

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Regularized Interior Point
Methods for Convex

Programming

Spyridon Pougkakiotis

Doctor of Philosophy

University of Edinburgh

2021

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text. This work
has not been submitted for any other degree or professional qualification.

(Spyridon Pougkakiotis)

3

To my parents,

Christos and Maria.

4

Abstract

Interior point methods (IPMs) constitute one of the most important classes of
optimization methods, due to their unparalleled robustness, as well as their gen-
erality. It is well known that a very large class of convex optimization problems
can be solved by means of IPMs, in a polynomial number of iterations. As a re-
sult, IPMs are being used to solve problems arising in a plethora of fields, ranging
from physics, engineering, and mathematics, to the social sciences, to name just
a few. Nevertheless, there remain certain numerical issues that have not yet been
addressed. More specifically, the main drawback of IPMs is that the linear alge-
bra task involved is inherently ill-conditioned. At every iteration of the method,
one has to solve a (possibly large-scale) linear system of equations (also known
as the Newton system), the conditioning of which deteriorates as the IPM con-
verges to an optimal solution. If these linear systems are of very large dimension,
prohibiting the use of direct factorization, then iterative schemes may have to be
employed. Such schemes are significantly affected by the inherent ill-conditioning
within IPMs.

One common approach for improving the aforementioned numerical issues,
is to employ regularized IPM variants. Such methods tend to be more robust
and numerically stable in practice. Over the last two decades, the theory behind
regularization has been significantly advanced. In particular, it is well known
that regularized IPM variants can be interpreted as hybrid approaches combining
IPMs with the proximal point method. However, it remained unknown whether
regularized IPMs retain the polynomial complexity of their non-regularized coun-
terparts. Furthermore, the very important issue of tuning the regularization pa-
rameters appropriately, which is also crucial in augmented Lagrangian methods,
was not addressed.

In this thesis, we focus on addressing the previous open questions, as well
as on creating robust implementations that solve various convex optimization
problems. We discuss in detail the effect of regularization, and derive two different
regularization strategies; one based on the proximal method of multipliers, and
another one based on a Bregman proximal point method. The latter tends to
be more efficient, while the former is more robust and has better convergence
guarantees. In addition, we discuss the use of iterative linear algebra within
the presented algorithms, by proposing some general purpose preconditioning
strategies (used to accelerate the iterative schemes) that take advantage of the
regularized nature of the systems being solved.

In Chapter 2 we present a dynamic non-diagonal regularization for IPMs. The
non-diagonal aspect of this regularization is implicit, since all the off-diagonal el-

5

6 Spyridon Pougkakiotis

ements of the regularization matrices are cancelled out by those elements present
in the Newton system, which do not contribute important information in the
computation of the Newton direction. Such a regularization, which can be in-
terpreted as the application of a Bregman proximal point method, has multiple
goals. The obvious one is to improve the spectral properties of the Newton sys-
tem solved at each IPM iteration. On the other hand, the regularization matrices
introduce sparsity to the aforementioned linear system, allowing for more efficient
factorizations. We propose a rule for tuning the regularization dynamically based
on the properties of the problem, such that sufficiently large eigenvalues of the
non-regularized system are perturbed insignificantly. This alleviates the need of
finding specific regularization values through experimentation, which is the most
common approach in the literature. We provide perturbation bounds for the
eigenvalues of the non-regularized system matrix, and then discuss the spectral
properties of the regularized matrix. Finally, we demonstrate the efficiency of
the method applied to solve standard small- and medium-scale linear and convex
quadratic programming test problems.

In Chapter 3 we combine an IPM with the proximal method of multipli-
ers (PMM). The resulting algorithm (IP-PMM) is interpreted as a primal-dual
regularized IPM, suitable for solving linearly constrained convex quadratic pro-
gramming problems. We apply few iterations of the interior point method to each
sub-problem of the proximal method of multipliers. Once a satisfactory solution
of the PMM sub-problem is found, we update the PMM parameters, form a new
IPM neighbourhood, and repeat this process. Given this framework, we prove
polynomial complexity of the algorithm, under standard assumptions. To our
knowledge, this is the first polynomial complexity result for a primal-dual regu-
larized IPM. The algorithm is guided by the use of a single penalty parameter;
that of the logarithmic barrier. In other words, we show that IP-PMM inherits
the polynomial complexity of IPMs, as well as the strong convexity of the PMM
sub-problems. The updates of the penalty parameter are controlled by IPM, and
hence are well-tuned, and do not depend on the problem solved. Furthermore,
we study the behavior of the method when it is applied to an infeasible problem,
and identify a necessary condition for infeasibility. The latter is used to construct
an infeasibility detection mechanism. Subsequently, we provide a robust imple-
mentation of the presented algorithm and test it over a set of small to large scale
linear and convex quadratic programming problems, demonstrating the benefits
of using regularization in IPMs as well as the reliability of the approach.

In Chapter 4 we extend IP-PMM to the case of linear semi-definite program-
ming (SDP) problems. In particular, we prove polynomial complexity of the
algorithm, under mild assumptions, and without requiring exact computations
for the Newton directions. We furthermore provide a necessary condition for
lack of strong duality, which can be used as a basis for constructing detection
mechanisms for identifying pathological cases within IP-PMM.

In Chapter 5 we present general-purpose preconditioners for regularized New-
ton systems arising within regularized interior point methods. We discuss positive
definite preconditioners, suitable for iterative schemes like the conjugate gradi-
ent (CG), or the minimal residual (MINRES) method. We study the spectral
properties of the preconditioned systems, and discuss the use of each presented

6

Regularized Interior Point Methods for Convex Programming 7

approach, depending on the properties of the problem under consideration. All
preconditioning strategies are numerically tested on various medium- to large-
scale problems coming from standard test sets, as well as problems arising from
partial differential equation (PDE) optimization.

In Chapter 6 we apply specialized regularized IPM variants to problems aris-
ing from portfolio optimization, machine learning, image processing, and statis-
tics. Such problems are usually solved by specialized first-order approaches. The
efficiency of the proposed regularized IPM variants is confirmed by comparing
them against problem-specific state–of–the–art first-order alternatives given in
the literature.

Finally, in Chapter 7 we present some conclusions as well as open questions,
and possible future research directions.

7

Lay Summary

Optimization methods have seen increasing applicability during the era of infor-
mation. Indeed, these can be used to determine optimal strategies for a plethora
of different real-life problems. In light of the availability of computing power,
optimization has become ubiquitous during the last three decades.

One of the most general and reliable family of optimization schemes arises
from the so-called interior point methods. Such methods have been used in an
extremely wide range of applications, originating from mathematical sciences,
engineering, social sciences, logistics, medicine or economics, to name just a few.
These methods are very popular, since they are able to reliably solve different
types of problems very accurately, without the need of a technical background
from the user. Indeed, interior point methods are often used as a black-box. While
this is very commonly done, it might be possible that traditional interior point
methods will struggle when applied to certain problems. This is because standard
interior point methods require certain conditions to hold for the mathematical
model describing the problem at hand. If the user is not aware of these conditions,
and applies such a method for solving a model that does not abide by them, the
method might not be able to terminate successfully.

A technique that is commonly used to ensure that interior point methods
will provide a meaningful solution even if the provided model does not abide by
the standard conditions required by traditional interior point methods, is the so-
called regularization. Regularization is a very successful strategy, but it is often
used as a heuristic. Indeed, very few works have been dedicated to the study of
the effects of regularization when applied in the context of interior point methods.

In light of the previous, in this thesis we study the effects of regularization
in the context of interior point methods for a large class of problems that ap-
pear in numerous applications areas. In particular, we analyze regularization
theoretically while numerically verifying our results and showcasing the impact
and importance of regularization in a variety of settings. We provide various
black-box as well as specialized interior point solvers that can be utilized to solve
problems for which traditional interior point schemes might struggle. Addition-
ally, we demonstrate that the proposed solvers are extremely reliable, and hence
can be employed without the need of a technical background from the user. Fi-
nally, we argue that regularized interior point methods can very often be more
efficient than their non-regularized counterparts. Our observations are numeri-
cally verified on real-life problems arising from various applications areas, such as
portfolio optimization, machine learning and statistics, medical imaging, as well
as optimization over physical systems.

8

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Jacek
Gondzio, for his constant guidance during my first steps in research. I would
not have been able to continue on this journey without having such an inspiring
mentor and teacher, setting the standards I wholeheartedly hope to live up to
both in my academic as well as personal life. Thank you for your continuous
feedback and support, your experienced suggestions and career advice, and for
so many invaluable lessons. I am very grateful for being able to have you as my
advisor and mentor for all these years.

I would also like to thank my second supervisor, Dr. John W. Pearson, for a
plethora of discussions and fruitful conversations. With your support I was able
to step outside of my comfort zone, and explore areas of mathematics that I had
never encountered before. I am also grateful to my examination committee, Prof.
Raphael Hauser and Dr. Alper Yildirim, for offering their valuable time.

For many stimulating conversations as well as enjoyable moments, I thank
various students and members of our research group: Kresimir Mihic, Ivet Gal-
abova, Maximilian Osborne, Filippo Zanetti, Stefano Cipolla, Santolo Leveque,
Marion Lemery, Nagisa Sugishita, Tom Byrne, Sarathorn Phusingha, Rodrigo
Garcia Nava, Minerva Martin del Campo, and Michael Feldmeier.

I am indebted to the University of Edinburgh and to the Principal’s Career
Development PhD Scholarship for funding my PhD studies. I would like to thank
the school of Mathematics of the University of Edinburgh for funding my MSc
studies, and for providing me with an amazing environment. I am very grateful
to Iain Dornan and Tatiana Chepelina who were always very helpful whenever
I encountered any issue. I am also extremely grateful to Prof. Jacek Gondzio,
who financially supported me for an additional year, and alongside the Dr. Laura
Wisewell Travel scholarship, funded my conference travel expenses. Being able to
travel and join international research conferences was an invaluable experience. I
would also like to thank the A.G. Leventis Foundation for the financial support
during my PhD studies.

For their very valuable lessons, I would like to thank Dr. Julian Hall, Prof.
Luca Bergamaschi, Dr. Angéles Mart́ınez, Prof. Daniela di Serafino, Dr. Valentina
De Simone, and Dr. Marco Viola. In addition, I am extremely thankful to Prof.
Sergios Theodoridis and Dr. Pantelis Bouboulis for introducing me to mathemat-
ical optimization and for helping me start my research career.

This journey would not have been possible without the support of my parents,
Christos and Maria, as well as my siblings, Vasiliki and Konstantinos. Thank you
for encouraging me in all of my pursuits and for continually supporting me.

9

Contents

Abstract 7

1 Introduction 16
1.1 Convex programming . 16

1.1.1 A primal-dual interior point method 17
1.1.2 Proximal point methods 19
1.1.3 Regularization in interior point methods 22

1.2 Iterative solution of linear systems 23
1.3 Structure of the thesis . 25
1.4 Summary . 26

2 Dynamic Regularization in IPMs for Convex QP 28
2.1 Introduction . 28
2.2 Exact primal-dual regularization 30

2.2.1 Problem formulation . 30
2.2.2 The Newton system . 31
2.2.3 The regularization matrices 34

2.3 Spectral analysis . 44
2.3.1 Linear programming . 44
2.3.2 Quadratic programming 48

2.4 Implementation and numerical results 53
2.4.1 The algorithmic framework 53
2.4.2 Implementation details . 53
2.4.3 Numerical results . 57

2.5 Conclusions . 61

3 An IP-PMM for Convex QP 62
3.1 Introduction . 62
3.2 Algorithmic framework . 63
3.3 Convergence analysis of IP-PMM 67
3.4 Infeasible problems . 83
3.5 Computational experience . 86

3.5.1 Implementation details . 86
3.5.2 Numerical results . 89

3.6 Conclusions . 94

4 An IP-PMM for Linear SDP 97

10

Regularized Interior Point Methods for Convex Programming 11

4.1 Introduction . 97
4.2 Preliminaries and notation . 98

4.2.1 Primal-dual pair of SDP problems 98
4.2.2 A proximal method of multipliers 99
4.2.3 An infeasible interior point method 100
4.2.4 Vectorized format . 101

4.3 An interior point-proximal method of multipliers for SDP 102
4.4 Convergence analysis . 105
4.5 A sufficient condition for strong duality 117
4.6 Conclusions . 120

5 Preconditioning for Regularized IPMs 121
5.1 Introduction . 121
5.2 Regularized normal equations . 123

5.2.1 A Cholesky-based preconditioner 124
5.2.2 A LDL>-based preconditioner 129
5.2.3 BFGS-like low-rank updates of the preconditioner 130

5.3 Regularized saddle point matrices 131
5.3.1 Block diagonal preconditioners 132
5.3.2 Factorization-based preconditioners 135

5.4 Regularized IPMs: numerical results 136
5.4.1 Linear programming . 137
5.4.2 Convex quadratic programming 144

5.5 Conclusions . 150

6 IP-PMMs for Sparse Approximation Problems 151
6.1 Introduction . 151
6.2 An IP-PMM for convex programming 153

6.2.1 Testing environment . 156
6.3 Portfolio selection problem . 156

6.3.1 Specialized IP-PMM for quadratic portfolio optimization
problems . 158

6.3.2 Computational experience 159
6.4 Classification models for functional magnetic resonance imaging data162

6.4.1 Specialized IP-PMM for fused lasso least squares 164
6.4.2 Computational experience 166

6.5 TV-based Poisson image restoration 169
6.5.1 Specialized IP-PMM for image restoration problems 170
6.5.2 Computational experience 172

6.6 Linear classification via regularized logistic regression 175
6.6.1 Computational experience 176

6.7 Conclusions . 177

7 Conclusions and Future Directions 179
7.1 Conclusions . 179
7.2 Future directions . 180

11

12 Spyridon Pougkakiotis

A Convergence Analysis of IP-PMM for SDP: residual proofs 200
A.1 Proof of Lemma 4.4.2 . 200
A.2 Proof of Lemma 4.4.4 . 201
A.3 Proof of Theorem 4.4.1 . 203
A.4 Proof of Theorem 4.4.3 . 203
A.5 Proof of Theorem 4.5.1 . 204

12

Notation and Abbreviations

A An index set, unless stated otherwise.

|A| The cardinality of the set A.

� Loewner ordering inequality.

Rn Space of n-dimensional vectors.

Rn×n Space of real m× n matrices.

R+ x ∈ R, such that x ≥ 0 (non-negative real number).

Rn
+ x ∈ Rn, such that xj ∈ R+, for all j ∈ {1, . . . , n} (non-

negative orthant).

Sn The space of n× n symmetric matrices

Sn+ The space of n×n symmetric positive semi-definite matrices

Sn++ The space of n× n symmetric positive definite matrices

H1(Ω) The Sobolev space W 1,2(Ω)

Lp(Ω) The space of measurable functions with support Ω for which
the p-th power of the absolute value is Lebesgue integrable

xj The j-th component of the column vector x (sub-scripts are
reserved for iteration counters or for distinguishing different
variables).

A(i,j) The (i, j)-th element of matrix A.

A> The transpose of A.

AH ≡ (A)> The conjugate transpose of A.

A(A,B) The (i, j) elements of A such that i ∈ A, j ∈ B.

AB The columns j of A such that j ∈ B. If A is square, the
same notation represents the (i, j) elements of A such that
i, j ∈ B. The distinction is clear from the context.

Diag(A) The diagonal matrix containing the diagonal elements of A.

13

14 Spyridon Pougkakiotis

X ≡ Diag(x) The diagonal matrix X such that X(i,i) = xi.

Off(A) The matrix containing the off-diagonal elements of A and
zeros in the diagonal.

‖ · ‖ Euclidean norm (vector) or Schatten 2-norm (matrix).

‖ · ‖x The (Schatten, for matrix inputs) x-norm, x = 1, 2, . . .

‖x ‖B The B-norm equal to
√
x>Bx, with B ∈ Sn+.

en Vector of ones of size n.

In Identity matrix of size n.

0m,n Zero matrix of size m×n (size might be omitted if it is clear).

xk A vector x that depends on iteration k ≥ 0.

x∗ Denotes the optimal solution of a problem with unknown x.

σ(A) The set of singular values of A.

σmax(A) (σmin(A)) Maximum (minimum resp.) singular value of a matrix A.

λ(A) The set of eigenvalues of A.

λmax(A) (λmin(A)) Maximum (minimum resp.) eigenvalue value of a square
matrix A.

T (x) = O(f(x)) Assume T, f : R+ 7→ R+. Then the previous notation means
that there exist constants c > 0, x0 ≥ 0, such that T (x) ≤
cf(x), for all x ≥ x0.

T (x) = Ω(f(x)) Assume T, f : R+ 7→ R+. Then the previous notation means
that there exist constants c > 0, x0 ≥ 0, such that T (x) ≥
cf(x), for all x ≥ x0.

T (x) = Θ(f(x)) This means that T (x) = O(f(x)) and T (x) = Ω(f(x)).

µk Barrier parameter of interior point method at iteration k.

τk Centering parameter of interior point method at iteration k.

T1 ∧ T2 Logical AND between two logical statements T1 and T2.

q(M) The Rayleigh quotient of a symmetric matrix, defined as

q(M) :=
{
z ∈ R, s.t. z = x>Mx

x>x
, for some x ∈ Rn, x 6= 0

}
.

LP, QP, SDP Linear, convex quadratic, positive semi-definite programming

IPM Interior point method

PMM Proximal method of multipliers

14

Regularized Interior Point Methods for Convex Programming 15

IP-PMM Interior point-proximal method of multipliers

PDE Partial differential equation

fMRI Functional magnetic resonance imaging

15

Chapter 1

Introduction

In this thesis we study regularized interior point methods (IPMs) for the solution
of large-scale convex programming problems. In particular, we are concerned with
the underlying theory of such algorithms as well as their efficient implementation.
More specifically, we discuss two regularization strategies, the interpretation of
which is drawn from the theory of proximal point methods. When such regular-
ization strategies are incorporated within standard IPM schemes, one can show
that the solution of the original problem is retrieved (without having to resort
to finding a perturbed solution), while the associated linear algebra tasks, that
constitute the computational bottleneck of IPMs, are simplified. In certain cases,
we show that the polynomial complexity of IPMs can be maintained when the
regularization is tuned appropriately. The latter was an open problem that was
resolved for the first time as a byproduct of this study.

The biggest part of this thesis is focused on convex quadratic programming
problems. Solution methods of such problems can serve as the main tool for the
solution of general nonlinear convex problems. Nevertheless, polynomial conver-
gence of a regularized IPM scheme is shown for linear positive semi-definite prob-
lems, in order to stress the generality of the approach. Global or local convergence
analyses of such methods for general nonlinear (possibly non-convex) problems
are not given in this thesis, as they have appeared before in the literature, and the
reader is referred to the appropriate references for further details. Throughout
all the chapters, we provide extensive numerical results on real-life applications,
to showcase the efficiency and the robustness of the proposed methodologies. We
consider a wide range of applications, such as problems arising from portfolio
optimization, image processing, machine learning, as well as partial differential
equation (PDE) optimization.

1.1 Convex programming

In this thesis, we consider problems of the following form

min
x

f(x), s.t. Ax = b, x ≥ 0n, (CP)

16

Regularized Interior Point Methods for Convex Programming 17

with x ∈ Rn, A ∈ Rm×n, where f : Rn → R is a twice continuously differentiable
convex function. Without loss of generality we assume that m ≤ n. We can form
the optimaity conditions of (CP) by introducing the Lagrangian function, using
y ∈ Rm and z ∈ Rn, z ≥ 0n, as the Lagrange multipliers for the equality and
inequality constraints, respectively. Hence, we obtain:

L(x, y, z) := f(x)− y>(Ax− b)− z>x. (1.1)

Using the latter function, one can formulate the first-order optimality condi-
tions (known as Karush–Kuhn–Tucker (KKT) conditions) for this problem. In
particular, we define the vector w = (x>, y>, z>)>, and compute the gradient of
L(w). Using ∇wL(w), as well as the complementarity conditions, we may define
a function F (w) : R2n+m 7→ R2n+m, using which, we write the KKT conditions as
follows:

F (w) :=

∇xf(x)− A>y − z
Ax− b
XZen

 =

0n
0m
0n

 , (x, z) ≥ (0n, 0n), (1.2)

where en denotes the vector of ones of size n, while X, Z ∈ Rn×n denote the
diagonal matrices satisfying X(i,i) = xi and Z(i,i) = zi, for all i ∈ {1, . . . , n}.

1.1.1 A primal-dual interior point method

Primal-dual interior point methods are popular for simultaneously solving
(CP) and its dual. As indicated in the name, primal-dual IPMs act on both
primal and dual variables. There are numerous variants of IPMs and the reader is
referred to [78] for an extended literature review. In this thesis, infeasible primal-
dual IPMs are discussed. Such methods are called infeasible because they allow
intermediate iterates of the method to be infeasible for the primal-dual problems
under consideration, in contrast to feasible IPMs, which require intermediate
iterates to be strictly feasible.

Interior point methods handle the non-negativity constraints of the problem
with logarithmic barriers in the objective. That is, at each iteration, we choose
a barrier parameter µ and form the logarithmic barrier primal problem:

minx
(
f(x)− µ

n∑
j=1

lnxj
)

s.t. Ax = b, (1.3)

in which non-negativity constraints x > 0n are implicit. We form the KKT
optimality conditions of problem (1.3), by introducing the Lagrangian of the
primal barrier problem:

LIPM
µ (x, y) := f(x)− y>(Ax− b)− µ

n∑
j=1

lnxj.

17

18 Spyridon Pougkakiotis

Equating the gradient of the previous function to zero, gives the following condi-
tions:

∇xLIPM
µ (x, y) = ∇xf(x)− A>y − µX−1en = 0n,

∇yLIPM
µ (x, y) = Ax− b = 0m.

Using the variable z = µX−1en, the final conditions read as follows:

∇xf(x)− A>y − z = 0n,

Ax− b = 0m,

XZen − µen = 0n.

At each IPM iteration, we want to approximately solve the following non-
linear system:

F IPM
τ,µ (w) :=

∇xf(x)− A>y − z
b− Ax

XZen − τµen

 =

0n
0m
0n

 , (1.4)

where F IPM
τ,µ (w) = 02n+m is a slightly perturbed form of the previously presented

optimality conditions. In particular, τ ∈ (0, 1) is a centering parameter which
determines how fast µ will be forced to decrease at the next IPM iteration. For
τ = 1, we recover the barrier optimality conditions, while for τ = 0 we recover
the initial problem’s optimality conditions given in (1.2). The efficiency of the
method depends heavily on the choice of τ . In fact, various improvements of the
traditional IPM schemes have been proposed in the literature, which solve the
previous system for multiple carefully chosen values of the centering parameter
τ and of the right hand side, at each IPM iteration. These are the so called
predictor–corrector schemes, proposed for the first time in [119]. Various exten-
sions of such methods have been proposed and analyzed in the literature (e.g. see
[77, 122, 165] and references therein). However, for simplicity of exposition, we
will follow the traditional approach, when theoretically analyzing the methods
proposed in this thesis. In this case, τ is chosen heuristically at each iteration,
and the previous system is solved only once. Nevertheless, predictor–corrector
schemes will be incorporated in most implementations of the proposed methods.

In order to approximately solve the system F IPM
τ,µ (w) = 02n+m for each value

of µ, the most common approach is to apply Newton method. Newton method is
favored for systems of this form, due to the self-concordance of the function ln(·).
Briefly, a p-self-concordant function g(x) : C 7→ R, where C ⊂ Rn is a nonempty
convex set and p > 0, is a three times continuously differentiable convex function
that satisfies

|∇3
xg(x)[h, h, h]| ≤ 2p−

1
2

(
∇2
xg(x)[h, h]

) 3
2 ,

for all x ∈ C and for all h such that x + h ∈ C. In essence, a self-concordant
function is always well approximated by a quadratic model, because the approx-
imation error is bounded by its Hessian raised to the power 3

2
. For more details

on this subject, the interested reader is referred to [128, Chapter 2].
At the beginning of the k-th iteration of the IPM, for k ≥ 0, we have available

18

Regularized Interior Point Methods for Convex Programming 19

an iterate wk = (x>k , y
>
k , z

>
k)>, and a barrier parameter µk, defined as µk =

(x>k zk)/n. We choose a value for the centering parameter τk ∈ (0, 1) and form the
Jacobian of F IPM

τk,µk
(·), evaluated at wk. Then, the Newton direction is determined

by solving the following system of equations:

−∇2
xf(xk) A> I
A 0m,m 0m,n
Zk 0n,m Xk

∆xk
∆yk
∆zk

 = −

−∇xf(xk) + A>yk + zk
Axk − b

XkZken − τkµken

 . (1.5)

Notice that as µk → 0, the optimal solution of (1.3) converges to the optimal
solution of (CP) and its dual. Polynomial convergence of such methods, for
various classes of problems, has been established multiple times in the literature,
even in cases where system (1.5) is solved approximately (see for example, among
others, [181] for linear programming, [186] for linear complementarity problems,
and [190] for linear positive semi-definite programming).

1.1.2 Proximal point methods

Primal proximal point method
One possible method for solving the primal problem (CP), is the so called

proximal point method. Given an arbitrary starting point x0, the k-th iteration
of the method is summarized by the following minimization problem:

xk+1 = arg min
x

{
f(x) +

µk
2
‖x− xk‖2

2, s.t. Ax = b, x ≥ 0n

}
,

where {µk} is some non-increasing sequence of positive penalty parameters, and
xk is the current estimate for an optimal solution of (CP). The use of µk is not
a mistake; as will become clearer later, we intend to use the barrier parameter
µk to control both the IPM and the proximal method. Notice that such an
algorithm is not practical, since we have to solve a sequence of sub-problems of
similar difficulty to that of (CP). Nevertheless, the proximal method contributes
the term µkIn to the Hessian of the objective, and hence the sub-problems are
strongly convex. This method is known to achieve a linear convergence rate (and
possibly superlinear if µk → 0 at a suitable rate), as shown in [75, 146, 147],
among others, even in the case where the minimization sub-problems are solved
approximately. Various extensions of this method have been proposed in the
literature. For example, one could employ different penalty functions other than
the typical 2-norm penalty presented previously (e.g. see [39, 64, 95]).

Despite the fact that such algorithms are not practical, they have served as
a powerful theoretical tool and a basis for other important methods. For an
extensive review of the applications of standard primal proximal point methods,
we refer the reader to [137].

19

20 Spyridon Pougkakiotis

Dual proximal point method
It is a well-known fact, observed for the first time in [146], that the application

of the proximal point method to the dual problem, is equivalent to the application
of the augmented Lagrangian method to the primal problem, which was proposed
for the first time in [92, 145]. In view of the previous fact, we will present the
derivation of the augmented Lagrangian method for the primal problem (CP),
while having in mind that an equivalent reformulation of the model results in the
proximal point method for its dual (see [29, Chapter 3.4.4] or [72, 146]).

We start by defining the augmented Lagrangian function of (CP). Given
an arbitrary starting guess y0 for the dual variable, the augmented Lagrangian
function is defined at the k-th iteration as:

LALM
µk

(x; yk) := f(x)− y>k (Ax− b) +
1

2µk
‖Ax− b‖2

2, (1.6)

where {µk} is some non-increasing sequence of positive penalty parameters, and yk
is the current estimate of an optimal Lagrange multiplier vector. The augmented
Lagrangian method (ALM) is summarized below:

xk+1 = arg min
x

{
LALM
µk

(x; yk), s.t. x ≥ 0n

}
,

yk+1 = yk −
1

µk
(Axk+1 − b).

Notice that the update of the Lagrange multiplier estimates can be interpreted
as the application of the dual ascent method. A different type of update would
be possible, however, the presented update is cheap and effective, due to the
strong concavity of the proximal (“regularized”) dual problem (since µk > 0).
Convergence and iteration complexity of such methods have been established
multiple times (see for example [104, 146]). There is a vast literature on the
subject of augmented Lagrangian methods. For a plethora of technical results
and references, the reader is referred to [27]. For convergence results of various
extended versions of the method, the reader is referred to [64].

It is worth noting here that a common issue, arising when using augmented
Lagrangian methods, is that of the choice of the penalty parameter. To the
author’s knowledge, an optimal tuning for this parameter is still unknown.

Proximal method of multipliers
In [146], the author presented, for the first time, the proximal method of mul-

tipliers (PMM). The method consists of applying both primal and dual proximal
point methods for solving (CP) and its dual. For an arbitrary starting point
(x0, y0), and using the already defined augmented Lagrangian function, given in

20

Regularized Interior Point Methods for Convex Programming 21

(1.6), PMM can be summarized by the following iteration:

xk+1 = arg min
x

{
LALM
µk

(x; yk) +
µk
2
‖x− xk‖2

2, s.t. x ≥ 0n

}
,

yk+1 = yk −
1

µk
(Axk+1 − b).

(1.7)

One can observe that at every iteration of the method, the primal problem that
we have to solve is strongly convex, while its dual, strongly concave. As shown in
[146], the addition of the term µk

2
‖x−xk‖2

2 in the augmented Lagrangian method
does not affect its convergence rate, while ensuring better numerical behaviour of
its iterates. An extension of this algorithm, allowing for the use of more general
penalties, can be found in [64].

We can write (1.7) equivalently by making use of the maximal monotone
operator TL : Rn+m ⇒ Rn+m associated to (CP) and its dual (see [146, 147]),
that is defined as:

TL(x, y) :=
{

(u, v) : v ∈ ∇xf(x)− A>y + ∂δ+(x), u = Ax− b
}
, (1.8)

where δ+(·) is an indicator function defined as:

δ+(x) :=

{
∞ if ∃ j : xj < 0,

0 otherwise,
(1.9)

and ∂(·) denotes the sub-differential of a function. In the case under consideration,
we have that (see [148, Section 23]):

z ∈ ∂δ+(x)⇔

{
zj = 0 if xj > 0,

zj ≤ 0 if xj = 0.
, ∀ j = {1, . . . , n}.

By convention, if there exists a component j such that xj < 0, we have that
∂δ+(x) = {∅}. Given a bounded pair (x∗, y∗) such that (0m, 0n) ∈ TL(x∗, y∗),
we can retrieve a vector z∗ ∈ ∂δ+(x∗), using which, the triple (x∗, y∗,−z∗) is an
optimal solution for (CP) and its dual. By letting:

Pk :=

(
I(m+n) +

1

µk
TL

)−1

, (1.10)

we can express (1.7) as:

(xk+1, yk+1) = Pk(xk, yk), (1.11)

and it can be shown that Pk is single-valued and non-expansive (see [147]).

21

22 Spyridon Pougkakiotis

1.1.3 Regularization in interior point methods

In the context of interior point methods, it is often beneficial to include reg-
ularization in order to improve the spectral properties of the system matrix in
(1.5). For example, notice that if the constraint matrix A is rank-deficient, then
the matrix in (1.5) might not be invertible. The latter can be immediately ad-
dressed by the introduction of a dual regularization, say δ > 0, ensuring that
rank([A | δIm]) = m. For a detailed analysis of the effect of dual regulariza-
tion on such systems, the reader is referred to [4]. On the other hand, the most
common and efficient approach in practice is to eliminate the variables ∆z from
system (1.5), and solve the following symmetric reduced (augmented) system
instead:

[
−(∇2

xf(xk) + Θ−1
k) A>

A 0m,m

] [
∆xk
∆yk

]
=

[
∇xf(xk)− A>yk − σkµkX−1

k e
b− Axk

]
, (1.12)

where Θk = XkZ
−1
k . Since Xkzk → 0n close to optimality, one can observe

that the matrix Θk will contain some very large and some very small elements.
Hence, the matrix in (1.12) will be increasingly ill-conditioned, as we approach
optimality. The introduction of a primal regularization, say ρ > 0, can ensure
that the matrix ∇2

xf(xk)+Θ−1
k +ρIn will have eigenvalues that are bounded away

from zero, and hence a significantly better worst-case conditioning than that of
∇2
xf(xk) + Θ−1

k . In other words, regularization is commonly employed in IPMs,
as a means of improving robustness and numerical stability (see [1]). As we will
discuss later, by introducing regularization in IPMs, one can also gain efficiency.
This is because regularization transforms the matrix in (1.12) into a quasi-definite
one. It is known that such matrices can be factorized efficiently (see [171]).

To produce a diagonal term in the (2, 2) block, Vanderbei added artificial
variables to all the constraints [171]. Saunders and Tomlin [154, 155] achieved
a similar result for the (1, 1) and (2, 2) blocks, by adding Tikhonov-type regu-
larization terms to the original problem. In later works, these Tikhonov-type
regularization methods were replaced by algorithmic regularization schemes. In
particular, and in view of the previous discussion, one can observe that a very
natural way of introducing primal regularization to problem (CP), is through the
application of the primal proximal point method. Similarly, dual regularization
can be incorporated through the application of the dual proximal point method.
This is a well-known fact. The authors in [1] presented a primal-dual regularized
IPM for convex quadratic programming, and interpreted this regularization as
the application of the proximal point method. Subsequently, the authors in [72]
developed a primal-dual regularized IPM, which applies PMM to solve (CP) (as-
suming that f(·) is convex quadratic), and a single IPM iteration is employed for
approximating the solution of each PMM sub-problem. There, global convergence
of the method was proved, under some assumptions.

Similar ideas have been applied in the context of IPMs for general non-linear
programming problems. For example, the authors in [5] presented an interior
point method combined with the augmented Lagrangian method, and proved

22

Regularized Interior Point Methods for Convex Programming 23

that, under some general assumptions, the method converges to a local optimum.
A similar approach, with infeasibility detection capabilities as well as a local
convergence analysis, can be found in [8].

In Chapter 2 of this thesis, we present a variation of the method proposed in
[72] (again assuming that f(·) is a convex quadratic function), in which general
non-diagonal regularization matrices are employed, as a means of further improv-
ing factorization efficiency. There, we also analyze (by means of a perturbation
analysis) the effect of regularization in the eigenvalues of the original Newton ma-
trices. By exploiting this analysis, we propose a minimum regularization value
(which depends on the problem under consideration) that does not perturb the
system matrix significantly, while ensuring numerical stability. Then, in Chapter
3 we present an interior point-proximal method of multipliers (IP-PMM), which is
interpreted as a primal-dual regularized IPM suitable for solving convex quadratic
programming problems. Under standard assumptions, we show that the method
converges to an ε-optimal solution in a polynomial number of steps, while global
convergence also holds. We also derive an infeasibility detection mechanism, as
a byproduct of the theory. In Chapter 4, we extend IP-PMM for linear positive
semi-definite programming problems, and show that polynomial convergence still
holds, even if one solves the associated Newton systems inexactly. We should
mention that these polynomial results are the first to appear in the literature for
regularized IPM schemes. Another important issue that is stressed in Chapters 3,
4, concerns the tuning of the regularization parameters. In particular, we argue
that it must be heavily reliant on the value of the barrier parameter, and that in
theory (and in practice) the regularization parameters must always be chosen to
be of the same order of magnitude as the barrier parameter µk of the IPM.

1.2 Iterative solution of linear systems

The main computational bottleneck of any optimization algorithm employing
a variant of Newton method, arises from the solution of the associated linear
systems of equations, the coefficient matrices of which are usually sparse. In
particular, this is true for IPM solvers (e.g. see [2, 52, 77, 119, 129, 181]), aug-
mented Lagrangian solvers (e.g. see [7, 9, 108, 174, 189]), sequential quadratic
programming solvers (e.g. see [10, 31, 131]), or any other (semismooth) Newton-
based solver (e.g. see [101, 103, 106, 157]). Such linear systems were traditionally
solved by means of factorization methods (such as the Cholesky, or the LDL>

decomposition–see [2, 62] for an extensive discussion on direct methods for sparse
systems). While such factorization schemes have been implemented very effi-
ciently, and are extremely general (i.e. they do not depend on the problem under
consideration), they often require excessive memory, and as a result cannot be
employed to solve large-scale instances.

In light of the previous, there have been many attempts (well covered in the
literature) concerned with the use of iterative solution techniques for the afore-
mentioned linear systems. Such iterative methods do not require the factorization
of the system matrix, and attempt to find a sequence of approximate solutions by
means of matrix-vector products (which can be performed without the explicit

23

24 Spyridon Pougkakiotis

storage of the entire system matrix, thus allowing one to work in a matrix-free
framework–e.g. as in [17, 79]). The most widely-used iterative methods are the
so-called Krylov subspace solvers, and in this thesis we will focus only on such
schemes. The reader is referred to [85, 110] (and the references therein), for
an extensive review of Krylov subspace methods. In what follows, we briefly
mention some of the most popular variants. When the linear system under con-
sideration has a symmetric positive definite coefficient matrix, one often employs
the conjugate gradient (CG) method ([93]), which is a short-recurrence symmet-
ric solver. For indefinite symmetric systems, the symmetric LQ or the minimal
residual (MINRES) method ([135]) can be used instead, which are also short-
recurrence symmetric solvers. Alternatively, one might employ non-symmetric
solvers, such as LSQR ([136]), LSMR ([68]) or the generalized minimal residual
(GMRES) method ([153]). GMRES (which is an extension of MINRES for non-
symmetric systems) is a long-recurrence solver, and as a consequences requires
additional memory for each iteration. While it can be more general, it is more
difficult to analyze (see [86]). On the other hand, LSQR and LSMR are based
on bi-orthogonalization, and hence do not require more memory than MINRES.
However, they do not have any tractable optimality property, thus making their
convergence analysis especially difficult. As a result, in this thesis we will focus
on symmetric solvers, and specifically on CG and MINRES.

Krylov solvers can be further accelerated by means of preconditioning, and
there exists a rapidly-developing literature focusing on the construction as well as
the analysis of such preconditioners, either for specific applications, or for general
problems. The idea of preconditioning is surprisingly old (in fact, it can be traced
back to the work of Gauss and of Jacobi, e.g. see [73, 96]; the term originates
from the work of Turing in [169]), and is not restricted to Krylov subspace solvers.
Despite its long history, preconditioning constitutes a highly active research area,
which saw increasing applicability due to the rise in large-scale problems, for
which direct methods fail to deliver solutions (see the discussions in [21, 24, 25,
59, 60, 85, 110], and the references therein).

The preconditioners proposed in the literature can be divided into symmet-
ric (e.g. see [21, 30, 74, 126, 132, 133, 161]), and non-symmetric ones (e.g. see
[59, 94, 100, 126, 153]). In this thesis, and in particular in Chapter 5, we focus
on the former (and in particular on symmetric positive definite precondition-
ers), which can be used within short-recurrence Krylov-subspace methods (with
the latter being usable only within long-recurrence solvers). Specifically, given
the saddle point systems that arise from the application of a regularized IPM
to convex programming (i.e. primal-dual regularized versions of system (1.12)),
we derive general-purpose preconditioners, usable within MINRES or CG. These
preconditioners are based on sparsifications of the associated linear systems. Such
sparsifications are not problem-dependent. In particular, we exploit the proper-
ties of the logarithmic barrier to make knowledgeable decisions concerning which
parts of the linear system should be dropped. Furthermore, we also consider
dropping dense parts of the linear system that produce dense factors during fac-
torization. These sparsified system matrices are then factorized using standard
direct methods. In light of the induced sparsity of these preconditioners, we ex-
pect that their factorization requires reasonable memory and computations, and

24

Regularized Interior Point Methods for Convex Programming 25

we show their success in accelerating the associated iterative methods both the-
oretically and numerically. We also discuss possible low-rank corrections of the
preconditioned matrices, in order to further accelerate the iterative solvers.

1.3 Structure of the thesis

In this thesis, we outline and showcase the benefits of regularization in the
context of interior point methods for convex programming problems. While all
the chapters follow the same notational rules, we assume that the notation used
within each chapter is self-contained, unless stated otherwise (e.g. the same
letters might represent different things in different chapters).

In Chapter 2 we provide a well-known interpretation of regularization within
IPMs. In particular, we discuss the interpretation of regularization as the appli-
cation of an appropriate proximal point method. In turn, this allows us to deduce
that regularization can be exact, i.e. the solution of the regularized model (or
more accurately, sequence of models) is also a solution to the original problem.
The rest of this chapter focuses on two aspects of regularization. Firstly, we pro-
vide a perturbation analysis to explore the effect of regularization on the problem
data (i.e. how much these are perturbed), as well as a comprehensive spectral
analysis, that shows the positive effects of regularization in terms of stability
introduced in the associated linear systems. Secondly, we propose a technique
that allows us to employ regularization as a means of improving efficiency of
IPM solvers, and interpret this as the application of a generalized proximal point
method.

Subsequently, in Chapters 3, 4, we focus on a uniform regularization scheme
(interpreted as the application of the standard proximal method of multipliers).
We show that given an appropriate tuning of the regularization parameters, one
can design regularized IPMs, for a very wide range of convex problems, that are
guaranteed to converge in polynomial time under standard assumptions employed
in the IPM literature. We show that this polynomial convergence holds even if the
associated linear systems are solved inexactly. These results state that the poly-
nomial complexity of standard IPMs is not lost when a regularized IPM scheme
is designed appropriately. Furthermore, we stress the fact that regularization in-
troduces stability in the linear systems solved within standard IPMs. Thus, the
resulting solvers are significantly more robust, and in certain cases, much more
efficient. This observation is verified numerically on standard test sets.

In Chapter 5, we focus on the efficient solution of regularized saddle point
systems arising from the application of a regularized IPM to an arbitrary convex
problem. In particular, we propose and analyze several general-purpose precondi-
tioners that can be used to accelerate symmetric Krylov subspace solvers for such
systems. We note that the solution of saddle point systems is the main bottle-
neck within IPM implementations, and we numerically demonstrate how the use
of inexact Newton method within IPMs can significantly improve the efficiency
of the associated solvers. All of the preconditioning approaches developed in this
chapter take advantage of the regularized nature of the saddle point systems. In-
deed, we showcase another very important benefit of regularization within IPMs;

25

26 Spyridon Pougkakiotis

the resulting linear systems are significantly easier to precondition, compared to
their non-regularized counterparts.

In Chapter 6, by combining the developments of all previous chapters, we de-
rive several application-specific regularized IPM implementations, for the solution
of sparse approximation problems, arising in portfolio optimization, classification
of data coming from functional magnetic resonance imaging, restoration of images
corrupted by Poisson noise, as well as classification via logistic regression. In each
of these applications, we compare the proposed specialized solver with state-of-
the-art specialized first-order methods, that are traditionally used to solve such
problems in the literature. We show that regularized IPMs are more robust, and
in certain cases more efficient than the best first-order methods available, if their
linear algebra phase is tuned appropriately.

Finally, in Chapter 7 we deliver our conclusions, as well as discuss several open
problems and potential future research directions in the field of regularization for
interior point methods.

1.4 Summary

The contents of this thesis are based on the following publications and pre-
prints:

Chapter 2

• S. Pougkakiotis and J. Gondzio. “Dynamic non-diagonal regularization
in interior point methods for linear and convex quadratic programming”,
Journal of Optimization Theory and Applications, 181 (3), 905–945, 2019,
10.1007/s10957-019-01491-1, [141].

Chapter 3

• S. Pougkakiotis and J. Gondzio. “An interior point-proximal method of
multipliers for convex quadratic programming”, Computational Optimiza-
tion and Applications, 78 (2), 307–351, 2021, 10.1007/s10589-020-00240-9,
[142].

Chapter 4

• S. Pougkakiotis and J. Gondzio. “An interior point-proximal method of
multipliers for linear positive semi-definite programming”, Journal of Opti-
mization Theory and Applications, 2021, 10.1007/s10957-021-01954-4, [143].

Chapter 5

• L. Bergamaschi, J. Gondzio, Á. Mart́ınez, J. W. Pearson and S. Pougkakio-
tis. “A new preconditioning approach for an interior point-proximal method
of multipliers for linear and convex quadratic programming”, Numerical
Linear Algebra with Applications, 28 (4), e2361, 2021, 10.1002/nla.2361,
[23].

26

https://doi.org/10.1007/s10957-019-01491-1
https://doi.org/10.1007/s10589-020-00240-9
https://doi.org/10.1007/s10957-021-01954-4
https://doi.org/10.1002/nla.2361

Regularized Interior Point Methods for Convex Programming 27

• J. Gondzio, S. Pougkakiotis and J. W. Pearson. “General-purpose precon-
ditioning for regularized interior point methods”, arXiv:2107.06822, 2021,
[82] (submitted to COAP, 14 July 2021).

Chapter 6

• V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakiotis and M. Viola.
“Sparse approximations with interior point methods”, arXiv:2102.13608,
2021, [52] (to appear in SIAM Review, accepted: 24 November 2021).

Permission from co-authors to include parts of these works in the thesis has been
granted to the author.

During my PhD studies, I also co-authored the following paper, which was
not used within this thesis:

• S. Pougkakiotis, J. W. Pearson, S. Leveque and J. Gondzio. “Fast solu-
tion methods for convex quadratic optimization of fractional differential
equations”, SIAM Journal on Matrix Analysis and Applications, 41 (3),
1443–1476, 2020, 10.1137/19M128288X, [144].

In [144], we present numerical methods suitable for solving convex quadratic
fractional differential equation (FDE) constrained optimization problems, with
box constraints on the state and/or control variables. We develop an alternating
direction method of multipliers (ADMM) framework, which uses preconditioned
Krylov subspace solvers for the resulting subproblems. The latter allows us to
tackle a range of partial differential equation (PDE) optimization problems with
box constraints, posed on space-time domains, that were previously out of the
reach of state-of-the-art preconditioners. In particular, by making use of the
powerful generalized locally Toeplitz (GLT) sequences theory, we show that any
existing GLT structure present in the problem matrices is preserved by ADMM,
and we propose some preconditioning methodologies that could be used within
the solver, to demonstrate the generality of the approach. Focusing on convex
quadratic programs with time-dependent 2-dimensional FDE constraints, we de-
rive multilevel circulant preconditioners, which may be embedded within Krylov
subspace methods, for solving the ADMM subproblems. Discretized versions of
FDEs involve large dense linear systems. In order to overcome this difficulty,
we design a recursive linear algebra, which is based on the fast Fourier trans-
form (FFT). We manage to keep the storage requirements linear, with respect
to the grid size N , while ensuring an O (N logN) computational complexity per
iteration of the Krylov solver. We implement the proposed method and demon-
strate its scalability, generality, and efficiency through a series of experiments
over different setups of the FDE optimization problem.

27

https://doi.org/10.1137/19M128288X

Chapter 2

Dynamic Regularization in IPMs
for Convex QP

2.1 Introduction

In this chapter, we are concerned with finding the solution of linear and convex
quadratic programming problems, using an infeasible primal-dual interior point
method. As already mentioned in Chapter 1, interior point methods deal with the
inequality constraints of the problem by introducing logarithmic barriers in the
objective, which penalize when any of the inequality constraints is close to being
violated. At each iteration, the optimality conditions of the barrier problems are
formed and one (or a few) steps of Newton method are applied to them. For
an extended literature review on interior point methods we refer the interested
reader to [78].

Most implementations transform the Newton system into a symmetric in-
definite system of linear equations, which when solved, determines the Newton
direction. The latter constitutes the main computational effort and challenge for
IPMs. At every iteration of the method, the system matrix as well as the right
hand side change. There are three main reasons indicating why solving such a
system can be challenging. The most obvious one, is that the dimension of such
systems can be very large, which makes the task of solving them expensive in
terms of processing time and memory requirements. A second important chal-
lenge, inherent in interior point methods, is that as the algorithm approaches
optimality, the systems that we have to solve become increasingly ill-conditioned.
Finally, a rank deficient constraint matrix can result in a singular Newton sys-
tem matrix. It is well known that the latter two difficulties can be addressed by
the use of some regularization technique, at the expense of solving a perturbed
problem, e.g. [4].

Such regularization techniques, embedded in the interior-point framework for
solving linear and convex quadratic programming problems, have been previously
proposed in the literature. For example, in [1], a dynamic primal-dual regulariza-
tion for interior point methods was derived. The authors solve a slightly altered
symmetric indefinite system, to which a diagonal perturbation (regularization)
has been introduced. This perturbation transforms the symmetric indefinite ma-

28

Regularized Interior Point Methods for Convex Programming 29

trix into a quasi-definite one. It is proved in [171] that such matrices are strongly
factorizable. Hence, the regularized system can be factorized efficiently. The
authors interpreted these regularization matrices as adding proximal terms to
the primal and dual objective functions. The values of these perturbations are
chosen dynamically during the factorization of the system matrix, where poten-
tially unstable pivots are regularized stronger (using some pre-specified “large”
regularization value), while safer ones are almost not regularized at all. In [72],
based on this proximal point interpretation given in [1], the authors proposed a
primal-dual pair of regularized models, where the duality correspondence arises
by setting the regularization variables as proximal terms. They observed that
for specific parameter values, this primal-dual regularized model is exact, that
is it yields an optimal solution which is also an optimal solution of the respec-
tive non-regularized primal-dual pair. There, the authors introduced two uniform
diagonal regularization matrices whose values were tuned experimentally over a
variety of problems. A similar regularization was also used in [154]. It is worth
mentioning that similar ideas have also been applied in the context of general
non-linear optimization problems (e.g. see [5, 10], and the references therein).

In this chapter, we are taking a different approach. We observe that when
an IPM progresses and approaches optimality, significant part of the primal-dual
variables approaches zero fast and hence becomes negligible. Yet it is not straight-
forward how the algorithm might exploit this feature. The proposed method at-
tempts to do so. The method dynamically chooses a suitable regularization for
the symmetric indefinite system and effectively “annihilates” the effects of those
parts of it, which do not contribute important information to the computation
of the Newton direction. The proposed technique involves non-diagonal regular-
ization matrices. However, their non-diagonal terms are only implicit; they do
not need to be computed because they are immediately cancelled by other terms
present in the linear system. Hence, the effect of adding such non-diagonal reg-
ularization is making the Newton system more sparse and therefore easier. In
contrast to other previously developed approaches, this regularization is dynam-
ically tuned based on the problem properties. We develop an approach which
attempts to capture the needs of an arbitrary problem and regularize its system
matrix accordingly. This alleviates the problem of finding specific regularization
values that work well over a variety of problems. In general, the proposed ap-
proach is very conservative and regularizes the system as little as possible, while
ensuring numerical stability.

The rest of this chapter is organized as follows. In Section 2.2, we present
the adopted model, based on which, we define our regularization matrices, firstly
for linear and then for convex quadratic programming problems. For both cases,
we provide arguments indicating why the proposed dynamic tuning of the reg-
ularization matrices is expected to introduce a controlled perturbation to the
problem. In Section 2.3 we provide a spectral analysis, which shows the effect of
the proposed regularization and gives specific bounds for the eigenvalues of the
regularized system matrix. In Section 2.4, we provide the algorithmic scheme
along with some implementation details and numerical results, and finally in
Section 2.5 we derive some conclusions.

29

30 Spyridon Pougkakiotis

2.2 Exact primal-dual regularization

2.2.1 Problem formulation

We consider the following primal-dual pair of convex quadratic programming
problems in the standard form:

minx
(
c>x+

1

2
x>Qx

)
, s.t. Ax = b, x ≥ 0n, (CQP)

maxx,y,z
(
b>y − 1

2
x>Qx

)
, s.t. −Qx+ A>y + z = c, z ≥ 0n, (CQD)

where c, x, z ∈ Rn, b, y ∈ Rm, A ∈ Rm×n, Q � 0n,n ∈ Rn×n. Without loss
of generality, we assume that m ≤ n. Note that if Q = 0n,n, (CQP)–(CQD)
is a primal-dual pair of linear programming problems. If the problems under
consideration are feasible, it can easily be verified that there exists an optimal
primal-dual triple (x, y, z) satisfying the Karush–Kuhn–Tucker (KKT) optimality
conditions for this primal-dual pair (see for example [28, Prop. 2.3.4]).

Our model is based on the developments in [1, 72, 154]. More specifically, by
applying a generalized primal-dual proximal point method on (CQP), similar to
[10, 72], one can get the following pair of primal-dual regularized problems:

min
x,r

(
c>x+

1

2
x>Qx+

1

2
‖r + ỹ‖2

Rd
+

1

2
‖x− x̃‖2

Rp

)
s.t. Ax+Rdr = b, x ≥ 0n,

(CQPr)

max
x,y,z,s

(
b>y − 1

2
x>Qx− 1

2
‖y − ỹ‖2

Rd
− 1

2
‖s+ x̃‖2

Rp

)
s.t. −Qx−Rps+ A>y + z = c, z ≥ 0n,

(CQDr)

where s ∈ Rn, r ∈ Rm are auxiliary variables introduced from the primal-dual
application of the proximal point method and, Rp � 0n,n ∈ Rn×n, Rd � 0m,m ∈
Rm×m are the primal and dual regularization matrices respectively, that will be
specified later. The duality correspondence follows after taking r = y − ỹ and
s = x − x̃, where ỹ and x̃ are estimates of the dual and primal solutions y∗, x∗

respectively. Of course Rp = 0n,n, Rd = 0m,m recovers the initial pair (CQP)–
(CQD). In [72], the authors observe that this pair of regularized problems is
exact under some conditions on the estimates x̃, ỹ. In such a case, an optimal
solution of (CQPr)–(CQDr) is also an optimal solution of (CQP)–(CQD). For
more information about exactness of regularization, we refer the interested reader
to [71].

In [5, 10, 72], models similar to (CQPr)–(CQDr) are used, restricted however
in the case where Rp = ρIn and Rd = δIm, for some positive values δ, ρ. It is a well
known fact, proved for the first time in [146], that these regularization schemes
can be interpreted as the primal-dual application of the standard proximal point
method. However, our model does not specify the structure of the regularization

30

Regularized Interior Point Methods for Convex Programming 31

matrices Rp, Rd. The only requirement is that these matrices are positive semi-
definite. As we commented previously, this model can be interpreted as the
application of a generalized primal-dual proximal point method. Such methods,
instead of adding the typical 2-norm in the objective function, make use of the so
called D-functions. In fact, one could easily verify that any elliptic norm (defined
by an arbitrary positive definite matrix) satisfies the conditions, given in [39, 95],
for being a D-function. In other words, our algorithm adds an elliptic norm in
the objective, instead of the typical 2-norm. The focus of this chapter however,
prevents us from going deeper into these matters. For more about proximal point
methods, we refer the reader to [39, 75, 95, 137, 146], and the references therein.

2.2.2 The Newton system

In order to solve the problems presented in the previous subsection, using
interior point methods, we proceed by replacing the non-negativity constraints
with logarithmic barriers in the objective. In view of the previous, we obtain the
following primal-dual regularized barrier problems:

min
x,r

(
c>x+

1

2
x>Qx+

1

2
‖r + ỹ‖2

Rd
+

1

2
‖x− x̃‖2

Rp − µ
n∑
j=1

ln(xj)

)
s.t. Ax+Rdr = b,

(2.1)

max
x,y,z,s

(
b>y − 1

2
x>Qx− 1

2
‖y − ỹ‖2

Rd
− 1

2
‖s+ x̃‖2

Rp + µ
n∑
j=1

ln(zj)

)
s.t. −Qx−Rps+ A>y + z = c.

(2.2)

Forming the Lagrangian of the primal barrier problem, we get:

Lx̃,ỹ,µ(x, y, r) = c>x+
1

2
x>Qx+

1

2
‖r + ỹ‖2

Rd
+

+
1

2
‖x− x̃‖2

Rp − y
>(Ax+Rdr − b)− µ

n∑
j=1

ln(xj).
(2.3)

Following Section 1.1.1, we form the first order optimality conditions as:

∇xLx̃,ỹ,µ(x, y, r) = c+Qx+Rp(x− x̃)− A>y − µX−1en = 0n,

∇yLx̃,ỹ,µ(x, y, r) = Ax+Rdr − b = 0m,

∇rLx̃,ỹ,µ(x, y, r) = Rd(r + ỹ)−Rdy = 0m.

By the optimality conditions of the dual barrier problem, we further obtain:

Rpx−Rp(s+ x̃) = 0n,

XZen = µen.

We write the optimality conditions in the form of a function, Fx̃k,ỹk,µ(w) :

31

32 Spyridon Pougkakiotis

R3n+2m → R3n+2m and we want to approximately solve:

Fx̃k,ỹk,µk(w) :=

c+Qx+Rp,ks− A>y − z

Rd,k(r + ỹk)−Rd,ky
Rp,kx−Rp,k(s+ x̃k)
Ax+Rd,kr − b

XZe

 =

0n
0m
0n
0m

τkµken

 , (2.4)

at each IPM iteration k, where w = (x, r, s, y, z), µk > 0 is the barrier param-
eter and τk ∈ (0, 1) is a centering parameter. We want to force µk → 0, since
then, the solution of this system leads to the solution of (CQPr)–(CQDr). Notice
that (CQPr)–(CQDr) is parametrized by the estimates x̃k and ỹk. As observed
in [72], if these estimates are close enough to some optimal solution of (CQP)–
(CQD), then an optimal solution of (CQPr)–(CQDr) is also an optimal solution
of (CQP)–(CQD). Following the developments in [1, 5, 10, 72], for proximal
point methods, we update the estimates of x∗, y∗ as x̃k = xk, ỹk = yk (i.e. we
allow only a single iteration of IPM for each proximal point sub-problem; notice
that the proposed regularization benefits from such an update. Nevertheless, an
alternative approach will be presented in the following chapter, which in turn
will allow us to derive a polynomially convergent regularized IPM). Next, New-
ton method is applied to the mildly non-linear system (2.4). After evaluating
the Jacobian of Fx̃k,ỹk,µk(wk), the Newton direction is determined at each IPM
iteration by solving a system of the following form:

Q 0n,m Rp,k −A> −In
0m,n Rd,k 0m,n −Rd,k 0m,n
Rp,k 0n,m −Rp,k 0n,m 0n,n
A Rd,k 0m,n 0m,m 0m,n
Zk 0n,m 0n,n 0n,m Xk

∆x
∆r
∆s
∆y
∆z

 =

A>yk + zk − c−Qxk −Rp,ksk

Rd,kyk −Rd,k(rk + ỹk)
Rp,k(sk + x̃k)−Rp,kxk
b− Axk −Rd,krk
τkµken −XkZken

 , (2.5)

where 0m,n is the zero matrix of dimensions m × n, while Rp,k ∈ Rn×n, Rd,k ∈
Rm×m are the primal and dual regularization matrices, respectively. Notice that
the matrices X,Z,Rp and Rd all depend on the iteration k of the algorithm. Once
the Newton direction ∆w = (∆x,∆r,∆s,∆y,∆z) is computed, the algorithm
chooses a step-length ak ∈ (0, 1) and sets the new iterate to wk+1 = wk + ak∆w.
In order to compute the Newton direction efficiently, we want to eliminate some
variables of (2.5). Since we set ỹk = yk, the second block equation of (2.5) gives:

Rd,k∆r −Rd,k∆y = −Rd,k(rk + yk) +Rd,kyk,

and if Rd,k � 0m,m, we get the following relation:

∆y = rk + ∆r. (2.6)

Similarly, the third block equation of (2.5) (substituting x̃k = xk), yields:

Rp,k∆x−Rp,k∆s = Rp,k(sk + xk)−Rp,kxk,

32

Regularized Interior Point Methods for Convex Programming 33

and if Rp,k � 0n,n we have that:

∆x = sk + ∆s. (2.7)

Note that we always use either Rd,k � 0m,m or Rd,k = 0m,m and similarly, either
Rp,k � 0n,n or Rp,k = 0n,n. Hence, the previous two relations are either well-
defined or absent. Using (2.6) and (2.7) to eliminate ∆r and ∆s, respectively, we
can reduce (2.5) to the following system:−(Q+Rp,k) A> In

A Rd,k 0m,n
Zk 0n,m Xk

∆x
∆y
∆z

 =

c+Qxk − A>yk − zk
b− Axk

τkµken −XkZken

 . (2.8)

Next, we proceed by eliminating ∆z. For that purpose, we have from the
third row of (2.8) that:

∆z = −X−1
k Zk∆x− Zken + τkµkX

−1en. (2.9)

Substituting (2.9) into the first row of (2.8), we obtain the following reduced
symmetric system (so called augmented system):[
−(Q+ Θ−1

k +Rp,k) A>

A Rd,k

] [
∆x
∆y

]
=

[
c+Qxk − A>yk − τkµkX−1

k en
b− Axk

]
, (2.10)

where Θk = XkZ
−1
k . In the case of linear programming (Q = 0n,n) or when

solving quadratic separable problems (in which case Q is diagonal), it may be
beneficial to further eliminate ∆x from (2.10), which will end up at the so called
normal equations. However, one should note that this is not a good idea when it
comes to general convex quadratic programming problems, since pivoting on the
(1,1) block of (2.10) could result in a dense system, even in cases where both A
and Q are sparse. Having said that, we can eliminate ∆x by looking at the first
block equation of (2.10), which gives:

∆x = (Q+ Θ−1
k +Rp,k)

−1
(
A>∆y − c−Qxk + A>yk + τkµkX

−1
k en

)
, (2.11)

and by substituting (2.11) into the second row of (2.10), we get the normal
equations: [

A(Q+ Θ−1
k +Rp,k)

−1A> +Rd,k

]
∆y = ξ, (2.12)

where

ξ = b− Axk + A(Q+ Θ−1
k +Rp,k)

−1(c+Qxk − A>yk − τkµkX−1
k en),

in which the system matrix is symmetric and positive definite.
The proposed model differs from the one derived in [72] in that it allows the

use of general positive definite regularization matrices. For example, if Rp,k, Rd,k

are non-diagonal matrices, then this would amount to the primal and dual appli-
cation of a generalized proximal point method that adds an elliptic norm in the
objective, instead of the typical 2-norm that is employed in standard proximal

33

34 Spyridon Pougkakiotis

point methods. Notice that at every iteration of the algorithm, Rp, Rd, x̃ and
ỹ are updated. In other words, (CQPr)–(CQDr) represents a sequence of sub-
problems. At every such sub-problem, we apply a single iteration of the interior
point method. How Rp and Rd are updated will be presented in the following
subsection.

2.2.3 The regularization matrices

As IPM approaches optimality, the diagonal matrix Θk contains elements that
converge to zero and others that diverge to infinity. This is because µk → 0 and
we force the complementarity conditions to be approximately satisfied (XkZke ≈
τkµken) . As a consequence, the matrices in (2.10) and (2.12) become extremely
ill-conditioned. On top of that, it is often the case due to modelling choices,
that the constraint matrix A is not of full row rank, which makes the system
matrices singular. It is well known, as shown by Armand and Benoist [4], that
both these problems can be addressed with the use of regularization. The most
common approach in the literature, is the addition of two diagonal regularization
matrices, say Rp, Rd, whose values are tuned experimentally over a variety of
problems ([1, 4, 72, 154]).

Roughly speaking, the goals of a regularization method for IPMs are ([1, 4,
5, 6, 10, 154]):

1. to improve the spectral properties of the matrices in (2.10) and (2.12),

2. without significantly perturbing the previous systems,

3. while preserving the sparsity of the problem and the computational effi-
ciency of the method.

To the best of our knowledge, most of the regularization methods in literature
manage to achieve the first and the third regularization goals, failing however to
achieve the second goal with certainty. This is the case since these regularization
methods are tuned experimentally. Hence, they do not rely on the properties
of the problem itself, and as a consequence, such regularization values can only
be good for some problems and poor for others. The proposed method takes a
different approach, by introducing two non-diagonal regularization matrices Rp

and Rd, which are tuned based on the properties of the problem. Of course
one could argue that this may disturb the sparsity and as a consequence the
computational efficiency of the method, however, these non-diagonal matrices
are created implicitly. As we will show later, not only the sparsity is preserved,
but in fact it is improved.

As we already mentioned, as IPM approaches optimality, the matrix Θk con-
tains some very large and some very small elements. The proposed regularization
exploits this inherent feature of the method and splits the columns of the problem

34

Regularized Interior Point Methods for Convex Programming 35

matrix in two sets, say N and B such that:

∀ j ∈ N : xjk → 0, zjk → ẑj > 0⇒ (Θ)
(j,j)
k =

xjk
zjk
≈ xjkz

j
k

(zjk)
2

= O(µk),

∀ j ∈ B : xjk → x̂j > 0, zjk → 0⇒ (Θ)
(j,j)
k =

xjk
zjk
≈ (xjk)

2

xjkz
j
k

= O(µ−1
k),

where |N | = n1 and |B| = n2, with n1+n2 = n. Notice that the previous splitting
captures all the columns only if the method converges to a strictly complementary
solution (that is the limit point satisfies: x̂>ẑ = 0 and x̂j + ẑj > 0, ∀ j). In the
quadratic programming case, a strictly complementary solution may not exist.
Hence, there might exist some indices j ⊆ {1, · · · , n} for which: xjk → 0 and zjk →
0. In such a case, it is unknown whether the value of Θ

(j,j)
k will be small or large.

We can assume, without loss of generality, that any such indices will be classified
as elements of B (although in practice this would depend on the value of Θ

(j,j)
k , as

we will show later). Of course for the case of linear programming (Q = 0n,n), it is
a well-known fact (see for example [179]) that a strictly complementary solution
always exists, if the problem is feasible. Moreover, as shown in [89, 118], primal-
dual IPMs converge to such an optimal solution. If a strictly complementary
solution exists for the quadratic programming case, it is shown in [90], that an
infeasible primal-dual IPM which reduces the constraints violation at the same
rate as µk is reduced, produces iterates that converge to a strictly complementary
solution.

In what follows, we present the construction of the regularization for the case
of linear programming and then we suggest an extension for convex quadratic
programming.

Linear programming
For the case of linear programming we employ a dual regularization, that is, in

(2.5) we set Rp = 0n,n and only use Rd � 0m,m to improve the spectral properties
of the problem. For the rest of this section, we drop the iteration indicator k
from any matrix that depends on it, in order to simplify the notation. Given this
set-up, and by permuting the columns so that the first n1 of them correspond
to indices in N while the remaining correspond to indices in B, the augmented
system in (2.10) takes the form:−(ΘN)−1 0n1,n2 (AN)>

0n2,n1 −(ΘB)−1 (AB)>

AN AB Rd

∆xN

∆xB

∆y

 =

cN − (AN)>yk − τkµk(XN)−1e|N |
cB − (AB)>yk − τkµk(XB)−1e|B|

b− Axk

, (2.13)

35

36 Spyridon Pougkakiotis

where AN ∈ Rm×n1 and AB ∈ Rm×n2 . Pivoting on the first n1 columns of (2.13),
gives the partially reduced augmented system:[

−(ΘB)−1 (AB)>

AB ANΘN (AN)> +Rd

] [
∆xB

∆y

]
=[

cB − (AB)>yk − τkµk(XB)−1e|B|
b− Axk + ANΘN

(
cN − (AN)>yk − τkµk(XN)−1e|N |

)] . (2.14)

Since we know that ΘN → 0n1,n1 , we expect that the magnitude of ‖ANΘN (AN)>‖
will be small when the method approaches optimality. Intuitively, our goal is to
create a regularization matrix that will implicitly absorb the off-diagonal elements
of ANΘN (AN)> (promoting sparsity) and regularize the system with values hav-
ing a slightly larger magnitude to that of the elements which were absorbed. For
this class of problems, we will focus on solving the normal equations. Given
(2.14), we can form the normal equations by eliminating ∆xB, which gives the
following system:[
ABΘB(AB)> +ANΘN (AN)> +Rd

]
∆y = b−Axk +AΘ(c−A>yk − τkµkX−1en).

We choose the following dual regularization matrix:

Rd =
(
∆d −Off(ANΘN (AN)>)

)
, (2.15)

where ∆d is a diagonal matrix chosen such that Rd � 0m,m and diagonally domi-
nant, that is:

(∆d)
(i,i) >

m∑
j=1,j 6=i

|(ANΘN (AN)>)(i,j)|, ∀ i = 1, . . . ,m.

For computational efficiency and numerical stability, we choose ∆d = δd,kIm,
with:

δd,k = (max
j

(ΘN)(j,j))‖AN (AN)>‖∞. (2.16)

Observe that the regularization matrix given in (2.15), strongly depends on
the properties of the problem as well as on the iteration k of the IPM. In order
to control which elements enter the set N , at every iteration k, we enforce the
following condition:

max
j

(ΘN)(j,j)‖AA>‖∞ ≤ regthr,k, (2.17)

where regthr,k is set to 1 at the beginning of the optimization (k = 0), and is
decreased at the same rate as µk (i.e. regthr,k = O(µk)). Once regthr,K becomes
smaller than a predefined value, say ε > 0, for some large K ≥ 1, we fix it
to this value (regthr,k = ε, ∀ k ≥ K). The choice of ε will be specified later.
Note that (2.17) ensures that δd,k < regthr,k, at every iteration. In order to show
that sparsity is improved, we form again the normal equations’ matrix using the

36

Regularized Interior Point Methods for Convex Programming 37

definition of Rd to obtain:

AΘA> +Rd = ABΘB(AB)> + Diag
(
ANΘN (AN)>

)
+ ∆d.

From the previous one can easily observe that the sparsity of the normal equations
is improved, since some off-diagonal elements of the matrix have been absorbed
by the regularization.

Since regthr,k is not allowed to go to zero as µk → 0, we would like to know
how much we perturb the Newton system, by having it fixed to some value ε > 0,
when the method is close to optimality. In the rest of this subsection, we compute
some perturbation bounds, which depend on the value of regthr.

Motivation Now that we have defined the regularization matrix for the case of
linear programming problems, let us provide a motivation for this choice. Firstly,
note that the proposed regularization has multiple objectives. On the one hand,
we want to find a good criterion for tuning a uniform dual regularization ma-
trix δd,kI based on the properties of the problem, such that the non-regularized
problem matrix is not perturbed significantly while its spectral properties are
improved. On the other hand, we use this uniform dual regularization value
as a cut-off point, for dropping the smallest off-diagonal elements in the normal
equations matrix, improving the computational efficiency of the method. In what
follows we will provide an analysis indicating why the uniform dual regularization
that we introduce is expected not to perturb the problem significantly. Then, we
will show that further dropping the off-diagonal elements introduces a controlled
perturbation.

Based on the previous, let us assume for now that Rd,k = δd,kI, where δd,k is
defined as in (2.16). For simplicity of notation, we omit the iteration subscript
in δd and we let:

M :=

[
−Θ−1 A>

A 0m,m

]
, E :=

[
0n,n 0n,m
0m,n δdIm

]
.

We want to analyze the difference in the eigenvalues of the matrices M and M+E.
For the rest of this subsection, let λi denote the i-th smallest eigenvalue of M ,
λ̃i the i-th smallest eigenvalue of M + E, and λi(t) the i-th smallest eigenvalue
of M + tE, with t ∈ [0, 1]. The smallest eigenvalues of M (in the absolute value
sense) will be increased after the addition of E and this is of course desirable, since
this was the main motivation for introducing the regularization. The following
analysis provides perturbation bounds only for eigenvalues of M that satisfy
|λi| > 2‖E‖. We will also assume that the eigenvalues that we analyze are
simple (i.e. their algebraic multiplicity is 1). The analysis can be extended to
multiple eigenvalues, however it gets unnecessarily complicated. Such an analysis
is derived in the appendix of [127]. Let us now state a lemma derived in [164].

Lemma 2.2.1. Let M , E be square Hermitian matrices. Denote by λi(t) the i-th
smallest eigenvalue of M + tE and consider the eigenvector function x(t) such
that: (M + tE)x(t) = λi(t)x(t), with ‖x(t)‖ = 1, for some t ∈ [0, 1]. If λi(t) is

37

38 Spyridon Pougkakiotis

simple, then:
∂λi(t)

∂t
= x(t)HEx(t).

As observed in [127], if the eigenvector x(t) has small components in the positions

corresponding to the dominant elements of E, then ∂λi(t)
∂t

is expected to be small.
Let us now provide the following lemma, based on the developments in [44].

Lemma 2.2.2. Let λi 6= 0 be an eigenvalue of M and Mx = λix, with ‖x‖ = 1.
Partitioning x = [xH1 xH2]H , we have:

‖x2‖ ≤
‖A‖√

λ2
i + ‖A‖2

.

Proof. The proof follows exactly the developments in [44], but we provide it here
for completeness. From the second block equation of Mx = λix, we have:

Ax1 = λix2 ⇒ x2 =
1

λi
Ax1,

where the latter is well defined since we have assumed that λi 6= 0. By taking
norms on both sides in the previous equation, we get:

‖x2‖ ≤
1

|λi|
‖A‖‖x1‖.

But ‖x‖ = 1⇒ ‖x1‖ =
√

1− ‖x2‖2. Hence, we have:

‖x2‖ ≤
‖A‖

√
1− ‖x2‖2

|λi|
.

By solving the previous inequality, we obtain:

‖x2‖ ≤
‖A‖√

λ2
i + ‖A‖2

,

which completes the proof.

The following lemma will be a useful tool for the analysis. We omit its trivial
proof.

Lemma 2.2.3. Let f(x) = x√
a+x2 , where a > 0. Then, f(x) is a monotone

increasing function for x > 0.

Let us now bound the second block of the eigenvector function x2(t) based on the
developments in [44].

Lemma 2.2.4. Assume that λi 6= 0 is the i-th smallest eigenvalue of M . Consider
the eigenvector function x(t) such that: (M+tE)x(t) = λi(t)x(t), with ‖x(t)‖ = 1,
∀ t ∈ [0, 1]. Partitioning x(t) = [x1(t)H x2(t)H]H and assuming that |λi| > 2‖E‖,
we have:

‖x2(t)‖ ≤ ‖A‖√
(|λi| − 2‖E‖)2 + ‖A‖2

.

38

Regularized Interior Point Methods for Convex Programming 39

Proof. We omit the proof which follows from Lemma 2.2.3 combined with the
previous developments. The interested reader can view [44, Lemma 2.8] for a
detailed derivation which can be applied directly in our context.

Let us now derive the following theorem which bounds the difference between the
i-th smallest eigenvalues of the matrices M and M + E respectively.

Theorem 2.2.1. Let λi and λ̃i be the respective i-th smallest eigenvalues of M
and M +E and define φi = ‖A‖√

(|λi|−2‖E‖)2+‖A‖2
. For every i such that |λi| > 2‖E‖

we have that:
|λi − λ̃i| ≤ ‖E‖φ2

i .

Proof. From Lemma 2.2.1 and Lemma 2.2.4 it follows that:

|λi − λ̃i| = |λi(0)− λi(1)|

=

∣∣∣∣ ∫ 1

0

x(t)HEx(t)dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

x2(t)HδdImx2(t)dt

∣∣∣∣
= δd

∫ 1

0

‖x2(t)‖2dt

≤ ‖E‖φ2
i = δdφ

2
i .

The proof is complete.

Note that, since φi < 1, the latter is a tighter bound than the general bound
provided by Weyl’s inequality, given that the eigenvalue under consideration is
larger than 2‖E‖. From the previous results we can draw several useful observa-
tions. As we already stated, the smaller the components of x2(t) are, the smaller
∂λi(t)
∂t

is expected to be. But x2(t) is bounded by φi. Hence, the smaller φi is, the
more insensitive the eigenvalue λi is to the perturbation ‖E‖ = δd. In fact, in
the previous theorem we proved that the error in the eigenvalue is bounded by
‖E‖φ2

i .
Let us now examine the nature of φi. Firstly, one can see that it depends on

the norm of the constraint matrix A, and from Lemma 2.2.3 we can observe that
it is monotone increasing with respect to the norm of A. What this tells us is
that the smaller the norm of the constraint matrix A is, the more insensitive the
eigenvalues of matrix M are to the perturbation E. Of course the latter holds
only for eigenvalues that are sufficiently larger than 2‖E‖. On the other hand,
from the definition of φi, we can see that it is beneficial to have a small ‖E‖,
since then, most of the eigenvalues of M are expected to satisfy: |λi| > 2‖E‖.

We now shift our attention to the proposed tuning of the regularization pa-
rameters. From (2.17), the set of indices N is such that:

max
j

(ΘN)(j,j)‖AA>‖∞ ≤ regthr.

39

40 Spyridon Pougkakiotis

Also, from (2.16), we have that δd = max
j

(ΘN)(j,j)‖AN (AN)>‖∞. By combining

the previous, we obtain:

‖E‖ = δd ≤
regthr‖AN (AN)>‖∞

‖AA>‖∞
.

Observe that if ‖AA>‖∞ is large, we allow few columns to enter the partition
N . In this case, φi is expected to be close to 1 for most of the eigenvalues λ(M).
On the other hand, |N | is increased if the infinity norm of AA> is small, and
in such a case, φi is expected to be small for many eigenvalues of the system
matrix M . A more sophisticated choice for the regularization value based on the
derived bounds is possible, however, the proposed regularization has two goals,
that is not to perturb the system significantly while introducing sparsity to the
problem, and hence the definition of δd is computationally advantageous for that.
Note that taking advantage of the previously presented bounds indicates that the
sufficiently large (in the absolute value sense) eigenvalues of the system matrix
(� 2δd) will be perturbed almost insignificantly. If some eigenvalues of the matrix
are very small, the previous arguments break down. We will derive lower bounds
for these eigenvalues in the next section.

Having introduced the diagonal uniform regularization δdIm, let us examine
the effect of further dropping the off-diagonal elements Off(ANΘN (AN)>) from
the normal equations (2.12). For that, we define K = AΘA> + δdIm and R =
Off(ANΘN (AN)>) and consider the following generalized eigenvalue problem:

u>Ru = λu>Ku. (2.18)

The previous is well defined since K � 0m,m. We will analyze the eigenvalues

of K−
1
2RK−

1
2 , which is similar to K−1R. Now assume by contradiction that

λmax(K−
1
2RK−

1
2) ≥ 1. Then from (2.18) and for some eigenvector u correspond-

ing to the maximum eigenvalue, we would have:

u>Ru ≥ u>Ku.

By adding u>Diag(ANΘN (AN)>)u to both sides of the previous inequality, we
get:

0 ≥ u>(ABΘB(AB)>)u+ u>Diag(ANΘN (AN)>)u+ u>δdu,

which is a contradiction. Hence λmax(K−
1
2RK−

1
2) < 1. On the other hand, if

we assume by contradiction that λmin(K−
1
2RK−

1
2) ≤ −1, from (2.18) and for an

eigenvector u corresponding to the minimum eigenvalue, we would obtain:

u>Ru ≤ − u>Ku = −u>(AΘA> + δdI)u ≤ −δdu>u.

However, using (2.16), we get −δdIm +R � 0m,m, hence −δdu>u < u>Ru, which

contradicts the previous inequality. Hence, λmin(K−
1
2RK−

1
2) > −1. Now, one

can easily observe that:

K−1(K −R) = I −K−1R, and ρ(K−1R) < 1,

40

Regularized Interior Point Methods for Convex Programming 41

where ρ(·) is the spectral radius, and hence the eigenvalues of K−1(K − R) are
clustered around 1. This supports the claim that further dropping the off-diagonal
elements of the part of the normal equations corresponding to indices in N , after
adding a uniform dual regularization, introduces a controlled perturbation.

Quadratic programming
Unlike the case of linear programming, for the case of quadratic programming

we employ a primal-dual regularization, that is, we use both Rp � 0n,n and
Rd � 0m,m, as shown in (2.5), to improve the spectral properties of the problem.
For this case, we modify the condition for allowing a column to enter the set N ,
and at each iteration k, in place of (2.17), we require:

max
j

(ΘN)(j,j) max
{
‖AA>‖∞, ‖QQ>‖∞

}
≤ regthr,k, (2.19)

where regthr,k is updated as indicated in the linear programming case (Subsection
2.2.3). As before, by permuting the columns so that the first n1 correspond to
indices in N while the remaining ones correspond to indices in B, the augmented
system in (2.10) takes the form:

MAS

∆xN

∆xB

∆y

 =

ξdNξdB
ξp

 , (2.20)

where

MAS =

−(Q(N ,N) + (ΘN)−1 +RpN) −(Q(B,N))> (AN)>

−Q(B,N) −(Q(B,B) + (ΘB)−1 +RpB) A>B
AN AB Rd

 ,
ξdN = cN +

[
Q(N ,N) (Q(B,N))>

] [xNk
xBk

]
− (AN)>yk − τkµk(XN)−1e|N |,

ξdB = cB +
[
Q(B,N) Q(B,B)

] [xNk
xBk

]
− (AB)>yk − τkµk(XB)−1e|B|,

ξp = b− Axk,

and the permuted matrix Q is:

PQP> =

[
Q(N ,N) (Q(B,N))>

Q(B,N) Q(B,B)

]
,

with Q(N ,N) ∈ Rn1×n1 , Q(B,N) ∈ Rn2×n1 and Q(B,B) ∈ Rn2×n2 being the respective
blocks of the matrix Q, while RpN ∈ Rn1×n1 and RpB ∈ Rn2×n2 are the only two
non-zero blocks of the block-diagonal primal regularization matrix Rp. As we
mentioned earlier, when we solve general convex quadratic programming prob-
lems, it is dangerous to eliminate the (1, 1) block of (2.10) and solve the problem
using (2.12), since the latter system may become dense. However in the linear
programming case, our regularization matrix was tuned based on the properties

41

42 Spyridon Pougkakiotis

of the normal equations. In order to overcome this problem, we introduce a pri-
mal regularization that can absorb the non-diagonal elements of the (1, 1) block
of the permuted augmented system (2.20). This allows us to safely (from the
sparsity and computational point of view) pivot on this block and perform the
analysis in a similar manner as in the linear programming case. Hence, we define:

RpN =
(
∆pN −Off(Q(N ,N))

)
, (2.21)

with
∆pN = ‖Q(N ,N)‖∞In1 , (2.22)

where ∆pN ∈ Rn1×n1 is a uniform diagonal matrix, which ensures that RpN �
0n1,n1 and diagonally dominant. Although ∆pN can have sizeable values, (2.19)
ensures that the respective elements in (ΘN)−1 have significantly larger values,
making this perturbation acceptable. Using (2.21), the (1, 1) block of (2.20)
becomes:

−(Q(N ,N) + (ΘN)−1 +RpN) = −((ΘN)−1 +DpN),

whereDpN = Diag(Q(N ,N))+∆pN is a diagonal matrix. For simplicity of notation,
let

Q̄N = (ΘN)−1 +DpN .

Pivoting on the (1, 1) block of (2.20) results in the following partially reduced
augmented system:[

M1 (AB)> −Q(B,N)Q̄−1
N (AN)>

AB − AN Q̄−1
N (Q(B,N))> Rd + AN Q̄−1

N (AN)>

] [
∆xB

∆y

]
=

[
ξ1

ξ2

]
, (2.23)

where:

M1 = Q(B,N)Q̄−1
N (Q(B,N))> − (Q(B,B) + (ΘB)−1 +RpB),

ξ1 = ξdB −QBN Q̄−1
N ξdN ,

ξ2 = ξp + AN Q̄
−1
N ξdN .

Using a similar reasoning as before, we will tune the matrix RpB so that
sparsity is promoted. By looking at the (1,1) block of (2.23) (i.e. matrix M1),
one can see that an obvious choice for this matrix would be:

RpB = ∆pB + Off(Q(B,N)Q̄−1
N (Q(B,N))>), (2.24)

with
∆pB = max

j
(Q̄−1
N)(j,j)‖Q(B,N)(Q(B,N))>‖∞In2 , (2.25)

where ∆pB ∈ Rn2×n2 is a uniform diagonal matrix, which ensures that RpB � 0n2,n2

and diagonally dominant. Finally, by looking at the (2,2) block of (2.23), we can
define Rd in a similar manner as in the linear programming case as:

Rd = ∆d −Off(AN Q̄−1
N (AN)>), (2.26)

42

Regularized Interior Point Methods for Convex Programming 43

with
∆d = max

j
(Q̄−1
N)(j,j)‖AN (AN)>‖∞Im, (2.27)

where again ∆d ∈ Rm×m is a uniform diagonal matrix, which ensures that Rd �
0m,m and diagonally dominant. Note that condition (2.19), which defines columns
qualified to enter N , ensures that the positive elements of the diagonal matrices
∆pB, ∆d will be strictly less than regthr,k, at every iteration k of the algorithm.

Motivation As in the linear programming case, let us provide the motivation
for the previously presented regularization scheme. We will derive some useful
bounds that extend those provided in the motivation paragraph for the linear
programming regularization. All the bounds stated here are direct applications
of the results obtained in [44] and for simplicity are given without proofs. Let:

M =

[
−Q−Θ−1 A>

A 0m,n

]
, E =

[
∆p 0n,m

0m,n δdIm

]
,

and denote by λi and λ̃i the i-th smallest eigenvalues of M and M + E respec-
tively. Note that ∆p is a permuted n× n diagonal matrix, comprised of the two
uniform primal regularization matrices δpN In1 , δpBIn2 , with n1 + n2 = n. Let
ζi = minµ∈λ(−Q−Θ−1) |λi − µ|, where λi ∈ λ(M), λi 6∈ λ(−Q − Θ−1) and λi 6= 0.
Let also Mx = λix, with ‖x‖ = 1. Partitioning x = [xH1 xH2]H , it can be proven
as before that:

‖x1‖ ≤
‖A‖√

ζ2
i + ‖A‖2

, ‖x2‖ ≤
‖A‖√

λ2
i + ‖A‖2

.

A counterpart of Lemma 2.2.4 for this case follows from [44] and states that if
|λi| > δd + ‖E‖, then, ∀ t ∈ [0, 1]:

‖x2(t)‖ ≤ ‖A‖√
(|λi| − δd − ‖E‖)2 + ‖A‖2

= φi.

Similarly, if ζi > ‖∆p‖+ ‖E‖, then ∀ t ∈ [0, 1] we have:

‖x1(t)‖ ≤ ‖A‖√
(ζi − ‖∆p‖ − ‖E‖)2 + ‖A‖2

= ϕi,

where x(t) = [x1(t)H x2(t)H]H solves the problem (M + tE)x(t) = λi(t)x(t), for
some t ∈ [0, 1]. For a detailed derivation of the previous results, the interested
reader can look at [44, Lemmas 2.8, 2.9].

Finally, the counterpart of Theorem 2.2.1 for this case states that for each i
such that: |λi| > δd + ‖E‖ and ζi > ‖∆p‖+ ‖E‖, we have:

|λi − λ̃i| ≤ ‖∆p‖ϕ2
i + δdφ

2
i .

These bounds are slightly less intuitive than the ones provided for the lin-
ear programming case, however similar arguments to those used in the linear
programming case can be employed here, supporting the claim that the uni-

43

44 Spyridon Pougkakiotis

form regularization that we introduce does not perturb the sufficiently large (in
the absolute value sense) eigenvalues of the non-regularized system significantly.
The main reason why we provide these bounds is for completeness. We could
proceed by showing, as in the linear programming case, that further dropping
Off(Q(N ,N)), Off(Q(B,N)Q̄−1

N Q
(B,N))>) and Off(AN Q̄−1

N (AN)>) (as the proposed
non-diagonal regularization suggests) alters the eigenvalues of the diagonally reg-
ularized system in a controlled way, but for ease of presentation we omit this.

Rank deficient matrices and the value of ε Notice that both in the linear
and the quadratic programming case, during some iterations of the IPM, no
columns will satisfy the respective conditions for entering N . In order to ensure
that rank deficiency will not get in the way of the proposed method, at every
such iteration k, we apply a uniform dual regularization Rd = regthr,kIm, where
regthr,k is updated as stated in Subsection 2.2.3. In the quadratic programming
case, we also include a uniform primal regularization Rp = regthr,kIn. We expect
that sufficiently large (in the absolute value sense) eigenvalues (� 2 · regthr,k) of
the system are perturbed insignificantly by using such a uniform regularization.
Once at least one column enters N , we drop this uniform regularization, and
start using the regularization matrices presented in this chapter.

Notice that regthr is not allowed to decrease more than a pre-specified value
ε > 0. We set this to: ε = max{0.1·tol

‖A‖2 , 10−13}, where tol is the error tolerance

for successful termination of the algorithm and is usually set to the values 10−6

or 10−8. This value is based on the bounds derived in the motivation paragraphs
presented both for the linear and the quadratic programming case, so that εφ2

i is
small.

2.3 Spectral analysis

This section focuses on analysing the spectral properties of the regularized sys-
tems provided in the previous section. As before, the analysis is split into linear
and quadratic programming respectively. For each of these cases, we will provide
the spectral properties of the respective augmented and partially reduced aug-
mented system, showing the effectiveness of the proposed regularization method.

2.3.1 Linear programming

For linear programming problems, we employ only dual regularization, that is
we set Rp = 0n,n and use only Rd � 0m,m. In Subsection 2.2.3, it was noted that
∆d is chosen such that Rd � 0m,m and diagonally dominant. This is very easy
to see, by looking at the definition of (2.16) combined with (2.15). Since Rd is
diagonally dominant, we are able to invoke the Gershgorin circle theorem, which
states that if:

ri =
m∑

j=1,j 6=i

|(ANΘN (AN)>)(i,j)|,

44

Regularized Interior Point Methods for Convex Programming 45

then any eigenvalue of Rd is positive and lies in one of the following discs:

{λ : |λ− δd| ≤ ri},

where δd is defined in (2.16), i = 1, . . . ,m. This yields: 0 < λi ≤ δd + ri, ∀ i =
1, . . . ,m, where λi represents the i-th eigenvalue of Rd. On the other hand, by
construction, we know that

δd ≥ ri + min
j: (ANΘN (AN)>)(j,j)>0

((ANΘN (AN)>)(j,j)), ∀ i = 1, . . . ,m,

and hence:

min
j: (ANΘN (AN)>)(j,j)>0

((ANΘN (AN)>)(j,j)) ≤ λi ≤ δd+ri < 2δd, ∀ i = 1, . . . ,m.

(2.28)
Let us now analyze the spectral properties of the matrix in (2.13). For that

we provide the following theorem, which gives bounds for the eigenvalues of the
system. The proof is based on the developments in [151] and [161].

Theorem 2.3.1. For all (x, z) > (0n, 0n) and Rd as defined in (2.15), the coeffi-
cient matrix of (2.13) has exactly n negative and m positive eigenvalues. Order
and denote them as:

ν−n ≤ ν−n+1 ≤ . . . ν−1 < 0 < ν1 ≤ . . . νm.

These eigenvalues satisfy the following bounds:

ν−1 < −min
j

(Θ−1)(j,j),

ν−n ≥
1

2

((
λmin(Rd)−max

j
(Θ−1)(j,j)

)
−
[
(max

j
(Θ−1)(j,j) + λmin(Rd))

2 + 4(σmax(A))2
] 1

2

)
,

νm ≤
1

2

(
2δd +

(
4δ2
d + 4(σmax(A))2

) 1
2

)
,

ν1 ≥
1

2

(
(λmin(Rd)−max

j
(Θ−1)(j,j)) +

[
(max

j
(Θ−1)(j,j) + λmin(Rd))

2 + 4(σmin(A))2
] 1

2

)
.

In case rank(A) < m, the eigenspace of the eigenvalues originating only from Rd

is {0n} × Null(A>) and there are m− rank(A) such eigenvalues.

Proof. Firstly, from Sylvester’s law of inertia we know that since Θ and AΘA>+
Rd are positive definite, the regularized augmented system matrix of (2.13) pos-
sesses precisely n negative and m positive eigenvalues. If ν is an eigenvalue of the
linear system matrix of (2.13), then there are vectors u ∈ Rn and p ∈ Rm that
cannot both be zero, using which the eigenvalue problem can be written in the
following form:

−Θ−1u+ A>p = νu,

Au+Rdp = νp.
(2.29)

As observed in [72], if rank(A) < m, there are some eigenvalues of the matrix in

45

46 Spyridon Pougkakiotis

(2.13), that satisfy: Rdp = νp. The associated eigenspace is {0n} × Null(A>).
If ν < 0 then u 6= 0n since otherwise p = 0m because Rd � 0m,m. On the other

hand, if ν > 0 then p 6= 0m since otherwise u = 0n because Θ−1 � 0n,n. Taking
the inner product of the first equation of (2.29) with u, and the second equation
with p and subtracting the former from the latter gives:

u>Θ−1u+ p>Rdp = −νu>u+ νp>p.

Using the fact that Θ−1 � 0n,n, along with Rd � 0m,m, and assuming that ν < 0
(i.e. u 6= 0n):

(min
j

(Θ−1)(j,j) + ν)u>u ≤ νp>p,

where the inequality follows because the left hand side is as small as possible and
we dropped the positive term p>Rdp. But since ν < 0 in this case, we know
that −minj (Θ−1)(j,j) > ν = ν−1. Furthermore, if ν < 0 then we know that
Rd − νIm � 0m,m. Hence it is invertible and we can solve the second equation of
(2.29) with respect to p, substitute the result in the first equation and take the
inner product with u to get:

p = −(Rd − νIm)−1Au,

−u>Θ−1u− u>A>(Rd − νIm)−1Au = νu>u.

Hence:

−max
j

(Θ−1)(j,j) − (σmax(A))2(λmin(Rd)− ν)−1 ≤ ν,

where we observed that the left hand side has negative terms, took the most
negative possible values for these terms and divided by u>u. Note that for the
second term of the left hand side, we used the fact that for two positive definite
matrices A, B, we have that λmin(A + B) ≥ λmin(A) + λmin(B). Solving the
previous inequality with respect to ν (and using the roots of the second order
equation), we get that:

ν−n ≥
1

2

((
λmin(Rd)−max

j
(Θ−1)(j,j)

)
−
[
(max

j
(Θ−1)(j,j) + λmin(Rd))

2 + 4(σmax(A))2
] 1

2

)
.

Now, for the case where ν > 0 (where we know that p 6= 0m), we solve the
first equation of (2.29) with respect to u, substitute the result in the second one
and take the inner product with p, to get:

u =
1

ν
(
1

ν
Θ−1 + In)−1A>p,

1

ν
p>A(

1

ν
Θ−1 + In)−1A>p+ p>Rdp = νp>p.

Observe that λmax((1
ν
Θ−1 + In)−1) ≤ 1. Given that all the terms on the left hand

46

Regularized Interior Point Methods for Convex Programming 47

side are positive, we can take upper bounds for every term, multiply everything
by ν (since ν > 0) and divide both sides by p>p. This gives us the following
second order inequality with respect to ν:

ν2 − λmax(Rd)ν − (σmax(A))2 ≤ 0.

Solving the previous quadratic inequality, gives:

νm ≤
1

2

(
2δd +

(
4δ2
d + 4(σmax(A))2

) 1
2

)
,

where we used the right-most upper bound given in (2.28). Working similarly
using the same equation but slightly altered, that is:

u = (Θ−1 + νIn)−1A>p,

p>A(Θ−1 + νIn)−1A>p+ p>Rdp = νp>p,

and by taking lower bounds on each term of the left hand side and re-arranging
them, we get the following inequality:

ν2 + (max
j

(Θ−1)(j,j) − λmin(Rd))ν −
(
σmin(A)2 + max

j
(Θ−1)(j,j)λmin(Rd)

)
≥ 0.

Solving the previous yields the last bound:

ν1 ≥
1

2

(
(λmin(Rd)−max

j
(Θ−1)(j,j))

+
[
(max

j
(Θ−1)(j,j) + λmin(Rd))

2 + 4(σmin(A))2
] 1

2

)
,

which completes the proof.

Below we provide an analogous theorem applied to the matrix of (2.14).
Again, we use the definition of Rd that is given in (2.15). With this in mind,
we know that the (2, 2) block of (2.14) is comprised of two diagonal matrices, i.e.:

D∗ = Diag(ANΘN (AN)>) + ∆d,

where ∆d is defined in (2.16). The proof is similar to that of the previous theorem,
and hence it is not provided here.

Theorem 2.3.2. For all (x, z) > (0n, 0n) and Rd as defined in (2.15), the coeffi-
cient matrix of (2.14) has exactly n2 negative and m positive eigenvalues. Order
and denote them as:

ν̄−n2 ≤ ν̄−n2+1 ≤ . . . ν̄−1 < 0 < ν̄1 ≤ . . . ν̄m.

These eigenvalues satisfy the following bounds:

ν̄−1 < −min
j

((ΘB)−1)(j,j),

47

48 Spyridon Pougkakiotis

ν̄−n2 ≥
1

2

((
min
i

(D∗)(i,i) −max
j

((ΘB)−1)(j,j)
)

−
[
(max

j
((ΘB)−1)(j,j) + (min

i
(D∗)(i,i)))2 + 4(σmax(AB))2

] 1
2

)
,

ν̄m ≤
1

2

(
max
i

(D∗)(i,i) +
(
(max

i
(D∗)(i,i))2 + 4(σmax(AB))2

) 1
2

)
,

ν̄1 ≥
1

2

(
(min

i
(D∗)ii −max

j
((ΘB)−1)(j,j))

+
[
(max

j
((ΘB)−1)(j,j) + (min

i
(D∗)(i,i))2 + 4(σmin(AB))2

] 1
2

)
.

In case rank(AB) < m, the eigenspace of the eigenvalues originating only from
D∗ is {0n} × Null((AB)>) and there are m− rank(AB) such eigenvalues.

Now we can compare the bounds given in Theorems 2.3.1 and 2.3.2 and ob-
serve clear advantages of using the partially reduced augmented system (2.14) over
the full augmented system (2.13). Firstly, one can note that−minj ((ΘB)−1)(j,j) =
−minj (Θ−1)(j,j), hence the bound for the largest negative eigenvalue is identical
for both systems. However, there are two main differences:

1. We have that maxj ((ΘB)−1)(j,j) ≤ maxj (Θ−1)(j,j) (and usually we observe
that maxj ((ΘB)−1)(j,j) � maxj (Θ−1)(j,j)). As a consequence the bound on
the most negative eigenvalue of (2.13) will be larger (in the absolute value
sense), than the bound on the respective eigenvalue of (2.14).

2. Our guaranteed lower bound for the minimum eigenvalue of Rd is smaller
than the respective lower bound for the minimum eigenvalue of D∗. In fact,

min
i

(D∗)(i,i) ≥ δd,

λmin(Rd) ≥ min
j: (ANΘN (AN)>)(j,j)>0

((ANΘN (AN)>)(j,j)),

where δd is defined in (2.16) and the second lower bound is given in (2.28).
By construction the first bound is better. As a consequence, the smallest
positive eigenvalue of (2.14) is guaranteed to be at least as large as δd.

2.3.2 Quadratic programming

For quadratic programming problems we employ a primal-dual regularization.
In Subsection 2.2.3, it was noted that ∆d is chosen such that Rd � 0m,m and di-
agonally dominant, while ∆pB is chosen such that RpB � 0n2,n2 and diagonally
dominant. This can be seen by looking at (2.27) combined with (2.26) and (2.25)
combined with (2.24), respectively. Similarly, positive definiteness and diago-
nal dominance of RpN follows immediately by construction, i.e., by looking at

48

Regularized Interior Point Methods for Convex Programming 49

equations (2.21) and (2.22). For notational convenience, we define:

Q̄N = (ΘN)−1 + Diag(Q(N ,N)) + ∆pN .

• For Rd, we are able to invoke the Gershgorin circle theorem as in the linear
programming case stating that if:

ri =
m∑

j=1,j 6=i

|(AN Q̄−1
N (AN)>)(i,j)|,

then any eigenvalue of Rd is positive and lies in one of the following discs:

{λ : |λ− δd| ≤ ri},

where δd = maxj (Q̄−1
N)(j,j)‖AN (AN)>‖∞, i = 1, . . . ,m. This yields: 0 <

λi ≤ δd + ri, ∀ i = 1, . . . ,m, where λi is the i-th eigenvalue of Rd. On the
other hand, by construction we know that

δd ≥ ri + min
j: (AN Q̄−1

N (AN)>)(j,j)>0
((AN Q̄−1

N (AN)>)(j,j)),

for all i = 1, . . . ,m, and hence:

min
j: (AN Q̄−1

N (AN)>)(j,j)>0
((AN Q̄−1

N (AN)>)(j,j)) ≤ λi ≤ δd + ri < 2δd. (2.30)

• For RpB, we apply the same theorem, however in this case we have:

ri =

n2∑
j=1,j 6=i

|(Q(B,N)Q̄−1
N (Q(B,N)>)(i,j)|,

and any eigenvalue of RpB is positive and lies in one of the following discs:

{λ : |λ− δpB| ≤ ri},

where δpB = maxj (Q̄−1
N)(j,j)‖Q(B,N)(Q(B,N))>‖∞, i = 1, . . . , n2. As before,

we know that:

min
j: (Q(B,N)Q̄−1

N (Q(B,N))>)(j,j)>0
((Q(B,N)Q̄−1

N (Q(B,N))>)(j,j)) ≤ λi ≤ δpB + ri < 2δpB, (2.31)

for all i = 1, . . . , n2 = |B|, where λi is the i-th eigenvalue of RpB.

• Finally, we can work similarly to examine the spectral properties of RpN .
Again by letting:

ri =

n1∑
j=1,j 6=i

(Q(N ,N))(i,j),

49

50 Spyridon Pougkakiotis

any eigenvalue of RpN is positive and lies in one of the following discs:

{λ : |λ− δpN | ≤ ri},

where δpN = ‖Q(N ,N)‖∞, i = 1, . . . , n1. This yields: 0 < λi ≤ δpN + ri,
∀ i = 1, . . . , n1, where λi is the i-th eigenvalue of RpN . But since Q(N ,N) �
0n1,n1 as a principal minor of Q � 0n,n, we know that if a diagonal element
of Q(N ,N) is zero, then its respective column and row are also zero. Hence
this implies tighter final bounds, that is:

min
j: (Q(N ,N))(j,j)>0

((Q(N ,N))(j,j)) < λi ≤ δpN + ri < 2δpN , ∀ i = 1, . . . , n1 = |N |. (2.32)

Let us now analyze the spectral properties of (2.20). To that end, we provide
the following theorem, which is the extension of Theorem 2.3.1 for the QP case.
The proof is almost identical and hence it is not provided here. For notational
convenience, let:

H := Q+ Θ−1 +Rp.

Theorem 2.3.3. For all (x, z) > (0n, 0n) and Rd, RpB, RpN as defined in (2.26),
(2.24) and (2.21) respectively, the coefficient matrix of (2.20) has exactly n neg-
ative and m positive eigenvalues. Order and denote them as:

ν−n ≤ ν−n+1 ≤ . . . ν−1 < 0 < ν1 ≤ . . . νm.

These eigenvalues satisfy the following bounds:

ν−1 < −λmin(H),

ν−n ≥
1

2

((
λmin(Rd)− λmax(H)

)
−
[
(λmax(H) + λmin(Rd))

2 + 4(σmax(A))2
] 1

2

)
,

νm ≤
1

2

(
2δd +

(
4δ2
d + 4(σmax(A))2

) 1
2

)
,

ν1 ≥
1

2

(
(λmin(Rd)− λmax(H)) +

[
(λmax(H) + λmin(Rd))

2 + 4(σmin(A))2
] 1

2

)
.

In case rank(A) < m, the eigenspace of the eigenvalues originating only from Rd

is {0n} × Null(A>) and there are m− rank(A) such eigenvalues.

Below we provide a similar theorem, applied to (2.23). For that, we will use
Rd, RpB, RpN as defined in Subsection 2.2.3 as well as the respective eigenvalue
bounds given in (2.30), (2.31), and (2.32). Using the definitions of the regular-
ization matrices, we know that the matrix in the (1, 1) block of (2.23) takes the
form:

H̄ := Q(B,B) + (ΘB)−1 + ∆pB −Diag(Q(B,N)Q̄−1
N (Q(B,N))>),

50

Regularized Interior Point Methods for Convex Programming 51

while the (2, 2) block of (2.23) becomes:

D∗ := Diag(AN Q̄−1
N (AN)>) + ∆d.

Theorem 2.3.4. For all (x, z) > (0n, 0n) and Rd, RpB, RpN as defined in (2.26),
(2.24) and (2.21) respectively, the coefficient matrix of (2.23) has exactly n2 neg-
ative and m positive eigenvalues. Order and denote them as:

ν̄−n2 ≤ ν̄−n+1 ≤ . . . ν̄−1 < 0 < ν̄1 ≤ . . . ν̄m.

These eigenvalues satisfy the following bounds:

ν̄−1 < −λmin(H̄),

ν̄−n2 ≥
1

2

((
min
j

(D∗)(j,j) − λmax(H̄)
)

−
[
(λmax(H̄) + min

j
(D∗)(j,j))2 + 4

(
σmax(AB − AN Q̄−1

N (Q(B,N))>)
)2] 1

2

)
,

ν̄m ≤
1

2

(
max
j

(D∗)(j,j) +
[

max
j

((D∗)(j,j))2 + 4
(
σmax(AB − AN Q̄−1

N (Q(B,N))>)
)2] 1

2

)
,

ν̄1 ≥
1

2

(
(min

j
(D∗)(j,j) − λmax(H̄))

+
[
(λmax(H̄) + min

j
(D∗)(j,j))2 + 4

(
σmin(AB − AN Q̄−1

N (Q(B,N))>)
)2] 1

2

)
.

In case rank(AB − AN Q̄−1
N (Q(B,N))>) < m, the eigenspace of the eigenvalues

originating only from D∗ is {0n}×Null((AB)>−Q(B,N)Q̄−1
N (AN)>) and there are

m− rank(AB − AN Q̄−1
N (Q(B,N))>) such eigenvalues.

Let us compare the bounds given in Theorems 2.3.3 and 2.3.4 to observe once
again the advantages of using the partially reduced augmented system (2.23) over
the full augmented system (2.20). There are three significant differences in the
eigenvalue bounds of these two systems:

1. For the bound on the largest negative eigenvalue of the two systems, we
know that:

λmin(H) ≥ min
j

(Θ−1)(j,j) + λmin(Rp),

where

λmin(Rp) ≥ min

{
min

j: (Q(B,N)Q̄−1
N (Q(B,N))>)(j,j)>0

(Q(B,N)Q̄−1
N (Q(B,N))>)(j,j),

min
j: (Q(N ,N))(j,j)>0

((Q(N ,N))(j,j))

}
,

51

52 Spyridon Pougkakiotis

from (2.31) and (2.32) respectively. However, since minj ((ΘB)−1)(j,j) �
minj ((ΘN)−1)(j,j) we can conclude that:

λmin(H) ≥ min
j

((ΘB)−1)(j,j) + λmin(Rp),

while

λmin(H̄) ≥ min
j

((ΘB)−1)(j,j) + max
j

(Q̄−1
N)(j,j)‖Q(B,N)(Q(B,N))>‖∞−

max
j

(Q(B,N)Q̄−1
N (Q(B,N))>)(j,j),

where we used (2.25) as the definition of ∆pB. We observe that the differ-
ence:

max
j

(Q̄−1
N)(j,j)‖Q(B,N)(Q(B,N))>‖∞ −max

j
(Q(B,N)Q̄−1

N (Q(B,N))>)(j,j),

increases as more elements enter the set N . On the other hand, λmin(Rp) is
expected to decrease at every iteration of the interior-point method. Hence
the bound on µ̄−1 is expected to be better than that on µ−1, as more
elements enter the partition N .

2. For the bound on the most negative eigenvalue of the two systems, we know
that:

λmax(H) ≤ λmax(Q) + max
j

(Θ−1)(j,j) + λmax(Rp),

where λmax(Rp) ≤ 2 max{δpN , δpB}. However, since maxj ((ΘN)−1)(j,j) ≥
maxj ((ΘB)−1)(j,j), we observe that:

λmax(H) ≤ λmax(Q) + max
j

((ΘN)−1)(j,j) + λmax(Rp),

where we used the definition of ∆pN given in (2.22). On the other hand,

λmax(H̄) ≤ λmax(Q(B,B) + max
j

((ΘB)−1)(j,j) + (∆pB)(i,i), ∀ i ∈ {1, . . . , n},

where, from (2.25), we know that

(∆pB)(i,i) = max
j

(Q̄−1
N)(j,j)‖Q(B,N)(Q(B,N))>‖∞, ∀ i ∈ {1, . . . , n}.

Clearly the bound on λmax(H̄) is significantly smaller than that on λmax(H),
since it is usually the case that maxj ((ΘN)−1)(j,j) � maxj ((ΘB)−1)(j,j),
while λmax(Rp) > maxj (Q̄−1

N)(j,j)‖Q(B,N)(Q(B,N))>‖∞. Hence, the most
negative eigenvalue of (2.23) is expected to have a significantly smaller
magnitude than that of (2.20).

3. As in the LP case, our guaranteed lower bound for the minimum eigenvalue
of Rd is smaller than the respective lower bound for the minimum eigenvalue

52

Regularized Interior Point Methods for Convex Programming 53

of D∗. In fact,
min
i

D∗ii ≥ δd

λmin(Rd) ≥ min
j: (AN Q̄−1

N (AN)>)(j,j)>0
(AN Q̄−1

N (AN)>)(j,j),

where we use δd as defined in (2.27), while the last inequality follows from
(2.30). By construction, the first bound is better. As a consequence, the
smallest positive eigenvalue of (2.23) is guaranteed to be at least as large
as δd.

2.4 Implementation and numerical results

2.4.1 The algorithmic framework

At this point, we are providing a generic algorithm (NDR-IPM), summarizing
the infeasible primal-dual IPM with non-diagonal regularization. The algorithm
solves the Newton system arising from the optimality conditions of (2.1)-(2.2), at
each iteration, using a direct method. Note that this is just a general outline and
does not contain the actual details of the implemented method. Implementation
details will be presented in the next subsection. Within the algorithm, we make
the distinction between linear and quadratic programming problems, by using
the logical variables LP and QP, respectively.

2.4.2 Implementation details

We implemented the algorithm in MATLAB. The implementation solves linear
and convex quadratic programming problems in the standard form. However, all
the free variables are treated as variables bounded by some box constraints. We
set some initial bounds,

lf = −102 ≤ xf ≤ 102 = uf ,

for all the free variables. If the method pushes some of these variables to take
values outside of this box, then the respective bounds are increased to give space
for variables to increase their values. Note that this heuristic causes that extra
iterations are needed to converge for a few problems, since every time the box
constraints are changed, the method loses primal feasibility.

Regularization We set regthr,0 = 1, and we decrease it at the same rate as µk
decreases, until it becomes smaller than ε = max

{
tol·10−1

‖A‖22
, 10−13

}
. Then, it takes

this value and stays constant for the rest of the optimization process. As before,
tol is the error tolerance specified by the user. At every iteration, we enable
columns to enter the set N only if:

max
j∈N

(Θ)(j,j) max
{
‖AA>‖∞, ‖QQ>‖∞

}
≤ regthr,k.

53

54 Spyridon Pougkakiotis

Algorithm NDR-IPM Infeasible IPM with non-diagonal regularization

Input: A,Q, b, c, tol, maxit
Parameters: 0 < τmin ≤ τmax, ε = max

{
tol·10−1

‖A‖22
, 10−13

}
, ν ∈ (0, 1).

Initial point: Choose a well-centred w0 = (x0, y0, r0, s0, z0) with

x0, z0 > 0n, µ0 =
x>0 z0

n
, k = 0.

regthr,0 = 1, res0
p = b− Ax0, res0

d = c− A>y0 − z0 +Qx0.
while (k < maxit) do

if ((‖reskp‖ < tol) ∧ (‖reskd‖ < tol) ∧ (µk < tol)) then
Declare convergence and return the optimal solution.
return (xk, yk, zk).

else
regthr,k = max{O(µk), ε}.
if (N = ∅) then

Rd = regthr,kIm.
if (QP) then

Rp = regthr,kIn.
end if

else
if (LP) then

Rd from (2.15) and (2.16), Rp = 0.
else if (QP) then

Rd from (2.26), (2.27) and Rp from (2.21), (2.22), (2.24), (2.25).
end if

end if
Choose τk ∈ [τmin, τmax].
if (LP) then

Compute ∆wk = (∆xk,∆yk,∆rk,∆zk) using (2.12).
(sk = 0n,∆s = 0n).

else if (QP) then
Compute ∆wk = (∆xk,∆yk,∆rk,∆sk,∆zk) using (2.23).

end if

amax
x = min∆xi<0

{
1,− xi

∆xi

}
, amax

z = min∆zi<0

{
1,− zi

∆zi

}
.

xk(a) = xk + νamax
x ∆x, rk(a) = rk + νamax

x ∆r.
zk(a) = zk + νamax

z ∆z, yk(a) = yk + νamax
z ∆y, sk(a) = sk + νamax

z ∆s.

µk(a) = xk(a)>zk(a)
n

.
k = k + 1.

end if
end while

54

Regularized Interior Point Methods for Convex Programming 55

This ensures that (∆d)
(i,i), as defined in (2.16) and (2.27) for linear and convex

quadratic problems, respectively, is smaller than regthr,k,∀ i ∈ {1, . . . ,m}, ∀ k ≥
0. The latter also holds for (∆pB)(i,i) as in (2.25) ,∀ i ∈ {1, . . . , n2}, which is only
defined for quadratic programming problems. Of course for linear programming
problems, we have Rp = 0n,n. Note that during the first iterations of the method,
N is usually empty. In order to avoid instability, we include a uniform dual
regularization Rd = regthr,kIm. For the quadratic programming case, we also
include a uniform primal regularization, that is: Rp = regthr,kIn. This uniform
regularization is dropped when N is non-empty. As an extra safeguard, when the
factorization of the system fails, we increase regthr by a factor of 10 and repeat
the factorization. If this process is repeated for 6 consecutive times, we stop the
method. All other implementation details concerning the regularization follow
from Section 2.2.

Newton-step computation For general convex quadratic problems, the New-
ton direction is calculated from system (2.23), after computing its symmetric
LDL> decomposition, where L is a lower triangular matrix and D is diagonal.
For that, we use the build-in MATLAB symmetric decomposition (i.e. ldl). We
know that such a decomposition always exists, with D diagonal, for the aforemen-
tioned system, since after introducing the regularization, the matrix of (2.23) is
guaranteed to be quasi-definite; a class of matrices known to be strongly factoriz-
able [171]. For that reason, we change the default pivot threshold of ldl to 10−13.
We use such a small pivot threshold in order to avoid any 2 × 2 pivots during
the factorization routine. For linear programming problems, we solve the system
(2.12) (with Q = 0n,n), using the build-in Cholesky decomposition of MATLAB
(i.e. chol). ∆x is then recovered from (2.11). In the quadratic programming
case, ∆s is recovered from (2.7). In both cases ∆z is recovered from (2.9) and
∆r from (2.6).

Starting point We have already mentioned that the method is infeasible and
hence the starting point does not need to be primal and dual feasible. The only
requirement is that the initial values of the variables x, z are strictly positive.
We use a starting point that was proposed in [119]. Here we will only state
it for completeness. To construct this point, we try to solve the pair of prob-
lems (CQP)–(CQD), but we ignore the non-negativity constraints. Such relaxed
problems have closed form solutions:

x̃ = A>(AA>)−1b, ỹ = (AA>)−1A(c+Qx̃), z̃ = c− A>ỹ +Qx̃.

However, in order to ensure stability and efficiency, we regularize the matrix
AA> and employ the preconditioned conjugate gradient (PCG) method ([93]) to
solve these systems (in order to avoid forming AA>). We use the classical Jacobi
preconditioner to accelerate PCG, i.e. P = Diag(AA>) + δIm, where δ = 8,
is set as the regularization parameter. Then, in order to guarantee positivity
and sufficient magnitude of x, z, we compute the expressions δx = max{−1.5 ·

55

56 Spyridon Pougkakiotis

mini x̃
i, 0} and δz = max{−1.5 ·mini z̃

i, 0} and we obtain:

δ̃x = δx + 0.5
(x̃+ δxe)

>(z̃ + δze)∑n
i=1(z̃i + δz)

, δ̃z = δz + 0.5
(x̃+ δxen)>(z̃ + δzen)∑n

i=1(x̃i + δx)
.

Finally, we define the starting point by setting:

r0 = 0, s0 = 0, y0 = ỹ, z0
i = z̃i + δ̃z, x0

i = x̃i + δ̃x, i = 1, . . . , n.

Centring parameter As minimum and maximum centring parameters, we fix
τmin = 0.05 and τmax = 0.95. In the first iteration we use τ0 = 0.5. Then, at
each iteration k, in order to determine the centring parameter τk, we perform the
following operations:

τk = max{(1− ax,k−1)5, (1− az,k−1)5},

where ax,k−1, az,k−1 are the step-lengths in directions ∆x, ∆z of the previous
iteration, respectively. Then we assign:

τk = min{τk, τmax},

and finally
τk = max{τk, τmin}.

The latter is a heuristic which performs well in infeasible IPM implementations.

Step-length computation In order to calculate the step-length, we apply the
fraction to the boundary rule, that is we compute the largest step-lengths to the
boundary of the non-negative orthant, i.e.:

αx,max = min
∆xi<0

{
1,− xi

∆xi

}
, αz,max = min

∆zi<0

{
1,− zi

∆zi

}
, (2.33)

and we set:
αx = ναx,max, αz = ναz,max, (2.34)

where ν ∈ (0, 1) is set to ν = 0.995. The constant ν acts as a safeguard against
bad directions. Taking a full step towards a direction can potentially push the
iterates of the algorithm close to the boundary. This, in turn, can significantly
slow down the convergence of the method. The primal variables x, r are updated
using the step-length αx while the dual variables y, s, z are updated using the
step-length αz.

Termination Criteria Finally, the algorithm is terminated either if the num-
ber of maximum iterations specified by the user is reached, or when all the fol-
lowing three conditions are satisfied:

‖c− A>y +Qx− z‖
‖c‖+ 1

≤ tol,
‖b− Ax‖
‖b‖+ 1

≤ tol, µ ≤ tol,

56

Regularized Interior Point Methods for Convex Programming 57

where tol is the tolerance specified by the user.

2.4.3 Numerical results

We have made a particular effort to keep the implementation as simple as
possible, so that the regularization effects can easily be seen and analyzed. For
that reason, we applied scaling only to problems which required it to converge and
this was needed only for 5 out of the 218 problems solved. On the other hand, no
predictor-corrector technique was included. We tested our method on problems
coming from the Netlib collection [130] as well as on a set of convex quadratic
programming problems given in [116]. We present the numerical results, firstly for
linear programming problems and then for quadratic programming ones. In order
to demonstrate the effects of the proposed regularization method, we will compare
it with an interior point method that uses a uniform regularization. This uniform
regularization scheme can be interpreted as the application of a single iteration of
a standard proximal point method, in contrast to the proposed method, which can
be interpreted as the application of a single iteration of a generalized proximal
point method. The experiments in this section were conducted on a PC with
a 2.2GHz Intel Core i5 processor (dual-core) and 4GB RAM, run under Linux
operating system. The MATLAB version used was R2018a.

Linear programming problems As we have already stated, for linear pro-
gramming problems we use only dual regularization, that is we set Rp = 0n,n and
s = 0n in (CQPr)-(CQDr). For that reason, we will compare our method with
an algorithm that uses a uniform dual regularization, Rd = regthr,kIm, ∀ k ≥ 0,
where regthr,k is updated as indicated in the previously presented Regulariza-
tion paragraph. If N = ∅, the two methods are exactly the same. Hence, the
difference between the methods arises when some columns of the constraint ma-
trix have entered the set N . The tolerance used in the experiments for the linear
programming problems was tol = 10−6. We will not use a smaller tolerance
because our method does not have primal regularization. As a consequence, if
some elements of ΘB become very large, this can create numerical instability if
there is no primal regularization to keep such entries manageable in terms of ma-
chine precision. As an extra safeguard, when the factorization fails, we increase
the uniform regularization value by a factor of 10 until the factorization is com-
pleted successfully. Finally, we set the maximum iterations of the method to be
maxit = 200. If this number is reached, the algorithm stops indicating that the
optimal solution was not found. To conclude we use:

tol = 10−6, maxit = 200.

In order to present the importance of regularization, as well as the overall
comparison of the two different regularization schemes, we include Figure 2.1,
which contains the performance profiles, over the whole Netlib set, of three dif-
ferent methods. The green triangles correspond to the IPM with non-diagonal
regularization. The red stars correspond to the IPM with uniform regularization,
and finally the blue crosses correspond to an IPM without regularization. In

57

58 Spyridon Pougkakiotis

Figure 2.1a, we present the performance profiles with respect to the total time
to convergence, while in Figure 2.1b the performance profiles with respect to the
total number of iterations. The horizontal axis (in logarithmic scale), represents
the performance ratio with respect to the best performance achieved by one of
the three methods for each problem. For example, 2 in the horizontal axis is
interpreted as: “what percentage of problems was solved by each method, in
at most 2 times the best achieved time for each problem”. The vertical axis
shows the percentage of problems solved by each method for different values of
the performance ratio. Efficiency is measured by the rate at which each of the
lines increases, as the ratio increases. Robustness is measured by the maximum
percentage achieved by each of the methods. For more information about perfor-
mance profiles, we refer the reader to [58], where this benchmarking scheme was
proposed.

(a) Performance profile with respect to
time

(b) Performance profile with respect to
iterations

Figure 2.1: Performance profiles over the Netlib test set.

By looking at Figure 2.1, one can observe the importance of regularization in
terms of robustness of the method. Both IPM with non-diagonal regularization
and IPM with uniform regularization solved all 96 problems of the Netlib collec-
tion. The former did so in 146.63 seconds and a total of 3,322 IPM iterations. The
latter needed 165.72 seconds and a total of 3,442 iterations. In other words, the
IPM using the proposed regularization, solved the whole set in 11.5% less time,
requiring 3% less iterations. The computational benefits of the non-diagonal reg-
ularization become obvious in the larger instances of the Netlib collection. The
IPM scheme that does not employ any regularization fails to solve 18.75% of the
problems in the Netlib collection (we should note that the success rate of the
non-regularized version can be improved either by means of pre-processing, or by
significantly slowing down the method to ensure better stability). On the other
hand, the IPM with non-diagonal regularization is more efficient in terms of time
to convergence, when compared to the other two methods. Notice that this is
not the case for the IPM using uniform regularization, which is less efficient than
the other two methods for 70% of the problems. As expected, the IPM that does
not use regularization converges in fewer iterations for most of the problems that
it successfully solves. This is expected, since in the regularized schemes, we are
perturbing the Newton system. Obviously, this perturbation is benign, in the
sense that it allows us to significantly improve the robustness of the method.

58

Regularized Interior Point Methods for Convex Programming 59

We also include Table 2.1, in which the factorization times are compared
when using non-diagonal and uniform regularization respectively, over the last
four iterations of problems DFL001 and GREENBEA. The size of the respective
constraint matrices also includes columns which were added to transform the
problems to the standard form. Extra information, concerning the cardinality of
the partition N , the iteration count as well as the time needed to compute the
Cholesky factorization of the system matrix at the respective iteration, has been
collected in Table 2.1.

Table 2.1: Sparsity introduced from the non-diagonal regularization (linear pro-
gramming)

Name m n
Non-diagonal Reg. Uniform Reg.

Iter. |N | tfact (sec.) Iter. tfact (sec.)

DFL001 9,785 15,477

81 4,089 0.05 79 0.09
82 5,709 0.02 80 0.09
83 6,247 0.02 81 0.09
84 7,280 0.01 82 0.09

GREENBEA 3,770 5,973

66 2,512 3 · 10−3 66 0.01
67 2,536 2 · 10−3 67 0.01
68 1,210 8 · 10−3 68 0.01
69 2,647 2 · 10−3 69 0.01

Convex quadratic programming problems For this class of problems, we
employ a primal-dual dynamic regularization. Hence, we will compare our method
with an algorithm that uses a uniform primal-dual regularization. Such a method
adds two uniform diagonal matrices Rp = regthr,kIn and Rd = regthr,kIm to the
(1, 1) and (2, 2) blocks of the augmented system, respectively. This scheme can be
interpreted as a single iteration of the proximal method of multipliers, in contrast
to the proposed regularization scheme, which is a single iteration of a generalized
proximal method of multipliers. As an extra safeguard, when the factorization
fails, we increase the uniform regularization value by a factor of 10 until the
factorization is completed successfully. The tolerance used in the experiments for
this class of problems was tol = 10−8. As in the linear programming case, we set
the maximum iterations of the method to be maxit = 200. To conclude we use:

tol = 10−8, maxit = 200.

Following the linear programming case, we include Figure 2.2, which contains
the performance profiles, over the whole Maros-Mészáros repository of convex
quadratic programming problems ([116]), of three methods; the proposed IPM
with non-diagonal regularization, the IPM with uniform primal-dual regulariza-
tion and the same IPM but without regularization. In Figure 2.2a, a comparison
of the total time to convergence is presented, while Figure 2.2b contains the
comparison of the total number of iterations.

59

60 Spyridon Pougkakiotis

(a) Performance profile with respect to
time

(b) Performance profile with respect to
iterations

Figure 2.2: Performance profiles over the Maros-Mészáros test set.

By looking at Figure 2.2, we can observe that as in the linear programming case,
regularization seems crucial for the robustness of the method. In other words,
one can observe that the IPM without regularization fails to solve 8.4% of the
problems of this test set. However, in contrast to the linear programming case, the
results do not demonstrate any significant advantage in terms of sparsity of linear
systems achievable by the new regularization technique. This is a consequence of
the fact that the problems under consideration are of small to medium size, while
the overhead of setting up the partially reduced augmented system (2.23) is time
consuming in MATLAB, where manipulating a permuted matrix is costly, due
to MATLAB’s default mechanism of storing matrices by columns. Nevertheless,
both IPM with non-diagonal regularization and IPM with uniform regularization,
solved all 122 problems. The former required 386.12 seconds and a total of 4,162
IPM iterations. The latter required 400.24 seconds and a total of 4,170 iterations.
In other words, the non-diagonal scheme required 3% less time and a similar
number of iterations, as compared to the uniform scheme, for this test set. In
this case, the non-regularized IPM is more efficient than the other two methods
for most of the problems that it solves. This indicates that the problems in this
test set are very sensitive to perturbations. We should mention here, that the
proposed tuning of the non-diagonal regularization is quite conservative. Hence,
we would expect that one could improve the efficiency of such a method at the
expense of its robustness.

As before, in order to illustrate the effect of the non-diagonal regularization
in terms of factorization performance, we provide Table 2.2, in which the fac-
torization times obtained when using non-diagonal and uniform regularization
respectively are compared, over the last four iterations of problems LISWET1,
FORPLAN and SHELL. The size of the constraint matrix in each case also in-
cludes columns which were added to transform the problem to the standard form.
Information concerning the cardinality of the partition N , the iteration count as
well as the time needed to compute the LDL> factorization of the system matrix
at the respective iteration, is gathered in Table 2.2.

The examples presented in Table 2.2, confirm the previous observations drawn
from the linear programming examples. In particular, we can observe the bene-
fits of the proposed non-diagonal regularization, in terms of factorization perfor-
mance. On the other hand, the convergence of the method does not seem to be

60

Regularized Interior Point Methods for Convex Programming 61

Table 2.2: Sparsity introduced from the non-diagonal regularization (quadratic
programming)

Name m n
Non-diagonal Reg. Uniform Reg.

Iter. |N | tfact (sec.) Iter. tfact (sec.)

LISWET1 20,002 30,004

20 9,670 0.05 19 0.07
21 9,815 0.06 21 0.07
22 9935 0.06 22 0.08
23 9984 0.06 23 0.07

FORPLAN 186 517

62 199 10−3 62 4 · 10−3

63 199 2 · 10−3 63 4 · 10−3

64 199 10−3 64 4 · 10−3

65 199 2 · 10−3 65 3 · 10−3

SHELL 903 2,144

52 563 3 · 10−3 52 0.01
53 565 3 · 10−3 53 0.01
54 565 3 · 10−3 54 0.01
55 721 3 · 10−3 55 0.01

affected when big part of the columns of the constraint matrix lie in partition N .

2.5 Conclusions

In this chapter, we derived a dynamic non-diagonal regularization scheme suitable
for interior point methods. The proposed scheme is automatically tuned based
on the properties of the problem, such that sufficiently large eigenvalues of the
Newton system are perturbed insignificantly. The presence of non-diagonal terms
in the regularization matrices allows us to introduce more sparsity in the linear
system, solved to determine the Newton direction at each iteration of the interior
point method. The regularization matrices can be computed expeditiously, en-
abling more efficient factorizations of the system matrix. Computational results
demonstrate the efficiency of the approach, as well as the importance of regular-
ization for numerical stability and thus robustness of the solver. The results also
support the claim that the proposed rule, for tuning the regularization matrices
based on the properties of the problem, produces a regularization which perturbs
the system almost insignificantly while maintaining numerical stability.

61

Chapter 3

An IP-PMM for Convex QP

3.1 Introduction

In this chapter, we consider the primal-dual pair of linearly constrained convex
quadratic programming problems, given in (CQP)–(CQD). We develop a path-
following primal-dual regularized IPM for solving convex quadratic programming
problems. The algorithm is obtained by applying one or a few iterations of an
infeasible primal-dual interior point method in order to solve sub-problems arising
from the proximal method of multipliers (and hence is termed as IP-PMM).
Under standard assumptions, we prove polynomial complexity of the algorithm
and provide global convergence guarantees. To our knowledge, this is the first
polynomial complexity result for a general primal-dual regularized IPM scheme.
Notice that a complexity result is given for a primal regularized IPM for linear
complementarity problems in [191]. However, the authors significantly alter the
Newton directions, making their method very difficult to generalize and hard to
achieve efficiency in practice.

An important feature of the presented method is that it makes use of only
one penalty parameter, that is the logarithmic penalty one. The aforementioned
penalty has been extensively studied and understood, and as a result, IPMs
achieve fast and reliable convergence in practice. This is not the case for the
penalty parameters of proximal methods. In other words, IP-PMM inherits the
fast and reliable convergence properties of IPMs, as well as the strong convexity of
the PMM sub-problems, hence improving the conditioning of the Newton system
solved at each IPM iteration, while providing a reliable tuning for the penalty
parameter, independently of the problem at hand. The proposed approach is
implemented and its reliability is demonstrated through extensive experimenta-
tion. The implementation slightly deviates from the theory, however, most of the
theoretical results are verified in practice. The main purpose of this chapter is to
provide a reliable method that can be used for solving general convex quadratic
problems, without the need of pre-processing, or of previous knowledge about the
problems. The implemented method is supported by a novel theoretical result,
indicating that regularization alleviates various issues arising in IPMs, without
affecting their important worst-case polynomial complexity. As a by-product of
the theory, an implementable infeasibility detection mechanism is also derived

62

Regularized Interior Point Methods for Convex Programming 63

and tested in practice.
Before completing this section, let us introduce some notation that is used

in the rest of this chapter. An optimal solution to the pair (CQP)–(CQD) will
be denoted as (x∗, y∗, z∗). Optimal solutions of different primal-dual pairs will
be denoted using an appropriate subscript, in order to distinguish them. For
example, we use the notation (x∗r, y

∗
r , z
∗
r), for representing an optimal solution for

a PMM sub-problem. The subscript is employed for distinguishing the “regular-
ized” solution, from the solution of the initial problem, that is (x∗, y∗, z∗).

The rest of this chapter is organized as follows. In Section 3.2, we provide
the algorithmic framework of the method. Consequently, in Section 3.3, we prove
polynomial complexity of the algorithm, and global convergence is established.
In Section 3.4, a necessary condition for infeasibility is derived, which is later
used to construct an infeasibility detection mechanism. Numerical results of the
implemented method are presented and discussed in Section 3.5. Finally, we
derive some conclusions in Section 3.6.

3.2 Algorithmic framework

In this section, we will merge the proximal method of multipliers with an
infeasible interior point method. For that purpose, assume that, at some iteration
k of the method, we have available an estimate ηk for a Lagrange multiplier
vector. Similarly, we denote by ζk the estimate of a primal solution. We define
the proximal penalty function that has to be minimized at the k-th iteration of
PMM, for solving (CQP), given the estimates ηk, ζk, as:

LPMM
µk

(x; ζk, ηk) := c>x+
1

2
x>Qx− η>k (Ax− b) +

1

2µk
‖Ax− b‖2

2 +
µk
2
‖x− ζk‖2

2, (3.1)

with {µk} some non-increasing sequence of positive penalty parameters. In order
to solve the PMM sub-problem (1.7) (where f(x) = c>x + (1/2)x>Qx), we will
apply one (or a few) iterations of an infeasible IPM. To that end, we alter (3.1),
by including logarithmic barriers, that is:

LIP−PMM
µk

(x; ζk, ηk) := LPMM
µk

(x; ζk, ηk)− µk
n∑
j=1

lnxj, (3.2)

and we treat µk as the barrier parameter. In order to form the optimality con-
ditions of this sub-problem, we equate the gradient of LIP−PMM

µk
(·; ηk, ζk) to the

zero vector, i.e.:

c+Qx− A>ηk +
1

µk
A>(Ax− b) + µk(x− ζk)− µkX−1en = 0n.

Following the developments in [5], we can define the variables y = ηk− 1
µk

(Ax−
b) and z = µkX

−1en, to get the following (equivalent) system of equations (first-

63

64 Spyridon Pougkakiotis

order optimality conditions):c+Qx− A>y − z + µk(x− ζk)
Ax+ µk(y − ηk)− b

Xz − µken

 =

0n
0m
0n

 . (3.3)

Let us introduce some notation that will be used later. Given two arbitrary
vectors b ∈ Rm, c ∈ Rn, we define the following semi-norm:

‖(b, c)‖A := min
x,y,z

{
‖(x, z)‖2 : Ax = b,−Qx+ A>y + z = c

}
. (3.4)

This semi-norm has been used before in [121], as a way to measure infeasibility
for the case of linear programming problems (Q = 0n,n). For a discussion on the
properties of the aforementioned semi-norm, as well as how one can evaluate it
(using the QR factorization of A), the reader is referred to [121, Section 4].

Starting point Let us define the starting point used within IP-PMM. For that,
we set (x0, z0) = ρ(en, en), for some ρ > 0. We also set y0 to some arbitrary vector

(e.g. y0 = em), such that ‖y0‖∞ = O(1), and µ0 =
x>0 z0
n

. Then we have:

Ax0 = b+ b̄, −Qx0 + A>y0 + z0 = c+ c̄, ζ0 = x0, η0 = y0. (3.5)

for some vectors b̄, c̄.

Neighbourhood We develop a path-following method. Hence, we have to de-
scribe a neighbourhood in which the iterations of the method should lie. However,
unlike typical path-following methods, we define a family of neighbourhoods that
depend on the PMM sub-problem parameters.

Given the starting point in (3.5), penalty µk, and estimates ηk, ζk, we define
the following regularized set of centers :

C+
µk

(ζk, ηk) :=
{

(x, y, z) ∈ Cµk(ζk, ηk) : (x, z) > (0n, 0n), Xz = µken
}
,

where

Cµk(ζk, ηk) :=

{
(x, y, z) :

Ax+ µk(y − ηk) = b+ µk
µ0
b̄,

−Qx+ A>y + z − µk(x− ζk) = c+ µk
µ0
c̄

}
,

and b̄, c̄ are as in (3.5). The term set of centers originates from [121], where a
similar set is studied.

In order to enlarge the previous set, we define the following set:

C̃µk(ζk, ηk) :=

{
(x, y, z) :

Ax+ µk(y − ηk) = b+ µk
µ0

(b̄+ b̃k),

−Qx+ A>y + z − µk(x− ζk) = c+ µk
µ0

(c̄+ c̃k)

‖(b̃k, c̃k)‖2 ≤ KN , ‖(b̃k, c̃k)‖A ≤ γAρ

}
,

where KN > 0 is a constant, γA ∈ (0, 1), and ρ > 0 is as defined in the starting
point. The vectors b̃k and c̃k represent the current scaled (by µ0/µk) infeasibility

64

Regularized Interior Point Methods for Convex Programming 65

and vary depending on the iteration k. In particular, these vectors can be formally
defined recursively, depending on the iterations of IP-PMM. However, such a
definition is not necessary for the developments to follow. In essence, the only
requirement is that these scaled infeasibility vectors are bounded above by some
constants, with respect to the 2-norm as well as the semi-norm defined in (3.4).
Using the latter set, we are now ready to define a family of neighbourhoods:

Nµk(ζk, ηk) := {(x, y, z) ∈ C̃µk(ζk, ηk) :

(x, z) > (0n, 0n), xizi ≥ γµµk, i ∈ {1, . . . , n}},
(3.6)

where γµ ∈ (0, 1) is a constant preventing component-wise complementarity
products from approaching zero faster than µk = (x>k zk)/n. Obviously, the
starting point defined in (3.5) belongs to the neighbourhood Nµ0(ζ0, η0), with
(b̃0, c̃0) = (0m, 0n). Notice from the definition of the neighbourhood, that it de-
pends on the choice of the constants KN , γA, γµ. However, as the neighbourhood
also depends on the parameters µk, ηk, ζk, we omit the dependence on the con-
stants, for simplicity of notation.

Newton system At every IP-PMM iteration, we approximately solve a per-
turbed form of the conditions in (3.3), by applying a variation of Newton method.
In particular, we form the Jacobian of the left-hand side of (3.3) and we perturb
the right-hand side of the Newton equation as follows:−(Q+ µkIn) A> I

A µkIm 0m,n
Zk 0n,m Xk

∆xk
∆yk
∆zk

 =

−

−(c+ τkµk
µ0
c̄)−Qxk + A>yk + zk − τkµk(xk − ζk)

Axk + τkµk(yk − ηk)− (b+ τkµk
µ0
b̄)

XkZken − τkµken

 ,
(3.7)

where b̄, c̄ are as in (3.5). Notice that we perturb the right-hand side of the
Newton system in order to ensure that the iterates remain in the neighbourhood
(3.6), while trying to reduce the value of the penalty (barrier) parameter µk.

We are now able to derive Algorithm IP-PMM-QP, summarizing the pro-
posed interior point-proximal method of multipliers. We will prove polynomial
complexity of this scheme in the next section, under standard assumptions.

Notice, in Algorithm IP-PMM-QP, that we force τ to be less than 0.5. This
value is set, without loss of generality, for simplicity of exposition. Similarly,
in the choice of the step-length, we require that µk(α) ≤ (1 − 0.01α)µk. The
constant 0.01 is chosen for ease of presentation. It depends on the choice of the
maximum value of τ . The constants KN , γA, γµ, are used in the definition of
the neighbourhood in (3.6). Their values can be considered to be arbitrary. The
input tol, represents the error tolerance (chosen by the user). The terminating
conditions require the Euclidean norm of primal and dual infeasibility, as well
as complementarity, to be less than this tolerance. In such a case, we accept
the iterate as a solution triple. The estimates η, ζ are not updated if primal
or dual infeasibility are not both sufficiently decreased. In this case, we keep

65

66 Spyridon Pougkakiotis

Algorithm IP-PMM-QP Interior Point-Proximal Method of Multipliers

Input: A,Q, b, c, tol.
Parameters: 0 < τmin ≤ τmax ≤ 0.5, KN , K̄, k

† > 0, 0 < γA, γµ < 1, k̄ = 0.
Starting point: Set as in (3.5).

for (k = 0, 1, 2, · · ·) do
if ((‖Axk − b‖2 < tol) ∧ (‖c+Qxk − A>yk − zk‖2 < tol) ∧ (µk < tol)) then

return (xk, yk, zk).
else

Choose τk ∈ [τmin, τmax] and solve (3.7).
Choose step-length αk, as the largest α ∈ (0, 1] such that:

µk(α) ≤ (1− 0.01α)µk,

and, (xk + αk∆xk, yk + αk∆yk, zk + αk∆zk) ∈ Nµk(α)(ζk, ηk),

where µk(α) =
(xk + αk∆xk)

>(zk + αk∆zk)

n
.

Set (xk+1, yk+1, zk+1) = (xk + αk∆xk, yk + αk∆yk, zk + αk∆zk).

Update µk+1 =
x>k+1zk+1

n
.

Let rp = Axk+1 − (b+
µk+1

µ0

b̄), rd = (c+
µk+1

µ0

c̄) +Qxk+1 − A>yk+1 − zk+1.

Set (ζk+1, ηk+1) = (ζk, ηk).

if

((
‖(rp, rd)‖2 ≤ KN

µk+1

µ0

)
∧
(
‖(rp, rd)‖A ≤ γAρ

µk+1

µ0

))
then

if
(
‖ (xk+1, yk+1) ‖∞ ≤ K̄

)
then

(ζk+1, ηk+1) = (xk+1, yk+1).
else if

(
k̄ ≤ k†

)
then

(ζk+1, ηk+1) = (xk+1, yk+1), k̄ = k̄ + 1.
end if

end if
end if

end for

the estimates constant while continuing decreasing the penalty parameter µk.
Following the usual practice with proximal and augmented Lagrangian methods,
we accept a new estimate when the respective residual is sufficiently decreased.
However, the algorithm requires the evaluation of the semi-norm defined in (3.4),
at every iteration. While this is not practical, it can be achieved in polynomial
time, with respect to the size of the problem. For a detailed discussion on this,
the reader is referred to [121, Section 4].

Let us notice that Algorithm IP-PMM-QP deviates from standard IPM schemes
due to the solution of a different Newton system, as well as due to the possible up-
dates of the proximal estimates, i.e. ζk and ηk. Notice that when these estimates
are updated, the neighbourhood in (3.6) changes as well, since it is parametrized
by them. Intuitively, when this happens, the algorithm accepts the current iterate
as a sufficiently accurate solution to the associated PMM sub-problem. However,

66

Regularized Interior Point Methods for Convex Programming 67

as we will see in Section 3.3, it is not necessary for these estimates to converge to a
primal-dual solution, for Algorithm IP-PMM-QP to converge. Instead, it suffices
to ensure that these estimates will remain bounded. To that end, we allow only
k† arbitrary updates (for some k† = O(1)) as well as any update that belongs
to a large ball with radius K̄ = O(1) (where this value is chosen arbitrarily).
In light of this, Algorithm IP-PMM-QP is not studied as an inner-outer scheme,
but rather as a standard IPM scheme. We will return to this point at the end of
Section 3.3.

3.3 Convergence analysis of IP-PMM

In this section we prove polynomial complexity and global convergence of
Algorithm IP-PMM-QP. The proof follows by induction on the iterations of IP-
PMM. That is, given an iterate (xk, yk, zk) at an arbitrary iteration k, we prove
that the next iterate belongs to the appropriate neighbourhood required by the
algorithm. In turn, this allows us to prove global and polynomial convergence of
IP-PMM-QP. An outline of the proof can be briefly explained as follows:

• Initially, we present some technical results in Lemmas 3.3.1–3.3.3 which are
required for the analysis throughout this section.

• In turn, we prove boundedness of the iterates (xk, yk, zk) of IP-PMM in
Lemma 3.3.4. In particular we show that ‖(xk, yk, zk)‖2 = O(n) and
‖(xk, zk)‖1 = O(n) for every k ≥ 0.

• Then, we prove boundedness of the Newton direction computed at ev-
ery IP-PMM iteration in Lemma 3.3.5. More specifically, we prove that
‖(∆xk,∆yk,∆zk)‖2 = O(n3) for every k ≥ 0.

• In Lemma 3.3.6 we prove the existence of a positive step-length ᾱ so that the
new iterate of IP-PMM, (xk+1, yk+1, zk+1), belongs to the updated neigh-
bourhood Nµk+1

(ζk+1, ηk+1), for every k ≥ 0. In particular, we show that
ᾱ ≥ κ̄

n4 , where κ̄ is a constant independent of n and m.

• Q-linear convergence of the barrier parameter µk (to zero) is established in
Theorem 3.3.1.

• The polynomial complexity of IP-PMM is then proved in Theorem 3.3.2,
showing that it converges to an ε-accurate solution in at mostO(n4| log

(
1
ε

)
|)

steps.

• Finally, global converge to an optimal solution of (CQP)–(CQD) is estab-
lished in Theorem 3.3.3.

For the rest of this section, we will make use of the following two assumptions,
which are commonly employed when analyzing the complexity of an IPM.

Assumption 1. There exists an optimal solution (x∗, y∗, z∗) for the primal-dual
pair (CQP)–(CQD), such that ‖x∗‖∞ ≤ K∗, ‖y∗‖∞ ≤ K∗ and ‖z∗‖∞ ≤ K∗, for
some constant K∗ ≥ 0, independent of n and m.

67

68 Spyridon Pougkakiotis

Assumption 2. The constraint matrix of (CQP) has full row rank, that is
rank(A) = m. Furthermore, we assume that there exist constants KA,1 > 0,
KA,2 > 0, KQ > 0 and Kr > 0, independent of n and m, such that:

σmin(A) ≥ KA,1, σmax(A) ≤ KA,2, λmax(Q) ≤ KQ, ‖(c, b)‖∞ ≤ Kr.

Note that the independence of the previous constants from the problem dimen-
sions is assumed for simplicity of exposition; this is a common practice when
analyzing the complexity of interior point methods. If these constants depend
polynomially on n (or m), the analysis still holds by suitably altering the worst-
case polynomial bound for the number of iterations of the algorithm.

Let us now use the properties of the proximal operator defined in (1.10).

Lemma 3.3.1. Given Assumption 1, and for all η ∈ Rm, ζ ∈ Rn and 0 ≤ µ <∞,
there exists a unique pair (x∗r, y

∗
r), such that (x∗r, y

∗
r) = P (ζ, η), and

‖(x∗r, y∗r)− (x∗, y∗)‖2 ≤ ‖(ζ, η)− (x∗, y∗)‖2, (3.8)

where P (·) is defined as in (1.10) and (x∗, y∗) is the same as in Assumption 1.

Proof. We know that P (·, ·) is single-valued and non-expansive (see [147]), and
hence there exists a unique pair (x∗r, y

∗
r), such that (x∗r, y

∗
r) = P (ζ, η), for all η, ζ

and 0 ≤ µ < ∞. Given the optimal triple of Assumption 1, we can use the
non-expansiveness of P (·) in (1.10), to show that:

‖P (ζ, η)− P (x∗, y∗)‖2 = ‖(x∗r, y∗r)− (x∗, y∗)‖2 ≤ ‖(ζ, η)− (x∗, y∗)‖2,

where we used the fact that P (x∗, y∗) = (x∗, y∗), which follows directly from (1.8),
as we can see that (0m, 0n) ∈ TL(x∗, y∗). This completes the proof.

In the next lemma we bound the solution of every PMM sub-problem en-
countered by Algorithm IP-PMM-QP. We also establish uniform bounds for the
sequence {‖(ζk, ηk)‖}.

Lemma 3.3.2. Given Assumptions 1, 2, there exists a triple (x∗rk , y
∗
rk
, z∗rk), sat-

isfying:

Ax∗rk + µ(y∗rk − ηk)− b = 0m,

−c−Qx∗rk + A>y∗rk + z∗rk − µ(x∗rk − ζk) = 0n,

(x∗rk)
>(z∗rk) = 0,

(3.9)

with ‖(x∗rk , y
∗
rk
, z∗rk)‖2 = O(

√
n), for all ηk ∈ Rm, ζk ∈ Rn produced by Algorithm

IP-PMM-QP, and any µ ∈ [0,∞). Moreover, we have that ‖(ζk, ηk)‖2 = O(
√
n),

for all k ≥ 0.

Proof. We prove the claim by induction on the iterates, k ≥ 0, of Algorithm IP-
PMM-QP. At iteration k = 0, we have that η0 = y0 and ζ0 = x0. But from the
construction of the starting point in (3.5), we know that ‖(x0, y0)‖2 = O(

√
n).

Hence, ‖(ζ0, η0)‖2 = O(
√
n) (assuming that n > m). From Lemma 3.3.1, we

68

Regularized Interior Point Methods for Convex Programming 69

know that there exists a unique pair (x∗r0 , y
∗
r0

) such that:

(x∗r0 , y
∗
r0

) = P0(ζ0, η0), and ‖(x∗r0 , y
∗
r0

)− (x∗, y∗)‖2 ≤ ‖(ζ0, η0)− (x∗, y∗)‖2.

Using the triangular inequality, and combining the latter inequality with our
previous observations, as well as Assumption 1, yields that

‖(x∗r0 , y
∗
r0

)‖2 ≤ 2‖(x∗, y∗)‖2 + ‖(ζ0, η0)‖2 = O(
√
n),

and the bound is uniform, since ‖(x∗, y∗)‖∞ ≤ K∗ (from Assumption 1) and
‖(ζ0, η0)‖∞ = O(1) (from (3.5)). From the definition of the operator in (1.11),
we know that:

−c−Qx∗r0 + A>y∗r0 − µ(x∗r0 − ζk) ∈ ∂δ+(x∗r0),

Ax∗r0 + µ(y∗r0 − ηk)− b = 0m,

where ∂(δ+(·)) is the sub-differential of the indicator function defined in (1.9).
Hence, we know that there must exist −z∗r0 ∈ ∂δ+(x∗r0) (and hence, z∗r0 ≥ 0n,
(x∗r0)>(z∗r0) = 0), such that:

z∗r0 = c+Qx∗r0 − A
>y∗r0 + µ(x∗r0 − ζk), (x∗r0)>(z∗r0) = 0, ‖z∗r0‖2 = O(

√
n),

where ‖z∗r0‖2 = O(
√
n) follows from Assumption 2, combined with ‖(x0, y0)‖2 =

O(
√
n).

Let us now consider an arbitrary iteration k of Algorithm IP-PMM-QP. There
are two cases for the subsequent iteration:

1. The proximal estimates are updated, that is (ζk+1, ηk+1) = (xk+1, yk+1), or

2. the proximal estimates stay the same, i.e. (ζk+1, ηk+1) = (ζk, ηk).

Case 1. We know by construction that this case can only occur if the following
condition is satisfied:

‖(rp, rd)‖2 ≤ KN
µk+1

µ0

,

where rp, rd are defined in Algorithm IP-PMM-QP. However, from the neigh-
bourhood conditions in (3.6), we know that:

‖
(
rp + µk+1(yk+1 − ηk), rd + µk+1(xk+1 − ζk)

)
‖2 ≤ KN

µk+1

µ0

.

Combining the last two inequalities by applying the triangular inequality, and
using the properties of Algorithm IP-PMM-QP recursively, we obtain

‖(xk+1, yk+1)‖2 ≤
2Kn

µ0

+ ‖(ζk, ηk)‖2 ≤ max

{
k†

2Kn

µ0

+ ‖(ζ0, η0)‖, K̄
√
n

}
= O(

√
n).

Hence, ‖(ζk+1, ηk+1)‖2 = O(
√
n). Then, we can invoke Lemma 3.3.1, with η =

ηk+1, ζ = ζk+1 and µ = µk+1, which implies that:

‖(x∗rk+1
, y∗rk+1

)− (x∗, y∗)‖2 ≤ ‖(ζk+1, ηk+1)− (x∗, y∗)‖2.

69

70 Spyridon Pougkakiotis

A simple manipulation yields that ‖(x∗rk+1
, y∗rk+1

)‖2 = O(
√
n). As before, we use

(1.11) alongside Assumption 2 to show the existence of −z∗rk+1
∈ ∂δ+(x∗rk+1

), such

that the triple (x∗rk+1
, y∗rk+1

, z∗rk+1
) satisfies (3.9) with ‖z∗rk+1

‖2 = O(
√
n).

Case 2. In this case, we have (ζk+1, ηk+1) = (ζk, ηk), and using the properties
of Algorithm IP-PMM-QP we can show that ‖(ζk, ηk)‖2 = O(

√
n), for any k.

The same reasoning as before implies the existence of a triple (x∗rk+1
, y∗rk+1

, z∗rk+1
)

satisfying (3.9), with ‖(x∗rk+1
, y∗rk+1

, z∗rk+1
)‖2 = O(

√
n).

In the following lemma we define an auxiliary point solving a particular
parametrized nonlinear system of equations. This point is subsequently utilized
in Lemma 3.3.4, and in fact it allows us to show boundedness of the iterates
(xk, yk, zk) of Algorithm IP-PMM-QP.

Lemma 3.3.3. Given Assumptions 1, 2, ηk and ζk produced at an arbitrary
iteration k ≥ 0 of Algorithm IP-PMM-QP and any µ ∈ [0,∞), there exists a
triple (x̃, ỹ, z̃) which satisfies the following system of equations:

Ax̃+ µỹ = b+ b̄+ µηk + b̃k,

−Qx̃+ A>ỹ + z̃ − µx̃ = c+ c̄− µζk + c̃k,

X̃z̃ = θen,

(3.10)

for some arbitrary θ > 0 (θ = Θ(1)), with (x̃, z̃) ≥ ξ(en, en) (ξ = Θ(1)) and
‖(x̃, ỹ, z̃)‖2 = O(

√
n), where b̃k, c̃k are defined in (3.6), while b̄, c̄ are defined

with the starting point in (3.5).

Proof. Let k ≥ 0 denote an arbitrary iteration of Algorithm IP-PMM-QP. Let
also b̄, c̄ as defined in (3.5), and b̃k, c̃k, as defined in the neighbourhood conditions
in (3.6). Given an arbitrary positive constant θ > 0, we consider the following
barrier primal-dual pair:

min
x

(
(c+ c̄+ c̃k)

>x+
1

2
x>Qx− θ

n∑
j=1

lnxj
)
, s.t. Ax = b+ b̄+ b̃k, (3.11)

max
x,y,z

(
(b+b̄+b̃k)

>y−1

2
x>Qx+θ

n∑
j=1

ln zj
)
, s.t. −Qx+A>y+z = c+c̄+c̃k. (3.12)

Let us now define the following triple:

(x̂, ŷ, ẑ) := arg min
(x,y,z)

{
‖(x, z)‖2 : Ax = b̃k, −Qx+ A>y + z = c̃k

}
.

From the neighbourhood conditions (3.6), we know that ‖(b̃k, c̃k)‖A ≤ γAρ, and
from the definition of the semi-norm in (3.4), we have that: ‖(x̂, ẑ)‖2 ≤ γAρ.
Using (3.4) alongside Assumption 2, we can also show that ‖ŷ‖2 = Θ(‖(x̂, ẑ)‖2).
On the other hand, from the definition of the starting point, we have that:
(x0, z0) = ρ(en, en). By defining the following auxiliary point:

(x̄, ȳ, z̄) = (x0, y0, z0) + (x̂, ŷ, ẑ),

70

Regularized Interior Point Methods for Convex Programming 71

we have that (x̄, z̄) ≥ (1 − γA)ρ(en, en). By construction, the triple (x̄, ȳ, z̄) is a
feasible solution for the primal-dual pair in (3.11)–(3.12), giving bounded primal
and dual objective values, respectively.

Using our previous observations, alongside the fact that rank(A) = m (As-
sumption 2), we can confirm that there must exist a large constant M > 0,
and a triple (x∗s, y

∗
s , z
∗
s) solving (3.11)–(3.12), such that ‖(x∗s, z∗s)‖∞ ≤ M ⇒

‖(x∗s, y∗s , z∗s)‖2 = O(
√
n).

Let us now apply the proximal method of multipliers to (3.11)–(3.12), given
the estimates ζk, ηk. We should note at this point, that the proximal operator
used here is different from that in (1.10), since it is based on a different maximal
monotone operator from that in (1.8). In particular, we associate the following
maximal monotone operator to (3.11)–(3.12):

T̃L(x, y) :=
{

(u, v) : v = Qx+ (c+ c̄+ c̃k)− A>y − θX−1en,

u = Ax− (b+ b̄+ b̃k)
}
.

As before, the proximal operator is defined as P̃ := (Im+n + T̃L)−1, and is single-
valued and non-expansive. We let any µ ∈ (0,∞) (noting that the case where µ =
0 follows directly by Assumption 1), and define the following penalty function:

L̃µ,θ(x; ζk, ηk) := (c+ c̄+ c̃k)
>x+

1

2
x>Qx +

1

2
µ‖x− ζk‖2

2 +

1

2µ
‖Ax− (b+ b̄+ b̃k)‖2

2 − (ηk)
>(Ax− (b+ b̄+ b̃k))− θ

n∑
j=1

lnxj.

By defining the variables y = ηk− 1
µ
(Ax−(b+ b̄+ b̃k)) and z = θX−1en, we can see

that the optimality conditions of this PMM sub-problem are exactly those stated
in (3.10). Equivalently, we can find a pair (x̃, ỹ) such that (x̃, ỹ) = P̃ (ζk, ηk) and
set z̃ = θX̃−1en. Then, we can use the non-expansiveness of P̃ , as in Lemma
3.3.1, to obtain:

‖(x̃, ỹ)− (x∗s, y
∗
s)‖2 ≤ ‖(ζk, ηk)− (x∗s, y

∗
s)‖2.

But we know, from Lemma 3.3.2, that ‖(ζk, ηk)‖2 = O(
√
n), for all k ≥ 0.

Combining this with our previous observations yields that ‖(x̃, ỹ)‖2 = O(
√
n).

Setting z̃ = θX̃−1en, gives a triple (x̃, ỹ, z̃) that satisfies (3.10), while ‖(x̃, ỹ, z̃)‖2 =
O(
√
n). To conclude the proof, let us notice that the value of L̃µ,θ(x; ζk, ηk) will

grow unbounded as xj → 0 or xj →∞, for any j ∈ {1, . . . , n}. Hence, there must
exist a constant M̃ > 0, such that the minimizer of this function must satisfy
1
M̃
≤ x̃j ≤ M̃ , for all j ∈ {1, . . . , n}. The relation X̃z̃ = θen then implies that

θ
M̃
≤ z̃j ≤ θM̃ . Hence (x̃, z̃) ≥ ξ(en, en), where ξ > 0 and ξ = Θ(1).

Lemma 3.3.4. Given Assumptions 1 and 2, the iterates (xk, yk, zk) produced by
Algorithm IP-PMM-QP, for all k ≥ 0, are such that:

‖(xk, zk)‖1 = O(n), ‖(xk, yk, zk)‖2 = O(n).

71

72 Spyridon Pougkakiotis

Proof. Let an iterate (xk, yk, zk) ∈ Nµk(ζk, ηk), produced by Algorithm IP-PMM-
QP during an arbitrary iteration k ≥ 0, be given. Firstly, we invoke Lemma 3.3.3,
from which we have a triple (x̃, ỹ, z̃) satisfying (3.10), for µ = µk. Similarly, by
invoking Lemma 3.3.2, we know that there exists a triple (x∗rk , y

∗
rk
, z∗rk) satisfying

(3.9), with µ = µk. Consider the following auxiliary point:(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃−xk, (1− µk
µ0

)y∗rk +
µk
µ0

ỹ−yk, (1− µk
µ0

)z∗rk +
µk
µ0

z̃−zk
)
. (3.13)

Using (3.13) and (3.9)–(3.10) (for µ = µk), one can observe that:

A

(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃− xk
)

+ µk

(
(1− µk

µ0

)y∗rk +
µk
µ0

ỹ − yk
)

=

(1− µk
µ0

)(Ax∗rk + µky
∗
rk

) +
µk
µ0

(Ax̃+ µkỹ)− Axk − µkyk =

(1− µk
µ0

)(b+ µkηk) +
µk
µ0

(b+ µkηk + b̃+ b̄)− Axk − µkyk =

b+ µkηk +
µk
µ0

(b̃+ b̄)− Axk − µkyk = 0m,

where the last equality follows from the definition of the neighbourhoodNµk(ζk, ηk).
Similarly:

− (Q+ µkIn)

(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃− xk
)

+ A>
(

(1− µk
µ0

)y∗rk +
µk
µ0

ỹ − yk
)

+

(
(1− µk

µ0

)z∗rk +
µk
µ0

z̃ − zk
)

= 0n.

By combining the previous two relations, we have:(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃− xk
)>(

(1− µk
µ0

)z∗rk +
µk
µ0

z̃ − zk
)

=(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃− xk
)>

(Q+ µkI)

(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃− xk
)

+ µk

(
(1− µk

µ0

)y∗rk +
µk
µ0

ỹ − yk
)>(

(1− µk
µ0

)y∗rk +
µk
µ0

ỹ − yk
)
≥ 0.

(3.14)

From (3.14), it can be seen that:(
(1− µk

µ0

)x∗rk +
µk
µ0

x̃

)>
zk +

(
(1− µk

µ0

)z∗rk +
µk
µ0

z̃

)>
xk

≤
(

(1− µk
µ0

)x∗rk +
µk
µ0

x̃

)>(
(1− µk

µ0

)z∗rk +
µk
µ0

z̃

)
+ x>k zk.

However, from Lemmas 3.3.2 and 3.3.3, we have that: (x̃, z̃) ≥ ξ(en, en), for some
positive constant ξ = Θ(1), while ‖(x∗rk , z

∗
rk

)‖2 = O(
√
n), and ‖(x̃, z̃)‖2 = O(

√
n).

Furthermore, by definition we have that nµk = x>k zk. By combining all the

72

Regularized Interior Point Methods for Convex Programming 73

previous, we obtain:

µk
µ0

ξ(e>xk + e>zk) ≤

((1− µk
µ0

)x∗rk +
µk
µ0

x̃)>zk + ((1− µk
µ0

)z∗rk +
µk
µ0

z̃)>xk ≤

((1− µk
µ0

)x∗rk +
µk
µ0

x̃)>((1− µk
µ0

)z∗rk +
µk
µ0

z̃) + x>k zk =

µk
µ0

(1− µk
µ0

)(x∗rk)
>z̃ +

µk
µ0

(1− µk
µ0

)x̃>z∗rk + (
µk
µ0

)2x̃>z̃ + x>k zk = O(µkn),

(3.15)

where we used (3.9) ((x∗rk)
>(z∗rk) = 0). Hence, (3.15) implies that:

‖(xk, zk)‖1 = O(n).

From equivalence of norms, we have that ‖(xk, zk)‖2 ≤ ‖(xk, zk)‖1. Finally, from
the neighbourhood conditions we know that:

c+Qxk − A>yk − zk + µk(xk − ζk) +
µk
µ0

(c̃k + c̄) = 0.

All terms above (except for yk) have a 2-norm that is O(n) (note that ‖(c̄, b̄)‖2 =
O(
√
n) using Assumption 2 and the definition in (3.5)). Hence, using again

Assumption 2 yields that ‖yk‖2 = O(n), and completes the proof.

As in a typical IPM convergence analysis, we proceed by bounding some compo-
nents of the scaled Newton direction. The proof of that uses similar arguments
to those presented in [181, Lemma 6.5]. Combining this result with Assumption
2, allows us to bound also the non-scaled Newton direction.

Lemma 3.3.5. Given Assumptions 1 and 2, and the Newton direction (denoted
as (∆xk,∆yk,∆zk)) obtained by solving system (3.7) during an arbitrary iteration
k ≥ 0 of Algorithm IP-PMM-QP, we have that:

‖D−1
k ∆xk‖2 = O(n2µ

1
2), ‖Dk∆zk‖2 = O(n2µ

1
2), ‖(∆xk,∆yk,∆zk)‖2 = O(n3),

with D2
k := XkZ

−1
k .

Proof. Consider an arbitrary iteration k of Algorithm IP-PMM-QP. We invoke
Lemmas 3.3.2, 3.3.3, for µ = τkµk. That is, there exists a triple (x∗rk , y

∗
rk
, z∗rk)

satisfying (3.9), and a triple (x̃, ỹ, z̃) satisfying (3.10), for µ = τkµk. Using the
centering parameter τk, we define the following vectors:

ĉ := −
(
τk
c̄

µ0

− (1− τk)
(
xk − ζk +

µk
µ0

(x̃− x∗rk)
))
,

b̂ := −
(
τk
b̄

µ0

+ (1− τk)
(
yk − ηk +

µk
µ0

(ỹ − y∗rk)
))
,

(3.16)

where b̄, c̄, µ0 are defined in (3.5). Using Lemmas 3.3.2, 3.3.3, 3.3.4, and As-
sumption 2, we know that ‖(ĉ, b̂)‖2 = O(n). Then, by applying again Assumption

73

74 Spyridon Pougkakiotis

2, we know that there must exist a vector x̂ such that: Ax̂ = b̂, ‖x̂‖2 = O(n),
and by setting ẑ = ĉ+Qx̂+ µx̂, we have that ‖ẑ‖2 = O(n) and:

Ax̂ = b̂, −Qx̂+ ẑ − µkx̂ = ĉ. (3.17)

Using (x∗rk , y
∗
rk
, z∗rk), (x̃, ỹ, z̃), as well as the triple (x̂, 0m, ẑ), where (x̂, ẑ) is

defined in (3.17), we can define the following auxiliary triple:

(x̄, ȳ, z̄) = (∆xk,∆yk,∆zk) +
µk
µ0

(x̃, ỹ, z̃)− µk
µ0

(x∗rk , y
∗
rk
, z∗rk) +µk(x̂, 0m, ẑ). (3.18)

Using (3.18), (3.16), (3.9)–(3.10) (with µ = τkµk), and the second block equation
of (3.7), we have:

Ax̄+ µkȳ = (A∆xk + µk∆yk) +
µk
µ0

(
(Ax̃+ µkỹ)− (Ax∗rk + µky

∗
rk

)
)

+ µkAx̂

=

(
b+ τk

µk
µ0

b̄− Axk − τkµk(yk − ηk)
)

+
µk
µ0

((Ax̃+ µkỹ)− (Ax∗rk + µky
∗
rk

))

− µk
(
τk
b̄

µ0

+ (1− τk)(yk − ηk)
)
− µk
µ0

(1− τk)µk(ỹ − y∗rk)

=

(
b+ τk

µk
µ0

b̄− Axk − τkµk(yk − ηk)
)

+
µk
µ0

(b+ τkµkηk + b̄+ b̃k)

− µk
µ0

(τkµkηk + b)− µk
(
τk
b̄

µ0

+ (1− τk)(yk − ηk)
)

= b+
µk
µ0

(b̄+ b̃k)− Axk − µk(yk − ηk)

= 0m,

where the last equation follows from the neighbourhood conditions (i.e. (xk, yk, zk) ∈
Nµk(ζk, ηk)). Similarly, we can show that:

−Qx̄+ A>ȳ + z̄ − µkx̄ = 0n.

The previous two equalities imply that:

x̄>z̄ = x̄>(Qx̄− A>ȳ + µkx̄) = x̄>(Q+ µkI)x̄+ µkȳ
>ȳ ≥ 0. (3.19)

On the other hand, using the last block equation of the Newton system (3.7), we
have:

Zkx̄+Xkz̄ =−XkZken + τkµken

+
µk
µ0

Zk(x̃− x∗rk) +
µk
µ0

Xk(z̃ − z∗rk) + µkZkx̂+ µkXkẑ.

Let Wk = (XkZk)
1
2 . By multiplying both sides of the previous equation by W−1

k ,

74

Regularized Interior Point Methods for Convex Programming 75

we obtain:

D−1
k x̄+Dkz̄ =−W−1

k (XkZken − τkµken)

+
µk
µ0

(
D−1
k (x̃− x∗rk) +Dk(z̃ − z∗rk)

)
+ µk

(
D−1
k x̂+Dkẑ

)
.

(3.20)

But, from (3.19), we know that x̄>z̄ ≥ 0, and hence:

‖D−1
k x̄+Dkz̄‖2

2 ≥ ‖D−1
k x̄‖2

2 + ‖Dkz̄‖2
2.

Combining (3.20) with the previous inequality, gives:

‖D−1
k x̄‖2

2 + ‖Dkz̄‖2
2 ≤

{
‖W−1

k ‖2‖XkZken − τkµken‖2+

µk
µ0

(
‖D−1

k (x̃− x∗rk)‖2 + ‖Dk(z̃ − z∗rk)‖2

)
+

µk
(
‖D−1

k x̂‖2 + ‖Dkẑ‖2

)}2

.

We isolate one of the two terms of the left hand side of the previous inequality,
take square roots on both sides, use (3.18) and apply the triangle inequality to
it, to obtain:

‖D−1
k ∆xk‖2 ≤ ‖W−1

k ‖2‖XkZken − τkµken‖2 +
µk
µ0

(
2‖D−1

k (x̃− x∗rk)‖2 + ‖Dk(z̃ − z∗rk)‖2

)
+

µk
(
2‖D−1

k x̂‖2 + ‖Dkẑ‖2

)
.

(3.21)

We now proceed to bounding the terms in the right hand side of (3.21). Firstly,
notice from the neighbourhood conditions (3.6) that γµµk ≤ xikz

i
k. This in turn

implies that:

‖W−1
k ‖2 = max

i

1

(xikz
i
k)

1
2

≤ 1

(γµµk)
1
2

.

On the other hand, we have that:

‖XkZken − τkµken‖2
2 = ‖XkZken‖2 − 2τkµkx

>
k zk + τ 2

kµ
2
kn

≤ ‖XkZken‖2
1 − 2τkµkx

>
k zk + τ 2

kµ
2
kn

= (µkn)2 − 2τkµ
2
kn+ τ 2

kµ
2
kn

≤ µ2
kn

2.

Hence, combining the previous two relations yields:

‖W−1
k ‖2‖XkZken − τkµken‖2 ≤

n

γ
1
2
µ

µ
1
2
k = O

(
nµ

1
2

)
.

75

76 Spyridon Pougkakiotis

We proceed by bounding ‖D−1
k ‖2. To that end, using Lemma 3.3.4, we have:

‖D−1
k ‖2 = max

i
|(Dii

k)−1| = ‖D−1
k en‖∞ = ‖W−1

k Zken‖∞ ≤ ‖W−1
k ‖2‖zk‖1 = O

(
n

µ
1
2
k

)
.

Similarly, we have that:

‖Dk‖2 = O

(
n

µ
1
2
k

)
.

Hence, using the previous bounds, as well as Lemmas 3.3.2, 3.3.3, we obtain:

2
µk
µ0

‖D−1
k (x̃− x∗rk)‖2 +

µk
µ0

‖Dk(z̃ − z∗rk)‖2

≤ 2
µk
µ0

(‖D−1
k ‖2 + ‖Dk‖2) max{‖x̃− x∗rk‖2, ‖z̃ − z∗rk‖2} = O

(
n

3
2µ

1
2
k

)
,

and

µk
(
2‖D−1

k x̂‖2 + ‖Dkẑ‖2

)
≤ 2µk(‖D−1

k ‖2 + ‖Dk‖2) max{‖x̂‖2, ‖ẑ‖2} = O(n2µ
1
2
k).

Combining all the previous bounds yields the claimed bound for ‖D−1
k ∆xk‖2.

One can bound ‖Dk∆zk‖2 in the same way. The latter is omitted for ease of
presentation.

Finally, we have that:

‖∆xk‖2 = ‖DkD
−1
k ∆xk‖2 ≤ ‖Dk‖2‖D−1

k ∆xk‖2 = O(n3).

Similarly, we can show that ‖∆zk‖2 = O(n3). From the first block equation of
the Newton system in (3.7), alongside Assumption 2, we can show that ‖∆yk‖2 =
O(n3), which completes the proof.

We are now able to prove that at every iteration of Algorithm IP-PMM-QP, there
exists a step-length αk > 0, using which, the new iterate satisfies the conditions
required by the algorithm. The lower bound on any such step-length will later
determine the polynomial complexity of the method.

Lemma 3.3.6. Given Assumptions 1 and 2, there exists a step-length ᾱ ∈ (0, 1),
such that for all α ∈ [0, ᾱ], for all i ∈ {1, . . . , n}, and for all iterations k ≥ 0 of
Algorithm IP-PMM-QP, the following relations hold:

(xk + α∆xk)
>(zk + α∆zk) ≥ (1− α(1− β1))x>k zk, (3.22)

(xik + α∆xik)(z
i
k + α∆zik) ≥

γµ
n

(xk + α∆xk)
>(zk + α∆zk), (3.23)

(xk + α∆xk)
>(zk + α∆zk) ≤ (1− α(1− β2))x>k zk, (3.24)

where, without loss of generality, β1 = τmin

2
and β2 = 0.99. Moreover, ᾱ ≥ κ̄

n4 for
all k ≥ 0, where κ̄ > 0 is independent of n and m. If (xk, yk, zk) ∈ Nµk(ζk, ηk),
then letting:

(xk+1, yk+1, zk+1) = (xk + α∆xk, yk + α∆yk, zk + α∆zk), for all α ∈ (0, ᾱ],

76

Regularized Interior Point Methods for Convex Programming 77

and µk+1 = (x>k+1zk+1)/n, gives (xk+1, yk+1, zk+1) ∈ Nµk+1
(ζk+1, ηk+1), where

ηk, ζk are updated as in Algorithm IP-PMM-QP.

Proof. In order to prove the first three inequalities, we follow the developments
in [181, Lemma 6.7]. From Lemma 3.3.5, we have that there exists a constant
K∆ > 0, such that:

(∆xk)
>∆zk = (D−1

k ∆xk)
>(Dk∆zk) ≤ ‖D−1

k ∆xk‖2‖Dk∆zk‖2 ≤ K2
∆n

4µk.

Similarly, it is easy to see that:

|∆xik∆zik| ≤ K2
∆n

4µk.

On the other hand, by summing over all n components of the last block equation
of the Newton system (3.7), we have:

z>k ∆xk+x>k ∆zk = e>n (Zk∆xk+Xk∆zk) = e>n (−XkZken+τkµken) = (τk−1)x>k zk,
(3.25)

while the components of the last block equation of the Newton system (3.7) can
be written as:

zik∆x
i
k + xik∆z

i
k = −xikzik + τkµk. (3.26)

We proceed by proving (3.22). Using (3.25), we have:

(xk + α∆xk)
>(zk + α∆zk)− (1− α(1− β1))x>k zk

= x>k zk + α(τk − 1)x>k zk + α2∆x>k ∆zk − (1− α)x>k zk − αβ1x
>
k zk

≥ α(τk − β1)x>k zk − α2K2
∆n

4µk ≥ α(
τmin

2
)nµk − α2K2

∆n
4µk,

where we set (without loss of generality) β1 = τmin

2
. The rightmost term of the

previous inequality will be non-negative for every α satisfying:

α ≤ τmin

2K2
∆n

3
.

In order to prove (3.23), we will use (3.26) and the fact that from the neigh-
bourhood conditions we have that xikz

i
k ≥ γµµk. In particular, we obtain:

(xik + α∆xik)(z
i
k + α∆zik) ≥ (1− α)xikz

i
k + ατkµk − α2K2

∆n
4µk

≥ γµ(1− α)µk + ατkµk − α2K2
∆n

4µk.

By combining all the previous, we get:

(xik + α∆xik)(z
i
k + α∆zik)−

γµ
n

(xk + α∆xk)
>(zk + α∆zk)

≥ ατk(1− γµ)µk − (1 +
γµ
n

)α2K2
∆n

4µk

≥ ατmin(1− γµ)µk − 2α2K2
∆n

4µk.

In turn, the last term of the previous relation will be non-negative for every α

77

78 Spyridon Pougkakiotis

satisfying:

α ≤ τmin(1− γµ)

2K2
∆n

4
.

Finally, to prove (3.24), we set (without loss of generality) β2 = 0.99. We
know, from Algorithm IP-PMM-QP, that τmax ≤ 0.5. With the previous two
remarks in mind, we have:

1

n
(xk + α∆xk)

>(zk + α∆zk)− (1− 0.01α)µk

≤ (1− α)µk + ατkµk + α2K
2
∆n

4

n
µk − (1− 0.01α)µk

≤ −0.99αµk + 0.5αµk + α2K
2
∆n

4

n
µk

= −0.49αµk + α2K
2
∆n

4

n
µk.

The last term will be non-positive for every α satisfying:

α ≤ 0.49

K2
∆n

3
.

By combining all the previous bounds on the step-length, we have that (3.22)–
(3.24) will hold for every α ∈ (0, α∗], where:

α∗ := min

{
τmin

2K2
∆n

3
,
τmin(1− γµ)

2K2
∆n

4
,

0.49

K2
∆n

3
, 1

}
. (3.27)

Next, we would like to find the maximum ᾱ ∈ (0, α∗], such that:

(xk(α), yk(α), zk(α)) ∈ Nµk(α)(ζk, ηk), for all α ∈ (0, ᾱ],

where µk(α) = xk(α)>zk(α)
n

and:

(xk(α), yk(α), zk(α)) = (xk + α∆xk, yk + α∆yk, zk + α∆zk).

Let:

r̃p(α) = Axk(α) + µk(α)(yk(α)− ηk)−
(
b+

µk(α)

µ0

b̄
)
,

and

r̃d(α) = −Qxk(α) + A>yk(α) + zk(α)− µk(α)(xk(α)− ζk)−
(
c+

µk(α)

µ0

c̄
)
.

In other words, we need to find the maximum ᾱ ∈ (0, α∗], such that:

‖r̃p(α), r̃d(α)‖2 ≤ KN
µk(α)

µ0

, ‖r̃p(α), r̃d(α)‖A ≤ γAρ
µk(α)

µ0

, for all α ∈ (0, ᾱ].

(3.28)
If the latter two conditions hold, then (xk(α), yk(α), zk(α)) ∈ Nµk(α)(ζk, ηk), for all

78

Regularized Interior Point Methods for Convex Programming 79

α ∈ (0, ᾱ]. Then, if Algorithm IP-PMM-QP updates ζk, ηk, it does so only when
similar conditions (as in (3.28)) hold for the new parameters. If the parameters
are not updated, then the new iterate lies in the desired neighbourhood because
of (3.28), alongside (3.22)–(3.24).

We start by rearranging r̃p(α). Specifically, we have that:

r̃p(α) = A(xk + α∆xk)− b

+

(
µk + α(τk − 1)µk + α2 ∆x>k ∆zk

n

)(
(yk + α∆yk − ηk)−

b̄

µ0

)
=

(
Axk + µk(yk − ηk)− b−

µk
µ0

b̄

)
+ α(A∆xk + µk∆yk) +

+

(
α(τk − 1)µk + α2 ∆x>k ∆zk

n

)(
(yk − ηk + α∆yk)−

b̄

µ0

)
=
µk
µ0

b̃k + α

(
b− Axk − τkµk

(
(yk − ηk)−

b̄

µ0

)
+ µk

(
(yk − ηk)−

b̄

µ0

)
− µk

(
(yk − ηk)−

b̄

µ0

))
+

(
α(τk − 1)µk + α2 ∆x>k ∆zk

n

)
·
(

(yk − ηk + α∆yk)−
b̄

µ0

)
,

where we used that µk(α) =
(
µk + α(τk − 1)µk + α2 ∆x>k ∆zk

n

)
, which can be de-

rived from (3.25), as well as the neighbourhood conditions (3.6), and the second
block equation of the Newton system (3.7). By using again the neighbourhood
conditions, and then by deleting the opposite terms in the previous equation, we
obtain:

r̃p(α) = (1− α)
µk
µ0

b̃k + α2(τk − 1)µk∆yk + α2 ∆x>k ∆zk
n

(
yk − ηk + α∆yk −

b̄

µ0

)
.

(3.29)

Similarly, we can show that:

r̃d(α) = (1−α)
µk
µ0

c̃k−α2(τk−1)µk∆xk−α2 ∆x>k ∆zk
n

(
xk−ζk+α∆xk+

c̄

µ0

)
. (3.30)

Define the following two quantities:

ξ2 := µk‖(∆yk,∆xk)‖2

+K2
∆n

3µk

(
‖(yk − ηk, xk − ζk)‖2 + α∗‖(∆yk,∆xk)‖2 +

∥∥∥∥(b̄

µ0

,
c̄

µ0

)∥∥∥∥
2

)
,

ξA := µk‖(∆yk,∆xk)‖A

+K2
∆n

3µk

(
‖(yk − ηk, xk − ζk)‖A + α∗‖(∆yk,∆xk)‖A +

∥∥∥∥(b̄

µ0

,
c̄

µ0

)∥∥∥∥
A

)
,

(3.31)

where α∗ is given by (3.27). Using the definition of the starting point in (3.5), as
well as results in Lemmas 3.3.4, 3.3.5, we can observe that ξ2 = O(n4µk). On the

79

80 Spyridon Pougkakiotis

other hand, using Assumption 2, we know that for every pair (r1, r2) ∈ Rm+n,
if ‖(r1, r2)‖2 = Θ(g(n)), where g(·) is a positive polynomial function of n, then
‖(r1, r2)‖A = Θ(g(n)). In other words, we have that ξA = O(n4µk). Using
the quantities in (3.31), equations (3.29), (3.30), as well as the neighbourhood
conditions, we have that:

‖r̃p(α), r̃d(α)‖2 ≤ (1− α)KN
µk
µ0

+ α2µkξ2,

‖r̃p(α), r̃d(α)‖A ≤ (1− α)γAρ
µk
µ0

+ α2µkξA,

for all α ∈ (0, α∗], where α∗ is given by (3.27). On the other hand, we know from
(3.22), that:

µk(α) ≥ (1− α(1− β1))µk, for all α ∈ (0, α∗].

By combining the last two inequalities, we get that:

‖r̃p(α), r̃d(α)‖2 ≤
µk(α)

µ0

KN , for all α ∈
(

0,min
{
α∗,

β1KN

ξ2µ0

}]
.

Similarly,

‖r̃p(α), r̃d(α)‖A ≤
µk(α)

µ0

γAρ, for all α ∈
(

0,min
{
α∗,

β1γAρ

ξAµ0

}]
.

Hence, we have that:

ᾱ := min

{
α∗,

β1KN

ξ2µ0

,
β1γAρ

ξAµ0

}
, (3.32)

where β1 = τmin

2
. Since ᾱ = Ω

(
1
n4

)
, we know that there must exist a constant

κ̄ > 0, independent of n, m and of the iteration k, such that ᾱ ≥ κ̄
n4 for all k ≥ 0,

and this completes the proof.

The following theorem summarizes our results.

Theorem 3.3.1. Given Assumptions 1, 2, the sequence {µk} generated by Algo-
rithm IP-PMM-QP converges Q-linearly to zero, and the sequences of regularized
residual norms {∥∥Axk + µk(yk − ηk)− b−

µk
µ0

b̄
∥∥

2

}
,

and {∥∥−Qxk + A>yk + zk − µk(xk − ζk)− c−
µk
µ0

c̄
∥∥

2

}
,

converge R-linearly to zero.

Proof. From (3.24) we have that:

µk+1 ≤ (1− 0.01αk)µk,

while, from (3.32), we know that for all k ≥ 0, there exists ᾱ ≥ κ̄
n4 such that

80

Regularized Interior Point Methods for Convex Programming 81

αk ≥ ᾱ. Hence, we can easily see that µk → 0. On the other hand, from the
neighbourhood conditions, we know that for all k ≥ 0:∥∥∥∥Axk + µk(yk − ηk)− b−

µk
µ0

b̄

∥∥∥∥
2

≤ KN
µk
µ0

and ∥∥∥∥−Qxk + A>yk + zk − µk(xk − ζk)− c−
µk
µ0

c̄

∥∥∥∥
2

≤ KN
µk
µ0

.

This completes the proof.

Theorem 3.3.2. Let ε ∈ (0, 1) be a given error tolerance. Choose a starting
point for Algorithm IP-PMM-QP as in (3.5), such that µ0 ≤ K∗

εω
for some positive

constants K∗, ω. Given Assumptions 1 and 2, there exists an index K with:

K = O

(
n4

∣∣∣∣ log

(
1

ε

)∣∣∣∣)
such that the iterates {wk} = {(x>k , y>k , z>k)>} generated from Algorithm IP-PMM-
QP satisfy:

µk ≤ ε, for all k ≥ K.

Proof. The proof follows the developments in [181, 186] and is only provided here
for completeness. Without loss of generality, we can chose τmax ≤ 0.5 and then
from Lemma 3.3.6, we know that there is a constant κ̄ independent of n such that
ā ≥ κ̄

n4 , where ā is the worst-case step-length. Given the latter, we know that the
new iterate lies in the neighbourhood Nµk+1

(ζk+1, ηk+1) defined in (3.6). We also
know, from (3.24), that:

µk+1 ≤ (1− 0.01ā)µk ≤
(

1− 0.01
κ̄

n4

)
µk, k = 0, 1, 2, . . .

By taking logarithms on both sides in the previous inequality, we get:

log(µk+1) ≤ log

(
1− κ̃

n4

)
+ log(µk),

where κ̃ = 0.01κ̄. By applying repeatedly the previous formula, and using the
fact that µ0 ≤ K∗

εω
, we have:

log(µk) ≤ k log

(
1− κ̃

n4

)
+ log(µ0) ≤ k log

(
1− κ̃

n4

)
+ ω log

(
1

ε

)
+ log(K∗).

We use the fact that log(1 + β) ≤ β, for all β > −1 to obtain:

log(µk) ≤ k

(
− κ̃

n4

)
+ ω log

(
1

ε

)
+ log(K∗).

81

82 Spyridon Pougkakiotis

Hence, convergence is attained if:

k

(
− κ̃

n4

)
+ ω log

(
1

ε

)
+ log(K∗) ≤ log(ε).

The latter holds for all k satisfying:

k ≥ K =
n4

κ̃

(
(1 + ω) log

(
1

ε

)
+ log(K∗)

)
,

which completes the proof.

Finally, we present the global convergence guarantee of Algorithm IP-PMM-
QP.

Theorem 3.3.3. Suppose that we allow Algorithm IP-PMM-QP to run indef-
initely. Then, if Assumptions 1 and 2 hold, every limit point of {(xk, yk, zk)}
determines a primal-dual solution of the non-regularized pair (CQP)–(CQD).

Proof. From Theorem 3.3.1, we know that {µk} → 0, and hence, there exists a
sub-sequence K ⊆ N, such that:{

Axk + µk(yk − ηk)− b−
µk
µ0

b̄

}
K
→ 0m,

{
−Qxk + A>yk + zk − µk(xk − ζk)− c−

µk
µ0

c̄

}
K
→ 0n.

However, since Assumptions 1 and 2 hold, we know from Lemma 3.3.4 that
{(xk, yk, zk)} is a bounded sequence. Hence, we obtain that:{

Axk − b
}
K → 0m,

{
−Qxk + A>yk + zk − c

}
K → 0n.

One can readily observe that the limit point of the algorithm satisfies the condi-
tions given in (1.4) (where f(x) = c>x+ (1/2)x>Qx), since µk = (x>k zk)/n.

Remark 1. Let us notice that the above analysis required Assumption 2, and
hence that rank(A) = m. However, one motivation for using regularization is
that the resulting algorithm is able to solve rank deficient problems. While the
complexity result would not hold in this case, we are able to perform an analysis
following exactly the developments in [72], which would guarantee the global con-
vergence of IP-PMM, given certain assumptions (see [72]). The latter is omitted
for brevity of presentation.

Remark 2. As mentioned at the end of Section 3.2, we do not study the condi-
tions under which one can guarantee that xk−ζk → 0n and yk−ηk → 0m, although
this could be possible. This is because the method is shown to converge globally
even if this is not the case. Indeed, notice that if one were to choose ζ0 = 0n
and η0 = 0m, and simply ignore the last conditional statement of Algorithm IP-
PMM-QP, the convergence analysis established in this section would still hold. In
this case, the method would be interpreted as an interior point-quadratic penalty

82

Regularized Interior Point Methods for Convex Programming 83

method, and we could consider the regularization as a diminishing primal-dual
Tikhonov regularizer (i.e. a variant of the regularization proposed in [154]).

3.4 Infeasible problems

Let us now drop Assumptions 1, 2, in order to analyze the behaviour of the
algorithm in the case where an infeasible problem is tackled. Let us employ the
following two premises:

Premise 1. During the iterations of Algorithm IP-PMM-QP, the sequences {‖yk−
ηk‖2} and {‖xk − ζk‖2}, remain bounded.

Premise 2. There does not exist a primal-dual triple, satisfying the KKT condi-
tions for the primal-dual pair (CQP)–(CQD).

The following analysis is based on the developments in [4] and [72]. However,
in these papers such an analysis is proposed in order to derive convergence of
an IPM, while here, we use it as a tool in order to construct a reliable and
implementable infeasibility detection mechanism. In what follows, we show that
Premises 1 and 2 are contradictory. In other words, if Premise 2 holds (which
means that the problem is infeasible), then we will show that Premise 1 cannot
hold, and hence the negation of Premise 1 is a necessary condition for infeasibility.

Lemma 3.4.1. Given Premise 1, and by assuming that x>k zk > ε, for some ε > 0,
for all iterations k of Algorithm IP-PMM-QP, the Newton direction produced by
(3.7) is uniformly bounded by a constant dependent only on n.

Proof. Let us use a variation of Theorem 1 given in [4]. This theorem states that
if the following conditions are satisfied,

1. µk > 0,

2. there exists ε̄ > 0 : xikz
i
k ≥ ε̄, for all i = {1, 2, . . . , n}, and for all k ≥ 0,

3. and the matrix Hk = µkI +Q+X−1
k Zk + 1

µk
A>A is positive definite,

then the Jacobian matrix in (3.7) is non-singular and has a uniformly bounded
inverse. Note that (1.), (3.) are trivial to verify, based on the our assumption
that x>k zk = nµk > ε. Condition (2.) follows since we know that our iterates
lie in Nµk(ζk, ηk), while we have x>k zk > ε, by assumption. Indeed, from the
neighbourhood conditions (3.6), we have that xikz

i
k ≥ ((γµ)/n)x>k zk. Hence, there

exists ε̄ = (γµε)/n > 0 such that xikz
i
k > ε̄, for all k ≥ 0, for all i = {1, . . . , n}.

Finally, we have to show that the right hand side of (3.7) is uniformly bounded.
To that end, we bound the right-hand side of the second block equation of (3.7)
as follows:∥∥∥∥Axk + τkµk(yk − ηk)− b−

τkµk
µ0

b̄+ µk(yk − ηk −
b̄

µ0

)− µk(yk − ηk −
b̄

µ0

)

∥∥∥∥
2

≤ µk
µ0

‖b̃k‖2 + µk

∥∥∥∥yk − ηk − b̄

µ0

∥∥∥∥
2

,

83

84 Spyridon Pougkakiotis

where we used the neighbourhood conditions (3.6). Boundedness follows from
Premise 1. A similar reasoning applies for bounding the right-hand side of the
first block equation, while the right-hand side of the third block equation is
bounded directly from the neighbourhood conditions. Combining the previous
completes the proof.

In the following lemma, we prove by contradiction that the parameter µk of
Algorithm IP-PMM-QP converges to zero, given that Premise 1 holds. The proof
is based on the developments in [72, 102] and is only partially given here, for ease
of presentation.

Lemma 3.4.2. Given Premise 1, and a sequence (xk, yk, zk) ∈ Nµk(ζk, ηk) pro-
duced by Algorithm IP-PMM-QP, the sequence {µk} converges to zero.

Proof. Assume, by virtue of contradiction, that µk > ε, for all k ≥ 0. Then,
we know that the Newton direction obtained by the algorithm at every iteration,
after solving (3.7), will be uniformly bounded by a constant dependent only on n,
that is, there exists a positive constant K†, such that ‖(∆xk,∆yk,∆zk)‖2 ≤ K†.
As in Lemma 3.3.6, we define:

r̃p(α) = Axk(α) + µk(α)(yk(α)− ηk)− b−
µk(α)

µ0

b̄,

and

r̃d(α) = −Qxk(α) + A>yk(α) + zk(α)− µk(α)(xk(α)− ζk)− c−
µk(α)

µ0

c̄,

for which we know that equalities (3.29) and (3.30) hold, respectively. Take any
k ≥ 0 and define the following functions:

f1(α) := (xk + α∆xk)
>(zk + α∆zk)−

(
1− α(1− τmin

2
)

)
x>k zk,

f i2(α) := (xik + α∆xik)(z
i
k + α∆zik)− γµµk(α), i = 1, · · · , n,

f3(α) := (1− 0.01α)x>k zk − (xk(α))>(zk(α)),

g2(α) :=
µk(α)

µ0

KN − ‖(r̃p(α), r̃d(α))‖2,

where µk(α) = (xk+α∆xk)>(zk+α∆zk)
n

, (xk(α), yk(α), zk(α)) = (xk + α∆xk, yk +
α∆yk, zk + α∆zk). We would like to show that there exists α∗ > 0 such that:

f1(α) ≥ 0, f i2(α) ≥ 0, for all i = 1, . . . , n, f3(α) ≥ 0, g2(α) ≥ 0,

for all α ∈ (0, α∗]. These conditions model the requirement that the next iteration
of Algorithm IP-PMM-QP must lie in the updated neighbourhood: Nµk+1

(ζk, ηk).
Note that Algorithm IP-PMM-QP updates the parameters ηk, ζk only if the
selected new iterate belongs to the new neighbourhood, defined using the updated
parameters. Hence, it suffices to show that (xk+1, yk+1, zk+1) ∈ Nµk+1

(ζk, ηk). It
is important to observe that we do not require that the scaled infeasibilities are

84

Regularized Interior Point Methods for Convex Programming 85

bounded with respect to the semi-norm defined in (3.4). This is because the
aforementioned norm requires that rank(A) = m. In other words, we are using a
slightly different neighbourhood, and that does not affect the global convergence
of the method (but only its complexity).

Proving the existence of α∗ > 0, such that each of the aforementioned func-
tions is positive, follows exactly the developments in Lemma 3.3.6, with the only
difference being that the bounds on the directions are not explicitly specified in
this case. Using the same methodology as in Lemma 3.3.6, while keeping in mind
our assumption, namely x>k zk > ε, and hence xikz

i
k > ε̄, we can show that:

α∗ := min

{
1,

τminε

2(K†)2
,
(1− γµ)τminε̄

2(K†)2
,

0.49ε

2(K†)2
,
τminKNε

2µ0(ξ2)

}
, (3.33)

where ξ2 is a bounded constant dependent on K†, and defined as in (3.31). How-
ever, using the inequality:

µk+1 ≤ (1− 0.01α)µk, for all α ∈ [0, α∗],

we get that µk → 0, which contradicts our assumption that µk > ε, for all k ≥ 0,
and completes the proof.

Finally, using the following theorem, we derive a necessary condition for infeasi-
bility.

Theorem 3.4.1. Given Premise 2, i.e. there does not exist a KKT triple for the
pair (CQP)–(CQD), then Premise 1 fails to hold.

Proof. By virtue of contradiction, let Premise 1 hold. In Lemma 3.4.2, we proved
that given Premise 1, Algorithm IP-PMM-QP produces iterates that belong to
the neighbourhood (3.6) and µk → 0. But from the neighbourhood conditions we
can observe that: ∥∥∥∥Axk + µk(yk − ηk)− b−

µk
µ0

b̄

∥∥∥∥
2

≤ KN
µk
µ0

,

and ∥∥∥∥−Qxk + A>yk + zk − µk(xk − ζk)− c−
µk
µ0

c̄

∥∥∥∥
2

≤ KN
µk
µ0

.

Hence, we can choose a sub-sequence K ⊆ N, for which:{
Axk + µk(yk − ηk)− b−

µk
µ0

b̄

}
K
→ 0m,

and {
−Qxk + A>yk + zk − µk(xk − ζk)− c−

µk
µ0

c̄

}
K
→ 0n.

But since ‖yk − ηk‖2 and ‖xk − ζk‖2 are bounded, while µk → 0, we have that:

{Axk − b}K → 0m, {c+Qxk − A>yk − zk}K → 0n, and {x>k zk}K → 0.

85

86 Spyridon Pougkakiotis

This contradicts Premise 2, i.e. that the pair (CQP)–(CQD) does not have a
KKT triple, and completes the proof.

In the previous theorem, we proved that Premise 1 is a necessary condition
for infeasibility, since otherwise, we arrive at a contradiction. Nevertheless, this
does not mean that the condition is also sufficient. In order to obtain a more
reliable test for infeasibility, that uses the previous result, we will have to use
the properties of Algorithm IP-PMM-QP. In particular, we can notice that if the
primal-dual problem is infeasible, then the PMM sub-problem will stop being
updated after a finite number of iterations. In that case, we know from Theorem
3.4.1 that the sequence ‖(xk− ζk, yk− ηk)‖2 will grow unbounded. Hence, we can
define a maximum number of iterations per PMM sub-problem, say k† ≥ 0, as
well as a very large constant K† ≥ 0. Then, if ‖(xk − ζk, yk − ηk)‖2 > K† and
k ≥ k†, the algorithm is terminated. The specific choices for these constants will
be given in the next section.

Remark 3. Let us notice that the analysis in Section 3.3 employs the standard
assumptions used when analyzing a non-regularized IPM. However, the method
could still be useful if these assumptions were not met. Indeed, if for example the
constraint matrix was not of full row rank, one could still prove global convergence
of the method, using the methodology employed in this section by assuming that
Premise 1 holds and Premise 2 does not. Furthermore, in practice the method
would not encounter any numerical issues with the inversion of the Newton system
(see [4]). Nevertheless, showing polynomial complexity in this case is still an open
problem. The aim of this work is to show that under the standard Assumptions 1,
2, Algorithm IP-PMM-QP is able to enjoy polynomial complexity, while having
to solve better conditioned systems than those solved by standard IPMs at each
iteration, thus ensuring better stability (and as a result better robustness and
potentially better efficiency).

3.5 Computational experience

In this section, we provide some implementation details and present compu-
tational results of the method, over a set of small to large scale linear and convex
quadratic programming problems. The code was written in MATLAB and is
available via the ERGO webpage1.

3.5.1 Implementation details

Our implementation deviates from the theory, in order to gain some additional
control, as well as computational efficiency. Nevertheless, the theory has served as
a guideline to tune the code reliably. There are two major differences between the
practical implementation of IP-PMM and its theoretical algorithmic counterpart.
Firstly, our implementation uses different penalty parameters for the proximal
terms and the logarithmic barrier term. In particular, we define a primal proximal

1https://www.maths.ed.ac.uk/ERGO/software.html

86

https://www.maths.ed.ac.uk/ERGO/software.html

Regularized Interior Point Methods for Convex Programming 87

penalty ρ, a dual proximal penalty δ and the barrier parameter µ. Using the
previous, the PMM Lagrangian function in (3.1), at an arbitrary iteration k of
the algorithm, becomes:

LPMM
µk,δk,ρk

(x; ζk, λk) = c>x+
1

2
x>Qx− λ>k (Ax− b) +

1

2δk
‖Ax− b‖2

2 +
ρk
2
‖x− ζk‖2

2,

and (3.2) is altered similarly. The second difference lies in the fact that we do
not require the iterates of the method to lie in the neighbourhood defined in (3.6)
in order to gain efficiency. In what follows, we provide further details concerning
our implementation choices.

Free variables
The method takes as input problems in the following form:

minx
(
c>x+

1

2
x>Qx

)
, s.t. Ax = b, xI ≥ 0|I|, x

F free,

where I = {1, · · · , n}\F is the set of indices indicating the non-negative variables.
In particular, if a problem instance has only free variables, no logarithmic barrier
is employed and the method reduces to a standard proximal method of multipliers.
Of course in this case, the derived complexity result does not hold. Nevertheless,
a global convergence result holds, as shown in [146]. In general, convex quadratic
optimization problems with only equality constraints are usually easy to deal
with, and the proposed algorithm behaves very well when solving such problems
in practice.

Constraint matrix scaling
In the pre-processing stage, we check if the constraint matrix is well scaled,

i.e if:(
max

i∈{1,...,m},j∈{1,...,n}
(|A(i,j)|) < 10

)
∧
(

min
i∈{1,...,m},j∈{1,...,n} : |A(i,j)|>0

(|A(i,j)|) > 0.1

)
.

If the previous is not satisfied, we apply geometric scaling in the rows of A, that
is, we multiply each row of A by a scalar of the form:

di =
1√

max
j∈{1,··· ,n}

(|A(i,j)|) · min
j∈{1,...,n} : |A(i,j)|>0

(|A(i,j)|)
, for all i ∈ {1, . . . ,m}.

However, for numerical stability, we find the largest integer pi, such that
2p

i ≤ di and we set di = 2p
i
, for all i ∈ {1, . . . ,m}. Hence, the scaling factors

are powers of two. Based on the IEEE representation of floating point numbers,
multiplying by a power of 2 translates into an addition of this power to the
exponent, without affecting the mantissa. This scaling technique is based on the
one used within the GLPK solver (see [76]).

87

88 Spyridon Pougkakiotis

Starting point, Newton-step computation and step-length
We use the same starting point as the one in Section 2.4.2. The only difference

in this case is that we only shift components of the variables x and z that belong
to the index set I.

In order to find the Newton step, we employ a widely used predictor–corrector
method. The practical implementation deviates from the theory at this point,
in order to gain computational efficiency. We provide the algorithmic scheme
in Algorithm PC for completeness, but the reader is referred to [119] for a de-
tailed discussion of this method. Solving two different systems serves as a way of
decreasing the infeasibility and allowing µk (and hence δk, ρk) to decrease.

We solve the systems (3.34) and (3.35) (see Algorithm PC, p. 93), using the
built-in MATLAB symmetric decomposition (i.e. ldl). In order to exploit quasi-
definiteness, we change the default pivot threshold of ldl to a value slightly lower
than the minimum allowed regularization value (regthr; specified in sub-section
3.5.1). Such a small pivot threshold guarantees that no 2 × 2 pivots will be
employed during the factorization process.

PMM parameters
At this point, we discuss how we update the PMM sub-problems in practice,

as well as how we tune the penalty parameters (regularization parameters) δ, ρ.
Notice that in Section 3.3 we set δk = ρk = µk. While this is beneficial in
theory, as it gives us a reliable way of tuning the penalty parameters of the
algorithm, it is not very beneficial in practice, as it does not allow us to control
the regularization parameters in the cases of extreme ill-conditioning. Hence,
we allow the use of different penalty parameters connected to the PMM sub-
problems, while enforcing both parameters (δk, ρk) to decrease at the same rate
as µk (based on the theoretical results in Sections 3.3, 3.4).

On the other hand, the algorithm is more optimistic in practice than it is in
theory. In particular, we do not consider the semi-norm (3.4) of the infeasibility,
while we allow the update of the estimates ηk , ζk, to happen independently. In
particular, the former is updated when the 2-norm of the primal infeasibility is
sufficiently reduced, while the latter is updated based on the dual infeasibility.

More specifically, at the beginning of the optimization, we set: δ0 = 8, ρ0 = 8,
η0 = y0, ζ0 = x0. Then, at the end of every iteration, we employ the algorithmic
scheme given in Algorithm PEU. In order to ensure numerical stability, we do
not allow δ or ρ to become smaller than a suitable positive value, regthr. We set:
regthr = max

{
tol

max{‖A‖2∞,‖Q‖2∞}
, 10−10

}
. This value is based on the developments

in Chapter 2, in order to ensure that we introduce a controlled perturbation in
the eigenvalues of the non-regularized linear system. If the factorization fails, we
increase the regularization parameters by a factor of 10 and repeat the factor-
ization. If the factorization fails while either δ or ρ have reached their minimum
allowed value (regthr), then we also increase this value by a factor of 10. If this
occurs 5 consecutive times, the method is terminated with a message indicating
ill-conditioning.

88

Regularized Interior Point Methods for Convex Programming 89

Termination criteria
There are four possible termination criteria. They are summarized in Algo-

rithm TC. In the aforementioned algorithm, tol represents the error tolerance
chosen by the user. Similarly, IPmaxit is the maximum number of allowed IPM
iterations, also chosen by the user. On the other hand, PMMmaxit is a threshold
indicating that the PMM sub-problem needs too many iterations before being
updated (that is if kPMM > PMMmaxit). We set PMMmaxit = 5. When either ηk or ζk is
updated, we set kPMM = 0.

Let us now support the proposed infeasibility detection mechanism. In par-
ticular, notice that as long as the penalty parameters do not converge to zero,
every PMM-subproblem must have a solution, even in the case of infeasibility.
Hence, we expect convergence of the regularized primal (dual, respectively) in-
feasibility to zero, while from Section 3.4, we know that a necessary condition for
infeasibility is that the sequence ‖(xk − ζk, yk − ηk)‖2 diverges. If this behaviour
is observed, while the PMM parameters ηk, ζk are not updated (which is not
expected to happen in the feasible but rank deficient case), then we can conclude
that the problem under consideration is infeasible.

3.5.2 Numerical results

At this point, we present the computational results obtained by solving a set
of small to large scale linear and convex quadratic problems. In order to stress
out the importance of regularization, we compare IP-PMM with a non-regularized
IPM. The latter implementation follows exactly from the implementation of IP-
PMM, simply by fixing δ and ρ to zero. In the non-regularized case, the minimum
pivot of the ldl function is restored to its default value, in order to avoid numer-
ical instability. Throughout all of the presented experiments, we set the number
of maximum iterations to 200. It should be noted here that we expect IP-PMM
to require more iterations to converge, as compared to the non-regularized IPM.
In turn, the Newton systems arising in IP-PMM have better numerical properties
(accelerating the factorization process), while overall the method is expected to
be significantly more stable. In what follows, we demonstrate that this increase in
the number of iterations is benign, in that it does not make the resulting method
inefficient. In contrast, we provide computational evidence that the acceleration
of the factorization process more than compensates for the increase in the number
of iterations. The experiments were conducted on a PC with a 2.2GHz Intel Core
i7 processor (hexa-core), 16GB RAM, run under Windows 10 operating system.
The MATLAB version used was R2018b.

Linear programming problems
Let us compare the proposed method with the respective non-regularized im-

plementation, over the Netlib collection, [130]. The test set consists of 96 linear
programming problems. We set the desired tolerance to tol = 10−6. Firstly, we
compare the two methods, without using the pre-solved version of the problem
collection (e.g. allowing rank-deficient matrices). In this case, the non-regularized
IPM converged for only 66 out of the total 96 problems. On the other hand, IP-

89

90 Spyridon Pougkakiotis

PMM solved successfully the whole set, in 160 seconds (and a total of 2,609 IPM
iterations). Hence, one of the benefits of regularization, that of alleviating rank
deficiency of the constraint matrix, becomes immediately obvious.

However, in order to explore more potential benefits of regularization, we
run the algorithm on a pre-solved Netlib library. In the pre-solved set, the non-
regularized IPM converged for 93 out of 96 problems. The three failures occurred
due to instability of the Newton system. The overall time spent was 353 seconds
(and a total of 1,871 IPM iterations). On the other hand, IP-PMM solved the
whole set in 161 seconds (and a total of 2,367 iterations). Two more benefits
of regularization become obvious here. Firstly, we can observe that numerical
stability can be a problem in a standard IPM, even if we ensure that the constraint
matrices are of full row rank. Secondly, notice that despite the fact that IP-
PMM required 26% more iterations, it still solved the whole set in 55% less
CPU time. This is because in IP-PMM, only diagonal pivots are allowed during
the factorization. We could enforce the same condition on the non-regularized
IPM, but then significantly more problems would fail to converge (22/96) due to
numerical instability (e.g. see the numerical results in Section 2.4.3, where this
strategy was adopted).

In Table 3.1, we collect statistics from the runs of the two methods over some
medium scale instances of the pre-solved Netlib test set.

Table 3.1: Medium-scale Netlib problems

Name nnz(A)
IP-PMM IPM

Time (s) IP-Iter. Time (s) IP-Iter.

80BAU3B 29, 063 1.43 44 9.68 40
D6CUBE 43, 888 1.26 25 9.64 22

DFL001 41, 873 25.42 47 †1 †
FIT2D 138, 018 8.52 27 23.94 25
FIT2P 60, 784 1.24 24 1.56 19

PILOT87 73, 804 7.21 49 95.04 46
QAP15 110, 700 91.78 23 93.56 18

1 † indicates that the solver did not reach the desired accuracy.

From Table 3.1, it becomes obvious that the factorization efficiency is significantly
improved by the introduction of the regularization terms. In all of the presented
instances, IP-PMM converged needing more iterations, but requiring less CPU
time.

In order to summarize the comparison of the two methods, we include Figure
3.1, which contains the performance profiles ([58]), over the pre-solved Netlib
set, of the two methods. IP-PMM is represented by the green line (consisting
of triangles), while non-regularized IPM by the blue line (consisting of stars).
In Figure 3.1a, we present the performance profile with respect to time required
for convergence, while in Figure 3.1b, the performance profile with respect to
the number of iterations. One can see that all of our previous observations are
verified in Figure 3.1.

90

Regularized Interior Point Methods for Convex Programming 91

Figure 3.1: Performance profiles over the pre-solved Netlib test set.

(a) Performance profile - time.
(b) Performance profile - itera-
tions.

Infeasible problems
In order to assess the accuracy of the proposed infeasibility detection criteria,

we attempt to solve 28 infeasible problems, coming from the Netlib infeasible
collection ([130], see also Infeasible Problems). For 22 out of the 28 problems, the
method was able to recognize that the problem under consideration is infeasible,
and exit before the maximum number of iterations was reached. There were four
problems, for which the method terminated after reaching the maximum number
of iterations. For one problem the method was terminated early due to numerical
instability. Finally, there was one problem for which the method converged to the
least squares solution, which satisfied the optimality conditions for a tolerance of
10−6. Overall, IP-PMM run all 28 infeasible problems in 34 seconds (and a total
of 1,813 IPM iterations). The proposed infeasibility detection mechanism had
a 78% rate of success over the infeasible test set, while no feasible problem was
misclassified as infeasible. A more accurate infeasibility detection mechanism
could be possible, however, the proposed approach is easy to implement and
cheap from the computational point of view. Nevertheless, the interested reader
is referred to [8, 129, 183] and the references therein, for various other infeasibility
detection methods.

Quadratic programming problems
Next, we present the comparison of the two methods over the Maros–Mészáros

test set ([116]), which is comprised of 122 convex quadratic programming prob-
lems. Notice that in the previous experiments we used the pre-solved version
of the collection. However, we do not have a pre-solved version of this test set
available. Since the focus of this thesis is not on the pre-solve phase of convex
problems, we present the comparison of the two methods over the set, without
applying any pre-processing. As a consequence, non-regularized IPM fails to solve
27 out of the total 122 problems. However, only 11 out of 27 failed due to rank
deficiency. The remaining 16 failures occurred due to numerical instability. On
the contrary, IP-PMM solved the whole set successfully in 127 seconds (and a
total of 3,014 iterations). As before, the required tolerance was set to 10−6.

In Table 3.2, we collect statistics from the runs of the two methods over some
medium scale instances of the Maros–Mészáros collection.

In order to summarize the comparison of the two methods, we include Figure

91

https://www.cise.ufl.edu/research/sparse/matrices/LPnetlib/index.html

92 Spyridon Pougkakiotis

Table 3.2: Medium-scale Maros–Mészáros problems

Name nnz(A) nnz(Q)
IP-PMM IPM

Time (s) IP-Iter. Time (s) IP-Iter.

AUG2DCQP 40, 000 40, 400 4.70 83 7.21 111
CVXQP1L 14, 998 69, 968 25.54 38 † †
CVXQP3L 22, 497 69, 968 45.69 59 † †
LISWET1 30, 000 10, 002 1.07 30 1.86 40

POWELL20 20, 000 10, 000 1.26 30 1.61 25
QSHIP12L 16, 170 122, 433 0.91 23 † †

STCQP1 13, 338 49, 109 0.38 16 6.89 13

3.2, which contains the performance profiles, over the Maros–Mészáros test set,
of the two methods. IP-PMM is represented by the green line (consisted of
triangles), while non-regularized IPM by the blue line (consisted of stars). In
Figure 3.2a, we present the performance profile with respect to time required for
convergence, while in Figure 3.2b, the performance profile with respect to the
number of iterations.

Figure 3.2: Performance profiles over the Maros–Mészáros test set.

(a) Performance profile - time.
(b) Performance profile - itera-
tions.

Similar remarks can be made here, as those given when summarizing the lin-
ear programming experiments. One can readily observe the importance of the
stability introduced by the regularization. On the other hand, the overhead in
terms of number of iterations that is introduced due to regularization is accept-
able due to the acceleration of the factorization (since we are guaranteed to have
a quasi-definite augmented system).

Verification of the theory
We have already presented the benefits of using regularization in interior point

methods. A question arises, as to whether a regularized IPM can actually find
an exact solution of the problem under consideration. Theoretically, we have
proven this to be the case. However, in practice one is not allowed to decrease
the regularization parameters indefinitely, since ill-conditioning will become a
problem. Based on the theory of augmented Lagrangian methods, one knows
that sufficiently small regularization parameters suffice for exactness (see [27,

92

Regularized Interior Point Methods for Convex Programming 93

71], among others). In what follows, we provide a “table of robustness” of IP-
PMM. We run the method over the Netlib and the Maros-Mészáros collections,
for decreasing values of the required tolerance and report the number of problems
that converged.

Table 3.3: Table of robustness

Test Set Tolerance Problems Converged

Netlib (non-presolved) 10−6 96/96
” 10−8 95/96
” 10−10 94/96

Netlib (presolved) 10−6 96/96
” 10−8 94/96
” 10−10 94/96

Maros-Mészáros 10−6 122/122
” 10−8 121/122
” 10−10 112/122

One can observe from Table 3.3 that IP-PMM is sufficiently robust. Even
in the case where a 10 digit accurate solution is required, the method is able to
maintain a success rate larger than 91%.

Large scale problems
All of our previous experiments were conducted on small to medium scale

linear and convex quadratic programming problems. We have shown (both the-
oretically and practically) that the proposed method is reliable. However, it is
worth mentioning the limitations of the current approach. Since we employ exact
factorization during the iterations of the IPM, we expect that the method will
be limited in terms of the size of the problems it can solve. The main bottleneck
arises from the factorization, which does not scale well in terms of processing
time and memory requirements. In order to explore the limitations, in Table 3.4
we provide the statistics of the runs of the method over a small set of large scale
problems. It contains the number of non-zeros of the constraint matrices, as well
as the time needed to solve the problem. The tolerance used in these experiments
was 10−6.

From Table 3.4, it can be observed that as the dimension of the problem
grows, the time to convergence is significantly increased. This increase in time is
disproportionate for some problems. This is because the required memory could
exceed the available RAM, in which case the swap-file is activated. Access to the
swap memory is extremely slow and hence the time could potentially increase
disproportionately. On the other hand, we retrieve two failures due to lack of
available memory. The previous issues could potentially be addressed by the
use of iterative methods. Such methods, embedded in the IP-PMM framework,
could significantly relax the memory as well as the processing requirements, at
the expense of providing inexact directions. Combining IP-PMM (which is sta-
ble and reliable) with such an inexact scheme (which could accelerate the IPM

93

94 Spyridon Pougkakiotis

Table 3.4: Large-scale problems

Name Collection nnz(A) time (s) Status

fome21 Mittelmann 751,365 567.26 opt
pds-10 Mittelmann 250,307 40.00 opt
pds-30 Mittelmann 564,988 447.81 opt
pds-60 Mittelmann 1,320,986 2,265.39 opt

pds-100 Mittelmann 1,953,757 - out of memory
rail582 Mittelmann 402,290 91.10 opt

cre-b Kennington 347,742 24.48 opt
cre-d Kennington 323,287 23.49 opt

stocfor3 Kennington 72,721 4.56 opt
ken-18 Kennington 667,569 77.94 opt
osa-30 Kennington 604,488 1723.96 opt
nug-20 QAPLIB 304,800 386.12 opt
nug-30 QAPLIB 1,567,800 - out of memory

iterations) should be a viable and competitive alternative and will be addressed
in the following chapters.

3.6 Conclusions

In this chapter, we presented an algorithm suitable for solving convex quadratic
programs. It arises from the combination of an infeasible interior point method
with the proximal method of multipliers (IP-PMM). The method is interpreted
as a primal-dual regularized IPM, and we prove that it is guaranteed to converge
in a polynomial number of iterations, under standard assumptions. As the al-
gorithm relies only on one penalty parameter, we use the well-known theory of
IPMs to tune it. In particular, we treat this penalty as a barrier parameter, and
hence the method is well-behaved independently of the problem under consider-
ation. Additionally, we derive a necessary condition for infeasibility and use it to
construct an infeasibility detection mechanism. The algorithm is implemented,
and the reliability of the method is demonstrated. At the expense of some extra
iterations, regularization improves the numerical properties of the interior point
iterations. The increase in the number of iterations is benign, since factorization
efficiency as well as stability is gained. Not only the method remains efficient,
but it outperforms a similar non-regularized IPM scheme.

We observe the limitations of the current approach, due to the cost of fac-
torization, and it is expected that embedding iterative methods in the current
scheme might further improve the scalability of the algorithm at the expense
of inexact directions. Since the reliability of IP-PMM is demonstrated, it only
seems reasonable to allow for approximate Newton directions and still expect fast
convergence. Hence, in the following chapters we will extend the theory and the
implementation, in order to accommodate the use of iterative methods for solving
the associated Newton systems.

94

Regularized Interior Point Methods for Convex Programming 95

Algorithm PC Predictor-Corrector method

Compute the predictor:[
−(Q+ Θ−1

k + ρkI) A>

A δkI

] [
∆px
∆py

]
=

[
c+Qxk − A>yk − ρk(xk − ζk)

b− Axk − δk(yk − ηk)

]
,

(3.34)
where (ΘIk)−1 = (XIk)−1(ZIk), (ΘFk)−1 = 0|F|,|F|.
Retrieve ∆pz:

∆pz
I = (−zIk)I − (XIk)−1(ZIk∆px

I), ∆pz
F = 0|F|.

Compute the step in the non-negativity orthant:

αmax
x = min

(∆px
I(i)
k <0)

{
1,− xI(i)

∆pxI(i)

}
, αmax

z = min(∆pzI(i)<0)

{
1,− z

I(i)
k

∆pzI(i)

}
,

for i = 1, · · · , |I|, and set:

αx = ναmax
x , αz = ναmax

z ,

with ν = 0.995 . avoid going too close to the boundary.
Compute a centrality measure:

gα = (xI + αx∆px
I)>(zI + αz∆pz

I).

Set: µ =
(

gα
(xIk)>zIk

)2 gα
|I|

Compute the corrector:[
−(Q+ Θ−1

k + ρkI) A>

A δkI

] [
∆cx
∆cy

]
=

[
−dk
0m

]
, (3.35)

with dIk = µ(XIk)−1e|I| − (XIk)−1∆pX
I∆pz

I , dFk = 0|F|, ∆pX = diag(∆px).
Retrieve ∆cz:

∆cz
I = dIk − (XIk)−1(ZIk∆cx

I), ∆cz
F = 0|F|.

(∆x,∆y,∆z) = (∆px+ ∆cx,∆py + ∆cy,∆pz + ∆cz).

Compute the step in the non-negativity orthant:

αmax
x = min∆xI(i)<0

{
1,− x

I(i)
k

∆xI(i)

}
, αmax

z = min∆zI(i)<0

{
1,− z

I(i)
k

∆zI(i)

}
,

and set:
αx = ταmax

x , αz = ταmax
z .

Update:

(xk+1, yk+1, zk+1) = (xk + αx∆x, yk + αz∆y, zk + αz∆z).

95

96 Spyridon Pougkakiotis

Algorithm PEU Penalty and Estimate Updates

r = |µk−µk+1|
µk

(rate of decrease of µ).

if (‖Axk+1 − b‖2 ≤ 0.95 · ‖Axk − b‖2) then
ηk+1 = yk+1,
δk+1 = (1− r) · δk.

else
ηk+1 = ηk,
δk+1 = (1− 1

3
r) · δk, . less aggressive is in this case.

end if
δk+1 = max{δk+1, regthr}, . for numerical stability (ensure quasi-definiteness).
if (‖c+Qxk+1 − A>yk+1 − zk+1‖2 ≤ 0.95 · ‖c+Qxk − A>yk − zk‖2) then

ζk+1 = xk+1.
ρk+1 = (1− r) · ρk.

else
ζk+1 = ζk.
ρk+1 = (1− 1

3
r) · ρk.

end if
ρk+1 = max{ρk+1, regthr}.

Algorithm TC Termination Criteria

Input: tol, kIP, kPMM, IPmaxit, PMMmaxit.

if

((‖c−A>yk+Qxk−zk‖2
max{‖c‖2,1} ≤ tol

)
∧
(‖b−Axk‖2

max{‖b‖2,1} ≤ tol
)
∧
(
µk ≤ tol

))
then

return Solution (xk, yk, zk).

else if

((
‖c+Qxk−A>yk− zk + ρk(xk− ζk)‖2 ≤ tol

)
∧
(
‖xk− ζk‖2 > 1010

))
then

if
(
kPMM ≥ PMMmaxit

)
then . PMM sub-problem not updated for many

iterations
Declare Infeasibility.

end if

else if

((
‖b− Axk − δk(yk − λk)‖2 ≤ tol

)
∧
(
‖yk − ηk‖2 > 1010

))
then

if
(
kPMM ≥ PMMmaxit

)
then

Declare Infeasibility.
end if

else if (kIP ≥ IPmaxit) then . Maximum IPM iterations reached.
No Convergence.

end if

96

Chapter 4

An IP-PMM for Linear SDP

4.1 Introduction

In this chapter we extend IP-PMM for solving linear positive semi-definite
programming (SDP) problems. As in Chapter 3, we apply some iterations of
an IPM to each sub-problem of the PMM until a satisfactory solution is found.
We then update the PMM parameters, form a new IPM neighbourhood, and
repeat this process. Given this framework, we prove polynomial complexity of the
algorithm, under mild assumptions, and without requiring exact computations for
the Newton directions. We furthermore provide a necessary condition for lack of
strong duality, which can be used as a basis for constructing detection mechanisms
for identifying pathological cases within IP-PMM.

Positive semi-definite programming problems have attracted a lot of attention
in the literature for more more than two decades, and have been used to model
a plethora of different problems arising from control theory [11, Chapter 14],
power systems [105], stochastic optimization [20], truss optimization [177], and
many other application areas (e.g. see [11, 170]). More recently, SDP has been
extensively used for building tight convex relaxations of NP-hard combinatorial
optimization problems (see [11, Chapter 12], and the references therein).

As a result of the seemingly unlimited applicability of SDP, numerous con-
tributions have been made to optimization techniques suitable for solving such
problems. The most remarkable milestone was achieved by Nesterov and Ne-
mirovski [128], who designed a polynomially convergent interior point method for
the class of SDP problems. This led to the development of numerous successful
IPM variants for SDP; some of theoretical (e.g. [121, 188, 190]) and others of
practical nature (e.g. [19, 18, 123]). While IPMs enjoy fast convergence, in the-
ory and in practice, each IPM iteration requires the solution of a very large-scale
linear system, even for small-scale SDP problems. What is worse, such linear sys-
tems are inherently ill-conditioned. A viable and successful alternative to IPMs
for SDP problems (e.g. see [189]), which circumvents the issue of ill-conditioning
without significantly compromising convergence speed, is based on the augmented
Lagrangian method, which, as already mentioned, can be seen as the dual appli-
cation of the proximal point method (see [146]). The issue with ALMs is that,
unlike IPMs, a consistent strategy for tuning the algorithm parameters is not

97

98 Spyridon Pougkakiotis

known. Furthermore, polynomial complexity is lost, and is replaced with merely
a finite termination. An IPM scheme combined with the proximal method of
multipliers for solving SDP problems was proposed in [54], and was interpreted
as a primal-dual regularized IPM. The authors established global convergence,
and numerically demonstrated the efficiency of the method. However, the latter
is not guaranteed to converge in a polynomial number of iterations, or even in
a finite number of steps. Finally, viable alternatives based on proximal splitting
methods have been studied in [97, 162]. Such methods are very efficient and re-
quire significantly less computations and memory per iteration, as compared to
IPM or ALM. However, as first-order schemes, their convergence to high accu-
racy might be slow. Hence, such approaches are suitable for finding approximate
solutions with low-accuracy.

In this chapter, we are extending the interior point-proximal method of multi-
pliers presented in Chapter 3. In particular, the algorithm in Chapter 3 was devel-
oped for convex quadratic programming problems and assumed that the resulting
linear systems are solved exactly. Under this framework, it was proved that IP-
PMM converges in a polynomial number of iterations, under mild assumptions,
and an infeasibility detection mechanism was established. An important feature
of this method is that it provides a reliable tuning for the penalty parameters of
the PMM; indeed, the reliability of the algorithm is established numerically in
Chapter 3 as well as in [23]. In particular, the IP-PMM proposed in [23] uses
preconditioned iterative methods for the solution of the resulting linear systems,
and is very robust despite the inexact computations. In what follows, we develop
an IP-PMM for linear SDP problems, which furthermore allows for inexactness
in the solution of the linear systems that have to be solved at every iteration. We
show that the method converges polynomially under standard assumptions. Sub-
sequently, we provide a necessary condition for lack of strong duality, which can
serve as a basis for constructing implementable detection mechanisms for patho-
logical cases (following the developments in Chapter 3). We note that the chapter
is focused on the theoretical aspects of the method, and an efficient, scalable, and
reliable implementation would require a separate study.

The rest of this chapter is organized as follows. In Section 4.2, we provide
some preliminary background and introduce our notation. Then, in Section 4.3,
we provide the algorithmic framework of the method. In Section 4.4, we prove
polynomial complexity of the algorithm, and establish its global convergence.
Subsequently, in Section 4.5, a necessary condition for lack of strong duality
is derived, and we discuss how it can be used to construct an implementable
detection mechanism for pathological cases. Finally, we derive some conclusions
in Section 4.6.

4.2 Preliminaries and notation

4.2.1 Primal-dual pair of SDP problems

Let the vector space Sn := {B ∈ Rn×n : B = B>} be given, endowed with the
inner product 〈A,B〉 = Tr(AB), where Tr(·) denotes the trace of a matrix. In this

98

Regularized Interior Point Methods for Convex Programming 99

chapter, we consider the following primal-dual pair of linear positive semi-definite
programming problems, in the standard form:

min
X∈Sn

〈C,X〉, s.t. AX = b, X ∈ Sn+, (SDP)

max
y∈Rm, Z∈Sn

b>y, s.t. A∗y + Z = C, Z ∈ Sn+, (SDD)

where Sn+ := {B ∈ Sn : B � 0n,n}, C,X,Z ∈ Sn, b, y ∈ Rm, A is a linear operator
on Sn, and A∗ is the adjoint of A. We note that the norm induced by the
inner product 〈A,B〉 = Tr(AB) is in fact the Frobenius norm, denoted by ‖ · ‖F .
Furthermore, the adjoint A∗ : Rm 7→ Sn is such that y>AX = 〈A∗y,X〉, ∀ y ∈
Rm, ∀ X ∈ Sn.

For the rest of this chapter, except for Section 4.5, we will assume that the
linear operator A is onto and that problems (SDP) and (SDD) are both strictly
feasible (that is, Slater’s constraint qualification holds for both problems). It is
well-known that under the previous assumptions, the primal-dual pair (SDP)–
(SDD) is guaranteed to have an optimal solution for which strong duality holds
(see [128]). Such a solution can be found by solving the Karush–Kuhn–Tucker
(KKT) optimality conditions for (SDP)–(SDD), which read as follows:A∗y + Z − C

AX − b
XZ

 =

0n,n
0m
0n,n

 , X, Z ∈ Sn+. (4.1)

4.2.2 A proximal method of multipliers

Let us derive a proximal method of multipliers (see [147]) for the pair (SDP)–
(SDD). Given arbitrary starting point (X0, y0) ∈ Sn+ × Rm, the PMM can be
summarized by the following iteration:

Xk+1 = arg min
X∈Sn+

{
〈C,X〉 − y>k (AX − b) +

µk
2
‖X −Xk‖2

F +
1

2µk
‖AX − b‖2

2

}
,

yk+1 = yk −
1

µk
(AXk+1 − b),

(4.2)

where µk is a positive penalty parameter. The previous iteration admits a unique
solution, for all k.

As in Section 1.1.2, we can write (4.2) equivalently by making use of the
maximal monotone operator TL : Rm × Sn ⇒ Rm × Sn (see [146, 147]), whose
graph is defined as:

TL(X, y) := {(V, u) : V ∈ C −A∗y + ∂δSn+(X), u = AX − b}, (4.3)

99

100 Spyridon Pougkakiotis

where δSn+(·) is an indicator function defined as:

δSn+(X) :=

{
0, if X ∈ Sn+,
∞, otherwise,

(4.4)

and ∂(·) denotes the sub-differential of a function, hence (from [148, Corollary
23.5.4]):

Z ∈ ∂δSn+(X)⇔ −Z ∈ Sn+, 〈X,Z〉 = 0.

By convention, we have that ∂δSn+(X∗) = ∅ if X∗ /∈ Sn+. Given a bounded
pair (X∗, y∗) such that (0n,n, 0m) ∈ TL(X∗, y∗), we can retrieve a matrix Z∗ ∈
∂δSn+(X∗), using which (X∗, y∗,−Z∗) is an optimal solution for (SDP)–(SDD).
By defining the proximal operator :

Pk := (In+m +
1

µk
TL)−1, (4.5)

where In+m is the identity operator of size n + m, and describes the direct sum
of the idenity operators of Sn and Rm, we can express (4.2) as:

(Xk+1, yk+1) = Pk(Xk, yk), (4.6)

and it can be shown that Pk is single valued and firmly non-expansive (see [147]).

4.2.3 An infeasible interior point method

In what follows we present a basic infeasible IPM suitable for solving the
primal-dual pair (SDP)–(SDD). Such methods handle the conic constraints by
introducing a suitable logarithmic barrier in the objective (for an extensive study
of logarithmic barriers, the reader is referred to [128]). At each iteration, we
choose a barrier parameter µ > 0 and form the logarithmic barrier primal-dual
pair:

min
X∈Sn

〈C,X〉 − µ ln(det(X)), s.t. AX = b, (4.7)

max
y∈Rm, Z∈Sn

b>y + µ ln(det(Z)), s.t. A∗y + Z = C. (4.8)

The first-order (barrier) optimality conditions of (4.7)–(4.8) read as follows:A∗y + Z − C
AX − b
XZ − µIn

 =

0n,n
0m
0n,n

 , X, Z ∈ Sn++, (4.9)

100

Regularized Interior Point Methods for Convex Programming 101

where Sn++ := {B ∈ Sn : B � 0n,n}. For every chosen value of µ, we want to
approximately solve the following non-linear system of equations:

F IPM
τ,µ (w) :=

A∗y + Z − C
AX − b

XZ − τµIn

 =

0n,n
0m
0n,n

 =: 0,

where, with a slight abuse of notation, we set w = (X, y, Z).
In IPM literature it is common to apply Newton method to solve approxi-

mately the system of non-linear equations F IPM
τ,µ (w) = 0. As already mentioned

in the introduction, Newton method is favored for systems of this form due to the
self-concordance of the logarithmic barrier (see [128]). However, a well-known is-
sue in the literature is that the matrix XZ is not necessarily symmetric. A
common approach to tackle this issue is to employ a symmetrization operator
HP : Rn×n 7→ Sn, such that HP (XZ) = µIn if and only if XZ = µIn, given
that X, Z ∈ Sn+. Following Zhang ([188]), we employ the following operator:
HP : Rn×n 7→ Sn:

HP (B) :=
1

2
(PBP−1 + (PBP−1)>), (4.10)

where P is a non-singular matrix. It can be shown that the central path (a key
notion used in IPMs–see [128]) can be equivalently defined as HP (XZ) = µIn,

for any non-singular P . In this chapter, we will make use of the choice Pk = Z
− 1

2
k

(the notation should not be confused with the proximal operator in (1.10)). For a
plethora of alternative choices, the reader is referred to [167]. We should note that
the analysis in this chapter can be tailored to different symmetrization strategies,
and this choice is made for simplicity of exposition.

At the beginning of the k-th iteration, we have wk = (Xk, yk, Zk) and µk
available. The latter is defined as µk = 〈Xk,Zk〉

n
. By substituting the symmetrized

complementarity in the last block equation and applying Newton method, we
obtain the following system of equations:0n,n A∗ In

A 0m,m 0m,n
Ek 0n,m Fk

∆X
∆y
∆Z

 =

 C −A∗y − Zk
b−AXk

µIn −HPk(XkZk)

 , (4.11)

where Ek := ∇XHPk(XkZk), and Fk := ∇ZHPk(XkZk).

4.2.4 Vectorized format

In what follows we vectorize the associated operators, in order to work with
matrices. In particular, given any matrix B ∈ Rm×n, we denote its vectorized
form as B, which is a vector of size mn, obtained by stacking the columns of B,
from the first to the last. For the rest of this manuscript, any boldface letter (other
than O(·), Ω(·), Θ(·) which are reserved for the complexity notation) denotes a
vectorized matrix. Furthermore, if A : Sn 7→ Rm is a linear operator, we can
define it component-wise as (AX)i := 〈Ai, X〉, for i = 1, . . . ,m, and any X ∈ Sn,
where Ai ∈ Sn. Furthermore, the adjoint of this operator, that is A∗ : Rm 7→ Sn

101

102 Spyridon Pougkakiotis

is defined as A∗y :=
∑m

i=1 yiAi, for all y ∈ Rm. Using this notation, we can
equivalently write (SDP)–(SDD) in the following form:

min
X∈Sn

〈C,X〉, s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m, X ∈ Sn+, (4.12)

max
y∈Rm, Z∈Sn

b>y, s.t.
m∑
i=1

yiAi + Z = C, Z ∈ Sn+. (4.13)

The first-order optimality conditions can be re-written as:A>y +Z −C
AX − b
XZ

 =

0n2

0m
0n2

 , X, Z ∈ Sn+,

where A> = [A1 A2 · · · Am].

4.3 An interior point-proximal method of mul-

tipliers for SDP

In this section we present an inexact extension of IP-PMM presented in Chap-
ter 3, suitable for solving problems of the form of (SDP)–(SDD). Assume that
we have available an estimate ηk for a Lagrange multiplier vector at iteration k.
Similarly, denote by Ξk ∈ Sn+ an estimate of a primal solution. During the k-th
iteration of the PMM, applied to (SDP), the following proximal penalty function
has to be minimized:

LPMM
µk

(X; Ξk, ηk) := 〈C,X〉 − η>k (AX − b) +
1

2µk
‖AX − b‖2

2 +
µk
2
‖X − Ξk‖2

F , (4.14)

with {µk} some non-increasing sequence of positive penalty parameters. Notice
that this is equivalent to the iteration (4.2). We approximately minimize (4.14)
by applying one (or a few) iterations of the previously presented infeasible IPM.
We alter (4.14) by adding a logarithmic barrier:

LIP−PMM
µk

(X; Ξk, ηk) := LPMM
µk

(X; Ξk, ηk)− µk log(det(X)), (4.15)

and we treat µk as the barrier parameter. We form the optimality conditions of
this sub-problem as:

C −A∗ηk +
1

µk
A∗(AX − b) + µk(X − Ξk)− µkX−1 = 0n,n.

102

Regularized Interior Point Methods for Convex Programming 103

Introducing the variables y = ηk − 1
µk

(AX − b) and Z = µkX
−1, yields:

C −A∗y − Z + µk(X − Ξk)
AX + µk(y − ηk)− b

XZ − µkIn

 =

0n,n
0m
0n,n

⇔
C − A>y −Z + µk(X −Ξk)

AX + µk(y − ηk)− b
HPk(XZ)− µkIn

 =

0n2

0m
0n2

,
(4.16)

where the second system is obtained by introducing the symmetrization in (4.10),
and by vectorizing the associated matrices and operators.

Given an arbitrary vector b ∈ Rm, and matrix C ∈ Rn×n, we define the
semi-norm (extending that in [121, Section 4] to the SDP case):

‖(b,C)‖S := min
X,y,Z

{
‖(X,Z)‖2 :

AX = b,
A>y +Z = C

}
. (4.17)

Starting point Similar to Section 3.2, we set (X0, Z0) = ρ(In, In), for some

ρ > 0. We also set y0 to some arbitrary value (e.g. y0 = 0m), and µ0 = 〈X0,Z0〉
n

.
Using the aforementioned triple, we have:

AX0 = b+ b̄, A>y0 +Z0 = C + C̄, Ξ0 = X0, η0 = y0. (4.18)

for some b̄ ∈ Rm, and C̄ ∈ Sn.

Neighbourhood The neighbourhood is a direct extension of the one employed
in Section 3.2. Given (4.18), some µk, ηk, and Ξk, we define the regularized set
of centers:

Pµk(Ξk, ηk) := {(X, y, Z) ∈ Cµk(Ξk, ηk) : X ∈ Sn++, Z ∈ Sn++, XZ = µkIn},

Cµk(Ξk, ηk) :=

{
(X, y, Z) :

AX + µk(y − ηk) = b+ µk
µ0
b̄,

A>y +Z − µk(X −Ξk) = C + µk
µ0
C̄

}
,

where b̄, C̄ are as in (4.18).
We enlarge the previous set, by defining the following set:

C̃µk(Ξk, ηk) :=

{
(X, y, Z) :

AX + µk(y − ηk) = b+ µk
µ0

(b̄+ b̃k),

A>y +Z − µk(X −Ξk) = C + µk
µ0

(C̄ + C̃k)

‖(b̃k, C̃k)‖2 ≤ KN , ‖(b̃k, C̃k)‖S ≤ γSρ

}
,

where KN > 0 is a constant, γS ∈ (0, 1) and ρ > 0 is as defined in the starting
point. The vector b̃k and the matrix C̃k represent the current scaled (by µ0

µk
)

infeasibility and will vary depending on the iteration k. We can now define a
family of neighbourhoods:

Nµk(Ξk, ηk) :=

{
(X, y, Z) ∈ C̃µk(Ξk, ηk) :

X ∈ Sn++, Z ∈ Sn++,
‖HP (XZ)− µIn‖F ≤ γµµk

}
, (4.19)

where γµ ∈ (0, 1) is a constant restricting the symmetrized complementarity prod-
ucts. Obviously, the starting point defined in (4.18) belongs to the neighbourhood

103

104 Spyridon Pougkakiotis

Nµ0(Ξ0, η0), with (b̃0, C̃0) = (0m, 0n2).

Newton system As discussed earlier, we employ the Newton method for ap-
proximately solving a perturbed form of system (4.16), for all k. As in Section
3.2, we perturb (4.16) in order to take into consideration the target reduction
of the barrier parameter µk (by introducing the centering parameter τk), as well
as to incorporate the initial infeasibility, given our starting point in (4.18). In
particular, we would like to solve the following system:−(µkIn) A∗ In

A µkIm 0n,m
Zk 0n,m Xk

∆Xk

∆yk
∆Zk

 =

(C + τkµk
µ0
C̄)−A∗yk − Zk + τkµk(Xk − Ξk)

−AXk − τkµk(yk − ηk) + (b+ τkµk
µ0
b̄)

−XkZk + τkµkIn

, (4.20)

where b̄, C̄ are as in (4.18). We note that we could either first linearize the last
block equation of (4.16) and then apply the symmetrization, defined in (4.10), or
first apply the symmetrization directly to the last block equation of (4.16) and
then linearize it. Both approaches are equivalent. Hence, following the former
approach, we obtain the vectorized Newton system, that has to be solved at every
iteration of IP-PMM:−(µkIn2) A> In2

A µkIm 0m,n2

Ek 0n2,m Fk

∆Xk

∆yk
∆Zk

=

(C + τkµk
µ0
C̄)− A>yk −Zk + τkµk(Xk −Ξk)

−AXk − τkµk(yk − ηk) + (b+ τkµk
µ0
b̄)

−(Z
1
2
k ⊗ Z

1
2
k)Xk + τkµkIn

+

Ed,kεp,k
Eµ,k

 ,
(4.21)

where Ek = (Z
1
2
k ⊗Z

1
2
k), Fk = 1

2

(
Z

1
2
k Xk⊗Z

− 1
2

k +Z−
1
2 ⊗Z

1
2
k Xk

)
, and (Ed,k, εp,k,Eµ,k)

models potential errors, occurring by solving the symmetrized version of system
(4.20) inexactly (e.g. by using a Krylov subspace method). In order to make
sure that the computed direction is accurate enough, we impose the following
accuracy conditions:

‖Eµ,k‖2 = 0, ‖(εp,k,Ed,k)‖2 ≤
τmin

4µ0

KNµk, ‖(εp,k,Ed,k)‖S ≤
τmin

4µ0

γSρµk,

(4.22)
where τmin is the minimum allowed value for τk, KN , γS are constants defined in
(4.19), and ρ is defined in the starting point in (4.18). Notice that the condition
‖Eµ,k‖2 = 0 is imposed without loss of generality, since it can be easily satisfied in
practice. For more on this, see the discussions in [190, Section 3] and [88, Lemma
4.1]. Furthermore, as we will observe in Section 4.4, the bound on the error
with respect to the semi-norm defined in (4.17) is required to ensure polynomial
complexity of the method. While evaluating this semi-norm is not particularly
practical (and is never performed in practice, e.g. see Section 3.5.1), it can be
done in polynomial time (see [121, Section 4]), and hence does not affect the
polynomial nature of the algorithm. The algorithmic scheme of the method is
summarized in Algorithm IP–PMM-SDP.

104

Regularized Interior Point Methods for Convex Programming 105

Algorithm IP–PMM-SDP Interior Point-Proximal Method of Multipliers

Input: A, b, C, tol.
Parameters: 0 < τmin ≤ τmax ≤ 0.5, k†, K̄,KN > 0, 0 < γS < 1, 0 < γµ < 1.
Starting point: Set as in (4.18), k̄ = 0.

for (k = 0, 1, 2, · · ·) do

if

((
‖AXk − b‖2 < tol

)
∧
(
‖C − A>yk −Zk‖2 < tol

)
∧
(
〈Xk, Zk〉

n
< tol

))
then

return (Xk, yk, Zk).
else

Choose τk ∈ [τmin, τmax] and solve (4.21) so that (4.22) holds.
Choose αk, as the largest α ∈ (0, 1], s.t. µk(α) ≤ (1− 0.01α)µk, and:

(Xk + αk∆Xk, yk + αk∆yk, Zk + αk∆Zk) ∈ Nµk(α)(Ξk, ηk),

where, µk(α) =
〈Xk + αk∆Xk, Zk + αk∆Zk〉

n
.

Set (Xk+1, yk+1, Zk+1) = (Xk + αk∆Xk, yk + αk∆yk, Zk + αk∆Zk).

Set µk+1 = 〈Xk+1,Zk+1〉
n

.
Let rp = AXk+1 − (b+ µk+1

µ0
b̄), Rd = (C + µk+1

µ0
C̄)− A>yk+1 −Zk+1.

Set (Ξk+1, ηk+1) = (Ξk, ηk).

if

((
‖(rp,Rd)‖2 ≤ KN

µk+1

µ0

)
∧
(
‖(rp,Rd)‖S ≤ γSρ

µk+1

µ0

))
then

if
(
‖(Xk+1, yk+1)‖2 ≤ K̄

√
n
)

then
(Ξk+1, ηk+1) = (Xk+1, yk+1).

else if
(
k̄ ≤ k†

)
then

(Ξk+1, ηk+1) = (Xk+1, yk+1), k̄ = k̄ + 1.
end if

end if
end if

end for

4.4 Convergence analysis

In this section we prove polynomial complexity of Algorithm IP–PMM-SDP,
and establish its global convergence. The analysis is modeled after that in Chapter
3. We make use of the following two standard assumptions, generalizing those
employed in Chapter 3 to the SDP case.

Assumption 3. The problems (SDP) and (SDD) are strictly feasible, that is,
Slater’s constraint qualification holds for both problems. Furthermore, there exists
an optimal solution (X∗, y∗, Z∗) and a constant K∗ > 0 independent of n and m
such that ‖(X∗, y∗,Z∗)‖2 ≤ K∗

√
n.

Assumption 4. The vectorized constraint matrix A of (SDP) has full row rank,
that is rank(A) = m. Moreover, there exist constants KA,1 > 0, KA,2 > 0,

105

106 Spyridon Pougkakiotis

Kr,1 > 0, and Kr,2 > 0, independent of n and m, such that:

σmin(A) ≥ KA,1, σmax(A) ≤ KA,2, ‖b‖∞ ≤ Kr,1, ‖C‖2 ≤ Kr,2

√
n.

Remark 4.4.1. Assumption 3 is a direct extension of Assumption 1. From
positive semi-definiteness of X∗ and Z∗, we can show that it implies that Tr(X∗)+
Tr(Z∗) ≤ 2C∗n, which is one of the assumptions employed in [188, 190]. Notice
that we assume n > m, without loss of generality. The theory in this section
would hold if m > n, simply by replacing n by m in the upper bound of the norm
of the optimal solution as well as of the problem data.

Before proceeding with the convergence analysis, we briefly provide an outline
of it, for the convenience of the reader. Firstly, it should be noted that polyno-
mial complexity as well as global convergence of Algorithm IP–PMM-SDP follows
exactly the developments in Section 3.3. To that end, we provide some neces-
sary technical results in Lemmas 4.4.1–4.4.3. Then, in Lemma 4.4.4 we are able
to show that the iterates (Xk, yk, Zk) of Algorithm IP–PMM-SDP will remain
bounded for all k. Subsequently, we provide some additional technical results in
Lemmas 4.4.5–4.4.7, which are then used in Lemma 4.4.8, where we show that
the Newton direction computed at every iteration k is also bounded. All the
previous are utilized in Lemma 4.4.9, where we provide a lower bound for the
step-length αk chosen by Algorithm IP–PMM-SDP at every iteration k. Then,
Q-linear convergence of µk (with R-linear convergence of the regularized resid-
uals) is shown in Theorem 4.4.1. Polynomial complexity is proven in Theorem
4.4.2, and finally, global convergence is established in Theorem 4.4.3. Any proof
that is a direct generalization from a respective proof in Section 3.3, will be given
in the appendix (see Appendix A) for the convenience of the reader.

Let us now use the properties of the proximal operator defined in (4.5).

Lemma 4.4.1. Given Assumption 3, and for all η ∈ Rm, Ξ ∈ Sn+ and 0 ≤ µ <
∞, there exists a unique pair (X∗r , y

∗
r), such that (X∗r , y

∗
r) = P(Ξ, η), X∗r ∈ Sn+,

and
‖(X∗r , y∗r)− (X∗, y∗)‖2 ≤ ‖(Ξ, η)− (X∗, y∗)‖2, (4.23)

where P(·) is defined as in (4.5), and (X∗, y∗) is such that (0n,n, 0m) ∈ TL(X∗, y∗).

Proof. The thesis follows from the developments in [147, Proposition 1].

Lemma 4.4.2. Given Assumptions 3, 4, there exists a triple (X∗rk , y
∗
rk
, Z∗rk), sat-

isfying:

AX∗rk + µ(y∗rk − ηk)− b = 0m,

−C + A>y∗rk +Z∗rk − µ(X∗rk −Ξk) = 0n2 ,

〈X∗rk , Z
∗
rk
〉 = 0,

(4.24)

with X∗rk , Z
∗
rk
∈ Sn+, and ‖(X∗rk , y

∗
rk
,Z∗rk)‖2 = O(

√
n), for all ηk ∈ Rm, Ξk ∈

Sn+, produced by Algorithm IP–PMM-SDP, and any µ ∈ [0,∞). Moreover,
‖(Ξk, ηk)‖2 = O(

√
n), for all k ≥ 0.

Proof. See Appendix A.1.

106

Regularized Interior Point Methods for Convex Programming 107

Lemma 4.4.3. Given Assumptions 3, 4, (Ξk, ηk), produced at an arbitrary itera-
tion k ≥ 0 of Algorithm IP–PMM-SDP, and any µ ∈ [0,∞), there exists a triple
(X̃, ỹ, Z̃) which satisfies the following system of equations:

AX̃ + µỹ = b+ b̄+ µηk + b̃k,

A>ỹ + Z̃ − µX̃ = C + C̄ − µΞk + C̃k,

X̃Z̃ = θIn,

(4.25)

for some arbitrary θ > 0 (θ = Θ(1)), with X̃, Z̃ ∈ Sn++ and ‖(X̃, ỹ, Z̃)‖2 =

O(
√
n), where b̃k, C̃k are defined in (4.19), while b̄, C̄ are defined with the starting

point in (4.18). Furthermore, λmin(X̃) ≥ ξ and λmin(Z̃) ≥ ξ, for some positive
ξ = Θ(1).

Proof. Let k ≥ 0 denote an arbitrary iteration of Algorithm IP–PMM-SDP. Let
also b̄, C̄ as defined in (4.18), and b̃k, C̃k, as defined in the neighbourhood
conditions in (4.19). Given an arbitrary positive constant θ > 0, we consider the
following barrier primal-dual pair:

min
X∈Sn

(
〈C + C̄ + C̃k), X〉 − θ ln(det(X))

)
, s.t. AX = b+ b̄+ b̃k, (4.26)

max
y∈Rm,Z∈Sn

(
(b+ b̄+ b̃k)

>y + θ ln(det(Z))
)
, s.t. A∗y + Z = C + C̄ + C̃k. (4.27)

Let us now define the following triple:

(X̂, ŷ, Ẑ) := arg min
(X,y,Z)

{
‖(X,Z)‖2 : AX = b̃k, A

>y +Z = C̃k}.

From the neighbourhood conditions (4.19), we know that ‖(b̃k, C̃k)‖S ≤ γSρ, and
from the definition of the semi-norm in (4.17), we have that ‖(X̂, Ẑ)‖2 ≤ γSρ. Us-
ing (4.17) alongside Assumption 4, we can also show that ‖ŷ‖2 = Θ(‖(X̂, Ẑ)‖2).
On the other hand, from the definition of the starting point, we have that
(X0, Z0) = ρ(In, In). By defining the following auxiliary point:

(X̄, ȳ, Z̄) = (X0, y0, Z0) + (X̂, ŷ, Ẑ),

we have that (1+γS)ρ(In, In) � (X̄, Z̄) � (1−γS)ρ(In, In), that is, the eigenvalues
of these matrices are bounded by constants that are independent of the problem
under consideration. By construction, the triple (X̄, ȳ, Z̄) is a feasible solution for
the primal-dual pair in (4.26)–(4.27), giving bounded primal and dual objective
values, respectively. This, alongside Weierstrass’s theorem on a potential function
can be used to show that the solution of problem (4.26)–(4.27) is bounded. In
other words, for any choice of θ > 0, there must exist a bounded triple (X∗s , y

∗
s , Z

∗
s)

solving (4.26)–(4.27), i.e.:

AX∗s = b+ b̄+ b̃k, A>y∗s +Z∗s = C + C̄ + C̃k, X∗sZ
∗
s = θIn,

such that λmax(Xs∗) ≤ Ks∗ and λmax(Zs∗) ≤ Ks∗ , where Ks∗ > 0 is a positive con-
stant. In turn, combining this with Assumption 4 implies that ‖(X∗s , y∗s ,Z∗s)‖2 =

107

108 Spyridon Pougkakiotis

O(
√
n).

Let us now apply the PMM to (4.26)–(4.27), given the estimates Ξk, ηk. We
should note at this point that the proximal operator used here is different from
that in (4.5), since it is based on a different maximal monotone operator to that
in (4.3). In particular, we associate a single-valued maximal monotone operator
to (4.26)–(4.27), with graph:

T̃L(X, y) :=
{

(V, u) : V = (C + C̄ + C̃k)−A∗y − θX−1, u = AX − (b+ b̄+ b̃k)
}
.

As before, the proximal operator is defined as P̃ := (In+m + T̃L)−1, and is single-
valued and non-expansive. We let any µ ∈ [0,∞) and define the following penalty
function:

L̃µ,θ(X; Ξk, ηk) := 〈C + C̄ + C̃k, X〉+
1

2
µ‖X − Ξk‖2

F +
1

2µ
‖AX − (b+ b̄+ b̃k)‖2

2

− (ηk)
>(AX − (b+ b̄+ b̃k))− θ ln(det(X)).

By defining the variables y = ηk− 1
µ
(AX−(b+ b̄+ b̃k)) and Z = θX−1, we can see

that the optimality conditions of this PMM sub-problem are exactly those stated
in (4.25). Equivalently, we can find a pair (X̃, ỹ) such that (X̃, ỹ) = P̃(Ξk, ηk)
and set Z̃ = θX̃−1. We can now use the non-expansiveness of P̃ , as in Lemma
4.4.1, to obtain:

‖(X̃, ỹ)− (X∗s , y
∗
s)‖2 ≤ ‖(Ξk, ηk)− (X∗s , y

∗
s)‖2.

But we know, from Lemma 4.4.2, that ‖(Ξk, ηk)‖2 = O(
√
n), ∀ k ≥ 0. Combining

this with our previous observations, yields that ‖(X̃, ỹ)‖2 = O(
√
n). Setting Z̃ =

θX̃−1, gives a triple (X̃, ỹ, Z̃) that satisfies (4.25), while ‖(X̃, ỹ, Z̃)‖2 = O(
√
n)

(from dual feasibility).
To conclude the proof, let us notice that the value of L̃µ,θ(X; Ξk, ηk) will

grow unbounded as λmin(X) → 0 or λmax(X) → ∞. Hence, there must exist a
constant K̃ > 0, such that the minimizer of this function satisfies 1

K̃
≤ λmin(X̃) ≤

λmax(X̃) ≤ K̃. The relation X̃Z̃ = θIn then implies that θ
K̃
≤ λmin(Z̃) ≤

λmax(Z̃) ≤ θK̃. Hence, there exists some ξ = Θ(1) such that λmin(X̃) ≥ ξ and
λmin(Z̃) ≥ ξ.

In the following lemma, we derive boundedness of the iterates of Algorithm
IP–PMM-SDP.

Lemma 4.4.4. Given Assumptions 3 and 4, the iterates (Xk, yk, Zk) produced
by Algorithm IP–PMM-SDP, for all k ≥ 0, are such that:

Tr(Xk) = O(n), Tr(Zk) = O(n), ‖(Xk, yk,Zk)‖2 = O(n).

Proof. See Appendix A.2.

In what follows, we provide Lemmas 4.4.5–4.4.7, which we use to prove bound-
edness of the Newton direction computed at every iteration of Algorithm IP–
PMM-SDP, in Lemma 4.4.8.

108

Regularized Interior Point Methods for Convex Programming 109

Lemma 4.4.5. Let Dk = S
− 1

2
k Fk = S

1
2
k E
−1
k , where Sk = EkFk, and Ek, Fk are

defined as in the Newton system in (4.21). Then, for any M ∈ Rn×n,

‖D−Tk M‖2
2 ≤

1

(1− γµ)µk
‖Z

1
2
kMZ

1
2
k ‖

2
F , ‖DkM‖2

2 ≤
1

(1− γµ)µk
‖X

1
2
kMX

1
2
k ‖

2
F ,

where γµ is defined in (4.19). Moreover, we have that:

‖D−Tk ‖
2
2 ≤

1

(1− γµ)µk
‖Zk‖2

F = O

(
n2

µk

)
, ‖Dk‖2

2 ≤
1

(1− γµ)µk
‖Xk‖2

F = O

(
n2

µk

)
.

Proof. The proof of the first two inequalities follows exactly the developments in
[190, Lemma 5]. The bound on the 2-norm of the matrix D−Tk follows by choosing
M such that M is a unit eigenvector, corresponding to the largest eigenvalue of
D−Tk . Then, ‖D−Tk M‖2

2 = ‖D−Tk ‖2
2. But, we have that:

‖D−Tk M‖2
2 ≤

1

(1− γµ)µk
‖Z

1
2
kMZ

1
2
k ‖

2
F

=
1

(1− γµ)µk
Tr(ZkM

>ZkM)

≤ 1

(1− γµ)µk
‖Zk‖2

F = O

(
n2

µk

)
where we used the cyclic property of the trace as well as Lemma 4.4.4. The same
reasoning applies to deriving the bound for ‖Dk‖2

2.

Lemma 4.4.6. Let Dk and Sk as defined in Lemma 4.4.5. Then, we have that:

‖D−Tk ∆Xk‖2
2 + ‖Dk∆Zk‖2

2 + 2〈∆Xk,∆Zk〉 = ‖S−
1
2

k Rµ,k‖2
2,

where Rµ,k = τkµkIn − Z
1
2
k XkZ

1
2
k . Furthermore,

‖HPk(∆Xk∆Zk)‖F ≤

√
1+γµ
1−γµ

2

(
‖D−Tk ∆Xk‖2

2 + ‖Dk∆Zk‖2
2

)
,

where γµ is defined in (4.19).

Proof. The equality follows directly by pre-multiplying by S−
1
2 on both sides of

the third block equation of the Newton system in (4.21) and by then taking the
2-norm (see [188, Lemma 3.1]). For a proof of the inequality, we refer the reader
to [188, Lemma 3.3].

Lemma 4.4.7. Let Sk as defined in Lemma 4.4.5, and Rµ,k as defined in Lemma
4.4.6. Then,

‖S−
1
2

k Rµ,k‖2
2 = O(nµk).

Proof. The proof is omitted since it follows exactly the developments in [190,
Lemma 7].

109

110 Spyridon Pougkakiotis

Lemma 4.4.8. Given Assumptions 3 and 4, and the Newton direction, denoted
as (∆Xk,∆yk,∆Zk), obtained by solving system (4.21) during an arbitrary iter-
ation k ≥ 0 of Algorithm IP–PMM-SDP, we have that:

‖HPk(∆Xk∆Zk)‖F = O(n4µ), ‖(∆Xk,∆yk,∆Zk)‖2 = O(n3).

Proof. Consider an arbitrary iteration k of Algorithm IP–PMM-SDP. We invoke
Lemmas 4.4.2, 4.4.3, for µ = τkµk. That is, there exists a triple (X∗rk , y

∗
rk
, Z∗rk)

satisfying (4.24), and a triple (X̃, ỹ, Z̃) satisfying (4.25), for µ = τkµk. Using the
centering parameter τk, define:

Ĉ =−
(
τk
µ0

C̄ − (1− τk)
(
Xk −Ξk +

µk
µ0

(X̃ −X∗rk)
)

+
1

µk
Ed,k

)
,

b̂ =−
(
τk
µ0

b̄+ (1− τk)
(
yk − ηk +

µk
µ0

(ỹ − y∗rk)
)

+
1

µk
εp,k

)
,

(4.28)

where b̄, C̄, µ0 are defined in (4.18) and εp,k, Ed,k model the errors which occur
when system (4.20) is solved inexactly. Notice that these errors are required to
satisfy (4.22) at every iteration k. Using Lemmas 4.4.2, 4.4.3, 4.4.4, relation
(4.22), and Assumption 4, we know that ‖(Ĉ, b̂)‖2 = O(n). Then, by applying
again Assumption 4, we know that there must exist a matrix X̂ ∈ Rn×n such that
AX̂ = b̂, ‖X̂‖F = O(n), and by setting Ẑ = Ĉ+µX̂, we have that ‖Ẑ‖F = O(n)
and:

AX̂ = b̂, Ẑ − µkX̂ = Ĉ. (4.29)

Using (X∗rk , y
∗
rk
, Z∗rk), (X̃, ỹ, Z̃), as well as the triple (X̂, 0m, Ẑ), where (X̂, Ẑ)

is defined in (4.29), we can define the following auxiliary triple:

(X̄, ȳ, Z̄) = (∆Xk,∆yk,∆Zk) +
µk
µ0

(X̃, ỹ, Z̃)− µk
µ0

(X∗rk , y
∗
rk
, Z∗rk) + µk(X̂, 0m, Ẑ).

(4.30)
Using (4.30), (4.28), and the second block equation of (4.21):

AX̄ + µkȳ = (A∆Xk + µk∆yk) +
µk
µ0

(
(AX̃ + µkỹ)− (AX∗rk + µky

∗
rk

)
)

+ µkAX̂

=

(
b+ τk

µk
µ0

b̄− AXk − τkµk(yk − ηk) + εp,k

)
+
µk
µ0

((AX̃ + µkỹ)− (AX∗rk + µky
∗
rk

))

− µk
(
τk
b̄

µ0

+ (1− τk)(yk − ηk)
)
− µk
µ0

(1− τk)µk(ỹ − y∗rk)− εp,k.

Then, by deleting opposite terms in the right-hand side, and employing (4.24)-
(4.25) (evaluated at µ = τkµk from the definition of (X∗rk , y

∗
rk
, Z∗rk) and (X̃, ỹ, Z̃)),

110

Regularized Interior Point Methods for Convex Programming 111

we have

AX̄ + µkȳ =

(
b+ τk

µk
µ0

b̄− AXk − τkµk(yk − ηk)
)

+
µk
µ0

(b+ τkµkηk + b̄+ b̃k)

− µk
µ0

(τkµkηk + b)− µk
(
τk
b̄

µ0

+ (1− τk)(yk − ηk)
)

= b+
µk
µ0

(b̄+ b̃k)− AXk − µk(yk − ηk)

= 0m,

where the last equation follows from the neighbourhood conditions ((Xk, yk, Zk) ∈
Nµk(Ξk, ηk)). Similarly, we can show that:

A>ȳ + Z̄ − µkX̄ = 0n2 .

The previous two equalities imply that:

〈X̄, Z̄〉 = 〈X̄,−A∗ȳ + µkX̄〉 = µk〈X̄, X̄〉+ µkȳ
>ȳ ≥ 0. (4.31)

On the other hand, using the last block equation of the Newton system (4.21),
we have:

EkX̄ + FkZ̄ = Rµ,k +
µk
µ0

Ek(X̃ −X∗rk + µ0X̂) +
µk
µ0

Fk(Z̃ −Z∗rk + µ0Ẑ),

where Rµ,k is defined as in Lemma 4.4.6. Let Sk be defined as in Lemma 4.4.5.

By multiplying both sides of the previous equation by S
− 1

2
k , we get:

D−Tk X̄ +DkZ̄ = S
− 1

2
k Rµ,k +

µk
µ0

(
D−Tk (X̃ −X∗rk + µ0X̂) +Dk(Z̃ −Z∗rk + µ0Ẑ)

)
.

(4.32)
But from (4.31) we know that 〈X̄, Z̄〉 ≥ 0 and hence:

‖D−Tk X̄ +DkZ̄‖2
2 ≥ ‖D−Tk X̄‖2

2 + ‖DkZ̄‖2
2.

Combining (4.32) with the previous inequality, gives:

‖D−Tk X̄‖2
2 ≤

{
‖S−

1
2

k Rµ,k‖2 +
µk
µ0

(
‖D−Tk (X̃ −X∗rk + µ0X̂)‖2

+ ‖Dk(Z̃ −Z∗rk + µ0Ẑ)‖2

)}2

.

We take square roots, use (4.30) and apply the triangle inequality, to get:

‖D−Tk ∆Xk‖2 ≤ ‖S
− 1

2
k Rµ,k‖2 +

µk
µ0

(
2‖D−Tk (X̃ −X∗rk + µ0X̂)‖2

+ ‖Dk(Z̃ −Z∗rk + µ0Ẑ)‖2

)
.

(4.33)

111

112 Spyridon Pougkakiotis

We now proceed to bounding the terms in the right hand side of (4.33). A
bound for the first term of the right hand side is given by Lemma 4.4.7, that is:

‖S−
1
2

k Rµ,k‖2 = O(n
1
2µ

1
2
k).

On the other hand, we have (from Lemma 4.4.5) that

‖D−Tk ‖2 = O

(
n

µ
1
2
k

)
, ‖Dk‖2 = O

(
n

µ
1
2
k

)
.

Hence, using the previous bounds, as well as Lemmas 4.4.2, 4.4.3, and (4.29), we
obtain:

2
µk
µ0

‖D−Tk (X̃ −X∗rk + µ0X̂)‖2 +
µk
µ0

‖Dk(Z̃ −Z∗rk + µ0Ẑ)‖2 = O
(
n2µ

1
2
k

)
,

Combining all the previous bounds yields that ‖D−Tk ∆Xk‖2 = O(n2µ
1
2
k). One can

bound ‖Dk∆Zk‖2 in the same way. The latter is omitted for ease of presentation.
Furthermore, we have that:

‖∆Xk‖2 = ‖DkD
−T
k ∆Xk‖2 ≤ ‖Dk‖2‖D−Tk ∆Xk‖2 = O(n3).

Similarly, we can show that ‖∆Zk‖2 = O(n3). From the first block equation of
the Newton system in (4.21), alongside Assumption 4, we can show that ‖∆yk‖2 =
O(n3).

Finally, using the previous bounds, as well as Lemma 4.4.6, we obtain the
desired bound on ‖HPk(∆Xk∆Zk)‖F , that is:

‖HPk(∆Xk∆Zk)‖F = O(n4µk),

which completes the proof.

As in Section 3.3, we can now prove that at every iteration of Algorithm IP–PMM-
SDP there exists a step-length αk > 0, using which, the new iterate satisfies the
conditions required by the algorithm. To that end, we assume the following
notation:(

Xk(α), yk(α), Zk(α)
)
≡ (Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk).

Lemma 4.4.9. Given Assumptions 3, 4, and by letting Pk(α) = Zk(α)
1
2 , there

exists a step-length ᾱ ∈ (0, 1), such that for all α ∈ [0, ᾱ] and for all iterations
k ≥ 0 of Algorithm IP–PMM-SDP, the following relations hold:

〈Xk + α∆Xk, Zk + α∆Zk〉 ≥ (1− α(1− β1))〈Xk, Zk〉, (4.34)

‖HPk(α)(Xk(α)Zk(α))− µk(α)‖F ≤ γµµk(α), (4.35)

〈Xk + α∆Xk, Zk + α∆Zk〉 ≤ (1− α(1− β2))〈Xk, Zk〉, (4.36)

where, without loss of generality, β1 = τmin

2
and β2 = 0.99. Moreover, ᾱ ≥ κ̄

n4 for

112

Regularized Interior Point Methods for Convex Programming 113

all k ≥ 0, where κ̄ > 0 is independent of n, m, and if (Xk, yk, Zk) ∈ Nµk(Ξk, ηk),
then letting:

(Xk+1, yk+1, Zk+1) = (Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk), µk+1 =
〈Xk+1, Zk+1〉

n
,

for any α ∈ (0, ᾱ], gives (Xk+1, yk+1, Zk+1) ∈ Nµk+1
(Ξk+1, ηk+1), where Ξk, and

ηk are updated as in Algorithm IP–PMM-SDP.

Proof. We proceed by proving the first three inequalities stated in the Lemma.
From Lemma 4.4.8, there exist constants K∆ > 0 and KH∆ > 0, independent of
n and m, such that:

〈∆Xk,∆Zk〉 = (D−Tk ∆Xk)
>(Dk∆Zk) ≤ ‖D−Tk ∆Xk‖2‖Dk∆Zk‖2 ≤ K2

∆n
4µk,

‖HPk(∆Xk∆Zk)‖F ≤ KH∆n
4µk.

From the last block equation of the Newton system (4.20), we can show that:

〈Zk,∆Xk〉+ 〈Xk,∆Zk〉 = (τk − 1)〈Xk, Zk〉. (4.37)

The latter can also be obtained from (4.21), since we require ‖Eµ,k‖ = 0. Fur-
thermore:

HPk(Xk(α)Zk(α)) = (1− α)HPk(XkZk) + ατkµkIn + α2HPk(∆Xk∆Zk). (4.38)

We proceed by proving (4.34). Using (4.37), we have:

〈Xk + α∆Xk, Zk + α∆Zk〉 − (1− α(1− β1))〈Xk, Zk〉
= 〈Xk, Zk〉+ α(τk − 1)〈Xk, Zk〉+ α2〈∆Xk,∆Zk〉 − (1− α)〈Xk, Zk〉 − αβ1〈Xk, Zk〉

≥ α(τk − β1)〈Xk, Zk〉 − α2K2
∆n

4µk ≥ α(
τmin

2
)nµk − α2K2

∆n
4µk,

where we set (without loss of generality) β1 = τmin

2
. The rightmost term of the

previous inequality will be non-negative for every α satisfying:

α ≤ τmin

2K2
∆n

3
.

In order to prove (4.35), we will use (4.38) and the fact that from the neigh-
bourhood conditions we have ‖HPk(XkZk) − µk‖F ≤ γµµk. To that end, we use
the result in [188, Lemma 4.2], stating that:

‖HPk(α)(Xk(α)Zk(α))− µk(α)In‖F ≤ ‖HPk(Xk(α)Zk(α))− µk(α)In‖F .

The latter yields

‖HPk(α)(Xk(α)Zk(α))− µk(α)In‖F − γµµk(α)

≤ ‖HPk(Xk(α)Zk(α))− µk(α)In‖F − γµµk(α)

113

114 Spyridon Pougkakiotis

By combining all the previous, we have:

‖HPk(Xk(α)Zk(α))− µk(α)In‖F − γµµk(α)

= ‖(1− α)(HPk(XkZk)− µkIn) + α2HPk(∆Xk,∆Zk)

− α2

n
〈∆Xk,∆Zk〉In‖F − γµµk(α)

≤ (1− α)‖HPk(XkZk)− µkIn‖F + α2µk

(
K2

∆

n
+KH∆

)
n4

− γµ
(

(1− α)µk + ατkµk +
α2

n
〈∆Xk,∆Zk〉

)
≤ −γµατminµk + α2µk

(
2K2

∆

n
+KH∆

)
n4,

where we used the neighbourhood conditions in (4.19), the equality µk(α) =
(1− α)µk + ατkµk + α2

n
〈∆Xk,∆Zk〉 (which can be derived from (4.37)), and the

third block equation of the Newton system (4.21). The rightmost term of the
previous inequality is non-positive for every α satisfying:

α ≤ τminγµ(2K2
∆

n
+KH∆

)
n4
.

Finally, to prove (4.36), we set (without loss of generality) β2 = 0.99. We
know, from Algorithm IP–PMM-SDP, that τmax ≤ 0.5. With the previous two
remarks in mind, we have:

1

n
〈Xk + α∆Xk, Zk + α∆Zk〉 − (1− 0.01α)µk

≤ (1− α)µk + ατkµk + α2K
2
∆n

4

n
µk − (1− 0.01α)µk

≤ −0.99αµk + 0.5αµk + α2K
2
∆n

4

n
µk

= −0.49αµk + α2K
2
∆n

4

n
µk.

The last term will be non-positive for every α satisfying:

α ≤ 0.49

K2
∆n

3
.

By combining all the previous bounds on the step-length, we have that (4.34)-
(4.36) hold for every α ∈ (0, α∗], where:

α∗ := min

{
τmin

2K2
∆n

3
,

τminγµ(2K2
∆

n
+KH∆

)
n4
,

0.49

K2
∆n

3
, 1

}
. (4.39)

Next, we would like to find the maximum ᾱ ∈ (0, α∗], such that:

(Xk(α), yk(α), Zk(α)) ∈ Nµk(α)(Ξk, ηk), for all α ∈ (0, ᾱ),

114

Regularized Interior Point Methods for Convex Programming 115

where µk(α) = 〈Xk(α),Zk(α)〉
n

. Let:

r̃p(α) = AXk(α) + µk(α)(yk(α)− ηk)−
(
b+

µk(α)

µ0

b̄

)
, (4.40)

and

R̃d(α) = A>yk(α) +Zk(α)− µk(α)(Xk(α)−Ξk)−
(
C +

µk(α)

µ0

C̄

)
. (4.41)

In other words, we need to find the maximum ᾱ ∈ (0, α∗], such that:

‖r̃p(α), R̃d(α)‖2 ≤ KN
µk(α)

µ0

, ‖r̃p(α), R̃d(α)‖S ≤ γSρ
µk(α)

µ0

, for all α ∈ (0, ᾱ).

(4.42)
If the latter two conditions hold, then (Xk(α), yk(α), Zk(α)) ∈ Nµk(α)(Ξk, ηk), for
all α ∈ (0, ᾱ). Then, if Algorithm IP–PMM-SDP updates Ξk, and ηk, it does so
only when similar conditions (as in (4.42)) hold for the new parameters. If the
parameters are not updated, the new iterate lies in the desired neighbourhood
because of (4.42), alongside (4.34)-(4.36).

We start by rearranging r̃p(α). Specifically, we have that:

r̃p(α) = A(Xk + α∆Xk) +

(
µk + α(τk − 1)µk

+
α2

n
〈∆Xk,∆Zk〉

)(
(yk + α∆yk − ηk)−

b̄

µ0

)
− b

=
(
AXk + µk(yk − ηk)− b−

µk
µ0

b̄
)

+ α(A∆Xk + µk∆yk)

+
(
α(τk − 1)µk +

α2

n
〈∆Xk,∆Zk〉

)(
(yk − ηk + α∆yk)−

b̄

µ0

)
=
µk
µ0

b̃k + α

(
b− AXk − τkµk

(
(yk − ηk)−

b̄

µ0

)
+ εp,k + µk

(
(yk − ηk)−

b̄

µ0

)
− µk

(
(yk − ηk)−

b̄

µ0

))
+
(
α(τk − 1)µk +

α2

n
〈∆Xk,∆Zk〉

)(
(yk − ηk + α∆yk)−

b̄

µ0

)
.

where we used the definition of b̃k in the neighbourhood conditions in (4.19),
and the second block equation in (4.21). By using again the neighbourhood
conditions, and then by deleting the opposite terms in the previous equation, we
obtain:

r̃p(α) = (1− α)
µk
µ0

b̃k + αεp,k + α2(τk − 1)µk∆yk

+
α2

n
〈∆Xk,∆Zk〉

(
yk − ηk + α∆yk −

b̄

µ0

)
.

(4.43)

115

116 Spyridon Pougkakiotis

Similarly, we can show that:

R̃d(α) = (1− α)
µk
µ0

C̃k + αEd,k − α2(τk − 1)µk∆Xk

− α2

n
〈∆Xk,∆Zk〉

(
Xk −Ξk + α∆Xk +

1

µ0

C̄
)
.

(4.44)

Recall (Lemma 4.4.8) that 〈∆Xk,∆Zk〉 ≤ K2
∆n

4µk, and define the following
quantities

ξ2 = µk‖(∆yk,∆Xk)‖2 +K2
∆n

3µk

(
‖(yk − ηk,Xk −Ξk)‖2 +

α∗‖(∆yk,∆Xk)‖2 +
1

µ0

‖(b̄, C̄)‖2

)
,

ξS = µk‖(∆yk,∆Xk)‖S +K2
∆n

3µk

(
‖(yk − ηk,Xk −Ξk)‖S +

α∗‖(∆yk,∆Xk)‖S +
1

µ0

‖(b̄, C̄)‖S
)
,

(4.45)

where α∗ is given by (4.39). Using the definition of the starting point in (4.18), as
well as results in Lemmas 4.4.4, 4.4.8, we can observe that ξ2 = O(n4µk). On the
other hand, using Assumption 4, we know that for every pair (r1,R2) ∈ Rm+n2

(where R2 ∈ Rn×n is an arbitrary matrix), if ‖(r1,R2)‖2 = Θ(f(n)), where f(·)
is a positive polynomial function of n, then ‖(r1, R2)‖S = Θ(f(n)). Hence, we
have that ξS = O(n4µk). Using the quantities in (4.45), equations (4.43), (4.44),
as well as the neighbourhood conditions, we have that:

‖r̃p(α), R̃d(α)‖2 ≤ (1− α)KN
µk
µ0

+ αµk‖(εp,k,Ed,k)‖2 + α2µkξ2,

‖r̃p(α), R̃d(α)‖S ≤ (1− α)γSρ
µk
µ0

+ +αµk‖(εp,k,Ed,k)‖S + α2µkξS ,

for all α ∈ (0, α∗], where α∗ is given by (4.39) and the error occurring from the
inexact solution of (4.20), (εp,k,Ed,k), satisfies (4.22). From (4.34), we know that:

µk(α) ≥ (1− α(1− β1))µk, for all α ∈ (0, α∗).

By combining the last three inequalities, using (4.22) and setting β1 = τmin

2
, we

obtain that:

‖r̃p(α), R̃d(α)‖2 ≤
µk(α)

µ0

KN , for all α ∈
(

0,min
{
α∗,

τminKN

4ξ2µ0

}]
.

Similarly,

‖r̃p(α), R̃d(α)‖S ≤
µk(α)

µ0

γSρ, for all α ∈
(

0,min
{
α∗,

τminγSρ

4ξSµ0

}]
.

116

Regularized Interior Point Methods for Convex Programming 117

Hence, we have that:

ᾱ := min

{
α∗,

τminKN

4ξ2µ0

,
τminγSρ

4ξSµ0

}
. (4.46)

Since ᾱ = Ω
(

1
n4

)
, we know that there must exist a constant κ̄ > 0, independent

of n, m and of the iteration k, such that ᾱ ≥ κ
n4 , for all k ≥ 0, and this completes

the proof.

The following theorem summarizes our results.

Theorem 4.4.1. Given Assumptions 3, 4, the sequence {µk} generated by Algo-
rithm IP–PMM-SDP converges Q-linearly to zero, and the sequences of regular-
ized residual norms{
‖AXk+µk(yk−ηk)−b−

µk
µ0

b̄‖2

}
and

{
‖A>yk+Zk−µk(Xk−Ξk)−C−

µk
µ0

C̄‖2

}
converge R-linearly to zero.

Proof. See Appendix A.3.

Theorem 4.4.2. Let ε ∈ (0, 1) be a given error tolerance. Choose a starting point
for Algorithm IP–PMM-SDP as in (4.18), such that µ0 ≤ K

εω
for some positive

constants K, ω. Given Assumptions 3 and 4, there exists an index k0 ≥ 0 with:

k0 = O

(
n4
∣∣ log

1

ε

∣∣)
such that the iterates {(Xk, yk, Zk)} generated from Algorithm IP–PMM-SDP sat-
isfy:

µk ≤ ε, for all k ≥ k0.

Proof. The proof can be found in Theorem 3.3.2.

Finally, we present the global convergence guarantee of Algorithm IP–PMM-
SDP.

Theorem 4.4.3. Suppose that Algorithm IP–PMM-SDP terminates when a limit
point is reached. Then, if Assumptions 3 and 4 hold, every limit point of the
sequence {(Xk, yk, Zk)} determines a primal-dual solution of the non-regularized
pair (SDP)–(SDD).

Proof. See Appendix A.4.

4.5 A sufficient condition for strong duality

We now drop Assumptions 3, 4, in order to analyze the behaviour of the algo-
rithm when solving problems that are strongly (or weakly) infeasible, problems
for which strong duality does not hold (weakly feasible), or problems for which
the primal or the dual solution is not attained. For a formal definition and a

117

118 Spyridon Pougkakiotis

comprehensive study of the previous types of problems we refer the reader to
[112], and the references therein. Below we provide a well-known result, stating
that strong duality holds if and only if there exists a KKT point.

Proposition 1. Let (SDP)–(SDD) be given. Then, val(SDP) ≥ val(SDD), where
val(·) denotes the optimal objective value of a problem. Moreover, val(SDP) =
val(SDD) and (X∗, y∗, Z∗) is an optimal solution for (SDP)–(SDD), if and only
if (X∗, y∗, Z∗) satisfies the (KKT) optimality conditions in (4.1).

Proof. This is a well-known fact, the proof of which can be found in [160, Propo-
sition 2.1].

Let us employ the following two premises:

Premise 3. During the iterations of Algorithm IP–PMM-SDP, the sequences
{‖yk − ηk‖2} and {‖Xk − Ξk‖F}, remain bounded.

Premise 4. There does not exist a primal-dual triple, satisfying the KKT condi-
tions in (4.1) associated with the primal-dual pair (SDP)–(SDD).

The following analysis extends the result presented in Section 3.4, and is based
on the developments in [54, Sections 10 & 11]. In what follows, we show that
Premises 3 and 4 are contradictory. In other words, if Premise 4 holds (which
means that strong duality does not hold for the problem under consideration),
then Premise 3 cannot hold, and hence Premise 3 is a sufficient condition for
strong duality (and its negation is a necessary condition for Premise 4). We show
that if Premise 3 holds, then the algorithm converges to an optimal solution. If
not, however, it does not necessarily mean that the problem under consideration
is infeasible. For example, this could happen if either (SDP) or (SDD) is strongly
infeasible, weakly infeasible, and in some cases even if either of the problems is
weakly feasible (e.g. see [112, 160]). As we discuss later, the knowledge that
Premise 3 does not hold could be useful in detecting pathological problems.

Lemma 4.5.1. Given Premise 3, and by assuming that 〈Xk, Zk〉 > ε, for some
ε > 0, for all iterations k of Algorithm IP–PMM-SDP, the Newton direction
produced by (4.21) is uniformly bounded by a constant dependent only on n and/or
m.

Proof. The proof is omitted since it follows exactly the developments in [54,
Lemma 10.1]. We notice that the regularization terms (blocks (1,1) and (2,2)
in the Jacobian matrix in (4.21)) depend on µk which by assumption is always
bounded away from zero: µk ≥ ε

n
.

In the following lemma, we prove by contradiction that the parameter µk of
Algorithm IP–PMM-SDP converges to zero, given that Premise 3 holds.

Lemma 4.5.2. Given Premise 3, and a sequence (Xk, yk, Zk) ∈ Nµk(Ξk, ηk) pro-
duced by Algorithm IP–PMM-SDP, the sequence {µk} converges to zero.

118

Regularized Interior Point Methods for Convex Programming 119

Proof. Assume, by virtue of contradiction, that µk > ε > 0, for all k ≥ 0.
Then, we know (from Lemma 4.5.1) that the Newton direction obtained by the
algorithm at every iteration, after solving (4.21), will be uniformly bounded by a
constant dependent only on n, that is, there exists a positive constant K†, such
that ‖(∆Xk,∆yk,∆Zk)‖2 ≤ K†. We define r̃p(α) and R̃d(α) as in (4.40) and
(4.41), respectively, for which we know that equalities (4.43) and (4.44) hold,
respectively. Take any k ≥ 0 and define the following functions:

f1(α) := 〈Xk(α), Zk(α)〉 − (1− α(1− τmin

2
))〈Xk, Zk〉,

f2(α) := γµµk(α)− ‖HPk(α)(Xk(α)Zk(α))− µk(α)‖F
f3(α) := (1− 0.01α)〈Xk, Zk〉 − 〈Xk(α), Zk(α)〉,

g2(α) :=
µk(α)

µ0

KN − ‖(r̃p(α), R̃d(α))‖2,

where µk(α) = 〈Xk+α∆Xk,Zk+α∆Zk〉
n

, (Xk(α), yk(α), Zk(α)) = (Xk + α∆Xk, yk +
α∆yk, Zk + α∆Zk). We would like to show that there exists α∗ > 0, such that:

f1(α) ≥ 0, f2(α) ≥ 0, f3(α) ≥ 0, g2(α) ≥ 0, for all α ∈ (0, α∗].

These conditions model the requirement that the next iteration of Algorithm IP–
PMM-SDP must lie in the updated neighbourhood Nµk+1

(Ξk, ηk) (again, notice
that the restriction with respect to the semi-norm defined in (4.17) is not required
here, and indeed it cannot be incorporated unless rank(A) = m). Since Algorithm
IP–PMM-SDP updates the parameters ηk, Ξk only if the selected new iterate
belongs to the new neighbourhood, defined using the updated parameters (again,
ignoring the restrictions with respect to the semi-norm), it suffices to show that
(Xk+1, yk+1, Zk+1) ∈ Nµk+1

(Ξk, ηk).
Proving the existence of α∗ > 0, such that each of the aforementioned func-

tions is positive, follows exactly the developments in Lemma 4.4.9, with the only
difference being that the bounds on the directions are not explicitly specified in
this case. Using the same methodology as in Lemma 4.4.9, while keeping in mind
our assumption, namely 〈Xk, Zk〉 > ε, we can show that:

α∗ := min

{
1,

τminε

2(K†)2
,
(1− γµ)τminε̄

2(K†)2
,

0.49ε

2(K†)2
,
τminKNε

4µ0(ξ2)

}
, (4.47)

where ξ2 is a bounded constant, defined as in (4.45), and dependent on K†.
However, using the inequality:

µk+1 ≤ (1− 0.01α)µk, for all α ∈ [0, α∗]

we get that µk → 0, which contradicts our assumption that µk > ε, ∀ k ≥ 0, and
completes the proof.

Finally, using the following theorem, we derive a necessary condition for lack of
strong duality.

119

120 Spyridon Pougkakiotis

Theorem 4.5.1. Given Premise 4, i.e. there does not exist a KKT triple for the
pair (SDP)–(SDD), then Premise 3 fails to hold.

Proof. See Appendix A.5.

In the previous theorem, we proved that the negation of Premise 3 is a neces-
sary condition for Premise 4. In order to obtain a more reliable algorithmic test
for lack of strong duality, we can employ a similar heuristic as the one presented
in the end of Section 3.4.

4.6 Conclusions

In this chapter we developed and analyzed an interior point-proximal method
of multipliers, suitable for solving linear positive semi-definite programs, without
requiring the exact solution of the associated Newton systems. By generalizing
appropriately some previous results on convex quadratic programming, we show
that IP-PMM inherits the polynomial complexity of standard non-regularized
IPM schemes when applied to SDP problems, under standard assumptions, while
having to approximately solve better-conditioned Newton systems, compared to
their non-regularized counterparts. Furthermore, we provide a tuning for the
proximal penalty parameters based on the well-studied barrier parameter, which
can be used to guide any subsequent implementation of the method. Finally,
we study the behaviour of the algorithm when applied to problems for which no
KKT point exists, and give a necessary condition which can be used to construct
detection mechanisms for identifying such pathological cases.

A future research direction would be to construct a robust and efficient im-
plementation of the method, which should utilize some Krylov subspace solver
alongside an appropriate preconditioner for the solution of the associated linear
systems. Given several implementations of IP-PMM for other classes of problems
appearing in this thesis as well as in the literature, we expect that the theory
can successfully guide the implementation, yielding a competitive, robust, and
efficient method.

120

Chapter 5

Preconditioning for Regularized
IPMs

5.1 Introduction

In this chapter, we are concerned with applying Krylov subspace methods for
the efficient solution of systems of the following form:[

−(Q+ ρIn) A>

A δIm

]
︸ ︷︷ ︸

K

[
∆x
∆y

]
=

[
ξ1

ξ2

]
, (5.1)

where A ∈ Rm×n (with m ≤ n), Q � 0n,n ∈ Rn×n, and δ, ρ > 0. Such sys-
tems arise in a plethora of applications [21], which go far beyond optimization.
However, in this chapter we restrict the discussion to the case of regularized sys-
tems arising in interior point methods for optimization [1, 134, 154, 171]. Due
to the potential large dimensions of the systems, they are often solved by means
of iterative techniques, usually from the family of Krylov subspace methods [85].
To guarantee efficiency of such methods the possibly ill-conditioned system (5.1)
often needs to be appropriately preconditioned and, indeed, there exists a rich
literature which addresses the issue (see the discussions in [21, 24, 25, 59, 60, 139],
and the references therein).

As already stated in Chapter 1, a wide range of preconditioners have been pro-
posed in the literature, which can be divided into symmetric (e.g. [21, 74, 126,
132, 161]) and non-symmetric ones (e.g. [59, 94, 100, 126, 153]). A comprehensive
study on saddle point systems and their associated “optimal” preconditioners can
be found in [21]. Non-symmetric preconditioners are significantly more difficult to
analyze and a simple spectral analysis is not sufficient to deduce their effectiveness
(see [86]). On the other hand, symmetric preconditioners are often significantly
easier to analyze, and the eigenvalues of the preconditioned matrices allow one to
theoretically compare different preconditioning approaches. A range of general
preconditioners have been proposed for systems of the form of (5.1) arising from
optimization (see [30, 40, 63, 133, 156]). However, as is the case within the field of
preconditioning in general, these are typically sensitive to changes in the structure
of the matrices involved, and can have substantial memory requirements. Precon-

121

122 Spyridon Pougkakiotis

ditioners have also been successfully devised for specific classes of optimization
problems solved using similar optimization methods: applications include those
arising from multicommodity network flow problems (e.g. [37]), stochastic pro-
gramming problems (e.g. [36]), formulations within which the constraint matrix
has a primal block-angular structure (e.g. [38]), and PDE-constrained optimiza-
tion problems (e.g. [138, 140, 144]). Nevertheless, such preconditioners exploit
particular structures arising from specific applications; unless there exists such a
structure which hints as to the appropriate way to develop a solver, the design of
bespoke preconditioners remains a challenge.

It is therefore clear that a completely robust preconditioner for convex pro-
gramming does not currently exist, as available preconditioners are either problem-
sensitive (with a possibility of failure when problem parameters or structures are
modified), or are tailored towards specific classes of problems. In this chapter, we
aim to provide a first step towards the construction of generalizable precondition-
ers for saddle point systems arising from the application of a regularized IPM to
convex programming. In this case, Q represents the Hessian of the primal barrier
problem’s objective function (or the Hessian of the Lagrangian in the nonlinear
programming case), A represents the constraint matrix (or the Jacobian of the
constraints in the nonlinear programming case), while ρ and δ are the primal
and dual regularization parameters, respectively. We note that the IPM may
contribute a term to the (1, 1) or the (2, 2) block of (5.1), depending on the form
of the constraints and non-negativity variables. Here we assume that the term is
added in the (1, 1) block.

We present symmetric preconditioning approaches that can be used within
the MINRES [135] or the CG method [93], and we provide some spectral analysis
results for the associated preconditioned systems. More specifically, we consider
preconditioners which are derived by “sparsifications” of system (5.1), that is,
by dropping specific entries from sparse matrices Q and A, thus making them
more sparse and hence easier to factorize. Various such approaches have been
proposed to date and include: the preconditioners which exploit an early guess of
a basic–nonbasic partition of variables to drop columns from A [133], constraint
preconditioners [25, 59, 60], inexact constraint preconditioners [24] which drop
specific entries in matrices Q and A, and of course a plethora of preconditioners
which involve various levels of incomplete Cholesky factorizations of the Schur
complement of the matrix in (5.1), see for example [30]. The literature on pre-
conditioners is growing rapidly and we refer the interested reader to [21, 50, 139]
and the references therein.

We consider dropping off-diagonal entries of Q, but restrict the elimination of
entries in A only to the removal of complete columns or parts of rows of it. Such
a strategy guarantees that we avoid situations in which eigenvalues of the precon-
ditioned matrix may become complex (such as those employed in [24]), which as
a consequence would have required employing non-symmetric Krylov methods.
In order to construct the preconditioners, we take advantage of the properties
of the logarithmic barrier, that allow us to know in advance which columns of
the problem matrix are important and which are less influential. Furthermore,
we discuss some approaches for dealing with problems for which the constraint
matrix A may contain a subset of dense columns or rows. All such “sparsifica-

122

Regularized Interior Point Methods for Convex Programming 123

tions” are captured in a general result presented in Section 5.2 which provides
the spectral analysis of the preconditioned Schur complement matrix. The main
theorem sheds light on consequences of sparsifying rows or dropping columns of
A, and demonstrates that the former might produce a larger number of non-unit
eigenvalues.

All of the preconditioning approaches discussed are compared numerically
on various real-life linear and convex quadratic programming problems. In par-
ticular, we present some numerical results on certain test problems taken from
the Netlib and the Maros–Mészáros collections, and subsequently we apply the
methodologies on certain L1-regularized PDE-constrained optimization problems.
We should mention that the presented preconditioners will be later utilized (in
Chapter 6), when solving image reconstruction, as well as classification prob-
lems. All preconditioning approaches have been implemented within an IP-PMM
framework, i.e. the polynomially convergent primal-dual regularized IPM, based
on the developments in Chapters 3, 4. A robust implementation is provided.

It is worth stressing that the proposed preconditioners are general and do not
assume the knowledge of special structures which might be present in matrices
Q and A (such as block-diagonal, block-angular, network, PDE-induced, etc.).
Therefore they may be applied within general-purpose IPM solvers for convex
programming problems.

The rest of this chapter is organized as follows. In Section 5.2 we present
some preconditioners suitable for the normal equations. Then, in Section 5.3, we
adapt these preconditioners to regularized saddle point systems. Subsequently,
in Section 5.4 we focus on saddle point systems arising from the applications of
regularized IPMs to convex programming problems, and present some numerical
results. Finally, in Section 5.5, we provide some conclusions.

5.2 Regularized normal equations

We begin by defining the regularized normal equations matrix (or Schur com-
plement) M := AGA> + δIm ∈ Rm×m, corresponding to (5.1), where G ≡
(Q + ρIn)−1 � 0n,n. For the discussion of this section, we assume that G (and
hence Q) is a diagonal matrix. Permuting the normal equations matrix suitably
(see the discussion at the end of this section), we can write:

B := PrAG
1
2 Pc =

[
B11 B12

B21 B22

]
,

where Pr, Pc are two permutation matrices, B11 ∈ Rkr×kc , B12 ∈ Rkr×(n−kc),
B21 ∈ R(m−kr)×kc , and B22 ∈ R(m−kr)×(n−kc), with 0 ≤ kr ≤ m and 0 ≤ kc ≤ n.
Let us further introduce the following notation:

PrMP>
r ≡

[
M11 M>

21

M21 M22

]
,

123

124 Spyridon Pougkakiotis

where M11, M21, and M22 are defined as:

M11 := B11B
>
11 +B12B

>
12 + δIkr ∈ Rkr×kr ,

M21 := B21B
>
11 +B22B

>
12 ∈ R(m−kr)×kr ,

M22 := B21B
>
21 +B22B

>
22 + δIm−kr ∈ R(m−kr)×(m−kr).

In what follows, we present two preconditioning strategies for systems involv-
ing matrix M . Both approaches are based on a sparsification of matrix M . The
first approach relies on a Cholesky decomposition of a sparsified matrix, while the
second approach is based on a LDL> decomposition of a sparsified augmented
system matrix, which is used to implicitly derive a preconditioner for M .

5.2.1 A Cholesky-based preconditioner

Our first proposal is to consider preconditioning PrMP>
r with the following

matrix:

PNE :=

[
M11 0kr,(m−kr)

0(m−kr),kr M̃22

]
, M̃22 = M22 −B21B

>
21. (5.2)

In the following theorem, we will analyze the spectrum of the preconditioned
matrix P−1

NEPrMP>
r , with respect to the spectrum of the associated matrices.

Before proceeding with the theorem, we should mention that dropping M21 and
M>

21 from M , produces some small eigenvalue outliers (smaller than or equal to
1), as well as certain eigenvalues in the interval (1, 2), while dropping B21B

>
21

from the (2, 2) block of M produces some large eigenvalue outliers (larger than
or equal to 1). For ease of presentation, the two eigenvalue intervals are given
separately.

Theorem 5.2.1. The preconditioned matrix P−1
NEPrMP>

r has at least max
{
m−

(2kr+kc), 0
}

eigenvalues equal to 1. All remaining eigenvalues lie in I1∪I2, where

I1 :=

[
δ

δ + σ2
max(B)

, 1

]
, I2 :=

[
1, 2 +

λmax(B21B
>
21)

δ + λmin(B22B>22)

]
.

Proof. Firstly, given an arbitrary eigenvalue λ (which must be positive since
PNE � 0m,m and M � 0m,m) corresponding to a unit eigenvector v, let us write
the generalized eigenproblem as:[

M11 M>
21

M21 M22

] [
v1

v2

]
= λ

[
M11v1

M̃22v2

]
. (5.3)

We separate the analysis into two cases.
Case 1: Let v2 ∈ Null(M>

21). Firstly, we notice that:

dim
(
Null(M>

21)
)

= (m− kr)− rank(M>
21) ≥ max{m− 2kr, 0}.

Two sub-cases arise here. For the first sub-case, we notice that if v1 6= 0kr , then

124

Regularized Interior Point Methods for Convex Programming 125

from positive definiteness of M11, combined with the first block equation of (5.3),
we obtain that λ = 1. In turn, we claim that this implies that v2 ∈ Null(B21B

>
21)

and v1 ∈ Null(M21). To see this, assume that v2 /∈ Null(B21B
>
21). Then from the

second block equation of (5.3) we obtain:

M21v1 +M22v2 = M̃22v2 ⇒M21v1 = −B21B
>
21v2,

where we used the definition of M̃22. If v2 /∈ Null(B21B
>
21), this implies that

v>2 B21B
>
21v2 > 0. The previous equation then yields that

v>2 M21v1 = −v>2 B21B
>
21v2 ⇒ 0 = −v>2 B21B

>
21v2 < 0,

which follows from the base assumption (i.e. v2 ∈ Null(M>
21)), and results in a

contradiction. Hence, v2 ∈ Null(B21B
>
21). On the other hand, if v1 /∈ Null(M21)

then the second block equation yields directly a contradiction, since we have
shown that v2 ∈ Null(B21B

>
21).

Next we consider the second sub-case, i.e. v1 = 0kr . Combined with our
base assumption, the first block equation of (5.3) becomes redundant. From the
second block equation of the eigenproblem, and using v1 = 0kr , we obtain:

v>2 M22v2 = λv>2 M̃22v2 ⇒
v>2
(
M̃22 +B21B

>
21

)
v2 = λv>2 M̃22v2.

(5.4)

Hence we have that:

λ = 1 +
v>2
(
B21B

>
21

)
v2

v>2
(
M̃22

)
v2

≤ 1 +
λmax(B21B

>
21)

δ + λmin(B22B>22)
.

All eigenvalues in this case can be bounded by the previous inequality and
there will be at most rank(B21B

>
21) non-unit eigenvalues. On the other hand, if

v2 ∈ Null(B21B
>
21), then trivially λ = 1. This concludes the first case.

Case 2: In this case, we assume that v2 /∈ Null(M>
21). In what follows we

assume λ 6= 1 (noting that λ = 1 would only occur if v1 ∈ Null(M21) and
v2 ∈ Null(B21B

>
21)), and there are at most 2kr such eigenvalues. Given the

previous assumption, and using the first block equation in (5.3), we obtain:

v1 =
1

λ− 1
M−1

11 M
>
21v2.

Substituting the previous to the second block equation of (5.3) yields the following
generalized eigenproblem:(

M21M
−1
11 M

>
21 + (λ− 1)B21B

>
21

)
v2 = (λ− 1)2M̃22v2, (5.5)

where we used the definitions of M̃22 and M22. Multiplying (5.5) by v>2 and
rearranging yields the following quadratic algebraic equation that λ must satisfy
in this case:

λ2 + βλ+ γ = 0, (5.6)

125

126 Spyridon Pougkakiotis

where

β := −2− v>2 B21B
>
21v2

v>2 M̃22v2

,

and

γ := 1−
v>2
(
M21M

−1
11 M

>
21 −B21B

>
21

)
v2

v>2 M̃22v2

.

Let us notice that the smallest eigenvalue is at least as large as δ
δ+σ2

max(B)
.

This follows from positive definiteness of PNE and M , and the bound can be
deduced by inspecting the Rayleigh quotients. Hence, we would like to find an
upper bound for the largest eigenvalue. To that end, notice that:

γ =
v>2
(
M22 −M21M

−1
11 M

>
21

)
v2

v>2 M̃22v2

,

which follows from the definition of M̃22. Positive definiteness of M then implies
that γ > 0. From the last relation we also have that:

0 < γ ≤ v>2 M22v2

v>2 M̃22v2

≤ 1 +
λmax(B21B

>
21)

δ + λmin(B22B>22)
=: γu.

Furthermore, βl := −
(

2 +
λmax(B21B>21)

δ+λmin(B22B>22)

)
≤ β ≤ −2. From the previous, one can

also observe that γ ≤ −β − 1.
Returning to (5.6), we first consider the following solution:

λ− =
1

2
(−β −

√
β2 − 4γ).

Obviously, β2−4γ is always greater than 0, since −β ≥ 2 and γ ≤ −β−1. Next,
we notice that the expression for λ− is increasing with respect to γ. We omit
finding a lower bound for λ− since this was established earlier. For the upper
bound, we use the fact that γ ≤ −β − 1, to obtain:

λ− ≤
1

2

(
− β −

√
β2 + 4(β + 1)

)
=

1

2
(|β| − |β + 2|) = 1,

since β ≤ −2 (also, in the beginning of this case, we have treated λ− = 1
separately).

Finally, we consider the symmetric equation, which reads:

λ+ =
1

2

(
− β +

√
β2 − 4γ

)
.

Firstly, we can easily notice that λ+ > 1. Subsequently, upon noticing that λ+ is
decreasing with respect to γ, we can obtain the following obvious bound:

λ+ ≤ |β| ≤ −βl.

126

Regularized Interior Point Methods for Convex Programming 127

To conclude the proof, we observe that dropping M21 and M>
21 yields at most

kr + rank(M>
21) ≤ 2kr eigenvalue outliers. Similarly, dropping B21B

>
21 from the

(2, 2) block of M yields at most rank(B21) ≤ kc eigenvalue outliers. Hence, there
will be at least max

{
m− (2kr + kc), 0

}
eigenvalues of the preconditioned matrix

equal to 1, and this concludes the proof.

Remark 4. As we will discuss later, a case of interest would be to only drop
certain kc columns of A. In that case, we have I1 = {1} and I2 as in Theorem
5.2.1, and at most kc eigenvalue outliers. A similar observation can be made for
the case of only sparsifying certain (kr) rows of A. In that case, it can easily
be shown that I2 = [1, 2] (with I1 as in in Theorem 5.2.1), and there will be at
most 2kr non-unit eigenvalues. Notice that dropping columns is expected to be
more useful in general, since this results in fewer outliers and possibly in greater
gains (either in terms of processing time or memory requirements). However, in
certain special applications one has to resort to sparsifying problematic rows. The
suitability of each such choice should depend on the problem under consideration.

Remark 5. Now that we have presented the spectral properties of the precondi-
tioned system, let us discuss the use of such a preconditioning strategy. In prac-
tice, one often has to solve regularized normal equations arising from a plethora
of problems, where A (and B) is usually a sparse matrix.

• Firstly, it is common in many application areas to have a small number of
columns or rows of A that are dense. Such columns (or rows) could pose sig-
nificant difficulties as they produce dense factors when one tries to factorize
the normal equations (e.g. using a Cholesky decomposition). This is espe-
cially the case for dense columns, which can produce up to (m−p)×(m−p)
fill-in, where p is the pivot order of the respective dense column (we refer the
reader to the discussion in [2, Section 4]). The use of a preconditioner like
the one defined in (5.2) serves the purpose of dropping (sparsifying, respec-
tively) such columns (rows, respectively), thus making the Cholesky factors
of PNE significantly more sparse. For example, we may find two permuta-
tion matrices Pr, Pc which sort the rows and columns, respectively, of A
in descending order of their number of non-zeros, and write Â = PrAPc.
Then, the resulting normal equations read as P>r BB>Pr + δIm. As long as
the number of columns or rows dropped is low (which is observed in several
applications), the number of outliers produced by this dropping strategy is
manageable. While some of these outliers will be dangerously close to zero
(given that the regularization parameter δ > 0 is small), they can be dealt
with efficiently.

• Secondly, it often happens in optimization, and especially when solving sys-
tems arising from the application of an interior point method, to have cer-
tain diagonal elements of G that are very small. In view of this property,
and given the bound presented in Theorem 5.2.1, we can observe that drop-
ping all columns corresponding to small diagonal elements in G results in
manageable and not too sizeable outliers. Such a preconditioner was pro-
posed in [23], and arises as a special case of PNE in (5.2), by choosing
kr = 0 and a suitable permutation matrix Pc.

127

128 Spyridon Pougkakiotis

Remark 6. Finally, we should note that the preconditioner in (5.2) would still
be meaningful if Q had the form:

PcQP>
c =

[
Q1 0kc,(n−kc)

0(n−kc),kc Q2

]
.

Obviously such a structure is not expected to be present in general. However, this
suggests an extension of the column dropping strategy to the case of a non-diagonal
matrix Q. In particular, when a column is dropped, we could drop the respective
row and column of matrix Q, keeping only its diagonal. We will return to this
observation later. We should note that a similar methodology has been employed
and analyzed before in Chapter 2 in the context of non-diagonal regularization.

Convergence guarantees
The idea of splitting the matrix A into sparse and dense columns is not new.

Indeed, there is an extensive literature for the solution of least-squares problems,
where A> is split based on the density of its columns (notice that in the least-
squares literature it is assumed that n ≤ m, and hence one resorts to the normal
equations which result from pivoting the (2,2) block in (5.1)). In what follows we
briefly discuss a widely-used approach that is employed to deal with the dense
and the sparse columns separately, focusing on the case where m ≤ n, inspired
by the developments in [158]. For an in-depth analysis, we refer the interested
reader to [158] and the references therein.

Assuming that the number of dense columns kc of A is large, but significantly
smaller than n− kc, we expect that as the IPM progresses, and the conditioning
of the associated Newton systems is deteriorating, the approximation in (5.2)
of M could eventually be insufficient to ensure the convergence of the Krylov
method. In that case, if the number of Krylov iterations required in the previous
IPM iteration surpasses a certain threshold, we could switch to the following
methodology (to ensure the method remains efficient without requiring additional

memory). Using the splitting B := AG
1
2 Pc = [B1 B2] (B1 is dense and B2 is

sparse), we can write the normal equations as:

(B1B
>
1 +B2B

>
2 + δIm)y = (B1B

>
1 + L>2 L2)y = ξ,

where L2 is the Cholesky decomposition of B2B
>
2 + δIm, and ξ is the right hand

side. Define C1 = L−1
2 B1, ξ̂ = L−1

2 ξ, and ŷ = L>2 y. Then, the normal equations
can be written as: (

Im + C1C
>
1

)
ŷ = ξ̂.

Using the Woodbury formula (see [180]), we can retrieve ŷ as:

ŷ = ξ̂ − C1

(
Ikc + C>1 C1

)−1
C>1 ξ̂.

Subsequently, y is retrieved by backward substitution using the Cholesky factor
L2. Assuming that kc � n− kc, we expect that the cost of inverting Ikc + C>1 C1

is reasonable (and we can employ dense linear algebra operations to avoid using
a sparse representation, if necessary). The main computational bottleneck of this

128

Regularized Interior Point Methods for Convex Programming 129

approach lies with forming C1, since this requires kc backward substitutions. The
cost of this can help us determine the threshold on the Krylov iterations that
should force the algorithm to switch to this strategy.

Finally, note that all of the previous steps can be further approximated by
using L̃2, and L̃1 such that L̃2L̃

>
2 ≈ B2B

>
2 + δIm and L̃1L̃

>
1 ≈ Im + C1C

>
1 . In

that case, the previous process (involving the inexact factorizations) is used as
preconditioner for an inner layer Krylov method. This methodology has been
used to solve least-squares problems in [158], and hence is not treated any further
in this thesis.

5.2.2 A LDL>-based preconditioner

Next, we present an alternative to the preconditioner in (5.2). More specif-
ically, let us divide the columns of matrix A into two mutually exclusive sets
B and N . Then, using the column-dropping strategy presented in the previous
section, and assuming that the variables corresponding to N are not especially
important (e.g. they correspond to the smallest diagonal elements of G, hence
an IPM for linear programming considers them inactive, i.e. xN → 0|N | and
G(N ,N) → ρkI|N |), we propose approximating the normal equations matrix M by
the following preconditioner:

P̂NE = A(:,B)G(B,B)(A(:,B))> + δIm, (5.7)

which is the preconditioner proposed in [23]. Notice that our assumption that
Q (and hence G) is diagonal implies that (G(B,B))−1 = Q(B,B) + ρI|B|. Given
our previous discussion, we would like to avoid inverting this preconditioner by
means of a Cholesky decomposition, as a single dense column in B could result
in dense Cholesky factors. Instead, we form an appropriate saddle point system
to compute the action of the approximated normal equations. More specifically,
given an arbitrary vector y ∈ Rm, instead of computing P̂−1

NEy using a Cholesky
decomposition, we can compute[

−(Q(B,B) + ρI|B|) (A(:,B))>

A(:,B) δIm

]
︸ ︷︷ ︸

P̃NE

[
w1

w2

]
=

[
0|B|
y

]
, (5.8)

by means of a LDL> decomposition of the previous saddle point matrix. Then,
we notice that returning w2 is equivalent to computing P̂−1

NEy.
Following the discussion in [2, Section 4], we know that using LDL> to factor-

ize the matrix in (5.8) can result in significant memory savings compared to the

Cholesky decomposition of P̂NE. Notice that in view of the regularized nature
of the systems under consideration (indeed, we have assumed that G is positive
definite), we can use the result in [171], stating that matrices like the one in (5.8)
are quasi-definite; any symmetric permutation of such matrices admits a LDL>

decomposition.
While this approach might seem expensive, it can provide significant time and

129

130 Spyridon Pougkakiotis

memory savings, especially in cases where A(:,B) contains dense columns. In the
previous section we discussed a strategy for alleviating this issue, noting how-
ever that such a strategy can only be used to deal with a small number of dense
columns. On the contrary, if we have a sizeable subset of the columns of A(:,B) that
are dense, we could delay their pivot order within the LDL>, thus significantly
reducing the overall fill-in of the decomposition factors, without introducing any
eigenvalue outliers in the preconditioned system. Of course, finding the opti-
mal permutation for the LDL> decomposition is a NP-hard problem, however,
there have been developed several effective permutation heuristics tailored to such
symmetric decompositions. In particular, the pivots are computed dynamically
to ensure both stability and sparsity. In view of the previous, the preconditioner
based on solving (5.8) is expected to be more stable than its counterpart based
on the Cholesky decomposition. Finally, difficulties arising from dense rows or in
general “problematic” rows can also be alleviated using a heuristic proposed in
[115].

As in Section 5.2.1, there is an extensive literature for the solution of saddle-
point systems where A> is split based on the density of its columns or rows. Using
a suitable symmetric decomposition one can separate the sparse from the dense
linear algebra in order to save both memory and time. We refer the interested
reader to [159] and the references therein.

5.2.3 BFGS-like low-rank updates of the preconditioner

In certain cases, it might be beneficial to improve the spectral properties
of the preconditioned system by attempting to capture and correct some of its
eigenvalue outliers. Thus, we briefly mention a possible way of achieving this by
means of BFGS-like low-rank updates. The potential usefulness of this is later
verified numerically.

Given a rectangular (tall) matrix V ∈ Rm×p with maximum column rank,
it is possible to define a generalized block-tuned preconditioner P satisfying the
property

P−1PrMP>
r V = νV,

so that the columns of V become eigenvectors of the preconditioned matrix cor-
responding to the eigenvalue ν. A way to construct P (or its explicit inverse) is
suggested by the BFGS-based preconditioners used e.g. in [22] for accelerating
Newton linear systems or analyzed in [117] for general sequences of linear systems,
that is

P−1 = νVΠV > + (Im − VΠV >PrMP>
r)P−1

NE(Im −PrMP>
r VΠV >),

with Π = (V >PrMP>
r V)−1. Notice that if the columns of V would be chosen

as e.g. the p exact rightmost eigenvectors of P−1
NEPrMP>

r (corresponding to the
p largest eigenvalues) then all the other eigenpairs,

(λ1, z1), . . . , (λm−p, zm−p),

130

Regularized Interior Point Methods for Convex Programming 131

of the new preconditioned matrix P−1PrMP>
r would remain unchanged as

stated in the following theorem.

Theorem 5.2.2. If the columns of V are the exact rightmost eigenvectors of
P−1
NEPrMP>

r then for every j = 1, . . .m− p there holds

P−1PrMP>
r zj = P−1

NEPrMP>
r zj = λjzj.

Proof. The eigenvectors of the symmetric generalized eigenproblem PrMP>
r x =

λPNEx form a PNE-orthonormal basis and therefore V TPNEzj = V >PrMP>
r zj =

0, j = 1, . . .m− p. Moreover, denoting as Λp = Diag (λm−p+1, · · · , λm) the diag-
onal matrix with the largest eigenvalues, it turns out that

Π = (V >PrMP>
r V)−1 = Λ−1

p .

Then

P−1PrMP>
r zj = νV Λ−1

p V >PrMP>
r zj

+ (Im − V Λ−1
p V >PrMP>

r)P−1
NE

· (PrMP>
r zj −PrMP>

r V Λ−1
p V >PrMP>

r zj)

= (Im − V Λ−1
p V >PrMP>

r)P−1
NEPrMP>

r zj

= (Im − V Λ−1
p V >PrMP>

r)λjzj = λjzj.

This completes the proof.

Usually the columns of V are chosen as the (approximate) eigenvectors of
P−1
NEPrMP>

r corresponding to the smallest eigenvalues of this matrix. However,
we could choose instead, as the columns of V , the rightmost eigenvectors of
P−1
NEPrMP>

r , approximated with low accuracy by the function eigs of MATLAB.
In this case, the ν value must be selected to satisfy λmin(P−1

NEPrMP>
r) < ν �

λmax(P−1
NEPrMP>

r). For example, we could choose ν = 10, and the column size
of V as p = 10.

Finally, by computing approximately the rightmost eigenvectors, we would
expect a slight perturbation of λ1, . . . , λm−p, depending on the accuracy of this
approximation.

5.3 Regularized saddle point matrices

Let us now consider the regularized saddle point system in (5.1). Here we
drop the assumption used in the previous section, and consider general, possibly
non-diagonal, matrices Q. In what follows, we discuss two families of precon-
ditioning strategies, noting their advantages and disadvantages. All presented
preconditioners will be positive definite in order to be usable within the MINRES
method, which is a short-recurrence iterative solver, suitable for solving symmet-
ric indefinite or quasidefinite systems. This allows us to avoid non-symmetric
long-recurrence solvers like the GMRES method.

131

132 Spyridon Pougkakiotis

5.3.1 Block diagonal preconditioners

The most common approach is to employ a block diagonal preconditioner (see

[21, 23, 132, 161]). In particular, given an approximation for matrix Q, say Q̃,

and the approximation for matrix M̃ ≡ A(Q̃ + ρIn)−1A> + δIm, given either
in (5.2) or in (5.7), say PNE, we can define the following preconditioner for the
matrix in (5.1):

PAS =

[
Q̃+ ρIn 0n,m

0m,n PNE

]
. (5.9)

From Remark 6, we know that if Q̃ = Diag(Q), or if we choose Q̃ as

P>
c Q̃Pc =

[
Diag(Q(N ,N)) 0|N |,|B|

0|B|,|N | Q(B,B)

]
. (5.10)

where N corresponds to the columns of A that are dropped (as in Section 5.2.2),
we can directly use Theorem 5.2.1 to bound the eigenvalues of the preconditioned
matrix P−1

NEM̃ . In the latter case, notice that (Q(B,B) +ρI|B|)
−1 does not introduce

significant fill-in in the (2, 2) block of the preconditioner in (5.9), as we can
implicitly invert this block using the methodology presented in Section 5.2.2. The
aforementioned bounds can be used to bound the spectrum of the preconditioned
system P−1

ASK, where K is the matrix in (5.1). For the rest of this subsection, we

assume that Q̃ is either diagonal, or is given by (5.10), and PNE is given either
as in (5.2) or as in (5.7).

We proceed with the spectral analysis. To that end, let F := Q + ρIn and
F̃ := Q̃ + ρIn. The following theorem will characterize the eigenvalues of P−1

ASK
in terms of the extremal eigenvalues of the preconditioned (1, 1) block of (5.1),

F̃−1Fk, and of P−1
NEM̃ (which can be described by Theorem 5.2.1). We will work

with (SPD) similarity transformations of these matrices defined as

F̂ = F̃−1/2FF̃−1/2, M̂NE = P
−1/2
NE M̃P

−1/2
NE . (5.11)

and set

αNE = λmin(M̂NE), βNE = λmax

(
M̂NE

)
, κNE =

βNE
αNE

,

αF = λmin

(
F̂
)
, βF = λmax

(
F̂
)
, κF =

βF
αF

.

Hence, an arbitrary element of the Rayleigh quotient (or numerical range) of
these matrices is represented as:

γNE ∈ W (M̂NE) = [αNE, βNE], γF ∈ W (F̂) = [αF , βF].

Similarly, an arbitrary element of W (PNE) is denoted by

γp ∈ [λmin(PNE), λmax(PNE)] ⊆
[
δ,
σ2

max(A)

ρ
+ δ

)
.

132

Regularized Interior Point Methods for Convex Programming 133

Since we either have Q̃ = Diag(Q), or Q̃ given as in (5.10), we can observe that
αF ≤ 1 ≤ βF as

1

n

n∑
i=1

λi

(
F̃−1F

)
=

1

n
Tr
(
F̃−1F

)
= 1.

Theorem 5.3.1. The eigenvalues of P−1
ASK lie in the union of the following in-

tervals:

I− =
[
−βF −

√
βNE,−αF

]
; I+ =

[
1

2

(
− βF +

√
β2
F + 4αNE

)
, 1 +

√
βNE − 1

]
.

Proof. The eigenvalues of P−1
ASK are the same as those of

P
−1/2
AS KP

−1/2
AS =

[
F̃−1/2 0n,m
0m,n P

−1/2
NE

] [
−F A>

A δIm

][
F̃−1/2 0n,m
0m,n P

−1/2
NE

]
=

[
−F̂ R>

R δP−1
NE

]
,

where F̂ is defined in (5.11) and R := P
−1/2
NE AF̃−1/2. Any eigenvalue λ of the

preconditioned matrix P
−1/2
AS KP

−1/2
AS,k must therefore satisfy

−F̂w1 + R>w2 = λw1 (5.12)

Rw1 + δkP
−1
NEw2 = λw2. (5.13)

First note that

RR> = P
−1/2
NE AF̃−1A>P

−1/2
NE = P

−1/2
NE

(
M̃ − δIm

)
P
−1/2
NE = M̂NE,k − δP−1

NE. (5.14)

If PNE is chosen as in (5.2) or as in (5.7), the eigenvalues of RR> are characterized
by Theorem 5.2.1. If λ 6∈ [−βF ,−αF] then F̂ + λIn is symmetric positive (or
negative) definite; moreover R>w2 6= 0n. Then from (5.12) we obtain

w1 = (F̂ + λIn)−1R>w2,

which, after substituting in (5.13) yields

R(F̂ + λIn)−1R>w2 + δP−1
NEw2 = λw2.

Premultiplying by w>2 and dividing by ‖w2‖2, we obtain the following equation
where we have set z = R>w2.

λ =
z>(F̂ + λIn)−1z

z>z

w>2 RR
>w2

w>2 w2

+ δ
w>2 P

−1
NEw2

w>2 w2

=
1

γF + λ

(
γNE −

δ

γp

)
+

δ

γp
.

So λ must satisfy the following second-order algebraic equation

λ2 + (γF − ω)λ− (ω(γF − 1) + γNE) = 0.

where we have set ω =
δ

γp
satisfying ω ≤ 1. Notice that (γNE − ω) ≥ 0 by

construction.

133

134 Spyridon Pougkakiotis

We first consider the negative eigenvalue solution of the previous algebraic
equation, that is:

λ− =
1

2

[
ω − γF −

√
(γF − ω)2 + 4(ωγF − ω + γNE)

]
=

1

2

[
ω − γF −

√
(γF + ω)2 + 4(γNE − ω)

]
≤ 1

2

[
ω − γF −

√
(γF + ω)2

]
= −γF ≤ −αF .

In order to derive a lower bound on λ− we work similarly. That is:

λ− =
1

2

[
ω − γF −

√
(γF + ω)2 + 4(γNE − ω)

]
≥ 1

2

[
− γF −

√
γ2
F + 4γNE

]
≥ 1

2

[
− βF −

√
β2
F + 4βNE

]
≥ −βF −

√
βNE,

where we used the fact that the λ− is an increasing function with respect to ω,
and decreasing with respect to γNE. Combining all the previous yields:

λ−

 ≥ −βF −
√
βNE,

≤ −αF .

Note that this interval for λ− contains the interval [−βF ,−αF], which we have
excluded in order to carry out the analysis.

Regarding the positive eigenvalues we have that:

λ+ =
1

2

[
ω − γF +

√
(γF − ω)2 + 4(ωγF − ω + γNE)

]
=

1

2

[
ω − γF +

√
(γF + ω)2 + 4(γNE − ω)

]
.

We proceed by finding a lower bound for λ+. To that end, we notice that λ+ is
a decreasing function with respect to the variable γF and increasing with respect
to γNE. Hence, we have that:

λ+ ≥
1

2

[
ω − βF +

√
(βF + ω)2 + 4(αNE − ω)

]
≥ 1

2

[
− βF +

√
β2
F + 4αNE

]
,

where the last inequality follows because the penultimate expression is increasing
with respect to ω. Similarly, in order to derive an upper bound for λ+, we observe
that λ+ is an increasing function with respect to ω, decreasing with respect to

134

Regularized Interior Point Methods for Convex Programming 135

γF and increasing with respect to γNE. Combining all the previous yields:

λ+ ≤
1

2

[
1− αF +

√
(αF + 1)2 + 4(βNE − 1)

]
≤ 1 +

√
βNE − 1,

where we used the fact that ω ≤ 1. Then, combining all the previous gives the
desired bounds, that is:

λ+

 ≥ 1
2

[
− βF +

√
β2
F + 4αNE

]
,

≤ 1 +
√
βNE − 1,

and completes the proof.

Remark 5.3.1. It is well known that a pessimistic bound on the convergence rate
of MINRES can be obtained if the size of I− and I+ are roughly the same. In
our case, as usually βF � βNE, we can assume that the length of both intervals
is roughly

√
βNE. As a heuristic we may therefore use [67, Theorem 4.14], which

predicts the reduction of the residual in the P−1
AS -norm in the case where both

intervals have exactly equal length. This then implies that

‖rk‖
‖r0‖

≤ 2

(
κ− 1

κ+ 1

)bk/2c
where

κ ≈ 1

(1/2)αF
(
− βF +

√
β2
F + 4αNE

) (1 +
√
βNE − 1

)
(βF +

√
βNE).

Remark 5.3.2. In the LP case F̃k = Fk and therefore κF = 1. It then turns out
that κ ≈ 2κNE. The number of MINRES iterations is then driven by 2κNE while
the CG iterations depend on

√
κNE [111]. We highlight that different norms are

used to describe the reduction in the relative residual norm for MINRES and CG.

Remark 7. Notice that further approximations can be employed here. In partic-
ular, we could define a banded approximation of Q and then employ the approx-
imation proposed earlier. The implicit application of the Schur complement in
Section 5.2.2 gives us complete freedom on how to approximate Q, and hence we
no longer rely on diagonal approximations. We will return to this point in the
numerical experiments.

5.3.2 Factorization-based preconditioners

Finally, given the regularized nature of the systems under consideration, we
can construct factorization-based preconditioners for MINRES. In particular, we
can compute K = LDL> (with K in (5.1)), where D is a diagonal matrix (since K
is quasidefinite [171]) having n negative and m positive elements in its diagonal.

135

136 Spyridon Pougkakiotis

Then, by defining PK := L|D| 12 , the preconditioned saddle point matrix reads:

P−1
K KP−>K = |D|−1D,

and hence contains only two distinct eigenvalues −1 and 1 [74, 134]. As before,
let us assume that we have available a splitting of the columns of A such that
APc = [AB AN] where B contains indices corresponding to the smallest diagonal

elements of Q. Then, we can precondition K, left and right, by P̂K := L̂|D̂| 12 ,

where K̂ = L̂D̂L̂> and:

K̂ :=

[
−Q̃ Ã>

Ã δIm,

]
, (5.15)

with Ã := [AB 0m,|N |]P
>
c , and Q̃ defined as in (5.10).

Further limited-memory versions of this preconditioner can be employed, e.g.
by using the methodologies presented in [134, 159]. Other approximations of the

blocks of K̂, based on the structure of the problem at hand, could also be possible,
as already mentioned in the previous subsection.

We should note, however, that this approach is less stable than the LDL>-
based approach presented in Section 5.3.1. This is because we are required to
use only diagonal pivots during the LDL> decomposition for this methodology
to work. If δ or ρ have very small values, the stability of the factorization could
be compromised, and we would have to heavily rely on stability introduced by
means of uniform [154] or weighted regularization [1]. On the other hand, the
LDL>-based methodology presented in Section 5.3.1 would not be affected by
the occasional use of 2× 2 pivots. Of course the latter is not the case if the “an-
alyze” phase of the factorization is performed separately, however, the subset of
columns in B may significantly change from one iteration to the next, making this
strategy less attractive. Nevertheless, this factorization-based approach can be
more efficient than the approach presented in Section 5.3.1, when solving certain
non-separable convex programming problems. That is because the approach in
Section 5.3.1 requires the computation of a LDL> decomposition of P̃NE (with

potential 2× 2 pivots) as well as a Cholesky decomposition of Q̃+ ρIn (or some
iterative scheme which could be application dependent, as in [140]).

5.4 Regularized IPMs: numerical results

Let us now focus on the case of the regularized saddle point systems (and their
respective normal equations) arising from the application of regularized IPMs
to convex programming. The MATLAB code, which is based on the IP-PMM
presented in Section 3.5.1, can be found on GitHub1,2. The reader is referred to
Section 3.5.1 for the implementation details of the algorithm (such as termination
criteria, the employed predictor–corrector scheme for the solution of the Newton
system, as well as the tuning of the algorithmic regularization parameters). A
Newton direction is accepted if it is at least 3-digit accurate, and the associated

1https://github.com/spougkakiotis/IP-PMM_QP_Solver
2https://github.com/spougkakiotis/Inexact_IP-PMM

136

https://github.com/spougkakiotis/IP-PMM_QP_Solver
https://github.com/spougkakiotis/Inexact_IP-PMM

Regularized Interior Point Methods for Convex Programming 137

iterative methods (i.e. PCG or MINRES) are terminated if the following accuracy
is reached: tol

max{1,‖rhs‖} , where tol is the tolerance requested by the user, and rhs

is the right hand side of the system being solved. We note that this condition
is rather strict, but it ensures convergence of IP-PMM for a very wide range
of problems, hence it allows the implementation to be very general and robust.
All the presented experiments were run on a PC with a 2.2GHz Intel Core i7
processor (hexa-core), 16GB RAM, run under the Windows 10 operating system.
The MATLAB version used was 2019a.

5.4.1 Linear programming

Let us initially focus on linear programming problems of the following form:

min
x∈Rn

c>x, s.t. Ax = b, xI ≥ 0|I|, x
F free, (LP)

where A ∈ Rm×n, I ∩F = ∅, and I ∪F = {1, . . . , n}. Applying regularized IPMs
to problems like (LP), one often solves a regularized normal equations system at
every iteration. Such systems have a matrix of the following form:

M = AGA> + δIm, (G)(i,i) =

{
1
ρ
, if i ∈ F ,

1
ρ+zi/xi

if i ∈ I,
(5.16)

where δ, ρ > 0 and z ∈ Rn (where zI ≥ 0|I|, z
F = 0|F|) are the dual slack

variables. Notice that the IPM penalty parameter µ is often tuned as µ = (xI)>zI

n

and we expect that µ → 0. The variables are naturally split into “basic”–B
(not in the simplex sense), “non-basic”–N , and “undecided”–U . Hence, as IPMs

progress towards optimality, we expect the following partition of the quotient xI

zI
:

∀j ∈ N : xj → 0, zj → ẑj > 0 ⇒ xj

zj
=
xjzj

(zj)2
= Θ(µ),

∀j ∈ B : xj → x̂j > 0, zj → 0 ⇒ xj

zj
=

(xj)2

xjzj
= Θ(µ−1),

∀j ∈ U : xj = Θ(1), zj = Θ(1) ⇒ xj

zj
= Θ(1),

where N , B and U are mutually disjoint, and N ∪ B ∪ U = I. For the rest of
this section, we assume that δ = Θ(ρ) = Θ(µ). This assumption is based on the
developments in Chapters 3, 4. Following [23], we could precondition matrix M
using the following matrix:

P̂NE = ARGR(AR)> + δIm, (5.17)

where R := F ∪ B ∪ U . Then, by applying Theorem 5.2.1, we obtain:

λmax

(
P̂−1
NEM

)
≤ 1 +

max
j∈N

(Gj)

δ
σ2

max(A), λmin

(
P̂−1
NEM

)
≥ 1.

137

138 Spyridon Pougkakiotis

The preconditioner in (5.17) is a special case of the preconditioner defined in
Section 5.2. Indeed, it is derived by setting kr = 0 and then by dropping all
columns belonging to N , i.e. we set kc = |N | and we drop the kc columns of
A corresponding to the smallest diagonal elements of G. For the rest of this
subsection, we will refer to this preconditioner as the base preconditioner.

From our previous remarks, we notice that maxj∈N (Gj) = Θ(µ) = Θ(δ)
implies that the spectrum of the preconditioned matrix remains bounded and is
asymptotically independent of µ (assuming that δ = Θ(µ)). This will be the
main preconditioner used in the numerical results, since it is extremely effective.
However, it can be expensive to compute in certain cases, as it needs to be
inverted by means of a Cholesky decomposition. To that end, we also propose
further approximating this matrix by a preconditioner of the form presented in
Section 5.2. This idea is based on the fact that the preconditioned conjugate
gradient method is expected to converge in a small number of iterations, if the
preconditioned system matrix can be written as:

P−1M = I + U + V,

where P is the preconditioner, M is the normal equations matrix, U is a low-
rank matrix, and V is a matrix with small norm. In our case, dropping the
part of the normal equations corresponding to N contributes the small-norm
term, and furthermore dropping a few dense columns (or sparsifying certain rows)
contributes the low-rank term.

To construct such a preconditioner, we first need to note that R will change
at every IPM iteration. However, we can heuristically choose which columns
to drop (and/or rows to sparsify) based on the sparsity pattern of A. To that
end, at the beginning of the optimization procedure, we count the number of
non-zeros of each column and row of A, respectively. These can then be used to
sort the columns and rows of A in descending order of their number of non-zero
entries. These sorted columns and rows can easily be represented by means of
two permutation matrices Pc and Pr. We note that this is a heuristic, and
it is not guaranteed to identify the most problematic columns or rows (which
can be sources of difficulty for IPMs). For a discussion on such heuristics, and
alternatives, the reader is referred to [2, Section 4], and the references therein.

Numerical results
Initially, we present some results using the preconditioner in (5.17) (which

is equivalent to the preconditioner given in (5.7)) over a set of small to large
scale linear programming instances. For completeness, we compare PCG and
MINRES on a small set of problems. We further demonstrate the effectiveness of
using low-rank updates to tune the preconditioner (following the developments
in Section 5.2.3). A comparison with the factorization-based approach developed
in Section 3.5.1 is also given, in order to stress the importance of using inexact
linear algebra within IPM solvers.

Then, we present some results to show the effect of dropping dense columns
and then of sparsifying dense rows of the constraint matrix using the strategy

138

Regularized Interior Point Methods for Convex Programming 139

outlined in Section 5.2. Subsequently, we present a comparison between the
preconditioner in (5.2) (that is, PNE), the preconditioner given in (5.7) (denoted

as P̂NE), and the one in (5.8) (that is, P̃NE).

The base preconditioner Firstly, we run the method on the Netlib collection
[130], using the preconditioner given in (5.17) (or equivalently given in (5.7)). The
tolerance used in these experiments was 10−4. In Table 5.1 we collect statistics
from the runs of the method over some medium scale instances of the Netlib
test set (see [130]). For each problem, two runs are presented; in the first one,
we solve the normal equations systems using CG, while in the second one, we
solve the augmented systems using MINRES. We expect (see Remark 5.3.1) that
MINRES can require more than twice as many iterations as CG to deliver an
equally good direction. Hence, we set maxitMINRES = 3 · maxitCG = 300 (i.e.
maxitCG = 100). However, as we already mentioned in Remark 5.3.1, it is not
entirely clear how many more iterations MINRES requires to guarantee the same
quality of solution as PCG, since the two algorithms optimize different residual
norms. Hence, requiring three times more iterations for MINRES is based on the
behavior we observed through numerical experimentation. It comes as no surprise
that IP-PMM with MINRES is slower, however, it allows us to solve general
convex quadratic problems for which the normal equations are too expensive to
be formed, or applied to a vector (indeed, this would often require the inversion
of the matrix Q+ Θ−1 + ρkIn, which is possibly non-diagonal). More specifically,
IP-PMM with CG solved the whole set successfully in 141.25 seconds, requiring
2,907 IP-PMM iterations and 101,382 CG iterations. Furthermore, IP–PMM
with MINRES also solved the whole set successfully, requiring 341.23 seconds,
3,012 total IP–PMM iterations and 297,041 MINRES iterations.

Table 5.1: Medium scale linear programming problems (tol = 10−4)

Name nnz(A)
IP–PMM: CG IP–PMM: MINRES

Time (s) IP-Iter. CG-Iter. Time (s) IP-Iter. MR-Iter.

80BAU3B 29, 063 3.15 48 1,886 10.74 47 4,883
D2Q06C 35, 674 2.16 42 1,562 7.48 46 5,080
D6CUBE 43, 888 0.97 30 933 3.26 30 3,279
DFL001 41, 873 10.18 54 2,105 29.07 54 6,292
FIT2D 138, 018 3.16 28 836 10.62 28 2,558
FIT2P 60, 784 40.78 31 924 65.15 31 2,978
PILOT87 73, 804 7.29 40 1,260 18.36 42 3,543
QAP12 44, 244 4.38 14 495 8.62 14 1,465
QAP15 110, 700 22.83 18 575 47.45 18 1,808

While we previously presented the runs of IP-PMM using MINRES over the
Netlib collection, we did so only to compare the two variants. In particular, for
the rest of this section we employ the convention that IP–PMM uses CG whenever
Q = 0 or Q is diagonal, and MINRES whenever this is not the case.

Most of the previous experiments were conducted on small to medium scale
problems. In Table 5.2 we provide the statistics of the runs of the method over a
small set of large scale problems.

139

140 Spyridon Pougkakiotis

Table 5.2: Large-scale linear programming problems (tol = 10−4)

Name nnz(A)
IP–PMM: CG

Time (s) IP-Iter. CG-Iter.

CONT1-l 7, 031, 999 ∗1 ∗ ∗
FOME13 285, 056 72.59 54 2,098
FOME21 465, 294 415.51 96 4,268
LP-CRE-B 260, 785 14.25 51 2,177
LP-CRE-D 246, 614 16.04 58 2,516
LP-KEN-18 358, 171 128.78 42 1,759
LP-OSA-30 604, 488 20.88 67 2,409
LP-OSA-60 1, 408, 073 56.65 65 2,403
LP-NUG-20 304, 800 132.41 17 785
LP-NUG-30 1, 567, 800 2,873.67 22 1,141
LP-PDS-30 340, 635 363.89 81 3,362
LP-PDS-100 1, 096, 002 3,709.93 100 6,094
LP-STOCFOR3 43, 888 8.96 60 1,777
NEOS 1, 526, 794 †2 † †
NUG08-3rd 148, 416 80.72 17 682
RAIL2586 8, 011, 362 294.12 51 1,691
RAIL4284 11, 284, 032 391.93 46 1,567
WATSON-1 1, 055, 093 181.63 73 2,588
WATSON-2 1, 846, 391 612.68 140 5,637

1 ∗ indicates that the solver was stopped due to excessive run time.
2 † indicates that the solver ran out of memory.

We notice that the proposed version of IP-PMM is able to solve larger prob-
lems, as compared to IP-PMM using factorization (see Section 3.5.2, and notice
that the experiments there were conducted on the same PC, using the same
version of MATLAB). To summarize the comparison of the two approaches, we
include Figure 5.1. It contains the performance profiles of the two methods, over
the 26 largest linear programming problems of the QAPLIB, Kennington, Mit-
telmann, and Netlib libraries, for which at least one of the two methods was
terminated successfully. In particular, in Figure 5.1a we present the performance
profiles with respect to time, while in Figure 5.1b we show the performance pro-
files with respect to the number of IPM iterations. IP-PMM with factorization is
represented by the green line (consisting of triangles), while IP-PMM with PCG
is represented by the blue line (consisting of stars). As one can observe, IP-PMM
with factorization was able to solve only 84.6% of these problems, due to excessive
memory requirements (namely, problems LP-OSA-60, LP-PDS-100, RAIL4284,
LP-NUG-30 were not solved due to insufficient memory). As expected, however,
it converges in fewer iterations for most problems that are solved successfully by
both methods. Moreover, IP-PMM with PCG is able to solve every problem that
is successfully solved by IP-PMM with factorization. Furthermore, it manages
to do so requiring significantly less time, which can be observed in Figure 5.1a.

140

Regularized Interior Point Methods for Convex Programming 141

Figure 5.1: Performance profiles for large-scale linear programming problems

100 101 102 103

Performance ratio (time)

0.2

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

IP-PMM: Factorization
IP-PMM: PCG

(a) Performance profile in terms of CPU
time

100 101

Performance ratio (iterations)

0.4

0.6

0.8

1

P
ro

bl
em

s
so

lv
ed

IP-PMM: Factorization
IP-PMM: PCG

(b) Performance profile in terms of itera-
tions

Notice that we restrict the comparison to only large-scale problems, since this is
the case of interest. In particular, IP-PMM with factorization is expected to be
more efficient for solving small to medium scale problems.

Finally, in order to clarify the use of the low-rank (LR) updates we conducted
an analysis on two specific – yet representative – linear systems, at (predictor
and corrector) IP step #12 for problem nug20. In Table 5.3 we report the results
in solving these linear systems with the low-rank strategy and different accu-
racy/number of eigenpairs (LR(p, tol) meaning that we approximate p eigenpairs
with eigs with a tolerance tol). The best choice, using p = 10 and 0.1 accuracy,

improves the P̂NE preconditioner both in terms of linear iterations and total CPU
time.

predictor corrector
CPU(eigs) (s) CG-Iter. CPU (s) CG-Iter. CPU (s) CPU tot. (s)

No tuning 95 10.71 95 11.10 21.81
LR (5, 0.1) 2.39 79 9.51 78 9.59 21.49
LR (10, 0.1) 3.00 69 8.14 67 7.64 18.78
LR (20, 0.1) 5.98 64 7.79 63 7.85 22.62
LR (20, 10−3) 9.59 64 7.79 63 7.85 26.23

Table 5.3: CPU times and number of linear iterations for the various tuned
preconditioners at IP iteration #12 for problem nug20.

Figure 5.2 accounts for the steepest convergence profile of the preconditioned-
with-tuning normal equations matrix, when using the optimal parameters.

Dropping dense columns versus factorizing directly. We run IP-PMM on
four problems from the Netlib collection that have some dense columns, where
dense is defined in this case to be a column with at least 15% non-zero elements.
We compare an IP-PMM using Cholesky factorization for the solution of the
associated Newton system (Exact), with an IP-PMM that uses the preconditioner
presented in Section 5.2 alongside PCG (Inexact). The latter method is only
allowed to drop dense columns (at most 30) to create the preconditioner. The
results are collected in Table 5.4 (noting that the presented dimensions include
additional constraints or variables needed to transform the problem to the format

141

142 Spyridon Pougkakiotis

Figure 5.2: Convergence profiles of PCG accelerated with P̂NE and P̂NE updated
with LR(10, 0.1). Linear systems at IP iteration #12 for problem nug20.

accepted by IP-PMM, while nnz denotes the number of non-zero elements present
in the Cholesky factor).

Table 5.4: The effect of dropping dense (> 15%) columns (tol = 10−6).

Name m n kc
nnz time (s)

Exact Inexact Exact Inexact

FIT1P 10,525 21,024 20 197,676 26,706 1.31 0.50
FORPLAN 183 584 8 3,810 2,918 0.11 0.11
ISRAEL 174 316 30 12,261 1,744 0.12 0.34
SEBA 1,030 1,551 14 55,937 2,238 0.32 0.22

From Table 5.4 we can immediately see that certain dense columns present in
the constraint matrix A can have a significant impact on the sparsity pattern of
the Cholesky factors. This is a well-known fact (see for example the discussion in
[2, Section 4]). Notice that the Netlib collection contains only small- to medium-
scale instances. For such problems, memory is not an issue, and hence direct
methods tend to be faster than their iterative alternatives (like PCG). Despite
the small size of the presented problems, we can see tremendous memory savings
(and even a decrease in CPU time) for problems FIT1P and SEBA, by eliminating
only a small number of dense columns.

Sparsifying dense rows versus factorizing directly. Next, we consider the
case where the inexact version of IP-PMM is only allowed to sparsify dense rows,
where dense is defined in this case to be a row with at least 25% non-zero elements.

Before moving to the numerical results, let us note some differences between
sparsifying rows and dropping columns. Firstly, as we have shown in Section
5.2, sparsifying k rows can potentially introduce twice as many outliers, while
dropping k columns introduces at most k eigenvalue outliers. Furthermore, the
potential density induced in the Cholesky factors by a single dense column is
usually more significant than that introduced by a single dense row. However,

142

Regularized Interior Point Methods for Convex Programming 143

we cannot know in advance how effective the dropping of a column will be. On
the other hand, sparsifying dense rows introduces a certain separability in the
normal equations matrix, allowing us to estimate very well the memory savings.

In Table 5.5 we compare the direct IP-PMM, to its inexact version that is
only allowed to sparsify at most 30 dense rows of the problem.

Table 5.5: The effect of dropping dense (> 25%) rows (tol = 10−6).

Name m n kr
nnz time (s)

Exact Inexact Exact Inexact

BEACONFD 173 295 17 2,903 1,475 0.06 0.17
FIT1D 1,050 2,075 11 14,726 4,973 0.22 0.39
FIT2D 10,525 21,024 12 139,843 49,513 1.51 2.90
WOOD1P 244 2,595 27 19,088 13,879 0.34 0.49

From Table 5.5 we can observe that the required memory to form the Cholesky
factors is consistently decreased but CPU time is increased by the row-dropping
strategy. We should note that there is an increase in CPU time, which relates to
the size of the problems under consideration, and CPU time as well as memory
advantages can be observed if the problem is sufficiently large with sufficiently
many dense rows. In particular, this row sparsifying strategy will be employed
in Chapter 6 in order to tackle fMRI sparse approximation problems (in which
the constraint matrix contains thousands of dense rows). In this special case, we
show that memory requirements are significantly lowered, allowing this inexact
version to outperform its exact counterpart, while being competitive with stan-
dard state-of-the-art first-order methods traditionally used to solve such problems
(see Section 6.4).

The Cholesky versus the LDL> approach. Let us now provide some nu-
merical evidence for the potential benefits of the approach presented in Section
5.2.2 over that presented in Section 5.2.1. To that end, we run three inexact
versions of IP-PMM. The first uses the preconditioner given in (5.2) (allowing
at most 15 dense columns/rows to be dropped/sparsified), the second uses the
preconditioner given in (5.7) (which is the same as the latter without employing
the strategy of dropping/sparsifying dense columns/rows; i.e. the base precon-
ditioner), while the third version uses the preconditioner in (5.8). In all three
cases the set B, used to decide which columns are dropped irrespectively of their
density, is determined as indicated in the beginning of this section.

Table 5.6: Cholesky versus LDL> preconditioners (tol = 10−6).

Name
Krylov Its. max nnz time (s)

PNE P̂NE P̃NE PNE P̂NE P̃NE PNE P̂NE P̃NE

AGG 2,966 2,966 3,299 1.6 · 104 1.6 · 104 7.7 · 103 0.42 0.42 1.25
FIT1P 2,448 2,091 2,049 1.2 · 105 2.1 · 105 9.14 · 103 0.85 1.59 0.64
FIT2P 2,577 2,382 2,659 4.3 · 106 4.6 · 106 9.6 · 104 30.07 43.10 6.64
SEBA 2,629 2,340 2,380 2.24 · 103 5.6 · 104 9.1 · 103 0.32 0.58 0.69

143

144 Spyridon Pougkakiotis

From Table 5.6 we can observe that the LDL>-based preconditioner can pro-
vide substantial benefits for certain problems (e.g. see problem FIT1P, FIT2P).
Nevertheless, we should note that this approach is usually slower (albeit more
stable). In these specific runs we use a 10−9 threshold for the ldl function of
MATLAB. The larger this threshold is, the slower, and more stable the factor-
ization. In problem AGG, the two Cholesky-based variants are exactly the same,
as no dense columns or rows were dropped.

There is a long-standing discussion on the comparison between the Cholesky
and the LDL> decompositions. The former tend to be faster and usually easier
to implement, while the latter tend to be slower, more stable, and more general.
For more on this subject, the reader is referred to [2, Section 4] and the references
therein.

5.4.2 Convex quadratic programming

Next, we consider problems of the following form:

min
x∈Rn

c>x+
1

2
x>Qx, s.t. Ax = b, xI ≥ 0|I|, x

F free. (QP)

Let us notice that a similar partitioning as that presented in Section 5.4.1 also
holds in this case. Hence, the index set N guides us on which columns of A
to drop. In the case where Q is either diagonal, or can be well-approximated
by a diagonal, the discussion of Section 5.4.1 about dropping dense columns (or
sparsifying dense rows) also applies here.

In what follows we make use of three different preconditioners. We compare
the two block-diagonal preconditioners given in Section 5.3.1. The first is called
PAS,1, and employs a diagonal approximation for Q, allowing one to drop dense
columns and/or sparsify dense rows as shown in Section 5.2.1 (and will be called
as the base preconditioner for the rest of this subsection), and the second is
called PAS,2, and employs a block diagonal approximation of Q, using the implicit
inversion of the Schur complement proposed in Section 5.2.2. The block-diagonal
preconditioners are also compared against the factorization-based preconditioner
presented in Section 5.3.2, termed as P̂K .

Numerical results
In the following experiments, MINRES is used to solve the associated Newton
systems. Initially, we present the runs of IP-PMM using the base preconditioner
(i.e. PAS,1) over some medium to large scale instances from the Maros–Mészáros
collection (see [116]). Then, we compare the three preconditioning strategies
over certain medium-scale non-separable convex quadratic programming prob-
lems from this collection. Subsequently, we provide the runs of each method over
some L1-regularized PDE-constrained optimization problems. Finally, we show
the robustness of the approach using the base preconditioners, by running the
method over the whole Netlib and Maros–Mészáros collections with increasing
accuracy.

144

Regularized Interior Point Methods for Convex Programming 145

Maros–Mészáros collection. We present the runs of the method over the
Maros–Mészáros test set [116]. In Table 5.7, we collect statistics from the runs
of the method over some medium and large scale instances of the collection,
requesting a 4-digit accurate solution.

Table 5.7: Medium and large-scale QP problems (tol = 10−4).

Name nnz(A) nnz(Q)
IP–PMM

Time (s) IP-Iter. Krylov-Iter.

AUG2DCQP 20,200 80,400 4.46 41 1,188
CONT-100 49,005 10,197 3.95 23 68
CONT-101 49,599 2,700 8.83 85 282
CONT-200 198,005 40,397 39.84 109 422
CONT-300 448,799 23,100 134,76 126 405
CVXQP1 L 14,998 69,968 54.77 111 12,565
CVXQP3 L 22,497 69,968 80.18 122 14,343
LISWET1 30,000 10,002 3.55 41 1,249
POWELL20 20,000 10,000 2.71 31 937
QSHIP12L 16,170 122,433 2.99 26 3,312

In Table 5.8, we report on the runs of the method using each of the three
preconditioners on instances having a non-diagonal Hessian Q. In order to stress
the importance of using non-diagonal Hessian information in the formation of the
preconditioner, we request for a 6-digit accurate solution. This will allow us to
see certain limitations of the base preconditioner.

Table 5.8: Comparison of QP preconditioners (tol = 10−6).

Name
Krylov Its. max nnz time (s)

PAS,1 PAS,2 P̂K PAS,1 PAS,2 P̂K PAS,1 PAS,2 P̂K

CVXQP2 L †1 7,858 4,981 5.06 · 104 1.47 · 106 1.47 · 106 † 63.76 41.45
CVXQP2 M 6,164 4,288 4,176 5.04 · 103 6.18 · 104 6.19 · 104 2.19 1.85 1.96
Q25FV47 10,048 10,589 11,700 2.39 · 104 8.95 · 104 1.12 · 105 3.10 4.87 5.77
QSHIP12L 6,654 6,126 6,040 1.10 · 104 2.04 · 105 2.07 · 105 3.22 5.12 5.28
STCQP1 7,240 5,140 5,419 7.00 · 105 1.26 · 105 1.26 · 105 20.45 11.00 10.87
STCQP2 5,292 3,660 3,665 5.44 · 104 2.13 · 105 2.13 · 105 7.43 7.85 7.36

1 † indicates that the solver did not reach the desired accuracy.

From Table 5.8, one can observe that most of the time PAS,1 is rather inex-
pensive, and naturally requires some additional Krylov iterations. For problem
CVXQP2, this preconditioner was unable to yield a 6-digit accurate solution (in
fact, it could easily find a 5-digit accurate solution, but numerical inaccuracy
prevented the algorithm from converging with a tolerance of 10−6). On the other

hand, both PAS,2 and P̂K allowed IP-PMM to converge to a 6-digit accurate solu-
tion in this case. This specific instance is quite vulnerable to perturbations, and
the use of additional Hessian information within the preconditioner is crucial to
guarantee the convergence of IP-PMM. Similar observations hold for the remain-
ing CVXQP problems of this collection (which are not included here). For the

145

146 Spyridon Pougkakiotis

remaining instances, we can observe that all three approaches are competitive and
the efficiency of each approach depends on the problem under consideration. We
should note that for both PAS,2 and P̂K , a threshold of 10−9 was used within the
MATLAB ldl function (thus in the former case we favor efficiency over stability).

PDE-constrained optimization instances. Next, we compare the precondi-
tioning approaches on some PDE-constrained optimization problems. In partic-
ular, we consider the L1/L2-regularized Poisson control problem, as well as the
L1/L2-regularized convection–diffusion control problem with control bounds. We
should emphasize at this point that while bespoke preconditioners have been cre-
ated for PDE problems of this form, here we treat the discretized problems as if
we hardly know anything about their structure, to demonstrate the generality of
the approaches presented in this chapter.

We consider problems of the following form:

min
y,u

J(y(x), u(x)) :=
1

2
‖y − ȳ‖2

L2(Ω) +
α1

2
‖u‖2

L1(Ω) +
α2

2
‖u‖2

L2(Ω),

s.t. Dy(x) + u(x) = g(x),

ua(x) ≤ u(x) ≤ ub(x),

(5.18)

where (y, u) ∈ H1(Ω) × L2(Ω), D denotes some linear differential operator asso-
ciated with the differential equation, x is a 2-dimensional spatial variable, and
α1, α2 ≥ 0 denote the regularization parameters of the control variable. We note
that other variants for J(y, u) are possible, including measuring the state mis-
fit and/or the control variable in other norms, as well as alternative weightings
within the cost functionals. In particular, the methods tested here also work well
for L2 norm problems (e.g. see [138]). We consider problems of the form of (5.18)
to create an extra level of difficulty for our solvers.

The problem is considered on a given compact spatial domain Ω, where Ω ⊂ R2

has boundary ∂Ω, and is equipped with Dirichlet boundary conditions. The
algebraic inequality constraints are assumed to hold a.e. on Ω. We further note
that ua and ub may take the form of constants, or functions in spatial variables,
however we restrict our attention to the case where these represent constants.

Problems in the form of (5.18) are often solved numerically, by means of a
discretization method. In the following experiments we employ the Q1 finite
element discretization implemented in IFISS3 (see [65, 66]). Applying the latter
yields a sequence of non-smooth convex programming problems, which can be
transformed to the smooth form of (QP), by introducing some auxiliary variables
to deal with the `1 terms appearing in the objective (see [140, Section 2]). In order
to restrict the memory requirements of the approach, we consider an additional
approximation of Q in the preconditioner PAS,2. In the cases under consideration,

3https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.

htm

146

https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.htm
https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.htm

Regularized Interior Point Methods for Convex Programming 147

the resulting Hessian matrix (without the barrier terms) takes the following form:

Q =

JM 0d,d 0d,d
0d,d α2JM −α2JM
0d,d −α2JM α2JM

 ,
where JM is the mass matrix of size d. We approximate each block of Q by its
diagonal (i.e. J̃M = Diag(JM); an approximation which is known to be optimal
[176]). The resulting matrix is then further approximated as discussed in Section
5.3. From now on, the LDL> preconditioner, which is based on an approximation
of PAS,2, will be referred to as PAS,3. For these examples, the preconditioning

strategy based on P̂K (given in Section 5.3.2) behaved significantly worse, and
hence was not included in the numerical results. The preconditioner PAS,3 can be
useful in that it allows us to employ block diagonal preconditioners of which the
Schur complement takes into account non-diagonal information of the Hessian
matrix Q. In certain cases, this might result in a faster convergence of IP-PMM,
as compared to PAS,1 (which might not allow IP-PMM to converge to a 6-digit
accurate solution).

The first problem that we consider is the two-dimensional L1/L2-regularized
Poisson optimal control problem, with bound constraints on the control and free
state, posed on the domain Ω = (0, 1)2. Following [140, Section 5.1], we con-
sider the constant control bounds ua = −2, ub = 1.5, and the desired state
ȳ = sin(πx1) sin(πx2). In Table 5.9, we fix α2 = 10−2 (which we find to be the
most numerically interesting case), and we present the runs of the method using
the different preconditioning approaches, with increasing grid size, and varying
L1 regularization parameter (that is α1). To reflect the change in the grid size,
we report the number of variables of the optimization problem after transforming
it to the IP-PMM format. We also report the overall number of Krylov itera-
tions required for IP-PMM to converge (and the number of IP-PMM iterations
in brackets), the maximum number of nonzeros stored in order to invert the
associated preconditioners, as well as the required CPU time.

We can draw several observations from the results in Table 5.9. Firstly, one
can observe that in this case, a diagonal approximation of Q is sufficiently good
to deliver fast convergence of MINRES. The block-diagonal preconditioner using
non-diagonal Hessian information (i.e. PAS,3) required consistently fewer MIN-
RES iterations (and not necessarily more memory; see the three largest experi-
ments), however, this did not result in a reduction in CPU time. There are sev-
eral reasons for this. Firstly, the Hessian of the problem becomes more diagonally
dominant as the grid size is increased. As a result, the diagonal approximation of
it remains robust with respect to the grid size for the problem under considera-
tion. On the other hand, the algorithm uses the built-in MATLAB function ldl

to factorize the preconditioner PAS,3. While this implementation is very stable, it
employs a dynamic permutation at each IP-PMM iteration, which slows down the
algorithm. In this case, a specialized method using preconditioner PAS,3 should
employ a separate symbolic factorization step, that could be used in subsequent
IP-PMM iterations, thus significantly reducing the CPU time. This is not done
here, however, as we treat these PDE-constrained optimization problems as black-

147

148 Spyridon Pougkakiotis

Table 5.9: Comparison of QP preconditioners (Poisson Control: grid size and
varying regularization, tol = 10−6).

n α1
Krylov (IP) Its. max nnz time (s)

PAS,1 PAS,3 PAS,1 PAS,3 PAS,1 PAS,3

2.11 · 104

10−2 1,568 (14) 1,148 (14) 3.98 · 105 4.74 · 105 6.49 7.05
10−4 2,130 (15) 1,266 (15) 3.98 · 105 4.75 · 105 8.45 7.75
10−6 1,726 (14) 1,159 (14) 3.98 · 105 4.75 · 105 6.97 7.10

8.32 · 104

10−2 1,361 (14) 1,099 (14) 2.12 · 106 2.22 · 106 21.65 43.15
10−4 1,723 (14) 1,187 (14) 2.12 · 106 2.22 · 106 26.31 45.00
10−6 1,728 (14) 1,192 (14) 2.12 · 106 2.22 · 106 26.23 44.99

3.30 · 105

10−2 1,474 (14) 1,220 (14) 1.07 · 107 1.10 · 107 112.01 221.90
10−4 1,685 (15) 1,240 (15) 1.07 · 107 1.10 · 107 128.20 224.29
10−6 1,687 (15) 1,231 (15) 1.07 · 107 1.10 · 107 127.47 224.51

1.32 · 106

10−2 1,465 (14) 1,120 (14) 5.51 · 107 5.38 · 107 523.25 1,028.30
10−4 1,484 (14) 1,120 (14) 5.51 · 107 5.38 · 107 517.65 1,030.71
10−6 1,479 (14) 1,113 (14) 5.51 · 107 5.38 · 107 515.67 1,045.35

box (notice that the implementation allows the user to feed an approximation of
the Hessian, but does not allow the user to use a different LDL> decomposition).
In all the previous runs, the reported Krylov iterations include both the predictor
and the corrector steps of IP-PMM (i.e. on average, when PAS,1 was used, every
linear system was successfully solved in about 50 iterations, while with PAS,2,
each linear system was solved in about 40 iterations). We should note that for
the problem under consideration employing a predictor–corrector scheme is not
necessary, however, we wanted to keep the implementation as general and robust
as possible, without tailoring it to specific applications. For this problem, we can
also observe that IP-PMM was robust with respect to the grid size (i.e. IP-PMM
convergence was not affected by the size of the problem). This is often observed
when employing an IPM for the solution of PDE optimization problems (e.g. see
[138]), however, in theory one should expect dependence of IPM on the problem
size.

Next we consider the optimal control of the convection–diffusion equation,
i.e. ε∆y + w∇y = u, on the domain Ω = (0, 1)2, where w is the wind vector
given by w = [2x2(1 − x1)2,−2x1(1 − x2

2)]>, with control bounds ua = −2, ub =
1.5 and free state (e.g. see [140, Section 5.2]). Once again, the problem is
discretized using Q1 finite elements, employing the streamline upwind Petrov-
Galerkin (SUPG) upwinding scheme implemented in [33]. We define the desired
state as ȳ = exp(−64((x1 − 0.5)2 + (x2 − 0.5)2)) with zero boundary conditions.
The diffusion coefficient ε is set as ε = 0.02. The L2 regularization parameter
α2 is set as α2 = 10−2. We run IP-PMM with the two different preconditioning
approaches on the aforementioned problem, with different L1 regularization values
(i.e. α1) and with increasing grid size. The results are collected in Table 5.10.

In Table 5.10 we can observe that the IP-PMM convergence can be slightly
affected by the problem size, as well as by the L1 regularization parameter α1.
When PAS,3 was employed, this behaviour did not relate to the inexact solution
of the associated linear systems, but to the algorithmic scheme itself. However,

148

Regularized Interior Point Methods for Convex Programming 149

Table 5.10: Comparison of QP preconditioners (Convection–Diffusion Control:
grid size and varying regularization, tol = 10−6).

n α1
Krylov (IP) Its. max nnz time (s)

PAS,1 PAS,3 PAS,1 PAS,3 PAS,1 PAS,3

2.11 · 104

10−2 5,601 (24) 3,058 (24) 3.88 · 105 4.65 · 105 22.41 16.28
10−4 † 2,816 (21) 3.88 · 105 4.65 · 105 † 15.09
10−6 7,510 (24) 3,525 (23) 3.88 · 105 4.65 · 105 30.10 18.49

8.32 · 104

10−2 5,371 (25) 3,124 (24) 2.12 · 106 2.21 · 106 77.94 99.18
10−4 † 3,358 (23) 2.12 · 106 2.21 · 106 † 101.80
10−6 9,272 (30) 4,059 (25) 2.12 · 106 2.21 · 106 130.13 119.99

3.30 · 105

10−2 4,670 (24) 3,185 (24) 1.06 · 107 1.09 · 107 324.70 470.99
10−4 † 4,569 (26) 1.06 · 107 1.09 · 107 † 615.22
10−6 9,318 (30) 3,185 (24) 1.06 · 107 1.09 · 107 636.53 474.40

1.32 · 106

10−2 3,645 (20) 2,996 (20) 5.51 · 107 5.38 · 107 1,185.78 1,930.02
10−4 8,867 (33) 5,266 (28) 5.51 · 107 5.38 · 107 2,807.26 3,082.31
10−6 8,119 (31) 4,594 (26) 5.51 · 107 5.38 · 107 2,555.12 2,765.34

for this problem one can observe that the preconditioner PAS,1 was not good
enough to deliver fast convergence of IP-PMM consistently. In certain cases,
convergence to a 6-digit solution was not possible, while in others, numerical
inaccuracy resulted in an increase in the IP-PMM iterations. On the other hand,
when PAS,3 was employed IP-PMM did not face any numerical issues. A possible
increase in the overall number of Krylov iterations in this case was connected to
an increase in the number of outer IP-PMM iterations. We should note that for
all these instances a 4- or a 5-digit accurate solution was found very quickly by
both approaches. Unlike in the case of the Poisson optimal control problem, we
can observe that in this problem using non-diagonal Hessian information within
the preconditioner is significantly more important. As before, we should mention
that the reported number of Krylov iterations includes the solution of both the
predictor and the corrector steps for each IP-PMM iteration.

Robustness of inexact IP-PMM Finally, in Table 5.11 we collect the statis-
tics of the runs of the method using the base preconditioners (i.e. P̂NE, PAS,1)
over the entire Netlib and Maros-Mészáros test sets, in order to showcase the
robustness of the solver. In particular, we solve each set with increasing accuracy
and report the overall success rate of the method, the total time, as well as the
total IP-PMM and Krylov iterations. All previous experiments demonstrate that
IP-PMM with the proposed preconditioning strategy inherits the reliability of
IP-PMM with a direct approach (see Section 3.5.1), while allowing one to control
the memory and processing requirements of the method (which is not the case
when employing a factorization to solve the resulting Newton systems).

Overall, we observe that each of the presented preconditioning approaches can
be very successful on a wide range of problems, including those of very large scale.
Although we have treated every problem as if we know nothing about its structure
for these numerical tests, our a priori knowledge of the preconditioners and of the
problem’s structure could in principle aid us in selecting a preconditioner without
compromising their “general purpose” nature.

149

150 Spyridon Pougkakiotis

Table 5.11: Robustness of inexact IP–PMM

Collection Tol Solved (%)
IP–PMM

Time (s) IP-Iter. Krylov-Iter.

Netlib 10−4 100 % 141.25 2,907 101,482
Netlib 10−6 100 % 183.31 3,083 107,911
Netlib 10−8 96.87 % 337.21 3,670 119,465
Maros–Mészáros 10−4 99.21 % 422.75 3,429 247,724
Maros–Mészáros 10−6 97.64 % 545.26 4,856 291,286
Maros–Mészáros 10−8 92.91 % 637.35 5,469 321,636

5.5 Conclusions

In this chapter we have presented several general-purpose preconditioning
methodologies suitable for primal-dual regularized interior point methods, applied
to convex optimization problems. All presented preconditioners are positive def-
inite and hence can be used within symmetric solvers such as PCG or MINRES.
After analyzing and discussing the different preconditioning approaches, we have
presented extensive numerical results, showcasing their use and potential benefits
for different types of practical applications of convex optimization. A robust and
general IP-PMM implementation, using the proposed preconditioners, has been
provided for the solution of convex quadratic programming problems, and one
can readily observe its ability of reliably and efficiently solving general large-scale
problems, with minimal input from the user.

As a future research direction, we would like to construct certain matrix-free
preconditioning methodologies that could be used as alternatives for huge-scale
instances that cannot be solved by means of factorization-based preconditioners,
due to memory requirements.

150

Chapter 6

IP-PMMs for Sparse
Approximation Problems

6.1 Introduction

Each of the previous chapters contained numerical results on standard test
sets. To that end, generic implementations of IP-PMM were employed and used
as black-box solvers. In practice, however, it is often the case that the problem
under consideration has certain properties that a solver like IP-PMM can exploit,
leading to more robust and efficient implementations; albeit less general.

In this chapter, we are concerned with the efficient solution of a wide class
of problems which are very large and are expected to yield sparse solutions. In
practice, the sparsity is often induced by the presence of `1 norm terms in the
objective. We assume that a general problem of the following form

min
x

f(x) + τ1‖x‖1 + τ2‖Lx‖1,

s.t. Ax = b,
(6.1)

needs to be solved, where f : Rn 7→ R is a twice continuously differentiable convex
function, L ∈ Rl×n, A ∈ Rm×n, b ∈ Rm, m ≤ n, and τ1, τ2 > 0. The terms ‖x‖1

and ‖Lx‖1 induce sparsity in the vector x and/or in some (possibly redundant)
dictionary Lx. Numerous real-life problems can be recast into the form (6.1).
Among the various application areas, one can find portfolio optimization [114],
signal and image processing [42, 150], classification in statistics [166] and machine
learning [172], inverse problems [168], PDE-constrained optimization [163], and
compressed sensing [35], to name just a few.

Optimization problems arising in these applications are usually solved by dif-
ferent specialized variants of first-order methods. Indeed, highly specialized and
tuned to a narrow class of problems, first-order methods often outperform stan-
dard off-the-shelf second-order techniques; the latter might be too expensive or
might struggle with excessive memory requirements. Such comparisons are not
fair though. With this chapter we hope to change the incorrect opinion on the
second-order methods.

Various second-order approaches have been proposed in the literature for prob-
lems of the form of (6.1). In particular, one might employ proximal (projected)

151

152 Spyridon Pougkakiotis

Newton-type methods (see [106, 157]) in which a proximal term is added to deal
with the non-smooth part of the objective function (unless its minimum-norm
subgradient has a closed form solution, in which case the proximal term can
be excluded). Alternatively, such problems can be solved by means of stan-
dard semi-smooth Newton methods (see [101, 103] and the references therein) or
semi-smooth Newton methods combined with the augmented Lagrangian method
(see, e.g., [108]). The aforementioned approaches employ line-search schemes that
allow one to show linear or local superlinear convergence, given certain assump-
tions. For methods involving proximal terms, superlinear convergence is only
guaranteed when the associated penalty parameters increase to infinity.

Here we consider interior point methods, which exhibit better convergence (in
practice and in theory), at the expense of worse conditioning of the associated
linear systems that have to be solved at every IPM iteration. When efficiently
implemented and specialized to a particular application, interior point methods
offer an attractive alternative. They can be equally (or more) efficient than the
best first-order methods available, and they deliver unmatched robustness and
reliability.

The specializations of interior point methods proposed in this chapter do not
go beyond what has been commonly exploited by first-order methods. Namely
we propose:

• to exploit special features of the problems in the linear algebra of IPMs,

• and to take advantage of the expected sparsity of the optimal solution.

In order to achieve our goals we propose to convert sparse approximation
problems to standard smooth nonlinear convex programming ones by replacing
the `1 norm terms with a usual modeling trick in which an absolute value |a|
is substituted with the sum of two non-negative parts, |a| = a+ + a−, where
a+ = max{a, 0} and a− = max{−a, 0}. By introducing the auxiliary variable
d = Lx ∈ Rl, problem (6.1) is then transformed into the following one:

min
x+,x−,d+,d−

f(x+ − x−) + τ1(e>nx
+ + e>nx

−) + τ2(e>l d
+ + e>l d

−),

s.t. A(x+ − x−) = b,
L(x+ − x−) = d+ − d−,
x+, x− ≥ 0n, d+, d− ≥ 0l,

(6.2)

where x+, x− ∈ Rn are such that x = x+ − x−, and d+, d− ∈ Rl are such that
d = d+−d−. It is worth observing that (6.1) and (6.2) are equivalent; indeed the
presence of linear terms which penalize for the sum of positive and negative parts
of vectors x and d guarantees that at optimality only one of the split variables
can take a nonzero value. We also note that the number of variables is greater
than or equal to the number of equality constraints in (6.2). Although (6.2) is
larger than (6.1) because the variables have been replicated and new constraints
have been added, it is in a form eligible to a straightforward application of an
interior point method. We expect that the well-known ability of IPMs to handle
large sets of linear equality and inequality constraints will compensate for this
increase of the problem dimension.

152

Regularized Interior Point Methods for Convex Programming 153

IPMs employ Newton method to solve a sequence of logarithmic barrier sub-
problems (see Section 1.1.1 for more details). In standard implementations of
IPMs this requires many involved linear algebra operations (building and invert-
ing the Hessian matrix), and for large problems it might become prohibitively ex-
pensive. In this chapter we demonstrate that the use of inexact Newton method
[16, 34, 80] combined with a knowledgeable choice and appropriate tuning of lin-
ear algebra solvers (see [51, 56, 78, 83] and the references therein) is the key to
success when developing an IPM specialized to a particular class of problems.
We also demonstrate an attractive ability of IPMs to select important variables
and prematurely drop the irrelevant ones, a feature which is very well suited to
solving sparse approximation problems in which the majority of variables are ex-
pected to be zero at optimality. It is worth mentioning at this point that our
understanding of the features of IPMs applied to sparse approximation problems
benefited from the earlier studies which focused on compressed sensing problems
[69, 70].

Ultimately, we provide computational evidence that IPMs can be more effi-
cient than methods which are routinely used for the solution of sparse approxi-
mation problems by exploiting only first-order information.

Structure of the chapter

The rest of this chapter is organized as follows. In Section 6.2 we briefly
describe an IP-PMM for non-linear convex programming. In Sections 6.3 to 6.6
we present four applications formulated as optimization problems with sparsity
sought in the solutions, and recast them in the form (6.2). In detail, in Sec-
tion 6.3 we focus on a multi-period portfolio selection strategy, in Section 6.4
on the classification of data coming from functional magnetic resonance imaging
(fMRI), in Section 6.5 on the restoration of images corrupted by Poisson noise,
and in Section 6.6 on linear classification through regularized logistic regression.
The first two applications yield convex quadratic programming problems, while
the remaining ones yield general nonlinear convex programming problems. For
each application, we provide a brief description of its mathematical model and
explain how IP-PMM is specialized for that case in terms of linear algebra solvers,
including variable dropping strategies to help sparsification; we also show the re-
sults of computational experiments, including comparisons with state-of-the art
methods widely used by the scientific community on the selected problems.

6.2 An IP-PMM for convex programming

In this section, we derive an IP-PMM suitable for solving convex programming
problems. The method is based on the developments in Chapter 3. We consider
the following primal problem (which can be equivalently formulated as (CP), by
adding some additional constraints):

min
x

f(x), s.t. Ax = b, xI ≥ 0|I|, xF free, (6.3)

153

154 Spyridon Pougkakiotis

where f : Rn 7→ R is a twice continuously-differentiable convex function, A ∈
Rm×n (m ≤ n), b ∈ Rm, x ∈ Rn, I ⊆ {1, . . . , n}, and F = {1, . . . , n} \ I.
Generalizing the IP-PMM of Chapter 3, assume that, at some iteration k of the
method, we have available an estimate ηk for an optimal Lagrange multiplier
vector y∗ associated to the equality constraints of (6.3). Similarly, we denote
by ζk an estimate of a primal solution x∗. Now, we define the proximal penalty
function that has to be minimized at the k-th iteration of the PMM, for solving
(6.3), given the estimates ηk, ζk:

LPMM
ρk,δk

(x; ζk, ηk) = f(x)− η>k (Ax− b) +
1

2δk
‖Ax− b‖2

2 +
ρk
2
‖x− ζk‖2

2,

with {δk}, {ρk} two positive non-increasing sequences of penalty parameters.
Following Chapter 3, we require that these parameters decrease at the same rate
as µk; however, in practice we never allow these values to be reduced below a
certain appropriately chosen threshold. We alter the previous penalty function,
by including logarithmic barriers, that is

LIP−PMM
ρk,δk

(x; ζk, ηk) = LPMM
ρk,δk

(x; ζk, ηk)− µk
∑
j∈I

lnxj, (6.4)

where µk > 0 is the barrier parameter. We form the optimality conditions of the
latter as follows

∇f(x)− A>ηk +
1

δk
A>(Ax− b) + ρk(x− ζk)−P>

[
0|F|

µk(X
I)−1e|I|

]
= 0n,

where P is an appropriate permutation matrix, such that Pxk = [(xFk)>, (xIk)>]>.
Next, we define the variables y = ηk − 1

δk
(Ax − b) and z ∈ Rn, such that

zI = µk(X
I)−1e|I|, z

F = 0, to obtain:∇f(x)− A>y − z + ρk(x− ζk)
Ax+ δk(y − ηk)− b
XIzI − µke|I|

 =

 0n
0m
0|I|

 .
To approximately solve the previous mildly nonlinear system of equations, we
employ a damped perturbed Newton method (that is, we alter its right-hand side
using a centering parameter τk ∈ (0, 1)). Thus, at every iteration of IP-PMM we
want to solve the following system of equations:

−(∇2f(xk) + ρkIn) A> In
A δkIm 0m,n
Zk 0n,m Xk

∆x
∆y

P>
[

0|F|
∆zI

]

=

∇f(xk)− A>yk + τkρk(xk − ζk)− zk

b− Axk − τkδk(yk − ηk)

P>
[

0|F|
τkµke|I| −XIk zIk

]
 , (6.5)

154

Regularized Interior Point Methods for Convex Programming 155

From the third block-equation of (6.5) we have ∆zF = 0|F| and

∆zI = (XIk)−1(−ZIk∆xI + τkµke|I| −XIk zIk).

In light of the previous computations, (6.5) reduces to:[
−(∇2f(xk) + Ξk + ρkIn) A>

A δkIm

] [
∆x
∆y

]
=

[
r1,k

r2,k

]
, (6.6)

where[
r1,k

r2,k

]
=

∇f(xk)− A>yk + τkρk(xk − ζk)−P>
[

0|F|
τkµk(X

I
k)−1e|I|

]
b− Axk − τkδk(yk − ηk)

 , (6.7)

and

Ξk := P>
[
0|F|,|F| 0|I|,|F|
0|F|,|I| (XIk)−1(ZIk)

]
P.

For the rest of this chapter, we will make use of the notation Ξk in cases where
only a subset of the primal variables x are constrained to be non-negative. In the
case where all the entries of x must satisfy this constraint, we will employ the
standard IPM notation Θk ≡ Ξ−1

k , since in this case F = ∅. In the special case
where ∇2f(xk) is a diagonal (or zero) matrix, it could be beneficial to further
reduce system (6.6), by eliminating variables ∆x. The resulting normal equations
yield a positive definite system of equations that reads as follows:(

A(∇2f(xk) + Ξk + ρkIn)−1A> + δkIm
)

∆y

= r2,k + A(∇2f(xk) + Θ−1
k + ρkIn)−1(r1,k).

(6.8)

The parameters ηk, ζk are tuned as in Chapter 3. In particular, we set η0 = y0

and ζ0 = x0, where (x0, y0, z0) is the starting point of IP-PMM. Then, at the
end of every iteration k, we set (ζk+1, ηk+1) = (xk+1, yk+1) only if the primal
and dual residuals are decreased sufficiently. If the latter is not the case, we set
(ζk+1, ηk+1) = (ζk, ηk).

It has been demonstrated (see Chapter 3) that IP-PMM using a single Newton
step per iteration converges to an ε-optimal solution in a number of iterations that
is polynomial with respect to the problem size n, if f is a convex quadratic func-
tion. Furthermore, the latter holds for linear positive semi-definite programming
problems, even if one solves the Newton system inexactly, i.e., requiring only the
residual norm to be bounded by a suitable multiple of the barrier parameter µk
(see Chapter 4). Nevertheless, the previous is not proven to hold for the general
convex (nonlinear) case. In the latter case, one would have to employ Newton
method combined with a line-search or a trust-region strategy (see, e.g., [7, 173]),
in order to guarantee the convergence of the method. In all the cases analyzed
in this chapter we make use of a simple Mehrotra-type [119] predictor-corrector
scheme, which in general is sufficient to produce good directions that allow the
method to converge quickly to the optimal solution. In the corrector stage, the
right-hand side is approximated by a linearization of the function f(·) that is

155

156 Spyridon Pougkakiotis

being minimized (see [165]).

6.2.1 Testing environment

The various specializations of IP-PMM discussed in the following sections have
been implemented in MATLAB and compared with MATLAB implementations
of state-of-the-art methods for each specific problem. All the tests were run
with MATLAB R2019b on an Intel Xeon Platinum 8168 CPU with 192 GB of
RAM, available from the magicbox server at the Department of Mathematics and
Physics of the University of Campania “L. Vanvitelli”.

6.3 Portfolio selection problem

Portfolio selection is one of the most central topics in modern financial eco-
nomics. It deals with the decision problem of how to allocate resources among sev-
eral competing assets in accordance with the investment objectives. For medium-
and long-time horizons, the multi-period strategy is suitable, because it allows
the change of the allocation of the capital across the assets, taking into account
the evolution of the available information. In a multi-period setting, the invest-
ment period is partitioned into m sub-periods, delimited by m + 1 re-balancing
dates tj. The decisions are taken at the beginning of each sub-period [tj, tj+1),
j = 1, ...,m, and kept within it. The optimal portfolio is defined by the vector

w = [w>1 , w
>
2 , . . . , w

>
m]>,

where wj ∈ Rs is the portfolio of holdings at time tj and s is the number of assets.
The mean-variance formulation proposed by Markowitz [114] was extended

to a multi-period portfolio selection by Li and Ng [107], and in recent years
there has been a significant advancement of both theory and methodologies. In
a multi-period mean-variance framework, we fix a final target expected return
and adopt as risk measure the function obtained by summing the single-period
variance terms [43]:

ρ(w) =
m∑
j=1

w>j Cjwj,

where Cj ∈ Rs×s is the covariance matrix, assumed to be positive definite, es-
timated at tj. A common strategy to estimate Markowitz model parameters is
to use historical data as predictive of the future behavior of asset returns. Dif-
ferent regularization techniques have been proposed to deal with ill-conditioning
due to asset correlation; in the last years the `1-regularization has been used to
promote sparsity in the solution [48]. It allows investors to reduce the number
of positions to be monitored and held and the overall transaction costs. Another
useful interpretation of the `1 norm is related to the amount of short positions
(i.e., negative components in the solution), which indicate an investment strat-
egy where an investor is selling borrowed stocks in the open market, expecting
that the market will drop, in order to realize a profit. A suitable tuning of the

156

Regularized Interior Point Methods for Convex Programming 157

regularization parameter permits short controlling in both the single- and the
multi-period case [45, 48]. However, in the multi-period case, the sparsity in the
solution does not guarantee the control of the transaction costs, especially if the
pattern of the active positions (i.e., positive components in the solution) com-
pletely changes across periods. In this case, sparsity must be introduced in the
variation, e.g., by adding an `1 term involving the differences of the wealth values
allocated on the assets between two contiguous re-balancing times. This acts as
a penalty on the portfolio turnover, which has the effect of reducing the number
of transactions and hence the transaction costs [46, 53].

Thus, we consider the following fused lasso optimization problem for multi-
period portfolio selection [53]:

min
w

1
2
w>Cw + τ1‖w‖1 + τ2‖Lw‖1,

s.t. w>1 es = ξinit,
w>j es = (es + rj−1)>wj−1, j = 2, . . . ,m,
(es + rm)>wm = ξterm,

(6.9)

where n = ms, C = Diag(C1, C2, . . . , Cm) ∈ Rn×n is a block diagonal symmetric
positive definite matrix, τ1, τ2 > 0, L ∈ R(n−s)×n is the discrete difference operator
representing the fused lasso regularizer, rj ∈ Rs is the expected return vector at
time tj, ξinit is the initial wealth, and ξterm is the target expected wealth resulting
from the overall investment. The first constraint is the initial budget constraint.
The strategy is assumed to be self-financing, as constraints from 2 to m establish;
this means that the value of the portfolio changes only because the asset prices
change. The (m+1)-st constraint defines the expected final wealth. To deal with
the non-separability of the objective function in (6.9), we introduce an auxiliary
variable d, which is constrained to be equal to Lw, and we equivalently formulate
problem (6.9) as follows:

min
w,d

1

2
w>Cw + τ1‖w‖1 + τ2‖d‖1,

s.t. Āw = b̄,
Lw = d,

(6.10)

where the constraint matrix Ā ∈ R(m+1)×n can be interpreted as an (m+ 1)×m
lower bi-diagonal block matrix, with blocks of dimension 1× s defined by

Āi,j =

e>s if i = j,

−(es + ri−1)> if j = i+ 1,
0>s otherwise,

and b̄ = (ξinit, 0, 0, ..., ξterm)> ∈ Rm+1.

157

158 Spyridon Pougkakiotis

6.3.1 Specialized IP-PMM for quadratic portfolio opti-
mization problems

Using the standard trick described in Section 6.1, we split w and d into two
vectors of the same size, representing the non-negative and non-positive parts of
the entries of w and d respectively, i.e., w = w+ − w− and d = d+ − d−. Then,
problem (6.10) is reformulated as the QP problem given in (CQP), where we set
l = n− s, n = 2(n+ l) = 2s(2m− 1), m = m+ 1 + l = (m+ 1) + s(m− 1),

x = [(w+)>, (w−)>, (d+)>, (d−)>]> ∈ Rn,

Q =

 [C −C
−C C

]
02n,2l

02l,2n 02l,2l

 ∈ Rn×n, A =

[
Ā −Ā 0(m+1),2l

L −L
[
−Il Il

]] ∈ Rm×n,

(6.11)
c = [τ1, . . . , τ1, τ2, . . . , τ2]> ∈ Rn, b = [b̄1, . . . , b̄m+1, 0, . . . , 0]> ∈ Rm.

Dropping primal variables
The optimal solution of problem (6.10) is expected to be sparse. On the other

hand, in light of the reformulation in the form of (CQP), we anticipate (and
verify in practice) that most of the primal variables w attain a zero value close
to optimality. Such variables may significantly contribute to the ill conditioning
of the matrix in (6.6) (see, e.g., [51, 78] and the references therein). In order
to take advantage of this special property displayed by this problem, we employ
the following heuristic method, which aims at dropping variables xj which are
sufficiently close zero, their seemingly optimal value. This results in better con-
ditioning of the augmented system, whose dimension is also significantly reduced
close to optimality, thus decreasing the computational cost of each IPM iteration.
In other words, as IP-PMM progresses, we project the problem onto a smaller
space. After this reduced problem is solved, its optimal solution is expanded back
to the original space by filling all earlier eliminated variables with zeros. This
delivers an optimal solution to the original problem.

In particular, we set a threshold value εdrop > 0, and a large constant ξ > 0.
At iteration k = 0, we define a set V = ∅. Then, at every iteration k of IP-PMM,
we check the following condition, for every j ∈ I \ V :

xjk ≤ εdrop and zjk ≥ ξ · εdrop and (rd)
j
k ≤ εdrop, (6.12)

where (rd)
j
k = (c−A>yk+Qxk−zk)j represents the dual infeasibility corresponding

to the j-th variable. Any variable that satisfies the latter condition is dropped,
that is, we set xjk = 0, V = V ∪ {j}, G = F ∪ (I \ V), we drop zjk and solve[

−(QG,G + ΞG,Gk + ρkI|G|) (AH,G)>

AH,G δkIm

] [
∆xG

∆y

]
=

[
rG1,k
r2,k

]
, (6.13)

where, Ξk is defined as in Section 6.2, r1,k, r2,k are defined in (6.7) (by substituting
AH,G as the constraint matrix), and H = {1, . . . ,m}. We should note that this

158

Regularized Interior Point Methods for Convex Programming 159

is a heuristic, since once a variable is dropped, it is not considered again until
the method converges. Hence, one has to make sure that none of the nonzero
variables xjk is dropped. Nevertheless, at the end of the optimization process we
can test whether the variables in V are indeed nonzero. More specifically, once
an optimal solution (x∗, y∗, z∗) is found, we compute:

zV = cV − (AH,V)>y∗ +QV,G(x∗)G.

If there exists j such that (zV)j ≤ 0, then we would identify that a variable xj

was incorrectly dropped. Otherwise, the optimal solution of the reduced problem
coincides with the nonzero part of the optimal solution of the original problem.
We notice that this methodology is not new. In particular, a similar strategy
was employed in [81], where a special class of linear programming problems was
solved using a primal-dual logarithmic barrier method.

6.3.2 Computational experience

We test the effectiveness of the IP-PMM applied to the fused lasso model on
the following real-world data sets:

1. FF48-FF100 (Fama & French 48-100 Industry portfolios, USA), containing
48-100 portfolios considered as assets, from July 1926 to December 2015.

2. ES50 (EURO STOXX 50), containing 50 stocks from 9 Eurozone coun-
tries (Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg, the
Netherlands and Spain), from January 2008 to December 2013.

3. FTSE100 (Financial Times Stock Exchange, UK), containing 100 assets,
from July 2002 to April 2016.

4. SP500 (Standard & Poors, USA), containing 500 assets, from January 2008
to December 2016.

5. NASDAQC (National Association of Securities Dealers Automated Quota-
tion Composite, USA), containing almost all stocks listed on the Nasdaq
stock market, from February 2003 to April 2016.

Following [46, 47], we generate 10 problems with annual or quarterly rebalancing,
after a preprocessing procedure that eliminates the elements with the highest
volatilities. A rolling window (RW) for setting up the model parameters is con-
sidered. For each dataset, the length of the RWs is fixed in order to build positive
definite covariance matrices and ensure statistical significance. Different datasets
require different lengths for the RWs. In Table 6.1 we summarize the information
on the test problems.

We introduce some measures to evaluate the goodness of the optimal portfolios
versus the benchmark one, in terms of risk, sparsity and transaction costs. We
consider as benchmark the multi-period naive portfolio, based on the strategy
for which at each rebalancing date the total wealth is equally divided among the
assets. We assume that the investor has one unit of wealth at the beginning of

159

160 Spyridon Pougkakiotis

Table 6.1: Characteristics of the portfolio test problems (y = years, m = months)

Problem Assets RW Sub-periods n

FF48-10 48 5 y 10 y 1632
FF48-20 48 5 y 20 y 3552
FF48-30 48 5 y 30 y 5472
FF100-10 96 10 y 10 y 3264
FF100-20 96 10 y 20 y 7104
FF100-30 96 10 y 30 y 10,944
ES50 50 1 y 22 m 4300
FTSE100 83 1 y 10 y 3154
SP500 431 2 y 8 y 11,206
NASDAQC 1203 1 y 10 y 45,714

the planning horizon, i.e., ξinit = 1, and we set as expected final wealth the one
provided by the benchmark. As in [46], we define:

ratio =
w>naiveCwnaive
w>optCwopt

, (6.14)

where wnaive and wopt are respectively the naive portfolio and the optimal one.
This value measures the risk reduction factor with respect to the benchmark. We
consider the number of active positions as a measure of holding costs; then the
value

ratioh =
active positions of wnaive
active positions of wopt

(6.15)

measures the reduction factor of the holding costs with respect to the benchmark.
Finally, we consider the number of variations in the weights as a measure of
transaction costs. More precisely, if wij 6= wij+1 we assume that security i has
been bought or sold in the period [tj, tj+1). Then we estimate the number of
transactions as:

T = trace(V >V),

where V ∈ Rs×(m−1), with

vij =

{
1 if |wij − wij+1| ≥ ε,
0 otherwise.

and ε > 0, in order to make sense in financial terms. A measure of the transaction
reduction factor with respect to the benchmark is given by

ratiot =
Tnaive
Topt

. (6.16)

We consider a version of the presented IP-PMM algorithm in which the solu-
tion of problem (6.13) is computed by means of factorization, the parameter εdrop

controlling the heuristic described in Section 6.3.1 is set to 10−4, and the constant
ξ, which is used to ensure that the respective dual slack variable is bounded away

160

Regularized Interior Point Methods for Convex Programming 161

from zero, is set to 102. We compare IP-PMM with the split Bregman method,
which is known to be very efficient for this kind of problems. In detail, we con-
sider the alternating split Bregman algorithm used in [47], based on a further
reformulation of problem (6.10) as

min
w,u,d

1

2
w>Cw + τ1‖u‖1 + τ2‖d‖1,

s.t. Āw = b̄,
Lw = d,
w = u.

This algorithm splits the minimization in three parts. Given wk, uk, dk, the (k+1)-
st iteration consists in the minimization of a quadratic function to determine wk+1

and the application of the soft-thresholding operator

[S(v, γ)]i = sign(vi) ·max(|vi| − γ, 0),

where v is a real vector and γ > 0, to determine uk+1 and dk+1. The optimal
value wk+1 can be obtained by solving the system Hw = pk+1, with

H = C + λ1Ā
>Ā+ λ2L

>L+ λ3In, (6.17)

where λ1, λ2, λ3 > 0 are fixed and pk+1 depends on the iteration. Since H is inde-
pendent of the iteration and is symmetric positive definite, sparse, and banded,
in [47] the authors compute its sparse Cholesky factorization only once and solve
two triangular systems at each iteration. We refer to this algorithm as ASB-Chol.

The values of τ1 and τ2 in (6.9) are selected to guarantee reasonable portfolios
in terms of short positions. We recall that from the financial point of view,
negative solutions correspond to transactions in which an investor sells borrowed
securities in anticipation of a price decline. In our runs we consider the smallest
values of τ1 and τ2 that produce at most 2% of short positions. We set τ1 = τ2 =
10−2 for the FF48 and FF100 data sets, τ1 = τ2 = 10−3 for ES50 and SP500,
τ1 = 10−2 and τ2 = 10−3 for FTSE, and τ1 = 10−2 and τ2 = 10−4 for NASDAQC.

In Table 6.2 we present the results obtained with IP-PMM and ASB-Chol on
the test problems. The termination criteria of IP-PMM are the same as in Section
3.5.1. The stopping criterion for ASB-Chol is based only on the relative reduction
of the primal feasibility ||Āx − b||, which is a standard choice in literature. The
relative tolerance for the two algorithms is tol = 10−6, which guarantees that the
values of ratio differ by at most 10%, so that both algorithms produce comparable
portfolios in terms of risk. We note that the solution computed by ASB-Chol is
thresholded by setting to zero all the entries with absolute value not exceeding
the same value of εdrop used in the IP-PMM dropping strategy. The results show
that the optimal portfolios computed by IP-PMM and ASB-Chol outperform the
benchmark ones in terms of all the metrics. Concerning ratioh and ratiot, IP-
PMM is generally able to produce greater values than ASB-Chol, which indicates
a higher sparsity in the solution found by IP-PMM. IP-PMM generally performs
comparably or better than ASB-Chol in terms of elapsed time. Although ASB-

161

162 Spyridon Pougkakiotis

Table 6.2: IP-PMM vs ASB-Chol

IP-PMM

Problem Time (s) Iters ratio ratioh ratiot

FF48-10 1.37e−1 12 2.32e+0 6.67e+0 1.66e+1
FF48-20 3.77e−1 16 2.28e+0 6.58e+0 2.13e+1
FF48-30 8.43e−1 21 4.64e+0 6.15e+0 1.69e+1
FF100-10 4.92e−1 12 1.58e+0 1.78e+1 4.36e+1
FF100-20 1.63e+0 15 1.81e+0 2.04e+1 4.92e+1
FF100-30 3.93e+0 21 5.82e+0 1.34e+1 3.60e+1
ES50 4.59e−1 14 2.12e+0 4.42e+0 5.75e+1
FTSE100 4.64e−1 14 1.85e+0 5.37e+1 6.09e+1
SP500 3.43e+1 16 1.57e+0 8.62e+1 1.50e+2
NASDAQC 7.05e+2 20 3.15e+0 2.73e+0 3.89e+2

ASB-Chol

Problem Time (s) Iters ratio ratioh ratiot

FF48-10 1.67e−1 1431 2.33e+0 6.67e+0 1.66e+1
FF48-20 3.72e−1 1985 2.31e+0 7.93e+0 2.09e+1
FF48-30 1.12e+0 4125 4.64e+0 6.08e+0 1.66e+1
FF100-10 8.49e−1 3087 1.58e+0 1.78e+1 4.36e+1
FF100-20 2.09e+0 3635 1.80e+0 1.78e+1 4.27e+1
FF100-30 8.54e+0 9043 5.83e+0 1.12e+1 2.97e+1
ES50 9.70e−1 4297 2.05e+0 2.94e+0 4.26e+1
FTSE100 4.29e−1 1749 1.80e+0 5.07e+1 5.71e+1
SP500 1.98e+1 3728 1.74e+0 6.16e+1 1.01e+2
NASDAQC 8.84e+2 14264 3.15e+0 2.73e+0 3.89e+2

Chol is faster than IP-PMM on SP500 by 14.5 seconds (42%), IP-PMM is able
to reach a better solution in terms of sparsity. When applied to FF100-30 IP-
PMM produces a portfolio associated with lower transaction costs and takes less
than half of the time required by ABS-Chol. When applied to NASDAQC, which
is the largest problem under consideration, the two methods reach comparable
solutions in terms of all the evaluation metrics, but IP-PMM needs about 20%
less time (179 seconds) than ASB-Chol. This suggests that the use of IP-PMM
can be beneficial especially when solving high-dimensional problems.

6.4 Classification models for functional magnetic

resonance imaging data

The functional magnetic resonance imaging (fMRI) technique measures brain
spatio-temporal activity via blood-oxygen-level-dependent (BOLD) signals. Start-
ing from the assumption that neuronal activity is coupled with cerebral blood
flow, fMRI signals have been used to identify regions associated with functions
such as speaking, vision, movement, etc.. By analyzing the different oxigenation

162

Regularized Interior Point Methods for Convex Programming 163

levels in specific areas of the brain of healthy and ill patients, in the last decades
fMRI signals have been used to investigate the effect on the brain functionality
of tumors, strokes, head and brain injuries and of cognitive disorders such as
schizophrenia or Alzheimer’s (see [57, 99, 120] and the references therein).

In an fMRI scan, voxels representing regions of the brain of a patient are
recorded at different time instances. The temporal resolution is usually in the
order of a few seconds, while the spatial resolution generally ranges from 4-5 mm
(for some full brain analyses) to 1 mm (for analyses on specific brain regions),
which may amount up to about a million voxels. Since fMRI experiments are
conducted over groups of patients, the dimensionality of the data is further in-
creased. Therefore, the interpretation of fMRI results requires the analysis of
huge quantities of data. To this aim, machine learning techniques are being in-
creasingly used in recent years, because of their capability of dealing with massive
amounts of data, incorporating also a-priori information about the problems they
are targeted to [12, 13, 57, 61, 84, 120, 149].

Here we focus on the problem of training a binary linear classifier to distin-
guish between different classes of patients (e.g., ill/healthy) or different kinds of
stimuli (e.g., pleasant/unpleasant), and to get information about the most signif-
icant brain areas associated with the related neural activity. The two classes are
identified by the labels −1 and 1. We assume that the training set consists of s−1

3-dimensional (3d) scans in class −1 and s1 3d scans in class 1, where each 3d
scan is reshaped as a row vector of size q = q1 × q2 × q3, and qi is the number of
voxels along the i-th coordinate direction of the domain covering the brain. All
the scans are stored as rows of a matrix D ∈ Rs×q, where s = s−1 + s1.

We use a square loss function with the aim of determining an unbiased hy-
perplane in Rq that can separate the patients in the two classes. This leads to a
minimization problem of the form:

min
1

2s
‖Dw − ŷ‖2 , (6.18)

where ŷ is a vector containing the labels associated with each scan. Notice that
the use of the Euclidean loss is a standard practice in the literature for the
classification of fMRI data (e.g. see [13, 84, 87, 98, 109]). Nevertheless, it should
be noted that different loss functions could be employed as well (e.g. see [152,
182]), potentially leading to better classification accuracy in certain cases.

Since the number of patients is usually much smaller than the size of a scan,
i.e., s � q, problem (6.18) is strongly ill posed and thus requires regularization.
Recently, significant attention has been given to regularization terms encouraging
the presence of structured sparsity, where smoothly varying nonzero coefficients
of the solution are associated with small contiguous regions of the brain. This is
motivated by the possibility of obtaining more interpretable solutions than those
corresponding to other regularizers that do not promote sparsity or lead to sparse
solutions without any structure (see [13, 84, 109] and the references therein).

Structured sparsity can be promoted, e.g., by using a combination of `1 and
anisotropic total variation (TV) terms [3], which can be regarded as a fused lasso

163

164 Spyridon Pougkakiotis

regularizer [166]. The regularized problem reads

min
w

1

2s
‖Dw − ŷ‖2 + τ1 ‖w‖1 + τ2 ‖Lw‖1, (6.19)

where ‖Lw‖1 is the discrete anisotropic TV of w, i.e., L = [L>x L>y L>z]> ∈ Rl×q

is the matrix representing first-order forward finite differences in the x, y, z-
directions at each voxel. By penalizing the difference between each voxel and
its neighbors in each direction, one enforces the weights of the classification hy-
perplane (which share the 3d structure of the scans) to assume similar values for
contiguous regions of the brain, thus leading to identify whole regions of the brain
involved in the decision process.

The previous problem can be reformulated by introducing the variables u =
Dw and d = Lw and applying the splitting

w = w+ − w−, d = d+ − d−, (w+, w−, d+, d−) ≥ (0q, 0q, 0l, 0l).

Let m = l + s and n = s + 2q + 2l. Using the previous variables, (6.19) can be
equivalently written as:

min
x

1

2
x>Qx+ c>x,

s.t. Ax = b,

xI ≥ 0|I|, xF free, I = {s+ 1, . . . , n}, F = {1, . . . , s},

(6.20)

where b = 0s+l ∈ Rm,

x = [u>, (w+)>, (w−)>, (d+)>, (d−)>]>, c = [− ŷ
>

s
, τ1e

>
w , τ1e

>
w , τ2e

>
d , τ2e

>
d]> ∈ Rn,

and

Q =

[
1
s
Is 0s,(n−s)

0(n−s),s 0(n−s),(n−s)

]
∈ Rn×n, A =

[
−Is D −D 0s,l 0s,l
0l,s L −L −Il Il

]
∈ Rm×n.

(6.21)

6.4.1 Specialized IP-PMM for fused lasso least squares

Notice that problem (6.20) is in the same form as (6.3). In what follows, we
present a specialized inexact IP-PMM, suitable for solving unconstrained fused
lasso least squares problems. The proposed specialized IP-PMM is characterized
by the two following implementation details. Firstly, instead of factorizing system
(6.6), we employ an iterative method (namely, the preconditioned conjugate gra-
dient method [93]) to solve system (6.8). Secondly, as suggested in Section 6.3.1,
we take advantage of the fact that the optimal solution of problem (6.20) is ex-
pected to be sparse, and use the heuristic approach that allows us to drop many
of the variables of the problem, when the method is close to the optimal solution.

164

Regularized Interior Point Methods for Convex Programming 165

Solving the Newton system
We focus on solving the normal equations in (6.8). Let k denote an arbitrary

iteration of IP-PMM. We re-write the matrix in (6.8) without using the succinct
notation introduced earlier:

Mk =

[
M1,k M>

2,k

M2,k M3,k

]
, (6.22)

where:

M1,k =
(
(1
s

+ ρk)
−1 + δk

)
Is +D

(
(Ξw+,k + ρkIq)

−1 + (Ξw−,k + ρkIq)
−1
)
D>,

M2,k = L(Ξw+ + ρkIq)
−1D> + L(Ξw−,k + ρkIq)

−1D>,

M3,k = L
(
(Ξw+,k + ρkIq)

−1 + (Ξw−,k + ρkIq)
−1
)
L>

+
(
(Ξd+,k + ρkIl)

−1 + (Ξd−,k + ρkIl)
−1 + δkIl

)
,

(6.23)

while

ΞIk =

Ξw+,k 0q,q 0q,l 0q,l
0q,q Ξw−,k 0q,l 0q,l
0l,q 0l,q Ξd+,k 0l,l
0l,q 0l,q 0l,l Ξd−,k

 ,
and Ξk is defined as in Section 6.2.

Notice that the matrix D in (6.18) is dense, and hence we expect M1,k and
M2,k in (6.23) to also be dense. On the other hand, M3,k remains sparse, and we
know that l� s. As a consequence, the Cholesky factors of the matrix in (6.22)
would inevitably contain dense blocks. Hence, it might be prohibitively expensive
to compute such a decomposition. Instead, we solve the previous system using
a PCG method. In order to do so efficiently, we must find an approximation
for the coefficient matrix in (6.22). Given the fact that M3,k is sparse, while
M1,k and M2,k are dense, we would like to find an approximation for the dense
blocks. Based on the assumption l� s, we can approximate Mk by the following
block-diagonal preconditioner:

Pk =

[
M1,k 0s,l
0l,s M3,k

]
, where, P−1

k =

[
M−1

1,k 0s,l
0l,s M−1

3,k

]
. (6.24)

We notice that M3,k does have a sparse Cholesky factor, due to the spar-
sity displayed in the discrete anisotropic TV matrix L. On the other hand, the
Cholesky factors of M1,k are dense. However, computation and storage of these
dense factors is possible, as we only need to perform O(s3) operations, and store
O(s2) elements. Let us observe that the preconditioner in (6.24) is exactly the
row-sparsifying preconditioner proposed in Section 5.2. Indeed, this precondi-
tioner employs the strategy of sparsifying certain dense rows of the normal equa-
tions matrix, and thus the spectral analysis of the preconditioned system follows
directly by Theorem 5.2.1 (by setting I2 as I2 = [1, 2]).

165

166 Spyridon Pougkakiotis

Dropping primal variables
The preconditioner (6.24) may be computed (and applied) very efficiently as

we expect the Cholesky factor of M3,k to preserve sparsity and M1,k ∈ Rs×s to
be relatively small (recall that s � l). We deduce from Theorem 5.2.1 that the
preconditioner defined in (6.24) remains effective as long as the regularization
parameters ρk and δk are not too small. However, to attain convergence of IP-
PMM ρk and δk have to be reduced and then, due to the nature of IPMs, the
matrix in (6.8) becomes increasingly ill conditioned as the method approaches
the optimal solution. This implies that the preconditioner defined in (6.24) has
only a limited applicability. In particular, this means that there is a limited scope
for refining it and we may not be able to prevent degrading behaviour of PCG
when IPM gets very close to the optimal solution.

However, we notice that the optimal solution of problem (6.19) is expected to
be sparse. Like in the portfolio optimization problem, in light of the reformulation
(6.20), we know that most of the primal variables x converge to zero. Close to
optimality the presence of such variables would adversely affect the conditioning
of the matrix in (6.8). To prevent that, we employ a heuristic similar to the one
introduced in Section 6.3.1 which consists of eliminating variables which approach
zero and have an associated Lagrange multiplier bounded away from zero.

Given εdrop > 0, ξ > 0 and V = ∅, at every iteration k of IP-PMM, we add to
V each variable j ∈ I \ V satisfying condition (6.12), and replace (6.8) with the
reduced system(

AH,G
(
QG,G + ΞG,Gk + ρkI|G|

)−1

(AH,G)> + δkIm

)
∆y

= r2,k + AH,G
(
QG,G + ΞG,Gk + ρkI|G|

)−1

rG1,k, (6.25)

where H = {1, . . . ,m}, G = F ∪ (I \ V), and r1,k, r2,k are defined in (6.7) (with
constraint matrix AH,G).

6.4.2 Computational experience

We consider a dataset consisting of fMRI scans for 16 male healthy US college
students (age 20 to 25), with the aim of analyzing two active conditions: viewing
unpleasant and pleasant images [125]. The preprocessed and registered data1

consist of 1344 scans of size 122,128 voxels (only voxels with probability greater
than 0.5 of being in the gray matter are considered), with 42 scans considered
per subject and active condition (i.e., 84 scans per subject in total).

In order to assess the performance of the IP-PMM on this type of problems,
we carry out a comparison with two state-of-the-art algorithms for the solution
of problem (6.19):

1available from https://github.com/lucabaldassarre/neurosparse

166

https://github.com/lucabaldassarre/neurosparse

Regularized Interior Point Methods for Convex Programming 167

• FISTA. As done for the tests in [13], problem (6.19) is reformulated as

min
w

1

2s
‖Dw − ŷ‖2 + ‖L̂w‖1,

where L̂ =
[
τ1Iq τ2L

>]>, and solved by a version of FISTA [15] in which

the proximal operator associated with ‖L̂w‖1 is approximated by 10 steps
of an inner FISTA cycle.

• ADMM. We consider the ADMM method [32] applied to the problem

min
w,u,d

1

2s
‖Dw − ŷ‖2 + τ1 ‖u‖1 + τ2 ‖d‖1,

s.t. w − u = 0q,
Lw − d = 0l,

in which the minimization of the quadratic function associated with the
update of w is approximated by 10 steps of the CG algorithm.

In Table 6.3 we show the results obtained by applying the algorithms to the
solution of the fMRI data classification problem. For each choice of the pair
of regularization parameters (τ1, τ2), we report the average results obtained in
a leave-one-subject-out (LOSO) cross-validation test over the full dataset of pa-
tients. This consists in using the data concerning 1 patient as the validation set
and the data concerning the remaining patients as the training set. Because of
this setting, for each problem the size of w is q = 122,128, the number of rows of
D is s = 1260, and the dimension of d = Lw is l = 339,553.

By preliminary experiments the choice τ1 = τ2 appeared the most appropriate.
Furthermore, for the IP-PMM, the parameters εdrop and ξ controlling the heuristic
described in Section 6.4.1 are set to 10−6 and 102, respectively. To perform a fair
comparison between the three algorithms, we consider a stopping criterion based
on the execution time, which, after some preliminary tests, is fixed to 30 minutes.
The solution of the normal equations system (6.25) is computed by the MATLAB
pcg function, for which we set the maximum number of iterations to 600 and the
tolerance as

tol =

{
10−4 if ‖ry,k‖ < 1,

max
{

10−8, 10−4

‖ry,k‖

}
otherwise,

where ry,k is the right-hand side of equation (6.25). If the maximum number of
pcg iterations is reached, we switch to the low-rank update strategy proposed in
Section 5.2.1 (in order to guarantee efficiency of the method).

For each algorithm tested, we report the mean and the standard deviation
for three quality measures of the solution: classification accuracy (ACC), solu-
tion density (DEN) and corrected pairwise overlap (CORR OVR) (see [13, Sec-
tion 2.3.3]). Let Nf be the number of folders in the cross validation setting and
let wi be a given approximate solution to the problem associated with the i-th
folder. For each wi we define the accuracy (ACC) as the percentage of test vectors
correctly classified by the linear model identified by wi. Given a vector v ∈ Rq,
we define Z(v) as the set of indices corresponding to the nonzero components in

167

168 Spyridon Pougkakiotis

v and D(v) = |Z(v)|
/
q as the density of v. Hence, for each wi the density (DEN)

is computed as D(wi). Finally, given any pair of indices i, j ∈ {1, . . . , Nf}, the
corrected pairwise overlap is defined as

Oci,j =
|Z(wi) ∩ Z(wj)| − E

max{|Z(wi)|, |Z(wj)|}
,

where E is the expected overlap between the support of two random vectors
with density equal to D(wi) and D(wj), respectively, which is given by E =
qD(wi)D(wj). We observe that the corrected pairwise overlap, which may be the
less common in the field of machine learning, is meant to measure the “stability”
of the voxel selection. The three metrics are computed after thresholding the
solution, as in [13]: after sorting the entries by their increasing magnitude, we set
to zero the entries contributing at most to 0.01% of the `1-norm of the solution.

Table 6.3: Comparison of IP-PMM, FISTA and ADMM in terms of the LOSO
cross-validation scores

Algorithm τ1 = τ2 ACC DEN CORR OVR

IP-PMM 10−2 86.16± 7.11 20.56± 6.63 43.47± 9.09
5 · 10−2 84.90± 4.80 3.77± 0.84 62.70± 10.39

10−1 82.29± 6.22 2.49± 0.34 82.60± 9.24

FISTA 10−2 86.90± 5.01 88.97± 0.71 5.43± 0.43
5 · 10−2 84.15± 5.92 19.36± 0.86 65.50± 2.68

10−1 81.62± 7.58 5.14± 0.44 80.44± 5.72

ADMM 10−2 86.46± 6.91 98.70± 0.03 0.03± 0.01
5 · 10−2 85.57± 5.37 97.97± 0.05 0.15± 0.04

10−1 82.07± 6.51 97.50± 0.19 0.26± 0.13

By looking at Table 6.3, one can see that IP-PMM appears to be generally
better than the other algorithms in enforcing the structured sparsity of the so-
lution, presenting a good level of sparsity and overlap. It is worth noting that,
because of its definition, the corrected pairwise overlap tends to zero as the den-
sity goes towards 100%. Hence, for ADMM, which seems to be unable to enforce
sparsity in the solution, the overlap is close to zero. As suggested in [13], one can
evaluate the results in terms of the distance of the pair (ACC, CORR OVR) from
the pair (100, 100) (the smaller the distance, the better the results). For the tests
reported in the table, we can see that the best scores are obtained by IP-PMM
with regularization parameters τ1 = τ2 = 10−1, for which the average accuracy
is 82.3% and the corrected overlap is 82.6% with an average solution density of
2.5%. To further evaluate the efficiency of IP-PMM in the solution of this class of
problems, we compare its performance in terms of elapsed time against the per-
formance of FISTA on the problem where the two methods reach the best scores,
i.e., with τ1 = τ2 = 10−1. For all the 16 instances of the LOSO cross validation,
we store the current solution of each algorithm after every minute and, at the
end of the execution, we compute the three quality measures for such interme-
diate solutions. The results are shown in Figure 6.1 in terms of history of the

168

Regularized Interior Point Methods for Convex Programming 169

Figure 6.1: History of classification accuracy, solution density and corrected pair-
wise overlap for IP-PMM (left) and FISTA (right), in the case τ1 = τ2 = 10−1. For
the three quantities we report average measures with 95% confidence intervals.

mean values (lines) together with their 95% confidence intervals (shaded regions).
From the plots we can see that while FISTA reaches the measures reported in
Table 6.3 at the end of the 30-minute run, the performance of IP-PMM stabilizes
after about 20 minutes. At the 20 minutes mark we observe that for IP-PMM the
value of each of the three metrics is the same as the one reported in Table 6.3.
For FISTA, while accuracy (81.32%) and overlap (80.54%) have similar values as
those reported in the table, we observe a larger density (6.83%).

6.5 TV-based Poisson image restoration

Next we consider the restoration of images corrupted by Poisson noise, which
arises in many applications, such as fluorescence microscopy, computed tomog-
raphy (CT) and astronomical imaging (see, e.g., [55] and the references therein).
In the discrete formulation of the restoration problem, the object to be restored
is represented by a vector w ∈ Rn and the measured data are assumed to be a
vector g ∈ Nm

0 , whose entries gj are samples from m independent Poisson random
variables Gj with probability

P(Gj = gj) =
e−(Dw+a)j [(Dw + a)j]

gj

gj!
,

where a ∈ Rm
+ models the background radiation detected by the sensors. The

matrix D = (dij) ∈ Rm×n models the functioning of the imaging system and
satisfies

dij ≥ 0 for all i, j,
m∑
i=1

dij = 1 for all j.

Here we assume that D represents a convolution operator with periodic boundary
conditions, which implies that D has a block-circulant structure with circulant
blocks (BCCB). Hence, Dw is computed expeditiously using the 2-dimensional
fast Fourier transform (FFT). The maximum-likelihood approach [26] for the

169

170 Spyridon Pougkakiotis

estimation of u leads to the minimization of the Kullback-Leibler (KL) divergence
of Dw + a from g:

DKL(w) ≡ DKL(Dw+ a, g) =
m∑
j=1

(
gj ln

gj

(Dw + a)j
+ (Dw + a)j − gj

)
, (6.26)

where we set gj ln(gj/(Dw + a)j) = 0 if gj = 0 (we implicitly assume that g
has been converted into a real vector with entries ranging in the same interval
as the entries of w). Since the estimation problem is highly ill conditioned, a
regularization term is added to (6.26). We consider the total variation [150], which
has received considerable attention because of its ability of preserving edges and
smoothing flat areas of the images. Notice that, while it may introduce staircase
artifacts, TV is still applied in many medical and biological applications (see,
e.g., [14, 124, 187] and J. Huang’s webpage2). The feasible set of the problem
is defined by non-negativity constraints on the image intensity and the linear
constraint

∑n
i=1 w

i =
∑m

j=1(gj − aj) ≡ r which guarantees preservation of the
total intensity of the image.

The resulting model is

min
w

DKL(w) + λ‖Lw‖1

s.t. e>nw = r,
w ≥ 0n,

(6.27)

where L ∈ Rl×n is the matrix arising from the discretization of the TV functional
(as in [41]).

6.5.1 Specialized IP-PMM for image restoration problems

By employing the splitting strategy used in the previous sections, we can
transform problem (6.27) to the following equivalent form:

min
x

f(x) ≡ DKL(w) + c>u,

s.t. Ax = b,
x ≥ 0n,

(6.28)

where, after introducing the additional constraint d = Lw, and letting m = l+ 1,
n = n + 2l, we set x = [w>, u>]> ∈ Rn, u = [(d+)>, (d−)>]> ∈ R2l, c = λ e2l,
b = [r, 0>l]> ∈ Rm, and

A =

[
e>n 0>l 0>l
L −Il Il

]
∈ Rm×n.

We solve problem (6.28) by using IP-PMM combined with a perturbed com-
posite Newton method [165]. Following the presentation in Section 6.2, we know
that at the k-th iteration of the method we have to solve two linear systems of the

2http://ranger.uta.edu/~huang/R_CSMRI.htm

170

http://ranger.uta.edu/~huang/R_CSMRI.htm

Regularized Interior Point Methods for Convex Programming 171

form of (6.6). In order to avoid factorizations, every such system is solved using
the preconditioned minimal residual (MINRES) method [135]. In order to accel-
erate the convergence of MINRES, we employ a block-diagonal preconditioner,
which uses a diagonal approximation of ∇2f(x). More specifically, at iteration k
of IP-PMM, we have the following coefficient matrix:

Mk =

[
−Hk A>

A δkIm

]
,

where Hk = (∇2f(xk) + Θ−1
k + ρkIn), and we precondition it using the matrix

M̃k =

[
H̃k 0n,m

0m,n AH̃−1
k A> + δkIm

]
, (6.29)

where H̃k is a diagonal approximation of Hk. In order to analyze the spectral
properties of the preconditioned matrix, we follow the developments in Section

5.3.1. More specifically, we define Ĥk := H̃
− 1

2
k HkH̃

1
2
k , and let:

αH = λmin(Ĥk), βH = λmax(Ĥk), κH =
βH
αH

.

Using this notation, we know that an arbitrary element of the numerical range of
this matrix is represented as γH ∈ W (Ĥk) = [αH , βH]. Furthermore, we observe

that in the special case where H̃k = Diag(Hk), we have αH ≤ 1 ≤ βH since

1

n+ 2l

n+2l∑
i=1

λi(Ĥ
−1
k Hk,j) =

1

n+ 2l
Tr(Ĥ−1

k Hk) = 1.

Theorem 6.5.1. Let k be an arbitrary IP-PMM iteration. Then, the eigenvalues
of M̃−1

k Mk lie in the union of the following intervals:

I− =

[
− βH − 1,−αH

]
, I+ =

[
1

1 + βH
, 1

]
.

Proof. The proof follows exactly the developments in Theorem 5.3.1.

In problem (6.28), f(x) = DKL(w) + c>u and hence

∇f(x) =

[
∇DKL(w)

c

]
, ∇2f(x) =

[
∇2DKL(w) 0n,2l

02l,n 02l,2l

]
,

where

∇DKL(w) = D>
(
em −

g

Dw + a

)
, ∇2DKL(w) = D>U(w)2D,

with U(w) = Diag
(√

g

Dw+a

)
. Here the ratios and the square root are assumed

to be component-wise. Notice that D might be dense; however, as previously

171

172 Spyridon Pougkakiotis

noted, its action can be computed via the FFT. Unfortunately, D>U(w)2D is not
expected to be close to multilevel circulant. Even if it could be well-approximated
by a multilevel circulant matrix, the scaling matrix of IP-PMM would destroy
this structure. In other words, we use the structure of D only when applying it
to a vector. As a result, we only store the first column of D and we use the FFT
to apply this matrix to a vector. This allows us to compute the action of the
Hessian easily.

Remark 8. The obvious choice would be to employ the approximation H̃k =
Diag(Hk), but the structure of the problem makes this choice rather expensive.

A more efficient alternative is to use H̃k = U(wk)
2, which is easier to compute

and, as we will see in the following section, leads to good reconstruction results
in practice.

6.5.2 Computational experience

To evaluate the performance of the IP-PMM on this class of problems, we
consider a set of three 256 × 256 grayscale images, which are presented in Fig-
ure 6.2. For each of the three images we set up three restoration tests, where

cameraman house peppers

Figure 6.2: The three 256× 256 grayscale images of the image restoration tests.

the images are corrupted by Poisson noise and D represents one of the following
blurs: Gaussian blur (GB), motion blur (MB), and out-of-focus blur (OF) (see,
e.g., [91] for further details).

We compare the proposed method with the state-of-the-art primal-dual algo-
rithm with linesearch (PDAL) proposed in [113]. By following the example of
[178, Algorithm 2], problem (6.27) is reformulated as

min
w

max
p,y

g> ln(1 + y)− y>(Dw + a)− λw>L>p+ χ∞(p) + χC(w), (6.30)

where χ∞ is the characteristic function of the ∞-norm unit ball and χC the
characteristic function of the feasible set C of problem (6.27). It is worth noting
that the PDAL algorithm for the solution of problem (6.30) requires at each step
a projection on the feasible set C, which is performed here by using the secant
algorithm proposed by Dai and Fletcher in [49]. Concerning the parameters of
PDAL, we use the same notation and tuning as in [113]. Following Section 6

172

Regularized Interior Point Methods for Convex Programming 173

of that paper, we set µ = 0.7, δ = 0.99 and β = 25. The initial steplength is

τ =
√

1/ω, where ω is an estimate of ‖M>M‖ and M =
[
D> L>

]>
is the matrix

linking the primal and dual variables. In the IP-PMM, we use the MINRES
code by Michael Saunders and co-workers3 for which we set the relative tolerance
tol = 10−4 and the maximum number of iterations at each call equal to 20. The
regularization parameter λ is determined by trial and error to minimize the root
mean square error (RMSE) obtained by IP-PMM. We recall that, denoting the
original image as w̄ ∈ Rn, for any given approximate solution w ∈ Rn we have
that

RMSE(w) =
1√
n
‖w − w̄‖2.

For all the problems, the starting point is chosen to be the noisy and blurry
image, i.e., g.

0 5 10 15 20 25 30

time (s)

2

2.5

3

3.5

4

4.5

R
M

S
E

10
-3 cameraman - GB

IP-PMM
PDAL

0 10 20 30 40

time (s)

3

4

5

6

7

8

9

R
M

S
E

10
-3 cameraman - MB

IP-PMM
PDAL

0 10 20 30 40

time (s)

2

3

4

5

6

7

8

R
M

S
E

10
-3 cameraman - OF

IP-PMM
PDAL

0 5 10 15 20 25 30

time (s)

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

R
M

S
E

house - GB

IP-PMM
PDAL

0 5 10 15 20 25 30

time (s)

0.5

1

1.5

2

2.5

3

3.5

R
M

S
E

10
-3 house - MB

IP-PMM
PDAL

0 5 10 15 20 25 30

time (s)

1

2

3

4

5

R
M

S
E

10
-3 house - OF

IP-PMM
PDAL

0 10 20 30 40

time (s)

0.015

0.0155

0.016

0.0165

0.017

0.0175

0.018

R
M

S
E

peppers - GB

IP-PMM
PDAL

0 10 20 30 40

time (s)

0.007

0.008

0.009

0.01

0.011

0.012

0.013

R
M

S
E

peppers - MB

IP-PMM
PDAL

0 10 20 30 40

time (s)

0.008

0.009

0.01

0.011

0.012

0.013

R
M

S
E

peppers - OF

IP-PMM
PDAL

Figure 6.3: Comparison between IP-PMM and PDAL in terms of root mean
square error (RMSE) vs execution time in the solution of the 9 image restoration
problems. From top to bottom, the rows refer to the cameraman instances, the
house instances and the peppers instances, respectively. From left to right, the
columns refer to the GB, MB and OF, respectively.

For all 9 tests we run 20 iterations of the IP-PMM method and let PDAL
run for the same amount of time. In Figure 6.3 we report a comparison between

3available from https://web.stanford.edu/group/SOL/software/minres/

173

https://web.stanford.edu/group/SOL/software/minres/

174 Spyridon Pougkakiotis

the two algorithms in terms of elapsed time versus root mean square error in the
solution of the 9 instances described above. As can be seen from the plots, the
IP-PMM clearly outperforms PDAL on the instances with GB and OF (columns
1 and 3, respectively, of Figure 6.3), while on the instances characterized by MB
the two algorithms perform comparably.

Table 6.4: Comparison between IP-PMM and PDAL in terms of RMSE, PSNR
and MSSIM computed at the solutions provided by the two algorithms.

IP-PMM PDAL

Problem RMSE PSNR MSSIM RMSE PSNR MSSIM

cameraman - GB 4.85e−2 2.63e+1 8.33e−1 5.02e−2 2.60e+1 8.22e−1
cameraman - MB 5.52e−2 2.52e+1 8.11e−1 5.59e−2 2.51e+1 7.77e−1
cameraman - OF 5.14e−2 2.58e+1 7.98e−1 5.26e−2 2.56e+1 7.62e−1

house - GB 9.71e−2 2.03e+1 7.51e−1 9.88e−2 2.01e+1 6.92e−1
house - MB 2.70e−2 3.14e+1 8.67e−1 2.77e−2 3.11e+1 8.43e−1
house - OF 3.80e−2 2.84e+1 8.33e−1 4.09e−2 2.78e+1 7.70e−1

peppers - GB 1.23e−1 1.82e+1 7.46e−1 1.25e−1 1.81e+1 6.57e−1
peppers - MB 8.76e−2 2.12e+1 8.90e−1 8.78e−2 2.11e+1 8.72e−1
peppers - OF 9.47e−2 2.05e+1 8.01e−1 9.70e−2 2.03e+1 6.60e−1

To better analyze the difference between the solutions provided by the two
algorithms, one can look at Table 6.4, where we report the value of three scores:
RMSE, peak signal-to-noise ratio (PSNR), which is defined as

PSNR(w) = 20 log10

maxi w̄
i

RMSE(w)
,

and mean structural similarity (MSSIM), which is a structural similarity mea-
sure related to the perceived visual quality of the image (see [175] for a detailed
definition). It is worth noting that for RMSE smaller values are better, while
for PSNR and MSSIM, higher values indicate better noise removal and perceived
similarity between the restored and original image, respectively. From the table
it is clear that in all the considered cases IP-PMM is able to produce a better
restored image than PDAL, having always a larger MSSIM, also when the RMSE
and PSNR values are comparable.

For the sake of space, we now restrict the comparison to the cases where the
two algorithms seem to have reached equivalent solutions in terms of RMSE, to
understand the differences in the restored images. We focus on the three instances
in which D represents MB (second column of Figure 6.3). In Figure 6.4 we report
the results for cameraman, house and peppers with MB. By looking at the images
one can see that those reconstructed by IP-PMM appear to be smoother (look,
for example, at the sky in cameraman and house), which somehow indicates that
the IP-PMM is better than PDAL in enforcing the TV regularization. Observe
that this “visual” difference is reflected by the higher values of MSSIM reported
for IP-PMM in Table 6.4.

174

Regularized Interior Point Methods for Convex Programming 175

blurry and noisy Restored image - IP-PMM Restored image - PDAL

blurry and noisy Restored image - IP-PMM Restored image - PDAL

blurry and noisy Restored image - IP-PMM Restored image - PDAL

Figure 6.4: Results on cameraman, house and peppers with MB: noisy and blurry
images (left), images restored by IP-PMM (center), images restored by PDAL
(right).

6.6 Linear classification via regularized logistic

regression

Finally, we deal with the problem of training a linear binary classifier. Let
us consider a matrix D ∈ Rn×s whose rows (di)>, with i ∈ {1, . . . , n}, represent
the training points, and a vector of labels g ∈ {−1, 1}n. In other words, we have
a training set with n binary-labeled samples and s features. According to the
logistic model, the conditional probability of having the label gi given the point
di has the form

plog(w)i = P (gi|di) =
1

1 + e−gi w>di
,

where w ∈ Rs is the vector of weights determining the unbiased linear model under
consideration. By following the maximum-likelihood approach, the weight vector

175

176 Spyridon Pougkakiotis

w can be obtained by maximizing the log-likelihood function or, equivalently, by
minimizing the logistic loss function, i.e., by solving

min
w

φ(w) ≡ 1

n

n∑
i=1

φi(w), φi(w) = log
(

1 + e−g
i w>di

)
.

To cope with the inherent ill-posedness of the estimation process, a regularization
term is usually added to the previous model. For large-scale instances, where the
features tend to be redundant, an `1-regularization term is usually introduced to
enforce sparsity in the solution, thus embedding feature selection in the training
process. This results in the well-studied `1-regularized logistic regression model:

min
w

φ(w) + τ‖w‖1, (6.31)

where τ > 0.
As done in the previous sections, we can replace the nonsmooth model (6.31)

with an equivalent smooth convex programming problem, i.e.,

min
x

f(x) ≡ φ(w) + c>u,

s.t. Ax = b,

u ≥ 02s,

(6.32)

where, after introducing the additional constraint u = w, with u = [(d+)>, (d−)>]>,
and letting m = s, n = 3s, we set x = [w>, u>]> ∈ Rn, c = τ e2s, b = 0m, and
A ∈ Rm×n defined as A = [Is − Is Is]. The version of IP-PMM solving prob-
lem (6.32) is very similar to the one used to solve (6.28). The only difference here
lies in the preconditioner. In particular, when solving problems of the form (6.32),
we use the preconditioner defined in (6.29) (and subsequently analyzed in Theo-

rem 6.5.1), but we set H̃k = Diag(Hk).

6.6.1 Computational experience

To illustrate the performance of the IP-PMM on this class of problems, we
consider a set of three linear classification problems from the LIBSVM dataset
for binary classification4. The names of the datasets, together with their number
of features, training points and testing points are summarized in Table 6.5. For
real-sim there is no predetermined separation of data between train and test,
hence we apply a hold-out strategy keeping 30% of the data for testing.

To overcome the absence of the hyperplane bias in model (6.31), we add to
the data matrices a further column with all ones, hence the resulting size of the
problems is equal to s+1. For all the problems we set τ = 1

n
, which is a standard

choice in the literature.
To assess the effectiveness and efficiency of the proposed method we compare

it with two state-of-the-art methods:

4available from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.

html

176

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Regularized Interior Point Methods for Convex Programming 177

Table 6.5: Characteristics of the `1-regularized logistic regression problems

Problem Features Train pts Test pts

gisette 5000 6000 1000
rcv1 47,236 20,242 677,399
real-sim 20,958 50,617 21,692

• an ADMM [32]5;

• a MATLAB implementation of the newGLMNET method [184] used in
LIBSVM, developed by the authors of [185]6.

As in the tests presented in Section 6.5.2, the solution of the augmented system
in IP-PMM is performed by means of the MINRES implementation by Michael
Saunders’ team, with maximum number of iterations equal to 20 and tolerance
tol = 10−4.

We compare the three algorithms in terms of objective function value and
classification error versus execution time, on runs lasting 15 seconds. The plots
are reported in Figure 6.5. The IP-PMM is comparable with newGLMNET on
the gisette instance, characterized by a very dense (> 99%) training data matrix,
and both IP-PMM and newGLMNET clearly outperform ADMM. On the rcv1
and real-sim instances the IP-PMM method sightly outperforms newGLMNET
in terms of classification error, and it is noticeably better in terms of the objective
function value.

6.7 Conclusions

We have presented specialized IP-PMMs for quadratic and general nonlinear
convex optimization problems that model various sparse approximation instances.
We have shown that by a proper choice of linear algebra solvers, which are a key
issue in IPMs, we are able to efficiently solve the larger but smooth optimiza-
tion problems coming from a standard reformulation of the original ones. This
confirms the ability of IPMs to handle large sets of linear equality and inequality
constraints. Computational experiments have been performed on diverse applica-
tions: multi-period portfolio selection, classification of fMRI data, restoration of
blurry images corrupted by Poisson noise, and linear binary classification via regu-
larized logistic regression. Comparisons with state-of-the-art first-order methods,
which are widely used to tackle sparse approximation problems, have provided
evidence that the presented IP-IPM approaches can offer a noticeable advan-
tage over those methods, especially when dealing with not-so-well conditioned
problems.

We also believe that the results presented in this chapter may provide a basis
for an in-depth analysis of the application of IPMs to many sparse approximation

5available from http://www.stanford.edu/~boyd/papers/distr_opt_stat_learning_

admm.html
6available from https://github.com/ZiruiZhou/IRPN

177

http://www.stanford.edu/~boyd/papers/distr_opt_stat_learning_admm.html
http://www.stanford.edu/~boyd/papers/distr_opt_stat_learning_admm.html
https://github.com/ZiruiZhou/IRPN

178 Spyridon Pougkakiotis

0 5 10 15

time (s)

10
-1

10
0

gisette - obj fun

IP-PMM

ADMM

newGLMNET

0 5 10 15

time (s)

0

0.2

0.4

0.6

0.8

1
gisette - class err

IP-PMM

ADMM

newGLMNET

0 5 10 15

time (s)

0.3

0.4

0.5

0.6

rcv1 - obj fun

IP-PMM

ADMM

newGLMNET

0 5 10 15

time (s)

0

0.2

0.4

0.6

0.8

1
rcv1 - class err

IP-PMM

ADMM

newGLMNET

0 5 10 15

time (s)

0.2

0.3

0.4

0.5

0.6

real-sim - obj fun

IP-PMM

ADMM

newGLMNET

0 5 10 15

time (s)

0

0.2

0.4

0.6

0.8

1
real-sim - class err

IP-PMM

ADMM

newGLMNET

Figure 6.5: Results on the three `1-regularized logistic regression problems (ob-
jective function value and classification error versus execution time).

problems, and we plan to work in that direction in the future.

178

Chapter 7

Conclusions and Future
Directions

7.1 Conclusions

In this thesis we studied the effects of algorithmic regularization in the con-
text of interior point methods for convex optimization. We designed, analyzed
and implemented several regularized interior point algorithms, suitable for a wide
range of convex optimization problems. We analyzed the convergence properties
of standard primal-dual regularized interior point methods, as well as the com-
putational and numerical benefits of regularization.

In Chapter 2, we developed a non-diagonal regularization technique for interior
point methods, with applications to linear and convex quadratic programming.
We discussed how non-diagonal regularization can be employed as a means of
sparsifying the linear systems that have to be solved at each IPM iteration. We
performed a perturbation analysis to understand the effects of regularization in
the eigenvalues of the associated linear systems, and proposed a tuning of the reg-
ularization parameters, so as to avoid perturbing the linear systems significantly.
Then, we analyzed the spectral properties of the resulting regularized systems
and demonstrated the effectiveness of the implemented approach by extensive
experimentation.

In Chapter 3 we analyzed a primal-dual regularized IPM for linear and convex
quadratic programming, which we called an interior point-proximal method of
multipliers. We showed that under standard assumptions, the method converges
to an ε-optimal solution in a polynomial number of steps, and we provided a
dynamical tuning for the regularization parameters, independent of the problem
under consideration. As a byproduct of the theory, we designed an infeasibility
detection mechanism. To demonstrate the practical effectiveness of the approach,
we implemented it and tested it over a large set of real-life problems, showcasing
the efficiency and most importantly the robustness of the approach.

In Chapter 4 we extended IP-PMM to the class of linear positive semi-definite
programming problems, showing that polynomial complexity also holds in this
case, even if one solves the associated linear systems inexactly. At the end of
this chapter, we discussed the capability of the algorithm to detect pathological

179

180 Spyridon Pougkakiotis

semi-definite programming instances.
In Chapter 5 we discussed the efficient solution of large-scale linear systems

arising from the application of a regularized interior point method to an arbitrary
convex program. In particular, we derived several general-purpose precondition-
ing strategies usable within symmetric Krylov subspace solvers like the precondi-
tioned conjugate gradient and the minimal residual method. A spectral analysis
of each approach was given, and the effectiveness of the preconditioners was nu-
merically verified after extensive experimentation on standard test sets, as well
as on L1-regularized optimal control problems.

Finally, in Chapter 6 we used the methodologies presented in the previous
chapters to design specialized IP-PMM schemes suitable for the solution of var-
ious sparse approximation convex programs. In particular, we specialized IP-
PMM to problems arising from multi-period portfolio optimization, classification
of functional magnetic resonance imaging data, restoration of images corrupted
by Poisson noise, as well as classification via logistic regression. For each ap-
plication, we tested the specialized IP-PMMs against state-of-the-art first-order
approaches which are traditionally employed in the literature, and we were able
to show that IP-PMM can be equally (or more) efficient, and at the same time
more robust and reliable.

7.2 Future directions

There are several open questions as well as possible future research directions
in the field of regularized interior point methods for convex programming.

Firstly, we know that the algorithm presented in Chapter 2 is globally con-
vergent under certain assumptions. A possible extension would be to study a
variation of this algorithm, based on the developments in Chapter 3, and po-
tentially show polynomial convergence. Furthermore, it would be interesting to
extend this non-diagonal regularization strategy to the case of nonlinear con-
vex programming, and potentially analyze the local convergence of the resulting
algorithm.

On the other hand, the algorithms developed in Chapters 3, 4, can be easily
extended to other classes of conic optimization problems, and we conjecture that
polynomial complexity should hold for any symmetric cone. Specifically, a case
of interest would be to extend the analysis of Chapter 4 to more general sym-
metrization strategies, such as those appearing within the Monteiro-Zhang family
(see [167] for a detailed description of symmetrization strategies for semi-definite
programming). From a more practical perspective, a potential research direction
would be to derive efficient implementations of IP-PMM for the second-order cone
as well as the semi-definite cone, utilizing the preconditioning approaches devel-
oped in Chapter 5. Furthermore, one could even design an IP-PMM for other
non-symmetric cones, such as the exponential or the power cone. Additionally,
it would be interesting to analyze the local convergence of IP-PMM for the class
of general nonlinear convex programming problems. Finally, an open question is
to show that polynomial complexity of the algorithms presented in Chapters 3,
4, holds even in the rank-deficient case. We were not able to bypass the full-rank

180

Regularized Interior Point Methods for Convex Programming 181

assumption, and thus we are not aware if this is possible.
An important extension to the preconditioning strategies in Chapter 5 would

be to derive matrix-free preconditioners that could be computed by means of
matrix-vector products, and thus would not need to employ a factorization scheme.
Such preconditioners would allow regularized IPMs to tackle huge-scale instances,
or problems which are too large to be stored in the available memory.

Finally, based on the success of IP-PMM in solving sparse approximation
instances, one could perform an in-depth analysis of the application of regularized
IPMs to a wide range of sparse approximation problems. This could shed light on
the effectiveness of such methods for this class of problems, and could pave the
way for the creation of robust general implementations for their efficient solution.

181

Bibliography

[1] A. Altman and J. Gondzio, Regularized symmetric indefinite systems
in interior point methods for linear and quadratic optimization, Optimiza-
tion Methods and Software, 11 (1999), pp. 275–302, https://doi.org/10.
1080/10556789908805754.

[2] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu, Imple-
mentation of interior point methods for large scale linear programming, in
Interior Point Methods in Mathematical Programming, T. Terlaky, ed.,
Kluwer Academic Publishers, 1996, pp. 189–252, https://doi.org/10.

1007/978-1-4613-3449-1_6.

[3] A. Argyriou, L. Baldassarre, C. A. Micchelli, and M. Pontil,
On sparsity inducing regularization methods for machine learning, in Em-
pirical Inference: Festschrift in Honor of Vladimir N. Vapnik, B. Schölkopf,
Z. Luo, and V. Vovk, eds., Berlin, Heidelberg, 2013, Springer, pp. 205–216,
https://doi.org/10.1007/978-3-642-41136-6_18.

[4] P. Armand and J. Benoist, Uniform boundedness of the inverse of a
Jacobian matrix arising in regularized interior-point methods, Mathemat-
ical Programming, 137 (2013), pp. 587–592, https://doi.org/10.1007/
s10107-011-0498-3.

[5] P. Armand and J. Benoist, A mixed logarithmic barrier-augmented
Lagrangian method for nonlinear optimization, Journal of Optimization
Theory and Applications, 173 (2017), pp. 523–547, https://doi.org/10.
1007/s10957-017-1071-x.

[6] P. Armand, J. Benoist, and D. Orban, From global to local conver-
gence of interior methods for nonlinear optimization, Optimization Meth-
ods and Software, 28 (2013), pp. 1051–1080, https://doi.org/10.1080/
10556788.2012.668905.

[7] P. Armand and R. Omheni, A globally and quadratically convergent
primal-dual augmented Lagrangian algorithm for equality constrained op-
timization, Optimization Methods and Software, 32 (2017), pp. 1–21,
https://doi.org/10.1080/10556788.2015.1025401.

[8] P. Armand and N. N. Tran, Rapid infeasibility detection in a mixed
logarithmic barrier-augmented Lagrangian method for nonlinear optimiza-

182

https://doi.org/10.1080/10556789908805754
https://doi.org/10.1080/10556789908805754
https://doi.org/10.1007/978-1-4613-3449-1_6
https://doi.org/10.1007/978-1-4613-3449-1_6
https://doi.org/10.1007/978-3-642-41136-6_18
https://doi.org/10.1007/s10107-011-0498-3
https://doi.org/10.1007/s10107-011-0498-3
https://doi.org/10.1007/s10957-017-1071-x
https://doi.org/10.1007/s10957-017-1071-x
https://doi.org/10.1080/10556788.2012.668905
https://doi.org/10.1080/10556788.2012.668905
https://doi.org/10.1080/10556788.2015.1025401

Regularized Interior Point Methods for Convex Programming 183

tion, Optimization Methods and Software, 34 (2017), https://doi.org/
10.1080/10556788.2018.1528250.

[9] P. Armand and N. N. Tran, An augmented Lagrangian method for
equality constrained optimization with rapid infeasibility detection capabili-
ties, Journal of Optimization Theory and Applications, 181 (2019), pp. 197–
215, https://doi.org/10.1007/s10957-018-1401-7.

[10] S. Arreckx and D. Orban, A regularized factorization-free method
for equality-constrained optimization, SIAM Journal on Optimization, 28
(2018), pp. 1613–1639, https://doi.org/doi.org/10.1137/16M1088570.

[11] V. Balakrishnan and F. Wang, Handbook of Semidefinite Program-
ming, International Series in Operational Research & Managment Science,
Vol. 27. Springer, Boston, MA., 2000.

[12] L. Baldassarre, J. Mourão-Miranda, and M. Pontil, Structured
sparsity models for brain decoding from fMRI data, in 2012 Second Inter-
national Workshop on Pattern Recognition in NeuroImaging, July 2012,
pp. 5–8, https://doi.org/10.1109/PRNI.2012.31.

[13] L. Baldassarre, M. Pontil, and J. Mourão-Miranda, Sparsity is
better with stability: Combining accuracy and stability for model selection
in brain decoding, Frontiers in Neuroscience, 11 (2017), https://doi.org/
10.3389/fnins.2017.00062.

[14] R. C. Barnard, H. Bilheux, T. Toops, E. Nafziger, C. Finney,
D. Splitter, and R. Archibald, Total variation-based neutron com-
puted tomography, Review of Scientific Instruments, 89 (2018), p. 053704,
https://doi.org/10.1063/1.5037341.

[15] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2
(2009), pp. 183–202, https://doi.org/10.1137/080716542.

[16] S. Bellavia, Inexact interior-point method, Journal of Optimization The-
ory and Applications, 96 (1998), pp. 109–121, https://doi.org/10.1023/
A:1022663100715.

[17] S. Bellavia, J. Gondzio, and B. Morini, A matrix-free preconditioner
for sparse symmetric positive definite systems and least-squares problems,
SIAM Journal on Scientific Computing, 35 (2013), https://doi.org/10.
1137/110840819.

[18] S. Bellavia, J. Gondzio, and M. Porcelli, An inexact dual logarith-
mic barrier method for solving sparse semidefinite programs, Mathemati-
cal Programming, 178 (2019), pp. 109–143, https://doi.org/10.1007/

s10107-018-1281-5.

183

https://doi.org/10.1080/10556788.2018.1528250
https://doi.org/10.1080/10556788.2018.1528250
https://doi.org/10.1007/s10957-018-1401-7
https://doi.org/doi.org/10.1137/16M1088570
https://doi.org/10.1109/PRNI.2012.31
https://doi.org/10.3389/fnins.2017.00062
https://doi.org/10.3389/fnins.2017.00062
https://doi.org/10.1063/1.5037341
https://doi.org/10.1137/080716542
https://doi.org/10.1023/A:1022663100715
https://doi.org/10.1023/A:1022663100715
https://doi.org/10.1137/110840819
https://doi.org/10.1137/110840819
https://doi.org/10.1007/s10107-018-1281-5
https://doi.org/10.1007/s10107-018-1281-5

184 Spyridon Pougkakiotis

[19] S. Bellavia, J. Gondzio, and M. Porcelli, A relaxed interior
point method for low-rank semidefinite programming problems, Journal
of Scientific Computing, 89 (2021), p. 46, https://doi.org/10.1007/

s10915-021-01654-1.

[20] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathe-
matics of Operations Research, 23 (1998), pp. 769–805, https://doi.org/
10.1287/moor.23.4.769.

[21] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle
point systems, Acta Numerica, 14 (2005), pp. 1–137, https://doi.org/

10.1017/S0962492904000212.

[22] L. Bergamaschi, R. Bru, and A. Mart́ınez, A low-rank update of
preconditioners for the inexact Newton method with SPD Jacobian, Math-
ematical and Computer Modelling, 54 (2011), pp. 1863–1873, https:

//doi.org/10.1016/j.mcm.2010.11.064.

[23] L. Bergamaschi, J. Gondzio, A. Mart́ınez, J. W. Pearson, and
S. Pougkakiotis, A new preconditioning approach for an interior point-
proximal method of multipliers for linear and convex quadratic program-
ming, Numerical Linear Algebra with Applications, 28 (2020), p. e2361,
https://doi.org/10.1002/nla.2361.

[24] L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli, Inexact
constraint preconditioners for linear systems arising in interior point meth-
ods, Computational Optimization and Applications, 36 (2007), pp. 137–
147, https://doi.org/10.1007/s10589-006-9001-0. see also Erratum,
COAP 49 (2011) 401–406.

[25] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite
systems in interior point methods for optimization, Computational Opti-
mization and Applications, 28 (2004), pp. 149–171, https://doi.org/10.
1023/B:COAP.0000026882.34332.1b.

[26] M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, Image
deblurring with Poisson data: from cells to galaxies, Inverse Problems, 25
(2009), p. 123006, https://doi.org/10.1088/0266-5611/25/12/123006.

[27] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Meth-
ods, Athena Scientific, 1996.

[28] D. Bertsekas, A. Nedic, and E. Ozdaglar, Convex Analysis and
Optimization, Athena Scientific, 2003.

[29] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods, Athena Scientific, 1997.

184

https://doi.org/10.1007/s10915-021-01654-1
https://doi.org/10.1007/s10915-021-01654-1
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1016/j.mcm.2010.11.064
https://doi.org/10.1016/j.mcm.2010.11.064
https://doi.org/10.1002/nla.2361
https://doi.org/10.1007/s10589-006-9001-0
https://doi.org/10.1023/B:COAP.0000026882.34332.1b
https://doi.org/10.1023/B:COAP.0000026882.34332.1b
https://doi.org/10.1088/0266-5611/25/12/123006

Regularized Interior Point Methods for Convex Programming 185

[30] S. Bocanegra, F. Campos, and A. Oliveira, Using a hybrid precondi-
tioner for solving large-scale linear systems arising from interior point meth-
ods, Computational Optimization and Applications, 36 (2007), pp. 149–164,
https://doi.org/10.1007/s10589-006-9009-5.

[31] P. T. Boggs and J. W. Tolle, Sequential quadratic programming
for large-scale nonlinear optimization, Journal of Computational and Ap-
plied Mathematics, 124 (2000), pp. 123–137, https://doi.org/10.1016/
S0377-0427(00)00429-5.

[32] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Dis-
tributed optimization and statistical learning via the alternating direction
method of multipliers, Foundations and Trends in Machine Learning, 3
(2011), pp. 1–122, https://doi.org/10.1561/2200000016.

[33] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov–
Galerkin formulations for convection dominated flows with particular em-
phasis on the incompressible Navier–Stokes equations, Computer Methods
in Applied Mechanics and Engineering, 32 (1982), pp. 199–259, https:

//doi.org/10.1016/0045-7825(82)90071-8.

[34] S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino, and
G. Toraldo, Convergence analysis of an inexact potential reduction
method for convex quadratic programming, Journal of Optimization Theory
and Applications, 135 (2007), pp. 355–366, https://doi.org/10.1007/

s10957-007-9264-3.

[35] E. J. Candés, J. Romberg, and T. Tao, Stable signal recovery from
incomplete and inaccurate measurements, Communications in Pure Applied
Mathematics, 59 (2006), pp. 1207–1223, https://doi.org/doi.org/10.

1002/cpa.20124.

[36] Y. Cao, C. D. Laird, and V. M. Zavala, Clustering-based
preconditioning for stochastic programs, Computational Optimization
and Applications, 64 (2016), pp. 379–406, https://doi.org/10.1007/

s10589-015-9813-x.

[37] J. Castro, A specialized interior-point algorithm for multicommodity
network flows, SIAM Journal on Optimization, 10 (2000), pp. 852–877,
https://doi.org/10.1137/S1052623498341879.

[38] J. Castro and J. Cuesta, Quadratic regularizations in an interior-point
method for primal block-angular problems, Mathematical Programming, 130
(2011), pp. 415–445, https://doi.org/10.1007/s10107-010-0341-2.

[39] Y. Censor and A. Zenios, Proximal minimization algorithm with D-
functions, Journal of Optimization Theory and Applications, 73 (1992),
pp. 451–464, https://doi.org/10.1007/BF00940051.

185

https://doi.org/10.1007/s10589-006-9009-5
https://doi.org/10.1016/S0377-0427(00)00429-5
https://doi.org/10.1016/S0377-0427(00)00429-5
https://doi.org/10.1561/2200000016
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1007/s10957-007-9264-3
https://doi.org/10.1007/s10957-007-9264-3
https://doi.org/doi.org/10.1002/cpa.20124
https://doi.org/doi.org/10.1002/cpa.20124
https://doi.org/10.1007/s10589-015-9813-x
https://doi.org/10.1007/s10589-015-9813-x
https://doi.org/10.1137/S1052623498341879
https://doi.org/10.1007/s10107-010-0341-2
https://doi.org/10.1007/BF00940051

186 Spyridon Pougkakiotis

[40] J.-S. Chai and K.-C. Toh, Preconditioning and iterative solution of
symmetric indefinite linear systems arising from interior point methods
for linear programming, Computational Optimization and Applications, 36
(2007), pp. 221–247, https://doi.org/10.1007/s10589-006-9006-8.

[41] A. Chambolle, An algorithm for total variation minimization and appli-
cations, Journal of Mathematical Imaging and Vision, 20 (2004), pp. 89–97,
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e.

[42] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decom-
position by basis pursuit, SIAM Review, 43 (2001), pp. 129–159, https:

//doi.org/10.1137/S003614450037906X.

[43] Z.-p. Chen, G. Li, and J.-e. Guo, Optimal investment policy in
the time consistent mean-variance formulation, Insurance: Mathemat-
ics & Economics, 52 (2013), pp. 145–156, https://doi.org/10.1016/j.
insmatheco.2012.11.007.

[44] G. H. Cheng, Q. Tan, and Z. D. Wang, A note on eigenvalues of
perturbed 2x2 block Hermitian matrices, Linear and Multilinear Algebra, 63
(2014), pp. 820–825, https://doi.org/10.1080/03081087.2014.903252.

[45] S. Corsaro and V. De Simone, Adaptive l1-regularization for
short-selling control in portfolio selection, Computational Optimization
and Applications, 72 (2019), pp. 457–478, https://doi.org/10.1007/

s10589-018-0049-4.

[46] S. Corsaro, V. De Simone, and Z. Marino, Fused lasso approach in
portfolio selection, Annals of Operations Research, 299 (2021), pp. 47–59,
https://doi.org/10.1007/s10479-019-03289-w.

[47] S. Corsaro, V. De Simone, and Z. Marino, Split Bregman iteration
for multi-period mean variance portfolio optimization, Applied Mathematics
and Computation, 392 (2021), pp. 125715, 10, https://doi.org/10.1016/
j.amc.2020.125715.

[48] S. Corsaro, V. De Simone, Z. Marino, and F. Perla, l1-
regularization for multi-period portfolio selection, Annals of Opera-
tions Research, 294 (2020), pp. 75–86, https://doi.org/10.1007/

s10479-019-03308-w.

[49] Y.-H. Dai and R. Fletcher, New algorithms for singly linearly con-
strained quadratic programs subject to lower and upper bounds, Mathemat-
ical Programming, 106 (2006), pp. 403–421, https://doi.org/10.1007/
s10107-005-0595-2.

[50] M. D’Apuzzo, V. De Simone, and D. di Serafino, On mutual im-
pact of numerical linear algebra and large-scale optimization with focus on
interior point methods, Computational Optimization and Applications, 45
(2010), pp. 283–310, https://doi.org/10.1007/s10589-008-9226-1.

186

https://doi.org/10.1007/s10589-006-9006-8
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1016/j.insmatheco.2012.11.007
https://doi.org/10.1016/j.insmatheco.2012.11.007
https://doi.org/10.1080/03081087.2014.903252
https://doi.org/10.1007/s10589-018-0049-4
https://doi.org/10.1007/s10589-018-0049-4
https://doi.org/10.1007/s10479-019-03289-w
https://doi.org/10.1016/j.amc.2020.125715
https://doi.org/10.1016/j.amc.2020.125715
https://doi.org/10.1007/s10479-019-03308-w
https://doi.org/10.1007/s10479-019-03308-w
https://doi.org/10.1007/s10107-005-0595-2
https://doi.org/10.1007/s10107-005-0595-2
https://doi.org/10.1007/s10589-008-9226-1

Regularized Interior Point Methods for Convex Programming 187

[51] M. D’Apuzzo, V. De Simone, and D. di Serafino, On mutual im-
pact of numerical linear algebra and large-scale optimization with focus on
interior point methods, Computational Optimization and Applications, 45
(2010), pp. 283–310, https://doi.org/10.1007/s10589-008-9226-1.

[52] V. De Simone, D. di Serafino, J. Gondzio, S. Pougkakio-
tis, and M. Viola, Sparse approximations with interior point methods,
arXiv:2102.13608, (2021).

[53] V. De Simone, D. di Serafino, and M. Viola, A subspace-accelerated
split Bregman method for sparse data recovery with joint `1-type regulariz-
ers, Electronic Transactions on Numerical Analysis, 53 (2020), pp. 406–425,
https://doi.org/10.1553/etna_vol53s406.

[54] A. Dehghani, J. L. Goffin, and D. Orban, A primal-dual regularized
interior-point method for semidefinite programming, Optimization Meth-
ods and Software, 32 (2017), pp. 193–219, https://doi.org/10.1080/

10556788.2016.1235708.

[55] D. di Serafino, G. Landi, and M. Viola, ACQUIRE: An inexact
iteratively reweighted norm approach for TV-based Poisson image restora-
tion, Applied Mathematics and Computation, 364 (2020), pp. 124678, 23,
https://doi.org/10.1016/j.amc.2019.124678.

[56] D. di Serafino and D. Orban, Constraint-preconditioned Krylov
solvers for regularized saddle-point systems, SIAM Journal on Scientific
Computing, 43 (2021), pp. A1001–A1026, https://doi.org/10.1137/

19M1291753.

[57] E. D. Dohmatob, A. Gramfort, B. Thirion, and G. Varoquaux,
Benchmarking solvers for TV-`1 least-squares and logistic regression in
brain imaging, in 2014 International Workshop on Pattern Recognition
in Neuroimaging, June 2014, pp. 1–4, https://doi.org/10.1109/PRNI.
2014.6858516.

[58] D. E. Dolan and J. J. Moré, Benchmarking optimization software with
performance profiles, Mathematical Programming, 91 (2002), pp. 201–213,
https://doi.org/10.1007/s101070100263.

[59] H. S. Dollar, Constraint-style preconditioners for regularized saddle point
problems, SIAM Journal on Matrix Analysis and Applications, 29 (2007),
pp. 672–684, https://doi.org/10.1137/050626168.

[60] H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wa-
then, Using constraint preconditioners with regularized saddle-point prob-
lems, Computational Optimization and Applications, 36 (2007), pp. 249–
270, https://doi.org/10.1007/s10589-006-9004-x.

[61] M. Dubois, F. Hadj-Selem, T. Löfstedt, M. Perrot, C. Fis-
cher, V. Frouin, and E. Duchesnay, Predictive support recovery with

187

https://doi.org/10.1007/s10589-008-9226-1
https://doi.org/10.1553/etna_vol53s406
https://doi.org/10.1080/10556788.2016.1235708
https://doi.org/10.1080/10556788.2016.1235708
https://doi.org/10.1016/j.amc.2019.124678
https://doi.org/10.1137/19M1291753
https://doi.org/10.1137/19M1291753
https://doi.org/10.1109/PRNI.2014.6858516
https://doi.org/10.1109/PRNI.2014.6858516
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/050626168
https://doi.org/10.1007/s10589-006-9004-x

188 Spyridon Pougkakiotis

TV-Elastic Net penalty and logistic regression: An application to struc-
tural MRI, in 2014 International Workshop on Pattern Recognition in Neu-
roimaging, June 2014, pp. 1–4, https://doi.org/10.1109/PRNI.2014.

6858517.

[62] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Saprse
Matrices, 2nd ed., Oxford University Press, Oxford, UK, 2017, https://
doi.org/10.1093/acprof:oso/9780198508380.001.0001.

[63] C. Durazzi and V. Ruggiero, Indefinitely preconditioned conjugate gra-
dient method for large sparse equality and inequality constrained quadratic
problems, Numerical Linear Algebra with Applications, 10 (2003), pp. 673–
688, https://doi.org/10.1002/nla.308.

[64] J. Eckstein, Nonlinear proximal point algorithms using Bregman func-
tions, with applications to convex programming, Mathematics of Operations
Research, 18 (1993), pp. 202–226.

[65] H. C. Elman, A. Ramage, and D. J. Silvester, Algorithm 866:
IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans-
actions on Mathematical Software, 33 (2007), p. 14, https://doi.org/

10.1145/1236463.1236469.

[66] H. C. Elman, A. Ramage, and D. J. Silvester, IFISS: A compu-
tational laboratory for investigating incompressible flow problems, SIAM
Review, 52 (2014), pp. 261–273, https://doi.org/10.1137/120891393.

[67] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements
and Fast Iterative Solvers: with Applications in Incompressible Fluid Dy-
namics, Numerical Mathematics and Scientific Computation, Oxford Uni-
versity Press, 2nd ed., 2014.

[68] D. C.-L. Fong and M. A. Saunders, LSMR: An iterative algorithm
for sparse least-squares problems, SIAM Journal on Scientific Computing,
33 (2011), pp. 2950–2971, https://doi.org/10.1137/10079687X.

[69] K. Fountoulakis and J. Gondzio, A second-order method for strongly
convex `1-regularization problems, Mathematical Programming, 156 (2016),
pp. 189–219, https://doi.org/10.1007/s10107-015-0875-4.

[70] K. Fountoulakis, J. Gondzio, and P. Zhlobich, Matrix-free in-
terior point method for compressed sensing problems, Mathematical Pro-
gramming Computation, 6 (2014), pp. 1–31, https://doi.org/10.1007/
s12532-013-0063-6.

[71] M. Friedlander and P. Tseng, Exact regularization of convex pro-
grams, SIAM Journal on Optimization, 18 (2007), pp. 1326–1350, https:
//doi.org/10.1137/060675320.

188

https://doi.org/10.1109/PRNI.2014.6858517
https://doi.org/10.1109/PRNI.2014.6858517
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1002/nla.308
https://doi.org/10.1145/1236463.1236469
https://doi.org/10.1145/1236463.1236469
https://doi.org/10.1137/120891393
https://doi.org/10.1137/10079687X
https://doi.org/10.1007/s10107-015-0875-4
https://doi.org/10.1007/s12532-013-0063-6
https://doi.org/10.1007/s12532-013-0063-6
https://doi.org/10.1137/060675320
https://doi.org/10.1137/060675320

Regularized Interior Point Methods for Convex Programming 189

[72] M. P. Friedlander and D. Orban, A primal-dual regularized interior-
point method for convex quadratic programs, Mathematical Program-
ming Computation, 4 (2012), pp. 71–107, https://doi.org/10.1007/

s12532-012-0035-2.

[73] C. F. Gauss, Letter to Gerling, In Werke, 9 (1903), pp. 278–281.

[74] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saun-
ders, Preconditioners for indefinite systems arising in optimization, SIAM
Journal on Matrix Analysis and Applications, 13 (1992), pp. 292–311,
https://doi.org/10.1137/0613022.

[75] O. Güler, New proximal point algorithms for convex minimization, SIAM
Journal on Optimization, 2 (1992), pp. 649–664, https://doi.org/10.

1137/0802032.

[76] GLPK. https://www.gnu.org/software/glpk/, 2018.

[77] J. Gondzio, Multiple centrality corrections in a primal-dual method for lin-
ear programming, Computational Optimization and Applications, 6 (1996),
pp. 137–156, https://doi.org/10.1007/BF00249643.

[78] J. Gondzio, Interior point methods 25 years later, European Journal
of Operational Research, 218 (2012), pp. 587–601, https://doi.org/10.
1016/j.ejor.2011.09.017.

[79] J. Gondzio, Matrix-free interior point method, Computational Optimiza-
tion and Applications, 51 (2012), pp. 457–480, https://doi.org/10.1007/
s10589-010-9361-3.

[80] J. Gondzio, Convergence analysis of an inexact feasible interior point
method for convex quadratic programming, SIAM Journal on Optimization,
23 (2013), pp. 1510–1527, https://doi.org/10.1137/120886017.

[81] J. Gondzio and M. Makowski, Solving a class of LP problems with a
primal-dual logarithmic barrier method, European Journal of Operational
Research, 80 (1995), pp. 184–192, https://doi.org/https://doi.org/

10.1016/0377-2217(93)E0323-P.

[82] J. Gondzio, S. Pougkakiotis, and J. W. Pearson, General-purpose
preconditioning for regularized interior point methods, 2021, https://

arxiv.org/abs/arXiv:2107.06822.

[83] J. Gondzio and G. Toraldo (eds.), Linear algebra issues arising in
interior point methods, Special issue of Computational Optimization and
Applications, 36 (2007), pp. 137–341.

[84] A. Gramfort, B. Thirion, and G. Varoquaux, Identifying predictive
regions from fMRI with TV-L1 prior, in 2013 International Workshop on
Pattern Recognition in Neuroimaging, June 2013, pp. 17–20, https://doi.
org/10.1109/PRNI.2013.14.

189

https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1137/0613022
https://doi.org/10.1137/0802032
https://doi.org/10.1137/0802032
https://www.gnu.org/software/glpk/
https://doi.org/10.1007/BF00249643
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1007/s10589-010-9361-3
https://doi.org/10.1007/s10589-010-9361-3
https://doi.org/10.1137/120886017
https://doi.org/https://doi.org/10.1016/0377-2217(93)E0323-P
https://doi.org/https://doi.org/10.1016/0377-2217(93)E0323-P
https://arxiv.org/abs/arXiv:2107.06822
https://arxiv.org/abs/arXiv:2107.06822
https://doi.org/10.1109/PRNI.2013.14
https://doi.org/10.1109/PRNI.2013.14

190 Spyridon Pougkakiotis

[85] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers
in Applied Mathematics, Society for Industrial and Applied Mathematics,
1997, https://doi.org/10.1137/1.9781611970937.

[86] A. Greenbaum, V. Pták, and Z. Strakoš, A nonincreasing con-
vergence curve is possible for GMRES, SIAM Journal on Matrix Analy-
sis and Applications, 17 (1996), pp. 465–469, https://doi.org/10.1137/
S0895479894275030.

[87] L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and
J. E. Taylor, Interpretable whole-brain prediction analysis with Graph-
Net, NeuroImage, 72 (2013), pp. 304–321, https://doi.org/10.1016/j.
neuroimage.2012.12.062.

[88] M. Gu, Primal-dual interior-point methods for semidefinite progamming
in finite precision, SIAM Journal on Optimization, 10 (2000), pp. 462–502,
https://doi.org/10.1137/S105262349731950X.

[89] O. Güler and Y. Ye, Convergence behaviour of interior point algorithms,
Mathematical Programming, 60 (1993), pp. 215–228, https://doi.org/

10.1007/BF01580610.

[90] G. Haeser, O. Hinder, and Y. Ye, On the behaviour of Lagrange mul-
tipliers in convex and non-convex ifeasible interior point methods, Math-
ematical Programming, 186 (2021), pp. 257–288, https://doi.org/10.

1007/s10107-019-01454-4.

[91] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images,
Society for Industrial and Applied Mathematics, 2006, https://doi.org/
10.1137/1.9780898718874.

[92] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimiza-
tion Theory and Applications, 4 (1969), pp. 303–320, https://doi.org/
10.1007/BF00927673.

[93] M. R. Hestenes and E. Stiefel, Method of conjugate gradients for
solving linear systems, Journal of Research of the National Bureau of Stan-
dards, 49 (1952), pp. 409–436.

[94] I. C. F. Ipsen, A note on preconditioning non-symmetric matrices, SIAM
Journal on Scientific Computing, 23 (2001), pp. 1050–1051, https://doi.
org/10.1137/S1064827500377435.

[95] A. N. Iusem, Some properties of generalized proximal point methods
for quadratic and linear programming, Journal of Optimization Theory
and Applications, 85 (1995), pp. 593–612, https://doi.org/10.1007/

BF02193058.

[96] C. G. J. Jacobi, Ueber eine neue auflösungsart der bei der methode
der Kleinsten quadrate vorkommenden lineären gleichungen, Astronomis-
che Nachrichten, 22 (1845), pp. 297–306.

190

https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1137/S0895479894275030
https://doi.org/10.1016/j.neuroimage.2012.12.062
https://doi.org/10.1016/j.neuroimage.2012.12.062
https://doi.org/10.1137/S105262349731950X
https://doi.org/10.1007/BF01580610
https://doi.org/10.1007/BF01580610
https://doi.org/10.1007/s10107-019-01454-4
https://doi.org/10.1007/s10107-019-01454-4
https://doi.org/10.1137/1.9780898718874
https://doi.org/10.1137/1.9780898718874
https://doi.org/10.1007/BF00927673
https://doi.org/10.1007/BF00927673
https://doi.org/10.1137/S1064827500377435
https://doi.org/10.1137/S1064827500377435
https://doi.org/10.1007/BF02193058
https://doi.org/10.1007/BF02193058

Regularized Interior Point Methods for Convex Programming 191

[97] X. Jiang and L. Vandenberghe, Bregman primal-dual first-order
method and application to sparse semidefinite programming, http://www.
optimization-online.org/DB_HTML/2020/03/7702.html, (2020).

[98] B. Jie, C.-Y. Wee, D. Shen, and D. Zhang, Hyper-connectivity of
functional networks for brain disease diagnosis, Medical Image Analysis, 32
(2016), pp. 84–100, https://doi.org/10.1016/j.media.2016.03.003.

[99] Y. Kamitani and F. Tong, Decoding the visual and subjective contents
of the human brain, Nature Neuroscience, 8 (2005), pp. 679–685, https:
//doi.org/10.1038/nn1444.

[100] C. Keller, N. I. Gould, and A. J. Wathen, Constraint precondi-
tioning for symmetric indefinite linear systems, SIAM Journal on Matrix
Analysis and Applications, 21 (2000), pp. 1300–1317, https://doi.org/
10.1137/S0895479899351805.

[101] D. Klatte and B. Kummer, Nonsmooth Equations in Optimization,
Regularity, Calculus, Methods and Applications, vol. 60 of Nonconvex Op-
timization and its Applications, Kluwer Academic Publishers, Dordrecht,
Springer, Boston, MA, 2002, https://doi.org/10.1007/b130810.

[102] M. Kojima, N. Megiddo, and S. Mizuno, A primal–dual infeasible-
interior-point algorithm for linear programming, Mathematical Program-
ming, 61 (1993), pp. 263–280, https://doi.org/10.1007/BF01582151.

[103] M. Kojima and S. Shindo, Extension of Newton and quasi-Newton meth-
ods to systems of PC1 equations, Journal of the Operational Research Soci-
ety of Japan, 29 (1986), pp. 352–375, https://doi.org/10.15807/jorsj.
29.352.

[104] G. Lan and R. D. C. Monteiro, Iteration-complexity of first-order
augmented Lagrangian methods for convex programming, Mathemati-
cal Programming, 155 (2016), pp. 511–547, https://doi.org/10.1007/

s10107-015-0861-x.

[105] J. Lavaei and S. H. Low, Zero duality gap in optimal power flow problem,
IEEE Transactions on Power Systems, 27 (2012), pp. 92–107, https://

doi.org/10.1109/TPWRS.2011.2160974.

[106] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type meth-
ods for minimizing composite functions, SIAM Journal on Optimization, 24
(2014), pp. 1420–1443, https://doi.org/10.1137/130921428.

[107] D. Li and W. Ng, Optimal dynamic portfolio selection: Multiperiod
mean-variance formulation, Mathematical Finance, 10 (2000), pp. 387–406,
https://doi.org/10.1111/1467-9965.00100.

191

http://www.optimization-online.org/DB_HTML/2020/03/7702.html
http://www.optimization-online.org/DB_HTML/2020/03/7702.html
https://doi.org/10.1016/j.media.2016.03.003
https://doi.org/10.1038/nn1444
https://doi.org/10.1038/nn1444
https://doi.org/10.1137/S0895479899351805
https://doi.org/10.1137/S0895479899351805
https://doi.org/10.1007/b130810
https://doi.org/10.1007/BF01582151
https://doi.org/10.15807/jorsj.29.352
https://doi.org/10.15807/jorsj.29.352
https://doi.org/10.1007/s10107-015-0861-x
https://doi.org/10.1007/s10107-015-0861-x
https://doi.org/10.1109/TPWRS.2011.2160974
https://doi.org/10.1109/TPWRS.2011.2160974
https://doi.org/10.1137/130921428
https://doi.org/10.1111/1467-9965.00100

192 Spyridon Pougkakiotis

[108] X. Li, D. Sun, and K.-C. Toh, A highly efficient semismooth New-
ton augmented Lagrangian method for solving lasso problems, SIAM Jour-
nal on Optimization, 28 (2017), pp. 433–458, https://doi.org/10.1137/
16M1097572.

[109] Y. Li, C. Sun, P. Li, Y. Zhao, G. K. Mensah, Y. Xu, H. Guo, and
J. Chen, Hypernetwork construction and feature fusion analysis based on
sparse group lasso method on fMRI dataset, Frontiers in Neuroscience, 14
(2020), https://doi.org/10.3389/fnins.2020.00060.

[110] J. Liesen and Z. Strakos̆, Krylov Subspace Methods: Principles
and Analysis, Numerical Mathematics and Sicentific Computation, Ox-
ford University Press, 2012, https://doi.org/10.1093/acprof:oso/

9780199655410.001.0001.

[111] J. Liesen and P. Tichý, Convergence analysis of Krylov subspace meth-
ods, GAMM-Mitteilungen, 27 (2005), pp. 153–173, https://doi.org/10.
1002/gamm.201490008.

[112] M. Liu and G. Pataki, Exact duals and short certificates of infea-
sibility and weak infeasibility in conic linear programming, Mathemati-
cal Programming, 167 (2018), pp. 435–480, https://doi.org/10.1007/

s10107-017-1136-5.

[113] Y. Malitsky and T. Pock, A first-order primal-dual algorithm with
linesearch, SIAM Journal on Optimization, 28 (2018), pp. 411–432, https:
//doi.org/10.1137/16M1092015.

[114] H. M. Markowitz, Portfolio Selection: Efficient Diversification of Invest-
ments, Cowles Foundation for Research in Economics at Yale University,
Monograph 16, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd.,
London, 1959.

[115] I. Maros and C. Mészáros, The role of the augmented system in inte-
rior point methods, European Journal of Operational Research, 107 (1998),
pp. 720–736, https://doi.org/10.1016/S0377-2217(97)00074-X.

[116] I. Maros and C. Mészáros, A Repository of convex quadratic pro-
gramming problems, Optimization Methods and Software, 11 & 12 (1999),
pp. 671–681, https://doi.org/10.1080/10556789908805768.

[117] A. Mart́ınez, Tuned preconditioners for the eigensolution of large SPD
matrices arising in engineering problems, Numerical Linear Algebra with
Applications, 23 (2016), pp. 427–443, https://doi.org/10.1002/nla.

2032.

[118] N. Megiddo, Pathways to the optimal set in linear programming, in
Progress in Mathematical Programming, N. Megiddo, ed., Springer-Verlag,
1989, https://doi.org/10.1007/978-1-4613-9617-8_8.

192

https://doi.org/10.1137/16M1097572
https://doi.org/10.1137/16M1097572
https://doi.org/10.3389/fnins.2020.00060
https://doi.org/10.1093/acprof:oso/9780199655410.001.0001
https://doi.org/10.1093/acprof:oso/9780199655410.001.0001
https://doi.org/10.1002/gamm.201490008
https://doi.org/10.1002/gamm.201490008
https://doi.org/10.1007/s10107-017-1136-5
https://doi.org/10.1007/s10107-017-1136-5
https://doi.org/10.1137/16M1092015
https://doi.org/10.1137/16M1092015
https://doi.org/10.1016/S0377-2217(97)00074-X
https://doi.org/10.1080/10556789908805768
https://doi.org/10.1002/nla.2032
https://doi.org/10.1002/nla.2032
https://doi.org/10.1007/978-1-4613-9617-8_8

Regularized Interior Point Methods for Convex Programming 193

[119] S. Mehrotra, On the implementation of a primal-dual interior-point
method, SIAM Journal on Optimization, 2 (1992), pp. 575–601, https:

//doi.org/10.1137/0802028.

[120] V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and
B. Thirion, Total variation regularization for fMRI-based prediction of be-
havior, IEEE Transactions on Medical Imaging, 30 (2011), pp. 1328–1340,
https://doi.org/10.1109/TMI.2011.2113378.

[121] S. Mizuno and F. Jarre, Global and polynomial-time convergence of an
infeasible-interior-point algorithm using inexact computation, Mathemat-
ical Programming, 84 (1999), pp. 105–122, https://doi.org/10.1007/

s10107980020a.

[122] S. Mizuno, M. J. Todd, and Y. Ye, On adaptive-step primal-dual
interior-point algorithms for linear programming, Mathematics of Opera-
tional Research, 18 (1993), pp. 964–981, https://doi.org/10.1287/moor.
18.4.964.

[123] MOSEK, The MOSEK optimization software, 2020.

[124] A. M. Mota, N. Oliveira, P. Almeida, and N. Matela, 3D total
variation minimization filter for breast tomosynthesis imaging, in Breast
Imaging, A. Tingberg, K. L̊ang, and P. Timberg, eds., Cham, 2016,
Springer, pp. 501–509, https://doi.org/10.1007/978-3-319-41546-8_
63.

[125] J. Mourão-Miranda, E. Reynaud, F. McGlone, G. Calvert,
and M. Brammer, The impact of temporal compression and space se-
lection on SVM analysis of single-subject and multi-subject fMRI data,
NeuroImage, 33 (2006), pp. 1055–1065, https://doi.org/10.1016/j.

neuroimage.2006.08.016.

[126] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on
preconditioning for indefinite linear systems, SIAM Journal on Scien-
tific Computing, 21 (2000), pp. 1969–1972, https://doi.org/10.1137/

S1064827599355153.

[127] Y. Nakatsukasa, Eigenvalue perturbation bounds for Hermitian block
tridiagonal matrices, Applied Numerical Mathematics, 62 (2012), pp. 67–
78, https://doi.org/10.1016/j.apnum.2011.09.010.

[128] Y. Nesterov and A. S. Nemirovskii, Interior Point Polynomial
Methods in Convex Programming: Theory and Algorithms, SIAM Publi-
cations, SIAM, Philadelphia, USA, 1994, https://doi.org/10.1137/1.

9781611970791.

[129] Y. Nesterov, M. J. Todd, and Y. Ye, Infeasible-start primal-dual
methods and infeasibility detectors for nonlinear programming problems,
Mathematical Programming, 82 (1999), pp. 227–267, https://doi.org/

10.1007/s10107980009a.

193

https://doi.org/10.1137/0802028
https://doi.org/10.1137/0802028
https://doi.org/10.1109/TMI.2011.2113378
https://doi.org/10.1007/s10107980020a
https://doi.org/10.1007/s10107980020a
https://doi.org/10.1287/moor.18.4.964
https://doi.org/10.1287/moor.18.4.964
https://doi.org/10.1007/978-3-319-41546-8_63
https://doi.org/10.1007/978-3-319-41546-8_63
https://doi.org/10.1016/j.neuroimage.2006.08.016
https://doi.org/10.1016/j.neuroimage.2006.08.016
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1016/j.apnum.2011.09.010
https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1137/1.9781611970791
https://doi.org/10.1007/s10107980009a
https://doi.org/10.1007/s10107980009a

194 Spyridon Pougkakiotis

[130] Netlib. http://netlib.org/lp, 2011.

[131] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series
in Operations Research and Financial Engineering, Springer, New York,
NY, 2006, https://doi.org/10.1007/978-0-387-40065-5.

[132] Y. Notay, A new analysis of block preconditioners for saddle point systems,
SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 143–173,
https://doi.org/10.1137/130911962.

[133] A. R. L. Oliveira and D. C. Sorensen, A new class of precondi-
tioners for large-scale linear systems from interior point methods for linear
programming, Linear Algebra and its Applications, 394 (2005), pp. 1–24,
https://doi.org/10.1016/j.laa.2004.08.019.

[134] D. Orban, Limited-memory LDLT factorization of symmetric quasi-
definite matrices with application to constrained optimization, Numer-
ical Algorithms, 70 (2015), pp. 9–41, https://doi.org/10.1007/

s11075-014-9933-x.

[135] C. C. Paige and M. A. Saunders, Solution of sparse indefinite sys-
tems of linear equations, SIAM Journal on Numerical Analysis, 12 (1975),
pp. 617–629, https://doi.org/10.1137/0712047.

[136] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse lin-
ear equations and sparse least squares, ACM Transactions on Mathemat-
ical Software, 8 (1982), pp. 43–71, https://doi.org/10.1145/355984.

355989.

[137] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends
in Optimization, 1 (2014), pp. 127–239, https://doi.org/10.1561/

2400000003.

[138] J. W. Pearson and J. Gondzio, Fast interior point solution of quadratic
programming problems arising from PDE-constrained optimization, Nu-
merische Mathematik, 137 (2017), pp. 959–999, https://doi.org/10.

1007/s00211-017-0892-8.

[139] J. W. Pearson and J. Pestana, Preconditioning for Krylov subspace
methods: An overview, GAMM-Mitteilungen, 43 (2020), p. e202000015,
https://doi.org/10.1002/gamm.202000015.

[140] J. W. Pearson, M. Porcelli, and M. Stoll, Interior-point methods
and preconditioning for PDE-constrained optimization problems involving
sparsity terms, Numerical Linear Algebra with Applications, 27 (2019),
p. e2276, https://doi.org/10.1002/nla.2276.

[141] S. Pougkakiotis and J. Gondzio, Dynamic non-diagonal regulariza-
tion in interior point methods for linear and convex quadratic programming,
Journal of Optimization Theory and Applications, 181 (2019), pp. 905–945,
https://doi.org/10.1007/s10957-019-01491-1.

194

http://netlib.org/lp
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1137/130911962
https://doi.org/10.1016/j.laa.2004.08.019
https://doi.org/10.1007/s11075-014-9933-x
https://doi.org/10.1007/s11075-014-9933-x
https://doi.org/10.1137/0712047
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/355984.355989
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1007/s00211-017-0892-8
https://doi.org/10.1007/s00211-017-0892-8
https://doi.org/10.1002/gamm.202000015
https://doi.org/10.1002/nla.2276
https://doi.org/10.1007/s10957-019-01491-1

Regularized Interior Point Methods for Convex Programming 195

[142] S. Pougkakiotis and J. Gondzio, An interior point-proximal method
of multipliers for convex quadratic programming, Computational Optimiza-
tion and Applications, 78 (2021), pp. 307–351, https://doi.org/10.1007/
s10589-020-00240-9.

[143] S. Pougkakiotis and J. Gondzio, An interior point-proximal method
of multipliers for linear positive semi-definite programming, Journal of Op-
timization Theory and Applications, (2021), https://doi.org/10.1007/
s10957-021-01954-4.

[144] S. Pougkakiotis, J. W. Pearson, S. Leveque, and J. Gondzio,
Fast solution methods for convex quadratic optimization of fractional dif-
ferential equations, SIAM Journal on Matrix Analysis and Applications, 41
(2020), pp. 1443–1476, https://doi.org/10.1137/19M128288X.

[145] M. J. D. Powell, A method for nonlinear constraints in minimization
problems, in Optimization, F. R., ed., Academic Press, 1969, pp. 283–298.

[146] R. T. Rockafellar, Augmented Lagrangians and applications of the
proximal point algorithm in convex programming, Mathematics of Oper-
ations Research, 1 (1976), pp. 97–116, https://doi.org/doi.org/10.

1287/moor.1.2.97.

[147] R. T. Rockafellar, Monotone operators and the proximal point algo-
rithm, SIAM Journal on Control and Optimization, 14 (1976), pp. 877–898,
https://doi.org/10.1137/0314056.

[148] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1996.

[149] M. J. Rosa, L. Portugal, T. Hahn, A. J. Fallgatter, M. I. Gar-
rido, J. Shawe-Taylor, and J. Mourão-Miranda, Sparse network-
based models for patient classification using fMRI, NeuroImage, 105 (2015),
pp. 493–506, https://doi.org/10.1016/j.neuroimage.2014.11.021.

[150] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based
noise removal algorithms, Physica D, 60 (1992), pp. 259–268, https://

doi.org/10.1016/0167-2789(92)90242-F.

[151] T. Rusten and R. Winther, A preconditioned iterative method for
saddle-point problems, SIAM Journal on Matrix Analysis and Applications,
13 (1992), pp. 887–904, https://doi.org/10.1137/0613054.

[152] S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, Sparse lo-
gistic regression for whole-brain classification of fMRI data, NeuroImage,
51 (2010), pp. 752–764, https://doi.org/10.1016/j.neuroimage.2010.
02.040.

[153] Y. Saad and M. H. Schultz, GMRES: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems, SIAM Journal on
Scientific Computing, 7 (1986), pp. 856–869, https://doi.org/10.1137/
09070583.

195

https://doi.org/10.1007/s10589-020-00240-9
https://doi.org/10.1007/s10589-020-00240-9
https://doi.org/10.1007/s10957-021-01954-4
https://doi.org/10.1007/s10957-021-01954-4
https://doi.org/10.1137/19M128288X
https://doi.org/doi.org/10.1287/moor.1.2.97
https://doi.org/doi.org/10.1287/moor.1.2.97
https://doi.org/10.1137/0314056
https://doi.org/10.1016/j.neuroimage.2014.11.021
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1137/0613054
https://doi.org/10.1016/j.neuroimage.2010.02.040
https://doi.org/10.1016/j.neuroimage.2010.02.040
https://doi.org/10.1137/09070583
https://doi.org/10.1137/09070583

196 Spyridon Pougkakiotis

[154] M. Saunders and J. A. Tomlin, Solving regularized linear programs
using barrier methods and KKT systems, Tech. Report SOL 96-4, Systems
Optimization Laboratory, Department of Operations Research, Stanford
University, Stanford, CA 94305, USA, December 1996.

[155] M. A. Saunders, Cholesky-based methods for sparse least squares: the
benefits of regularization, in Linear and nonlinear conjugate gradient-related
methods (Seattle, WA, 1995), SIAM, Philadelphia, PA, 1996, pp. 92–100.

[156] O. Schenk, A. Wätcher, and M. Weiser, Inertia-revealing precondi-
tioning for large-scale nonconvex constrained optimization, SIAM Journal
on Scientific Computing, 31 (2008), pp. 939–960, https://doi.org/10.

1137/070707233.

[157] M. Schmidt, D. Kim, and S. Sra, Projected Newton-type methods in
machine learning, Optimization for Machine Learning, MIT Press, 2011,
pp. 305–330, https://doi.org/10.7551/mitpress/8996.003.0013.

[158] J. Scott and M. Tůma, Solving mixed sparse-dense linear least-squares
problems by preconditioned iterative methods, SIAM Journal on Scientific
Computing, 39 (2017), pp. A2422–A2437, https://doi.org/10.1137/

16M1108339.

[159] J. Scott and M. Tůma, A Schur complement approach to precondi-
tioning sparse linear least-squares problems with some dense rows, Numer-
ical Algorithms, 79 (2018), pp. 1147–1168, https://doi.org/10.1007/

s11075-018-0478-2.

[160] A. Shapiro, Duality and Optimality Conditions. In: Wolkowicz, H., Sai-
gal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming:
Theory, Algorithms and Applications, 67–110, Kluwer Academic Publish-
ers, Boston, 2000.

[161] D. J. Silvester and A. J. Wathen, Fast iterative solution of stabilized
Stokes systems part II: Using general block preconditioners, SIAM Journal
on Numerical Analysis, 31 (1994), pp. 1352–1367, https://doi.org/10.
1137/0731070.

[162] M. Souto, J. D. Garcia, and A. Veiga, Exploiting low-rank structure
in semidefinite programming by approximate operator splitting, Optimiza-
tion, (2020), https://doi.org/10.1080/02331934.2020.1823387.

[163] G. Stadler, Elliptic optimal control problems with l1-control cost and ap-
plications for the placement of control devices, Computational Optimiza-
tion and Applications, 44 (2009), pp. 159–181, https://doi.org/10.1007/
s10589-007-9150-9.

[164] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic
Press, 1990.

196

https://doi.org/10.1137/070707233
https://doi.org/10.1137/070707233
https://doi.org/10.7551/mitpress/8996.003.0013
https://doi.org/10.1137/16M1108339
https://doi.org/10.1137/16M1108339
https://doi.org/10.1007/s11075-018-0478-2
https://doi.org/10.1007/s11075-018-0478-2
https://doi.org/10.1137/0731070
https://doi.org/10.1137/0731070
https://doi.org/10.1080/02331934.2020.1823387
https://doi.org/10.1007/s10589-007-9150-9
https://doi.org/10.1007/s10589-007-9150-9

Regularized Interior Point Methods for Convex Programming 197

[165] R. Tapia, Y. Zhang, M. Saltzman, and A. Weiser, The Mehrotra
predictor-corrector interior-point method as a perturbed composite Newton
method, SIAM Journal on Optimization, 6 (1996), pp. 47–56, https://

doi.org/10.1137/0806004.

[166] R. Tibshirani, R. Saunders, S. Rosset, J. Zhu, and K. Knight,
Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 67 (2005), pp. 91–108, https:
//doi.org/10.1111/j.1467-9868.2005.00490.x.

[167] M. J. Todd, A study of search directions in primal-dual interior-
point methods for semidefinite programming, Optimization Meth-
ods and Software, 11 (1999), pp. 1–46, https://doi.org/10.1080/

10556789908805745.

[168] J. A. Tropp and S. J. Wright, Computational methods for sparse
solution of linear inverse problems, Proceedings of the IEEE, 98 (2010),
pp. 948–958, https://doi.org/10.1109/JPROC.2010.2044010.

[169] A. M. Turing, Rounding-off errors in matrix processes, The Quarterly
Journal of Mechanics and Applied Mathematics, 1 (1948), https://doi.
org/10.1093/qjmam/1.1.287.

[170] L. Vandenberghe and S. Boyd, Applications of semidefinite program-
ming, Applied Numerical Mathematics, 29 (1999), pp. 283–299, https:

//doi.org/10.1016/S0168-9274(98)00098-1.

[171] R. J. Vanderbei, Symmetric quasidefinite matrices, SIAM Journal on
Optimization, 5 (1995), pp. 100–113, https://doi.org/10.1137/0805005.

[172] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York,
1998.

[173] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, An in-
terior algorithm for nonlinear optimization that combines line search and
trust region steps, Mathematical Programming, 107 (2006), pp. 391–408,
https://doi.org/10.1007/s10107-004-0560-5.

[174] C. Wang and P. Tang, A primal majorized semismooth Newton-CG
augmented Lagrangian method for large-scale linearly constrained convex
programming, Computational Optimization and Applications, 68 (2017),
pp. 503–532, https://doi.org/10.1007/s10589-017-9930-9.

[175] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality as-
sessment: From error visibility to structural similarity, IEEE Transactions
on Image Processing, 13 (2004), pp. 600–612, https://doi.org/10.1109/
TIP.2003.819861.

[176] A. J. Wathen, Realistic eigenvalue bounds for the Galerkin mass matrix,
IMA Journal of Numerical Analysis, 7 (1987), pp. 449–457, https://doi.
org/10.1093/imanum/7.4.449.

197

https://doi.org/10.1137/0806004
https://doi.org/10.1137/0806004
https://doi.org/10.1111/j.1467-9868.2005.00490.x
https://doi.org/10.1111/j.1467-9868.2005.00490.x
https://doi.org/10.1080/10556789908805745
https://doi.org/10.1080/10556789908805745
https://doi.org/10.1109/JPROC.2010.2044010
https://doi.org/10.1093/qjmam/1.1.287
https://doi.org/10.1093/qjmam/1.1.287
https://doi.org/10.1016/S0168-9274(98)00098-1
https://doi.org/10.1016/S0168-9274(98)00098-1
https://doi.org/10.1137/0805005
https://doi.org/10.1007/s10107-004-0560-5
https://doi.org/10.1007/s10589-017-9930-9
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1093/imanum/7.4.449
https://doi.org/10.1093/imanum/7.4.449

198 Spyridon Pougkakiotis

[177] A. G. Weldeyesus, J. Gondzio, L. He, M. Gilbert, P. Shep-
erd, and A. Tyas, Adaptive solution of truss layout optimization prob-
lems with global stability constraints, Structural and Multidisciplinary
Optimization, 60 (2019), pp. 2093–2111, https://doi.org/10.1007/

s00158-019-02312-9.

[178] Y.-W. Wen, R. H. Chan, and T.-Y. Zeng, Primal-dual algorithms
for total variation based image restoration under Poisson noise, Science
China Mathematics, 59 (2016), pp. 141–160, https://doi.org/10.1007/
s11425-015-5079-0.

[179] A. C. Williams, Complementarity theorems for linear programming,
SIAM Review, 12 (1970), pp. 135–137, https://doi.org/10.1137/

1012015.

[180] M. A. Woodbury, Inverting Modified Matrices, Statistical Research
Group, Memorandum report 42, Princeton University, Princeton, NJ, 1950.

[181] S. J. Wright, Primal-Dual Interior Point Methods, SIAM Publica-
tions, SIAM, Philadelphia, USA, 1997, https://doi.org/10.1137/1.

9781611971453.

[182] O. Yamashita, M. Sato, T. Yoshioka, F. Tong, and Y. Kamitani,
Sparse estimation automatically selects voxels relevant for the decoding of
fMRI activity patterns, NeuroImage, 42 (2008), pp. 1414–1429, https://
doi.org/10.1016/j.neuroimage.2008.05.050.

[183] Y. Ye, M. J. Todd, and S. Mizuno, An O(
√
nL)-iteration homogeneous

and self-dual linear programming algorithm, Mathematics of Operational
Research, 19 (1994), pp. 1–256, https://doi.org/10.1287/moor.19.1.

53.

[184] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, An improved GLMNET for L1-
regularized logistic regression, Journal of Machine Learning Research, 13
(2012), pp. 1999–2030, http://jmlr.org/papers/v13/yuan12a.html.

[185] M.-C. Yue, Z. Zhou, and A. M.-C. So, A family of inexact SQA
methods for non-smooth convex minimization with provable convergence
guarantees based on the Luo-Tseng error bound property, Mathemati-
cal Programming, 174 (2019), pp. 327–358, https://doi.org/10.1007/

s10107-018-1280-6.

[186] J. Zhang, On the convergence of a class of infeasible interior-point methods
for the linear complementarity problem, SIAM Journal on Optimization, 4
(1994), pp. 208–227, https://doi.org/10.1137/0804012.

[187] J. Zhang, Y. Hu, and J. G. Nagy, A scaled gradient method for digital
tomographic image reconstruction, Inverse Problems & Imaging, 12 (2018),
pp. 239–259, https://doi.org/10.3934/ipi.2018010.

198

https://doi.org/10.1007/s00158-019-02312-9
https://doi.org/10.1007/s00158-019-02312-9
https://doi.org/10.1007/s11425-015-5079-0
https://doi.org/10.1007/s11425-015-5079-0
https://doi.org/10.1137/1012015
https://doi.org/10.1137/1012015
https://doi.org/10.1137/1.9781611971453
https://doi.org/10.1137/1.9781611971453
https://doi.org/10.1016/j.neuroimage.2008.05.050
https://doi.org/10.1016/j.neuroimage.2008.05.050
https://doi.org/10.1287/moor.19.1.53
https://doi.org/10.1287/moor.19.1.53
http://jmlr.org/papers/v13/yuan12a.html
https://doi.org/10.1007/s10107-018-1280-6
https://doi.org/10.1007/s10107-018-1280-6
https://doi.org/10.1137/0804012
https://doi.org/10.3934/ipi.2018010

Regularized Interior Point Methods for Convex Programming 199

[188] Y. Zhang, On extending some primal-dual interior-point algorithms
from linear programming to semidefinite programming, SIAM Journal
on Optimization, 8 (1998), pp. 365–386, https://doi.org/10.1137/

S1052623495296115.

[189] X. Y. Zhao, D. Sun, and K. C. Toh, A Newton-CG augmented La-
grangian method for semidefinite programming, SIAM Journal on Optimiza-
tion, 20 (2010), pp. 1737–1765, https://doi.org/10.1137/080718206.

[190] G. Zhou and K. C. Toh, Polynomiality of an inexact infeasible interior
point algorithm for semidefinite programming, Mathematical Programming,
99 (2004), pp. 261–282, https://doi.org/10.1007/s10107-003-0431-5.

[191] G. Zhou, K. C. Toh, and G. Zhao, Convergence analysis of an infea-
sible interior point algorithm based on a regularized central path for linear
complementarity problems, Computational Optimization and Applications,
27 (2004), pp. 269–283, https://doi.org/10.1023/B:COAP.0000013059.
84424.af.

199

https://doi.org/10.1137/S1052623495296115
https://doi.org/10.1137/S1052623495296115
https://doi.org/10.1137/080718206
https://doi.org/10.1007/s10107-003-0431-5
https://doi.org/10.1023/B:COAP.0000013059.84424.af
https://doi.org/10.1023/B:COAP.0000013059.84424.af

Appendix A

Convergence Analysis of
IP-PMM for SDP: residual
proofs

A.1 Proof of Lemma 4.4.2

Proof. We prove the claim by induction on the iterates, k ≥ 0, of Algorithm IP–
PMM-SDP. At iteration k = 0, we have that η0 = y0 and Ξ0 = X0. But from the
construction of the starting point in (4.18), we know that ‖(X0, y0)‖2 = O(

√
n).

Hence, ‖(Ξ0, η0)‖2 = O(
√
n) (assuming n > m). Invoking Lemma 4.4.1, there

exists a unique pair (X∗r0 , y
∗
r0

) such that:

(X∗r0 , y
∗
r0

) = P0(Ξ0, η0), ‖(X∗r0 , y
∗
r0

)− (X∗, y∗)‖2 ≤ ‖(Ξ0, η0)− (X∗, y∗)‖2,

where (X∗, y∗, Z∗) solves (SDP)–(SDD), and from Remark 4.4.1, is such that
‖X∗, y∗,Z∗‖2 = O(

√
n). Using the triangular inequality, and combining the lat-

ter inequality with our previous observations, yields that ‖(X∗r0 , y
∗
r0

)‖2 = O(
√
n).

From the definition of the operator in (4.6), we know that:

−C +A∗y∗r0 − µ(X∗r0 − Ξ0) ∈ ∂δSn+(X∗r0), AX∗r0 + µ(y∗r0 − η0)− b = 0m,

where ∂(δSn+(·)) is the sub-differential of the indicator function defined in (4.4).
Hence, there must exist −Z∗r0 ∈ ∂δSn+(X∗r0) (and thus, Z∗r0 ∈ S

n
+, 〈Xr0 , Zr0〉 = 0),

such that:

Z∗r0 = C −A∗y∗r0 + µ(X∗r0 − Ξ0), 〈X∗r0 , Z
∗
r0
〉 = 0, ‖Z∗r0‖2 = O(

√
n),

where ‖Z∗r0‖2 = O(
√
n) follows from Assumption 4, combined with ‖(X∗r0 , y

∗
r0

)‖2 =
O(
√
n).

Let k be an arbitrary iteration of Algorithm IP–PMM-SDP. There are two
cases for the subsequent iterations:

1. The proximal estimates are updated, that is (Ξk+1, ηk+1) = (Xk+1, yk+1), or

2. the proximal estimates stay the same, i.e. (Ξk+1, ηk+1) = (Ξk, ηk).

200

Regularized Interior Point Methods for Convex Programming 201

Case 1. We know by construction that this occurs only if the following is
satisfied:

‖(rp,Rd)‖2 ≤ KN
µk+1

µ0

,

where rp, Rd are defined in Algorithm IP–PMM-SDP. However, from the neigh-
bourhood conditions in (4.19), we know that:

‖
(
rp + µk+1(yk+1 − ηk),Rd + µk+1(Xk+1 −Ξk)

)
‖2 ≤ KN

µk+1

µ0

.

Combining the last two inequalities by applying the triangular inequality, and
using the properties of Algorithm IP–PMM-SDP recursively, yields that

‖(Xk+1, yk+1)‖2 ≤ max

{
k†

2KN

µ0

+ ‖(Ξ0, η0)‖2, K̄
√
n

}
= O(

√
n).

Hence, ‖(Ξk+1, ηk+1)‖2 = O(
√
n). Then, we can invoke Lemma 4.4.1, with η =

ηk+1, Ξ = Ξk+1 and any µ ≥ 0, which gives

‖(X∗rk+1
, y∗rk+1

)− (X∗, y∗)‖2 ≤ ‖(Ξk+1, ηk+1)− (X∗, y∗)‖2.

A simple manipulation shows that ‖(X∗rk+1
, y∗rk+1

)‖2 = O(
√
n). As before, we

use (4.6) alongside Assumption 4 to show the existence of −Z∗rk+1
∈ ∂δSn+(X∗rk+1

),

such that the triple (X∗rk+1
, y∗rk+1

, Z∗rk+1
) satisfies (4.24) with ‖Z∗rk+1

‖2 = O(
√
n).

Case 2. In this case, we have (Ξk+1, ηk+1) = (Ξk, ηk). However, from the
properties of Algorithm IP–PMM-SDP we can show that ‖(Ξk, ηk)‖2 = O(

√
n),

for all k. Thus, ‖(Ξk+1, ηk+1)‖2 = O(
√
n). As before, there exists a triple

(X∗rk+1
, y∗rk+1

, Z∗rk+1
) satisfying (4.24), with ‖(X∗rk+1

, y∗rk+1
,Z∗rk+1

)‖2 = O(
√
n).

A.2 Proof of Lemma 4.4.4

Proof. Let an iterate (Xk, yk, Zk) ∈ Nµk(Ξk, ηk), produced by Algorithm IP–
PMM-SDP during an arbitrary iteration k ≥ 0, be given. Firstly, we invoke
Lemma 4.4.3, from which we have a triple (X̃, ỹ, Z̃) satisfying (4.25), for µ =
µk. Similarly, by invoking Lemma 4.4.2, we know that there exists a triple
(X∗rk , y

∗
rk
, Z∗rk) satisfying (4.24), with µ = µk. Consider the following auxiliary

point:(
(1−µk

µ0

)X∗rk+
µk
µ0

X̃−Xk, (1−µk
µ0

)y∗rk+
µk
µ0

ỹ−yk, (1−µk
µ0

)Z∗rk+
µk
µ0

Z̃−Zk
)
. (A.1)

201

202 Spyridon Pougkakiotis

Using (A.1) and (4.24)-(4.25) (for µ = µk), one can observe that:

A

(
(1− µk

µ0

)X∗rk +
µk
µ0

X̃ −Xk

)
+ µk

(
(1− µk

µ0

)y∗rk +
µk
µ0

ỹ − yk
)

=

(1− µk
µ0

)(AX∗rk + µky
∗
rk

) +
µk
µ0

(AX̃ + µkỹ)− AXk − µkyk =

(1− µk
µ0

)(b+ µkηk) +
µk
µ0

(b+ µkηk + b̃k + b̄)− AXk − µkyk =

b+ µkηk +
µk
µ0

(b̃k + b̄)− AXk − µkyk = 0m,

where the last equality follows from the definition of the neighbourhood Nµk(Ξk, ηk).
Similarly, one can show that:

−µk
(

(1− µk
µ0

)X∗rk +
µk
µ0

X̃ −Xk

)
+ A>

(
(1− µk

µ0

)y∗rk +
µk
µ0

ỹ − yk
)

+

(
(1− µk

µ0

)Z∗rk +
µk
µ0

Z̃ −Zk

)
= 0n2 .

By combining the previous two relations, we have:(
(1− µk

µ0

)X∗rk +
µk
µ0

X̃ −Xk

)>(
(1− µk

µ0

)Z∗rk +
µk
µ0

Z̃ −Zk

)
=

µk

(
(1− µk

µ0

)X∗rk +
µk
µ0

X̃ −Xk

)>(
(1− µk

µ0

)X∗rk +
µk
µ0

X̃ −Xk

)
+µk

(
(1− µk

µ0

)y∗rk +
µk
µ0

ỹ − yk
)>(

(1− µk
µ0

)y∗rk +
µk
µ0

ỹ − yk
)
≥ 0.

(A.2)

Observe that (A.2) can equivalently be written as:〈
(1− µk

µ0

)X∗rk +
µk
µ0

X̃, Zk
〉

+
〈
(1− µk

µ0

)Z∗rk +
µk
µ0

Z̃,Xk

〉
≤
〈
(1− µk

µ0

)X∗rk +
µk
µ0

X̃, (1− µk
µ0

)Z∗rk +
µk
µ0

Z̃
〉

+ 〈Xk, Zk〉.

However, from Lemmas 4.4.2 and 4.4.3, we have that X̃ � ξIn and Z̃ � ξIn,
for some positive constant ξ = Θ(1), 〈X∗rk , Zk〉 ≥ 0, 〈Z∗rk , Xk〉 ≥ 0, while

‖(X∗rk , Z
∗
rk

)‖F = O(
√
n), and ‖(X̃, Z̃)‖F = O(

√
n). Furthermore, by definition

we have that nµk = 〈Xk, Zk〉. By combining all the previous, we obtain:

µk
µ0

ξ
(
Tr(Xk) + Tr(Zk)

)
=

µk
µ0

ξ
(
〈In, Xk〉+ 〈In, Zk〉

)
≤〈

(1− µk
µ0

)X∗rk +
µk
µ0

X̃, Zk
〉

+
〈
(1− µk

µ0

)Z∗rk +
µk
µ0

Z̃,Xk

〉
≤〈

(1− µk
µ0

)X∗rk +
µk
µ0

X̃, (1− µk
µ0

)Z∗rk +
µk
µ0

Z̃
〉

+ 〈Xk, Zk〉 =

µk
µ0

(1− µk
µ0

)〈X∗rk , Z̃〉+
µk
µ0

(1− µk
µ0

)〈X̃, Z∗r 〉+ (
µk
µ0

)2〈X̃, Z̃〉+ 〈Xk, Zk〉 = O(nµk),

(A.3)

202

Regularized Interior Point Methods for Convex Programming 203

where the first inequality follows since X∗rk , Z
∗
rk
, X̃, Z̃ ∈ Sn+ and (X̃, Z̃) �

ξ(In, In). In the penultimate equality we used (4.24) (i.e. 〈X∗rk , Z
∗
rk
〉 = 0). Hence,

(A.3) implies that:

Tr(Xk) = O(n), Tr(Zk) = O(n).

From positive definiteness we have that ‖(Xk, Zk)‖F = O(n). Finally, from the
neighbourhood conditions we know that:

C − A>yk −Zk + µk(Xk −Ξk) +
µk
µ0

(C̃k + C̄) = 0n2 .

All terms above (except for yk) have a 2-norm that is bounded by some quantity
that isO(n) (note that ‖(C̄, b̄)‖2 = O(

√
n) using Assumption 4 and the definition

in (4.18)). Hence, using again Assumption 4 (i.e. A is full rank, with singular
values independent of n and m) yields that ‖yk‖2 = O(n), and completes the
proof.

A.3 Proof of Theorem 4.4.1

Proof. From (4.36) we have that:

µk+1 ≤ (1− 0.01αk)µk,

while, from (4.46), we know that ∀ k ≥ 0, ∃ ᾱ ≥ κ̄
n4 such that αk ≥ ᾱ. Hence,

we can easily see that µk → 0. On the other hand, from the neighbourhood
conditions, we know that for all k ≥ 0:∥∥∥∥AXk + µk(yk − ηk)− b−

µk
µ0

b̄

∥∥∥∥
2

≤ KN
µk
µ0

and ∥∥∥∥A>yk +Zk − µk(Xk −Ξk)−C −
µk
µ0

C̄

∥∥∥∥
2

≤ KN
µk
µ0

.

This completes the proof.

A.4 Proof of Theorem 4.4.3

Proof. From Theorem 4.4.1, we know that {µk} → 0, and hence, there exists a
sub-sequence K ⊆ N, such that:{

AXk + µk(yk − ηk)− b−
µk
µ0

b̄

}
K
→ 0m,

and {
A>yk +Zk − µk(Xk −Ξk)−C −

µk
µ0

C̄

}
K
→ 0n2 .

203

204 Spyridon Pougkakiotis

However, since Assumptions 3 and 4 hold, we know from Lemma 4.4.4 that
{(Xk, yk, Zk)} is a bounded sequence. Hence, we obtain that:

{AXk − b}K → 0m, {A>yk +Zk −C}K → 0n2 .

One can readily observe that the limit point of the algorithm satisfies the opti-
mality conditions of (SDP)–(SDD), since 〈Xk, Zk〉 → 0 and Xk, Zk ∈ Sn+.

A.5 Proof of Theorem 4.5.1

Proof. By virtue of contradiction, let Premise 3 hold. In Lemma 4.5.2, we proved
that given Premise 3, Algorithm IP–PMM-SDP produces iterates that belong to
the neighbourhood (4.19) and µk → 0. But from the neighbourhood conditions
we can observe that:∥∥∥∥AXk + µk(yk − ηk)− b−

µk
µ0

b̄

∥∥∥∥
2

≤ KN
µk
µ0

,

and ∥∥∥∥A>yk +Zk − µk(Xk −Ξk)−C −
µk
µ0

C̄

∥∥∥∥
2

≤ KN
µk
µ0

.

Hence, we can choose a sub-sequence K ⊆ N, for which:{
AXk + µk(yk − ηk)− b−

µk
µ0

b̄

}
K
→ 0m,

and {
A>yk +Zk − µk(Xk −Ξk)−C −

µk
µ0

C̄

}
K
→ 0n2 .

But since ‖yk − ηk‖2 and ‖Xk − Ξk‖F are bounded, while µk → 0, we have that:

{AXk − b}K → 0m, {C − A>yk −Zk}K → 0n2 , and {〈Xk, Zk〉}K → 0.

This contradicts Premise 4, i.e. that the pair (SDP)–(SDD) does not have a KKT
triple, and completes the proof.

204

	cover sheet.pdf
	pougkakiotis_phd_thesis.pdf
	Abstract
	Introduction
	Convex programming
	A primal-dual interior point method
	Proximal point methods
	Regularization in interior point methods

	Iterative solution of linear systems
	Structure of the thesis
	Summary

	Dynamic Regularization in IPMs for Convex QP
	Introduction
	Exact primal-dual regularization
	Problem formulation
	The Newton system
	The regularization matrices

	Spectral analysis
	Linear programming
	Quadratic programming

	Implementation and numerical results
	The algorithmic framework
	Implementation details
	Numerical results

	Conclusions

	An IP-PMM for Convex QP
	Introduction
	Algorithmic framework
	Convergence analysis of IP-PMM
	Infeasible problems
	Computational experience
	Implementation details
	Numerical results

	Conclusions

	An IP-PMM for Linear SDP
	Introduction
	Preliminaries and notation
	Primal-dual pair of SDP problems
	A proximal method of multipliers
	An infeasible interior point method
	Vectorized format

	An interior point-proximal method of multipliers for SDP
	Convergence analysis
	A sufficient condition for strong duality
	Conclusions

	Preconditioning for Regularized IPMs
	Introduction
	Regularized normal equations
	A Cholesky-based preconditioner
	A LDL-based preconditioner
	BFGS-like low-rank updates of the preconditioner

	Regularized saddle point matrices
	Block diagonal preconditioners
	Factorization-based preconditioners

	Regularized IPMs: numerical results
	Linear programming
	Convex quadratic programming

	Conclusions

	IP-PMMs for Sparse Approximation Problems
	Introduction
	An IP-PMM for convex programming
	Testing environment

	Portfolio selection problem
	Specialized IP-PMM for quadratic portfolio optimization problems
	Computational experience

	Classification models for functional magnetic resonance imaging data
	Specialized IP-PMM for fused lasso least squares
	Computational experience

	TV-based Poisson image restoration
	Specialized IP-PMM for image restoration problems
	Computational experience

	Linear classification via regularized logistic regression
	Computational experience

	Conclusions

	Conclusions and Future Directions
	Conclusions
	Future directions

	Convergence Analysis of IP-PMM for SDP: residual proofs
	Proof of Lemma 4.4.2
	Proof of Lemma 4.4.4
	Proof of Theorem 4.4.1
	Proof of Theorem 4.4.3
	Proof of Theorem 4.5.1

