Baltrušaitis et al., 2018),

in which different data sources, such as audio/video, or text/images, are processed jointly.

Instead, this thesis investigates problems in which models are learned for multiple modes

that reside in one joint space (i.e. images with equivalent height and width), but can

potentially contain very different visual characteristics, for example objects appearing as

photos and sketches (Li et al., 2017).

Chapter 2 studies normalization (Huang et al., 2020) in the context of multimodal object

classification. Different normalization strategies are evaluated on data from multiple

source domains (see Section 2.4.1) and real-world benchmarks (Section 2.4.2) such as

ImageNet (Deng et al., 2009), which is considered multimodal as it contains a large

number of diverse classes that form implicit subsets/modes (Abdollahzadeh et al., 2021).

As highlighted in the background review (see Section 2.2), arguably the most prominent

method for normalization is batch normalization (BN, Ioffe, 2017). Experiments in

Section 2.4 however show that this technique is not particularlywell suited for normalizing

multimodal data. To address this limitation, a new strategy called mode normalization

is proposed, which combines normalization with mixtures of experts (Jacobs et al.,

1991; Jordan and Jacobs, 1994) to account for multimodality in intermediate feature

distributions, and improves performance significantly over BN when jointly learning

from multiple modes.

Chapter 3 investigates object classification over multimodal datasets that contain different

visual domains, for example everyday objects like chairs that appear in different styles,

e.g. cartoons and sketches (Li et al., 2017). A central research question is how to

best learn multi-domain classification models without access to domain labels, which

indicate to which visual domain an image belongs. Previous works (introduced in detail

in Section 3.1) required such labels to be present in the data (Rebuffi et al., 2017, 2018;

Bulat et al., 2019; Mancini et al., 2020b).

New methods are proposed in Section 3.3 for learning over multiple unlabeled domains,

2



or latent domain learning for short. The experiments in Section 3.4 indicate that the

proposed methods positively influence performance in particular for domains/modes

with fewer examples to learn from. Section 3.4.2 highlights that these improvements

extend to other imbalanced settings, e.g. empirical fairness problems (Wang et al., 2020),

in which protected attributes, such as gender, are overrepresented for portions of the data.

And as experimental results in Section 3.4.3 show, they also benefit learning in settings

where the label distribution is heavily skewed (Liu et al., 2019b; Cao et al., 2019).

Multimodal data may also feature in other learning tasks besides object classification,

for example in anomaly detection (Ruff et al., 2021). While this has traditionally been

understood as learning from a single class only (a review of existing methods can be

found in Section 4.1), recent work of Ahmed and Courville (2020) explored new problem

cases in which the training data is constituted by a multimodal distribution that contains

multiple objects, without labels for each class.

Chapter 4 investigates new transfer-basedmethods for suchmultimodal anomaly detection.

Section 4.4.1 proposes controlled intervention experiments that construct anomalies

from data originally released for disentanglement research (Gondal et al., 2019) to

identify the shortcomings (and benefits) of different strategies. Next, Section 4.4.2 shows

that transfer-based approaches can better differentiate novel anomalies from multimodal

collections of non-anomalous objects available for training.

To conclude the thesis, Chapter 5 summarizes the broader impact of the proposed

methods, discusses their limitations, and proposes future research directions for learning

over multimodal data.

1.1 Contributions

The main contributions in this thesis are the development of new methods for normal-

ization over multimodal data, the formulation of a new transfer learning setting called

3



latent domain learning, as well as new transfer-based strategies for anomaly detection

over multimodal data. The following individual methodological components constitute

this thesis:

• Mode normalization (MN, Section 2.3): a normalization strategy that extends

normalization to more than a single mean and variance. It is demonstrated that

MN outperforms BN and other widely used normalization techniques in several

benchmarks, including single and multi-domain datasets.

• Latent domain exchange (LDE, Section 3.3.1): a new augmentation strategy that

exchanges style (e.g. coloring/brush stroke) between images to interpolate between

domain-specific characteristics. Experiments show that this technique performs

better than existing augmentation strategies when learning over multimodal data

from latent domains.

• Sparse latent adapters (SLA, Section 3.3.3): a novel module that assigns examples

to combinations of linear corrections at every layer of deep networks. Besides

improving performance in latent domain learning, SLA is shown to enhance

robustness for small domains, thereby improving existing methods in fairness and

long-tailed recognition benchmarks.

• Anomaly detection with an inductive bias (ADIB, Section 4.3.2) and with residual

adaptation (ADRA, Section 4.3.3). These new transfer-based anomaly detection

methods are examined through the utilization of datasets originally released for

the development of disentangled representations (Gondal et al., 2019), and are

shown to outperform other existing strategies for anomaly detection on several

established benchmarks.

4



1.2 Thesis Structure

The thesis is divided into five chapters. Chapter 1 contains the introduction, followed by

Chapter 2, which proposes a new normalization over multimodal distributions. Chapter 3

focuses on latent domain learning. Chapter 4 focuses on anomaly detection and presents

new transfer-based methods for this setting. Chapter 5 contains ideas for future research

and discusses the broader impact of the methods proposed in this work.

The ideas in Chapters 2-4 are based on peer-reviewed papers. The publications associated

with the individual chapters are as follows:

• Chapter 2 is based on “Mode Normalization”, L. Deecke, I. Murray, and H. Bilen,

International Conference on Learning Representations (2019).

• Chapter 3 is based on “Visual Representation Learning over Latent Domains”,

L. Deecke, T. Hospedales, and H. Bilen, International Conference on Learning

Representations (2022).

• Chapter 4 is based on “Transfer-Based Semantic Anomaly Detection”, L. Deecke,

L. Ruff, R. A. Vandermeulen, and H. Bilen, International Conference on Machine

Learning (2021).
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Chapter 2

Mode Normalization

Normalization methods are a central building block in the deep learning toolbox. They

accelerate and stabilize training, while decreasing the dependence on manually tuned

learning rate schedules. When learning fromdistributions that contain heterogeneous data

however, Bilen and Vedaldi (2017) showed that the effectiveness of batch normalization

(Ioffe and Szegedy, 2015), arguably the most prominent normalization, is reduced.

While performance in this setting – associated with multimodal (Wang et al., 2017;

Kalayeh and Shah, 2019; Vuorio et al., 2019; Abdollahzadeh et al., 2021) and multi-

domain learning (Rebuffi et al., 2017, 2018) in existing literature – can be improved

by extending models with multiple normalization units, for many applications this is

prohibitive, in particular where efficiency is required, e.g. when confined to mobile

platforms (Howard et al., 2017; Sandler et al., 2018), in federated learning (Yang et al.,

2019; Bhagoji et al., 2019), or when processing data from sensors with limited power

supplies (Chen et al., 2017).

This chapter introduces new strategies to address such limitations. Section 2.1 provides

a high-level introduction into why normalization is useful, followed by a background



review of established normalization techniques in Section 2.2. Mode normalization,

which extends the normalization to more than a single mean and variance, forms the

central contribution of this chapter in Section 2.3. This is followed by experiments in

Section 2.4 and a discussion of limitations in Section 2.5.

2.1 Introduction

The experimental evaluations in this thesis focus exclusively on image data. When not

indicated otherwise, this means that it is assumed that examples are sampled i.i.d. from a

data-generating distribution P that can be decomposed into channels, height, and width,

i.e. the underlying space decomposes as X = C ×H ×W.

Models are denoted as 5\ (or 6q, ℎ[ , etc.) throughout this thesis, with the learnable

parameters \ residing in some parameter space, e.g. \ ∈ Θ. The thesis focuses on

developing new methods for deep learning architectures, a large and flexible hypothesis

class (Hornik et al., 1989). Optimal model parameters \★ are obtained through empirical

risk minimization (Vapnik, 1992):

\★ = arg min
\ ∈Θ

{
'# [ 5\ ] = 1

#

#∑
==1

! (H=, 5\ (G=))
}
, (2.1)

where# denotes the number of examples sampled i.i.d. fromP, ! denotes the task-specific

loss function (e.g. cross-entropy for multi-class classification, ℓ2 loss for regression),

and H= the ground-truth label associated with an example G= ∈ X.

One established strategy for optimization of '# and approximating \★ is to minimize

the risk via gradient-based techniques (Bottou, 2010). These follow negative gradient

directions in parameter space, corresponding to local reductions of the risk in eq. (2.1):

\ ← \ − W∇\
[ 1
#

#∑
==1

! (H=, 5\ (G=))
]
, (2.2)
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where the learning rate W ∈ R+ scales the update of \. While a precise understanding of

how generalization is achieved in deep learning is still lacking (Zhang et al., 2017a),

gradient-based optimization is understood to play an important role in this (Kleinberg

et al., 2018; Liu et al., 2020b). The most popular techniques are stochastic gradient

descent (SGD) and related methods, such as Adagrad (Duchi et al., 2011) or Adam

(Kingma and Ba, 2014). These sample small mini-batches of data {G=}==1,...,# from P

to estimate '# , and such mini-batch strategies are also used throughout this thesis to

optimize models.

Deep learning networks contain feed-forward layers that tend to get repeated throughout

the model, for example fully connected layers as in multi-layer perceptrons (Rosenblatt,

1961), hidden states in recurrent networks (Sherstinsky, 2020), or self-attention in

transformer architectures (Vaswani et al., 2017). This thesis focuses on the processing of

image data, and hence builds on convolutional networks (LeCun et al., 1995; Dumoulin

and Visin, 2016), a firmly established model class for learning over images.

Besides functional layers, deep networks typically also include activation functions, such

as the sigmoid or the popular rectified linear unit ReLU(G) = max(0, G) (Fukushima

and Miyake, 1982; Nair and Hinton, 2010).

Deep architectures have become the de-facto standard for learning over high-dimensional

distributions, and image data in particular. A defining property in deep learning is the

learning of representations without excessive amounts of manual finetuning, required

for example in support vector networks (Cortes and Vapnik, 1995). This is enabled via

efficient end-to-end optimization of all layers via gradient-based backpropagation of

errors (Rumelhart et al., 1986), c.f. eq. (2.2).

That being said, the large number of sequential transformations that are jointly optimized

in deep networks results in a continuous change of the input distribution at every layer of

the model, giving rise to a fundamental challenge in the optimization of deep learning

models that complicates their training. Normalization methods are aimed at overcoming

this issue—often referred to as internal covariate shift (Shimodaira, 2000).

8



The next section describes the most established forms of normalization in detail, while

also highlighting some important existing limitations.

2.2 Background

Practical optimization problems often contain small inconsistencies between estimators

associated with different samples from the same dataset, for example between training

and validation sets, or even two mini-batches. It is especially important to account for

such subtle changes since errors quickly accumulate in deep networks, complicating

model training (Hochreiter, 1991).

Normalizations are an important building block in deep neural networks that makes their

optimization more stable. They increase the smoothness of the optimization landscape

(Santurkar et al., 2018), enabling the training of very deep networks, shortening training

times by supporting larger learning rates, and reducing sensitivity to parameter initial-

izations. While normalizations continue to be explored from a theoretical perspective

(Kohler et al., 2018; Lubana et al., 2021), they have become an integral element in many

state-of-the-art machine learning techniques (He et al., 2016; Silver et al., 2017).

2.2.1 Batch Normalization

Normalizing input data (LeCun et al., 1998b) or initial weights of neural networks

(Glorot and Bengio, 2010) have been known for some time to support faster model

convergence. With the advent of deep learning, normalization has been evolved into

functional layers to adjust the internal activations of neural networks. An early example

of this is the use of local response normalization (Lyu and Simoncelli, 2008; Jarrett

et al., 2009), used in various models (Krizhevsky et al., 2012; Sermanet et al., 2014)

to perform normalization in a local neighborhood, and thereby enforcing competition

between adjacent pixels in a feature map.
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Arguably the most prominent normalization technique is called batch normalization

(BN, Ioffe and Szegedy, 2015). BN uses the statistics of individual batches, as they

appear in SGD and related first-order optimization strategies (see Section 2.1), to

regulate data statistics at intermediate layers of deep networks. In a slight abuse of

notation, the symbol G is also used to represent the features computed by layers within

the network, producing a three-dimensional tensor that resides in X = C × H ×W
where the dimensions indicate the number of feature channels, height and width. In BN,

every example in the batch {G=}==1,...,# is first projected onto its channels via so-called

average pooling using a projection q : X → C.1

Next, the projected statistics are averaged into ` = #−1 ∑
= q(G=), and standard deviations

estimated into f = #−1 ∑
= (q(G=) − `)2. These are applied to transform every input in

the following way:

BN(G=) = UG= − `
f + Y + V, (2.3)

where U, V ∈ Rdim(C) parametrize a learnable linear transformation that benefits

performance (Ioffe and Szegedy, 2015), and Y � 1 is a small parameter that is

meant to ensure numerical stability.

Ioffe and Szegedy (2015) showed that by normalizing the hidden representations (or

features) at every layer of the network, even very deep models may still be trained

robustly. One important property of BN is that each individual transformation is

light-weight, enabling their insertion at every layer of modern network architectures: for

example in the widely-used residual networks (He et al., 2016), they are placed after

each convolution. Mode normalization, introduced in Section 2.3.2 of this thesis, also

adheres to this light-weight design principle.

A peculiarity of BN is that performance benefits from storing a moving average of the

estimators computed from each batch, e.g. `C = _`+(1−_)`C−1 with some _ ∈ (0, 1]. At
test time ` and f are not computed from batches of examples, but the running estimates

are applied to normalize during this stage. This requirement makes it non-obvious

1For a projection it holds that ?@ = ? for all @ ∈ N\0.
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how to apply BN to recurrent networks, and is one central motivation for alternative

formulations such as layer normalization (Ba et al., 2016) discussed in Section 2.2.2.

A notable alternative strategy to BN is batch renormalization (Ioffe, 2017) which rescales

estimators via additional affine transformations, up to a predefined range to prevent

degenerate cases. While renormalization is somewhat effective for training sequential

and generative models respectively, it has not been able to reach the same level of

performance as BN, and was therefore not adopted as widely.

Despite its great success, BN has drawbacks due to its strong reliance on the mini-batch

statistics. While the stochastic uncertainty of the batch statistics acts as a regularizer

that can boost the robustness and generalization of the network, it has significant

disadvantages when batch sizes become small, as the estimates for the mean and variance

become less accurate. This vulnerability to small batch sizes has been reported to have a

detrimental effect on models that incorporate BN (Ioffe, 2017; Wu and He, 2018). A

strategy for group-wise normalization to overcome this limitation is reviewed in Section

2.2.4 of this background.

Sometimes BN is not an ideal choice for the task at hand. This is for example the case in

style exchange, where a purpose-built solution called instance normalization is a more

popular choice. This is discussed in Section 2.2.3.

2.2.2 Layer Normalization

To be able to contrast different normalization strategies against one another, it is helpful

to generalize the formulation of BN in eq. (2.3). In particular the projection q plays a

crucial role in differentiating the various normalizations proposed in recent literature.

As outlined in Section 2.1, images in the mini-batch {G=}==1,...,# sampled i.i.d. from P

can be decomposed into channels, height, and width: an individual example is therefore

identified via a four-dimensional index via G=2ℎF . How this tensorized information

11



TextBat ch Nor m

He
ig

ht
 &

 W
id

th

TextLayer  Nor m

He
ig

ht
 &

 W
id

th

Channel s

TextI nst ance Nor m
He

ig
ht

 &
 W

id
th

TextGr oup Nor m

He
ig

ht
 &

 W
id

th

Channel s Channel s

Ba
t c

h

Figure 2.1: A comparison between popular strategies for normalization. The arrows
indicate which dimensions are contracted to compute estimators ` and f. Batch norm
projects height and width of each image jointly for all examples in the mini-batch. Layer
norm is instance-specific, and only contracts height, width, and channels of each image,
whereas in instance norm estimators are computed from height and width alone. Group
normalization partitions the channels into different subgroups, and averages over height
and width of each group.

is reduced in projections is how the different existing normalization strategies can

be differentiated against one another. A visual overview over the most prominent

normalization strategies, and their corresponding projection, is given in Figure 2.1.

In layer normalization (LN, Ba et al., 2016) the projection becomes qLN (G=2ℎF ) = G=.
Just as in BN, after computing estimators `, f from the projected batch, the normalization

of individual examples comes next, c.f. eq. (2.3).

LN was devised with recurrent neural networks in mind, which vary with the length of

the input sequence. This makes the application of BN, which uses moving averages `C

12



and fC during inference, non-obvious. Different from BN, in LN the same normalization

is applied during training and testing stages such that no moving averages `C and fC are

required, and Ba et al. (2016) show that this normalization strategy performs very well

in tasks where recurrent networks are the preferred model class.

2.2.3 Instance Normalization

BN averages statistics over the entiremini-batch, which can be problematic in applications

like style transfer (Gatys et al., 2015, 2016) where some amount of diversity is highly

desired, and empirical results confirm that qualitative performance degrades when BN

is coupled with larger batches of content images (Ulyanov et al., 2016a).

Ulyanov et al. (2016b, 2017) observe that style transfer models should be independent of

the contrast in content images, and therefore benefit from having some form of contrast

normalization built into the network architecture. For this they proposed instance

normalization (IN), which enables contrast normalization by modifying the projection

to qIN (G=2ℎF ) = G=2 before computing estimators. Just as in layer normalization, the

same procedure to estimate statistics `, f is used during training and testing, such that

no moving averages are required.

2.2.4 Group Normalization

Performance losses occur in BN when estimating from small batch sizes. Wu and He

(2018) proposed a simple yet effective alternative called group normalization (GN),

which first divides the channels into groups and then performs normalization within each

of them. This avoids averaging over the entire mini-batch, and the authors show that it

can be coupled with small batch sizes without registering any significant performance

losses, while delivering comparable results to BN when the batch size is large.

To motivate GN, Wu and He (2018) argue that many classical methods like scale-

13



invariant feature transform (Lowe, 1999) compute group-wise features, and apply

individual normalizations to each group. Following this, GN first associates all channels

2 = 1, . . . , |C| with fixed groups � 9 , and then jointly computes estimators over each of

these groups, e.g. for the mean ` 9 = |� 9 |−1 ∑
G2 ∈� 9 G2 .

The associated projection in GN is qGN (G=6ℎF ) = G=6, and Wu and He (2018) show

that this simple strategy, which is independent of the batch size, outperforms BN in

tasks such as COCO object classification and segmentation (Lin et al., 2014b), where

larger batch sizes, which would be required in BN, are unfeasible. Note GN does not

require moving averages `C that are needed in BN. GN is extended in Section 2.3.3 of

this thesis to automatically infer filter groupings in mode group normalization.

Another alternative to existing normalization strategies like BN or GN is to directly

normalize the weights of the neural network in a strategy called weight normalization

(Desjardins et al., 2015; Arpit et al., 2016). While such methods show promising results,

they can only be paired with certain non-linearities and functional layers, so are less

flexible than e.g. BN.

Besides the normalization strategies introduced here, another line of work investigates

instance-specific conditioning of the normalization, i.e. the normalization parameters

U, V in eq. (2.3) are functions of some external information like image captions. While

not the focus of this thesis, such conditional normalizations were shown to be highly

beneficial for specialized tasks, e.g. visual question answering (Perez et al., 2018), or

semantic image synthesis (Park et al., 2019).

2.3 Methods

Bilen and Vedaldi (2017) showed that when training a deep neural network on images

that come from a diverse set of visual domains, each with significantly different statistics,

then BN is not effective at normalizing the activations with a single mean and variance.
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Figure 2.2: In mode normalization, incoming samples {G=}==1,...,# are weighted by a
gating function 6 : X → [0, 1] . After gating, samples contribute to component-wise
estimators `: and f: , under which the data is normalized, and a weighted summation of
the batch is passed to the next layer (c.f. Alg. 1). Note that during inference, estimators
are computed from running averages instead (Alg. 2).

Throughout this section the assumption that the entire mini-batch should be normalized

with the same mean and variance is relaxed. This gives rise to a novel normalization

method, called mode normalization (MN), that first assigns samples in a mini-batch to

different modes via a gating network, and then normalizes each sample with estimators

for its corresponding mode. This concept is displayed in Figure 2.2.

Section 2.3.3 shows that MN can be incorporated into other normalization techniques

such as GN (Wu and He, 2018) (introduced in Section 2.2.4) by automatically learning

which filters should be grouped together.

The proposed methods can easily be implemented as layers in standard deep learning

libraries, and their parameters are learned jointly with the other parameters of the

network in an end-to-end manner. MN and MGN are evaluated in multiple classification

tasks in Section 2.4, demonstrating that they achieve a consistent improvement over BN

and GN.
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2.3.1 Mixtures of Experts

The heterogeneous nature of complex datasets motivates the proposition of more flexible

treatments of normalization. Before carrying out the actual normalization, the data first

has to be organized into modes or domains to which it likely belongs.

To achieve this, one can reformulate the normalization in the framework of mixtures

of experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1994; Xu et al., 1994). This

encompasses a family of models that involve combining a collection of simple learners

to split up the learning problem. Samples are thereby allocated to differing subregions

of the model that are best suited to deal with a given example.

There is a large body of literature describing how to incorporate MoE with different

types of expert architectures such as SVMs (Collobert et al., 2002), Gaussian processes

(Tresp, 2001), or, more recently, deep neural networks (Shazeer et al., 2017).

An important element in MoE are the gates, small learnable functions that assign weights

to the outputs of different experts. For example Eigen et al. (2013) proposed using a

different gating network at each layer in a multi-layer network to enable an exponential

number of combinations of expert opinions. While MN and MGN also use a gating

function at every layer to assign the samples in a mini-batch to separate modes, it differs

from existing MoE approaches in two key aspects: (i.) assignments are used from the

gating functions to normalize the data within a corresponding mode, (ii.) the normalized

data is forwarded to a common module (i.e. a convolutional layer) rather than to multiple

separate experts.

2.3.2 Mode Normalization

Mode normalization (MN, Algorithm 1) introduces a gating function 6 : X → [0, 1] 

whose output satisfies
∑
: [6(G)]: = 1 for all G. Each sample in the mini-batch is then
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Algorithm 1Mode normalization, training phase.

Input: hyperparameters _,  , batch of feature vectors {G=}, small Y, learnable
channel-wise parameters U, V and Ψ : X → R .
Compute expert assignments:

6=: ←
[
f ◦Ψ(G=)

]
:

for : = 1 to  do

Determine new component-wise statistics:

#: ←
∑
= 6=:

〈G〉: ← 1
#:

∑
= 6=:G=

〈G2〉: ← 1
#:

∑
= 6=:G

2
=

Update running means:

〈G〉: ← _〈G〉: + (1 − _)〈G〉:
〈G2〉: ← _〈G2〉: + (1 − _)〈G2〉:

end for
for = = 1 to # do

Normalize samples with component-wise estimators:

`: ← 〈G〉:
f2
: ← 〈G2〉: − 〈G〉2:
H=: ← 6=:

G=−`:√
f2
:
+Y

end for
Return: {U∑

: H=: + V}==1,...,#

normalized under voting from its gate assignment:

MN(G=) , U
(  ∑
:=1
[6(G=)]: G= − `:

f:

)
+ V, (2.4)

where U and V are a learned affine transformation, just as in standard BN, see eq. (2.3).

While experiments with learning individual {(U: , V: )}:=1,..., for each mode have been

carried out as well, no additional gains in performance were observed from this.

The estimators for mean `: and variance f: are computed under weighing from the
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Algorithm 2Mode normalization, test phase.

Input: refer to Algorithm 1.

Compute expert assignments:

6=: ←
[
f ◦Ψ(G=)

]
:

for = = 1 to # do

Normalize samples with running average of component-wise estimators:

`: ← 〈G〉:
f2
: ← 〈G2〉: − 〈G〉

2
:

H=: ← 6=:
G=−`:√
f2
:
+Y

end for
Return: {U∑

: H=: + V}==1,...,#

gating network, e.g. the :’th mean is estimated from the batch as

`: = 〈G〉: = 1
#:

∑
=

[6(G=)]: · G=, (2.5)

where #: =
∑
= [6(G=)]: . In the experiments, the gating networks are parametrized

via an affine transformation Ψ : X → R which is jointly learned alongside the other

parameters of the network. This transformation is followed by a softmax activation

f : R → [0, 1] , similar to the gates in gated recurrent neural networks (Graves et al.,

2013; Gregor et al., 2015; Vinyals et al., 2015).

As in BN, during training samples are normalized with estimators computed from the

current batch. To normalize the data during inference (see Algorithm 2), component-wise

running estimates are kept track of, borrowing from online EM approaches (Cappé

and Moulines, 2009; Liang and Klein, 2009). Running estimates are updated in each

iteration with a memory parameter _ ∈ (0, 1], e.g. for the mean:

〈G〉: = _〈G〉: + (1 − _)〈G〉: . (2.6)
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BN before after

MN before after

Figure 2.3: Histograms for three channels in conv3-64-1 in VGG-13. Top row shows a
network trained with BN before and after its normalization is applied to data from the
CIFAR-10 test split. The bottom row shows how the layer’s distribution is transformed
when the network was trained with MN instead, in which case the multimodal input
appears to be normalized more flexibly.

Bengio et al. (2015) and Shazeer et al. (2017) propose the use of additional losses

that either prevent all samples to focus on a single gate, encourage sparsity in the

gate activations, or enforce variance over gate assignments. In ablations with MN for

CIFAR-10 and CIFAR-100, the introduction of such additional penalties did not improve

performance, and they are therefore not introduced alongside MN.

MN generalizes BN, which can be recovered as a special case by setting  =1, or if the

gates collapse: [6(G=)]: = const. ∀ :, =. Importantly, MN should be able to seek out a

form in which it passes all examples through a single gate, in particular when the input

distribution at a particular layer is not multimodal. In the experimental evaluations (see

Section 2.4), such gate behavior was however not observed: samples are usually assigned

to individual modes, and gates tend to receive a relatively even share of samples overall.

To demonstrate how the extra flexibility of MN helps, Figure 2.3 shows histograms for

the feature values found in the first three channels after application of the convolution

associated with layer conv3-64-1 of VGG-13 (Simonyan and Zisserman, 2015) trained

with BN (top) and MN with  = 2 (bottom). Histograms are collected for 1024 test
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Algorithm 3Mode group normalization.

Input: parameter  , channel-wise feature vector G2 with 2=1, . . . , dim(C), small Y,
learnable channel-wise parameters U, V and Ψ : R→ R .
Compute channel-wise gates:

62: ←
[
f ◦Ψ(G2)

]
:

for : = 1 to  do

Update estimators and normalize:

`: ← 〈G〉:
f2
: ← 〈G2〉: − 〈G〉2:
H: ← G−`:√

f2
:
+Y

end for
Return: U

 

∑
: H: + V

samples from CIFAR-10, both before (left) and after (right) the normalization via BN

and MN. MN is able to normalize channels that show multimodal behavior, something

that is not possible in the transformation that underlies BN.

2.3.3 Mode Group Normalization

As discussed in Section 2.2.4, GN is less sensitive to the batch size (Wu and He, 2018).

Here it is shown that similarly to BN, GN can also benefit from soft assignments into

different modes. In contrast to BN, GN computes averages over individual samples

instead of the entire mini-batch. This makes modifications necessary, resulting in mode

group normalization (MGN, Algorithm 3).

In MGN a gating network 6 : R→ [0, 1] is learned that associates channels with  

modes. After average-pooling across height and width of a feature vector, estimators are

computed by a weighted average over channel values G2 ∈ R and 2 = 1, . . . , dim(C),
for example for the mean `: = 〈G〉: = �−1

:

∑
2 [6(G2)]: · G2 , where �: =

∑
2 [6(G2)]: .
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This replaces the fixed group assignments in GN (c.f. Section 2.2.4) with a learnable

grouping. Each feature vector G is subsequently transformed as:

MGN(G) , U

 

∑
:

G − `:
f:

+ V, (2.7)

where U and V are learnable channel-wise parameters just as in BN (c.f. eq. 2.3). One of

the notable advantages of MGN (that it shares with GN) is that inputs are transformed in

the same way during training and inference, and that each sample is handled individually

(i.e. there is no estimation alongside the batch dimension, c.f. Figure 2.1), whereby

the small batch size limitation of BN is circumvented. As with MN, the computation

underlying MGN is light-weight, such that it may be inserted throughout all layers of a

deep network.

The gating in MGN can be interpreted as a clustering mechanism that groups together

different channels. A potential risk for such approaches is that clusters or modes

might collapse into one Xu et al. (2005). Although it is possible to address this with a

regularizer, it has not been an issue in the experiments of Section 2.4. This is likely a

consequence of the large dimensionality of feature spaces that these normalizations are

applied to in this thesis, as well as sufficient levels of variation in the data.

2.4 Experiments

Two experimental settings are considered to evaluate the proposed methods: multi-

domain (Section 2.4.1) and single task (Section 2.4.2). All experiments use standard

routines within PyTorch (Paszke et al., 2019).
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2.4.1 Multi-Domain

Data In the first experiment, heterogeneity is enforced in the data distribution via an

explicit design of the distribution as P =
∑
3 c3P3 with diverse P3 , and

∑
3 c3 = 1. This

is realized through a dataset whose images are a combination of four image datasets:

(i.)MNIST (LeCun, 1998) which contains grayscale scans of handwritten digits. The

dataset has a total of 60 000 training samples, as well as 10 000 samples set aside for

validation. (ii.) CIFAR-10 (Krizhevsky and Hinton, 2009) is a dataset of colored images

that show real-world objects of one of ten classes. It contains 50 000 training and 10 000

test images. (iii.) SVHN (Netzer et al., 2011) is a real-world dataset consisting of 73 257

training samples, and 26 032 samples for testing. Each image shows one of ten digits in

natural scenes. (iv.) Fashion-MNIST (Xiao et al., 2017) consists of the same number

of single-channel images as are contained in MNIST. The images contain fashion items

such as sneakers, sandals, or dresses instead of digits as object classes.

It is assumed that labels are mutually exclusive, and a single network—LeNet (LeCun

et al., 1989) with a 40-way classifier at the end— is trained to jointly learn predictions on

them. LeNet is chosen here for a set of initial exploratory trials using a relatively simple

network, and the main findings are then evaluated for more advanced architectures in

Section 2.4.2. Inserting normalizations after convolutions and before the activation gave

the best performance overall, and follows a common layout for example also found in

residual networks (He et al., 2016).

Mode Normalization All models are trained for 3.5 million data touches (15 epochs;

performance did not improve significantly when extending training by up to 5 million

touches), with learning rate reductions by 1/10 after 2.5 and 3 million data touches. The

batch size was set to # = 128 for which BN receives a sufficiently large set of candidates

for estimation and has been reported to perform well (He et al., 2016). Running estimates

were kept with _ = 0.1, the default value in PyTorch (Paszke et al., 2019).

The number of modes in MN is varied over  = {2, 4, 6}. The weights in MN were
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BN IN LN MN  

26.91 ± 1.08 28.87 ± 2.28 27.31 ± 0.71 23.16 ± 1.23 2
24.25 ± 0.71 4
25.12 ± 1.48 6

Table 2.1: Test set error rates (%) of batch norm (BN), instance norm (IN, Ulyanov et al.,
2017), layer norm (LN, Ba et al., 2016), and mode norm (MN) in the multi-domain
setting for a batch size of # = 128. Shown are average top performances over five
initializations alongside standard deviations. Additional results for # = {256, 512} are
shown in Table 2.2.

initialized using the default Kaiming initializer (He et al., 2015), which was found to

give stable results for the standard architectures and optimization settings evaluated in

this and subsequent sections. Note MN replaces every BN in the model, not just the

initial normalization. Average performances over five seeds and standard deviations are

shown in Table 2.1: MN outperforms BN, and all other normalizations.

The additional overhead of MN is small; however increasing  did not always improve

the results. The performance of higher mode numbers can be reduced as a result of

statistics being estimated from smaller and smaller partitions of the batch, a known issue

that also occurs for small batch sizes in traditional BN.

Experiments with larger batch sizes, shown in Table 2.2, support this argument. While the

same network and hyperparameters are used as in the previous multi-domain experiment,

the batch size is varied over # = {256, 512} here.

For larger batch sizes, increasing  to values larger than two can increase performance,

while for a smaller batch size of # = 128 (c.f. Table 2.1), errors incurred by finite

estimation prevent this benefit from appearing. In all remaining trials, which involve

single datasets and deeper networks,  = 2 is therefore fixed.

Mode Group Normalization GN is designed specifically for applications in which

large batch sizes become prohibitive. In experiments this regime was simulated by

reducing batch sizes to # = {4, 8, 16}, and training each model for 50 000 gradient
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# BN IN LN MN  

256 26.34 ± 1.82 31.15 ± 3.46 26.95 ± 2.51 25.29 ± 1.31 2
25.04 ± 1.88 4
24.88 ± 1.24 6

512 26.51 ± 1.15 29.00 ± 1.85 28.98 ± 1.32 26.18 ± 1.86 2
24.29 ± 1.82 4
25.33 ± 1.33 6

Table 2.2: Test set error rates (%) of multiple normalization methods in the multi-
domain setting for large batch sizes. The table contains average performances over five
initializations, alongside their standard deviation.

# BN MN GN MGN
4 33.40 ± 0.75 32.80 ± 1.59 32.15 ± 1.10 31.30 ± 1.65
8 31.98 ± 1.53 29.05 ± 1.51 28.60 ± 1.45 26.83 ± 1.34
16 30.38 ± 0.60 28.70 ± 0.68 27.63 ± 0.45 26.00 ± 1.68

Table 2.3: Test set error rates (%) for BN,MN, mode group norm (MGN) and group norm
(GN) for small batch sizes. Shown are average top performances over five initializations
alongside standard deviations.

updates. The same configuration as before is used, except for a smaller initial learning

rate W = 0.02, which was reduced by 1/10 after 35 000 and 42 500 updates. Note that in

MGN networks all normalizations are replaced in the architecture.

In GN, two groups were allocated per layer. Accordingly  = 2 was fixed in MGN to

ensure channel statistics are estimated from similar group sizes. As additional baselines,

results for BN andMNwere also included. Average performances over five initializations

and their standard deviations are shown in Table 2.3. As previously reported BN failed

to maintain its performance when the batch size is small (Wu and He, 2018).

Though MN performed slightly better than BN, its performance also degraded in this

regime. GN is more robust to small batch sizes, and MGN further improved over GN.

This result highlights two important aspects: that MoE-based gating may be used to

formulate new normalizations beyond BN/MN, and that such gates can benefit learning

in the context of small batch sizes.
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Network In Network

Lin et al. BN MN

CIFAR-10 8.81 8.82 8.42
CIFAR-100 – 32.30 31.66

VGG13

BN MN

8.28 7.79
31.15 30.06

Table 2.4: Test set error rates (%) with BN and MN for NIN and VGG13.

2.4.2 Single Task

Data Here MN is evaluated in standard image classification tasks, showing that it can

be used to improve performance in different convolutional architectures. For this, MN

is inserted into multiple architectures, and evaluated on CIFAR-10 and CIFAR-100,

as well as on the large-scale, multimodal ILSVRC12 challenge (Deng et al., 2009).

Unlike CIFAR-10, CIFAR-100 has 100 classes, but contains the same number of training

images (600 images per class). ILSVRC12 contains around 1.2 million images from

1000 object categories.

Network In Network Since the original Network In Network (NIN, Lin et al., 2014a)

does not contain any normalization layers, the network architecture is modified to add

them, coupling each convolutional layer with a normalization layer (either BN or MN).

On CIFAR-10 and CIFAR-100 all models are trained for 100 epochs with SGD and

momentum, using a batch size of # = 128. Initial learning rates were set to W = 0.1,

and reduced by 1/10 at epochs 65 and 80. Running averages were stored with _ = 0.1.

During training images were flipped horizontally, and each image is cropped after

padding it with four pixels on each side.

Dropout (Srivastava et al., 2014) is known to occasionally cause issues in combination

with BN (Li et al., 2019b), and reducing it to 0.25 (as opposed to 0.5 in the original

publication) improved performance.

Error rates on the test set for NIN on CIFAR-10 and CIFAR-100 are reported in Table
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ResNet20
He et al. BN MN

CIFAR-10 8.75 8.44 7.99
CIFAR-100 – 32.24 31.52

ResNet56
He et al. BN MN

6.97 6.87 6.47
– 29.70 28.69

Table 2.5: Test error (%) for ResNet20, ResNet56 normalized with BN and MN.

2.4 (left). NIN with BN obtains an error rate similar to that reported for the original

network in Lin et al. (2014a), while MN ( = 2) achieves an additional boost of 0.4%

and 0.6% over BN on CIFAR-10 and CIFAR-100, respectively.

VGG Networks Another popular class of deep convolutional neural networks are

VGG networks (Simonyan and Zisserman, 2015). For the experiments, a VGG-13 with

BN and MN is trained on CIFAR-10 and CIFAR-100. Models on both datasets are

optimized using SGD with momentum for 100 epochs, setting the initial learning rate to

W = 0.1, and reducing it at epochs 65, 80, and 90 by a factor of 1/10. The batch size was

# = 128. As before, the number of modes in MN is set to  = 2, and estimators are

kept with _ = 0.1.

When incorporated into the network, MN improves the performance of VGG-13 by 0.4%

on CIFAR-10, and over 1% on CIFAR-100 (see Table 2.4, right).

Residual Networks Residual Networks (He et al., 2016) include layer-wise batch

normalization by default. For the trials shown here a ResNet20 is trained on CIFAR-10

and CIFAR-100 in its original architecture (i.e. with BN), as well as with MN ( = 2)

(see Table 2.5, left). For both datasets a standard training procedure is followed, in

which models are optimized for 160 epochs using SGD with a momentum parameter of

0.9, and weight decay of 10−4. Running estimates are kept with _ = 0.1, and the batch

size is set to # = 128.

The implementation of ResNet20 shown here (BN in Table 2.5) performs slightly better

than that reported in the original publication (8.44% versus 8.75%). Replacing BN
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Top-: Error BN MN
1 30.25 30.07
5 10.90 10.65

Table 2.6: Top-1 and top-5 error rates (%) of ResNet18 on ImageNet ILSVRC12, with
BN and MN.

with MN in all layers of the residual network achieves a notable 0.45% and 0.72%

performance gain over BN in CIFAR-10 and CIFAR-100, respectively.

Using the same setup as for ResNet20, additional trials used a deeper ResNet56. As

shown in Table 2.5 (right), for these replacing all normalization layers with MN resulted

in an improvement over BN of roughly 0.5% on CIFAR-10, and 1% on CIFAR-100.

MN is also evaluated in the large-scale image recognition task of ILSVRC12. Concretely,

for the model with MN ( = 2) all BNs in a ResNet18 are replaced. Training is carried

out for 90 epochs following He et al. (2016). The initial learning rate is set to W = 0.1,

reducing it at epochs 30 and 60 by a factor of 1/10. SGD was used as the optimizer (with

momentum parameter set to 0.9, weight decay of 10−4). To accelerate training models

were distributed over four GPUs, with a global batch size of # = 256.

As can be seen from Table 2.6, MN results in a small but consistent improvement over

BN in terms of top-1 and top-5 errors.

Qualitative Analysis Figure 2.4 shows which samples are assigned to which gate

component in MN ( = 2) for images from the CIFAR-10 test split in layers conv3-64-1

and conv-3-256-1 of VGG-13. In particular, the figure displays the images G that have

been assigned to either [6(G)]1 (left) or [6(G)]2 (right) with the highest scores.

In the normalization belonging to conv3-64-1, MN appears sensitive to a red-blue

color mode, and images are assigned accordingly. In deeper layers like conv-3-256-1

which are often associated with more semantic representations (Yosinski et al., 2014;

Zeiler and Fergus, 2014; Mahendran and Vedaldi, 2016), separations seem to occur on
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conv3-64-1

conv3-256-1

Figure 2.4: Examples from the CIFAR-10 test split for a VGG-13 trained with MN
( = 2) inserted, which have been assigned the highest scores towards either gate. In an
early layer (top), color (blue vs. red) seems indicative of which gate examples get sent to,
while in a deeper layer (bottom) there is a notable difference in object sizes.

the semantic level, and MN appears to split between smaller objects and larger ones.

2.5 Conclusion and Limitations

Stabilizing the training process of deep neural networks is a challenging problem. MN

allows networks to dynamically normalize its features for multiple, visually diverse

modes. The experiments in Section 2.4 demonstrated that accounting for modality in

this way yields a consistent improvement in classification performance across various

deep learning benchmarks and architectures.

An important ingredient in MN is its efficiency, allowing the module to be inserted

at every layer of the network. An alternative idea is to employ some local module

that accounts for multimodality in a pre-allocated layer (or a subset of them). Such an

approach to normalization was introduced in Kalayeh and Shah (2019), who employ a

Gaussian mixture model (GMM) to separate out different modes in data.

Experiments around this theme clearly indicated that using multiple GMMs to compute

mode assignments in a deep network is not feasible, as each module requires a dedicated
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outer optimization loop. Moreover, networks are known to process low-level and high-

level features at different depths (Yosinski et al., 2014; Zeiler and Fergus, 2014), and

hence modes or domains may be more separable at some layers than others. Pinpointing

in advance which layers require more sharing or less is difficult, as this can change

throughout model training, and depends on the exact characteristics of the data-generating

distribution. By inserting an efficient module, like MN, at every layer, decisions of

where to place normalizations are instead made in an automated fashion.

From this viewpoint, multimodal distributions seem to benefit from modules that can

be inserted at multiple stages of the network, where they may exhibit local sharing or

separating of features associated with different domains. While initially developed with

MN in mind, these conceptual guidelines of end-to-end optimization, efficiency, and

non-locality all resurface in the latent domain methods proposed in Chapter 3.

Another aspect to highlight in MN is its transferability to traditional classification

problems, resulting for example in performance improvements for ImageNet classification

(Deng et al., 2009). This aspect also reappears in Chapter 3, where new multi-domain

strategies are introduced that require no domain annotations, and can therefore be

deployed in classification problems related to fairness (Section 3.4.2) and long-tailed

recognition (Section 3.4.3).

A notable work onto which MN has had an impact is that of Liu et al. (2020a) which

proposes a simultaneous defense strategy against different types of adversarial attacks,

e.g. ℓ∞, ℓ1, ℓ2 attacks (Tramer and Boneh, 2019; Maini et al., 2020).2

A key insight in their work is that each attack type differs significantly from others in

some part of the model’s feature representation, and Liu et al. (2020a) account for this

via a gated normalization routine, targeting an individual BN for each adversarial attack

type, plus one for clean examples. The authors show that this approach significantly

boosts the success rate at defending against attacks.

2Adversarial attacks on a sample pair (G, H) are defined by 5\ (Gn ) ≠ H s.t. ‖G − Gn ‖? ≤ n . The type of
adversarial attack can be categorized by the ℓ?-norm that is applied to measure the distance between G and GY .
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One restriction in this work is the dependency on the type of adversarial attack being

known, required to control their gated BN during training. At test time on the other hand

their proposed normalization coincides with MN, i.e. it uses a soft gating mechanism to

combine together individual normalizations.

The central concept ofMN, to enrich the normalization unit with an activationmechanism,

also entered Li et al. (2020). They compute a single estimate of `, f from each batch,

and combine this with a mixture of channel-wise transformations, introducing multiple

{(U: , V: )}:=1,..., instead of the singular U, V in eq. (2.3), and using learnable mixture

weights _: that combine the different channel-wise transformations into a generalized,

more flexible affine transformation.

Ablations in their work showed that a flexible normalization contributes favorably to

classification performance and can replace and sometimes surpass squeeze-and-excitation

units (Hu et al., 2018). While these share some similarity with MN and also introduce a

channel-wise mapping from an average-pooled representation of the feature activations

in residual networks, they do not combine the outputs of multiple expert learners as in

MoE models.

In this chapter flexible normalizations, such as MN, were shown to help performance

when dealing with data from heterogeneous sources. The next chapter extends and

formalizes this problem in a new transfer learning setting called latent domain learning,

in which models are learned over multiple domains without annotation.

30



Chapter 3

Latent Domain Learning

A fundamental shortcoming of deep neural networks is their specialization to a single

task and domain. While recent techniques in multi-domain learning enable the learning

of more domain-agnostic features, their success typically relies on the presence of

domain labels, requiring careful curation of datasets. This chapter formalizes a highly

practical but less explored scenario: learning from data from different domains, without

access to domain annotations.

The chapter begins with a detailed background review in Section 3.1 that summarizes

related transfer learning settings over multiple tasks and domains, and highlights popular

strategies for each.

Section 3.2 introduces latent domain learning, a multimodal learning problem that

contains data from different unannotated visual domains. Two novel methods for this

setting are introduced in Section 3.3, followed by experiments in Section 3.4, and a

conclusion in Section 3.5.



3.1 Background

While the performance of deep learning has surpassed that of humans in a range of tasks,

machine learning models tend to perform best when learning objectives are narrowly

defined (Vandenhende et al., 2020). Practical realities however often require the learning

of joint models over semantically different domains, for example when attempting to

understand entire scenes (Zhu et al., 2016; Xiao et al., 2018), or in systems that require

robust representations that can be used to jointly solve multiple perception tasks, e.g.

localization and classification (Bilen and Vedaldi, 2016).

This section introduces the most prominent categories of machine learning that involve

multiple tasks or domains: a discussion of the broader transfer learning scenario (Section

3.1.1) is followed by introductions of the inductive transfer setting (Section 3.1.2), domain

adaptation (Section 3.1.3), multi-task learning (Section 3.1.4), continual learning (Section

3.1.5), multi-domain learning (Section 3.1.6), and domain generalization (Section 3.1.7).

3.1.1 Transfer Learning

Recent years have shown that machine learning models can match or even outperform

human performance in tasks like image object classification (Russakovsky et al., 2015;

Dosovitskiy et al., 2021; Pham et al., 2021). Transfer learning is broadly concerned with

how to best reuse the knowledge acquired in such powerful models in other tasks.

A well-known strategy that illustrates the transfer-based learning protocol is that of

pretraining and finetuning: a model is trained on some task that is usually large, varied,

and highly informative, for example ImageNet (Deng et al., 2009). This is called the

pretraining stage. Then, because labeled data may be scarce or non-existent in some other

task, new models are initialized with the pretrained model parameters, and subsequent

learning of the target task (the finetuning stage) adapts the model parameters \ ∈ Θ (or a

subset of them).
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Finetuning is an established concept (Girshick et al., 2014) that is often examined in

empirical studies that assess its suitability in different applications (Kornblith et al.,

2019; Raghu et al., 2019). A recent trend is to propose more flexible treatments of

finetuning, e.g. dynamically routing samples to pretrained or finetuned model parameters

(Guo et al., 2019b), aligning pretraining and finetuning by comparing label distributions

(Tran et al., 2019), or estimating transferability of models in advance (Nguyen et al.,

2020). Another recent study goes one step further and investigates ways to combine

parameters from a collection of models, in a bid to leverage the increased availability of

such large, pretrained architectures (Shu et al., 2021).

It is important to note that knowledge transfer between tasks can have detrimental effects

(Zhang et al., 2020), and performance can be negatively impacted due to so-called

negative transfer, a term rooted in behavioral psychology (Postman and Stark, 1969).

In particular this is known to occur when source and target tasks are too dissimilar,

e.g. predictions have been shown to degrade when transferring models between very

dissimilar subpopulations (Rosenstein et al., 2005).

While Zamir et al. (2018) have conducted a rigorous survey that investigates the

relationship between different tasks, what constitutes a positive or negative relationship,

and how this depends on the underlying model class or optimization choices, remains a

largely unanswered question. This is an important aspect in latent domain learning as

well (introduced in Section 3.2), where one aims to learn models that can both leverage

synergies between domains, or separate them from one another.

Several additional challenges, such as catastrophic forgetting (Kirkpatrick et al., 2017),

complicate transfer between tasks. Solutions to this problem have been developed in the

context of continual learning (discussed in Section 3.1.5), and catastrophic forgetting

also is an important element in Chapter 4, where new transfer-based anomaly detection

methods are introduced that counter this.

Transfer learning is a fundamental machine learning problem, with early work going

back to (Caruana, 1997; Thrun and Pratt, 1998). Besides the commonly used pretrain-
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finetune sequence, there exist many additional transfer learning settings, each of which

is associated with subtle differences and individual methods. Next, Sections 3.1.2 to

3.1.7 introduce the most important subcategories of transfer learning.

3.1.2 Inductive and Transductive Transfer Learning

Transfer always occurs between the so-called source and the target. Both of these are

associated with domains D( and D) , respectively. According to Pan and Yang (2009)
these are defined by some marginal distribution, e.g. P(-(), over a random variable

-( that resides in some space X( . Source and target are additionally associated with

tasks T( and T) , such as regression or depth estimation. One important condition for

transfer-based learning is some relatedness between source and target, a relationship that

is however usually implicitly defined (Pan and Yang, 2009), or approximated in some

fashion (Tran et al., 2019).

Subcategories of transfer learning can be categorized by equivalence relations between

the distributions associated with source and target (Pan and Yang, 2009). In inductive

transfer learning the marginal distributions are equivalent and P(-() = P(-) ), but the
tasks between source and target differ, i.e. T( ≠ T) . For example, the source task may

consist of classification, while the target task is to carry out semantic segmentation. In

transductive transfer learning the source and target asks are the same (say, classification),

but the marginal distributions differ. Moreover, while in inductive transfer learning there

is labeled data from the target domain, in the transductive setting this is typically not the

case (Arnold et al., 2007).

3.1.3 Domain Adaptation

In recent years the narrow scope of datasets has been widely questioned (Torralba and

Efros, 2011; Tommasi et al., 2017; Recht et al., 2019). Addressing some of these

limitations has become an active area of research: one theme that formulates broader
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learning criteria is domain adaptation (DA) (Ganin et al., 2016; Tzeng et al., 2017; Xu

et al., 2018; Peng et al., 2019a; Sun et al., 2019b), which aims to develop methods that

can efficiently carry over representations learned in one dataset to another.

DA has a long history in machine learning. Notable works in the classical literature

studied how to best adapt models trained on news articles to handling biomedical

documents instead (Daumé III, 2007), or how to adapt spam models to new users

(Ben-David et al., 2007).

In DA, the source and target tasks are equivalent (T( = T) ), but the underlying

domains differ (D( ≠ D) ). For instance while the posteriors may be equivalent

(?( (H |G) = ?) (H |G)), differences could occur due to a change in distribution of the

covariates, i.e. ?( (G) ≠ ?) (G), a phenomenon called covariate shift (Shimodaira, 2000;

Bickel et al., 2009).

Beyond covariate shift DA may include additional types of shifts, such as differences

between training and testing distributions due to label shift (Li et al., 2019c; Tachet des

Combes et al., 2020), or because of some underlying change in measurement between

datasets, e.g. images taken with different cameras and specifications (Storkey, 2009).

For example in the SVHN-to-MNIST benchmark popular in the literature (French et al.,

2018; Hoffman et al., 2018) models are first trained on SVHN (Netzer et al., 2011) as

the source distribution, and then adapted to MNIST digits (LeCun, 1998). While these

two datasets show the same ground-truth objects, their images look very different due

to having been were measured/captured differently. Note while the categories in both

datasets are equivalent (digits between zero and nine), the number of examples available

per class changes due to label shifts (Li et al., 2019a). Liang et al. (2020) address more

extreme cases of this, e.g. some classes only appearing in the source domain, through

adversarial alignment. A related line of work, where new classes appear in the target

problem, is open set recognition (Bendale and Boult, 2016; Geng et al., 2020; Fang

et al., 2021).
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The problem of DA can be differentiated additionally by the availability of labeled data

in the target domain. Unsupervised DA assumes no labels are available for the target

domain, and has been tackled by encouraging domain-invariance at the gradient level

(Ganin and Lempitsky, 2015), by generating features that can minimize the discrepancy

between classifiers (Saito et al., 2018), or by introducing semantic losses over explicit

(Xie et al., 2018) or implicit (Jiang et al., 2020) pseudo-labels. Semi-supervised DA

(Donahue et al., 2013; Yao et al., 2015) introduces a subset of labeled examples, and has

recently been approached through conditional entropy minimization (Saito et al., 2019).

In supervised DA all examples from the target domain are labeled (Motiian et al., 2017).

Besides single-source DA, for example the SVHN-to-MNIST benchmark mentioned

above, another recent trend is to focus on the problem of multi-source DA (Mansour

et al., 2008; Sun et al., 2015; Zhao et al., 2018; Carlucci et al., 2020). In this setting

multiple (labeled) domains with index 3 = 1, . . . , � constitute the input distribution as

P( =
∑
3 c3P(,3 , where samples from each domain appear with an associated relative

share c3 ∈ (0, 1), and
∑
3 c3 = 1.

3.1.4 Multi-Task Learning

Multi-task learning is concerned with the development of machine learning methods

that simultaneously generalize well over several tasks (Caruana, 1997; Zhang and Yang,

2018). In multi-task learning, tasks T: with task index : = 1, . . . ,  are optimized

jointly, resulting in a minimization over a risk that contains multiple losses associated

with each:

'# [ 5\1 , . . . , 5\ ] =
1
#

∑
:

∑
=

_:!: ( 5\: (G=), H=: ), (3.1)

where the task weights _: ∈ R+ control the relative importance of each task, and

task-specific parameters \: ∈ Θ: are introduced (although many approaches share

between subsets of the \: , see next paragraph). Note a different loss function !: is

associated with each task T: , an important differentiation from multi-domain learning

discussed in Section 3.1.6.
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Figure 3.1: Hard and soft sharing in multi-task learning. In hard sharing (left), a subset
of layers is shared across all tasks, followed by task-specific heads. Soft-sharing (right)
reserves individual layers to each task, with some cross-talk mechanism that exchanges
information between them.

A common theme in multi-task learning is to share some parameters, and dedicating

others to a specific task. This can be achieved via hard sharing, in which the majority

of layers are shared, but individual paths appear during the final stages of the network

(Bilen and Vedaldi, 2016; Ranjan et al., 2017; Kokkinos, 2017; Dvornik et al., 2017).

A second option is soft sharing, where constraints enforce exchange between individual

per-task layers (Misra et al., 2016; Ruder et al., 2019; Liu et al., 2019a). Recently

adaptive sharing schemes have been proposed that combine both ideas (Sun et al., 2019a).

The difference between hard vs. soft sharing is illustrated in Figure 3.1.

One line of work in multi-task learning is concerned with designing new optimization

routines specific to the multi-task setting, in particular how to scale between tasks via _:
in eq. (3.1). Such approaches are typically model-free, and include the idea of balancing

losses in an automated fashion (Kendall et al., 2018), normalizing or adapting gradients

(Chen et al., 2017), or prioritizing tasks dynamically by favoring hard tasks over easy

ones (Guo et al., 2018).

While certain tasks are known to synergize and multi-task learning tends to work well

for these, for example detection and classification (Girshick, 2015; Ren et al., 2015),
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sometimes tasks are not particularly beneficial for each other (Zamir et al., 2018; Standley

et al., 2020), which can result in multi-task models being outperformed by task-specific

ones (He et al., 2017). To overcome this limitation, Kang et al. (2011) investigated

automated learning rules for automatically selecting tasks that benefit one another.

Multi-task learning is focused on the goal of learning tasks jointly. Other learning

problems require that tasks are learned in sequence, in particular online settings like

continual learning (Hoi et al., 2018), which is introduced in the next section.

3.1.5 Continual Learning

When adapting models to new target domains or tasks without any form of regularization,

then this does not necessarily preserve performance on the source task, a phenomenon

called “catastrophic forgetting” (Kirkpatrick et al., 2017). This problem surfaces in

continual or lifelong learning (Parisi et al., 2019), where one learns over sequences of

tasks and observations associated with each.

A practical example can be found in robotics (Lesort et al., 2020), where performance

may degrade on old tasks (e.g. forgetting how to pick up an object) due to having learned

a new one (say, pulling a lever). Moreover, catastrophic forgetting also plays a central

role in Chapter 4, where it is shown that the detection of semantic anomalies can benefit

from limiting forgetting.

Lopez-Paz and Ranzato (2017) approach continual learning by restricting gradient steps

that oppose gradients for past examples stored in a small episodic memory. This ensures

that inner products between current and past gradients stay aligned, but requires solving

a quadratic problem that scales in the number of tasks at every iteration of the optimizer.

Chaudhry et al. (2018) show that this can be simplified by instead sampling a single batch

from a memory bank to align gradient updates, which still results in strong performance

in many continual tasks, while being significantly more efficient.
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A second important contribution in Lopez-Paz and Ranzato (2017) was the introduction

of specific metrics for the continual setting, such as backward and forward transfer.

Custom metrics are also relevant in latent domain learning, and are introduced in Section

3.2.2 of this thesis.

Other notable works introduce modular networks for continual learning (Veniat et al.,

2021), or use meta-learning (Hospedales et al., 2021) to encourage gradients that will

positively align in the future, thereby making negative interference less likely (Riemer

et al., 2019). Yet another popular strategy is to reformulate reinforcement learning

techniques, such as experience replay (Rolnick et al., 2019; van de Ven et al., 2020).

3.1.6 Multi-Domain Learning

Multi-domain techniques focus on learning a single set of domain-agnostic representa-

tions that generalize across multiple domains. While multi-domain learning is closely

related to the multi-task scenario, it can be disambiguated in two main regards: in

multi-task learning, the nature of underlying tasks T: and : = 1, . . . ,  can inherently

differ, such that learning an individual model 5\: is associated with an individual loss

function !: (for example, one task may be object classification, the other semantic

segmentation, or depth estimation). In multi-domain learning on the other hand, all

losses are associated with an equivalent problem type (e.g. classification).

This implies a second difference in the availability of the labels: in multi-task learning

one usually has multiple labels per example, e.g. H1 for classification, H2 for semantic

segmentation, etc., up to H . In multi-domain learning, each image has a distinct label H,

but images can vary substantially depending on the visual characteristics of each domain

they are associated with. As further differentiation, multi-task learning is contrasted

against multi-domain learning in Figure 3.2.

The central assumption in multi-domain learning is that data (G1, . . . , G# ) ∈ X is

sampled i.i.d. from some mixture of distributions that constitute the data-generating

39



Model

Dept h Segment at i on Sur f ace 
Nor mal Model

Cl assi f i cat i on

Pai nt i ng Cl i par t Pr oduct Phot o

Mul t i - Task Mul t i - Domai n

Figure 3.2: A visual comparison between multi-task learning, which includes multiple
tasks per image, and multi-domain learning, which tends to focus on one task, but over
image data with different visual characteristics.

distribution as P =
∑
3 c3P3 with domain indices 3 = 1, . . . , �, where each domain is

associated with a relative share c3 =#3/(#1 + · · · + #�), and #3 denotes the number

of examples belonging to the 3’th domain.

Two multi-domain settings exist. The first setting includes mutually exclusive classes

and a disjoint label space Y1 ∪ · · · ∪ Y� that encompasses all domains. A popular

benchmark that falls into this category is Visual Decathlon (Rebuffi et al., 2017), which

combines different datasets into one. This setting also appears in the evaluation of MN

in Section 2.4.1.

Opposed to this, in some settings label spaces are shared and Y3 = Y3′ for all domains,

for example cars driving in different conditions (Alberti et al., 2020), or elephants that

are depicted as photos or paintings (Li et al., 2017). Section 3.4 studies this setting in

latent domain experiments.

The problem of multi-domain learning is closely connected to the hypothesis of universal

representations (Bilen and Vedaldi, 2017), which posits that models that have learned a

sufficiently complex semantic representation, obtained e.g. on ImageNet (Deng et al.,
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2009), should be able to generalize to new distributions easily via simple but adequate

low-capacity transformations.

In their paper, Bilen and Vedaldi (2017) aim to learn classifiers over very different

image data, such as the real-world imagery of Caltech-256 (Griffin et al., 2007), the

Daimler mono pedestrian classification benchmark (Munder and Gavrila, 2006), or

Omniglot which contains hand-written symbols from different alphabets (Lake et al.,

2015). They investigate different sharing schemes for this, and recommend tackling

such joint learning problem via adequate normalization, an idea that also influenced

MN proposed in Chapter 2 of this thesis.

How to share parameters as efficiently as possible is a crucial question in multi-domain

learning (and multi-task learning, for that matter). For this, Rebuffi et al. (2017)

proposed new dedicated per-domain model parameters that serve as corrections, inserted

sequentially at every layer of the network. This builds on-top of residual networks

(He et al., 2016), and the concept was extended from sequential to parallel corrections

later on (Rebuffi et al., 2018). While slightly more expensive than e.g. separate batch

normalization layers for each domain, the authors show that this is highly effective at

learning multiple visual domains jointly, and that such layer-wise adaptations constitute

an improved and efficient finetuning strategies, in particular for small datasets.

Subsequent works tended to follow the same principle of sharing some parameters,

while reserving others to specific domains. For example Berriel et al. (2019) propose a

budget-aware adaptation strategy that increases or reduces the amount of domain-specific

parameters depending on the computational resources available.

Another notable approach is that of Guo et al. (2019a), who equip models with depth-

wise separable convolutions (Chollet, 2017; Howard et al., 2017; Sandler et al., 2018).

This decomposes the traditional convolution (LeCun et al., 1998a) into a per-channel,

depth-wise component (that leaves the channel number intact), followed by a point-wise

convolution across channels that is applied across all channels (and may be used to

modulate the number of channels within the network). Under the assumption that there
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exist domain-specific spatial correlations while cross-channel correlations are shared,

Guo et al. (2019a) recommend using an individual depth-wise convolution for each

domain, while sharing the point-wise transformation.

Other work for multi-domain problems makes use of task-specific attention mechanisms

(Liu et al., 2019a), employs masking strategies (Mancini et al., 2020b), normalizes the

covariance of feature maps (Li and Vasconcelos, 2019), or extends the principle of

universal representations via self-training (Tamaazousti et al., 2019). There has also

been some interest in applying such concepts in the realm of language models, where

Stickland and Murray (2019) recently proposed a multi-domain extension of BERT

(Devlin et al., 2019) to obtain efficient models for related language tasks.

Note that in existing multi-domain literature it is typically assumed that domain labels

are available for all samples (Nam and Han, 2016; Rebuffi et al., 2017, 2018; Bulat

et al., 2019; Guo et al., 2019a). This central assumption is not fulfilled in latent domain

learning and differentiates the settings, see Section 3.2.

3.1.7 Domain Generalization

In domain generalization (DG) models are learned on a multi-source mixture P =∑
3 c3P3 of domains with relative share c3 ∈ (0, 1) and 3 = 1, . . . , �. The main task is

to generalize on the distribution associated with a new domain P�+1, without the use of

samples from this unseen domain. As such, DG can be considered an extreme case of

domain adaptation (Section 3.1.3), without access to any data from the target domain.

One set ofmethods inDG focuses on the idea of learning domain-invariant representations.

Muandet et al. (2013) propose kernel-based measures to encourage domain-invariance,

while Ghifary et al. (2015) employ autoencoding setups for this. Ganin et al. (2016)

follow a different approach and learn feature representations that match across domains

via domain discriminators, an idea that was extended via accuracy constraints in Akuzawa

et al. (2019).
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Other works use maximum mean discrepancy to tackle DG (Li et al., 2018b), match the

per-domain conditional distribution (Li et al., 2018d,e), build on meta-learning (Balaji

et al., 2018; Li et al., 2018a), use self-supervision (Carlucci et al., 2019), or propose new

augmentation strategies (Shankar et al., 2019; Zhou et al., 2020; Borlino et al., 2020).

It is important to note that finding representations that generalize over unseen data is a

highly difficult problem, and Gulrajani and Lopez-Paz (2020) questioned some of the

recent progress in DG calling for stricter model selection criteria, as standard classifiers

trained via empirical risk minimization were shown to outperform many existing DG

methods under such standard criteria.

While latent domain learning is more closely connected to the multi-domain setting (see

Section 3.1.6), an interesting aspect in recent DG research has been an investigation into

the presence of unannotated domains by Matsuura and Harada (2020). This is reviewed

in additional detail in Section 3.2.1, which summarizes and discusses literature related

to latent domains.

3.2 Latent Domain Learning

While there exists no natural definition for what exactly a visual domain is, previous

works in multi-domain learning assume that different subsets of data exist, with some

defining characteristic that allows separating them from one another. Each subset,

indexed by 3 = 1, . . . , �, is then assigned to a pre-defined visual domain and vice-versa,

multi-domainmethods use such domain associations to parameterize their representations

and learn some ?\ (H |G, 3).

The assumption that domain labels are always available has been widely adopted in

multi-domain learning (Rebuffi et al., 2017, 2018; Liu et al., 2019a; Guo et al., 2019a),

however this assumption is not without difficulty.

For one, unless existing datasets are combined as in e.g. Rebuffi et al. (2017), their
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Setting Domain Labels Section Training Data Evaluation Data

Unsupervised DA Yes 3.1.3 (1, . . . , (� ,*�+1 * ′�+1No 3.2.1 (mixture,*�+1

Semi-supervised DA Yes 3.1.3 (1, . . . , (� , %�+1 *�+1

Domain Generalization Yes 3.1.7 (1, . . . , (� *�+1No 3.2.1 (mixture

Multi-Domain Learning Yes 3.1.6 (1, . . . , (� *1, . . . ,*�

Latent Domain Learning No 3.3.1–3.3.3 (mixture *1, . . . ,*�

Table 3.1: A comparison of unsupervised and semi-supervised DA, domain generaliza-
tion, and multi-domain learning versus latent domain learning. (3 denotes a labeled
dataset from the 3’th domain, % and * correspond to partially labeled and unlabeled
samples, respectively.

manual collection, labeling and curation can be very laborious. And, as below examples

demonstrate, even if definitions are fixed as datasets are curated, it is unclear whether

the chosen criteria for 3 are optimal.

In some cases domains are intuitive and their annotation straightforward. Consider

a problem where images have little visual relationship, for example joint learning of

Omniglot handwritten symbols (Lake et al., 2015) and CIFAR-10 objects (Krizhevsky

and Hinton, 2009). In this case, it is safe to assume that encoding an explicit domain-

specific identifier into ?\ is a good idea, and results in the multi-domain literature

provide clear evidence that it is highly beneficial to do so (Rebuffi et al., 2018; Guo

et al., 2019a; Mancini et al., 2020b).

The same is also true for other data sources: some datasets contain only professional

photographs (Saenko et al., 2010), whereas others capture sketches or paintings (Li et al.,

2017); some focus on entire scenes (Cordts et al., 2016), others focus on single objects

(Venkateswara et al., 2017); some datasets contain images captured at different times,

during day or night (Sultani et al., 2018). In each of these cases, labeling individual

domains by their semantic context is more or less straightforward.

Consider a different example however, in which multiple domains are created from

subsets of the same dataset (say, MNIST (LeCun, 1998)). In this counterfactual setup,
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Figure 3.3: In multi-domain learning every sample has a domain label. Latent domain
learning studies learning without this information.

learning individual parameters for each “domain” with no native sharing between them

will result in sub-par performances for each.

While this setup may appear artificial, the work of Bouchacourt et al. (2018) considers

semantic groupings of data: they show that when dividing data by subcategories, such

as size, shape, etc., and incorporating this information into the model, then this benefits

performance. Should one therefore also encode the number of objects into domains, or

their color, shape, and so on?

Given the relatively loose requirement that domains are supposed to be different while

related in some sense (Pan and Yang, 2009), these examples hint at the difficulty of

deciding whether domains are needed, and – if the answer to that is yes – what the

optimal domain criteria are. And note that even if such assignments are made very

carefully for some problem, nothing guarantees that they will transfer effectively to some

other task.

The remainder of this chapter investigates this ambiguity and studies two main questions:

first, is learning separate parameters always the preferred strategy for multi-domain

learning, regardless of the domains to be learned? And second, how can models best be

learned without such labels while still allowing them to generalize well over visually

diverse, multimodal data?

The associated setting is called latent domain learning in this thesis, and differs
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fundamentally from existing learning settings over multiple domains. A comparison

to the related problems introduced in Sections 3.1.1 to 3.1.7 is shown in Table 3.1.

The difference between latent domain learning and multi-domain learning, the learning

setting most closely related, is illustrated in Figure 3.3.

3.2.1 Related Work

While learning over latent domains was subject to some discussion in the classical

literature, for example in Hoffman et al. (2012), in the deep learning era this aspect has

received less attention. This is slowly starting to change, in particular in the context of

multi-source DA (Mancini et al., 2018, 2019) and DG (Matsuura and Harada, 2020).

The earliest studies around latent domains appear in DA, and focus on recovering absent

annotations, for example through hierarchical (Hoffman et al., 2012) or kernel-based

clustering (Gong et al., 2013). Other works discover latent domains via exemplar SVMs

(Xu et al., 2014), or by clustering through mutual information (Xiong et al., 2014). Once

these are recovered, they can again be used to explicitly parametrize ?\ .

More recent studies around latent domains targeted DA, where Mancini et al. (2018)

assume that a partial set of domain labels is available in the data, and use this to modify

the normalization for better adaptation strategies over multiple source domains. This

idea was later generalized to multi-source targets, alongside a new loss that stabilized

mode-collapsing of domains into a single branch (Mancini et al., 2019). Another study

investigates the transfer from multiple source domains (with domain labels) to target

domains (containing latent domains) (Peng et al., 2019b).

A notable work that questioned the availability of domain labels in DG is that of

Matsuura and Harada (2020), in which internal feature representations are extracted from

a backbone and then used to assign pseudo-labels via clustering. By coupling their loss

function with a domain-adversarial (Ganin and Lempitsky, 2015) term they encourage

domain-invariance, learning more domain-agnostic representations, a common goal in
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the DG literature (Muandet et al., 2013; Ghifary et al., 2015; Ganin et al., 2016).

While domain-invariance was shown to be desirable in the DG setting, in other scenarios

seeking out domain-invariance can be overly restrictive, for example when there is a

dissimilar domain in data that benefits from being treated separately. In fact Wang

et al. (2020) found that enforcing domain-invariance often times confuses multi-domain

classifiers and recommended against it.

Because of its reliance on domain annotations to separate out individualmodel parameters,

multi-domain learning firmly depends on the existence of ground-truth domain labels.

While above works have begun to address the problem of latent domains in other

settings, such strategies have so far not been studied for multi-domain learning. Before

introducing methods that aim to fill this gap in Section 3.3, the next section discusses

useful metrics to assess multi-domain performance when no annotations are present.

3.2.2 Metrics

Crucially in latent domain learning there exists no explicit association between latent

domains and the ground-truth domains annotated in some datasets. Instead latent domain

models are optimized to produce the lowest training error, and do not necessarily recover

ground-truth domain labels.

Bearing that in mind, if small or underrepresented domains can be identified, then one

would still want to prevent outcomes in which severe performance losses occur on them.

Traditional metrics often fail to capture these. Consider the observed accuracy when

sampling i.i.d. from P = c0P30 + c1P31 :

OAcc[ 5 ] = E(G= ,H=)∼P [1H5 (G=)=H= ], (3.2)

where H5 denotes the class assigned to sample G= by themodel 5 , and H= its corresponding

label for training. The OAcc has a problematic property: if P consists of two imbalanced
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domains such that c0 ≥ c1, then the performance on 30 dominates it. This motivates

alternative formulations for latent domain learning, as one should anticipate (and account

for) imbalanced domains in real-world data.

To address this shortcoming, this thesis also measures models in uniform accuracywhich

decouples the accuracy from relative ground-truth domain sizes:

UAcc[ 5 ] = 1
�

�∑
3=1
E(G= ,H=)∼P3 [1H5 (G=)=H= ] . (3.3)

For example if 30 has a 90% overall share, and the model perfectly classifies this

domain while reaching 0% accuracy on 31, then OAcc would still assume 0.9, hiding

the underlying damage to domain 31 . Measuring latent domain performance uniformly

reveals this damage as UAcc = 0.5.

Note that while domain annotations are required in order to compute uniform accuracy,

these should never be involved in training of latent domain models, and only be used for

analyzing their performance in terms of UAcc.

The uniform accuracy has some important limitations of its own. The ultimate goal of

latent domain learning is the development of methods that can entirely avoid the curation

of ground-truth domain labels. These are however required in the computation of UAcc.

Because of this, one should always consider both OAcc and UAcc: the observed accuracy

is straightforward to compute and informs how well data is estimated overall, whereas

the uniform accuracy gives additional insights into potential failure modes of models,

thereby assisting the development of new and robust latent domain methods.

3.3 Methods

While latent domains make for a highly practical problem for computer vision, it

poses multiple challenges that have not been previously investigated in the context of
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learning over multiple domains. This thesis introduces the following methodological

contributions designed for latent domain learning:

• Latent domain exchange (Section 3.3.1), a class of augmentations that implicitly

interpolates style information between latent domains.

• Sparse latent adaptation (Section 3.3.3), which enables models to dynamically

adapt to instances from multiple latent domains in the data, without depending on

domain annotations.

The proposed approaches can be optimized end-to-end, a property also associated with

MN (introduced in Chapter 2), and require no separate clustering stage, a fundamental

restriction in existing techniques designed for latent domains in related problems, such

as DG (Matsuura and Harada, 2020).

Section 3.4 evaluates these methods in several settings that include latent domains,

accompanied by a rigorous qualitative analysis that demonstrates that sparse adaptation

partitions latent domains in intuitive ways. Because latent domain learning does not

rely on the availability of domain labels, a notable benefit is that it can be applied to

other classification settings, such as fairness problems (Section 3.4.2), or learning over

imbalanced distributions (Section 3.4.3).

3.3.1 Latent Domain Exchange

Given a simple dataset containing two classes (say, dogs and giraffes) but multiple latent

domains (sketches, photos, cartoons, etc.), the goal in latent domain learning is to learn

some representation of images that allows for robust predictions irrespective of the

underlying latent domain 3.

In contrast to enforcing domain-invariance (Ganin et al., 2016) on the level of gradients,

which has been reported to hamper performance in multi-domain settings (Wang et al.,
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2020), this section proposes a strategy that takes inspiration from works that augment

data using style transfer (Borlino et al., 2020; Zhou et al., 2021).

The goal of this augmentation is to decrease the importance of style in images, which

tends to differ between domains (consider e.g. the occurrence of color in sketches vs.

photos). At the same time, geometrical properties that characterize the objects (such as

shape or pose) should remain unchanged.

This requires a mechanism that can disentangle style and content in images, which has

previously been achieved through autoencoding (Mathieu et al., 2016; Kotovenko et al.,

2019). Note the autoencoder is obtained in a completely separate pretraining step, which

never sees data used in subsequent latent domain experiments (see Section 3.4).

To construct a suitable architecture for the encoder 5enc, recommendations from the

style transfer literature, in particular of Huang and Belongie (2017), are followed: the

encoding network is constructed from all layers up to relu4-1 of VGG-19 (Simonyan

and Zisserman, 2015). Training proceeds by randomly sampling pairs of content and

style images 2, B from COCO (Lin et al., 2014b) and Wikiart (Saleh and Elgammal,

2015) which are both mapped to the latent space of 5enc resulting in 2enc and Benc. A

latent code Cenc combining the content of 2 with the style of B is created by the following

exchange mechanism:

Cenc = f(Benc) 2
enc − `(2enc)
f(2enc) + `(Benc),

where `(·) and f(·) denote the mean and standard deviation of latent codes after pooling

across height and width. Next, a decoder 5dec, which mirrors the encoder (pooling layers

are replaced with upsampling layers), converts Cenc back into an image C. To ensure

that the encoder-decoder pair combines the content of 2 (say, a giraffe) with the style

of B (e.g. a painting), an affine combination of two losses is optimized: a content loss

measures the Euclidean distance between 2enc and the feature responses of the output

image 5enc (C), while the so-called style loss compares the feature similarity of C and B.
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Figure 3.4: LDE augments the target G= by exchanging style with multiple sources
(G 91 , . . . , G 9" ). Shown here with " = 2. Note the encoder 5enc and decoder 5dec are
pretrained separately in a neural style transfer setup (Huang and Belongie, 2017).

This autoencoding setup was shown to yield a robust pipeline for neural style transfer

applications in Huang and Belongie (2017). With somemodifications, it can be used as an

augmentation: while the encoder 5enc and decoder 5dec remain fixed after pretraining, the

proposed latent domain exchange (LDE) modifies the underlying exchange mechanism

in eq. (3.3.1). In the following, two variations are presented: Random-LDE (RLDE),

and Cluster-LDE (CLDE). A conceptual overview over these is provided in Figure 3.4.

RLDE Given a minibatch {G=}==1,...,# during training, samples G= are first encoded

into a latent representation I= ∈ Z using the encoder 5enc. RLDE groups each encoded

example I= with " = 1, . . . , # − 1 latent codes I 91 , . . . , I 9" randomly drawn (without

replacement) from the same batch. Then the following transformation is applied:

RLDE(I=) , 1 − U
"

"∑
<=1

[
f(I 9< )

I= − `(I=)
f(I=) + `(I 9< )

]
+ UI=.

where as before `(·) and f(·) denote the channel-wise statistics of latent codes after
pooling across height and width. A preservation strength U ∈ [0, 1] is introduced that
modulates the strength of the augmentation, and ablations for different values of " are

in Table 3.5. RLDE mirrors the feature exchange used in the pretraining of 5enc and 5dec
(c.f. eq. (3.3.1)), but different from before transfers the style information of multiple

latent codes I 91 , . . . , I 9" onto I=. The image generated through subsequent decoding
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5dec ◦ RLDE(I=) therefore mixes the styles of G 91 , . . . , G 9" with content features of G=.

Similar to how mixing many colors gives gray (thereby removing color), combining

different styles from multiple examples as in RDLE should eventually yield some

“average style” that promotes geometric object-level information (shapes, poses, etc.),

while reducing the importance of the style of individual latent domains in data.

CLDE For some learning problems, such as latent domain learning over differing

domains (see PACS in Section 3.4.1), LDE was found to benefit from a clustering ansatz.

For this, all latent codes I= ∈ Z are initially clustered into one of � = 2, . . . , # clusters.

Subsequent style exchange is carried out by randomly picking � − 1 codes from every

cluster that I= does not reside in. Different clustering mechanisms were explored for

this, and CLDE was found to be stable regardless of the precise clustering variant that is

chosen (see Table 3.5).

One benefit of CLDE is that it induces stratification between latent domains, particularly

benefiting underrepresented ones: common styles will likely form large clusters, whereas

unusual ones would belong to smaller ones. By always picking one example from each

cluster the likelihood of unusual styles reappearing in other images increases.

3.3.2 Latent Adaptation

A central research question in this chapter is how to modify classification models to

allow them to achieve robust performance when learning over data from multiple latent

domains, but without domain annotations available in the data.

This section first reviews a strategy for when domain labels are available, which is then

extended to cases without labels. Rebuffi et al. (2017, 2018) proposed to modulate

networks by constraining the main transformation of residual network blocks (He et al.,

2016) Φ(G) = G + 5 (G) to allow at most a linear change +3 for each domain from
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some pretrained mapping Φ0 (with 50 in every layer), whereby Φ(G) − Φ0 (G) = +3G.
Note the slight abuse of notation here in letting G denote an image’s feature activations.

Rearranging this yields:

Φ(G, 3) = G + 50 (G) +
�∑
3=1

63+3 (G), (3.4)

with a domain-supervised switch that assigns corrections to domains, i.e. 63 =1 for 3

associated with G and 0 otherwise. Each +3 is parametrized through 1x1 convolutions,

and 50 denotes a shared 3x3 convolution obtained e.g. on ImageNet (Deng et al., 2009).

This builds on the assumption that models with strong general-purpose representations

require minimal changes to adapt to new tasks (Bilen and Vedaldi, 2017), making

learning each +3 sufficient, while 50 remains as is.

In latent domain learning access to 3 is removed, resulting in two new challenges: there

is no a priori information about the right number of corrections, and domain labels

cannot be used to decide which of the corrections to apply.

To mitigate the lack of domain labels 3, it is assumed that input data is constituted by  

latent distributions P: . A mixtures of experts approach (Jacobs et al., 1991; Jordan and

Jacobs, 1994; Tresp, 2001) can be used to replace switches 63 with a gating mechanism

6 : X → [0, 1] that assigns inputs G to latent domains, whereby the dependence on

domain annotations is relaxed:

Φ(G) = G + 50 (G) +
 ∑
:=1
[6(G)]:+: (G), (3.5)

The gates control which correction is applied to which example, and correspond to a

categorical variable over  categories, i.e. 0 ≤ [6(G)]: ≤ 1 and
∑
: [6(G)]: = 1 for all

G. Note in particular how parametric dependency of Φ on 3 is removed by the gating

mechanism. How to best choose the number of gates  , which replaces this dependency,

is discussed in detail in Section 3.4.1.

While eq. (3.5) is motivated from latent domains, there is no guarantee that each +: will
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correspond to an actual visual domain and many additional factors (shape, pose, color,

etc.) can enter them as well. Note the broader concept presented here may in principle

also be incorporated with other dynamic concepts (Perez et al., 2018; Guo et al., 2019a),

adaptation strategies however stand out due to their methodological simplicity.

Different options exist for parametrizing the gating function 6 : X → G ⊆ R . An ideal
gating mechanism for latent domain learning would fulfill two seemingly incompatible

properties: be able to filter domains in some layers (implemented via a discrete gate

6(G) ∈ {0, 1} ,∀G), but also share parameters between related domains in other layers

(requiring smooth gates 6(G) ∈ [0, 1] ). The next section proposes to resolve this

conflict through sparseness.

3.3.3 Sparse Latent Adapters

The gating function 6 : X → G ⊆ R is parametrized with a small linear transformation

, : C → R that constitutes the pre-activation within the gating branch, i.e. @ = ,i(G),
where average pooling i : X → C is used to project onto the channels.

A crucial choice is whether the activation for @ ∈ R should map to some discrete space

G = {0, 1} or a continuous G = [0, 1] in which the +: are shared.

A different strategy proposed here lets gates be smooth when appropriate, but a threshold

allows discrete outputs 5g (@) = [@ − g]+ with [·]+ = max(0, ·). Crucially 5g can be

solved in a differentiable manner (Martins and Astudillo, 2016) by sorting @1 ≥ · · · ≥ @ ,
solving :∗ = max{: | 1 + :@: >

∑
9≤: @ 9 } and computing g = [(∑ 9≤:∗ @ 9 ) − 1]/:∗.

Consider @ = [0.1, 1.0, 0.5] for which applying sparse activation results in 5g (@) =
[0.0, 0.75, 0.25]. Compare this to the result of applying a softmax activation, which

yields [0.202, 0.497, 0.301]. Sparse activation filters out @1, while sharing between @2
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Figure 3.5: In the proposed residual latent domain architecture images G are passed
down three streams: an identity function, a convolution 50, and SLA ( = 2) which
consists of i-pooling onto the channels C, followed by a linear,-transformation and
sparse activation 5g before the corrections +1 and +2 .

and @3. This is used to define sparse latent adaptation:

SLA(G) , G + 50 (G) +
 ∑
:=1

[
5g ◦, ◦ i(G)

]
:
+: (G), (3.6)

where [·]: picks the :’th element of the gating sequence. For an illustration of SLA, see

Figure 3.5.

SLA gives rise to a differentiable dynamic architecture, which were studied in the context

of reinforcement learning (Pham et al., 2018), Bayesian optimization (Kandasamy et al.,

2018), or adapting to new tasks (Mallya et al., 2018; Rosenfeld and Tsotsos, 2018). While

dynamic gates are subject to complex interactions such as negative transfer (Rosenbaum

et al., 2019), ablations in Table 3.6 clearly show that taking a sparse perspective – which

allows the model to mix either continuously or discretely – outperforms the alternative

of a priori fixing either a smooth activation such as that used in attention mechanisms

(Lin et al., 2017b), or discrete Gumbel-based sampling (Jang et al., 2016). In fact, this

choice between discrete (Veit and Belongie, 2018) and continuous mechanisms (Shazeer

et al., 2017; Sun et al., 2019a; Wang et al., 2019) delineates previous work that employed

differentiable gates. Perhaps surprisingly given its successes in NLP settings (Deng

et al., 2017; Peters et al., 2019), sparse activation has not been widely adopted in the

computer vision literature.
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It should be noted that a softmax-activated model can in principle also learn to suppress

individual preactivation components by letting some @: go to −∞. This however requires
either learning extra calibration parameters at every layer, defining a hard cutoff value

(Shazeer et al., 2017) (thereby removing differentiability), or very large row-norms

within the linear mapping,—a highly unlikely outcome given the several mechanisms

found in state-of-the-art models (in particular weight decay, norm-penalties, or BN (Ioffe

and Szegedy, 2015)) which act as direct counterforces to this.

3.4 Experiments

The proposed methods are evaluated on two latent domain problems constructed from

Office-Home (Venkateswara et al., 2017) and PACS (Li et al., 2017) (examples shown in

Figure 3.6 and 3.7). Also examined are a recently proposed fairness benchmark (Section

3.4.2), and long-tailed recognition benchmarks (Section 3.4.3).

3.4.1 Latent Domains

The first experiments use datasets with multiple domains: Office-Home and PACS. The

main goal here is not to compare to existing multi-domain or domain adaptation methods

that Office-Home or PACS were initially designed for, but to study two central research

questions: whether learning separate model parameters is always the preferred option in

multi-domain problems, and to what extent methods like SLA can benefit performance

when learning multi-domain representations without domain labels.

Once again note domain labels are never used to train latent domain models, and they are

only used for analyzing their performance in terms of the domain-normalized metrics

introduced in Section 3.2.2.
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Figure 3.6: Samples from Office-Home with equivalent class H3 = H3′ ∈ Y from four
different domains. Latent domain learning aims to learn a unified model over these
visually different depictions of the same object, but without access to the corresponding
domain annotations, which are considered latent.

Optimization

All experiments use a ResNet model (He et al., 2016) pretrained on ImageNet. When

SLA is used to replace the residual blocks, then only gates and corrections are learned,

while the main convolution of the ResNet backbone remains fixed at its initial parameters,

a strategy proposed by Rebuffi et al. (2017) that implicitly regularizes models.

All architectures are trained in exactly the same way with the same default hyperparame-

ters: for 120 epochs using SGD (momentum parameter of 0.9), batch size of 128, weight

decay of 10−4, and an initial learning rate of 0.1 (reduced by 1/10 at epochs 80, 100).

Official splits are used for each dataset, and average accuracies are reported over five

random initializations.

All experiments use standard augmentation techniques: random cropping and flipping,

as well as normalization. Prelearnt LDE (for additional details see Section 3.3.1) is

applied with "/�= 2, preservation strength U=0.5, and randomly to 25% of examples.

Results for different clustering strategies for LDE are reported in Table 3.5. Increasing

the number of corrections  within SLA consistently increases performance, however

 = 2 already represents a strong boost from the baseline of having no sparse adapters,

see results in Table 3.2.
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Type A C P R OAcc UAcc

Proportion c3 15.57 28.01 28.48 27.95
RA (Rebuffi et al., 2018) MD 48.05 76.12 80.74 67.78 70.73 68.17
Domain-Adv. (Ganin et al., 2016) MD 55.14 72.85 81.98 68.81 71.57 69.70
4×ResNet26 MD 52.47 79.95 85.02 70.01 74.34 71.86

ResNet26 LD 50.10 76.80 78.83 63.36 69.47 67.27
ResNet56 LD 52.26 78.47 80.80 66.34 71.66 69.47
MN (Chapter 2) LD 50.54 78.02 78.62 64.30 70.08 67.87
RA (Rebuffi et al., 2018) LD 58.44 79.15 81.55 72.13 74.65 72.82
MLFN (Chang et al., 2018) LD 50.72 78.81 81.36 64.56 71.18 68.86
MMLD (Matsuura and Harada, 2020) LD 59.63 67.89 81.16 74.35 72.19 70.76
Ours ( = 2) LD 63.37 81.84 84.85 74.83 77.87 76.22
Ours ( = 3) LD 62.86 80.99 85.47 76.15 78.09 76.37
Ours ( = 4) LD 63.48 80.53 85.59 76.32 78.14 76.48
Ours ( = 5) LD 64.09 80.64 84.52 77.81 78.38 76.77

Table 3.2: Per-domain performance in percent on Office-Home. Multi-domain (MD)
baselines train subsets of parameters for each domain, while for latent domains (LD)
models are trained without domain labels so all parameters are shared. Results for
SLA+LDE are shown for multiple values of  . Domain-level performances for (A)rt,
(C)lipart, (P)roduct, and (R)eal world are reported alongside the (O)bserved (Acc)uracy,
and (U)niform (Acc)uracy which summarize performance across all four domains. Best
results in bold.

Office-Home

The underlying data contains a variety of objects classes (alarm clock, backpack, etc.)

among four domains: art, clipart, product, and real-world. Some examples from this

dataset with the same object class (chair) are shown in Figure 3.6.

Table 3.2 shows results for 3-supervised multi-domain (MD) approaches: RA (Rebuffi

et al., 2018), domain-adversarial learning (Ganin et al., 2016) and a baseline of

4×ResNet26, one for each domain. For latent domain (LD) baselines, a single ResNet26

is learned, this time as one joint model over all domains. Next, SLA+RLDE are coupled

with the very same ResNet26.

Learning a single ResNet26 over latent domains with no access to 3-labels significantly

harms performance. This problem is not addressed by simply increasing the depth of the

network: while accuracy improves slightly, a ResNet56 exhibits the same performance

losses— in particular on the latent domains product (P) and real-world (R).
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While residual adaptation (Rebuffi et al., 2018) was shown to work extremely well in

many multi-domain scenarios, performance here is sub-par, regardless of whether it

accesses 3 (in which case there is one +3 per domain) or not (single +). When using

annotations, the drop in performance likely originates from having single linear modules

+3 for each domain, enabling no native cross-domain sharing of parameters. When 3 is

hidden on the other hand, the model is forced to share a single linear adaptation module

+ between all four hidden domains, without the flexible gating between them as in SLA.

Learning annotations through clustering and coupling this with domain-adversarial

gradient reversal as in MMLD (Matsuura and Harada, 2020) increases performance

relative to its 3-annotated counterpart (Ganin et al., 2016). The increase is modest

however, and in line with reports that enforcing domain-invariance on the gradient level

negatively impacts models’ abilities to discriminate between classes (Wang et al., 2020).

MN, introduced in Chapter 2, can also be applied to latent domain learning, as it does not

require domain annotations. While performance is increased from the ResNet26 baseline,

the increase is small when comparing it to dedicated modules for latent domains: SLA

contains individual corrections which are more flexible than MN, and the results suggest

that this additional capacity considerably improves the processing of hidden domains.

Another related baseline are multi-level factorization nets (MLFN, Chang et al., 2018)

which build on ResNeXt (Xie et al., 2017) to define a latent-factor architecture that

accounts for multimodality in data. Crucially where SLA is fine-grained and uses gates

to modulate corrections at each layer, MLFN instead enables and disables multiple

network blocks at once, allowing SLA to outperform it.

The methods proposed in this thesis benefit performance significantly and increase

uniform accuracy (UAcc, c.f. Section 3.2.2) by 14.12% relative to ResNet26. Accuracy

without LDE consistently drops around 2%, see the ablation in Table 3.3. For Office-

Home random pairings as in RLDE were found to be the superior option, whereas when

domains exhibit a higher amount of separation CLDE is better suited, as for PACS which

is evaluated in the next section. Mixup (Zhang et al., 2018) and MixStyles (Zhou et al.,
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Augmentation None mixup (Zhang et al., 2018) MixStyles (Zhou et al., 2021) RLDE CLDE

Office-Home 74.35 72.04 74.52 76.22 76.06
PACS 93.84 92.43 93.78 94.42 94.70

Table 3.3: UAcc (in %) for the proposed RLDE and CLDE (see Section 3.3.1) for two
random examples/clusters. Additional results for "/� > 2 in Table 3.5.

2021), two alternative augmentations that interpolate between samples, appear to not

be equally well suited for latent domain learning. Ablations for the style-transfer based

augmentation of Borlino et al. (2020), which can be viewed as a special case of LDE,

are shown in Table 3.5.

PACS

The second experiment examines performance on the PACS dataset (Li et al., 2017).

Crucially PACS domains (art, cartoon, photo, sketch) differ markedly from one another

(c.f. examples in Figure 3.7), constituting a latent domain problem with more separable

domains than in Office-Home.

Results in Table 3.4 show that the proposedmethods improve over existing baselines, even

for the more distinct domains found in PACS. The largest gains occur on smaller domains

(e.g. art), where it can be observed that standard models suppress underrepresented parts

of the distribution (see additional discussion on this aspect for long-tailed recognition

benchmarks in Section 3.4.3). SLA again surpasses the accuracy of 4×ResNet26, while
requiring a fraction of the total model parameters (∼ 9.7mil for  = 5 vs. ∼ 24.8mil).

Performance continues to increase with larger  in SLA.

The performance increase from using a latent domain-adversarial approach (Matsuura

and Harada, 2020) versus using domain-annotations (Ganin et al., 2016) confirms that

learning domains alongside the rest of the network can be a better strategy than trusting

in annotations. As before MN improves results, but its limited flexibility prevents

performance gains beyond those of SLA.
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Figure 3.7: PACS samples with equivalent class (dog), but a different latent domain.
Coloring of each domain corresponds to that in Table 3.4.

Type •A •C •P •S OAcc UAcc

Proportion c3 0.205 0.235 0.167 0.393
RA (Rebuffi et al., 2018) MD 85.14 92.05 94.50 94.30 91.93 91.50
Domain-Adv. (Ganin et al., 2016) MD 86.47 93.25 94.17 91.30 91.25 91.30
4×ResNet26 MD 88.41 95.53 94.34 95.71 93.94 93.50

ResNet26 LD 85.27 94.55 93.85 94.98 92.70 92.16
ResNet56 LD 86.96 94.34 95.15 95.34 93.36 92.95
MN (Chapter 2) LD 85.52 94.68 95.47 94.61 92.91 92.57
RA (Rebuffi et al., 2018) LD 89.86 93.90 95.56 93.91 93.35 93.31
k-means+4xRA LD 83.84 92.10 94.75 93.01 91.21 90.93
MLFN (Chang et al., 2018) LD 78.38 91.29 88.19 92.95 88.78 87.70
MMLD (Matsuura and Harada, 2020) LD 89.93 92.26 96.25 94.34 93.20 93.27
Ours ( = 2) LD 91.67 96.08 95.95 95.10 94.77 94.70
Ours ( = 3) LD 90.94 95.21 97.25 95.59 94.82 94.75
Ours ( = 4) LD 90.46 96.19 97.09 94.98 94.69 94.68
Ours ( = 5) LD 92.87 96.62 96.28 95.28 95.27 95.26

Table 3.4: Accuracy in percent for individual PACS domains (A)rt painting, (C)artoon,
(P)hoto, and (S)ketch, and across domains in terms of UAcc and OAcc. Best overall
performance underlined, best latent domain performance bold.

An important baseline to compare SLA against consists of a two-stage approach, whereby

examples are first clustered into domains, and subsequently classified. Here k-means

(using �= 4 centers, applied to the embeddings of images in the final layer of a pretrained

ResNet26 feature extractor) is used with subsequent finetuning of residual adapters. At

test time, examples from domains are first assigned to a cluster, and then classified with

the associated residual adapter.

Results for k-means+4xRA in Table 3.4 show that a two-stage strategy is suboptimal.

Similar to domain-supervised RA that uses 63 in Φ of eq. (3.4), this likely results from

clustering assigning fixed switches that get used across all residual adaptations of the
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Clustering RLDE CLDE-k-means CLDE-GMM

"/� 1 2 4 6 8 2 4 6 8 2 4 6 8

Office-Home 76.15 76.22 76.33 76.21 76.15 76.06 76.16 75.43 75.07 75.85 75.30 75.11 74.82
PACS 94.19 94.42 94.62 94.61 94.55 94.70 94.77 94.61 94.55 93.32 93.95 91.84 91.25

Table 3.5: An ablation showing UAcc in percent for Random-LDE and Cluster-LDE for
different numbers of random examples " , cluster numbers �, and clustering methods.
PACS seems to benefit from a clustering-based augmentation. Note RLDE with " = 1
corresponds to Borlino et al. (2020).

Gating mechanism
SLA Smooth (Lin et al., 2017b) Discrete (Jang et al., 2016) UAcc

3 76.22
3 75.74

3 75.21

No LDE » 74.35
No SLA » 72.82

Table 3.6: UAcc in percent on Office-Home for SLA with alternative, non-sparse gating
mechanisms.  = 2 is fixed across all trials shown here.

model. This is in conflict with the observation that for different visual characteristics,

different layers are more relevant than others (Yosinski et al., 2014; Zeiler and Fergus,

2014). Opposed to this, SLA can flexibly share or separate features individually at every

layer (c.f. qualitative results in Figure 3.9), synergizing only where appropriate across

the depth of the model.

Ablation

Ablations in Table 3.5 show that LDE performs robustly under two modifications:

(i.) when using " > 2 to increase the number of sources G 91 , . . . , G 9" whose style

is mapped to the target G=, and (ii.) when coupling CLDE with different clustering

mechanisms. When removing LDE altogether performance drops to 74.85%UAcc, and

when also withholding SLA this reduces to 72.82%UAcc of the ResNet26 backbone.

Table 3.6 shows that replacing sparse gating within SLA with either smooth or discrete

gates registers a drop in performance. Accuracies for soft and straight-through Gumbel-

62



ResNet26 RA (Rebuffi et al., 2018) SLA

CIFAR-10 95.20 95.80 96.32
CIFAR-100 77.85 81.01 82.18

Table 3.7: Accuracies (in %) for ResNet26, RA, and SLA on single datasets. While these
are not typically associated with latent domains, accounting for them raises performance
relative to baselines.

softmax sampling (Jang et al., 2016) were on par, and the reported results are for

straight-through sampling. In an additional ablation the residual backbone 50 was not

fixed, and instead its parameters were updated throughout model training. In line with

what Rebuffi et al. (2017) reported, this lead to overfitting and performance dropped

from 76.22% to 73.53%UAcc.

Single Datasets

Because SLA requires no domain annotations it can be used for learning over distributions

of single datasets. Table 3.7 contains test accuracies on CIFAR-10 and CIFAR-100 for

SLA ( = 2). This is compared to standard finetuning of the backbone, and RA (Rebuffi

et al., 2018). SLA can be inserted seamlessly into the model, and no changes are made

to the optimization settings used in previous sections.

Sparse adaptation outperforms traditional finetuning and RA on both datasets, showing

that SLA can be used as a general-purpose module to increase performance on standard

benchmarks. Note the larger performance gap on CIFAR-100. In all likelihood SLA

has a special advantage there, as CIFAR-100 contains many small modes, which can be

associated with latent domains.

Memory Requirements

Every layer contains a total of O( |C| + |C|2) parameters to parametrize the gate 6 and

corrections +: , respectively. This is however a very modest requirement, in particular
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Figure 3.8: Cosine similarity between SLA gates for Office-Home (left) and PACS
(right). PACS domains are more dissimilar, but similarities exist, e.g. (A)rt and (P)hoto.

because 50 stays fixed: while a ResNet26 contains ∼ 6.2mil learnable parameters, even

when setting  = 5 within SLA this sums to just ∼ 3.5mil free parameters.

Note also that the complexity of solving sparse gates in SLA scales as O( log ), a
negligible increase given the small  required.

Qualitative Analysis

This section analyzes global gating statistics of Office-Home and PACS domains, as

well as feature sharing across different layers of a network that includes SLA, and how

sparsity is utilized by the SLA gating mechanism. Moreover, an analysis of the final

representation of images in networks that include SLA is presented, alongside evidence

that sharing between geometric properties (shape, pose, etc.) occurs in the gates. Here

 = 2 is fixed to simplify the analysis.

First, Figure 3.8 shows average cosine similarities of per-domain gating vectors 6 ∈ G!

across ; = 1, . . . , ! layers of ResNet26. This confirms that Office-Home domains differ

less than the domains found in PACS.

Figure 3.9 presents layerwise measurements of Corr[6; (G), 6; (G ′)] for G, G ′ drawn from
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Figure 3.9: Layerwise correlation between intermediate feature representations of SLA
convolutions +: on Office-Home for different ground-truth domains. Most correlations
occur in the mid-to-late stages of the model.
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Figure 3.10: SLA sparsity (Office-Home); dotted lines indicate pooling transitions
between residual blocks.

differing 3 ≠ 3 ′ for Office-Home. If the correlation between domains is high, then similar

corrections +: are responsible for processing samples from a particular combination of

domains, indicating a large amount of feature sharing.

Across top layers of the network there is little correlation, presumably as low-level

information associated with each domain is processed independently. In the mid to

bottom stages correlation increases: these layers are typically associated with higher-

order features (Yosinski et al., 2014; Mahendran and Vedaldi, 2016; Asano et al., 2020),

and since label spaces are shared between latent domains, similar object-level features

are required to classify objects into their respective categories.

The sparse gates used in SLA (c.f. eq. 3.6) have the flexibility to output single activations
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Art Painting Cartoon Photo Sketch

Figure 3.11: Left: PCA of samples represented by their SLA gate activations, colored
by their ground-truth domain label as assigned in PACS. SLA shares parameters between
visually similar domains art and photo (•,•), while isolating sketch (•). The arrow
highlights one sample that has been labeled a photo in PACS. SLA categorizes it as a
cartoon instead, a more adequate assignment for this particular image. Right: sample
pairs from different domains (38≠3 9 ) with matching SLA activations. Note their similar
geometric properties (e.g. pose).

(i.e. become fully discrete) or output only non-zero values (a continuous gate). To

evaluate the gating behavior, the per-layer sparsity EG∼P3 [ −‖6; (G)‖0]/( − 1) can be

analyzed, where ‖ · ‖0 counts values that differ from zero.

Figure 3.10 shows that the sparsity of SLA gates varies across model depth. Interestingly

after each downsampling operation SLA tends to be relatively sparse, followed by a

dense gate, then again a sparse one, and so on. The model thus clearly utilizes the

flexibility from sparse gating functions.

Due to PACS domains being relatively distinctive, the dataset is an interesting candidate

for additional analysis of how sparse adaptation accounts for different ground-truth

domains. Figure 3.11 (left) shows activations for the first gate (collected at all layers) for

samples from all four PACS domains, visualized by their principal components.

In SLA visually similar domains art and photo (•,•) cluster together. The manifold

describing sketches (•) is arguably more primitive than those of the other domains, and

indeed only maps to a small region. Cartoon (•) lies somewhere between sketches and
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real-world images. This matches intuition: a cartoon is, more or less, a colored sketch.

One image is displayed (highlighted with an arrow) that shows an elephant which SLA

places among the cartoon domain. This image was however assigned a ground-truth

domain label of photo in the PACS dataset. The ground-truth label appears to have been

assigned in error, but different from approaches that use 3-supervision, SLA learns

latent domains on-the-fly and is therefore not irritated by this.

Figure 3.11 (right) displays pairs of samples that have similar gate activations across

the network, but are from different domains. Pose, color, etc. of the samples are visibly

related. Compare in particular the poses of elephants (second row). This similarity

indicates that SLA does not only account for latent domains, but also incorporates

geometric features into its gating mechanism.

3.4.2 Fairness

From the perspective of algorithmic fairness, a desirable model property is to ensure

consistent predictive equality across different identifiable subgroups in data (Zemel

et al., 2013; Hardt et al., 2016; Fish et al., 2016). This relates to one of the goals in

latent domain learning: to limit implicit model bias towards large domains, and improve

robustness on small domains.

Recent work elevated the role of small subgroups in data and examined model fairness

on CelebA (Bagdasaryan et al., 2019; Wang et al., 2020; Hooker et al., 2020). Because

such subgroups may be interpreted as constituting an individual component P3 , they are

an interesting candidate for the evaluation of latent domain models in an applied setting.

This section evaluates a benchmark that contains face images with different attribute

labels (e.g. “brown hair”, “glasses”), constructed from the Aligned&Cropped subset of

CelebA (Liu et al., 2015) by hiding gender information (Wang et al., 2020). Models are

evaluated on all 39 remaining attributes, which experience varying amounts of gender
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ResNet18 ResNet18-SLA ResNet34 ResNet34-SLA ResNet50 ResNet50-SLA

mAP (↑) 0.718 0.732 (+0.015) 0.713 0.740 (+0.027) 0.745 0.750 (+0.005)
BA (↓) 0.025 0.014 0.022 0.009 0.012 0.008

Table 3.8: mAP (measured in percent) and bias amplification of SLA on the CelebA fair
attribute recognition benchmark (Wang et al., 2020).
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Figure 3.12: Change in AP (in percent) between ResNet18 and ResNet18-SLA for
different gender skews in CelebA attributes.

skew. Framed as a latent domain problem one could identify 3 = {female,male}, but
models have no access to this spurious information.

The same optimization settings are used as previously (see Section 3.4.1) to finetune

models for 70 epochs with learning rate reductions at epochs 30, 40, and 50. This setup

closely follows previous work on empirical fairness (Wang et al., 2020; Ramaswamy

et al., 2020), which however – different from the methods presented here – focused on

learning models that have access to the gender-attribute 3.

Per-attribute accuracy is evaluated using mean average precision (mAP) alongside bias

amplification (BA) (Zhao et al., 2017) (see Table 3.8). The latter compares the propensity

of a model to make positive predictions (i.e. 5 exceeds some threshold C+ ∈ [0, 1]) in the
gender 6∗H that appears most frequent within attribute H, compared to the true counted
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ratio of positive examples H+:

BA[ 5 ] = EG∼PG
[1 5 (G)>C+ |6∗H
1 5 (G)>C+

]
− EH∼PH

[1H=H+ |6∗H
1H=H+

]
, (3.7)

where C+ is optimized for on the validation split. For example if 60% of male examples

are wearing glasses but under the model this is raised to a total of 65%, then bias is

amplified by BA=0.05.

Performance is compared between ResNet18, ResNet34, and ResNet50, and the same

models with SLA inserted ( = 2). SLA consistently raises both mAP and reduces bias,

indicating that it relies less on spurious correlations between protected attributes and

target properties in data to formulate its predictions. In addition, Figure 3.12 compares

per-attribute skew towards either female or male (whichever is more frequent) to the gain

in performance from ResNet18 to the same model but with SLA inserted. A clear trend

is observed here, whereby SLA is able to raise performance the most in those attributes

that experience the largest amounts of skew.

3.4.3 Long-Tailed Recognition

Standard models often experience difficulty when some classes are heavily underrepre-

sented. This problem has recently been studied in long-tailed recognition (Liu et al.,

2019b; Cao et al., 2019) with benchmarks that modify CIFAR-10 and CIFAR-100 to an

imbalanced version by reducing the number of examples for some classes, e.g. 6-10 for

CIFAR-10 (Buda et al., 2018). The severity of the imbalance is usually described via

the ratio d = =max/=min between the largest and smallest classes.

Similar to the fairness experiments (Section 3.4.2), long-tailed distributions may be

viewed as containing an underrepresented latent component with c3 =1/(1+d). Previous
results, in particular for PACS (c.f. Section 3.4.1), that fortified small latent domains

within P therefore serve as motivation to evaluate the imbalance setting more closely for

latent domain methods.
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Imbalanced CIFAR-10
d ERM ERM-SLA Focal Focal-SLA LDAM-DRW LDAM-DRW-SLA

10 86.09 93.05 (+6.96) 86.61 92.14 (+5.53) 91.08 92.49 (+1.41)
100 68.02 81.60 (+13.58) 67.44 78.82 (+11.38) 75.67 80.96 (+5.29)

Imbalanced CIFAR-100
d ERM ERM-SLA Focal Focal-SLA LDAM-DRW LDAM-DRW-SLA

10 65.16 70.76 (+5.60) 64.56 70.60 (+6.04) 66.08 69.61 (+3.53)
100 45.44 48.46 (+3.02) 45.19 48.39 (+3.20) 51.25 55.06 (+3.81)

Table 3.9: Test accuracy (in %) on imbalanced CIFAR benchmarks (Buda et al.,
2018). SLA consistently improves performance for standard ERM and existing long-tail
approaches, such as a focal (Lin et al., 2017a) or label distribution aware loss (Cao et al.,
2019).

Since SLA is entirelymodel-based, it can be combined seamlesslywith recent state-of-the-

art techniques for long-tailed recognition which are loss-based: reducing contributions

from well-classified examples as in focal losses (Lin et al., 2017a), or a label-distribution-

aware margin loss with deferred reweighting (Cao et al., 2019). Adaptation via sparse

gates is found to consistently improve performance of the underlying ResNet26 across

different imbalance strategies on long-tail benchmarks (see Table 3.9).

This result highlights the benefit of relaxing the domain concept from its more strict

definitions, e.g. found in multi-domain learning, to that of latent domains: SLA appears

to have advantages even when one can only define very abstract domains as in this

section, where 3 = “H in six to ten”.

3.5 Conclusion

This chapter introduced and formalized the problem of learning over distributions that

contain multiple latent domains, and showed that this poses a considerable challenge for

standard learning methods.

The main motivation was to investigate whether learning separate model parameters
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for each domain is always the preferred strategy for multi-domain problems, and what

methods to use when domain labels are missing in data. While experiments showed

that performance for standard models tends to degrade without domain labels, a new

class of augmentations alongside a novel sparse adaptation strategy were proposed

which together account for (and often exceed) this lost accuracy—benefiting several

challenging problems where some notion of a domain (but no annotation) exists.

Several interesting questions remain: for one, in what circumstances is the use of domain

labels preferred, and how can practitioners decide whether explicit domain partitions are

sensible. And how can one incorporate partial labels into multi-domain methods? These

research questions are touched upon in additional detail in Chapter 5, which concludes

this thesis with a discussion of directions for future work.

As this and the previous chapter highlighted, learning problems that contain heteroge-

neous sources or latent domains benefit from customized solutions. The next chapter

investigates the appearance of new modes in data in the context of anomaly detection,

and introduces new transfer-based techniques for this setting, in particular ones that

counter catastrophic forgetting (c.f. Section 3.1.5).
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Chapter 4

Transfer-Based Semantic

Anomaly Detection

The detection of anomalies is challenging due to the countless ways in which these may

appear in high-dimensional data. Existing methods, reviewed in Section 4.1, focus on

enhancing the robustness of networks, for example through self-supervision (Golan and

El-Yaniv, 2018; Hendrycks et al., 2019c). While such strategies may be sufficient for

modeling simplistic visual anomalies (such as watermarks, or salt and pepper noise),

there is no good known way of preparing models for all potential and unseen anomalies

that can occur, such as the appearance of new semantic categories in data.

This chapter introduces approaches that improve the detection of visual anomalies

using transfer learning. Section 4.2 explains how anomaly detection can benefit from

transferring over representations from some large and varied semantic task, enabling the

formulation of new transfer-based anomaly detection methods in Section 4.3.

The experiments in Section 4.4 show that transfer-based strategies yield very powerful

methods that can be coupled with any modern network architecture, and outperform



previous approaches in the anomaly detection literature on a set of common benchmarks.

Anomalous instances can in principle also originate from previously unseen regions of the

input space that can be associated with anomalous modes (e.g. sketches, when previously

there were only photos in the training data). While Section 4.4.4 experimentally evaluates

this problem, it should be noted that the stark visual differences that characterize

visual domains in existing benchmarks such as PACS makes their detection relatively

straightforward, such that they may often be detected by hand-crafted features or

shallow learning strategies. Due to this, such simpler AD problems have recently been

summarized under the term “non-semantic” by Ahmed and Courville (2020). The main

focus of this chapter lies on the detection of more high-level (or “semantic”) anomalies,

in particular the appearance of new object classes, as opposed to low-level anomalies,

e.g. texture defects (Bergmann et al., 2019).

4.1 Background

Given a collection of images, it is often interesting to automatically determine which

examples in it are representative, or vice versa, which of them are unusual. This

fundamental problem in machine learning is usually referred to as outlier, novelty, or

anomaly detection (AD), with applications ranging from medicine (Wong et al., 2003;

Schlegl et al., 2017), to fault detection (Campbell and Bennett, 2001; Görnitz et al.,

2015), and astronomy (Dutta et al., 2007; Collins et al., 2018).

Regardless of the type of anomaly that is to be detected, AD always begins by in-

corporating a set of non-anomalous examples (= , {G8}8=1,...,= ∈ X into a model of

normality.3 These examples are assumed to have been sampled from the distribution

of the normal data P+, with associated density ?+. The goal is to use the examples

in (= to learn a one-class model 5\ : X → [0, 1] with parameters \ ∈ Θ that decides

whether a previously unseen G ∈ X is likely normal (s.t. 5\ (G) assumes small values)

3Previous chapters used = to index data. Here this denotes the total number of examples in (=.
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or anomalous (large score 5\ (G)). For example, a model could be trained on images

of cats. During evaluation, the model should be able to score all cats as normal, while

other objects, e.g. dogs, deer, etc., are assigned high scores, i.e. deemed as anomalous.

Note that different from classification problems, in AD models do not need to classify

examples into their respective object classes, but only score how likely they contain an

anomaly. In the context of AD the more general case of a multimodal normal class P+ is

called “semantic AD” (Ahmed and Courville, 2020), and is evaluated in Section 4.4.2.

4.1.1 Traditional AD

Early research on AD goes back as far as Edgeworth (1887). In its long history, AD has

been incorporated with many different methodological approaches: generative models,

for example, can be applied to detect anomaly via thresholding of the learned model.

Given examples, one simply estimates ?\ ≈ ?+, and declares anomalies when ?\ (G) < g
for some g ∈ (0, 1).

Similar approaches that use thresholding can be used for non-parametric methods, for

example kernel density estimation was used for detecting intrusions in Yeung and Chow

(2002), mixtures of Gaussians in Pelleg and Moore (2004), and hidden Markov models

in Ourston et al. (2003). All these methods fall into the spectrum of traditional AD

methods, an overview over which can be found in Chandola et al. (2009) and Emmott

et al. (2013).

Another popular traditional AD method are one-class support vector machines (OCSVM,

Schölkopf et al., 1999). These were adopted in early work that introduced deep learning

into AD (or “deep AD”, for short), consisting of a two-stage setup that freezes features

after learning representations via an autoencoding setup, and subsequent application

of OCSVMs to detect anomalous examples (Erfani et al., 2016). Since then, various

approaches for deep AD have been proposed, which are summarized in the next section.
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4.1.2 Deep AD

With the advent of deep learning, the focus of AD methods has started to shift. Ruff

et al. (2018) showed that deep end-to-end representation learning of traditional AD

losses is complicated by a phenomenon they termed “hypersphere collapse”, whereby all

points in (= tend to get mapped close to zero. This can occur when combing traditional

AD objectives, e.g. the loss associated with support vector data descriptions (Tax and

Duin, 2004), with a large hypothesis class (in particular deep models). Ruff et al. (2018)

addressed this by restricting the network architecture on the level of functional layers,

and in particular for image data recommend including no bias terms in convolutions.

Subsequent works in deep AD utilized a wide range of methods, such as scoring

anomalies by their reconstruction loss in autoencoder setups (Zhou and Paffenroth, 2017;

Zong et al., 2018), further modifications to one-class losses that improve the model’s

robustness against hypersphere collapse (Sabokrou et al., 2018; Ghafoori and Leckie,

2020; Goyal et al., 2020), or scoring new examples depending on whether they can

be generated by a GAN solely trained on examples from P+ (Goodfellow et al., 2014;

Schlegl et al., 2017; Akcay et al., 2018; Deecke et al., 2018; Perera et al., 2019; Ngo

et al., 2019; Berg et al., 2020).

A learning setting closely related to AD is out-of-distribution detection (Hendrycks and

Gimpel, 2017; Hendrycks et al., 2020), which is used to investigate how models can

robustly detect examples from previously unseen datasets, for example using invertible

networks (Schirrmeister et al., 2020) or by estimating uncertainty (Burda et al., 2019;

Ciosek et al., 2020).

4.1.3 Self-Supervised AD

A recent focus has been on developing auxiliary tasks from the samples in (= to learn

better representations for AD, often following the paradigm of self-supervision. For this,
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Golan and El-Yaniv (2018) a priori define a sequence of simple geometric transformations

C1, . . . , C −1, e.g. flipping of images or rotation. A new dataset is created by applying each

transformation to every image in (=, such that (̃= = {(C: (G), :) | G ∈ (=, : = 1, . . . ,  },
with C the identity mapping.

Next a classifier ℎ\ : X → [0, 1] is learned over (̃=, to learn geometrical features

for AD. Empirical results, in particular of Hendrycks et al. (2019a), demonstrate that

selecting anomaly scores from such features via the maximum softmax probability

(Hendrycks and Gimpel, 2017) as 1 −max: ℎ\ (G): results in favorable performance.

While these and related (Bergman and Hoshen, 2020; Tack et al., 2020; Sohn et al.,

2021) self-supervised methods use only examples from (= to learn representations, more

recent works in AD have increased performance through the concept of outlier exposure,

a form weak supervision. This is introduced in the next section.

4.1.4 Weakly-Supervised AD

Hendrycks et al. (2019b) proposed to enrich AD representations through the concept

of outlier exposure (OE), in which the normal class is differentiated against a large

unstructured set of image data, which serve as auxiliary outliers. For this, all normal

examples receive a negative labeling, i.e. H = 0,∀G ∈ (=, and are classified against a

second set&< that contains positively labeled (i.e. H = 1) examples of all sorts of objects.

For example, &< could consist of all images contained in ImageNet (Deng et al., 2009).

A model is then learned via binary classification of the negative versus the positive set:

arg min
\ ∈Θ

{
L(= [ 5\ ] + L&< [ 5\ ] =

1
|(= |+ |&< |

[ ∑
G∈(=

log 5\ (G) +
∑
G∈&<

log(1 − 5\ (G))
]}
,

(4.1)

At test time 5\ can be applied directly to examples to obtain an anomaly score.

Importantly, this amounts to a form of weak supervision via existing resources (Zhou,

2018), and is not equivalent to supervised classification: images from the auxiliary
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corpus &< are not necessarily true anomalies, and may even contain samples from P+.

The concept of OE has been quickly adopted in recent AD literature (Hendrycks et al.,

2019c; Ruff et al., 2020a; Liznerski et al., 2021), and while the approaches presented in

this chapter also leverage large corpora as in OE, they establish inductive biases as a

separate crucial element for AD.

4.2 Motivation

For data types that are semantically rich such as images, “unusualness” can be caused by

a variety of high-level (or semantic) factors, for example the appearance of new objects

classes, or unexpected shapes or poses. Because of the large number of factors that can

potentially cause an anomaly, there exists no established principal learning objective for

deep AD.

While auxiliary methods that use self-supervision (Section 4.1.3) or weak supervision

(Section 4.1.4) exist, the relatively ad-hoc nature of these approaches – especially

given the semantic richness present in natural images – make it questionable whether

one can learn particularly meaningful features from such auxiliary objectives. This is

problematic since anomalies canmanifest themselves in ways that require a good semantic

understanding, for example when anomalies appear in crowded scenes (Mahadevan

et al., 2010).

Here a different perspective is proposed. Because it can be difficult to anticipate all

potential anomalies from the normal data alone, an alternative is to follow a transfer-based

approach that utilizes the semantically rich features obtained from some semantic task

associated with a large, varied dataset.

As discussed in Section 3.1, the transfer from rich semantic representations has been

shown to boost the performance in many machine learning problems, including image

classification Donahue et al. (2014); Guo et al. (2019a), object detection (Girshick et al.,
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2014; Girshick, 2015), transferring between large numbers of tasks (Zamir et al., 2018),

or from one domain to another (Rebuffi et al., 2017, 2018). In another line of work, a

surge of papers has recently elevated the role of pretrained models in natural language

processing (Mikolov et al., 2018; Howard and Ruder, 2018; Devlin et al., 2019; Adhikari

et al., 2019; Hendrycks et al., 2020).

Transfer-based AD builds on the increased availability and utilization of networks

pretrained on semantically rich tasks that incorporate different variations commonly seen

in data (edges, color, semantic categories, etc.). The central hypothesis in transfer-based

AD is that transferring features from such semantic tasks, for example ILSVRC image

classification (Deng et al., 2009), provides very powerful and generic representations for

various AD problems, even when the pretraining task is only loosely related to the task

of AD.

For AD in particular, it is crucial to preserve variations incorporated during pretraining

that, even though they potentially don’t exist in the set of normal data (=, can nonetheless

be meaningful for inferring anomalous semantics at test time (Tax and Müller, 2003;

Rippel et al., 2020). This requires ensuring that the change in representation from the

pretraining task is not excessive, which risks catastrophic forgetting (Kirkpatrick et al.,

2017) of features relevant to assessing such anomalous variations in unseen examples.

Note however that opposed to mere feature extraction (Bergman et al., 2020), experiments

(see Section 4.4) show that it is critical to let the network have some flexibility to learn

new variations important for AD. Before introducing adequate regularization strategies

for the transfer of parameters in Section 4.3, the next section compares different AD

paradigms through linear probes.

4.2.1 Linear Probes

To motivate transfer-based AD, the semantic viability of features learned under different

auxiliary AD objectives is evaluated in this section. Linear probes (Zhang et al., 2017b)
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are employed over a so-called two-stage setup commonly used in AD applications (Erfani

et al., 2016; Sohn et al., 2021): after an initial feature extraction phase 5 over some

normal data G ∼ ?+ (G), a subsequent one-class SVM (Schölkopf et al., 1999) learns to

encapsulate the extracted features of the data (associated with one single class) in (=.

For the experiments in this section a standard AD benchmark (Ruff et al., 2018) is used:

single classes from CIFAR-10 (e.g. dogs) constitute the normal class, and the one-class

model is learned over all embeddings of the training examples of this class. At test time,

it is measured whether the two-stage model can successfully identify the appearance of

the remaining object classes (cats, deer, etc.) as anomalous.

The metric reported in Table 4.1 results from repeating this procedure for all ten classes,

and recording the area under the ROC curve (AUC) relative to that of a random baseline

(AUC of 0.5). Note an important benefit of using AUC is that it does not require selecting

a threshold for scoring examples, as the AUC is computed by varying the decision

threshold across all possible values in [0, 1], plotting recall as a function of the false

positive rate, and integrating over the resulting area.

The initial extraction phase occurs at one of three layers (conv1-3) of a LeNet architecture

(LeCun et al., 1989) trained via three different paradigms (see next paragraph). The

subsequent one-class stage always uses the exact same one-class SVM to assign anomaly

scores. Fixing a simple model on top of 5conv,8 (G) allows direct insights into the viability
of each layer’s features for semantic AD.

The comparison is carried out on top of 5conv,8 after training the extraction model with

three different learning paradigms for AD:

(i) self-supervision through geometric transformation as in Hendrycks et al. (2019c);

(ii) weakly supervised classification via outlier exposure (CIFAR-100 as OE dataset)

(Hendrycks et al., 2019b);

(iii) transferring from another task (CIFAR-100 classification) and subsequent finetun-

ing through OE.
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Layer (i) Self-sup. (ii) Weakly-sup. (iii) Transfer-based

5conv,1 1.44 (0.19) 1.58 (0.20) 2.02 (0.21)
5conv,2 4.60 (0.17) 3.83 (0.16) 5.48 (0.19)
5conv,3 4.63 (0.15) 5.12 (0.12) 6.72 (0.15)

Table 4.1: Percent improvement in AUC relative to a random baseline on CIFAR-10 AD
for one-class SVMs on top of features extracted from LeNet layers (conv1-3) trained
through different learning paradigms (self-supervised, weakly-supervised, transfer-
based). Standard deviations in parentheses were computed over five random seeds.

For (i), (ii), and (iii), deeper features always result in performance improvements (see

Table 4.1). When extracting at deeper layers – which are typically associated with

higher semantic function (Yosinski et al., 2014; Zeiler and Fergus, 2014; Mahendran

and Vedaldi, 2016) – there is however a performance gap between paradigms: (i)

self-supervised features do not improve from conv2 to conv3, indicating they learn

predominantly low-level features, an observation also made by Asano et al. (2020). For

(ii) OE-based extraction performance increases a little at every layer, but overall AUCs

are most improved by the (iii) transfer-based approach, which raises mean AUC by

6.72% in conv3. From this, it can already be observed that transfer-based features can

have a favorable impact for robust downstream AD detection performance.

The experiments in Section 4.4 expand this finding and show that, when transferring

semantic representations to complex AD tasks, it is crucial to ensure models do not

suffer from catastrophic forgetting. The next section introduces ways in which this can

be achieved, e.g. through adequate regularization.

4.3 Methods

Components of the proposed transfer-based methods are reviewed in Section 4.3.1, with

subsequent introduction of two new methods for semantic AD with an inductive bias:

ADIB (Section 4.3.2) and ADRA (Section 4.3.3).
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4.3.1 Transfer-Based AD

Following work that investigated the prospects of large pretrained networks (Zamir et al.,

2018; Adhikari et al., 2019; He et al., 2019; Hendrycks et al., 2019a, 2020), a recent

study proposed carrying out AD through a nearest neighbor search on top of features

extracted from a large pretrained residual network (Bergman et al., 2020).

However as can be seen from the experimental results in Table 4.5, simply transferring

over fixed representations to an unrelated task seems subpar for semantic AD. Next, it is

outlined how parameters obtained from pretraining can be more effectively transferred

to the problem of AD.

Pretraining itself follows a simple protocol (c.f. Section 3.1.1): a model’s parameters are

randomly initialized with some distribution, for example Xavier initialization (Glorot

and Bengio, 2010). Optimization of a suitable transfer task T (e.g. ImageNet object

classification) yields a set of general-purpose parameters \0 ∈ Θ. The so-obtained model

5\ 0 is then ready to be transferred to some downstream task B.

The traditional methodology for leveraging pretrained models is to continue to optimize

the model parameters (or a subset thereof) on B. One crucial limitation of this learning

protocol is that when learning on B isn’t carried out carefully through the introduction

of some explicit inductive bias (Li et al., 2018c), this risks catastrophic forgetting of

information previously extracted from T .

To alleviate this issue, a common approach is to use regularization, e.g. as in continual

learning (Kirkpatrick et al., 2017; Lopez-Paz and Ranzato, 2017) (c.f. Section 3.1.5).

The following two sections introduce two new AD-specific learning methods that prevent

catastrophic forgetting in the context of AD.
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4.3.2 Anomaly Detection with an Inductive Bias

Transfer-based AD hypothesizes that the best bet for robust semantic AD is to introduce

an inductive bias into models. To achieve this, the weakly supervised learning criterion

in eq. (4.1) is augmented with an additional regularizer Ω : Θ × Θ→ R+ that depends
on pretrained parameters \0 ∈ Θ, resulting in the following objective:

arg min
\ ∈Θ

{L(= [ 5\ ] + L&< [ 5\ ] +Ω(\, \0)
}
. (4.2)

As the ablations in Table 4.4 show, an inductive bias such as !2 regularization towards

the initial pretrained parameters \0 is crucial for robust semantic AD performance.

Motivated by this finding, in Anomaly Detection with an Inductive Bias (ADIB) the

regularizer is set to Ω(\, \0) = U | |\ − \0 | |2 scaled by U ∈ R+.

Recent state-of-the-art AD methods have proposed to modify the objective in eq. (4.2) by

using radial functions Ruff et al. (2020a), which is in line with the so-called concentration

assumption common in AD (Schölkopf and Smola, 2002; Steinwart et al., 2005). Such

radial functions are included in the ablations (see Table 4.4), however it is empirically

observed that – when paired with an explicit inductive bias – standard classifiers typically

perform better.

ADIB is found to outperform previous state-of-the-art AD methods on semantic anomaly

benchmarks. For the CIFAR-10 semantic AD benchmark, for example, it raises the

state of the art to 74.6 versus 41.6 mean AP (in percent) reported previously by Ahmed

and Courville (2020). Moreover, ADIB sets a new state of the art on the widespread

one-versus-rest AD benchmark, raising the bar from 96.1 (Ruff et al., 2020a) to 99.1

mean AUC (in percent).
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4.3.3 Anomaly Detection with Residual Adaptation

Similar to how this was done for latent adaptation (Section 3.3.3), regularization can also

be formulated to bolster parameter efficiency, but without the focus on multiple domains.

For this, the transformation of each residual layer Φ(G) = G + 5 (G) is constrained to

allow at most a linear change from some pretrained mapping Φ0 with 50, such that

Φ(G) −Φ0 (G) = + (G). This is then rearranged to:

Φ(G) = G + 50 (G) ++ (G), (4.3)

where + linearly corrects from adjacent layers (via a single 1x1 convolution), and 50 is

the residual 3x3 convolution associated with the pretrained Φ0. As in Chapter 3, only

the parameters of the linear correction + are updated, while the pretrained 50 is left

unchanged (full details of the learning process and surrounding hyperparameter choices

are in Section 4.4).

This strategy is applied in Anomaly Detection with Residual Adaptation (ADRA). Fixing

50 and only varying the parameters associated with + (G) in the model makes ADRA

comparatively parameter-efficient, and such savings are crucial for applications in which

multiple normal datasets exist but memory footprints are restrictive, e.g. federated

learning scenarios (Yang et al., 2019; Bhagoji et al., 2019). Notably, as the experiments

in Section 4.4 demonstrate, the performance of ADRA is often comparable to that of

regularizing all parameters via Ω as in ADIB.

4.4 Experiments

Section 4.4.1 proposes the use of disentanglement datasets (Gondal et al., 2019) to evalu-

ate the semantic detection performance of AD models. The resulting experimental setup

allows for a controlled comparison between AD paradigms under semantic intervention

(e.g. a change of object color), showing that transfer-based AD preserves meaningful

83



variations in its representations when it is coupled with appropriate regularizations.

In addition to verifying the suitability of the proposed methods on semantic AD

benchmarks in Section 4.4.2, models trained on semantic tasks have been shown to learn

elements required for non-semantic decisions in early parts of the network (Zeiler and

Fergus, 2014), and experiments in Sections 4.4.3 and 4.4.4 show that transfer-based AD

methods are indeed suitable for non-semantic AD tasks.

4.4.1 Examining Models through Interventions

As previous authors have emphasized, curating datasets with semantic anomalies is

challenging (Ahmed and Courville, 2020). For gaining better insights into AD methods

here it is proposed to borrow from datasets developed in recent research on unsupervised

learning of disentangled representations (Kulkarni et al., 2015; Higgins et al., 2017;

Bouchacourt et al., 2018; Burgess et al., 2018; Chen et al., 2018; Kim and Mnih, 2018;

Kumar et al., 2018; Locatello et al., 2019, 2020).

These disentanglement datasets, in particular high-resolution, realistic ones such as the

recently released MPI3D (Gondal et al., 2019), contain underlying ground-truth factors

of images. In contrast to previous benchmarks for semantic AD (see Section 4.4.2),

for example those that modify CIFAR-10 to such a task (Ahmed and Courville, 2020),

interventions on ground-truth factors allow for principled measurements of semantic

capabilities of a model, as for example the color of an object can be changed in a

systematic fashion.

MPI3D contains joint pairs of latent ground-truth factors I (color, shape, angle, etc.),

and corresponding images GI of a robot arm mounted with an object. The original

dataset comes in three styles (photo-realistic, simple, or detailed animation); because

the models evaluated use rich deep architectures, the evaluation on simple and animated

images (which are useful for simpler models) is skipped, such that the focus lies on the

photo-realistic images here.

84



All models use the same number of parameters, and differ only in which AD loss is

optimized:

• DSVDD (Ruff et al., 2018) uses eq. (4.1) without any weak supervision (no

L&< [ 5\ ] term).

• SAD (Ruff et al., 2020a,b) differs from DSVDD only in that it uses OE.

• ADIB and ADRA combine both OE and an inductive bias, see eq. (4.2).

To ensure a fair comparison, the exact same ResNet26 is used for all methods, and all of

them are initialized in exactly the same way, i.e. with the same pretrained weights. Note

however the proposed ADRA has less modeling power than DSVDD and SAD, due to

having fewer learnable parameters.

For semantic AD experiments onMPI3D, a red cone is fixed as the normal object (chosen

arbitrarily), and models are trained on all available views. Anomalies are obtained by

interventions on three underlying factors: (i) changing color to blue, (ii) transforming

shape to cube, and (iii) increasing size.

Two additional degrees of freedom exist in the dataset: background color and camera

height. Interventions on these have an outsized impact on images however, and do not

provide any real challenge to a residual network (or any other modern vision architecture,

for that matter), which is why they are not considered here.

For weak supervision through OE all remaining images are used that do not belong to

neither the normal nor the anomaly class. For example white, green, brown, and olive

all appear in the corpus &<.

Optimization The underlying model for DSVDD, SAD, ADRA, ADIB is the exact

same ResNet26, optimized via SGD (momentum parameter of 0.9, weight decay of

10−4) for a total of 100 epochs, with learning rate reductions by 1/10 after 60 and 80
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epochs. The batch size is fixed to 128, and only standard augmentations are used. The

regularization term Ω in ADIB is scaled with U = 10−2, following the recommendation

of Li et al. (2018c).

For all models, parameters are initialized via the same weights \0 obtained from

pretraining on ImageNet and then trained further on the downstream AD task. As noted

in Section 4.3, in ADRA only linear corrections + are learned, while the backbone \0

is fixed. All experiments have been implemented with PyTorch (Paszke et al., 2019).

Results are averaged over five seeds.

Results AUCs for different interventions are displayed in Figure 4.1. Detecting even

the most simple semantic anomaly, such as a change in object color Icolor = red→ blue

is impossible when learning without any weak supervision, as is the case for DSVDD

(11.7AUC in %).

The proposed intervention protocol confirms that it is beneficial to introduce a concept

of differentness via OE. In other words, exposing models to the concept of red being

normal, while also showing it examples of other colors (brown, green, etc.) prepares the

model for potential anomalous shifts—although SAD has never seen a blue example,

OE enables it to identify it as “not red”, and hence an anomaly.

To obtain more robust models that can pick up on less obvious interventions such as

changing the shape Ishape = cone→ cube or Isize = small→ large, adequate forms of

regularization appear to be critical. While it has fewer learnable parameters, ADRA

improves performance over SAD under all interventions. Some performance gap remains,

however, which is likely a consequence of the parameter-efficiency of ADRA, letting it

rely more on the weights of the base network which potentially aren’t particularly well

suited for the task.

ADIB has a higher degree of flexibility, thus allowing for sample-efficient utilization of

those features which are useful from the pretrained network. While ADIB might be a
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Figure 4.1: Left: Detection performance in AUC (in percentages) under interventions
on images in MPI3D after training models on different views of red cones. At testing
time, different interventions transform normal image examples (red cone depicted in
the center) into an anomaly (e.g. blue cone, top right). DSVDD fails to register any of
the interventions. While SAD (Ruff et al., 2020a,b) is sensitive to the change in color,
transfer-based models can pick up on more subtle interventions on size and shape.

simple strategy for the transfer of rich semantic features to AD, the performance under

all three interventions shows that it can robustly detect semantic anomalies.

Finally, it is noted that weak supervision through OE consistently increased disentan-

glement in the learned representations. DCI disentanglement (Eastwood and Williams,

2018) almost doubles from 0.068 for DSVDD to 0.103 for SAD, their only distinction

being the absence and presence of weak supervision via &<, respectively. Locatello

et al. (2020) made a similar observation in the context of unsupervised learning, finding

that some weak supervision is required for disentanglement.

Non-Semantic Shift Recent work examined model robustness towards non-semantic

shift, such as the appearance of color not contained in the training data, which can confuse

models from their primary objective of detecting semantic categories (Ahmed et al.,

2021). In order to examine this setting on MPI3D w.l.o.g. it is fixed cube= anomalous

and cone= normal, while color is considered a non-semantic factor.

The experiment consists of a controlled sequence of trials: a single color (red) is included
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Figure 4.2: Robustness of detecting cube under non-semantic color shifts for DSVDD
(no OE), SAD (uses OE), and the proposed ADIB. The G-axis indicates colors that are
included in the distribution of normality P+.

in the normal data at first, and the detection performance of models for cone vs. cube (of

any color) is evaluated. Then a second color is picked and added to the normal data

(which now contains red and blue), after which models are trained and evaluated again.

Repeating this for green, white, etc. yields a sequence of distributions P+red,. . ., P
+
all that

gives precise control over the degree in which semantic context may be established.

Figure 4.2 shows the extent to which the transfer-based approach improves robustness to

non-semantic shifts and underlines the importance of preventing drift from the transfer

task. SAD makes use of OE (which in this experiment includes shapes other than cone

and cube, but never additional colors) and enhances performance relative to DSVDD

(which does not use OE). A gap remains however when context is established only

through OE (SAD vs. ADIB). Especially for few colors in P+ transfer-based AD appears

very useful to manifesting the right semantic context.
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4.4.2 Semantic AD

In this section, models are evaluated on recently proposed benchmarks for semantic AD

(Ahmed and Courville, 2020). This setup is equivalent to that in the motivation (Section

4.2), but here evaluations focus on a broad range of recent state-of-the-art AD models.

In the CIFAR-10 and STL-10 semantic AD benchmarks 9 out of 10 object classes form

the normal data (= (e.g. all classes except dogs), so that images from multiple classes

form a multimodal distribution P+. The single class that is left out (i.e. dogs) is declared

anomalous and never seen during training. At test time, the AD model has to identify

the held-out class, i.e. it is measured whether 5\ (G) ≈ 1 when G contains a dog. This

requires that the AD model has a good semantic understanding of the objects in P+, and

Ahmed and Courville (2020) showed that this setup is more difficult than the popular

one-versus-rest AD benchmark (see Section 4.4.3) or problems like detecting unseen

domains (Section 4.4.4).

Ahmed and Courville (2020) determine semantic anomalies via MSP (Hendrycks and

Gimpel, 2017) and ODIN (Liang et al., 2018) using an auxiliary self-supervised criterion

akin to RotNet (Gidaris et al., 2018), while Bergman et al. (2020) use a nearest neighbor

search over fixed pretrained features. All existing results are included in Table 4.2.

Optimization As before, the regularization strength is set to U = 10−2 following

the suggestion of Li et al. (2018c); in elastic weight consolidation (EWC) the Fisher

multiplier is fixed to 400, as recommended by Kirkpatrick et al. (2017).

For experiments on CIFAR-10 (Krizhevsky and Hinton, 2009), an inductive bias is

introduced by regularizing network weights towards those of ResNet26 trained on

ImageNet at 32x32 resolution. The same architecture is used for STL-10 (Coates et al.,

2011), but since images have a higher resolution the initial model weights are obtained

from training over 96x96 pixels.
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mAUC mAP

ODIN (Ahmed and Courville, 2020) — 41.6
GT (Golan and El-Yaniv, 2018) 61.7 —
kNN-AD (Bergman and Hoshen, 2020) 71.7 —
ADRA 95.0 (0.1) 72.9 (0.4)
ADIB 95.1 (0.1) 74.6 (0.3)

Table 4.2: Mean AUC (mAUC) and AP (mAP) in percent on the CIFAR-10 semantic AD
benchmark. Standard deviations computed over five runs. ADRA and ADIB outperform
existing AD approaches. Results for GT taken from Bergman and Hoshen (2020).

For eqs. (4.1) and (4.2) the normal set (= is contrasted against images from an unstructured

corpus &<. Following previous work that makes use of OE (Hendrycks et al., 2019b;

Ruff et al., 2020a), for CIFAR-10 this is fixed to contain all samples from the CIFAR-100

training split. As already emphasized, &< equals weak supervision: CIFAR-100 gives a

viable surrogate learning signal, however does not contain examples of the anomalous

CIFAR-10 categories. STL-10 contains a large unlabeled split, which is used for OE.

Results There are discrepancies in how performance is reported in the semantic AD

literature: some authors recommend average precision (AP) (Ahmed and Courville,

2020), while others report AUC (Bergman and Hoshen, 2020). Similar to AUC which

measures recall as a function of the false negative rate (c.f. Section 4.2), AP is computed

by varying the decision threshold and collecting a finite set of precision and recall values,

followed by a weighted summation of these metrics at each threshold (indexed by C here):

AP =
∑
C

('C − 'C−1)%C .

Table 4.2 includes both metrics, and AP is reported for STL-10 (see Table 4.3) as this

benchmark was so far only evaluated by Ahmed and Courville (2020) who report AP

and remark that AUC is overly optimistic for the STL-10 semantic AD benchmark, see

also Davis and Goadrich (2006).

On the multimodal CIFAR-10 semantic AD benchmark (see Table 4.2), ADIB out-
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Class ODIN HSC ADRA ADIB

Airplane 23.4 23.1 49.3 (8.9) 41.4 (7.4)
Bird 40.1 13.8 18.9 (8.1) 44.0 (2.9)
Car 16.9 39.9 74.6 (6.5) 72.2 (10.5)
Cat 31.4 18.9 29.6 (3.4) 51.0 (2.1)
Deer 29.7 25.3 20.7 (1.9) 43.0 (5.7)
Dog 26.1 17.3 26.6 (3.5) 32.2 (3.1)
Horse 23.6 30.1 52.5 (5.9) 53.7 (2.5)
Monkey 28.3 18.4 23.0 (2.7) 46.6 (1.9)
Ship 15.4 49.2 69.2 (2.6) 51.7 (8.7)
Truck 16.6 40.7 64.3 (2.2) 58.7 (3.6)

mAP 25.1 27.7 42.9 (1.4) 49.5 (1.2)

Table 4.3: APs in percent for different models and classes on the STL-10 semantic AD
benchmark. Standard deviations over five runs reported in parentheses.

performs previously reported methods by a substantial margin (all in %): 74.6 vs.

41.6mAP, and 95.1 vs. 71.7mAUC. Even though it requires a smaller number of

learnable parameters ADRA comes very close: 95.0mAUC, and 72.9mAP.

As the results confirm, inferring anomalies on STL-10 is significantly harder. In particular,

even when using a state-of-the-art HSC classifier (Ruff et al., 2020a) initialized with

pretrained \0 but without regularization Ω, this does not successfully address the

semantic AD task (mAP of 27.7%, Table 4.3). When adding a regularization term

performance improves to 35.0%mAP (a3 in Table 4.4), supporting the assumption that

variations that are important to determining anomalies at test time are forgotten during

training, yielding poorer performance across classes.

ADIB improves performance to 49.5%mAP. While having much fewer effective param-

eters, ADRA almost matches this performance (42.9%mAP)— interestingly, ADRA

outperforms all other AD models on STL-10 man-made objects (cars, trucks, etc.).

This is potentially due to there being a minority of examples of human-made objects in

CIFAR-10 and ADRA contains many residual bypasses which, as reported in Section

3.4.3, can increase network robustness on smaller modes.
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L Tr. Reg. CIFAR-10 STL-10

a1 eq. (4.1) 7 7 60.3 32.9
a2 eq. (4.1) 3 7 64.9 38.6
a3 HSC 3 !2 68.5 35.0
a4 DOC 3 7 65.8 35.2
a5 eq. (4.2) 3 EWC 66.4 39.7

a6 ADRA 72.9 (0.3) 42.9 (1.4)
a7 ADIB 74.6 (0.3) 49.5 (1.2)

Table 4.4: Ablations in terms of mAP (all results in percentages). Tr. indicates absence
or presence of transfer learning; Reg. that of regularization. Included are comparisons
against hyperspherical classifiers (Ruff et al., 2020a) in a3, and EWC (Kirkpatrick et al.,
2017) in a5. Standard deviations (in parenthesis) computed over five runs.

Ablation The transfer of features from rich semantic tasks to AD has to be carried out

carefully. This is examined in an ablation in Table 4.4, for which the exact same model

is used in each experiment a1–a7, and only individual components are switched on and

off: starting from random (a1) or pretrained models without regularization (a2) is not

sufficient, as also highlighted in the intervention experiments in Section 4.4.1. Using

an HSC loss (Ruff et al., 2020a) with the exact same explicit inductive bias through

Ω that was used in ADIB reduces performance (a3 vs. a7). DOC (Perera and Patel,

2019) is conceptually very similar to HSC, combining a radial compactness loss with

a descriptiveness loss that requires ImageNet data. The reported results (a3 vs. a4)

confirm they also behave very similarly performance-wise.

In a5 it is found that EWC, a popular strategy for continual learning that regularizes

weights via the Fisher information (Kirkpatrick et al., 2017), performs poorly compared

to ADIB. This makes perfect sense, as EWC was designed to slow down learning on

model weights relevant for the pretraining task: when pretraining on a demanding task

like ImageNet, this can restrain capacity. Crucially for the AD setting model capacity is

needed to free up and focus on the problem of semantic AD instead. In other words, as

one never returns the model to ImageNet classification, there simply is no good reason

why one would want to preserve performance for it. This ablation shows that, while they

may be simple, the proposed strategies are surprisingly effective for AD.
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Figure 4.3: Due to its regularization towards weights of the pretrained model, ADIB
appears to learn a feature space that preserves some important semantics. For example
animal categories (• cats, • dogs, etc.) are separated from man-made ones (•, •, •, •). It
also locates examples from the unseen bird category (•) nearby other animals. The arrow
highlights a bird that gets mapped close to man-made objects, and identifying it as one
indeed requires some imagination.

Qualitative Analysis Figure 4.3 presents the high semantic association between real-

world object classes and their representation as learned by ADIB. Feature embeddings

for samples from CIFAR-10 were computed and mapped to two dimensions using t-SNE

(van der Maaten and Hinton, 2008) after learning ADIB on the CIFAR-10 semantic AD

setup, i.e. trained on a multimodal P+ that contains 9 out of 10 classes (• cat, • dog, etc.).

At test time the singular anomalous category (• bird) gets revealed to the model.

While ADIB has no direct access to categories or labels, it nonetheless appears able to

semantically organize the different objects in P+. This is likely a consequence of ADIB

being regularized towards the weights of an ImageNet-pretrained model, which captures

a large amount of the semantics present in natural images.

For example • deer and • horses are similar categories, and also cluster together in ADIB’s

feature space. The same holds for • cats and • dogs which form a pair, while • frogs are

separated from the remaining animal classes. Objects such as • cars, • trucks, etc. are
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(a) Cats. (b) Dogs.

(c) Horses. (d) Monkeys.

Figure 4.4: Examples from different object classes in STL-10 that were assigned high
anomaly scores by ADIB.

mapped to their own region, away from the animal categories. While the anomalous

• bird class is not in P+ (so is never seen during training), it locates near other animals, a

strong indication that information from the transfer task is preserved by regularization

via Ω in eq. (4.3.2).

One bird (highlighted by an arrow in Figure 4.3) has a feature representation that differs

from those of other animals, and lies closer to man-made objects (cars, trucks, etc.). It

is however difficult to identify a bird in the image, explaining its location relatively far

away from the •-cluster in feature space.

Figure 4.4 displays examples from STL-10 that have been assigned a high anomaly

score by ADIB. The anomalous images are indeed unusual: either because animals

appear in an unexpected pose (e.g. cat reaching for camera), because of the presence of

captions, or in some cases – such as dogs – because the underlying object class is almost

impossible to discern from the image.

4.4.3 Non-Semantic AD

This section evaluates performance of ADIB and ADRA on the standard CIFAR-10

one-versus-rest AD benchmark. This benchmark is reported across large parts of the
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AD literature (Ruff et al., 2018; Golan and El-Yaniv, 2018; Hendrycks et al., 2019b;

Abati et al., 2019; Hendrycks et al., 2019c; Perera et al., 2019; Ruff et al., 2020a,b) and

therefore is still meaningful for comparison of the proposed methods to previous models.

In some sense, this benchmark can be viewed as opposite of semantic AD evaluated in

Section 4.4.2: only a single object class is fixed as the normal class— say, dogs. All

dogs in the CIFAR-10 training split are collected into (= (so 5000 out of 50 000 total

samples), from which models are trained. Models are then evaluated against the entire

CIFAR-10 test split, and performance is measured by checking whether anomaly scores

assigned to dogs are lower than scores assigned to all nine remaining non-dog classes.

While the optimization settings remain unchanged from Section 4.4.2, for this benchmark

previous works almost exclusively report AUC, and this custom is followed here.

It should be noted that this benchmark constitutes a less complex problem than the

semantic AD benchmark of Section 4.4.2. In particular when singling out objects that

differ significantly from others in CIFAR-10, for example ships or trucks, shallower

feature representations are sufficient to detecting them, which also manifests in relatively

large AUCs for such distinct classes. The benchmark has therefore recently been declared

a non-semantic problem by Ahmed and Courville (2020).

Results As shown in Table 4.5, ADIB raises the current state of the art to 99.1%mAUC,

a marked gap to the previous best method with 96.1%mAUC. As demonstrated by the

performance of kNN-AD (Bergman et al., 2020), simply using features from a large

pretrained network is inferior when looking to detect anomalies.

These results suggest that favorable inductive biases are critical for utilizing AD models

to their full potential. ADRA once again comes very close in terms of performance,

while requiring a much smaller number of learnable parameters.
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Class GT kNN GT+ HSC ADRA ADIB

Airplane 74.7 93.9 90.4 96.7 99.0 (0.1) 99.2 (0.3)
Automobile 95.7 97.7 99.3 98.9 99.7 (0.1) 99.8 (0.1)
Bird 78.1 85.5 93.7 93.2 97.5 (0.4) 98.6 (0.2)
Cat 72.4 85.5 88.1 90.6 96.3 (0.4) 97.0 (0.7)
Deer 87.8 93.6 97.4 97.1 98.9 (0.1) 99.3 (0.1)
Dog 87.8 91.3 94.3 94.7 97.7 (0.2) 98.2 (0.3)
Frog 83.4 94.3 97.1 98.0 99.6 (0.1) 99.6 (0.2)
Horse 95.5 93.6 98.8 97.9 99.6 (0.1) 99.8 (0.1)
Ship 93.3 95.1 98.7 98.2 99.5 (0.1) 99.6 (0.1)
Truck 91.3 95.3 98.5 97.7 99.4 (0.1) 99.5 (0.2)

mAUC 86.0 92.5 95.6 96.3 98.7 (0.1) 99.1 (0.1)

Table 4.5: AUCs for different methods on the CIFAR-10 one-versus-rest AD benchmark.
Included are geometric transformations (GT) (Golan and El-Yaniv, 2018), kNN-AD
(Bergman et al., 2020), self-supervised transformations (GT+) (Hendrycks et al., 2019c),
and hyperspherical classifiers (HSC) (Ruff et al., 2020a). Parentheses show standard
deviations computed over five runs.

OE Dataset HSC ADRA ADIB

SVHN 70.2 75.3 (+5.1) 79.8 (+9.6)
CIFAR-100 96.3 98.7 (+2.4) 99.1 (+2.8)

Table 4.6: Ablations on the CIFAR-10 one-versus-rest AD benchmark for different
choices of OE. Results shown in percentages, alongside relative gain (vs. HSC) displayed
in parentheses.

Ablation Recent work examined the hierarchical relationship between distributions

for out-of-distribution detection (Schirrmeister et al., 2020). Taking inspiration from

this study, here the role of CIFAR-100 as OE is critically examined in an ablation that

compares it to the use of SVHN as OE.

Results in Table 4.6 make it evident that SVHN is less well suited for CIFAR-10, as

performance drops for all methods. HSC, the current state-of-the-art AD method using

OE, achieves 70.2%mAUC here. A sizeable drop, but still improving from 64.8%mAUC

for DSVDD, the mathematical equivalent to using no OE.

ADIB obtains 79.8%mAUC when coupled with SVHN, a gain of +9.6% over HSC. This
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is a considerably larger difference than that for CIFAR-10 coupled with CIFAR-100 of

+2.8% reported in Table 4.5 (ADIB: 99.1% vs. HSC: 96.3% mAUC), indicating that

transfer-based AD benefits performance more when not using CIFAR-100 as OE (albeit

it is better suited overall). In other words, the importance of the transfer task increases

as the suitability of OE decreases.

4.4.4 Anomalous Domains

Another AD setting that can be considered a non-semantic problem is the detection of

anomalous domains, in particular when these differ considerably as is the case for PACS

(c.f. Figure 3.7 which shows examples from each domain).

For this experiment, the normal class encompasses all training examples from three out

of four domains, e.g. includes art painting, cartoon, and sketch, and it is checked whether

models assign higher scores to examples from the anomalous domain (photo) at test

time. ImageNet (Deng et al., 2009) is used as OE, with no changes to the optimization

settings used in previous sections.

While shallow methods can in principle be used to detect the more obvious domains

(sketch in particular), transfer-based methods registered strong performance on more

difficult domains (see Table 4.7).

Due to the presence of latent domains in P+, the methods proposed in other chapters

of this thesis benefit this problem directly: performance is increased by 2.87%mAUC

when coupling SAD (Ruff et al., 2020b), which uses BN, with MN instead (introduced

in Chapter 2).

Extending the adaptationmechanism in ADRAwith SLA (Chapter 3) boosts performance

for all domains except photo, in all likelihood because this domain is relatively similar

to the pretraining task, so that the extra flexibility of SLA does more harm than good.

ADIB once again delivers very strong performance, and obtains 80.50%mAUC here.
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A C P S mAUC

SAD (Ruff et al., 2020b) 23.29 (3.48) 44.39 (3.67) 56.89 (2.09) 99.97 (0.10) 56.14 (2.50)
MN (Chapter 2) 32.50 (1.64) 45.54 (2.23) 58.02 (1.38) 99.96 (0.20) 59.01 (1.24)
ADRA 55.23 (3.47) 56.91 (3.18) 71.12 (2.01) 99.98 (0.22) 70.81 (2.08)
SLA (Chapter 3) 60.28 (3.80) 81.12 (3.41) 67.28 (2.42) 99.68 (0.53) 77.09 (2.43)
ADIB 72.56 (4.12) 72.54 (1.93) 76.92 (1.80) 99.99 (0.11) 80.50 (2.08)

Table 4.7: AUCs in percent for anomalous domain detection on PACS, where the column
heads indicate which domain was set aside during training. MN is inserted into SAD,
and SLA used to replace the adaptation mechanism in ADRA. Standard deviations (in
parentheses) were measured over five runs.

4.4.5 Robustness to Small Modes

An ideal AD model has the ability to incorporate information from normal examples

even if they form only a minor mode of P+, in the sense that only few samples from this

class are contained in (=—for example a rare dog breed. Since AD is concerned with

low-probability events, the ability to robustly incorporate such small modes from few

examples is of special importance.

To measure AD robustness, the following experiment lets the normal class be constituted

by samples associated with two classes (H0, H1), such that (= ∼ 1
A+1PH0+ A

A+1PH1 , where

the minor mode amplitude A ∈ [0, 1] controls the number of examples from H1 in the

normal data.

For a robust AD model, even as (= is relaxed to contain only examples from H0, its

ability to identify the smaller category H1 as non-anomalous would remain intact.
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Figure 4.5: Relative AUCs for secondary object categories, with dashed curves displaying
primary class performance. In the top-left figure (H0, H1) = (“airplane”, “automobile”),
for example. A faster drop for the secondary class signals a less robust AD model.
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CIFAR-10 is used here, and primary and secondary AUCs are reported as a function of

A for different class pairings, e.g. H0 = “ship” and H1 = “truck”. ADIB and ADRA are

compared to to SAD (Ruff et al., 2020b) with pretrained weights, which corresponds to

ADIB with U = 0, i.e. without a regularization term Ω.

As Figure 4.5 shows, for SAD performance for the secondary class decreases much

faster than for ADIB or ADRA, a trend that was found to be consistent across class

pairings, indicating that adequate transfer-based regularization as in ADIB and ADRA

is important to robustly incorporating small modes of data in the normal class.

4.5 Conclusion

Detecting semantic anomalies is a difficult task, due to the infinite and complex ways

these can manifest in data. This chapter proposed two new transfer-based methods to

account for such complexities: ADIB sets a new state of the art in semantic AD tasks

and ADRA provides a highly efficient, yet surprisingly effective learning protocol.

Interventions were used to examine different AD paradigms, and it was shown that

transfer-based AD can detect subtle semantic anomalies. An interesting question for

future research is whether detecting semantic anomalies requires disentanglement, and

if it can benefit from the ongoing development of disentangled representations. The next

chapter discusses more aspects reserved for future work.
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Chapter 5

Conclusion

Learning from multimodal data presents several challenges for standard computer vision

models. This thesis presented new methods to improve performance in such learning

scenarios, proposing a new multimodal normalization, as well as novel approaches for

latent domain learning and semantic anomaly detection.

In the following, Section 5.1 discusses existing limitations and highlights future research

directions for normalization, latent domain learning, and anomaly detection. This is

followed by a discussion in Section 5.2 that aims to assess the broader impact of the

methods and ideas proposed in this thesis.

5.1 Future Work

Normalization One limitation of existing normalization methods is that they require

large batch sizes for accurate estimates of the population statistics ` and f (Wu and He,

2018). This issue also affects MN, since mode-level estimators become less precise as

the number of normalizations is increased, i.e. as  grows.



While methods such as GN and MGN do not share this restriction, for many learning

problems, e.g. classification, their performance simply does not match that of BN, which

therefore remains the default option in modern network architectures. This calls for new

normalization methods that robustly perform when the batch size is reduced.

Given that all other parameters in deep learning are found by optimizing the empirical

risk, c.f. eq. (2.1), the direct estimation of `, f from the mini-batch, as done in BN

and MN, is a somewhat unusual strategy. An interesting alternative is to carry out

normalization by determining `, f via maximum likelihood estimation.

The main benefit of such normalizations is that they would function with any batch

size, even # = 1. In addition, it is unclear how to integrate BN with more advanced

gradient-based optimization routines, for example gradient episodic memory (Lopez-Paz

and Ranzato, 2017) which constrains gradients to counter forgetting in continual tasks

(c.f. Section 3.1.5). This becomes straightforward when the normalization is learned

from gradients as well, alongside the rest of the network.

Another open question is the amount of flexibility required in dynamic gating. While MN

needed gates to be light-weight and therefore used a relatively simple parametrization,

more advanced gating mechanisms should be able to pick up on additional signals to

better align modes in data. Solutions of this kind could become computationally feasible

if they were combined with strategies for dynamically detecting where to insert such

layers in networks, and which regions can do without, which is an interesting research

problem from the perspective of neural architecture search (Zoph and Le, 2017; Liu

et al., 2018; Mellor et al., 2021).

Latent Domain Learning The modeling solutions presented in Chapter 3 are geared

towards learning unified representations over visually diverse data. Rekindling modules

originally devised for traditional (annotated) multi-domain problems to latent domains

required the replacing of domain-level assignments, such that – where adequate –

multimodal data with different visual characteristics may still be processed separately.
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This can be done for more methods besides residual adaptation (the basis for SLA). For

example, a recent study decomposed convolutions for multiple domains (Guo et al.,

2019a). The associated convolutions (one per domain) could be substituted, modifying

layers from containing � of them to a preassigned number targeted by gates.

A largely unexplored but realistic scenario locates itself between latent domain learning

and multi-domain learning, i.e. when domains are annotated for a subset of examples

{(G1, 31), . . . , (G" , 3" )}, whereas others {G"+1, . . . , G# } are not. This problem has

been investigated by Mancini et al. (2018, 2019) for DA, but arguably also deserves

attention in the context of multi-domain learning: for a small number of examples

annotating domains, e.g. photo vs. clipart, appears relatively straightforward. Annotating

an entire database of images however, as required in most multi-domain methods, is not.

This scenario bears many interesting research problems: for example, which share

"/# should ideally be labeled, and what is the dependence on the shape of P? Which

problems can do without any domain labels at all, i.e. when " = 0 as in latent domain

learning? And how should domain information be incorporated into models in this

case: globally, as in many multi-domain strategies, or locally, as in SLA? And perhaps

model-free alternatives are more desirable, for example gradient-based ones? The

problem of learning over partially annotated domains also extends into the purview of

active learning (Sinha et al., 2019; Requeima et al., 2019): given a domain-labeled subset

to start with, which additional examples would benefit most from getting annotated?

Anomaly Detection Anomalies can appear in data for many different reasons, and

transfer-based strategies, proposed in Chapter 4, showed it is important to prepare models

adequately for their variety. It should be noted however that, just like the majority of

existing works in AD, this thesis assumed that (= is clean, so does not contain any

outliers. The contamination of the normal class was studied in the classical literature

(Kim and Scott, 2012) and for autoencoders (Zhou and Paffenroth, 2017), but in the

context of deep AD this aspect seems to not have received the attention it arguably

deserves. Transfer-based approaches are an interesting candidate for such problems,
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because its initial representations may allow spotting outliers before incorporation of the

normal class, which otherwise has to occur in tandem (Liu et al., 2014).

Another interesting extension is to studymodel robustness for semantic anomaly detection

as data is corrupted (Hendrycks andDietterich, 2019). For example, such a study could be

constructed by embedding new object categories into previously unseen modes, merging

research aspects of AD and DG. According to Mancini et al. (2020a) instance-level

mixing (Zhang et al., 2018) under a curriculum (Bengio et al., 2009) are promising tools

for such research, both of which have so far not been adapted to deep AD.

Yet another challenging problem in AD is the susceptibility to adversarial attacks. These

small perturbations, invisible to the human eye, drastically influence a model’s perception

of the object displayed in an image (Papernot et al., 2017; Madry et al., 2018). Devising

methods that can dodge such confusions is important, and results that showed a positive

link between adversarial robustness and transfer learning (Shafahi et al., 2020; Salman

et al., 2020) make this a promising direction for future (transfer-based) AD research.

5.2 Broader Impact

Normalization is ubiquitous in deep learning, contributing both to its beneficial

applications – medicine (Esteva et al., 2019), cosmology (Ishida, 2019), or pharmaceutics

(Aliper et al., 2016) – as much as the disputable, e.g. mass surveillance.

Like with other deep normalization techniques, while MN itself can be viewed neutrally,

this does not encompass its application: when used in questionable settings the better

accounting for different subpopulations in data may have negative consequences for

them. At the same time, improving the performance of e.g. cell classification (Chen

et al., 2016) for different cell types, or achieving more robust performance across diverse

groups in visual data (Wang et al., 2020), are both very desirable.
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Latent Domain Learning In most cases, a sufficiently complex distribution will have

multiple subregions that are of interest. In latent domain learning, this property is

assumed a priori, allowing the decomposition of global accuracy metrics into their

individual components. As the experiments in Section 3.4 highlighted, performance

gains can often be traced back to networks focusing their modeling power onto the larger

modes in data. In turn, this means information from less densely sampled subregions of

the distribution gets suppressed.

A limitation of SLA is that, compared to more conventional mixture models’ clustering

assumption, its latent structure is less interpretable, which makes validating and

establishing trust in its learned representations harder. One can be cautiously optimistic

however that latent domain learning can be a useful tool in better understanding of how

deep learning models may be prevented from fitting some regions in P at the cost of

others, with potential benefits for model fairness (Hardt et al., 2016; Fish et al., 2016;

Corbett-Davies et al., 2017) in the future.

Anomaly Detection has many applications. While progress for medical imaging,

astronomy, or fraud detection will likely be of broader benefit, its uses in e.g. monitoring

and surveillance should be viewed more critically.

An important algorithmic limitation of transfer-based AD is that, like most deep ap-

proaches, it suffers an implicit bias towards the predominant modes in data. Second,

ADIB and ADRA are learned end-to-end, starting from a complex semantic representa-

tion. Therefore a precise understanding of its learned representations is challenging due

to an associated lack of interpretability.

On the positive side, transfer-based AD gives rise to powerful yet simple models for

AD, with ADRA in particular being highly parameter-efficient. As their performance

shows, this doesn’t necessarily mean a constraint on performance, which will hopefully

encourage new AD models that also keep an eye on efficiency. Lastly, transfer-based

AD improves the utilization of pretrained networks, allowing practitioners who do not
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have access to large stores of data or computational resources to nonetheless produce

high-performance machine learning tools.
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