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Abstract

3D scene understanding is an important area in robotics, autonomous vehicles, and

virtual reality. The goal of scene understanding is to recognize and localize all the

objects around the agent. This is done through semantic segmentation and depth esti-

mation. Current approaches focus on improving the robustness to solve each task but

fail in making them efficient for real-time usage. This thesis presents four efficient

methods for scene understanding that work in real environments. The methods also

aim to provide a solution for 2D and 3D data.

The first approach presents a pipeline that combines the block matching algorithm

for disparity estimation, an encoder-decoder neural network for semantic segmenta-

tion, and a refinement step that uses both outputs to complete the regions that were

not labeled or did not have any disparity assigned to them. This method provides accu-

rate results in 3D reconstruction and morphology estimation of complex structures like

rose bushes. Due to the lack of datasets of rose bushes and their segmentation, we also

made three large datasets. Two of them have real roses that were manually labeled,

and the third one was created using a scene modeler and 3D rendering software. The

last dataset aims to capture diversity, realism and obtain different types of labeling.

The second contribution provides a strategy for real-time rose pruning using visual

servoing of a robotic arm and our previous approach. Current methods obtain the

structure of the plant and plan the cutting trajectory using only a global planner and

assume a constant background. Our method works in real environments and uses visual

feedback to refine the location of the cutting targets and modify the planned trajectory.

The proposed visual servoing allows the robot to reach the cutting points 94% of the

time. This is an improvement compared to only using a global planner without visual

feedback, which reaches the targets 50% of the time. To the best of our knowledge,

this is the first robot able to prune a complete rose bush in a natural environment.

Recent deep learning image segmentation and disparity estimation networks pro-

vide accurate results. However, most of these methods are computationally expensive,

which makes them impractical for real-time tasks. Our third contribution uses multi-

task learning to learn the image segmentation and disparity estimation together end-to-

end. The experiments show that our network has at most 1/3 of the parameters of the

state-of-the-art of each individual task and still provides competitive results.

The last contribution explores the area of scene understanding using 3D data. Re-

cent approaches use point-based networks to do point cloud segmentation and find

local relations between points using only the latent features provided by the network,
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omitting the geometric information from the point clouds. Our approach aggregates

the geometric information into the network. Given that the geometric and latent fea-

tures are different, our network also uses a two-headed attention mechanism to do local

aggregation at the latent and geometric level. This additional information helps the net-

work to obtain a more accurate semantic segmentation, in real point cloud data, using

fewer parameters than current methods. Overall, the method obtains the state-of-the-

art segmentation in the real datasets S3DIS with 69.2% and competitive results in the

ModelNet40 and ShapeNetPart datasets.
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Lay Summary

The goal of the thesis is to help machines to see and understand their environment

better. The proposed methods focus on recognizing the objects around the robot and

knowing how far they are. Because the robot can have different sensors, the thesis

proposes approaches for color images and 3D data. The latter is the representation of

an object in 3 dimensions (x,y,z).

First, a method that finds the number of branches of a plant and their diameter is

proposed. This approach uses color images, from a stereo camera (two cameras in par-

allel), as input to locate the position of rose bushes through a refinement process. Then,

the number and width of the branches, and the skeleton of the plant are recovered. This

technique works with a variety of rose bushes in real environments.

The second contribution is a pipeline for a robotic arm that finds the location of

the rose stems to cut them based on gardening rules. The cutting process is obtained

by finding key locations on the plant. Our approach is fast enough that the robot can

update the cutting locations while the robot moves towards them. This feedback on

the cutting locations modifies the trajectory of the robot, which improves the cutting

success rate.

Lately, deep neural networks have achieved significant improvement in segmen-

tation and localization tasks. However, they use a lot of memory from the computer,

which makes them impractical for real-time use. Our third contribution is a light neural

network that learns both tasks jointly and uses the descriptors of one task to improve

the other, and vice versa.

The last contribution focuses on locating objects in a 3D scene. Our method ex-

tracts local information using two types of data: 3D positions and features learned by

the network. This information is then combined and processed further to obtain better

descriptions that can differentiate objects in a real scene, with better accuracy than the

current methods.
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Chapter 1

Introduction

Finding the surrounding objects and their locations are key elements in many appli-

cations, such as scene understanding, robot navigation, autonomous driving, and aug-

mented reality. One of the recurrent problems of these tasks is to locate the objects in

a complex environment using 2D or 3D sensors (e.g. 2D images or 3D point clouds)

while keeping the robustness, efficiency, and being able to work in an uncontrolled

environment. These topics are the research motivation of the proposed thesis.

This chapter provides an overview of the thesis and is structured as follows. First,

the problems related to 3D scene understanding are described. Then, the original con-

tributions to solve each problem are stated. Finally, an overview of the thesis is pre-

sented.

1.1 Problem statement

Humans are extremely good at perceiving natural scenes and understanding high-level

structures which helps them to navigate and interact with their environment. Robots

or autonomous agents emulate this behavior by capturing their environment with 2D,

2.5D, or 3D sensors, such as cameras, stereo cameras, RGB-D sensors, and LIDARs.

Then, the agents use scene understanding to extract useful information about the en-

vironment to interact with it. Two key elements to understand the environment are

knowing what the objects are and where they are located. However, processing this

data requires robust methods to work in a real environment and efficient implementa-

tions to help the robot interact with its surroundings in real-time.

Scene understanding includes a wide variety of tasks. Some of them involve image

and pixel-level semantic labeling such as scene classification, object detection, instance

1
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segmentation, and semantic segmentation. Other tasks focus more on localization like

pose estimation, depth estimation, disparity estimation, and trajectory prediction [4].

From the previous sentence, it can be observed that these tasks can be grouped into

two groups. The first group is used to identify the objects in the scene or the scene

itself, and the second group is used to find the position of the objects either in the 2D

image or in a 3D environment. Finding the identity and the location of the objects

from real-world data is a highly challenging task. An object class might span a wide

range of possibilities, from different shapes, colors, sizes, and poses. For example,

an object “chair” might have a different number of legs, and shape. This is called

intra-class variation, as a result, object segmentation approaches have to learn a variety

of object appearances to maximize the correct number of segmented objects. In the

case where the input data is a 2D image, the complexity increases, because the objects

can be captured from different viewpoints, and the projection from the 3D scene to

the 2D image increases the number of appearances that an object might have. If the

data is a point cloud, depending on the type of sensor, it might be noisy or sparse

(LIDARs with few laser beams) which also adds a level of complexity. Moreover,

external conditions such as illumination or low image resolution add further difficulty

to the task, by limiting the useful information. Once the objects have been segmented,

their position with respect to the agent can be found by using 3D sensors like LIDARs.

However, these sensors are expensive and the data they capture are sparse. A cheaper

and denser solution is the use of stereo cameras, where the depth is found by estimating

the disparity between the left and right images, and triangulation based on the camera

parameters.

A robot uses scene understanding to identify and locate the objects in the scene

at the same time. Therefore, the second problem is how the agent (robot) can use

both methods efficiently and robustly to interact with its environment in real-time. The

problem can be approached using 2D or 3D data. If only 2D data is used, one solution

is to segment the scene and estimate the depth map using the state-of-the-art methods in

each area like [5] for semantic segmentation and [6] for depth and disparity estimation.

This approach is robust but inefficient because these methods usually require a lot of

computational power. Another approach to the problem is through muti-task learning,

where the depth and segmentation tasks are learned jointly like in the works [7, 8, 9].

A third approach is to obtain the location of the objects first, and perform the semantic

segmentation in the 3D domain, like in [10, 11].

An area where robotics relies on efficient scene understanding is agricultural robotics,
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more specifically the area of plant phenotyping. Here, scene understanding is used to

extract information about the structure of plants, find specific parts and perform fruit

harvesting or pruning. These are not trivial tasks, because plants present thin parts and

a self-overlapping structure. For fruit harvesting, most of the methods use the color of

the fruit to find its location. However, for plant pruning, all the branches have a similar

appearance and might have a similar color to the background (green grass and green

branches). Current methods use constant background [12] to segment the branches,

and a global planner to cut a branch [13, 14]. The downside of these methods is that in

case that the plant moves or the reconstruction presents some errors, the cutting might

fail.

1.2 Original contributions

The goal of the thesis is to propose segmentation and localization methods that are ro-

bust and efficient which can be used in robotics applications. As mentioned in Section

1.1, there are several approaches to find and locate objects in a scene. The solutions

in this thesis covers only the area of semantic segmentation to identify the objects in

the scene, and disparity estimation to find their location. Also, these methods are ap-

plied to data obtained by a stereo camera. The first reason is that stereo cameras are

cheaper and obtain RGB information and denser depth values than LiDAR. Also, the

proposed algorithms are expected to work in outdoor environments. This favors stereo

cameras over structured light sensors because outdoor illumination usually degrades

the performance of structured light-based techniques [15].

This thesis has four original contributions, three methods that advance the problem

of scene segmentation using 2D data, and a fourth one that focuses on 3D segmen-

tation. The first contribution approaches the problem by using a robust but efficient

image segmentation network to segment 2D images. The segmentation mask is then

used to improve the disparity map obtained by a fast block-matching algorithm. The

improved disparity is used to enhance the segmented mask. The second contribution

applies the previous method in a visual servoing pipeline. Here, a robotic arm has

to find branches of rose bushes, in a real garden, and navigate towards them to cut

them based on gardening rules. The third contribution uses multi-task learning to per-

form semantic segmentation and disparity estimation together. The final contribution

works in the 3D domain to semantically segment point clouds. More concretely, the

contributions of this thesis are:
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• Efficient 2D scene understanding pipeline, to reconstruct the 3D morphology and

structure of rose bushes. This method presents a rose stem segmentation algo-

rithm through Selectional Autoencoders adjusted to work on real environments

with variable light conditions. The binary segmentation is combined with a dis-

parity image to iteratively refine each other. This process is then used to obtain

the 3D morphology and structure of the plant through skeletonization. This con-

tribution was published in the journal Computers and Electronics in Agriculture

2020 [1].

• A novel rose pruning pipeline based on stereo visual servoing and real-time tar-

get update. The proposed method is a novel 2.5D servoing algorithm that com-

bines point clouds and 2D images to find stems and cutting locations on them.

This work was accepted in the International Conference on Robotics and Au-

tomation 2020 [2].

• An end-to-end multi-task learning method that successfully learns a semantic

segmentation and disparity map together from a stereo pair. To achieve this, it

learns task-specific features that are shared between the two tasks progressively.

The proposed network solves both tasks jointly using less than 1/3 of the param-

eters that the previous works use to solve only one task. This reduced number of

parameters is advantageous for systems that have limited resources.

• An innovative two-headed attention layer that combines geometric and latent

features to segment a 3D scene into semantically meaningful subsets. Each head

combines local and global information, using either the geometric or latent fea-

tures, of a neighborhood of points and uses this information to learn better local

relationships. This work has been accepted in the British Machine Vision Con-

ference 2021 [3].

1.3 Minor contributions

Part of the work in this thesis contributed to agricultural robotics. While working in

this area, we observed that there is a lack of large datasets for plant and rose segmen-

tation and disparity estimation. This motivated us to created a large dataset of real

and synthetic roses called ROSeS (Roses for Object Segmentation and Skeletoniza-

tion), which is divided into three categories: S-ROSeS, a synthetic dataset of rose
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bushes, H-ROSeS, a hybrid dataset with 200 real indoor images but with realistic plas-

tic plants, and R-ROSeS, a completely real dataset with 100 photos of rose bushes

taken in different botanic gardens.

H-ROSeS and R-ROSeS were captured using a stereo camera, with a resolution of

720×480 px, and a baseline of 0.03 m. The segmented ground truth was obtained by

labelling manually each image at the pixel level. Because labelling roses is a hard and

arduous labor, it is easy to label wrong certain parts of the image or confuse a branch

with other objects in the image. Therefore, the quality of the labelling was evaluated

twice to check for parts that were wrongly labelled or missing.

S-ROSeS consists of 5760 stereo images with a resolution of 720×480 px obtained

from 160 different views of 36 synthetic rose bushes generated with Blender1. The

images were generated at different distances and perspectives by rotating the camera

around each plant and moving the camera closer and farther from it. Each of these

bushes is unique. They were created following the morphology of real rose bushes

with a mean height of 0.6m ± 0.20m. The 36 synthetic bushes are distributed in 4

different outdoor environments (9 bushes per environment). The environments differ

in background, light conditions and position of the sun. Each stereo pair has its corre-

sponding ground truth with the segmented image, the disparity map, and the skeleton

for both left and right views (see Figure 3.10). These images were also generated using

Blender’s properties. To obtain the depth map of the synthetic dataset, we simulated

a stereo camera with a parallel stereoscopic configuration, a sensor size of 32 mm, a

focal length of 0.035m, and a baseline of 0.03m.

1.4 Thesis outline

The central problem of this thesis is the study of 3D object segmentation and local-

ization. Chapter 2 provides a background and recent works in this area. Chapter 3

approaches the problem from the 2D perspective by combining stereo and disparity

images for object reconstruction applied to plant phenotyping. If we want to put these

3D techniques into a real-time application for visual feedback, these methods have to

be light and robust to changes, so the robot or agent can track the desired key points;

this is discussed in Chapter 4. With the recent improvements of deep learning. Meth-

ods that use this approach obtain state-of-the-art results in semantic segmentation and

disparity estimation. However, they are not computationally efficient. Chapter 5 de-

1Blender (https://www.blender.org/) is a free and open source 3D creation suite.
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scribes our solution using multi-task learning. Previous chapters approach the scene

understanding problem using 2D stereo pairs. On the contrary, Chapter 6 provides a

solution for unordered 3D point clouds.



Chapter 2

Background

This chapter explores the relevant background of scene understanding addressed in this

thesis, such as semantic segmentation, multi-task learning for scene understanding, and

3D segmentation. A brief history of the tasks along with the most recent techniques

is also presented, as well as an overview of the applications of these techniques in

real-world problems.

2.1 Semantic segmentation

Semantic segmentation is the task of labeling each pixel in an image with a corre-

sponding class. It is one of the oldest, yet unresolved tasks of modern computer vision

and, as such, has been extensively researched. Therefore, an overwhelmingly large

number of approaches have been proposed, and the summary provided here is far from

exhaustive. We present an overview of the most relevant works that have kept the field

moving forward, with a special focus on those that are used in this thesis.

2.1.1 Early approaches

The early approaches, also known as classical methods, are algorithms that rely on

domain knowledge and handcrafted features rather than neural networks. The typical

segmentation process starts with image acquisition, then, the features of the image are

extracted, usually at different image scales. The next step uses these features to learn

patterns that can describe an object in the image, either using supervised or unsuper-

vised learning. Finally, the result is refined through different post-processing steps

[16, 17].

7
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The most basic form of segmentation is based on the intensity value of the pix-

els, where all the pixels with similar intensity values are grouped into one class using

clustering techniques [18, 19, 20]. This pixel intensity can be represented by different

color spaces, such as gray-scale, RGB, and HSV. To reduce the color cast caused by

illumination, normalized color spaces are preferred [17]. Later on, features with geo-

metric invariant properties started to be used, some of these features are: Histogram of

Oriented Gradients [21], Scale-invariant Feature Transform (SIFT) [22], and Speeded

Up Robust Features (SURF) [23]. The features can also be grouped in a bag of words

to describe complex objects [24]. These features are then used to train a classifier.

These classifiers can be supervised: support vector machines (SVM), random forests,

and conditional random fields (CRF). Supervised methods are trained using a labeled

dataset to find the most likely output y given input features X P(y|X). On the other

hand, unsupervised methods cluster the data based on similar patterns. Therefore,

these methods label with the same class the regions that share similar features. Some

methods used for semantic segmentation are: k-means, mean-shift [19], graph-based

image segmentation [25], random walks [26], active contour [27], and watershed seg-

mentation [28].

2.1.2 Deep learning

It is almost a decade since the state-of-the-art in semantic segmentation has been dom-

inated by approaches based on deep neural networks, mainly, convolutional neural

networks (CNNs). A CNN is capable of learning interesting features, not only low-

level features like edge and blob detectors but also high-level features which detect

more complex structures in the image like in Figure 2.1.

One of the most important breakthroughs for the CNNs, in the area of computer

vision, was done by Krizhevsky et al. [30]through an efficient GPU implementation.

Even though the GPU implementation was done for a classification task, it became

a solid tool for other areas in the field. [31] was one of the first works that used a

CNN for image segmentation, more specifically, they used fully convolutional neural

networks (FCN). This type of network uses locally connected convolutional layers,

pooling layers, and up-sampling, instead of dense layers. Such properties allow the

network to work with variable image sizes and make it faster to train [31]. An example

of these networks can be seen in Figure 2.2. An FCN is composed of a backbone

and an up-sampling layer at the end of the network. The backbone is usually another
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Figure 2.1: Example extracted from [29] showing the different features learned at differ-

ent levels of the network.

Figure 2.2: FCN architecture proposed by Long obtained from et al. [31].

network, trained previously for a classification problem, like VGG [32], ResNet [33],

and DenseNet [34].

The next improvement in the area was proposed by [35] with their implementation

of dilated convolutional layers, also known as Atrous convolutions in their network

called Deeplab. This CNN replaced the last layer with a dilated version of convo-

lutional weights. DeepLab v2 [35] added a dilated spatial pyramid pooling layer at

the end of the backbone to capture features at different resolutions. DeepLab v3 [36]

improved the previous model by replacing some of the normal convolutions in the

backbone with their dilated layers to incorporate more context. Pyramid Scene Parsing

Network (PSPNet) [37] had a similar approach to DeepLab v2 but instead of using
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Figure 2.3: SegNet encoder-decoder architecture taken from [39].

dilated convolutions, they used pooling layers to extract the context at different scales.

Another architecture also became dominant in the area, where, instead of only up-

sampling the last layer of the backbone to predict the segmented classes, a decoder

network was added. The decoder allows the network to take low-resolution features

and map them to features at full input resolution. DeconvNet [38] was one of the

first works to use this type of architecture. For the decoder part, they proposed a de-

convolution layer that associates a single input activation with multiple outputs. in

SegNet [39] the decoder network has the same number of layers as the encoder part,

and up-samples the features using the pooling indices from the encoder layers (Fig-

ure 2.3). A similar approach is used by U-Net [40], but instead of using the pooling

indices, they copy the encoder features to their respective decoder layer. In this way,

they add low-level feature information from the encoder to the decoder. DeepLab v3+

[41] combined this architecture with their Atrous layers to improve their segmentation.

Other types of networks focus on improving the segmentation by including extra in-

formation or modules. For example, Global Convolution Network (GCN) [42] adds a

convolutional layer with a bigger field of view (larger kernel size) between the encoder

and decoder connections. On the other hand, Gated-SCNN [5] adds edge information

as input. We can also consider, as extra information, the use of disparity or depth im-

ages, either as input or as a multi-task optimization problem, to improve the semantic

segmentation. These types of networks are described in Section 2.2.
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Figure 2.4: Block matching method, where a window from the left image is compared

with window from the right image to find the best match.

2.2 Joint segmentation and disparity learning

This section describes the methods that use either disparity maps to improve the seman-

tic segmentation or learn both using multi-task learning. However, before describing

such methods, a brief introduction to disparity estimation will be given.

2.2.1 Disparity estimation

Disparity estimation, in stereo vision, is the process of finding the shift (disparity) of

the pixels from one image (left) to another (right), as seen in Figure 2.4. Assuming

that the left and right images are rectified1, the disparity between the two images can

be found by matching image features along the same image rows.

Similar to semantic segmentation, disparity methods can be separated into classi-

cal and deep learning methods. Usually, the latter perform better, but at the cost of

processing time. The classical methods use block matching algorithms to find the dis-

parities, these types of methods [43, 44, 45, 46, 47] take a window around each pixel

in the left image and look for the best match in the right image (See Figure 2.4).

On the other hand, deep learning methods consider stereo matching as a learning

problem. The most common architecture used for this task is an encoder-decoder net-

work, where a backbone network is used to extract the features from the left and right

images, a cost volume function calculates the similarities between feature maps, and a

final network processes the resultant features to obtain the disparity. One of the first

1Transformation process used to project images onto a common image plane.
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Figure 2.5: DispNet architecture taken from [48].

successful approaches was obtained by Mayer et al. [48], where they introduced a 1D

correlation layer along the epipolar lines to calculate the similarity, or cost, between

two similar feature patches, see Figure 2.5. Other approaches added context informa-

tion to the cost volumes and use 3D convolutions to output the final prediction [49, 50].

Chang et al. [50] used pooling layers to extract the context at different scales similar

to the work [37] for image segmentation.

Other approaches focus on adding new modules that improve the quality of the dis-

parity map. [51] considers the cost aggregation as a learning process. Therefore, they

add a module that generates and selects cost aggregation proposals. [52] adds a differ-

entiable semi-global aggregation as a cost aggregation module. Other proposals focus

on a progressive refinement of the disparity map, either using recurrent neural net-

works (RNN) like [53], checking feature consistency [54], or performing multi-scale

refinement [55, 56]. These methods usually perform poorly on real datasets because

they need a large number of images to learn the disparity map correctly. Because of

the reduced number of data in real datasets, the networks are first trained on synthetic

images and then fine-tuned with the real dataset to improve their performance. [57]

proposes a domain normalization layer, which regularizes the distribution of learned

representations, making them domain invariant. Thus, allowing the network to obtain

good performance on real data, even when it is trained only with synthetic images

and not fine-tuned. Although these end-to-end neural networks demonstrated good

performance for stereo matching, they usually suffer from huge memory usage and

low-speed [6].

One problem of training with stereo images is the lack of large datasets. As a result,

another way to estimate the disparity between two stereo images is using unsupervised

learning. This approach relies on minimizing photometric warping error. Xie et al.

[58] predicts the right image from the left image using pixel-wise loss. Their output is
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a probability map, for a given range of disparity d, for each pixel. Then, the left image

is shifted using the disparity probabilities to obtain the right image. [59] uses a similar

approach for flow-estimation, where they add a smooth term to model the difference

among the neighboring flow predictions.

2.2.2 Multi-task learning

Previous sections described the history and evolution of semantic segmentation and

disparity estimation. Also, it was seen that the current state-of-the-art uses CNNs to

learn each of these tasks separately. However, Zamir et al. [60] and Standley et al.

[61] demonstrated that the tasks of segmentation and depth estimation (inverse dispar-

ity) have a good learning affinity, and that learning both tasks jointly can improve their

performance. Because of this, some works use multi-task learning to output the seman-

tic segmentation and disparity estimation together, using the same network2. Figure

2.6 shows a graphic example of the similarities among the semantic segmentation, dis-

parity, and multi-task networks.

Multi-task learning focuses on improving the learning efficiency and prediction

accuracy of multiple complementary tasks by sharing information between them [62].

If one task is similar to another, learning one will improve the performance of the other

due to their similarity [60, 61]. However, if two tasks are different they will worsen

their performance [61].

In the literature, there are methods that use a disparity map as extra input of a net-

work to segment the objects in an image [63, 64, 65, 66, 67], as well as methods that

use segmented images to improve the disparity estimation [68, 69, 70, 8, 71]. One of

these approaches is SegStereo [8], where a pre-trained semantic segmentation network

is used to obtain semantic features from the left and right images and compute the

matching cost between them. The cost volume and left features are further processed

by convolutional layers to predict the disparity. They added an auxiliary loss by warp-

ing the right image with the predicted disparity and predict the semantic class for each

shifted pixel. [72] Uses 3 networks: a pre-trained disparity network, similar to dispNet

[48], to estimate the disparity, a pretrained DeepLab network [35] to segment the left

image, and a third network that uses intermediate features of the two previous networks

to refine the disparity. Zhang et al. [73], instead of using two networks separately to

predict the segmentation and disparity, train a semantic segmentation network with

2Multi-task CNNs usually output the segmentation and disparity of the left image, unless stated

otherwise.
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Figure 2.6: Generic semantic segmentation, disparity, and multi-task learning networks.

The semantic segmentation network consists of an encoder and a decoder to process

the input image and output the segmented probabilities. The disparity network has two

encoders, one for each input image. These encoders share weights, so the features

from left and right images are processed by the same learned filters. Then, the last

encoder features are used to obtain a correlation cost. The multi-task network is similar

to the disparity network, but it uses two decoders, one for each task.

multiple scale outputs, freeze the network and use the learned intermediate features to

learn the disparity map. As a final step, they refine the network by learning both tasks

but optimizing the segmentation of the warped right image instead of the left. Different

from the previous approaches, the work by [7] trains an end-to-end network to obtain

the disparity and segmentation maps jointly. The network consists of one encoder and

two decoders with multi-scale outputs (see Figure 2.7). One decoder segments the in-

put image and the other estimates the disparity. Finally, the intermediate features of

both decoders are used to output a refined disparity.

The works above show the most common approaches to disparity estimation and

semantic segmentation joint learning. They are robust but computationally expensive,

either because they require to train state-of-the-art networks of one or both tasks to

be combined later, or because they have sub-networks, one for each task. This leaves

space for more efficient methods (or networks) to be researched, which are capable of

combining both tasks and reduce the number of extra networks and sub-networks.

In the literature of multi-task learning, it can be seen that a more explored area

is the estimation of monocular depth maps instead of disparities. It might be due to
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Figure 2.7: Multi-task network proposed by Dovesi extracted from et al. [7].

two reasons: 1) Lack of disparity datasets. This is because it is difficult to obtain

proper disparity ground truths for real data (images). One way to get “real” disparity

ground truths is by creating synthetic datasets. However, rendering images is time-

consuming, in particular, when aiming for high-quality images with visual effects such

as motion blur or depth of field to simulate real conditions [74]. 2) Depth estimation

using monocular inputs removes the necessity of computing cost volumes between

features of image pairs. These methods will be briefly reviewed in the following para-

graph because they use multi-task learning, and depth and disparity are related. One

of the simplest approaches is given by [75]. Their work proposes an architecture that

can be used to learn semantic segmentation, depth and normals by changing only the

last layer. Ubernet [76] improves this by proposing an asynchronous backpropagation,

which allows the network to update only the weights of chosen tasks during the train-

ing. As a result, their network can learn seven tasks even when the ground truth is

not available. The work by [77] proposes an encoder-decoder (backbone) where the

last layer is separated into task-specific branches, one for segmentation and the other

for depth estimation. [9] improves the previous method by using DeepLabV3+ [41]

with Atrous Spatial Pyramid Pooling (ASPP) as backbone. Instead of outputting both

predictions at the end of the network, Zhang et al. [78] work predicts the depth and

segmentation after each decoder layer, similar to Dovesi et al. [7]. These approaches

are generally lighter than the ones that use stereo-pair inputs because they do not need

to process two input images at the same time. However, monocular depth estimation

is an ill-posed problem [79] unless more context is given to the image.
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2.3 3D semantic segmentation and classification

Previous sections describe how to find what an object is (semantic segmentation) and

where they are located (disparity estimation with calibrated camera) in 2D images.

However, the agent (robot) can also receive the information from its surroundings using

other types of sensors, which means that the input data would be different. A common

type of data is a point cloud. A point cloud is a set of points in 3D, usually unordered

and sparse. Given that the point clouds already provide the location of the objects, the

goal of scene understanding is to find the semantic classes of each point. This task

is called 3D point cloud semantic segmentation, and this section will review the most

relevant works in the field.

2.3.1 Early approaches

Similar to early approaches for 2D image segmentation, the first approaches for point

cloud segmentation used handcrafted features designed for specific tasks. These fea-

tures encode statistical or geometric properties of the points and usually are invariant

to certain transformations such as translation, rotation, and scale. [11] classifies these

features as intrinsic or local [80, 81, 82], and extrinsic or global [83, 84, 85]. The

biggest downside of handcrafted features is that they are task-specific and is not trivial

to find the optimal feature combination.

2.3.2 Volumetric-based methods

These methods quantize an unordered point cloud in a uniform structure like voxels

(see Figure 2.8). Some approaches use 3D convolutions to find local relationships

between closer groups of points [86, 87]. However, the amount of memory required to

compute these convolutions makes them unfeasible to process a large number of points.

Methods like OctNet [88] and O-CNN [89] save computation time by using octrees to

avoid processing empty spaces. [90] and [91] use Kd-tree and Hash structures instead.

Although these implementations reduce the computation required to train a 3D CNN,

quantizing the points comes with the cost of losing important fine-grained information.

2.3.3 Point-based networks

These are networks capable of using irregular point clouds without projecting or quan-

tizing them into regular grids. The main characteristic of this type of network is the
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Figure 2.8: Point cloud to voxels example from [92].

Figure 2.9: PointNet++ neighborhood clustering and sampling process from [93].

use of shared MLP layers, also known as point-wise or 1D convolutional layers. Point-

Net [11] is a milestone of this kind of network. This approach uses MLP layers as

permutation-invariant functions to process each point of a point cloud individually,

and a max-pooling layer to aggregate them. The performance of the network is limited

because they do not consider local spatial relationships in the data. PointNet++ [93]

addresses this issue by sampling the points, grouping them in clusters, and applying

PointNet on the clusters; an example can be found in Figure 2.9. SO-Net [94] uses

a similar hierarchical structure adding self-organizing maps (SOMs) to capture better

local structures. Other approaches like PointConv [95], PointCNN [96] and KPConv

[10] construct kernels based on the input coordinates to be used as convolution weights.

Some works project local neighborhoods into tangent planes and process them with 2D

convolutions. The tangent plane parameters can be found using point tangent estima-

tion [97], or approximated [98, 99, 100]. The downside of these approaches is that

they lose the information of 1 dimension given that they project the points to a local

2D plane.
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2.3.4 Self-attention and transformers

Self-attention and transformers have revolutionized the area of NLP [101, 102]. This

has lead to the 3D segmentation field to investigate these techniques [103, 104, 105].

In the point cloud domain, self-attention networks can be seen as an improvement of

the MLP networks, where instead of using pooling layers to capture local relation-

ships, they learn these relationships through an attention layer which estimates a score

function to weight the contribution of each neighbor. The self-attention architecture

resembles the encoder part of the transformers.

One of the attempts to apply transformers to point clouds is PCT [103]. They re-

place the MLP layers from PointNet++ with transformer layers and the output feature

of each layer is enriched with a discrete Laplacian operator. There are two differ-

ences between their method and ours. The first one is that they aggregate the points

inside a neighborhood by applying maxpooling. We will use a self-attention instead,

which allows the information of all the neighbors to be passed, rather than only using

the neighbor with the highest feature value. The second difference is that they use

global attention and we will use local attention. This means that their method attends

to all points, while ours attends to a local cluster of points. In terms of computation,

their memory requirements are quadratic [N×N] while ours is [K×N] where N is the

number of points and K is the number of neighbors in the local cluster. [104] uses ge-

ometric features to add extra information to semantic features, and self-attention and

maxpooling are used to do the local aggregation. The same operation is performed at

different scales and the results are combined using another self-attention layer. The

way they perform local aggregation is the closest to our work presented in Chapter 6.

However, this design loses information from the geometric features by combining them

indiscriminately with the semantic features. Our network approaches this problem by

using a two-head self-attention mechanism, where one head focuses on the geometric

features and the other on the semantic features. In addition, they use scalar attention

while we use vector attention, the latter brings more flexibility to the attention layer.

This is because scalar attention uses the same learned score for all the feature channels

of a neighbor point, whereas vector attention obtains a score for each channel indi-

vidually [105]. Our method can also be considered as the closest implementation to a

transformer for point cloud segmentation, because, unlike previous works, we adapted

one of the key properties of transformers, which is the multi-head attention structure.
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Figure 2.10: Scene understanding applications using 2D and 3D data. From left to right.

The first two columns show examples applied to urban and rural areas to segment and

localize objects. The last two columns show examples of 3D point cloud segmentation.

The third column is part segmentation (segment branches in plants) taken from [106]

and the fourth is object segmentation taken from [107].

2.4 Scene understanding in the real world

After exploring the history and background of the main parts of scene understanding,

this section gives an overview of the areas where it can be applied, focusing more

on the applications in agriculture, where the objects in the environment have similar

characteristics, making it an interesting and challenging problem. Some examples can

be found in Figure 2.10. Finally, as some of our methods are applied to visual servoing

(in agricultural robotics), a brief overview about this area and their challenges will be

given.

2.4.1 Urban areas

This thesis considers data captured from urban street and indoor areas. The most com-

mon application for urban areas is street scene understanding for autonomous driving.

The approaches vary from segmenting the whole data [41, 10] (2D images or point

cloud) to only one part of it, like roads [108], cracks on the road [109], people [110],

and cars [111]. Indoor scene understanding is usually used for robot navigation, ob-

stacle avoidance [112, 113], grasping [114], and visual servoing [13]. As part of the

perception module, it is in charge of finding the objects that the robot will interact

with. Therefore, if the robot needs to operate in real-time and in a real environment,

this module can be a bottleneck for the system.
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2.4.2 Agriculture

Similar to the applications in urban areas, scene understanding is often used in agri-

culture to find the location of the objects that surrounds an agent (robot). It is used

to navigate around gardens and farms [115], or to do more specialized work like fruit

grasping [116], crop picking [117], plant segmentation [118], branch cutting [13], plant

phenotyping [106]. The latter is a growing area where scene understanding is used to

recover the physical form and external structure of plants, which allows the robot to

interact with them.

2.4.3 Visual servoing in agricultural robotics

Visual servoing methods, iteratively and in real-time, control robots using visual infor-

mation as input data. To acquire information around the robot, cameras can be placed

on the manipulator (eye-in-hand) or in the environment (eye-to-hand). These terms

have been defined as: “the camera is said eye-in-hand (EinH) when rigidly mounted

on the robot end-effector and it is said eye-to-hand (EtoH) when it observes the robot

within its work space” [119].

The benefit of the EinH configuration is that the robot can have a closer and more

precise interaction with the target. However, it is limited to the working space of the

arm. Therefore, the information that can be received is constrained to the field of view

of the camera [120] and its current position. On the other hand, EtoH methods use a

camera located outside the work-cell, which allows them to have a broader, but less

detailed, view of the working space. This helps to overcome the problem of partial

view that eye-in-hand cameras have.

In agricultural robotics, more specifically in the tasks of grasping and harvesting,

EinH configuration is preferred for visual servoing because the vision module can cap-

ture more detailed information of the target when the robot gets closer to it. EtoH is

generally used to model the plant in 3D or extract richer information of the object.

Then, the robot plans the trajectory based on this information. However, there is no

visual feedback [121, 13, 122]. Thus, the rest of the section will describe previous

EinH approaches.

Gurel et al. in [12] and [14] present a simple approach to segment rose stems by

thresholding the green color space. They use this segmentation to find the skeleton

of the stem and trace it with a manipulator and a stereo camera. This process is done

using a single rose stem with a constant background. On the other hand, [123] trims
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bushes in real gardens using 3D shape fitting and an eye-in-hand stereo camera. Based

on the shape, they calculate the optimal positions and trajectory for the robot to trim the

bush to the desired shape. After each trim, the robot evaluates the quality of the cut to

repeat it or continue with the planned trajectory. In [124], they harvest tomatoes using

an image-based visual servoing approach. They find the position of the fruit based on

their round shape and characteristic color. Similar to the previous method, Barth et

al. [125] uses a CNN to segment the fruit of sweet pepper plants and SLAM to locate

their position in 3D. However, unlike [124], they use position-based visual servoing to

find the velocities of the robot. Similar to the previous approach, [126] segments the

fruit to find its position in the image but uses a stereo camera to obtain the 3D location

instead.

While exploring the literature, many applications of visual servoing on fruit har-

vesting were found [127, 128, 129, 130], but none for rose pruning. This might be

caused by the complexity of the task. In fruit harvesting, the color of the fruit high-

lights its position. However, to prune a rose, the robot has to interact with branches,

whose shape and structure are similar along with the whole bush, making it a more

complicated task. The closest approach to rose pruning is the work developed by Bot-

terill et al. [13] where they create a system to prune branches of grapevines. However,

they do not use visual feedback to help with navigation. First, they capture the plant

from different perspectives, segment the branches, and then reconstruct the plant in

3D. Then, a brute force searching algorithm is used to find the branches that should be

pruned. Once the branches are found, their position is sent to the robot to cut them.

2.5 Discussion

Scene understanding can be divided into two sub-tasks, semantic segmentation to de-

tect the objects in the scene, and disparity (or depth) estimation, to locate them. Indi-

vidually, each area has an extensive literature with good performance using 2D images.

However, their state-of-the-art CNNs are prohibitively expensive in terms of process-

ing time and memory, which makes them unsuitable for their application in real-time

scenarios. One solution is to use a classical method to compute the disparity, which

usually provides good results in real-time, and use deep learning to segment the im-

ages, which is a more difficult task when the environment is not controlled. This strat-

egy is used in Chapter 3. Chapter 4 validates the previous method by applying it as the

perception module of a robot arm to do real-time visual servoing. These two first ap-
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proaches are tested in the agricultural robotics field. More specifically, to segment rose

bushes, obtain their morphology and find their 3D position in the environment, as well

as key locations based on some constraint rules (gardening rules). This area is chosen

because robots in agriculture need light online methods for navigation. Also, agricul-

ture itself is an area that benefits from robust vision methods to extract information

about plants to know their location [115], collect fruit [131], or get their morphology

[132]. To obtain this information from such complex objects, it is necessary to have

a large and diverse dataset, especially in the age of deep learning. Thus, we created

a large dataset of real and synthetic roses which capture diversity, realism and have

different types of labeling.

Unlike Chapters 3 and 4 where deep learning and classical methods are combined

in a pipeline, Chapter 5 explores the area of multitask learning to learn jointly the

semantic segmentation and disparity maps using a single CNN. Apart from cameras,

robots can use other types of sensors to gather data. These sensors can capture 3D

information like point clouds. Here, the goal of scene understanding is to label each

point with a class. Chapter 6 uses geometric and latent information from 3D point

clouds and a neural network to tackle this problem.

Scene understanding is more than just segmenting an image. It allows the agent

to detect and localize the objects in the scene and interact with them. This interac-

tion can be as simple as finding what are the objects around the agent or as difficult

as recovering specific information of an object so the agent can adapt their behavior

when interacting with it, such as grasping different surfaces and obtaining quantitative

information from an object.



Chapter 3

2D Segmentation and Disparity

Refinement

This chapter explores the area of 2D scene understanding applied to morphology esti-

mation and 3D reconstruction using the classical pipeline approach of image acquisi-

tion, segmentation, disparity estimation and refinement. Because the segmentation in

real environments is a hard task, it is done using a convolutional neural network. To

test our method, segmentation and disparity outputs are used to reconstruct and find

the branching structure of plants. The research reported in this chapter was previously

published in [1].

3.1 Introduction

Computer vision and robotics have made significant advances in detection and automa-

tion of indoor and outdoor tasks. The vision part is generally used to segment, localize

or track objects so the robot can navigate to an area of interest and manipulate the

object [133]. Outdoor tasks usually deal with a more uncontrolled environment than

indoor tasks, mainly due to the variations of light, wind, shadows, as well as variations

in the type of terrain. An example of a challenging outdoor task is that of a robot that

can move through a garden, detect key elements and recover their structure in order to

work with them.

The method proposed in this Chapter belongs to the vision module of a garden

robot capable of navigating towards rose bushes and clip them according to a set of

pruning rules1. An example of the pruning rules can be seen in Figure 3.1. This robot

1Project TrimBot2020: http://trimbot2020.webhosting.rug.nl

23
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(see Figure 3.2) consists of a mobile platform with a camera rig for navigation and a 6-

DOF robotic arm with a cutting tool and a stereo camera mounted on the end-effector

using an eye-in-hand configuration [134]. A detailed description of the robot can be

found in [135]. A demonstration of the rose pruning process can be also seen in the

video: https://youtu.be/r9IHy5lH8YM.

Remove about
half of last 
year's growth

Remove interior
crossing branches

Remove sucker 
from rootstock

Remove
dead wood

Remove thin,
weak growth

Figure 3.1: The image2shows the rules a human should follow to prune a rose bush. In

the case of the robot, it must recognize parts of the plant where these rules should be

applied. Our method obtains the morphology of the rose bush. In other words, it finds

the branches of the bush as well as their radius. These outputs are essential for the

perception module, as they can be used to find parts in the plant that are needed to do

rose pruning, such as dead branches, crossing branches, thin growths, and the height

of the plant.

The vision module is divided in two main parts, one for robot navigation and other

for visual servoing. The robot navigation uses a depth fusion system which combines

multiple disparity images obtained from a 10 camera rig [136] and SLAM for robot

localization [137]. This part allows the robot to navigate in the garden towards a rose

bush. The second part of the vision module implements visual servoing for the manip-

ulator. This is in charge of processing the images captured by a stereo camera mounted

on the robot arm to detect cutting locations on a rose branch and move the cutter to-

wards those cutting locations.

The first module allows the robot to navigate towards a rose bush and, once a rose

bush is located and the robot is facing towards it, the system switches to the second

module. This second module assumes it will receive images where only one rose bush

2Image modified from https://www.allaboutannapolis.com/preparing-your-yard-for-

winter.html
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Figure 3.2: General overview of the robot (left image) including the 6-DOF robotic arm

and the cutting tool. A stereo camera using an eye-in-hand configuration (right image)

is mounted on the same cutting tool.

appears and all the segmented branches belong to the same plant.

The pruning process is: First, the branches are localized by segmenting them from

the rest of the scene. Then, the 3D morphology of the plant is recovered. Finally,

based on the morphology of the plant, the robot finds the branches that should be cut

and sends the manipulator to clip them. This Chapter focuses on the vision module,

which segments the stems of a rose bush and obtains its morphology. To the best of our

knowledge, there are no previous methods devoted to segment roses and obtain their

branching structure for pruning. The closest approaches are the segmentation of trees

and plants, which are described in detail in the following section.

Our approach tries to solve this problem without making assumptions about the

type of environment or lighting conditions, working with rectified stereo input images

and recovering the morphology of the plant to determine the branches to prune. First, a

Selectional Autoencoder architecture [138] is trained to select the pixels that belong to

the branches of a rose bush. It then calculates the disparity map and combines it with

segmentation to improve the accuracy of the result. Finally, the skeleton of the bush,

the branches and the 3D morphology of the plant are obtained.

Also, we have seen that previous methods use simple datasets with constant back-

grounds and few images to segment the plants from the rest of the scene. This is

mostly because pixel-level labeling of stems and branches is time-consuming and re-

quires more precision than other objects, like cars or people, due to their thin structure.

The reduced number of datasets and images might be also one of the causes why plant

segmentation is a less explored area compared to other semantic segmentation tasks. In



26 Chapter 3. 2D Segmentation and Disparity Refinement

addition, the availability of a large dataset has become even more important in the era

of convolutional networks. For these reasons, this work presents a collection of three

such datasets with real and synthetic plants in different environments, light conditions,

and with intra-class variation, as well as their segmentation ground truth, and disparity

map for the synthetic plants.

Therefore, our approach is validated using five datasets. Our three large datasets of

roses and two datasets of plants. More specifically, we have: (1) A synthetic dataset

of rose bushes in 4 different environments, (2) a dataset of realistic plastic rose bushes

with real backgrounds, (3) a dataset of real roses captured in two different botanic

gardens, (4) a dataset from the state of the art of Arabidopsis genus plants captured

indoors, and (5) another dataset from the state of the art of real roses captured in a real

garden.

In summary, the Chapter makes the following contributions: (1) Rose stem seg-

mentation through Selectional Autoencoders adjusted to work on real environments

with variable lighting conditions, (2) novel combination of binary segmentation with

disparity to obtain the 3D morphology of the plant through skeletonization, (3) a com-

plete pipeline to recover the morphology of rose stems from stereo images that allows

to determine the 3D structure of branches and choose the ones that should be pruned,

and (4) a collection of datasets for rose bush segmentation. The rest of the Chapter

is organized as follows: the next section makes a brief review of the state of the art,

Section 3.3 presents the proposed approach, Section 3.4 describes the datasets used in

the evaluation, Section 3.5 reports the evaluation results, and finally, conclusions and

future work are addressed in Section 3.6.

3.2 Related work

As stated before, there is a limited literature on the specific task of rose bush segmen-

tation and morphology extraction using 2D stereo images. Therefore, we will focus on

works that are closely related, mainly in the areas of tree and plant modeling, either

using 2D images, multiple 2D images or point clouds. There is an extensive literature

on these topics, so we will review it by grouping them according to the type of data

used.

Among the methods that use point clouds we can find works that only reconstruct

the branches (without leaves, called off-leaf) and others that do include them (on-leaf).

For example, [106] model off-leaves trees by fitting cylinders to the point cloud. Then,
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they find the tree components by considering small regions of the tree and searching

for neighbors and bifurcations. Hackenberg et al. [139] propose a similar approach but

using spheres to look for sections of the branch instead of splitting the tree in regions.

These two approaches obtain the plant information using point clouds of off-leaf trees.

However, they need a clean point cloud as input while our approach uses a raw stereo

image as a starting point. There are also works on getting the morphology of trees

with leaves. Livny et al. [140] propose an on-leaf model to reconstruct the skeletal

structures of trees from a point cloud. They perform global optimization and clustering

on a directed acyclic graph that represents the points of a tree. Belton et al. [141] obtain

geometric features and use Gaussian Mixture Models (GMM) to split the tree into its

principal parts (trunk, branches and leaves). Huang et al. [142] get the skeleton of a

plant by applying L1 - medial skeleton on a point clouds. While this method works

well to obtain the 3D skeleton of any 3D shape, it does not capture any morphological

information of the plant such as branching structure and radius of the branches like

our method. Tabb et al. [143] go a step further and not only compute the 3D skeleton

of a tree, but also obtain its graph structure and radius of the branches. However (and

unlike us), they segment the tree using a clean point cloud with a constant background.

In general, all these methods work only with the point clouds of isolated trees which

were previously pre-processed or cleaned.

One can also find some works that use 2D images to recover the morphology of

plants and trees. For example, Zheng et al. [144] segment plants using mean-shift,

color features and a shallow neural network to judge whether a cluster belongs to the

plant or not. In Zheng et al. [145], they also use mean-shift to segment plants in a

field but they employ a Fisher linear discriminant (FLD) instead of a neural network to

perform the segmentation. However, none of these methods is evaluated with plants in

a real garden. They only focus on green vegetation planted in soil. So they would not

be applicable in our case, where it is necessary to deal with a variety of rose bushes,

with different branch colors, with or without leaves, and in multiple scenarios. Barth

et al. [146] segment the stems of sweet pepper plants along with other 6 classes (buds,

leaf stems, cuts, etc.) using a Fully Convolutional Network (FCN) with a Conditional

Random Field (CRF) layer. They also generate synthetic images [147] to train the FCN

and fine-tune it with a small dataset of real images. The stem segmentation had a low

true positive rate because of the similarity among the different classes considered. In

addition, the synthetic dataset only includes one environment and focuses on recreating

a specific garden. In our case, five different datasets are evaluated, also including



28 Chapter 3. 2D Segmentation and Disparity Refinement

a synthetic datasets but with multiple rose bushes viewed from different perspectives,

scenarios, and lighting conditions. Gurel et al. [12, 14] segment rose stems to find their

center lines and trace them with a manipulator using a stereo camera. This process is

done using a single rose stem under a controlled environment where the background

is different from the stems (see Figure 3.3). Botterill et al. [13] obtain the 3D model

of grapevines using 3 monocular cameras. Their approach takes the color information

of the cameras, segments them and finds their correspondences to reconstruct the 3D

plant. Finally, they move the cameras parallel to the vines to add more information to

the 3D reconstruction. The method is robust in constrained environments with constant

light conditions (Figure 3.3).

a) Controlled environment b) Constant background

Figure 3.3: The figure shows examples of how current methods constrain the surround-

ings of plants to better segment and locate the stem. The images were taken from [13]

and [14] respectively.

Another common approach to recover the morphology of a plant is to reconstruct

it in 3D using multiple 2D images captured from different perspectives. For exam-

ple, Isokane et al. [148] segment the plant from 2D views and get the probability of

the existence of a branch by using a variation of a Pix2Pix GAN [149], then they re-

construct the plant in 3D combining multiple views. The algorithm works well with

synthetic data, however, the method does not generalize well for real data. Another

work that combines 2D and 3D images is [150], which captures 64 views of a plant in
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2D and obtain the mesh for each view. Unlike the previous methods, they segment the

meshes of the plant rather than segmenting the 2D image. For this, they apply a region

growing algorithm and fit geometric primitives to the segmented meshes. Simek et al.

[151] proposed an approach based on temporal information and Gaussian processes

to model the branches from multiple 2D images. Similarly, Gelard et al. [152] build

the 3D model of a plant using structure from motion. Then, they segment the plant by

fitting a cylinder from the base of the stem until it reaches the top. After segmenting

the stem, they remove it from the point cloud and process the leaves by clustering the

remaining points. Santos et al. [132] uses structure from motion to obtain the point

cloud from multiple 2D images. They segment each part of the plant by using spectral

clustering on the 3D points. Alenya et al. [153] combines color and depth images to

segment the leaves of a plant. They perform a rough segmentation of the leaves using a

graph-based method [25], then they choose the best leaf segments by fitting quadratic

surface models to the segmented depth images and evaluating which segments best

fit the depth data. These segments are then post-processed using a nearest-neighbor

graph to reduce over segmentation. All these methods extract the point cloud by cap-

turing multiple images of the plant from different perspectives. Also, they operate in

the 3D space to separate the branches from the rest of the plant. In our case, we use

2D information combined with a calibrated stereo camera to segment and obtain the

3D morphology of the plant.

In summary, while all these methods segment the plants and obtain their morphol-

ogy, they usually make strong assumptions. The methods using point clouds usually

require the data to be accurate, complete and without noise. This requires much pre-

processing work which most of the times is done manually. In the case of works with

2D data, a controlled environment with a fixed background is mainly considered for

each perspective of the plant. Among these methods, some of them reconstruct the

plant in 3D, however, they have to use multiple views to recover it properly. Also, the

evaluation of these model based methods usually assumes an error margin. Therefore,

if the reconstruction is inside the error threshold, the metric will still report a small

error even if the reconstruction is few centimeters off.

Another important disadvantage of these methods is the assumption of having a

controlled environment to perform the extraction of the plant and most do not evaluate

using real datasets, with different types of plants and environments. In addition, most

of them use images of indoor plants with homogeneous background and/or constant

light conditions [13, 14, 12]. On the other hand, the datasets that do contain a real
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garden usually cover the background of the plant with a constant color [147, 146]. We

highlight the limitations of using these methods in a real garden because their main

applications will require the robot visual system to work in an uncontrolled environ-

ment. After exploring the different datasets that previous garden robotics methods use,

we found that most of them, apart from the disadvantages mentioned above, are small

and lack variability, meaning that they only have a small quantity of images of a single

type of plant or tree, making it difficult to evaluate how well those methods generalize

compared to other datasets.

Our approach tries to overcome all these disadvantages by using a method without

making assumptions about the type of environment or lighting conditions. Moreover,

it is validated using five different datasets, with more than 6500 images of indoor and

outdoor scenes, including real garden images in different environments, with variable

lighting conditions, and without homogeneous backgrounds.

3.3 Methodology

The proposed approach to reconstructing a rose bush from stereo images is divided

into several steps (see Figure 3.4): First, the left image is segmented using a Fully

Convolutional Segmentation Network (FCSN). In parallel, the stereo pair is supplied to

a disparity method to calculate the depth of the plant. These results are post-processed

to combine the segmentation and the disparity, and to calculate the branches that make

up the plant. Finally, the 3D reconstruction is obtained using the branches and depth.

These steps will be explained in detail in the following sections.

3.3.1 Fully convolutional segmentation network (FCSN)

The segmentation process is the most important step in the entire proposed algorithm,

since the accuracy of the final result will depend on it. Basically, this process performs

a classification of the image pixels into two possible categories, indicating if the pixel

belongs to the class branch or to the class not-branch, which we denominate as back-

ground. In this case, the background not only includes the garden background, but

also other parts of the bush itself, such as leaves or flowers, and even other elements

that can surround it and that could be similar to a branch, such as sticks of a fence,

support stakes, etc. Therefore, this step eliminates everything that is not a branch and

thus avoids sending incorrect coordinates to the robot.
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Figure 3.4: Scheme of the pipeline followed by the proposed method. First, the seg-

mentation and disparity images are calculated. Post-processing is then carried out to

combine these results and recover the morphology of the plant. Finally, the 3D recon-

struction is calculated using the previous results.

It should be considered that branches are very thin objects with colors that can

be very similar to the background. In addition, they can also be confused with other

surrounding elements (such as a stick or a support stake), especially in this context,

in which the images are not captured in a controlled environment with constant back-

ground and lighting. All this makes this task considerably more complex than a general

segmentation task, in which larger and more prominent objects in the image are usually

considered.

To perform the branch segmentation, we use a Fully Convolutional Segmentation

Network (FCSN), based on the work of Long et al. [154], but instead of having a

categorical vector to indicate the class of each pixel (as other networks of this type also

make, such as SegNet [39]), we modify the last layer to return a matrix representing a

probability map of the presence of a branch in each pixel of the input image. In other

words, the proposed FCSN is trained to perform a function such that s : R(w×h) →

[0,1](w×h), learning a map over a w×h input image that preserves the input shape and

indicates the probability that each pixel belonging to the branch class.

As in the architecture proposed by Long et al. [154], the layer hierarchy of our

FCSN follows the idea of auto-encoders, where first a series of convolutional layers

combined with pooling layers are added to reduce the size, until an intermediate layer

in which a meaningful representation of the input is attained. As these layers are ap-

plied, filters are able to relate parts of the image that were initially far apart. This first

part of the network would be equivalent to the encoding stage of the auto-encoder (see

Figure 3.5). Then, it follows a series of convolutional plus upsampling layers that re-
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construct the image up to the same input size (this second part would be the equivalent

of decoding stage). The last layer consists of a set of neurons with sigmoid activa-

tion that predict a value in the range of [0,1], depending on the selectional threshold δ

for the corresponding input feature. The δ parameter is a hyperparameter that is also

learned during the training phase.

In addition, a series of modifications were made to the network architecture and

the layers used. The downsampling in the network encoder part is performed by con-

volutions using stride, instead of resorting to pooling layers. Up-sampling is achieved

through transposed convolution layers [155], which perform the inverse operation to a

convolution, to increase rather than decrease the resolution of the output. Residual con-

nections were also added to improve the accuracy of the reconstruction. For this, the

encoder layers are connected with the corresponding decoder layers, similar to how it

is done in U-Net [156]. But unlike the latter, instead of concatenating the feature maps

we add them as is done in other architectures, such as in ResNet [157]. In this way, we

can both help the training process and improve the accuracy of the reconstruction.

Feature maps are zero padded so that the dimension before and after the convolu-

tion remains the same and can be used for the skipped connections. Batch normaliza-

tion [158] is performed after convolution to compensate for the covariance shifts and

prevent overfitting during the training procedure. Dropout [159] layers with a probabil-

ity of 0.5 were also added after each normalization layer to improve the generalization

capabilities of the network. Finally, ReLU [160] was used as activation function for all

layers except for the output layer, for which the sigmoid activation function is used as

explained above.

To find the best network configuration for this particular problem, we applied a

grid-search technique [161], analyzing different values of hyperparameters, includ-

ing the number of layers of the network, the input size, the number of filters of each

convolution, the kernel size, the normalization and the equalization types, the data

augmentation factor, the dropout value, and the threshold δ value. The results of the

hyperparameters exploration are included in Section 3.5.1, although we summarize the

best topology found for this network in Table 3.1. Figure 3.5 also shows an outline of

this architecture with the content of each layer.

Once the FCSN has been trained, detecting branches from an input image consists

of feeding the image through the FCSN, which outputs the branch probability assigned

to each input pixel. Those pixels whose selection value exceeds a certain threshold δ

are considered to belong to a branch, whereas the others are discarded.
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Figure 3.5: Scheme of the Fully Convolutional Segmentation Network. In this figure,

the layer type is labeled with colors according to the legend. The size of each layer

for convolutions and transposed convolutions is h×w, where h is the height and w the

width. The number of filters ( f ), the kernel size (k) and the stride value (st) applied for

each layer are also shown.

Input image size: 480×320 px

Number of encoder/decoder layers: 4+4

Filters per layer: 128

Kernel size: 5×5

Normalization type: Standard

Equalization type: HSV

Data augmentation: 10 %

Selectional threshold δ: 0.3

Table 3.1: Best hyperparameters found after the grid-search process for the segmenta-

tion network FCSN.

The training stage consisted of providing the FCSN with examples of images and

their corresponding segmentation ground-truth, that is, binary maps over the pixels that

belong to branches (see Figure 3.10c). The binary cross-entropy loss function between

each output activation and its expected activation was used to calculate the error. The

tuning of the network parameters was performed by means of back-propagation using

stochastic gradient descent [162] and considering the adaptive learning rate proposed

by Zeiler et al. [163]. The training stage lasted a maximum of 300 epochs with a

mini-batch size of 8 samples, and early stopping when the loss did not decrease during

15 epochs.

In addition, we applied a fine tuning process during the training stage, initializ-

ing the network with the weights learned using a synthetic dataset. Data augmenta-
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tion [164, 165] was also used to artificially increase the size of the training set by

randomly applying different types of transformations to the original training samples.

This technique usually improves the performance and helps reduce overfitting. In

our case, for each image of the training set, 10 augmented images were generated.

The transformations applied were randomly selected from the following set of possi-

ble transformations: horizontal flips, horizontal and vertical shifts ([-10, 10]% of the

image size), zoom ([-10, 10]% of the original image size), and rotations (in the range

[-5◦, 5◦]).

3.3.2 Disparity calculation

The classic Block Matching (BM) algorithm [166] is used to calculate the disparity

of the branches. Although this method is not as accurate as others, like Semi-Global

Block Matching (SGBM) [167] or DispNet [168], it gets quite competitive results with

a much faster runtime. BM obtains the disparity maps in real-time (∼ 30 FPS), whereas

SGBM runs at∼ 4 FPS and DispNet at∼ 2 FPS. All the FPS were obtained by running

these methods on our synthetic dataset and computing the average frames per second.

The resolution of the image was [720×480], and the device used to run the experiments

is described in Section 3.5 A fast runtime is necessary to update and keep track of the

cutting points and the shape of the bush after each clipping because the branches can

be slightly moved by the wind or the manipulator.

The BM method from ROS Kinetic (Robot Operating System) [169] was used to

do the stereo matching. Considering that the final prototype of the robot has a stereo

camera with a small baseline (0.03m) and that the manipulator’s tool-tip is around

0.15m away from the camera [135] (as seen in Figure 3.2), we are only interested

in objects that are equal or farther than that distance. Therefore, the parameters of

correlation window size and disparity search windows were set to 15 pixels and 64

pixels respectively.

Once the disparity map is obtained, Equation 3.1 is used to convert the disparities

d (in pixels) into real depth values z (in metres).

z = f
B

d
(3.1)

where f is the focal length of the camera (in pixels) and B the baseline or distance

between the two lenses (in metres). In our case, the disparities were obtained using

rectified images and the camera parameters. These parameters were found using the
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calibration software Kalibr [170].

In addition, thanks to the post-processing step that combines the segmentation and

the disparity (which will be presented in the next section), we can improve the accu-

racy of the disparity calculated by this algorithm and obtain a dense disparity for the

segmented branches.

3.3.3 Combine disparity and segmentation

Although the result obtained by the segmentation network is good, sometimes it can-

not segment a whole branch completely but it splits the branch into small regions, as

observed in Figure 3.6(b) inside the red box. These small regions are mostly caused

by thin branches or complex areas where it is difficult to separate the background from

the foreground. We propose that the segments that belong to the same branch can be

joined using the disparity information. This is based on observing the output of the

BM algorithm, which is able to find the disparities of a whole branch, as Figure 3.6(c)

shows. In addition, the BM algorithm creates “blobs” with similar disparities (usually

with a size slightly larger than the branch), which allows us to use the disparity image

to complete regions where the segmentation is not continuous.

To join the segmented regions, first, each “blob” of the disparity map is evaluated

to find if it contains any segmented branch within its boundaries. In the case that a

“blob” has two or more segmented branches, these segments are considered part of the

same branch and joined if there is at least one linear connection between the pixels of

the segments, as seen in Figure 3.6(d). Using this criteria, only the segmented regions

that have similar disparities and are close to one another are joined.

(a) (b) (c) (d)

Figure 3.6: Process of the segmentation completion using the disparity map, where (a)

shows the input image, (b) the segmentation obtained by FCSN, (c) the disparity output

of the BM algorithm, and (d) how the regions of the branch that were not segmented

completely (red rectangles) were joined. To facilitate the visualization of this process,

the δ threshold was modified to generate visible errors produced by the segmentation.
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On the other hand, classical stereo correspondence methods, like BM, cannot match

certain parts of the image because of textureless regions or repeated patterns, and leaves

them without any disparity value. This causes some regions, like parts of the branches,

to not have depth information. We propose to alleviate this problem by using the

segmented image obtained in the previous step as prior information for disparity com-

pletion.

The proposed method is the following. First, the segmentation mask is multiplied

by the disparity map. It removes all the pixels that were not labeled as branches. As

the second step, our method finds all pixels p̂i that are segmented as branches and do

not have any disparity assigned to them. Then, the disparity for each p̂i is found by

interpolating the disparities of their closest neighbors using inverse distance weighting.

A better view of the method can be seen in Figure 3.7. In the case that the missing

pixel does not have a neighbor with disparity, it is discarded. An example of the result

obtained by this process can be seen in Figure 3.16.

closest neighbors

pî

Figure 3.7: Disparity interpolation. Our method obtains the disparity of the point p̂i by

interpolating the known disparities of its closest neighbors (points in blue) using inverse

distance weighting.

3.3.4 Skeletonization

As next step, the improved segmented image is processed further to get the morphology

of the plant. For this, a 2D skeleton is extracted from the binary image.

To find the skeletonization method that suits better to our task, we evaluated five

methods: Zhang et al. [171], Parallel thinning [172], 3D skeletonization [173], Medial

axis [174], and RUSTICO [175] (see Section 3.5.3 for algorithm details and evaluation
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results). These methods succeed in finding the skeleton of the plant. However, most

of them generated small branches that do not represent a real branch but noise or a

“small bump” on the edges of the segmented plant. Finally, the method that obtained

the best results was Zhang et al. [171], as seen in Figure 3.17, both in the accuracy of

the calculated skeleton, in the number of small branches generated, and in the runtime.

Therefore, we selected this method for the final implementation of the algorithm.

3.3.5 Branching search algorithm

Once the 2D skeleton is obtained, the branches of the plant are found by exploiting the

basic principle of thinning: A thinning algorithm reduces the components of a binary

image to single pixel thickness lines. This means that, if a pixel belongs to a branch, it

should have at most two neighbors, in case it has more than two neighbors, it should

be considered as a branching node, as seen in Figure 3.8.

1 neighbor for each colour 3 nbr. for the central pixel2 neighbors for each colour

Figure 3.8: Neighborhood evaluation criteria. In the first and second images, the pixels

marked in red, blue, and green are considered as branch pixels because they only have

2 neighbors at most. In the third image, the red pixel is considered as a branching node

because it has 3 neighbors.

The proposed algorithm solves the branching as follows. First, it picks a random

pixel from the skeleton of the plant. If the pixel has more than 2 neighbors in an 8

neighborhood criteria, it is classified as a node. If the pixel has 2 or less neighbors, it

is classified as a branch. To find the rest of the pixels in that branch, it explores the

neighbors of the pixel in a recursive way. This means that, if we classify a pixel as a

branch, we will evaluate its neighbors until the new neighbors are either classified as

a node or they no longer have more neighbors. In addition, to correct possible errors

of the skeletonization process, branches with lengths less than or equal to 3 pixels are

eliminated.

Algorithm 1 shows the formalization of this process using pseudocode, where the
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function “neighbors” returns the set of neighbors of a pixel, the function “U” returns

the set of unvisited pixels, “find branch” is a recursive function that calculates the

pixels that make up a branch from an initial pixel, and the sets N and B contain the

lists of branching nodes and branches found, respectively. In the case of set B , the

algorithm creates a sub-list of pixels for each branch.

Algorithm 1: Branching search

S ← Rose bush skeleton image

N ←{ /0} ⊲ List of branching nodes

B ←{ /0} ⊲ List of branch pixels

while |U(S)|> 0 do
p←U(S) ⊲ Extract a random unvisited pixel

N ,B ← f ind branch(p,N ,B)
end

function find branch(p, N ,B) is

if |neighbors(p)|> 2 then

N ←N ∪{p}
else

B ′←{p}
foreach p′ ∈U(neighbors(p)) do

N ,B ′← f ind branch(p′,N ,B ′) ⊲ Find rest of the branch

end

B ← B ∪{B ′}
end

return N ,B
end

3.3.6 3D reconstruction

Finally, we reconstruct the plant in 3D using the information obtained in the previous

steps. Algorithm 2 shows the functional definition of the complete algorithm. As seen,

the reconstruction (R3D) is performed using the left input image (IL), the improved

segmentation (S’) and disparity (D ′) images, the branches (B) found by the Algorithm

1, and the intrinsic parameters of the calibrated stereo camera (Cparams).

To calculate the 3D reconstruction of the plant, each branch pixel found by the

branching search algorithm is represented by a set of features (see Figure 3.9), these

are: its coordinates (x,y,z), diameter or width of the branch (w), and average color of

that area of the branch (c).

To calculate the color of a branch area, we extract a region of size 2β around a point

(x,y) from the original input image, and, within this region, we calculate the dominant



3.3. Methodology 39

Algorithm 2: Functional definition of the full algorithm

IL,IR← Stereo input images

S ← FCSN(IL) ⊲ Section 3.3.1

D← Disparity(IL,IR) ⊲ Section 3.3.2

S ′← Improve segmentation(S ,D) ⊲ Section 3.3.3

D ′← Improve disparity(D,S ′) ⊲ Section 3.3.3

K ← Skeletonization(S ′) ⊲ Section 3.3.4

B ← Branching search(K ) ⊲ Section 3.3.5

R3D← 3D reconstruction(IL,S ′,D ′,B,Cparams) ⊲ Section 3.3.6

c

X

Y

Z

w

β

β

(x, y, z)

sk
e
le

to
n

Figure 3.9: Features extracted for each point of a branch: position (x,y,z), width (w),

and principal color (c) in a region of size 2β around the point.

color using the color quantization method proposed by Orchard et al. [176].

To calculate the width w of the branches, firstly we transform the skeleton into

a set of lines. We do this by using the probabilistic implementation of the Hough

transform [177], allowing a small gap (3 pixels in our implementation) between pixels

to create the lines. We also set the threshold parameter to 10 (minimum number of

intersecting points to detect a line) and the minimum segment length to 3 pixels in

order to better adjust the lines according to the curvature of the branch. Once the line

is obtained, we calculate a perpendicular line to each Hough line. These perpendicular

lines start and finish at the boundaries of the segmentation image (see Figure 3.9).

The conversion from disparity values into real depth values can be performed di-

rectly on the basis of data obtained during the calibration process. Thus, the 3D coordi-

nates (X , Y , Z) of the plant projected in the 3D space are calculated using the row x and

column y of pixels in the 2D image, and their corresponding depth values z (obtained

from the disparity map using Equation 3.1). Equation 3.2 shows how to calculate this
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equivalence.
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(3.2)

where cx and cy are the principal point (image center) and f is the focal length of the

camera (in pixels).

The obtained reconstruction is processed to determine the branches to be cut ac-

cording to a series of pruning rules. In particular, the information obtained allows us

to analyze the rose bush to select the cut points according to different criteria, such as

those that exceed a certain height, grow towards the center of the plant, or have a given

branch thickness or color (dry branches usually have dark colors).

3.4 Datasets

For the evaluation of the proposed method we used a total of five datasets, two down-

loaded from the state of the art (called TB-Roses v2 [178] and Arabidopsis [151]), and

three datasets created by the authors, which jointly are called ROSeS (Roses for Object

Segmentation and Skeletonization)3. These three datasets are divided into: S-ROSeS,

a synthetic dataset of rose bushes, H-ROSeS, a hybrid dataset with 200 real indoor

images but with realistic plastic plants, and R-ROSeS, a completely real dataset with

100 photos of rose bushes taken in different botanic gardens.

H-ROSeS and R-ROSeS were captured using the same stereo camera, with a res-

olution of 720×480 px, an interocular distance (base line) of 0.03m. The segmented

ground truth was obtained by labelling manually each image at the pixel level.

S-ROSeS consists of 5760 stereo images with a resolution of 720×480 px obtained

from 160 different views of 36 synthetic rose bushes generated with Blender4. The

images were generated at different distances and perspectives by rotating the camera

around each plant and moving the camera closer and farther from it. Each of these

bushes is unique. They were created following the morphology of real rose bushes

with a mean height of 0.6m ± 0.20m. The 36 synthetic bushes are distributed in 4

different outdoor environments (9 bushes per environment). The environments differ

3The three datasets of ROSeS are available for the scientific community at http://trimbot2020.

webhosting.rug.nl/resources/public-datasets/
4Blender (https://www.blender.org/) is a free and open source 3D creation suite.
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in background, light conditions and position of the sun. Each stereo pair has its corre-

sponding ground truth with the segmented image, the disparity map, and the skeleton

for both left and right views (see Figure 3.10). These images were also generated using

Blender’s properties. To obtain the depth map of the synthetic dataset, we simulated

a stereo camera with a parallel stereoscopic configuration, a sensor size of 32 mm, a

focal length of 0.035m, and a baseline of 0.03m.

(a) Input image (b) Segmentation

(c) Depth map (d) Skeleton

Figure 3.10: Ground truth of the S-ROSeS dataset, where (a) is the synthetic input

image, (b) is the pixelwise segmentation, (c) is the depth map, and (d) is the skeleton

of the plant. These example images are from the view of the left camera. The dataset

also includes the images obtained from the right camera view.

TB-Roses v2 dataset [178] is composed of 319 images of rose bushes recorded

in a real garden with a resolution of 960×540 pixels5. It was designed for testing

algorithms for segmentation and delineation of rose branches in applications of gar-

dening robotics. The images are provided together with the ground truth marking the

segmented branches.

The Arabidopsis dataset [151] consists of 160 images with a size of 2208×1656 px

5TB-Roses v2 is publicly available at: https://gitlab.com/nicstrisc/RUSTICO/tree/master

/data
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of twelve Arabidopsis genus plants taken indoor6. The images were taken by rotating

a turntable by 10 degrees of yaw. This dataset includes the ground truth with the

segmentation and the branching structure.

Figure 3.11 shows some example images of the datasets. For S-ROSeS, four ex-

amples with four different backgrounds are included (see Figures 3.11a, 3.11b, 3.11c,

and 3.11d). For the rest, several examples per dataset are also included (Figures 3.11e

to 3.11l). As can be seen, we collected a variety of datasets, not only in the type

and morphology of the plants but also in the type of environment (including indoor

and outdoor), backgrounds (without always using a homogeneous color), and different

lighting conditions (Figures 3.11d and 3.11h are darker, and the camera in Figure 3.11i

faces the sun).

(a) S-ROSeS (b) S-ROSeS (c) S-ROSeS (d) S-ROSeS

(e) H-ROSeS (f) H-ROSeS (g) R-ROSeS (h) R-ROSeS

(i) R-ROSeS (j) TB-Roses v2 (k) TB-Roses v2 (l) Arabidopsis

Figure 3.11: Example images of the different datasets used for the evaluation.

6Arabidopsis dataset is publicly available at: http://kobus.ca/research/data/eccv 16 plant

s/index.html
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Table 3.2 shows a summary of characteristics of the different datasets used, includ-

ing their type, number of samples, resolution, brightness, and types of ground truth

included. As can be seen, some types of ground truth are not available for all datasets.

Segmentation ground truth is the only one that is available for all, but the disparity and

the skeleton are only included in S-ROSeS. So the validation in each case can only be

done for the available data. This table also includes the maximum and minimum av-

erage image brightness values per dataset (in the range [0, 255]). These values clearly

show how the outdoor datasets have much more variable lighting.
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S-ROSeS 5760 720×480 Synthetic 87 / 193 X X X – X

H-ROSeS 200 720×480 Hybrid 115 / 136 X – – X –

R-ROSeS 100 720×480 Real 70 / 201 X – – – X

TB-Roses v2 319 960×540 Real 85 / 169 X – – – X

Arabidopsis 160 2208×1656 Real 111 / 143 X – – X –

Table 3.2: Summary of characteristics of the datasets evaluated, including the number

of images, their resolution, their type (real, hybrid or synthetic), the minimum/maximum

average image brightness values (in the range [0, 255]), the ground truths (segmen-

tation, disparity and/or skeleton), whether they are indoor or outdoor, and if they have

variable lighting.

In all the experiments we used an n-fold cross validation, which yields a better

Monte-Carlo estimate than when performing the tests with a single random parti-

tion [179]. Therefore, the datasets were divided into n subsets, using, for each fold, one

of the partitions for test (with 1/n of the samples) and the rest for training (1−1/n).

Partitions were created by separating the datasets according to the sequences or

backgrounds used, with the intention of creating mutually exclusive subsets. For ex-

ample, for S-ROSeS, n = 4 partitions were created (1 for each type of background),

for H-ROSeS n = 2 partitions (corresponding to the two different sequences), for

R-ROSeS n = 4 (since the images were taken in two different gardens and for each one

2 sequences were recorded), for TB-Roses n = 3 (corresponding to three sequences of

images), and for Arabidopsis n = 4 (with 3 plants per partition, since it has 12 plants

in total).

For tuning the hyperparameters (see Section 3.5.1), the training partition was di-

vided into two, assigning 10% of these samples for validation and the rest for training.

The classifier was trained and evaluated n times using these sets, after which the aver-



44 Chapter 3. 2D Segmentation and Disparity Refinement

age results plus the standard deviation σ were reported.

3.5 Experiments

In this section we evaluate the different parts of the proposed method using the datasets

described in Section 3.4. First, the proposed FCSN segmentation network is evalu-

ated, analyzing its different hyperparameters and comparing it with other state-of-the-

art methods (see Section 3.5.1). Next, the calculation of the disparity and the post-

processing step used to combine the segmentation and disparity images are assessed in

Section 3.5.2. Section 3.5.3 compares five different skeletonization methods used for

the detection of branches. Finally, the accuracy of the 3D reconstruction obtained is

evaluated in Section 3.5.4.

All these experiments were performed using a Razer Blade 14 with Intel(R) Core

i7-6700 CPU @ 3.40GHz (4th Gen) with 16 GB DDR4 RAM, an Nvidia GeForce

GTX 1070 GPU, and ROS Kinetic with Ubuntu 16.04 as operating system.

3.5.1 FCSN evaluation

In this section we evaluate the FCSN proposed to perform the segmentation of the

branches. First, different network hyperparameters are analyzed. For these initial

experiments we used the 4 sets of plants from the S-ROSeS dataset. Subsequently,

using the best model and parameters found, we evaluate (using the same parameters)

the rest of the datasets and compare the proposed method with other approaches from

the state of the art.

In order to assess the performance of the proposed method, three evaluation metrics

widely used for this kind of tasks were chosen, they are: Precision, Recall, and F1,

which can be defined as:

Precision =
TP

TP+FP
(3.3)

Recall =
TP

TP+FN
(3.4)

F1 =
2 ·TP

2 ·TP+FN+FP
(3.5)

where TP (True Positives) denotes the number of correctly segmented branch pixels,

FN (False Negatives) the number of non-segmented branch pixels, and FP (False Pos-
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itives) the number of background pixels incorrectly given as branch pixels.

3.5.1.1 Hyperparameters evaluation

To select the best hyperparameters and configuration for the FCSN, we performed a

grid-search process [161] using the S-ROSeS dataset. The configurations evaluated

include variations in the network input size (from 120px to 480px of width and main-

taining the original aspect ratio to calculate the height), in the number of layers (from

2 to 10), in the number of filters per layer (between 8 and 128), and in the kernel size

(between 3 and 7). In each experiment, only one parameter was changed, setting the

rest to a standard network configuration with an input size of 360×240px, 6 layers of

depth (3 encoding + 3 decoding layers), 32 filters per layer with a kernel size of 3×3,

with a selectional threshold δ of 0.5, without equalizing the input image, and only

normalizing the input values dividing by 255.

Figure 3.12 shows the average results plus the standard deviation of these experi-

ments. The reported results are the average of the 4-fold cross validation, where, for

each fold, we used one of the S-ROSeS dataset partitions for test (25% of the samples)

and the rest for training (75%), without mixing neither the types of plants nor the back-

grounds, consequently dividing it into 4 mutually exclusive sub-sets. As the stopping

criterion for tuning the hyperparameters, the training partition was divided into two,

assigning 10% of the samples for validation and the rest for training.

The average F1 when varying the input size is shown in Figure 3.12a. As seen,

the best results (with the lowest standard deviation) were obtained using the larger

input size (480×320px). Even larger sizes were also evaluated, but they increased

the requirements of the machine, which did not allow their use due to the hardware

specifications of the robotic platform. In the case of the number of layers (Figure

3.12b), an increasing trend is also observed, obtaining the best result with 4+4 layers

and then getting worse slightly. The standard deviation also decreases up to 4+4

layers and it then stabilizes. In this case, it was not possible to add more layers due to

the base input size (360×240px), since in each layer the size is divided by 2. Figure

3.12c shows the result obtained when varying the number of filters per layer. In this

case, using more filters also increases the F1 and reduces the standard deviation. This

improvement is more noticeable from 16 to 64 filters, increasing more slightly later

when adding more filters. Figure 3.12d shows the average F1 for the three kernel sizes

evaluated, obtaining the best results with a kernel size of 5×5. In this case, the standard

deviation hardly varies.
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Figure 3.12: Average F1 (%) plus standard deviation (in light red) of the grid-search

process when varying (a) the input image size, (b) the number of encoding + decoding

layers, (c) the number of filters per layer, and (d) the kernel size of the convolutional

filters.

We now proceed to analyze the influence of the normalization type as well as the

equalization applied to the input data, using the best configuration found in the previous

experiments.

Literature cites different ways to normalize the data used to feed a network [180,

164], but the most appropriate technique depends on the particular problem. The most

common normalization methods are:

Zstandard =
M−mean(M)

std(M)

Zmin−max =
M−min(M)

max(M)−min(M)

Zmean = M−mean(M)

Znorm = M/255

where M is the input matrix containing the raw image pixels from the training set.

For the normalization of the test set we used the same mean, deviation, max, and min

values calculated for the training set.
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Moreover, since it was observed that the image contrast and brightness affected the

result obtained significantly, different types of equalization were also analyzed. The

equalization of the histogram applies a transformation on the image in order to obtain

a histogram with a uniform distribution of colors (or levels of gray) that improves

the contrast of the image. For this, the histogram equalization was evaluated using

gray values and both RGB and HSV color spaces. In addition, the CLAHE (Contrast

Limited Adaptive Histogram Equalization) method [181] was evaluated in gray and

both CIELAB and HSV color spaces. This method performs an adaptive equalization

by regions controlling the limit of the equalization made to not overamplify noise in

homogeneous regions.

We evaluated these types of normalization and equalization on the proposed net-

work, including the option of not normalizing or equalizing the data. Figure 3.13 shows

the average results plus the standard deviation of these experiments. As before, each

result is the average of the 4 folds using the best configuration found in the previous

experiments and only varying the type of normalization or equalization. The type of

data normalization (see Figure 3.13a) considerably affects the result obtained, since

the difference between the best and the worst result exceeds 12%. The best F1 is ob-

tained using the standard normalization, followed by the mean norm. In addition, in

these two cases, the standard deviation is quite similar. For the equalization type (see

Figure 3.13b), a significant difference in the results obtained is also shown. Both gray

scale and RGB equalizations seem to worsen the result, however, HSV and CLAHE

(both in RGB and HSV color spaces) equalizations does improve it. The best result is

obtained with the HSV equalization, which also reports the lowest standard deviation

and is better than the option of not equalizing by 6.15%.
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Figure 3.13: Average F1 (%) plus standard deviation obtained for the different types of

(a) normalization and (b) equalization considered.
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Subsequently, we also evaluated the selectional threshold δ that is applied to the

output of the network to determine (select) the pixels belonging to a branch. Figure

3.14a shows the result of varying this threshold between 0 and 1. The network obtains

results higher than 80% with thresholds between 0.2 and 0.6, obtaining the best F1 and

the lowest standard deviation with a threshold of 0.3.

Finally, the influence of the data augmentation process was evaluated. For this, the

number of samples of the training set was artificially increased by applying different

types of random transformations to these images (This process is described in Section

3.3.1). In order to evaluate the improvement obtained with this augmentation process,

we carried out an experiment in which we gradually increased the number of random

transformations applied to each image from our training set, and evaluated it using

the test set. Figure 3.14b shows the average results plus the standard deviation of

such experiment, where the horizontal axis represents the augmentation factor and

the vertical axis the F1 obtained. As seen, the highest improvement is obtained at

the beginning, after which the results begin to stabilize and stop improving after 10

augmentations. In this case, the standard deviation is quite stable, it is only slightly

reduced by adding the first augmented images.
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Figure 3.14: (a) Influence of the selectional threshold δ (horizontal axis) on the final F1

result obtained (vertical axis). (b) Average results of the data augmentation process.

The horizontal axis represents the number of augmentations and the vertical axis the

average F1 (in percentage). Standard deviation is also shown in light red.

The finally selected configuration for the FCSN network was an input size of

480×320px, 4+4 layers, 128 filters per layer with a kernel size of 5×5, standard nor-

malization, HSV equalization, a selectional threshold δ of 0.3, and augmenting the

data by a factor of 10 (i.e. generating 10 random transformations for each training

image). Table 3.1 shows a summary with these settings.



3.5. Experiments 49

3.5.1.2 FCSN results

Once the best architecture for the FCSN network was obtained, it was evaluated with

all the datasets described in Section 3.4. In addition, we compared it with the results

obtained by other state-of-the-art methods, these are: U-Net [156], SegNet [39], and

DeepLabv3 [182]

In addition to Precision, Recall and F1 metrics, the Intersection over Union (IoU) [183]

metric was used for evaluation. The metrics previously used are suitable for unbal-

anced datasets but in some cases they are not the most fair because they measure the

precision at the pixel level, but not whether the algorithm has detected a branch or not.

So it is possible that thick branches are detected very well but thin branches not, and

still obtain good results. It is also possible that the algorithm makes mistakes in the

branches’ edges and gets a low result with these metrics when, in fact, all the branches

are being detected correctly.

The IoU metric helps to measure whether the algorithm correctly detects all the

branches and also how well it detects their size and location. To calculate this metric,

we map each branch7 of the ground truth (gt) onto the segmentation proposals (bp)

with which it has a maximum IoU overlap according to the following equation:

IoU =
area(Bbp∩Bgt)

area(Bbp∪Bgt)
(3.6)

where area(Bbp ∩ Bgt) depicts the intersection between a branch proposal and the

ground truth, and area(Bbp∪Bgt) depicts its union.

We also calculate the metric F1 at the branch level considering as TP when the IoU

value exceeds a certain threshold λ (by convention λ = 0.5). We consider as FP the

wrong detections (i.e., when a Bbp does not overlap with any Bgt), and as FN when a

ground truth branch is not detected. Note that if multiple detections of the same branch

are predicted, only the first one is counted as positive and the rest as negatives.

Table 3.3 shows the results obtained by each of the methods compared. The results

have been grouped by dataset, also showing the average at the end of the table. The

best result obtained by dataset and on average is marked in bold for each metric.

As can be seen, the proposed method obtains better results than the rest of ap-

proaches, except for the precision with S-ROSeS. However, this result is only 0.6 worse

than that obtained by U-Net, and, given the standard deviation values (3.2 and 4.5, re-

spectively), this difference can be neglected. Moreover, if we analyze the F1 metric

7To perform this process, we manually separated each branch from the ground truth.
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at pixel level, it shows that FSCN obtains a better overall segmentation. Therefore, it

correctly recovers a greater number of branches, as shown by the metric F1 at branch

level. On average, the proposed method obtains a F1 8.18% better than the next best

result at pixel level, and 7.33% if we analyze it at branch level. The datasets for which

a greater improvement is obtained with respect to the other methods are Arabidop-

sis (10.75% better than the next best result at pixel level), H-ROSeS (8.55% better),

and R-ROSeS (5.98% better), which are the datasets that present a greater difficulty

since they have thinner branches, more complex backgrounds, and a greater number of

branches to segment.

Pixel level Branch level

Dataset Method Precision Recall F1 Avg. IoU F1

S-ROSeS

U-Net 91.08 ± 3.2 88.50 ± 4.5 89.77 ± 3.9 90.21 ± 9.5 93.63 ± 7.6

SegNet 88.84 ± 2.9 77.07 ± 11.1 81.81 ± 8.3 83.60 ± 7.9 87.79 ± 5.0

DeepLabv3 76.94 ± 6.2 84.63 ± 5.5 80.59 ± 5.8 79.64 ± 6.8 81.21 ± 6.5

FCSN 90.47 ± 4.5 93.18 ± 3.0 91.70 ± 3.9 94.16 ± 7.3 97.09 ± 4.2

H-ROSeS

U-Net 48.27 ± 0.7 66.15 ± 4.3 55.80 ± 2.0 66.11 ± 9.5 76.61 ± 7.1

SegNet 56.92 ± 1.7 58.95 ± 1.5 57.48 ± 1.6 55.11 ± 11.5 64.98 ± 11.2

DeepLabv3 50.79 ± 0.3 55.67 ± 0.7 53.12 ± 0.5 61.75 ± 10.7 67.34 ± 11.8

FCSN 61.20 ± 1.2 71.79 ± 3.5 66.03 ± 2.6 69.40 ± 8.3 80.35 ± 7.3

R-ROSeS

U-Net 69.45 ± 8.0 71.00 ± 8.9 70.19 ± 8.4 68.15 ± 13.0 73.88 ± 13.5

SegNet 70.58 ± 9.5 73.69 ± 8.2 72.08 ± 8.8 70.08 ± 12.5 75.69 ± 12.2

DeepLabv3 61.09 ± 2.5 61.49 ± 2.9 61.21 ± 2.7 71.85 ± 8.4 74.19 ± 8.9

FCSN 77.48 ± 7.8 78.72 ± 5.6 78.06 ± 6.6 76.71 ± 8.7 82.18 ± 8.2

TB-Roses

U-Net 65.53 ± 4.8 73.74 ± 3.0 69.38 ± 4.1 77.04 ± 6.5 80.09 ± 6.0

SegNet 69.73 ± 0.4 79.48 ± 2.9 74.27 ± 1.0 82.71 ± 11.9 86.28 ± 12.2

DeepLabv3 47.45 ± 0.9 59.23 ± 1.0 52.69 ± 0.9 80.89 ± 8.9 82.50 ± 9.0

FCSN 75.11 ± 0.7 80.17 ± 2.4 77.55 ± 1.5 84.12 ± 7.0 87.44 ± 7.7

Arabidop.

U-Net 47.45 ± 0.7 59.23 ± 0.8 52.69 ± 0.8 73.81 ± 10.8 78.06 ± 11.9

SegNet 54.45 ± 2.9 65.46 ± 7.3 58.52 ± 8.1 77.49 ± 15.8 82.50 ± 16.4

DeepLabv3 60.91 ± 3.4 61.02 ± 3.4 60.96 ± 3.4 79.14 ± 7.7 85.56 ± 8.2

FCSN 71.52 ± 3.1 72.44 ± 4.2 71.71 ± 3.5 87.67 ± 7.1 91.88 ± 7.3

Average

U-Net 64.35 ± 5.2 71.72 ± 5.1 67.56 ± 5.0 75.06 ± 10.1 80.46 ± 9.7

SegNet 68.10 ± 5.5 70.93 ± 10.5 68.83 ± 6.5 73.80 ± 12.2 79.45 ± 12.0

DeepLabv3 59.44 ± 3.4 64.41 ± 3.2 61.71 ± 3.1 74.65 ± 8.6 78.16 ± 9.1

FCSN 75.16 ± 5.4 79.26 ± 5.6 77.01 ± 4.6 82.41 ± 7.7 87.79 ± 7.1

Table 3.3: Results obtained by the different algorithms evaluated for each of the

datasets. The best result obtained by dataset and on average is marked in bold for

each metric.

To rigorously analyze the results obtained, we performed a statistical significance

comparison by considering the paired sample non-parametric Wilcoxon signed-rank

test [184]. More precisely, the idea is to assess whether the improvement observed in
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the segmentation performance (F1 score at the pixel level) with the use of the FCSN

is statistically significant in comparison with the result obtained by the other methods.

For this, the results obtained for each dataset and fold were pairwise compared. By

making this comparison, the proposed method obtains a p-value of 0.005, if we com-

pare it with SegNet, and 0.002 with respect to U-Net and DeepLabv3. Therefore, this

test reflects that our proposal significantly outperforms (considering a statistical signif-

icance threshold of p < 0.01, the most restrictive threshold normally used) the results

obtained by the other state-of-the-art methods.

Figure 3.15 shows an example of the segmentation result obtained by each method

for a sample image of each of the evaluated datasets. To make this figure more infor-

mative, we selected samples in which all methods made visible mistakes. The input

image is shown in the first column. The rest of the columns correspond to the results

obtained by each method, where black and white areas depict correct detections of

branches and background, respectively, and red and blue pixels depict FP and FN of

branches, respectively. These figures help to visualize the accuracy of the methods and

to understand where the errors occur. As can be seen, U-Net and SegNet generate more

noise due to non-branch elements (general background, leaves, etc.), while DeepLabv3

tends to make a thicker segmentation. The proposed method also makes mistakes, but

they are mainly produced at the contours of the branches. This qualitative analysis also

helps us to determine that for real roses, an F1 score above 70% is enough to segment

the branches from the background without losing important information of the fore-

ground object. However, for extreme scenes like the images in R-ROSeS, it would be

difficult to recover a complete information of the plant using the segmented result.

3.5.2 Assess segmentation and disparity combination process

The post-processing step used to combine the segmentation and disparity images is

evaluated in this section. Several depth metrics from prior works [185] are used for the

evaluation of the disparity results, which are:

• Root Mean Squared Error (RMSE):

√

1
T ∑T

i ||di−d
gt
i ||

2

• Squared Relative difference (Sq-Rel): 1
T ∑T

i
||di−d

gt
i ||

2

d
gt
i

where T is the total pixels in the image, di is the estimated depth for the pixel i, and

d
gt
i is the ground-truth depth.
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Figure 3.15: Examples of the segmentation result obtained by each method for a sam-

ple image of each of the evaluated datasets. The first column shows the input image.

The rest of the columns correspond to the results obtained by each method, where

black and white areas depict correct detections of branches and background, respec-

tively, and red and blue pixels depict FP and FN of branches, respectively.

Table 3.4 shows the results of this experiment, where the disparity evaluation is

shown in the first four columns and the results obtained for segmentation in the last

three. The disparity was evaluated for the complete image (first two columns) and also

at the branch level (i.e. taking into account only the pixels within the segmentation

ground truth, see third and fourth columns). In our case, the results at the branch level

are the most interesting, since on the one hand the disparity improvement process only

affects branches, and on the other hand, the rest of the process only uses these depth

values. As seen, these processes help to improve the original result obtained for both
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segmentation and disparity (with the BM method). The improvement obtained for the

disparity is the most significant, reducing the RMSE from 0.2527 to 0.0869 at branch

level.

Disparity

Full image Branch level Segmentation

RMSE Sq-Rel RMSE Sq-Rel Precision Recall F1

Original 0.5648±0.2 0.0917±0.1 0.2527±0.2 0.0310±0.1 90.47±4.5 93.18±3.0 91.70±3.9

Improved 0.5082±0.2 0.0630±0.0 0.0869±0.1 0.0039±0.0 92.86±4.4 92.59±3.1 92.96±3.8

Table 3.4: Results obtained for the calculation of the disparity and segmentation with the

S-ROSeS dataset before and after applying the segmentation and disparity combination

process. For the disparity, the error calculated for the complete image and at the branch

level is shown.

Figure 3.16 shows an example of the result obtained after applying the segmenta-

tion and disparity combination process. As can be seen in the figure on the right, the

final result substantially improves the original disparity (central image, obtained with

the BM method), since this method fills the empty areas, obtaining a dense disparity

for the bush branches. Using this result, the intersection with the segmentation image

is then calculated to eliminate all the background noise and leave only disparity values

for branches.

GT Original disparity Improved disparity

Figure 3.16: Example of the result obtained through the post-process to improve the

disparity. The first image shows the disparity ground truth, the central image shows

the original result obtained by the BM method, and the right image shows the improved

disparity obtained after the segmentation and disparity combination process.

3.5.3 Skeleton evaluation

In this section we evaluate the skeletonization process individually, without consider-

ing the errors made in the previous steps. For this, we analyze the result using the

segmentation ground truth as input of this algorithm, leaving the evaluation of the

whole workflow for the 3D reconstruction section.
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To evaluate the skeletonization, the F1 score is used by comparing the obtained 3D

skeleton So and the ground truth skeleton Sgt at the pixel level. Because the skeleton is

only one pixel wide, a certain tolerance distance d is considered to determine if a pixel

is a TP (similar to Zou et al. [186]). Therefore, a pixel is considered to be TP if it is

located no more than d pixels away from the ground truth. These experiments were

performed using the hardware specifications described at the beginning of this section.

The following five methods were evaluated using this criteria to find the skele-

tonization method that suits better to our problem: Zhang et al. [171], Parallel thin-

ning [172], 3D skeletonization [173], Medial axis [174], and RUSTICO [175]

Given that RUSTICO is not defined as a skeletonization method per se and uses

as input a gray scale image instead of a binary one, it delineates curved objects from

the background as well, as seen in Figure 3.17h. Because of this, two experiments

using this method were performed. One by comparing the raw output of RUSTICO

with the ground truth skeleton and other by only considering the skeleton obtained by

RUSTICO inside the ground truth segmented image (denoted by RUSTICO+seg), to

make a more fair comparison with the other methods (which directly use the segmented

image).

Table 3.5 shows the quantitative results of this experiment using the S-ROSeS

dataset and different d values (d = [0,1,2]). As seen, all the skeletonization meth-

ods achieved F1 scores above 0.3, 0.7 and 0.9 for d = [0,1,2] respectively, with the

exception of RUSTICO and RUSTICO+seg, which got the lowest results. However,

these results are similar to those obtained in the original paper for the branch segmen-

tation task (F1 = 42.65 for the TB-Roses v2 dataset with a tolerance of 2 pixels [175]).

The main cause of the low performance of RUSTICO is its optimization goal, which

is not suited to find branches but to find curvilinear structures within a given width.

On average, the best F1 results are obtained by the 3D skeleton method and medial

axis. However, Zhang et al. [171] and parallel thinning are only ∼ 1% worse. The

main problem with the 3D skeleton is that it is computationally more expensive than

the other methods (4.6121 sec. vs. 0.0390 sec. for Zhang et al. [171]8) because

it has to evaluate regions of [3× 3× 3] per disparity layer. The problem with the

medial axis method is that it is affected by the noise and bumps at the edges of the

segmentation, which creates small branches that connects the main axis with those

small protuberances. The parallel thinning method has a similar problem. The method

8These experiments were performed using the hardware specifications described at the beginning of

this section.
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that creates less small branches in the skeleton and runs faster is by Zhang et al. [171].

Given that we want to implement a method that runs fast and also that creates as few

FP branches as possible, we eventually selected this method.

Method
Precision Recall F1

d=0 d=1 d=2 d=0 d=1 d=2 d=0 d=1 d=2

Zhang & Suen 90.25 98.61 99.47 18.47 61.88 83.96 30.66 76.04 91.06

Parallel thin. 90.22 98.60 99.46 18.26 62.06 84.33 30.37 76.17 91.27

3D skel. 87.97 97.66 98.82 19.05 64.99 87.40 31.32 78.04 92.76

Medial axis 89.68 98.49 99.39 18.92 64.63 86.12 31.25 78.05 92.28

RUSTICO 21.74 45.47 54.99 15.08 42.82 60.96 17.81 44.11 57.83

RUSTICO+seg 73.25 93.63 96.81 14.92 42.46 60.35 24.79 58.43 74.35

Table 3.5: Comparison of the results obtained by the different skeletonization methods

considered using the segmentation ground truth from the S-ROSeS dataset. The best

result obtained for each metric and threshold d is marked in bold.

Figure 3.17 shows an example of the skeleton obtained by each method for a sam-

ple image from the S-ROSeS dataset. Red rectangles mark the errors made by each

method. As can be seen, visually (if we compare it with the ground truth shown in

Figure 3.17c) all methods, except RUSTICO, get a good result. RUSTICO correctly

detects the main branches but introduces a lot of noise and fails for the small branches

(even after intersecting it with the segmentation, RUSTICO+seg). The other four meth-

ods work better, obtaining similar results, however, Zhang et al. [171] generates fewer

incorrect small branches.

3.5.4 3D reconstruction

To evaluate the performance of the 3D reconstruction, we compared it with the 3D

skeleton ground truth of the synthetic images. This ground truth has 2880 pointclouds,

each one containing the 3D skeleton of a synthetic rose. The evaluation consisted of

finding the mean of the minimum distance between each point of the ground truth and

the reconstructed skeleton. Therefore, this metric measures how far the reconstructed

skeleton is, on average, with respect to the ground truth. To make a fair evaluation, the

depths of the reconstructed points were normalized by the furthest point in the ground

truth per each plant.

Table 3.6 shows the result of this evaluation. It also shows the distance in each axis

x, y and z, where z represents the depth, and y the axis that points to the ground. As

can be seen, the average distance is less than 1 cm, being the error in the x-y plane less

than the one made in the z-axis (due to the calculation of depth). However, this error is

still less than 1 cm. This accuracy is enough for the pruning process because the end
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(a) Input image (b) Segmentation (c) GT skeleton

(d) Zhang et al. [171] (e) Parallel thinning (f) 3D skeletonization

(g) Medial axis (h) RUSTICO (i) RUSTICO+seg

Figure 3.17: Examples of the skeleton obtained by each method for a sample image

from the S-ROSeS dataset. First row shows: (a) the input image, (b) the segmentation

GT, and (c) the skeletonization GT. The other two rows show the skeletonization results.

Red rectangles indicate the mistakes made by each method.

effector has an opening size of 1.4 cm and is curved at the tool-tip (as seen in Figure

3.2), which allows the branch to slide into the center of the cutter even if the branch is

not completely aligned with the center of the tool.

Figure 3.18 shows some examples of the 3D reconstruction obtained with different

input images. This figure allows you to visually compare the result obtained by the

proposed method and the ground truth. In addition, the branch separation obtained by

Algorithm 1 is included in the 4th column.

3.6 Conclusions

A new method for the segmentation and 3D reconstruction of rose bushes from stereo

images was presented. This method is part of a robotic system that is capable of mov-

ing through a garden towards a rose bush and pruning it according to a series of rules.
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Min. distance Mean (m) std (m)

x axis 0.00293 0.00477

y axis 0.00336 0.00497

z axis 0.00619 0.00827

Overall 0.00859 0.01001

Table 3.6: Average distance between the 3D reconstruction and the ground truth point-

clouds.

2D input image GT 3D reconstruction Branches from skeleton

Figure 3.18: Output examples of the 3D skeletons obtained by our method (blue) and

the ground truth skeleton (red), both superimposed over the pointcloud of the plant. The

branches found using Algorithm 1 are also shown in the third column (each branch is

marked using different colors).

The proposed vision method tries to solve this task without making assumptions about

the characteristics of the plant, the type of environment, or the lighting conditions. The

method is divided into several steps that try to improve the robustness of the result and
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to gather all the necessary information that allows the robot to select the branches to

be pruned.

The main contribution of our workflow is its application in real environments and

with different variations of rose bushes. Also, our method uses 2D morphological

skeletonization to obtain the skeleton and branching structure of the plant and then

back-projects this information into the 3D world using the camera parameters. The

main goal of 2D skeletonization is to reduce the foreground regions in a binary image

to a skeletal remnant that largely preserves the extent and connectivity of the original

region while throwing away most of the original foreground pixels. Unlike methods

that use 3D point clouds, the preservation of the connectivity of the regions is a good

property to find branching structures without searching for an optimal distance between

neighbor points to cluster them as part of the same branch.

The branch segmentation is one of the most important steps of the whole process,

since it allows to select only those parts of the image that are branches (differentiating

them from the general background, as well as other surrounding elements that can be

very similar to branches, such as sticks, support stakes, fences, etc.) so that the rest

of the processing pipeline can work with correct data. For this reason, the proposed

method was specifically adjusted to work well in this type of task.

Five different rose bushes datasets were used to evaluate the pipeline, three of them

compiled by the authors and two from the state of the art, including interior and exterior

environments, as well as different types of rose bushes, backgrounds, and lighting

conditions. As shown in Table 3.3, the segmentation method obtained an average F1

score of 77% at the pixel level. It is 8.18% better than the next best result from the

state of art. When evaluating at the branch level, the method correctly detected 88%

of the branches, 7.33% better than the next best result. In addition, the significance of

these results was validated by statistical tests.

The process proposed for the combination of segmentation and disparity improved

the accuracy of both results, increasing the segmentation F1 score by 1.26%, and re-

ducing the RMSE of the disparity calculated at the branch level from 0.2527, for the

original algorithm, to 0.0869 (see Table 3.4). As future work, this refinement can be

improved by methods that focus on connecting close thin objects and penalize discon-

nected regions. Here, the pixel-wise accuracy metric should be replaced by alternative

metrics such as rand-index [187] which penalizes disconnected regions.

Five different algorithms were evaluated for the 2D skeletonization, from which

Zhang et al. [171] was chosen to create the skeleton of the segmented binary map
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of the plant. This method was chosen because it obtains a good F1 score of 91.06%

(Table 3.5) and also generates fewer small branches than the other methods, which is

convenient when dealing with thin objects with many bifurcations.

The 3D reconstruction of the plant is obtained by using the camera parameters, the

branching search algorithm, the disparity map and the segmentation obtained by the

previous steps. The overall reconstruction is on average 0.859 cm far from the ground

truth, as shown in Table 3.6, making it an accurate reconstruction both quantitatively

and qualitatively. At the same time, the branches found in 2D helps the method to

find the branching structure in 3D, without using any geometrical primitives or having

different views of the plant.

As future work, the segmentation and disparity methods could be improved by

including additional input information, such as the curvilinear structures obtained by

RUSTICO. It could also improve the calculation of the branches to be pruned, so that,

in addition to the pruning rules currently considered, take into account the shape and

appearance of the rose bush, so that, for example, it does not grow in an unbalanced

way (more on one side than on the other).





Chapter 4

Visual Servoing

The previous chapter shows how a classic image processing pipeline and deep learning

can be combined to achieve a fast segmentation and disparity estimation of plants using

a stereo camera. Moreover, it can be combined with 2D skeletonization methods to find

the branching structure and radius of the plants.

However, knowing the morphology of the plant is not enough to make a robot

follow gardening rules. The next step is to locate specific parts in the branches that

needed to be cut. This chapter presents a solution for this part using visual servoing,

to not only locate the parts in the branch but also to help the robot navigate towards

them by refining their location. Also, unlike previous methods that need to constrain

the background or place a set of cameras around the plant, our approach only requires

a stereo camera and a manipulator to cut the branches. Our method also works in a real

environment.

This chapter reuses the disparity estimation and plant segmentation capability from

the previous chapter. However, we do not use the morphology estimator because it will

make the performance of our method more difficult to assess, as the main goal is to

develop a general localization method for visual servoing that works on branches.

The content of this chapter is from the published paper [2].

4.1 Introduction

Gardening is a repetitive and human-intensive task, however, it is difficult to automate

given the challenges that it involves. These challenges are related to the unconstrained

environment in a real garden. There are simple gardening tasks that have being au-

tomated like grass cutting [188, 189, 190], stationary fruit harvesting [191] and plant

61
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Figure 4.1: Overview photo of the TrimBot2020 rose cutter robot.

irrigation [192]. Although these tasks can be considered solved and highly commer-

cialized, there are others that require more dexterity in terms of manipulation and ap-

proach.

One of these complex jobs is rose pruning. A rose bush requires regular pruning

in late winter or early spring to keep it healthy, aesthetic and allow it to grow new and

strong roses. This job requires a person to cut stems according to some gardening rules

and to be able to approach the stems in different positions to cut them. As rose pruning

is complex and demanding, its automation is useful and helpful in garden maintenance.

The benefits go from small gardens at a house to big ones, e.g. national gardens.

There are very few previous works on rose pruning robots, with [12, 14] one of the

few in the area. In these papers, they localize cutting points on a branch by using a

relation between the diameter and the length of the branch. After that, they use position

based servoing to reach the points. Unlike our approach, they cut only a single rose

stem under a controlled environment with constant light and background.

A close approach to rose pruning is tree pruning [193, 194, 195]. [13] is the closest

approach to our work. Here, the authors model a grape vine using multiple stereo

cameras that surround the plant to find cutting points on stems. This process is done in

a controlled environment inside a box, which covers completely the whole plant from

its surroundings, resulting in a constant illumination and background.

Rose pruning can be considered as lying in the research field of precision agri-
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culture, together with bush trimming [123], and fruit harvesting [124]. In [123], they

trim bushes based on 3D shape fitting using an eye-in-hand arm robot. They send

all the cutting positions as programmed trajectories to the robot without allowing any

re-planning while approaching the bush. In [124], they harvest tomatoes using an im-

age based visual servoing approach. They find the position of the fruit based on their

round shape and characteristic color. Further work on fruit harvesting can be found

in [196, 197]. Rose pruning and fruit harvesting share the same principle: find key

points where the robot should cut or pick a target. Fruit harvesting can be considered

an easier task given that the targets usually have distinctive characteristics like color

and shape, making them easier to recognize. To prune a rose bush, the robot has to find

cutting points on a stem in a highly populated1 and small space where all the stems

look alike and do not have any distinctive characteristic that shows the location of the

cutting point.

Our task can be seen as a special case of grasping based on visual servoing. The

difference to a normal grasping model is that these methods usually work with big

objects with a defined body to grasp, whereas to prune a rose, the robot has to be really

precise to fit a thin stem into the cutting tool (see Fig. 4.2).

To the best of our knowledge there is no robot able to prune a complete rose bush

in a natural environment. To prune a rose bush aesthetically and keep it healthy, a robot

has to cut its stems at a certain height from the ground. Therefore, the robot should

be able to locate the stems and find where it should cut. Since the robot is supposed

to prune roses under bright sunlight, active light sensors are not suitable, and laser

scanners are expensive and limited by their coverage. Thus, RGB stereo cameras suit

well in this task. Another important feature is robustness under changing conditions.

The robot should be robust to track the cutting points when the stems are moved by the

wind. Therefore, close-loop control based on vision is used to update the information

while it approaches to the target.

Unlike normal grasping or fruit harvesting, having a proper end-effector is impor-

tant for rose pruning because stems are thin and rose bushes are usually populated by

many stems. In addition, the tool must be light enough to be carried by a small size

mobile robot as its end-effector. Currently there is no pruner that can work and interact

with a robot on the market. For this reason, designing a tool capable of cutting thin

stems under program control is important for the success of the process.

This chapter presents a novel approach which is divided in the following steps.

1Highly populated by stems.
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1. Scan the rose bush based on a pre-planned robot arm trajectory to acquire a

complete 3D description of the bush in the form of a 3D pointcloud.

2. Segment the stems using an encoder-decoder CNN to separate the stems from

the background and leaves.

3. Evaluate the pointcloud and find cutting locations based on the desired height.

4. Navigate towards the target stem location updating in real-time the location of

the current target.

5. If the end-effector reaches the desired target (stem), send a signal to the cutting

tool to cut it.

These steps result in not only a good estimation of the cutting points but also a

robust servoing under changing conditions without compromising real-time target up-

date and execution. The navigation of the mobile robot to the bush is not part of this

pipeline because we assume the robot is already positioned in front of the bush at a

cutting distance, and the ground surface around the plant is approximately planar and

horizontal as in [135]. The proposed approach has the following contributions:

• A novel rose pruning pipeline based on stereo visual servoing and real time

target update.

• A real-time 2.5D servoing algorithm using pointcloud and 2D images to locate

stems and find cutting locations on them.

• A dataset with more than 1200 labelled images of rose stems used to train the

encoder-decoder CNN to segment rose bushes2.

4.2 Robot Setup

This section describes the setup of the robot. Fig. 4.1 shows an overview of the robot

and its components. Although the figure shows a specific design, the proposed pipeline

is more general and is not constrained to any type of robot or stereo camera, making it

flexible for a re-implementation on different hardware3.

2The dataset is at: http://trimbot2020.webhosting.rug.nl/resources/public-datasets/
3The robot setup was done by the Wageningen university & research team as specified in the decla-

ration page.
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4.2.1 Robot arm

The arm consists of a Kinova Jaco2 robot [198], a light-weight manipulator with lower

power consumption mounted on a mobile robot; the details of the mobile robot base

can be found in [135]. The 6 rotational joints provide the dexterity needed for the

scanning and cutting actions. The arm has a spherical wrist configuration rather than

a curved wrist. This configuration allows easier inverse kinematics (IK) computation

and smoother movements than the usual curved wrist configuration.

4.2.2 Clipping tool

Market research started the design process of the clipping tool to find readymade solu-

tions to cut stems in a cluttered environment. The commercially available Ciso pruner

from Bosch was chosen as the base because of its simple on-off control system and

the built in feedback mechanism, by means of position switches, to sense whether the

knife is open or closed. The pruner is able to cut stems up to 14 mm in diameter and

was mechanically modified in order to mount it on the Kinova robot arm (Fig. 4.2).

Because of the ROS control architecture used for the main platform, a Maxon motor

controller (Epos 2, 24/5, Maxon Motor AG, Switzerland) is used to drive the DC motor

that opens and closes the jaws of the knife. An in-house modified version of the Maxon

motor ROS wrapper epos harware [199], that allows the reading of the digital I/O of

Epos 2, is used to control the motor and read out the state of the position switches.

4.2.3 Stereo camera

On the last joint of the arm, on top of the clipping tool, a custom stereo camera [115]

is mounted (Fig. 4.2). The camera module is mechanically configured to not obstruct

the cutting action and to see as much of the scene as possible. The stereo camera has

a resolution of 752×480 px, a diagonal FoV ≈ 68◦ and a baseline ≈ 3 cm. The stereo

calibration was done using Kalibr [200]. The camera uses as its global coordinate the

base frame of the robot. Figure 4.2 shows that the camera housing has two pairs of

stereo cameras with different baselines, however, only the camera with the smallest

baseline is used because the cutter needs to get close to the target.
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Figure 4.2: 3D design of the clipping tool. 1: 2 pairs of cameras in a 3D printed housing,

2: DC motor, 3: gear box, 4: protective cover, 5: drive lever of cutting blade, 6: position

feedback switches, 7: cutting blade.

4.3 Methodology

The proposed method is divided into 5 steps which can be seen in Fig. 4.5. The

following sections will describe each step of the process individually.

4.3.1 Scanning

The pipeline starts by scanning a rose bush in a predefined square shape trajectory,

making a short pause at given poses to avoid motion blur when recording the image

pairs. The square scanning trajectory has a size of 20× 20 cm with its center located

at the cutting height h. This is the starting position of the arm. The end-effector of the

arm is∼ 0.6 m away from the bush. A sample of the images captured in each pose can

be seen in Fig. 4.3a. The scanning is performed because a single viewpoint can only

provide limited information due to complex occlusions between stems. Also, a rose

bush is usually too big to be captured in a single shot by an eye-in-hand camera. One

can argue that the robot can be placed far away from the plant to capture the whole

bush at once, however, the farther it gets, the more difficult it is for a stereo matching

algorithm to find the disparity of a single stem.
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4.3.2 Stem detection

This section summarises the algorithm presented in Chapter 3, in order to provide

context for the servoing and cutting process.

For each pose in the trajectory, a color image from the left camera and a disparity

map are obtained. The disparity maps are computed by using Block Matching Stereo

(BM). Although BM is not as accurate as state-of-the-art methods like Semi Global

Block Matching (SGBM) or DispNet [201], it is a faster approach. BM obtains the

disparity maps in real-time, whereas SGBM runs at∼ 4 FPS and DispNet at∼ 2 FPS4.

The image from the left camera is used as input to an encoder-decoder CNN with

residual connections to segment the stems from the background, similar to [202]. The

network outputs a binary image where it assigns a value of 1 to all the pixels that form

part of a stem and 0 to the background. This network outperforms most of the state-of-

the-art segmentations for the branch segmentation task [1]. The binary output is used

to mask the disparity image to obtain only the disparities of the stems. This masked

disparity is then converted into a pointcloud. Figure 4.3c shows the pointcloud of the

bush after performing the segmentation and post-processing.

4.3.3 Pointcloud post-processing

After segmenting the stems, each individual pointcloud is downsampled using a Voxel

Grid filter of size 0.1 mm. Then, the pose of the pointclouds are transformed to the

global frame (robot base) and merged by accumulating all the points. To make the

cutting point localization process faster, the merged pointcloud is spatially subsampled

and the noise removed. All the points that do not have at least 20 neighbors within a

range of 0.5 mm are considered noise.

4.3.4 Cutting points localization

Here, the criterion to find the cutting point is based on the height of the plant. Those

stems with height above h cm will become candidates to be pruned. This height varies

depending on the type of the rose. The cutting points are found by creating a virtual

plane πh at h cm above the ground and finding all the points pi in the pointcloud P∈R3

4Under our setup (see Section 4.4).
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that are close to the plane (4.1).

Ph = {pi|dist(pi,πh)< 1.5cm} (4.1)

where:

dist(pi,πh) =

∣

∣

∣

∣

πh

‖πh‖
·
(

pi− pplane

)

∣

∣

∣

∣

(4.2)

Equation 4.1 outputs all the points pi in the bush that are 1.5 cm or closer to the

desired height h and stores it in the set Ph. Equation 4.2 is the distance from plane to

point where pplane is any point in the plane.

The points in Ph are clustered to find the parts of the plant where the cutting points

are located. These points are clustered based on distance using DBSCAN (Density

Based Spatial Clustering of Applications with Noise) [203]. DBSCAN is a density

based clustering method, known to work well with groups that are closely packed

together and where the number of clusters is not known beforehand. A group of points

is considered a cluster if the distance between them is less than a threshold dcluster and

the quantity of points existing below this threshold is higher than a minimum min p.

A minimum number of points min p of 40 and a dcluster = 0.8 cm was used in our

configuration (these values were found empirically).

A simple approach would choose the center of gravity of those clusters as cutting

points, however, it might lead to false positives. This could happen for two main rea-

sons. First, the points inside a cluster might belong to a branching part of the plant.

Second, two stems that were really close might get clustered together. In both cases,

the cutting point would be wrongly located between the middle of two stems. This

problem is tackled by dividing the clusters into horizontal slices (7 in our implemen-

tation) and clustering each slice with a distance threshold of dcluster = 0.5 cm and

minimum number of points of 5. In this way, thinner branches in the cluster can be

found. This second clustering will be called sub-cluster. The cutting points are found

by evaluating these sub-clusters in the following way:

• If at least four of the upper slices have two sub-clusters, this means that the

cluster is located in a branching section of the plant, therefore, two cutting points

are generated. These two cutting points are the center of gravity of the two sub-

clusters that have the farthest distance between each other (yellow slice in Fig.

4.4a). This criteria aims to have two points in the cluster that are far from each

other so the cutting tool does not get stuck between both stems.
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(a) Scanning trajectory at 9 stopping poses. From top to bottom, color images captured by the left cam-

era, pointclouds of the rose bush, branch segmentation network output, and the final masked pointclouds.

(b) Merged pointcloud without branch seg-

mentation.

(c) Merged pointcloud after segmenting the

stems with cutting points localized.

(d) Cutting points on the original pointcloud

of the bush.

Figure 4.3: Scanning trajectory and pointcloud of the rose bush with cutting points (red

dots).
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• If all the upper slices are divided but there are at least 4 slices at the bottom part

of the cluster that have not been divided, the center of the bottom slice is chosen

as a cutting point (pink slice in Fig. 4.4b).

• If all the slices have one sub-cluster, the center of gravity of the middle slice is

chosen as cutting point.

(a)

(b)

Figure 4.4: Clustering and slicing approach to find cutting points. The first column

shows the slices (colored) found inside a cluster. The second column shows the result-

ing cutting points after evaluating the slices. The red circles indicate the chosen cutting

points and the blue circles the center of gravity of the cluster. (a) Shows the case where

6 out of 7 slices in the cluster can be split in two, generating, in this way, two cutting

points. (b) Shows the case where the 4 bottom slices of the cluster are not divided,

which creates a cutting point in the bottom slice.

Note that because DBSCAN relies on the distance between points to form a cluster,

it usually groups the points of a thorn as part of the branch it belongs to; this is because

the size of the thorns are small (∼ 1.5 cm) and do not tend to grow far from the branch.
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4.3.5 Visual servoing and navigation

Once the cutting points are found, their positions are stored and the robot is sent to

each location one by one from closest to farthest. For each stored point, the following

pipeline is executed. 1) The robot starts at home position, which is located at height

h and points towards the rose bush, as shown in Figure 4.1. 2) The robot navigates to

the current target using our visual servoing method, once the robot reaches the target,

it sends the signal to activate the cutter. 3) The robot returns to the home position and

the process is repeated for the next target point. This section will give an in-depth

description of our visual servoing approach.

The robot starts the servoing by rotating the end-effector 45◦ for sideways cut fol-

lowing gardening rules. The arm navigates to the first target. While it navigates to the

current cutting goal pgoal , the visual servoing looks for a new cutting point candidate

pcan in a neighborhood of radius 1.5 cm around pgoal . If there is any candidate in this

radius, the goal gets updated using a convex combination (4.3) between the current

goal position and the new goal. The convex combination is weighted by a “blending”

factor α ∈ (0,1] with α = 0.1 in our implementation. This combination guarantees

a smoother update of pgoal by avoiding fast changes in position between consecutive

times (t, t +1), where pgoal(t +1) is the new goal and pgoal(t) is the current goal.

pgoal(t +1) = αpcan(t)+(1−α)pgoal(t) (4.3)

The neighbors of the cutting goal are found by running a process in parallel which

captures the position of the arm and pointcloud at the current time t, and outputs the

positions of the cutting points on the scene using the methods from Section 4.3.3, 4.3.2

and 4.3.4 (stem detection, Pointcloud post-processing, Cutting points localization).

This process can be better appreciated in Fig. 4.5.

The navigation of the arm, from the start position to a cutting point, is performed

using proportional velocity control. ROS MoveIt! software [204] is used to find the

inverse of the Jacobian J† to obtain the joint difference ∆q from the distance ∆X ; the

∆X is the distance between the end-effector of the robot and the target pgoal . For

the approach, a proportional controller is enough to have a smooth trajectory. The

proportional value K is not a constant but a dynamic value that changes based on ∆X

because the robot should “decelerate” when it gets close to the cutting location and

should increase the velocity when the end-effector is far from the target. However,

in practice, it is not desirable that only the distance between the end-effector and the



72 Chapter 4. Visual Servoing

E. Visual Servoing
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Figure 4.5: Pipeline for cutting roses.

target controls the value of K, specially because if ∆X is big, q̇ will have an undesirable

high speed. Thus, a maximum velocity must be set to avoid this. Similarly, a lower

bound is set to avoid the velocity becoming 0 when the end-effector gets really close

to the target stem. Equation 4.4 shows how the velocity of a joint qi is calculated.

q̇i =















10[deg
s
] i f K∆qi > 10[deg

s
]

3[deg
s
] i f K∆qi < 3[deg

s
]

K∆qi otherwise

(4.4)

4.4 Experiments

The pruning pipeline was tested using several rose bushes. This includes rose stems

placed inside a pot and a real bush in a garden. The thickness of the stems ranged

between 0.6 to 1.0 cm. All the tests were performed outdoors in a garden, meaning

that the system was tested in an uncontrolled environment. A sample of the plants used

in the evaluation is shown in Fig. 4.6 and the result of the rose pruning in Fig.4.7.

The system was tested using a Razer Blade 14 i7 with 8 cores and a GTX 1060

Nvidia GPU. The connection between the software and hardware was done through



4.4. Experiments 73

Figure 4.6: A sample of the rose bushes used in the evaluation.

the Robot Operating System (ROS) [169].

Fold Precision Recall F1

0 0.8482 0.8228 0.8353

1 0.8120 0.8224 0.8171

2 0.8166 0.8265 0.8215

Macro Avg. 0.8256±0.020 0.8239±0.002 0.8246±0.010

Table 4.1: Pixel-wise branch detector results of the different folds and macro averages.

4.4.1 Branch segmentation evaluation

The branch segmentation CNN was trained and evaluated using our new dataset of

rose bushes which consist of 1360 manually labelled images, each image with a size

of 752×480 px. A sample of the dataset can be seen in Fig. 4.8.

The architecture of the branch segmentation CNN is shown in Table 4.2. The

performance of the network was evaluated using k-fold cross validation with k = 3, F1

score for each fold and macro F1 for the whole network. Table 4.1 and Fig. 4.3a show

the results of the branch segmentation.
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Figure 4.7: Rose bush after pruning. Figure 4.6 shows the plant before being cut.

Figure 4.8: A sample of the dataset collected to train the network.

4.4.2 Evaluation of cutting point detection from scanning

The accuracy of the scanning was measured by comparing the total number of targets

found after scanning a bush and processing it (Section 4.3.3, 4.3.2 and 4.3.4) and the

real number of targets. This value is also compared against the number of targets found

by considering only the data captured by a single pose. The number of cutting points

found by a single view was obtained by counting the total cutting locations found for

each view and averaging them together. The real targets are the stems that exceed the

desired cutting height h. The heights used for the evaluation are 10, 15, 20, 25, and 30

cm. The ground truth height is determined as follows. The robotic arm is mounted on

top of a mobile robot [115], whose dimensions and position (height) with respect to the

ground is known. Therefore, to find the height of the plant, we only have to transform

the points of the stems from the camera frame to the mobile robot origin.

The data is taken by moving the robotic arm in a square trajectory of 20 cm and

stopping at 18 locations. The data was captured using 19 different bushes, each bush
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Input image size: 480×320 px

Number of layers: 4+4

Filters per layer: 128

Kernel size: 5×5

Normalization type: Standard

Data augmentation: 10 %

Table 4.2: Branch segmentation CNN architecture.

containing 3 to 4 cutting locations. The total number of cutting locations was 60. Table

4.3 shows that the fused and segmented pointcloud, after scanning the bush, led to a

detection accuracy of 90% (true positive rate). However, if only one single pose (one

single view) is used to find the cutting locations, the accuracy drops to 30%. The

cutting points that were difficult to find were usually those that belong to the stems at

the back of the bush. It was caused mostly by the dense population of stems and leaves

covering them.

Detected

cutting points

Detection

accuracy

Fused views from scanning 54 0.90

Single view (average) 17.89 0.30

Table 4.3: Cutting point detection accuracy of targets found (out of 60) after scanning

and post-processing the pointcloud, and the average cutting points found by a single

view.

4.4.3 Visual servoing navigation quality

The quality of the visual servoing system was evaluated by letting the robot navigate

towards the cutting locations after the scanning. This result was compared against a

global planner. The global planner gives the location of the targets to the planner and

moves the manipulator towards them without updating the target position. A naviga-

tion is considered successful if the robot reaches the target location and the target stem

gets into the cutter. The total number of cutting locations found by the robot after scan-

ning the bush were 54 out of 60 real cutting locations. Therefore, the evaluation of the

visual servoing process was done using only the 54 locations found by the scanning

process. Table 4.4 shows that a global planner is not sufficient to drive the end-effector

to the target location. In practice, the stem randomly moves up to 2 cm sideways due

to the combined effect of external forces (like wind) and the interaction of the end-
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effector with other connected parts of the bush. This makes the end-effector usually

end up on one side of the stem. On the other hand, our visual servoing approach is

robust enough to make the robot navigate and reach the cutting points 94% of the time

under dynamic conditions.

Reached points Accuracy

Visual servoing 51 0.94

global planner 27 0.5

Table 4.4: Visual servoing and global planner results out of 54 detected cutting targets.

4.5 Conclusions

The presented approach was designed to effectively cut rose bushes in a garden in an

unconstrained outdoor environment with dynamic targets. The experimental evaluation

shows that the neural network is capable of segmenting the stems of rose bushes from

the background, even when the background and the stems have similar color. This

result also demonstrates that the large dataset introduced in the chapter can indeed be

used to successfully train a neural network to segment branches of different type of

roses.

The proposed target localization approach, which consists of the combined process

of stem detection, clustering and pointcloud merging can successfully find the cutting

points 90% of the times. These targets are found even when they are occluded by other

stems or leaves. This approach also proves to be robust but fast enough to be used by

the visual servoing to update the target location on the fly.

The visual feedback is a key element to navigate in a garden where the wind can

change the position of the stems, thus change the location of a target. The proposed

visual servoing performs a good navigation with an accuracy of 94%. The combination

of these steps results in a pipeline capable of finding cutting points in stems that are

occluded by other stems or leaves and navigating towards them successfully in ∼ 12

secs with an average initial distance between the center of the cutting tool and a target

stem of 0.6 m.

Scanning the rose bush in a square path is a simple yet effective to capture the

structure of the plant. Different scanning methods can be done to improve the scanned

bush model, like having different poses instead of a square shape or scanning the bush

by navigating around it, however this will lead to further problems like localization
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and drifting.

4.5.1 Limitations and future work

This work is a significant step towards an automated robotic rose pruning system with

visual input as close-loop feedback able to work in a real environment. Currently, our

visual servoing accuracy is 94% when the robot is in front of the rose bush. Although

this is an acceptable assumption for rose bushes, other types of plants are denser and

wider. Thus, our method might not find all the cutting points. To make our approach

more general, a possible future work would be to scan the plants from different sides

and fuse the views.

As mentioned at the beginning of the chapter, the 3D morphology estimator was not

used. Thus, our method was only tested for one gardening rule: cutting the branches

at a certain height. A good extension of this work would be to combine both methods

to deal with more complex gardening rules such as cutting crossing inward branches,

dead branches, thin branches, and finding branches above eye buds.





Chapter 5

Multi-task Learning for Semantic

Segmentation and Disparity

Estimation

Previous chapters explore our contribution to scene understanding using classical ap-

proaches. This chapter demonstrates how the disparity and segmentation predictions

can be inferred using multi-task learning in an end-to-end process and obtain a com-

petitive performance compared to the state-of-the-art of both task while using less

parameters.

5.1 Introduction

Disparity estimation and semantic segmentation are fundamental problems in com-

puter vision. The goal of disparity estimation is to find the pixel correspondences from

a pair of images. On the other hand, semantic segmentation assigns class labels to

each pixel in the image. Both areas, individually, have been intensively investigated,

and lately, deep convolutional neural networks (CNN) have been the dominant solution

for both [205, 206].

These two methods are heavily used in scene understanding, autonomous driving,

and robotics. However, executing the state-of-the-art methods of both areas together

[207, 208], essentially doubles the computation load, which may be prohibitive. There-

fore, a method that combines both tasks into a single model can potentially reduce

computation, and thus allow it to be embedded in portable devices or executed in real-

79
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Figure 5.1: Network overview. Stereo pair features are extracted from the backbone

and used for a multi-scale, multi-task prediction. Task-specific features Fseg and Fdisp

are shared among the decoders to progressively refine each task.

time1. This method is also called multi-task learning [62], an area that is least explored

in the joint segmentation and disparity estimation field [8, 209].

In the literature, one can find many methods for disparity estimation and segmen-

tation [205, 206]. The general modern is an encoder-decoder CNN, where the encoder

extracts feature information by encoding the dimension of the input image, and the

decoder decodes these descriptions to predict the disparity map or the semantic seg-

mentation. For disparity estimation, two main approaches exist. The first approach

treats disparity estimation as a regression problem, using solely 2D convolutions [48].

The second approach obtains a cost volume by extracting 3D features and discretizing

the disparity [49, 50]. For semantic segmentation, the standard approach is to use a

pre-trained network as a backbone (encoder) and add specialized layers (decoder) to

obtain the segmentation [35]. These layers extract multi-scale information from the

input image to improve the segmentation [208, 210], or to find some context using

attention layers [211].

Compared to the extensive literature that approaches these tasks separately, there

are few works about solving them together using data-driven techniques. This is be-

1This is not explored in the chapter because is out of the scope.
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cause segmenting an image and finding the disparity map are complex tasks per se

and require a lot of training examples to learn meaningful representations of each

task with an end-to-end approach. Another issue is the lack of datasets that have

both ground truths and stereo pairs; Cityscapes2 [212], KITTI [213] and the Trim-

Bot Garden Dataset [214] are among the few existing datasets. Because of this, most

of the multi-task methods only estimate a monocular depth which is an ill-posed prob-

lem from the geometry perspective [79]. Among the approaches that solve both tasks

jointly, some focus on using individual decoders for each task [209, 8, 77] and others

on improving the energy function [209]. Similar to disparity and semantic segmenta-

tion multi-task learning, other works use shared encoders. For example, [215] uses a

pre-trained semantic segmentation network to leverage semantic information and im-

prove monocular depth. On the contrary, [216] uses a single decoder that can predict

either the semantic segmentation or the depth of an image given as input a class token.

Different from the methods above, we argue that exploiting the feature information

from different tasks and combining them progressively improves the learning of se-

mantic segmentation and disparity using a stereo input. More specifically, we propose

to use a backbone as an encoder to extract feature information at different scales from

the left and right images and have 3 specialized branches as decoders. The first one ex-

tracts a coarse segmentation using high-level features from the backbone. The second

branch outputs a disparity map by extracting the correlation between the left and right

features and combining them with intermediate features from the coarse segmentation

branch. The third branch obtains a refined segmentation by combining low-level fea-

tures from the backbone and the coarse segmentation and disparity branches. Here, an

attention mechanism is used, so the network can select the most useful features from

the coarse segmentation branch and disparity branch [217]. This progressive multi-

scale learning allows the segmentation and disparity information to refine each other.

Low-level information from the input image was also extracted by using a convolution

with a larger field of view and concatenated to each branch before outputting the pre-

diction. This allows the network to obtain a prediction with almost the same dimension

as the input. The main contributions of this chapter are:

• An end-to-end method that successfully learns the semantic segmentation and

disparity map together from a stereo pair. To achieve this, it learns task-specific

features that are shared along with the two tasks progressively.

2The disparity ground truth is obtain from SGM stereo.
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• It improves the state-of-the-art for joint disparity and semantic segmentation

multi-task learning with competitive results against other methods that solve

each task individually.

• A network capable of solving both tasks jointly using less than 1/3 of the param-

eters that the previous works use to solve only one task. This reduced number

of parameters is useful for systems that have limited resources like the areas of

autonomous driving and robotics.

5.2 Methodology

In this section, we introduce the proposed progressive multi-task architecture and elab-

orate on how it can use feature information from one task to improve other tasks using

a coarse-to-fine structure with a stereo input.

5.2.1 Network architecture

Before describing the core parts of the network, an overview and description of the

layers will be given; a detailed description of the network architecture can be found

in Appendix A. The proposed method consists of a backbone and a decoder with 3

specialized branches which can be seen in Figure 5.1. The first branch obtains a coarse

segmentation. It outputs task-specific features Fseg, which are used as input for the

second branch. The second branch outputs the disparity of the stereo pair and its

own task-specific features Fdisp. The third branch uses these features to output a re-

fined segmentation. The segmentation and disparity outputs are from the left image.

Each convolution used in the network has a kernel size of 3× 3 followed by a ReLU

transformation and batch normalization unless stated otherwise. Following [50, 218],

after concatenating any 2 or more features, they are processed with a series of top-

down/bottom-up convolutions known as an hourglass (encoder-decoder) to learn more

context information. The hourglass is composed of 3 convolutions and 3 deconvolu-

tions with residual connections. The disparity and coarse segmentation branches have

two encoder-decoder blocks. One is used to process the information obtained by the in-

coming features, either from the backbone or other branches; the output of this block is

used as a task-specific feature. The second encoder-decoder processes the information

further to obtain the final prediction. The segmentation branches use Cross-entropy

and Lovasz [219] losses, while the disparity branch uses L1 loss.
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Figure 5.2: Backbone structure. Each block reduces the dimension of its input in half.

The dimension of blocks 0, 1, 2, 3, 4 are 1/2, 1/4, 1/8, 1/16, 1/32, respectively. The

features F1, F2 and F4 are used in the branches.

5.2.2 Backbone feature extraction

Two Densenet121 [34] with shared weights are used as backbones to obtain high-level

and low-level features from the left and right images. The shared weights approach

reduces the number of parameters of the network [220]. The backbones are pre-trained

with ImageNet [34]. Each backbone is divided into 5 blocks to extract the features.

Because the input is from stereo, the features from each view must be extracted. They

will be denoted as FL
i and FR

i in the rest of the chapter, where i is the block from where

it was extracted and L and R indicate if the feature belongs to the left or right image,

as seen in Figure 5.2.

5.2.3 Coarse segmentation branch

The first branch extracts a coarse segmentation as seen in Figure 5.3, similar to [221].

Since this output is also optimized, it can be seen as an auxiliary loss [37]. The input

of this branch is the concatenated feature maps FL
4 and FR

4 , followed by a sequence

of convolutional layers. Block 4 from the backbone outputs features with 1/32 of the

size of the original image, causing a loss of detailed information. Following [222], to
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Figure 5.3: Coarse segmentation branch. It receives as input FL
4 and FR

4 . Before

predicting the coarse segmentation, the left image is convolved and concatenated to

add low-level information.

reduce this problem, low-level features are obtained by processing the left image with

a 5× 5 convolution (larger receptive field). Then, the output is concatenated with the

rest of the features in the branch (Figure 5.3). The concatenated features are convolved

once more to output the final segmentation. Softmax is used at each pixel to obtain the

probability of each class. This branch extracts task-specific features Fseg, which will

be concatenated with the disparity and refined segmentation branches. In this way, the

network explicitly passes the features learned by this branch for progressive learning

and refinement.

5.2.4 Disparity branch

The second branch computes the disparity map from the stereo images (Figure 5.4).

The inputs of the branch are FL
2 and FR

2 . The correlation between these two features

is computed using a correlation layer [48], which takes a block of the features from

FL
2 and convolves it in a neighborhood window around FR

2 . Because the window size

is limited, it does not capture correlations between distant features. Therefore, Spatial

Pyramid Pooling (SPP) [223] is used on the two feature planes, before extracting their

correlations, to obtain multi-scale information, and thus, find distant correlations. The

depth of the correlation block is reduced with a 1×1 convolution. Then, it is concate-

nated with the features Fseg, which were computed by the coarse segmentation branch.

In this way, the features learned by the segmentation are included to add more infor-

mation for the disparity estimation. As the next step, low-level feature information is
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Figure 5.4: Disparity branch. It extracts multi-scale information from backbone blocks

FL
2 and FR

2 using Spatial Pyramid Pooling (SPP). This information is processed further

and concatenated with the features from the coarse segmentation.

added to the network using the same approach as the previous branch. The output is

followed by an encoder-decoder block to obtain the disparity. Similar to the previous

decoder, this branch outputs an intermediate task-specific feature Fdisp, which is used

by the refined segmentation branch.

5.2.5 Refined segmentation branch

The third decoder computes the refined segmentation (Figure 5.5). Here, SPP is used

on the backbone features FL
1 and FR

1 , and their outputs are concatenated. The con-

catenation is followed by an encoder-decoder block and then split in two. One part is

concatenated with Fseg and the other with Fdisp. These features carry task-specific and

high-level information from previous branches. We use a 1× 1 convolution with sig-

moid activation to get the attention map. The attention focuses on selecting important

features from each task (see Figure 5.6). The attention is multiplied with the output of

the convolved features FL
1 and FR

4 , which carries low-level information. An encoder-

decoder block with an output dimension equal to the number of labels, followed by a

softmax, is used to obtain the refined segmentation.

5.3 Experiments

The proposed method is evaluated using Cityscapes [212] and the TrimBot Garden

[214] datasets. Some samples can be found in Figure 5.7 and 5.9 respectively. The
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Figure 5.5: Refined segmentation branch. It concatenates the multi-scale feature infor-

mation from FL
1 and FR

1 . The features from the previous segmentation (branch 1) and

disparity (branch 2) are also added to the network using an attention layer.

datasets are described below as well as the details of the model implementation and

training process (see also Appendix A). In Section 5.3.3, the results are compared with

those of the state of the art. An ablation study is then carried out to analyze the parts of

the model separately. Finally, the efficiency and effectiveness of the different methods

are compared jointly.

5.3.1 Datasets

Cityscapes [212]: It is an urban scene understanding dataset that contains 19 classes

such as person, wall, car truck, and bus. Some examples can be found in Figure 5.7.

The classes are grouped into 7 categories: flat, nature, object, sky, construction, human,

and vehicle. The disparity ground truth is a sparse map obtained by SGM stereo. It has

5,000 high resolution 2048×1024 px images, from which 2,975 are used for training,

500 for validation, and 1,525 for testing. The dataset does not provide the semantic

segmentation ground truth for the test set. Therefore, to evaluate the performance of

the network using this set of images, the segmented outputs needs to be uploaded to

the official Cityscapes website. In the experiments, the mean of class-wise Intersection

over Union (mIoU) is used as the evaluation metric for segmentation and D-1 error for

disparity estimation. The latter calculates the percentage of pixelwise disparity errors

below a threshold, which is usually set to 3 pixels of difference between the ground

truth and the estimated disparity [209].

TrimBot Garden [214]: It consists of images from a synthetic garden under 4
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Figure 5.6: Attention map output. The intensity of the attention is in grayscale, with

white being the areas with the greatest attention. The attention obtained for the coarse

segmentation focuses on the inner part of each segment, where the segmentation is

more confident. On the other hand, the attention for the disparity branch uses the

features at the region edges, where the disparity calculation is most certain.

weather conditions, as seen in Figure 5.9. There are 9 pixel-wise segmented classes

and their disparity maps. The dataset consists of 10k stereo pairs for training and 2.5k

images for testing. Each image has a resolution of 640×480 px. Following the dataset

metrics, pixel-wise accuracy was used to evaluate the semantic segmentation. The

dataset evaluates the quality of the 3D reconstruction instead of finding the error of the

3D depth or disparity. Therefore, our disparity predictions were transformed into depth

maps and then back-projected into the 3D space using the camera parameters provided

by them. The dataset takes into consideration two other metrics, completeness, and 3D

accuracy. The completeness is calculated by considering a predicted point as correct if

it differs from the ground truth by ≤ 0.05m, similar to D-1 error. The 3D accuracy is

the distance d in meters, such that 90% of the reconstruction is within d of the ground

truth mesh.

5.3.2 Implementation details

The implementation was built using the public library PyTorch [224]. Adam is used

as optimizer with default hyperparameters: learning rate 1e−3, β1 = 0.9, β2 = 0.999,

and ε = 1e−8. The final loss consists of the sum of the losses of the 3 branches.
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L = Lsegcr +Ldisp+Lsegre f . The training was done end-to-end and the gradients of

each branch loss are propagated across the whole network. For data augmentation, we

did random cropping of 512×512 px for Cityscapes and 480×480 px for the TrimBot

dataset, and random resizing between 0.7 and 1.5 only for Cityscapes. We did not use

random resizing in the TrimBot dataset because it provides many more (and more var-

ied) training examples. We also adjusted the brightness, contrast, saturation, and added

Gaussian blur with a standard deviation that varies between 0.25 and 1.15. To handle

the class imbalance, class uniform sampling [225] was used. For our experiments, a

maximum of 100K iterations was set for Cityscapes and 70K iterations for the TrimBot

Garden dataset. To evaluate the test set of Cityscapes, the training and validation sets

were used for training. Due to limited physical memory on the GPU cards, the batch

size was set to 16 during training. We also synchronized the batch normalization layer

of all the GPUs for stable learning performance. Appendix A shows a more extensive

evaluation of the hyper-parameters.

5.3.3 Model analysis

Cityscapes: The proposed network uses as the main backbone Densenet121 [34], a

lighter backbone with 8.0M parameters compared to the usual DeepLab v3 used for

semantic segmentation and multi-task learning, which has around 64.2M parameters

[225]. After adding the specialized decoders for the disparity and semantic segmen-

tation, the number of parameters of our network remains lower than the DeepLab v3

backbone with only 18.0M parameters. To show the capability of our progressive de-

coders, the backbone was not modified. Therefore, the feature at the coarsest level is

1/32 smaller than the input size, compared with DeepLab v3 backbone which has a

bigger receptive field of 1/16. An example of the segmentation and disparity estima-

tion of our network can be seen in Figure 5.7.

Table 5.1 compares our method with the state of the art in the Cityscapes rank-

ing. For the comparison, the work with the highest score in segmentation, Panoptic-

DeepLab [210], was considered, as well as the multi-task approach with the highest

score for both tasks from Kendall et al. [209], which will be called MTU in our exper-

iments. Given that both networks use Deeplab as backbone, two versions of Deeplab

v3 using Resnet-101 and Resnet-50 were included as their base networks. The pre-

vious methods use deeper and heavier networks, which gives a boost to their perfor-

mance. Therefore, we also compare our network with the method that achieves the
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Figure 5.7: Cityscapes results on the validation set. The stereo pair input is shown in

the first two rows. The ground truth and predicted disparities are shown in row 3 and 4.

The error of the predicted disparity (row 5) encodes the error e in 3 colors: blue (e < 3),

green (3 <= e < 6), red (e ≥ 6). The black color in the disparity and segmentation

images means that the ground truth has no disparity or has no class assigned to that

pixel, respectively.

best segmentation using the DenseNet architecture as backbone, which is Ladder-style

DenseNets [226].

Compared to MTU [209], our network gets lower disparity error, better IoU per

category, and is only 2.5% worse on IoU per class using less than a third of the pa-

rameters. To assess whether this difference is due to the backbone, training process,

or loss function, the following experiments were done (see Table 5.2): 1) We changed

the MTU backbone for the one used by our method (Densenet121), keeping its de-

coder and its uncertainty loss, and 2) We used their loss with our architecture. The

same learning process described in Section 5.3.2 was used for the experiments. The

results show that our implementation significantly outperforms the segmentation and

disparity obtained by MTU when it is evaluated and trained under the same conditions.

The results were also worse when our network used their loss function. Therefore, we

believe that the 2.5% improvement in the IoU per class obtained in Table 5.1 can be
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Method Backbone Train input size Params
Seg mIoU class Seg mIoU category Disp RMSE

Eval Test Test Test

Multi-task methods

Ours Densenet 121 512×512 18.0M 77.6 76.0 91.0 3.28

MTU [209] Deeplab v3 512×512 64.2M - 78.5 89.9 5.88

Semantic segmentation methods

Panoptic [210] Deeplab v3 2049×1025 46.7M 81.5 84.5 92.9 N/A

Ladder-style [226] Densenet 121 2048×1024 8.2M 62.32 - - N/A

Ladder-style [226] Densenet 169 2048×1024 15.6M 75.75 74.3 89.7 N/A

Deeplabv3 [41] Xception-71 513×513 46.7M 79.55 82.1 - N/A

Deeplabv3 [225] Resnet 101 768×768 64.2M 79.2 - - N/A

Deeplabv3 [225] Resnet 50 768×768 45.1M 77.8 - - N/A

Table 5.1: Cityscapes Dataset comparison table. The reported results are the class and

category segmentation IoU, and disparity error.

Method Backbone Loss
Seg Disp

mIoU class D-1 error

Ours DN121 Ours 77.6 0.040

MTU DN121 MTU 59.6 0.347

Ours DN121 MTU 72.2 0.067

Table 5.2: Comparison with MTU [209] on Cityscapes evaluation set using the same

backbone as ours. The comparison shows that the good performance of MTU from

table 5.1 is due to the usage of a bigger backbone. If MTU is trained using the same

backbone as ours their performance decreases. The table also reports the result of our

network when trained with the loss proposed by MTU. This comparison supports the

claim that, under similar conditions, our method performs better.

exclusively attributed to the use of a backbone with many more parameters3. The im-

provement provided by our method, regardless of the use of a specific backbone, can

also be observed if our results are compared with those obtained with the approaches

that use DenseNet (such as Ladder-style). Only the methods that use a backbone with

many more parameters and larger images achieve an improvement in their results, such

as Panoptic or Deeplab v3. However, this greater number of parameters and image

sizes leads to less efficient solutions, and in these cases, to solve only a single task.

TrimBot Garden: For these experiments, the same architecture and training pro-

cess were used as for Cityscapes. The results are compared with the best-performing

methods for semantic segmentation and depth estimation, DTIS [227] and HAB [214],

respectively. DTIS uses a network similar to FuseNet [228], which has as input an

RGB image and a depth map, and outputs both the semantic segmentation and a re-

fined version of the depth map. HAB uses ELAS stereo [229] to produce a dense point

cloud, and DeepLab v3 [36] to obtain the segmentation. The resulting point cloud is

3We would like to demonstrate this claim directly but we do not have access to the necessary GPU

resources.
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denoised with class-specific filters based on the 3D geometry.

Table 5.3 shows that our method obtains a segmentation accuracy similar to DTIS

and outperforms HAB. To evaluate the disparity output of our method with the metrics

of the dataset, it was transformed into a depth map and back-projected into 3D as a

point cloud. Disparity networks have the common problem of smoothing the edges.

Therefore, the edges that have high gradient values were removed. Points that were

labeled as sky and all the points that have ≤ 25 neighbors in a radius of 0.05m were

also removed. The dataset evaluates the depth based on how well it reconstructs the

3D garden, using completeness and 3D accuracy as metrics. Our network achieves the

best score in both. It is 3.8% more complete than the best result and the reconstruc-

tion accuracy is almost 0.01m better. It is important to highlight that, unlike HAB, our

method obtains both results at the same time without applying any heavy point cloud

filtering or using 3D features. Compared to DTIS, our network uses 10 times fewer pa-

rameters and it does not receive any previous disparity map as input. Figure 5.8 shows

the 3D reconstruction obtained for the entire garden and Figure 5.9 the segmentation

and disparity results from different views. The plot was obtained using the official

code of the TrimBot dataset ??.

Figure 5.8: 3D reconstruction. Distances (0-1 m): Cold colors indicate well-

reconstructed segments. Hot colors indicate missing parts (completeness).
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Figure 5.9: TrimBot Garden predictions on the test set. The color encoding used for the

disparity predictions and errors are the same as those used for Cityscapes in Figure

5.7.

Method Param.
Seg

acc.

3D reconst.

Acc.

(m)
Comp.

Ours 18.0M 91.9 0.061 77.8

DTIS [227] 207.8M 91.9 0.122 66.2

HAB [214] 64.2M 79.0† 0.069 74.0

Table 5.3: TrimBot dataset comparison. The segmentation accuracy (Seg acc.) and

completeness (comp.) are in percentages. For the 3D accuracy, the lower the value the

better. HAB† only reports the 3D segmentation accuracy.

5.3.4 Ablation study

Choosing output tasks

The number of outputs and the decision of having two outputs for the semantic seg-

mentation and one for the disparity were made as follows. We trained multiple variants

of our network. They were trained on the Cityscapes dataset using a maximum of 30K

iterations and following the same configuration as described in Section 5.3.2. First,

the network was trained to output one task at a time only once, as seen in the first two

rows of Table 5.4. In these two experiments, the first task shares its features with the

second task. As a second step, we tested if adding an extra output (refined output) of

one task and receiving the task-specific features of the other outputs will obtain a better

performance. Here, several configurations were tried where the tasks were output in

a different order, as can be seen in the last four rows from Table 5.4. Due to limited

physical memory on the GPU cards, we could not train the network with four outputs.

The experiment shows that the best performance is obtained when the network outputs
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Networks
Features from backbone Coarse disparity

D-1 error

Final disparity

D-1 error

Coarse segmentation

IoU

Final segmentation

IoUF4 F2 F1

Network 1 disp (R) seg (R) - 0.102 - 68.3

Network 2 seg (R) disp (R) - 0.094 - 67.8

Network 3 disp (C) seg (R) disp (R) 0.093 0.078 - 70.0

Network 4 disp (C) disp (R) seg (R) 0.093 0.088 - 69.1

Network 5 seg (C) disp (R) seg (R) - 0.070 67.2 72.4

Network 6 seg (C) seg (R) disp (R) - 0.075 67.1 69.3

Table 5.4: Results using different features from the backbone to predict a task. The

maximum number of predictions a network can have is three. In the table, disp stands

for disparity sub-network and seg for semantic segmentation sub-network. When the

network outputs one task twice, the first output is considered as Coarse output, denoted

by the letter (C) and the last output is considered as the Final output (R).

first a coarse segmentation. Then, the task-specific features are shared with the dispar-

ity sub-network, and finally, the task-specific features of both tasks are shared with a

third sub-network, which is in charge of outputting the refined segmentation.

The table also shows two interesting results. 1) If a network predicts a refined

version of a previous task, the second output will obtain a better score than a network

that predicts that task only once. 2) The networks that have a refined output of one task

and receive as input the features of its coarse version and the other task, will perform

better than the networks whose refined sub-network only receive the coarse features.

For example, Network 3 and 4 predict a refined disparity. Network 4 has a D-1 error

of 0.088, meanwhile, Network 3, where the last sub-network receives both subtasks as

input, obtains a lower D-1 error of 0.078. Similarly, Networks 5 and 6 predict a refined

semantic segmentation. Network 5, whose refined branch receives both tasks, has an

IoU of 72.4%, which is higher than Network 6 by 3.1%.

Sharing task-specific features

A series of experiments were conducted to test the effectiveness of sharing task-specific

features among the branches of the proposed network. Recall that it concatenates fea-

ture information Fseg from the coarse segmentation branch with the disparity, and then

uses the segmentation and disparity features, Fseg and Fdisp, to refine the segmentation.

Therefore, 3 variations of our proposed network were trained, and then tested on the

validation set of Cityscapes: 1) All the connections between the task-specific features

and branches were removed, with exception of the features that are used from the back-

bone, 2) The connection between the features from the coarse segmentation (Fseg) and

the disparity decoder was kept, but the connections of the disparity and the coarse seg-

mentation features (Fseg and Fdisp) with the refined segmentation branch were removed,

and 3) The connection Fseg to the disparity branch was removed and the connections

Fseg and Fdisp with the refined segmentation branch were kept. Table 5.5 shows the



94 Chapter 5. Multi-task Learning for Segmentation and Disparity Learning

Fseg

↓
Disparity branch

Fseg ∧ Fdisp

↓
Refined seg. branch

Coarse seg.

IoU

Refined seg.

IoU

Disp D-1

error

✗ ✗ 73.3 64.8 0.064

X ✗ 73.3 64.7 0.051

✗ X 72.5 75.7 0.060

X X 74.6 77.6 0.040

Table 5.5: Task-specific feature sharing effect. The first two columns show if the features

Fdisp and Fseg were concatenated to the disparity or refined segmentation branches.

Coarse seg. and Refined seg. IoU show the results for coarse and refined segmenta-

tion.

results of each experiment in rows 1, 2, and 3, respectively; row 4 shows the original

model with all the connections.

The experiments show that by having the connection between the coarse segmenta-

tion features Fseg and the disparity branch, the disparity error gets reduced, from 0.064

to 0.051 (results from the first and second row). The lowest disparity error, 0.040, is

obtained when Fseg and Fdisp are shared with the refined segmentation branch (fourth

row). This result points out that, even though this last connection does not affect the

disparity prediction at inference time, the progressive connection between task-specific

features does help in the training process to learn better descriptors.

These experiments also demonstrate that the refined segmentation is improved

when it receives the task-specific features Fseg and Fdisp. The improvement ranges

from 64.8% to 75.7% when the disparity branch does not receive Fseg, to 77.6% when

it does. This also shows that if the disparity branch receives information from the

coarse segmentation task, it can learn more meaningful features that can be passed to

the refined segmentation branch.

Finally, the experiments show that the refined segmentation performs worse than

the coarse segmentation (first two rows of Table 5.5), when it does not receive features

Fseg and Fdisp. This is because it can only use the features at the beginning of the back-

bone (low-level features), which are not enough for such a complex task as semantic

segmentation.

5.3.5 Effectiveness vs. efficiency

It is important to note that the precision of the algorithm and its efficiency (measured

in the number of parameters) are, quite often, opposite objectives, since attempting to

improve one of them usually implies a deterioration in the other. From this point of
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view, this task can be seen as a Multi-objective Optimization Problem (MOP) in which

two functions are optimized simultaneously.

The means commonly employed to evaluate this type of problem is the use of the

concept of non-dominance: One solution is said to dominate another if, and only if, it

is better or equal in each objective function and, at least, strictly better in one of them.

The best solutions (there may be more than one) are those that are non-dominated. The

strategies within this set can be considered the best without having to define any order

among them [230].

Figure 5.10 compares the semantic segmentation precision and the efficiency of

the algorithms evaluated assuming a MOP scenario. In addition, the Pareto frontier

is marked with the non-dominated results, in which four combinations are found to

be non-dominated for the Cityscapes dataset (Our proposal, Ladder D121, Ladder

D169, and Panoptic) and two for the Garden dataset (Our proposal and DTIS). For

both datasets, our solution is the multi-tasking approach with the best combination of

efficiency and precision. The rest of the non-dominated results are optimized for a

single task, or they are multi-task solutions but much less efficient.

5.3.6 Speed of the model

We computed the float-point operations (FLOPs)4 of our method and compared it with

DeepLab v3 with the Xception-71 backbone using an input size of [2048× 1024].

DeepLab v3 has 2.77 TFLOPs and obtains a result of 82.1% mIoU on the Cityscapes

test set. Meanwhile, our method uses 3.1 TFLOPs and obtains a performance of 76.0%.

Although our method uses more floating-point operations and has slightly lower per-

formance, we should consider that, unlike DeepLab v3, it has two encoders, one for

the left and another for the right image, this means that the number of flops will be

doubled for the encoder. Also, our network has multiple sub-networks that not only

compute the semantic segmentation but also predict the disparity. Moreover, it is im-

portant to highlight that disparity estimation networks usually have more flops than

semantic segmentation ones. For example, a well-known disparity network PSM has

8.21 TFLOPs using the same input size, while our disparity sub-network only needs

1.2 TFLOPs. Although our network is slower than DeepLab v3, it presents a good

trade-off between speed and practical utility, as running both tasks separately will use

more flops.

4The values were computed using https://github.com/sovrasov/flops-counter.pytorch
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Figure 5.10: Analysis of efficiency (measured in the number of parameters) and effec-

tiveness (considering IoU for the Cityscapes dataset and Pixel Accuracy for TrimBot

Garden) as a Multi-objective Optimization Problem (MOP). Non-dominated elements

and multi-task approaches are highlighted.

5.4 Conclusions

An end-to-end method based on multi-task learning that successfully learns the seman-

tic segmentation and disparity map together from a stereo pair has been presented.

It has been experimentally demonstrated that using separate decoders for each task

is not sufficient to achieve good performance, and that sharing the knowledge of seg-

mentation and disparity tasks between them, in a progressive fashion, improves the

learning and results on both tasks. Since the features of each task are obtained at dif-

ferent resolutions, these task-specific features also provide multi-scale information for

coarse-to-fine learning. In addition, sharing the learned features also helps to reduce

the complexity of the network and thus increase its performance, as demonstrated pre-

viously in [60, 61].

On the other hand, Standley et al. [61] showed that smaller networks tend to have

a lower capacity to deal with multitask problems. However, our network manages to

outperform the state of the art of multi-task learning on the Cityscapes and TrimBot

Garden datasets, and obtains competitive results against the methods that solve each

task individually using 1/3 of the parameters. The reduced number of parameters

allows its application on systems that have limited resources. For instance, it can run

inference with 2048×1024 px images on a single GTX-1080Ti and half the resolution
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on a GTX-1060.

An area of improvement would be to reduce the FLOPs of the network by im-

plementing more efficient layers like separable convolutions in the bottlenecks of the

network.





Chapter 6

3D Segmentation

A robot or agent not only uses cameras to collect information, but also other sensors

that capture the 3D information of its surroundings. This chapter presents a method to

semantically segment and classify unordered point clouds using a two-headed attention

layer to process the geometric information and latent features separately. The research

reported in this chapter was previously published in [3].

6.1 Introduction

Robotics, autonomous driving, and related areas rely heavily on information captured

by 3D sensors like RGB-D cameras, stereo cameras, and LiDARs. This information

provides to the agent (robots or cars) the 3D location of their surroundings, which can

be processed and used in tasks like scene understanding, path planning, navigation,

among others [133, 2, 115]. One way to find the objects in the 3D space and their loca-

tion is through point cloud segmentation. A point cloud is a set of points in 3D, usually

unordered and sparse; some regions can be densely populated and others empty. This

type of non-grid structured data makes it difficult to be used with convolution operators

with the same efficiency as their 2D counterpart.

Various approaches have been proposed to handle such data. Some approaches

project the 3D raw data into a regular structure (e.g. voxels) where 3D convolutions can

be used [86, 87, 88, 89, 90, 91]. Other approaches use multilayer perceptrons (MLP)

to process point clouds directly [11, 93, 10]. A third approach is to project the points

to an intermediate grid structure where 2D convolutions can be used [98, 99, 100].

Lately, with the success of transformers and attention mechanisms in the area of natural

language processing (NLP) [101], these methods have started to show dominance in

99
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this area [103, 104].

This chapter proposes a multi-head attention layer called Geometric-Latent

Attention (Ge-Latto) to segment and label subsets of the point cloud. Ge-Latto

is a two-headed local attention layer that evaluates a patch inside the point cloud and

tries to find good relationships between the neighbor points. Unlike other works that

combine all the features indiscriminately [105, 96], each attention head focuses on a

specific type of feature. One head is in charge of finding good 3D geometric relations

and the other in finding relationships among the latent features of the network. Similar

to [98], we use an encoder-decoder network with residual connections. Each layer of

the encoder sub-samples the input points, groups the points into neighborhoods, and

uses our Ge-Latto layer to find local-spatial relationships from the latent and geomet-

ric features of neighbor points. The neighbors are found using radius neighborhoods

instead of k-nearest-neighbors (kNN). The network increases this radius in each layer

to increase the field of view and find relationships in bigger neighborhoods. In the

decoder part, we up-sample the points using tri-linear interpolation. To ensure that in

each sampled layer the network learns useful features, we add auxiliary losses similar

to PSPNet [37] and RetinaNet [231]. In other words, the network predicts the segmen-

tation for each sample size as seen in Figure 6.1. Our approach is also invariant to

permutation because all the layers are shared MLPs.

The main contributions of this chapter are: a) A novel two-headed attention layer

that is able to combine efficiently the geometric and latent information of unordered

point clouds with variable densities for semantic segmentation. b) A pyramid-based

encoder-decoder architecture with auxiliary losses to leverage feature patterns at dif-

ferent resolutions. c) State of the art performance on the complex dataset S3DIS, in

not only area 5, but also in k-fold cross-validation, as well as competitive results on

the ShapeNetPart and ModelNet40 datasets.

6.2 Methodology

Ge-Latto extracts two types of information from the point cloud: The geometric infor-

mation is obtained from the Cartesian coordinates of the points and the latent feature

information is learned by the network each time the point cloud is sub-sampled. The

first part of this subsection describes the network architecture and sampling strategy.

The second part describes the two-headed attention layer and explains how the latent

and geometric information from each sampling is used.
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Figure 6.1: Overview of our network. The encoder-decoder architecture receives as

input xyz coordinates and RGB (Input features). The numbers above the xyz coordi-

nates represent the number of points that were sampled using Farthest Point Sampling

(FPS). The numbers bellow each ResNet Block 1 show the feature dimension D of each

layer. The encoder consists of ResNet blocks, which have our Ge-Latto layer (see Fig-

ure 6.3). The decoder consists of up-sampling layers which are concatenated with their

respective encoder features using residual connections and combined with an MLP. The

network has also 4 auxiliary outputs at multiple scales. One output comes from the last

encoder layer and the other outputs plus the main output are obtained from the decoder

layers.

6.2.1 Network and sampling

The network has an encoder-decoder architecture and receives as input the xyz coor-

dinates and RGB color. Those features are projected to a higher dimension using a

shared MLP layer1 (see Figure 6.1). The encoder reduces the number of points and

extracts high-level features from a neighborhood of points. For this, each layer sub-

samples the number of points of its input. Therefore Nl > Nl+1 where N is the number

of points and l is the layer. The encoder has 4 layers that are designed like bottleneck

ResNet blocks [33] with Ge-Latto replacing the 2D convolutions. Using Thomas et

al. [10] configuration, the input features of a ResNet block are processed by an MLP

layer followed by batch normalization and ReLU. The other MLPs of the block are

only followed by batch normalization (see Figure 6.3 for details).

1In the chapter, we use the word MLP to refer to a shared MLP layer with 1 hidden dimension.
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Figure 6.2: Clustering process inside ResNet blocks. The first image shows the input

points of the layer. The grouping criteria of Block 1 and 2 are shown in the second and

third image. Block 1 groups the input points using the sampled points as centers with

a radius r1, whereas Block 2 does the grouping on the sampled points with a bigger

radius r2.

Given the sparse nature of a point cloud, the choice of the sampling method is not

trivial. The sampled points have to represent a group of points and be beneficial for the

information “aggregation” of its neighbors. Here, we chose Farthest Point Sampling

(FPS) because it outputs a more uniform-like distribution which is a desired property

for a semantic segmentation network [10].

The next step groups each point pi from the input set Pl (of size Nl) with their

neighbors to find local-spatial relationships. The points can be either grouped by kNN

or radius neighbors. We use the latter because it is more robust with non-uniform

sampling settings like point clouds [10]. Therefore, for each representative point pi ∈

Pl , K points inside the given radius are randomly picked. We use Qi to represent the

grouped neighboring points of pi in the rest of the chapter. It is important to note that

Qi ⊆ Pl−1, the only exception is in the second ResNet block, where Qi ⊆ Pl because

no sampling is carried out; Figure 6.3 shows an example of this. The network also

increases the receptive field by doubling the size of the radius at every layer.

For segmentation, the decoder up-samples the number of points until it recovers the

size of the input of the network. The up-sampling of the features is done via tri-linear

interpolation following Lin et al. [98]. The interpolated features are concatenated with

the features from the corresponding encoder stage thanks to the residual connections

(see Figure 6.1). The final and auxiliary outputs of the decoder are feature vectors for

each point in the input point set. An MLP is used to map these features to the final

logits, whose feature dimension is the number of classes. The size of the auxiliary out-
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Figure 6.3: ResNet Blocks. The first block sub-samples the point cloud and finds near-

est neighbors inside a radius between the sampled points and the input points. Because

of the sampling, the residual connection has a maxpooling layer to match the input with

the output size. The function of the second block is similar to the first one, but without

sub-sampling the points.

puts corresponds to the number of points their respective layers have. The network has

4 auxiliary outputs, one for the last encoder layer, and three for the following decoder

layers (see Figure 6.1). The auxiliary outputs are used by the auxiliary losses, which

help optimize the learning process [37]. For classification, global average pooling is

used over the last encoder features to get a global feature vector of the point cloud.

This feature is passed to an MLP to obtain the classification logits.

6.2.2 Two-headed attention

We claim that our two-headed attention layer finds better features by performing the

local aggregation of the geometric and latent information separately (Figure 6.4). The

geometric features that are used are the absolute position of the representative points

pi ∈ R
3, the K neighbor points Qi ∈ R

K×3, and the relative position of the neighbors

Qi−K pi ∈ R
K×3, where the operator K replicates the vector K times. The latent

information are the features learned by the hidden layers of the network. Each Ge-

Latto layer uses those that belong to each centroid or representative point ri ∈ R
D, the

features of the neighbors Si ∈ R
K×D, and the difference between the K neighbors and

centroids features Si−K ri ∈ R
K×D, where D is the dimensionality of the features,

which is the number of feature planes shown in Figure 6.1. The feature values are

mapped linearly using an MLP layer fi. The combined geometric and latent features

are represented by Gi ∈ R
K×D and Hi ∈ R

K×D respectively, and are computed as fol-

lows (see Figure 6.4): First, the latent features ri and Si−K ri are transformed by

MLPs and combined by vector addition: Hi = fr(K ri)+ frs(Si−K ri).
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Figure 6.4: The two-headed Ge-Latto layer process the local-attention for the geometric

and latent features individually and then combines them using fi MLP layers. These

features are obtained from the feature grouping and FPS blocks (See Figure 6.3). The

FPS block outputs the sampled points pi. The feature grouping block outputs the latent

feature ri that corresponds to the point pi, the K neighbor points Qi of pi, and their

latent features Si.

Then, the geometric features are combined. From Eq. 6.1, fp(K pi) and fq(Qi)

encode the global geometric context in 3D space of the representative points and its

neighbors. Meanwhile fpq(Qi−K pi) represents the local geometric context. We aug-

ment the geometric context by adding and projecting the latent feature Hi.

Gi = fp(K pi)+ fpq(Qi−K pi)+ fq(Qi)+ fhg(Hi) (6.1)

In the same way, the latent features are combined and augmented by adding the

projected geometric feature Gi. As Eq. 6.1 encodes the geometric context, Eq. 6.2

encodes the latent context. fr(K ri) and fs(Si) represent the global latent information

and frs(Si−K ri) represents the local latent information.

H ′i = Hi + fs(Si)+ fgh(Gi) = fr(K ri)+ frs(Si−K ri)+ fs(Si)+ fgh(Gi) (6.2)

The resultant features Gi and H ′i are each projected by another MLP layer: G ′′i =

fgg(Gi) and H ′′i = fhh(H
′

i ). Then, self-attention is used to combine the features inside

the neighborhood patch (Eq. 6.3 and Eq. 6.4). The attention part consists of an MLP

layer followed by a normalization function (Softmax) φ to obtain the weights of the

neighbor features. Here, vector attention is used instead of scalar attention. This allows

the network to “attend” to individual feature channels [105]. The dimension of the

attention weights, the geometric features G ′′i and latent features H ′′i is [K×D]. Finally,

to aggregate the local features, each neighbor feature gk ∈G ′′i and hk ∈H ′′i is multiplied

element-wise by its respective weight and then all the neighbors k are summed. The
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outputs Gi and Hi have dimension D.

Gi =
K

∑
k=1

(φ( fgatt
(gk))⊙gk) (6.3)

Hi =
K

∑
k=1

(φ( fhatt
(hk))⊙hk) (6.4)

The output Oi of the layer is obtained by concatenating and projecting the geomet-

ric and latent features: Oi = fo([Gi;Hi]), where [Gi;Hi] ∈ R
2D and fo : R2D 7→ R

D.

In the transformers literature [101, 102], the geometric features fp(K pi) and fpq(Qi−

K pi), from Eq. 6.1, can be seen as absolute and relative positional encodings, respec-

tively. Therefore, Eq. 6.1 provides information about the absolute position of the

points, and the relative position of the neighbor points with respect to the represen-

tative (centroid) points. Similarly, frs(Si−K ri) from Eq. 6.2 can be seen as the key

and query components in the transformers settings, where instead of using dot product

as similarity function to obtain the relationship between two vectors, the values are

subtracted.

Each head (geometric or latent) in our attention mechanism can be considered as a

multi-head attention layer with feature dimension (channels) D′ = 1 for each head or

number of heads n = D, where D is the dimensionality of the features in each layer.

This is demonstrated as follows. Considering Eq. 6.5, the multi-head equation of a

feature vector Hi ∈ R
D proposed by Vaswani et al. [101].

Hi = Concat(headi,1,headi,2,headi,3, ...,headi,n)

headi,n =
K

∑
k=1

(M φ(Similarityk)⊙Valuek)
(6.5)

where :

M = Replicates the vector D′ times

φ = Normalization function

dim(Similarityk) = 1

dim(Valuek) = D′

dim(headn) = D′

dim(Hi) = D = nD′

K = Neighborhood size
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Eq. 6.5 shows that there is one weight φ per head n, and each φ multiplies D′ feature

channels. Therefore, the feature Hi ∈R
D has n weights φ and nD′ feature channels.

In the case where the number of heads n is D, D′ would have the value of 1. There

would be one weight φ per head, and each weight would multiply one feature channel.

This would give a vector Hi with D weights φ and D feature channels, which are the

dimensions of our geometric and latent head features, as seen in Eq. 6.6 (latent feature

equation).

Hi =
K

∑
k=1

(φ( fhatt
(hk))⊙hk) (6.6)

Where the dimension of fhatt
(hk), hk and Hi is D.

Geometric and Latent Attention Scores: To illustrate the attention scores learned

by our Ge-Latto layer in each encoder step, an input point, that was not discarded by the

sample process, was picked. Because the attention score of each point has a dimension

D, where D is the dimensionality of a given layer, we randomly picked a value d ∈ D

per attention score to be shown in Figure 6.5 and Figure 6.6 for the geometric and

latent heads, respectively.

Layer 1 Layer 2 Layer 3 Layer 4
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ck
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Figure 6.5: Learned geometric attention scores of a point pi(in yellow). The attention

scores are represented in red, the stronger the intensity, the higher the score. The

small black points are the sampled points at a given layer, the bigger points are the

picked neighbor points inside a radius. The image shows the attention scores of the

two ResNet Blocks at every encoder layer.
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Figure 6.6: Learned latent attention scores of a point pi (in yellow). Similar to the

learned geometric attention example (Figure 6.5), the attention scores are represented

in green and the bigger black dots are the points that are picked inside the neighbor

radius.

To observe how our network captures global and local relationships, all the atten-

tion scores of each head were grouped in Figure 6.7. The figure shows that, for the

chosen point, the latent head focuses more on closer points, meanwhile, the geometric

head not only pays attention to the local points but also to more distant points, such as

those of the back of the chair and legs.

Geometric attention Latent attention

Figure 6.7: Geometric and Latent attention scores grouped.
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6.3 Experiments

Our method was evaluated using 3 datasets: ShapeNetPart [232] for 3D object part

segmentation, Stanford Large-Scale 3D Indoor Spaces (S3DIS) [233] for 3D scene

segmentation, and ModelNet40 [234] for 3D shape classification.

Implementation details: The implementation was built using the public library

PyTorch [224]. We use Adam as optimizer with learning rate 1e−4 and the default hy-

perparameters: β1 = 0.9, β2 = 0.98, and ε = 1e−9. Cross-entropy with label smooth-

ing is used as the loss function for all the outputs. The final loss consists of the sum

of 4 auxiliary losses and the main loss: L = α1 ∗Laux1
+α2 ∗Laux2

+α3 ∗Laux3
+α4 ∗

Laux4
+Lmain. The influence of the auxiliary losses is weighted by αi because we are

only interested in the final prediction, which is optimized by the main loss. Following

the results of our ablation study, all the αi = 0.4 in the experiments. The encoder con-

sists of one layer with size N, to process the input features, followed by 4 layers with

sizes: 4096, 2048, 512, and 128; as seen in Figure 6.1. The radius (receptive field) of

the first encoder layer with ResNet blocks is 0.10m and it doubles at every layer. The

number of neighbors is 32 for all the layers except for the last one which is 16. This

is because the last layer has fewer points than the rest. All the MLP layers from the

ResNet blocks (see Figure 6.3) are followed by batch normalization and ReLU. The

output layer before the prediction consists of an MLP layer with batch normalization

and ReLU followed by a dropout with a probability of 0.5. All the experiments were

done using a single RTX2080Ti with a batch size of 2. The data augmentation con-

sists of scaling, flipping, rotating, and perturbing the points. For S3DIS, the color was

augmented by switching the RGB channels and adding noise.

6.3.1 Scene segmentation

The S3DIS [233] dataset was used to test the network for scene segmentation. The

dataset consists of six real large-scale indoor areas from three different buildings. Each

area has rooms whose points are labeled with 13 classes (e.g. ceiling, floor, chair) and

have color information. The number of points in one room varies between 0.5 million

to 2.5 million, depending on its size. Because the number of points of each room is

large, each room was split into blocks of size [2m× 2m× height]. For training and

testing, 6,144 points were randomly sampled and used as input. However, for testing,

6,144 points are randomly sampled until all the points inside a block are labeled. All

the points are only sampled once. However, because the total number of points inside a
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Method mIoU mAcc ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [11] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2

SegCloud [235] 48.9 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

FPConv [98] 62.7 68.9 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9

MinkowskiNet [236] 65.3 71.7 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6

KPConv [10] 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9

PCT [103] 61.3 67.6 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3

Bilateral [104] 65.4 73.1 92.9 97.9 82.3 0.0 23.1 65.5 64.9 78.5 87.5 61.4 70.7 68.7 57.2

Ge-Latto (ours) 69.2 75.9 94.5 99.2 84.0 0.0 24.5 56.3 68.9 84.2 92.4 82.8 70.9 76.9 64.6

Table 6.1: S3DIS Area 5 results. The reported metrics are the mean class segmentation

(mIoU), mean of class-wise accuracy (mAcc), and IoU for each class.

Method OA mIoU mAcc ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [11] 78.5 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

PointCNN [96] 88.1 65.4 88.1 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

RandLA-Net [237] 88.0 70.0 82.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1

KPConv [10] - 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 64.0 57.8 74.9 69.3 61.3 60.3

Bilateral [104] 88.9 72.2 83.1 93.3 96.8 81.6 61.9 49.5 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4

Ge-Latto (ours) 89.7 71.4 81.3 95.3 95.1 82.3 69.2 51.9 64.8 73.3 77.3 59.6 71.1 63.0 67.4 57.9

Table 6.2: S3DIS dataset k-fold cross-validation comparison table.

block is hardly a multiple of 6,144, the last 6,144 sampled points will contained points

already drawn. In that case, the Softmax outputs are summed and the highest value

is used as the predicted label. The evaluation metrics used are mean class-wise inter-

section over union (mIoU), mean of class-wise accuracy (mAcc), and overall accuracy

over all points (OA).

Following the standard evaluation process, the dataset was evaluated in two ways:

1) Area 5 is used as test set and the network is trained using the other areas. 2) 6-

fold cross-validation. Ge-Latto outperforms prior models in both evaluations. On area

5, it is 2.1% better than KPConv [10] in mIoU (Table 6.1), the qualitative results are

shown in Figure 6.8. Meanwhile, on the k-fold cross-validation, it obtains the best OA

(89.7%), surpassing the previous state of the art of Qiu et al. [104] and obtaining better

IoU in more objects (Table 6.2).

Table 6.1 not only shows the overall comparison between methods, but also the IoU

of each class. We can observe that our method works better in classes like floor, table,

chair, sofa, board, and clutter. This result is also supported by comparing visually

the segmentations of our method and the state-of-the-art KPConv; the comparison is

shown in Figure 6.9. For example, KPConv struggles to segment the legs of the tables

while our method labels them correctly. Also, KPConv misses the class of the pinboard

(clutter class), whereas our method manages to segment most of the pinboard correctly.

The other class our network labels the pinboard is the class board. Finally, Figure 6.9

also shows why the performance of the class wall of our network is slightly lower than

KPConv. This is because the network sometimes confuses a wall with the class column

when the wall is thin.



110 Chapter 6. 3D Segmentation

In
p
u
t

G
T

G
e-
L
a
tt
o

ceiling floor wall beam column window door
table chair sofa bookcase board clutter

Figure 6.8: S3DIS results.

Method
ModelNet40 ShapeNetPart

OA cat. mIoU inst. mIoU

PointNet [11] 89.2 80.4 83.7

PointNet++ [93] 91.9 81.9 85.1

SO-Net [94] 90.9 81.0 84.9

KPConv [10] 92.7 85.1 86.4

PCT [103] 93.2 - 86.4

Ge-Latto (ours) 91.1 84.2 84.5

Ge-Latto (ours fine-tuned) 93.2 - -

Table 6.3: ModelNet40 and ShapeNet comparison table.

6.3.2 Object part segmentation

The performance of the network in object part segmentation is measured using the

ShapeNetPart [232] dataset. This dataset is a collection of 16,681 3D point clouds

with 16 categories, each with 2 to 6 part labels. The standard train/test splits provided

by the dataset is used. Category mean intersection over union (cat. mIoU) and instance

mIoU are used as evaluation metrics. For training, 4096 points are randomly picked

and used as input. For testing, the total number of points in a point cloud is used. The

evaluation shows that our model is only 0.9% behind in cat. mIoU from the current

state of the art. Some of the wrong classifications are caused by noisy data, where some

object components (e.g. rocket, motorbike, table) are wrongly labeled in the ground

truth which is penalized by the metric. Figure 6.10 shows some qualitative results.
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Ground Truth

KPConv Ge-Latto

Figure 6.9: Visual comparison between KPConv and Ge-Latto outputs of Lobby 1 Area

5. The image shows that our method can segment each part of the table better than KP-

Conv (red circles). Also, our method is able to segment most of the pinboard correctly,

whereas KPConv totally misses the correct class (purple circle).

6.3.3 Shape classification

The ModelNet40 [234] dataset is used to study the performance of our network for

shape classification. The dataset consists of 12,311 3D meshes and their normal vectors

classified into 40 categories. For the experiments, the standard training and validation

split is used the data is processed similar to Section 6.3.2.For training, 7,168 points are

randomly picked as input, and for testing all the points are used. The evaluation metric

is overall accuracy. Table 6.3 shows that our method achieves a competitive result of

91.1% when using the same hyper-parameters and network structure as ShapeNet. If

the parameters are fine-tuned, the performance goes up to 93.2%, matching the current
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Figure 6.10: Our ShapeNetPart segmentation results.

Auxiliary losses Attention heads Number of neighbors Features per multi-head

Aux. weight α mIoU mAcc Attention heads mIoU mAcc k mIoU mAcc N Feat. mIoU mAcc

α = 0.0 67.4 73.2 Only geometric 66.3 72.0 8 64.5 71.8 1 69.2 75.9

α = 0.2 68.5 74.4 Only features 66.5 72.3 16 66.4 72.1 2 68.2 74.3

α = 0.4 69.2 75.9 Both 69.2 75.9 32 69.2 75.9 4 68.0 74.2

α = 0.6 68.6 74.6 MLP+pooling 63.5 69.2 64 - - 8 68.0 74.1

α = 0.8 68.3 74.3

α= 1.0 68.1 74.0

Table 6.4: S3DIS ablation study experiments.

best result. More details are given in the ablation study.

6.3.4 Ablation study

Auxiliary losses. The auxiliary losses provide a boost in performance to the network.

Here, we consider that all weights αi of the auxiliary losses have the same value and

vary them from 0 to 1. Table 6.4 shows that the best performance is obtained with αi =

0.4, being 1.8% (in terms of mIoU) better than the network trained without auxiliary

losses.

We also explored different values for each alpha using grid search. The experiment

consists of varying the alpha of one auxiliary loss, from 0 to 1 with increments of

0.2, and fixing the other alphas to 0.4 (the best value found before); the process is

repeated for the 4 auxiliary losses. The values that the varying alpha can take are [0,

0.2, 0.6, 0.4, 0.8, 1], where 0 means that we do not minimize the loss for that output.

We trained 24 variations of our network (4 auxiliary losses with 6 values for alpha).

Each network was initialized with the weights from our best model, for the S3DIS

area 5 dataset, and trained for 50 epochs. This experiment showed that there is no

improvement when we vary the alphas individually and that the best value for this

parameter is 0.4. However, we still observe that the use of auxiliary losses improves

the performance of the network. As seen in Table 4 in the main paper, in the ablation

study, when the network is trained without auxiliary losses, it obtains an IoU of 67.4%.
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Meanwhile, when the auxiliary losses are added, the performance increases to 69.2%.

Two-headed attention. Our proposed attention layer is evaluated using different vari-

ants: only with the geometric head, only with the feature head, both heads, and no

heads (baseline). For the last one, the geometric and latent features are concatenated

and then processed by an MLP+pooling layer, this replaces the attention mechanism.

The experiments reported in Table 6.4 show that only one head is enough to improve

the baseline, and that the combination of both heads helps the network in the segmen-

tation task.

Number of neighbors. Three networks with different neighborhood size were trained

to find the number of neighbors that provide enough local information. The results

from Table 6.4 show that a when k≤ 16, the number of neighbors might not be enough

to provide a correct representation of the local context; k = 64 could not fit in the GPU

memory.

Features per multi-head. As showed in Eq. 6.5 and Eq. 6.6, each head (geometric

and latent) of our attention layer is a special case of a multi-head attention with num-

ber of heads n = D or feature dimension D′ = 1 per head. For this experiment, the

number of features D′ per head was varied. More features per head means less heads

(number of heads n = D/D′). In other words, D′ features will be weighted by the same

attention score. The results from Table 6.4 demonstrate that the more features a head

has (less number of heads), the less flexible the network becomes. However, reducing

the number of heads allows the network to be lighter, because it has to compute only

D/D′ attention scores.

Point cloud classification. The model presented in Section 6.3 had the same net-

work parameters for all the datasets to show that the proposed method can obtain

competitive results without optimizing the hyper-parameters on each dataset. If the

hyper-parameters are adjusted for a specific dataset, the performance of the network

improves. In this section, the number of sub-sampling points per layer were modified

following [238], where they mainly focus on point cloud classification. By sampling

the points using the following values per layer, N→ 1024→ 512→ 256→ 64, instead

of N → 4096→ 2048→ 512→ 128, the overall accuracy of our network increases

from 91.1% to 93.2%, matching the state-of-the-art result. This seems to be caused by

the number of sampled points and the global average pooling at the end of the encoder

layer. Considering that the ModelNet40 dataset has objects with similar parts, like

plants with flower pots, if one region of the object is bigger than others, this region

will have more sampled points. Because the features of the sampled points at the last
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Method Parameters mIoU

MinkowskiNet 21.7M 65.3

KPConv 25.8M 67.1

PCT 2.88M 61.3

FPConv 17.6M 62.7

Ge-Latto (ours) 15.3M 69.2

Table 6.5: Model parameters comparison table. The parameters are in millions and the

metric is for the S3DIS dataset.

Number of points 6K 10K 20K 200K

Inference batch size 5 3 3 3

Inference time 100ms 200ms 210ms 300ms

Training batch size 2 - - -

Training time 160ms - - -

Table 6.6: Training and inference time.

layer of the encoder are averaged, if there are more points representing a specific area,

the averaged features will have a tendency to represent the wrong part of the object.

Model Size and Speed. Table 6.5 shows that our method achieves the state-of-the-art

in the S3DIS dataset with fewer parameters than the previous methods. Our network

has only 15.3M parameters, whereas KPConv has 25.8M, MinkowskiNet 21.7M, and

FPConv 17.6M. The only network that has fewer parameters is PCT, 2.88M. However,

we are 8% better in point cloud semantic segmentation and obtain a similar perfor-

mance in ModelNet40. It is important to highlight that KPConv, FPConv, and our

method have similar network architectures with the only difference that their proposed

layers are replaced by our Ge-latto layer. This shows that the performance improve-

ment is obtained by our layer and not by the architecture.

We also tested the training and inference times using different numbers of points

and batch sizes. The results are reported in Table 6.6. The table shows that it takes

around 160ms to train 6144 points with a batch size of 2. At inference time, our

network can analyze 6144 points with a batch size of 5 in 100ms, 20K points with a

batch size of 3 in 210ms, and 200K points with a batch size of 3 in 300ms. All the tests

were done using an NVIDIA RTX2080ti. These experiments show that our network is

suitable for applications that need a lighter network.

Work flow video. The video of our proposed method can be found at: https://yout

u.be/mjsttn3C89g.
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6.4 Conclusions

This chapter proposes a novel two-headed attention mechanism capable of combining

the geometric and latent information of neighbor points to learn richer features. This,

combined with the leverage provided by the auxiliary losses, allow our network to

work with real data and obtain the state of the art in the complex dataset S3DIS for 3D

point cloud semantic segmentation. It also gets competitive results in the ShapeNetPart

and ModelNet40 datasets.

As future work, this method can be implemented on forests and gardens to segment

key elements in the environment like trees or plants. Also, our method can be trained

and tested on our synthetic dataset of roses to segment bushes. However, this dataset

is quite simple for point cloud segmentation. It is because the projected points of one

image into the 3D world consist of the rose bush and part of the ground without any

other object around it. Therefore, given that the network can easily segment plane

sections, see Floor and Ceiling results from Table 6.1, it would be easy for the network

to segment the rose bush from the ground.





Chapter 7

Conclusions

This thesis addressed the computer vision tasks of scene understanding, segmentation,

and localization. The overall contributions of this thesis are methods that work effi-

ciently and robustly in real environments and can be applied to real-time tasks, not

only using 2D images but also for 3D data. The thesis also demonstrated that these

properties make them useful for their application in autonomous driving, robotics, and

agriculture.

The specific contributions are the following: A combination of end-to-end seman-

tic segmentation and block matching disparity learning to obtain the 3D structure of

objects, as well as the complex morphology of rose bushes [1] (Chapter 3). The second

contribution extends the previous work. It not only obtains the reconstruction of the

desired object but also finds key locations (cutting targets) and provides visual feed-

back. The feedback updates the positions of the key locations to counter the noise of

the workflow. To the best of our knowledge, this is the first closed-loop rose pruning

system [2] (Chapter 4). The third contribution presents an end-to-end solution using

multitask learning to obtain the semantic segmentation and disparity estimation jointly,

progressively and at different scales. Our method achieves competitive performance

compared to the current approaches that predict each task individually, using only 1/3

of the parameters (Chapter 5). Finally, our last contribution proposes a two-headed

attention layer to aggregate the information of a patch of points inside a point cloud,

using the geometric and latent features separately to segment and classify unordered

point clouds. Processing these two pieces of information separately creates more ro-

bust features and leads to a better performance than current methods [3].
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7.1 Thesis accomplishments and discussion

We presented algorithms that can be used in scene understanding. As explained in pre-

vious chapters, the data to be analyzed can be acquired from different sensors. There-

fore, the proposed methods cover the two most common types of inputs: 2D images

Chapters 3, 4, and 5 and 3D point clouds Chapter 6. Also, our methods were tested

in complex environments, such as street views, gardens, and offices. The data contain

a certain amount of noise as well. The 2D images had objects at different scales, oc-

cluded, with class variation, and under different light conditions. In the case of the

point clouds, they not only had the previously mentioned noise but also a non-uniform

density. It means that some regions of the points were densely populated while others

had fewer points. These experiments demonstrated that our methods are robust and

efficient.

7.1.1 Semantic segmentation and disparity estimation for recon-

struction

The strategy presented in Chapter 3 combines classical disparity estimation and end-

to-end semantic segmentation to improve the output of each other. This method is

applied to the plant phenotyping domain (agriculture) because plants present complex

structures that can validate the robustness and efficiency of our method. Here, the

scene is represented as the image of a plant in a garden, and our proposed approach

locates the position of the plant with respect to the camera and reconstructs the plant in

3D with its branching structure. The disparity is obtained using the classical BM algo-

rithm. The branches are found by segmenting them out from the rest of the scene using

our proposed network (Section 3.3.1), which is a small encoder-decoder with residual

connections CNN. Both methods aim for fast segmentation and disparity estimation.

BM is chosen over its CNN counterpart because it is faster and the regions without

correspondence can be estimated by our refinement process (Section 3.3.3). A CNN

was used for semantic segmentation because a classical approach is slow and performs

badly in an unconstrained scenario. Also, even though our network is small, it ob-

tains competitive results compared to state-of-the-art methods. Similar to the disparity

estimation, semantic segmentation can be improved further thanks to the refinement

process (Section 3.3.3).

To improve the segmentation, the disparity is binarized based on a distance thresh-
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old. The resultant image is used as a mask, where the segmented branches that are

separated but share the same masked region, are joined. Then, the segmented branch is

used as a mask to estimate the disparity in the regions where the BM algorithm did not

find any correspondence. This proposed method shows that it can improve the initial

segmentation and disparity estimation. Then, the skeleton of the plant is obtained by

using 2D skeletonization on the segmented branches, as seen in Section 3.3.5. The

skeleton is found in 2D because the skeletonization methods preserve the connectivity

of regions and reduce the binary image into a one-pixel width. These properties make

searching for parts of the plant that belong to a branch easier because the pixels of a

branch will only have two neighbors. Compared to methods that find the skeleton and

branches in 3D, this approach does not have to find an optimal distance to label neigh-

bor points into the same group. To the best of our knowledge, this is the first method

that works without assumptions about the environment.

One problem of using a binary segmented bush as input for the 2D skeletonization is

that if two branches are parallel and close enough, they will be segmented together,

which will make the skeletonization algorithm fuse both branches. An interesting fu-

ture work would be to use a CNN to learn a more robust skeletonization. It is an

interesting area to explore because the output of the network should preserve the skele-

tonization properties.

Our first work proposed a network capable of segmenting plants under real envi-

ronments (noisy and object with similar texture and color). Chapter 4 shows that the

same network is useful for real-time robot navigation. The method proposed in the

chapter is a visual servoing pipeline for a robotic arm that uses a disparity map and our

semantic segmentation network to locate the branches in the 3D space, reconstruct the

plant and locate cutting points in the branches. This method had two stages. The first

one is used to scan the whole bush and find the prior locations of the cutting points

(Section 4.3.2). The second stage uses the pipeline as visual feedback to update the

locations of the cutting targets while the robotic arm is moving towards them (Section

4.3.5).

Back-projecting 2D images to the 3D space creates noisy point clouds and the

prior target locations might be few centimeters off from their real location when the

target is far from the camera position. The proposed visual feedback helps to reduce

this noise by updating the targets in real-time. Also, considering that the robot arm

gets closer to the target after each iteration, the projection noise is reduced, and the

semantic segmentation network improves its performance because the branches in the
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image become more clear.

One missing part of our pipeline is an automatic evaluation to check if a branch was

cut after sending the clipping command. Therefore, an extension of this work would

be to include a post-cutting evaluation.

Also, our pipeline assumes that the robot is in front of the rose bush and scans it

only from one side. Although this is an acceptable assumption for rose bushes, other

types of plants are denser and wider. Thus, our method might not find all the cutting

points. To make our approach more general, a possible future work would be to scan

the plants from different sides and fuse the views.

Another future work would be to include more specific gardening rules, like cutting

the branches above the eye-buds and cutting dead branches. The former is an interest-

ing problem for object localization because the eye-buds are smaller and occupy few

pixels in the image. The latter can be solved by extending our 3D morphological

method to find dead branches.

Another interesting extension would be to evaluate the social impact that these type

of devices have. For example, how it might affect the work of gardeners and related

fields and whether or not this type of technology would replace them or create new

technical jobs where they can switch to [239]. Also, it is important to evaluate the

risk factor of having autonomous machines with sharp tools mounted on them. This

would require to answer questions like: When is it considered safe to use this machine

[240]? What is the the protocol it should be followed to create a safe environment

for the people working around the robot? What would be the security threats and

vulnerabilities for these type of robots [241]?

7.1.2 Multitask learning

The previous contributions combine classic and end-to-end approaches in a pipeline to

find the desired objects in the environment and locate their position. Chapter 5 pro-

vides an end-to-end solution to jointly learn the semantic segmentation and disparity

estimation using multi-task learning. Current methods use one pre-trained network as

encoder and two decoders to predict both tasks, but this is expensive. Our approach

predicts each task only using one decoder, at different scales, and in a progressive

fashion. First, in Section 5.2.3 a coarse segmentation is predicted, then the disparity

map is obtained in Section in Section 5.2.4. Because segmenting an image is a more

difficult task, the network outputs a refined semantic segmentation using the feature
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information from the layers that output each task (Section 5.2.5). These features are

combined by two self-attention mechanisms, which are in charge of selecting impor-

tant features from each task. Thanks to this process, our network obtains competitive

results against methods that solve only one task using only 1/3 of the parameters. One

possible extension would be to check if adding more tasks improves the segmentation

and disparity estimation.

Due to the limited resources, we used DenseNet121 instead of the usual back-

bones used in the state-of-the-art segmentation networks like ResNet101 or Xception-

71. Perhaps, using them might have improved the performance of our method.

7.1.3 3D scene understanding

One of the aims of this thesis is to address the different problems in 3D scene un-

derstanding. One of these problems is the semantic segmentation of unordered point

clouds. Chapter 6 proposes an efficient method that evaluates patches inside point

clouds and finds good relationships between neighbor points. Unlike current works

that only use the learned features to segment the point cloud, our approach uses the ge-

ometric information given by the location of each point, and the latent features learned

by the network. Therefore, the influence of one point towards its neighbors is measured

by their geometric and latent relationship. This influence is obtained using two self-

attention mechanisms; one for each information type (see Section 6.2.2). At the time

the experiment was done, we obtained the state-of-the-art in one of the most difficult

real datasets S3DIS. Aside from the segmentation, another advantage of our network

is that we can reduce the number of heads of the self-attention mechanisms to make

the network lighter, with only a small reduction in the accuracy as a side effect.

One problem of our method, and the current point cloud segmentation approaches,

is that the network is highly dependant on the sampling method and the number of

neighbors chosen in a patch. Recalling that the sampling method is used to reduce

the number of points at every step of the encoder layer, one interesting future work

would be to explore better sampling methods than FPS or use an efficient attention

mechanism to choose the more representative points. The same can be said for a better

choice of neighbors.
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Multitask Learning Extended Ablation

Study

A.1 Training process evaluation

This section includes some additional details about the training process with Cityscapes,

such as the influence of different hyper-parameters, backbones and data augmentation

process. Table A.1 shows the results in terms of IoU for semantic segmentation and

D-1 error for disparity estimation.

Data augmentation. To train semantic segmentation networks, a common practice

is to randomly resize the images to increase the variety of the dataset. However, to the

best of our knowledge, it is not used when training disparity networks. The main reason

is because the disparity changes when the images are zoomed in or out. Therefore,

we introduce this data augmentation by using simple geometry. The disparity values

should be re-scaled based on the zooming scale factor. The new disparity would be

dispnew = scale∗dispold . This augmentation reduced the disparity error by 0.018 and

improved the IoU in 1.4%. Applying random changes in the brightness of the input

image improved the segmentation by 1.5% and the disparity error by 0.008. Finally,

the class uniform sampling improved the segmentation IoU by 0.9% and disparity error

by 0.016.

Input size and batch size. Table A.1 shows that a bigger input image gives better

overall performance. This is due to the following reasons. First, the input size is based

on the cropping around the original image of 2048×1024 px. This means that the big-

ger the image, the more context the network sees, which translates into learning better

relationships between objects. Therefore, a smaller cropping size will be restrictive,
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especially because of the big size of the images in the dataset. The second reason is

related to the reduction in dimension due to the backbone topology. In the case of

ResNet and DenseNet, the backbones are divided into blocks, and each block reduces

by half its input size. This means that the feature dimensions of the blocks 1 to 5 are

1/2, 1/4, 1/8, 1/16 and 1/32 of the input image. Therefore, if we use an input size of

256×256 px the output feature from block 5 will be only 8×8.

Similar to other works that use backbones with batch normalization layers [206,

35], our experiments show that small training batches lead to unstable batch-norm

statistics and to a poor learning performance. Table A.1 shows a progressive improve-

ment in the disparity and segmentation when the batch size is increased. When the

batch size is only 4 and the input size is 256× 256 px, a significantly worse result is

obtained, 66% IoU for the the segmentation and 0.353 error for the disparity. Our best

result is obtained when using a batch size of 16 and an input size of 512×512 px. This

configuration obtains a disparity error of 0.04 and a segmentation IoU of 77.6%.

A.2 Network details

This section complements the network details described in Chapter 5. Table A.2 shows

the split of the backbone and the dimension of each output feature Fi. Tables A.3,

A.4, and A.5 show the layer settings, inputs, and outputs of the coarse segmentation,

disparity estimation, and refined segmentation branches, respectively. Each layer has a

stride of 1 except for the SPP where the stride is the same size as their pooling window.
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Input size Backbone Batch size
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Seg cr.

IoU

Seg ref.

IoU

Disp

D-1 error

256x256 densenet121 4 X 63.2 66.0 0.353

256x256 densenet121 8 X 64.7 68.3 0.345

256x512 densenet121 8 X 67.3 71.3 0.185

512x512 densenet121 16 X 70.1 73.2 0.082

512x512 densenet121 16 X X 71.7 74.6 0.064

512x512 densenet121 16 X X X 73.0 76.1 0.056

512x512 densenet121 16 X X X X 74.6 77.6 0.040

256x512 densenet121 32 X X X X 70.1 73.3 0.092

512x512 efficientnet-b2 16 X X X X 72.2 74.7 0.090

512x512 mobilenet-v3 16 X X X X 69.1 72.0 0.124

256x512 resnet101 8 X X X X 60.4 64.0 0.453

256x512 resnet50 8 X X X X 66.6 70.0 0.173

Table A.1: Results using different hyper-parameters on Cityscapes validation set. The

result evaluates the coarse segmentation Seg cr., refined segmentation Seg ref. and

disparity error D1-error.

Input Layer settings
Output

Name Dim

Left Densenet121
FL

1
H
4

x W
4

x 128

FL
2

H
8

x W
8

x 256

FL
4

H
32

x W
32

x 1024

Right Densenet121
FR

1
H
4

x W
4

x 128

FR
2

H
8

x W
8

x 256

FR
4

H
32

x W
32

x 1024

Table A.2: Backbone settings. It shows the input image (Left and Right) for each back-

bone and the features that are extracted. The size of each feature is shown with respect

to the input size (height H and width W ). The last dimension of the output represents

the number of channels.



126 Appendix A. Multitask Learning Extended Ablation Study

Input Layer settings Output

Left conv2D(5×5,1) L conv 0

FL
4

FR
4

concat cat 0

cat 0
upscale ×2

conv1D(1×1,64)
conv1d 0

conv1d 0 hourglass(3×3,32) Fseg

Fseg resize to L conv 0 dim convdec 0
L conv 0
convdec 0

concat cat 1

cat 1 conv1D(1×1,32) conv1d 1
conv1d 1 hourglass(3×3,32) convdec 1
convdec 1 conv2D(3×3,n labels) conv2d 0
conv2d 0 resize to Left dim coarse seg

Table A.3: Coarse segmentation branch modules. For the convolutional layers conv 1d

and conv 2d, the layer settings k× k, f represent the kernel size k and the number of

filters f .

Input Layer settings Output

Left conv2D(5×5,1) L conv 1

FL
2







avgPool(32,32),conv2D(3×3,32)
avgPool(16,16),conv2D(3×3,32)
avgPool(8,8),conv2D(3×3,32)

FL
2






SPPL

2

FR
2







avgPool(32,32),conv2D(3×3,32)
avgPool(16,16),conv2D(3×3,32)
avgPool(8,8),conv2D(3×3,32)

FR
2






SPPR

2

SPPL
2

SPPR
2

correlation layer corr

corr conv1D(1×1,128) conv1d 2

Fseg
hourglass(3×3,128)

resize to conv1d 2 dim
convdec 2

conv1d 2
convdec 2

concat cat 3

cat 3 hourglass(3×3,64) Fdisp

Fdisp resize to L conv 1 dim convdec 3
L conv 1
convdec 3

concat cat 4

cat 4 conv1D(1×1,64) conv1d 3
conv1d 3 hourglass(3×3,64) convdec 4
convdec 4 deconv2D(5×5,1) deconv2d 0

deconv2D 0 resize to Left dim disp

Table A.4: Disparity branch modules. The brackets in the SPP module indicate that the

input was processed in 4 different ways and the result of each process was concate-

nated.
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Input Layer settings Output

Left conv2D(5×5,1) L conv 2

FL
1











avgPool(64,64),conv2D(3×3,32)
avgPool(32,32),conv2D(3×3,32)
avgPool(16,16),conv2D(3×3,32)
avgPool(8,8),conv2D(3×3,32)

FR
1











SPPL
1

FR
1











avgPool(64,64),conv2D(3×3,32)
avgPool(32,32),conv2D(3×3,32)
avgPool(16,16),conv2D(3×3,32)
avgPool(8,8),conv2D(3×3,32)

FR
1











SPPR
1

SPPL
1

SPPR
1

concat cat 5

cat 5 1×1,128 conv1d 4
Fseg resize to conv1d 4 dim Fseg

Fseg

conv1d 4
concat cat 6

cat 6 hourglass(3×3,64) convdec 5

convdec 5
conv1D(1×1,1), sigmoid()

resize to Fseg dim
seg at

Fdisp resize to conv1d 4 dim Fdisp

Fdisp

conv1d 4
concat cat 7

cat 7 hourglass(3×3,64) convdec 6

convdec 6
conv1D(1×1,1), sigmoid()

resize to Fdisp dim
disp at

seg at∗Fseg

disp at∗Fdisp

conv 1 4
concat cat 8

cat 8
hourglass(3×3,64)

resize to L conv 2 dim
convdec 7

L conv 2
convdec 7

concat cat 9

cat 9 hourglass(3×3,32) convdec 8
convdec 8 conv2D(3×3,n labels) conv2d 1
conv2D 1 resize to L conv 2 dim ref seg

Table A.5: Refined segmentation branch modules. The brackets in the SPP module

follow the same notation as in Table A.4.
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