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Abstract

Mycosis fungoides is a rare, indolent and incurable lymphoma of T cells affecting the skin. While
the majority of patients have survival measured in the decades, around one third present with ad-
vanced disease and another quarter progress rapidly. Advanced disease compromises skin barrier
integrity, and is amenable to few effective treatments. The malignant cell is usually a CD4+ T cell,
which in healthy individuals plays a key role in our protection against pathogens and cancer. As
a clonal expansion of an existing T cell, these tumour cells already possess an idiomatic mutation
in the form of the rearranged T cell receptor (TCR) gene.

Paired skin biopsies and blood was taken from consenting patients, the skin sample digested,
and stained with anti-T Cell Receptor V-beta region (TCR-Vβ) antibodies to identify a clonotypic
tumour population. This antibody was used to discriminate tumour and Tumour Infiltrating Lym-
phocytes (TIL) in a study looking at immune checkpoint markers, functionality, cytotoxicity and
regulatory phenotypes. Single cell RNA sequencing (scRNA-seq) was employed with simultane-
ous TCR sequencing.

We found that TIL demonstrated a homogeneous exhaustion phenotype which was consis-
tent between samples and with disease progression. The tumour population was heterogeneous,
clustering into three phenotypic groups, and demonstrating high polyfunctionality, overproduc-
ing IL-4 and IL-17a, in what is likely immune evasion by deviation. The tumour did not show a
suppressive phenotype, and a mathematical model was created to understand why this may not
provide an advantage to the tumour. scRNA-seq analysis found several recurrent differentially
expressed genes in tumour, which may represent promising targets for therapeutic potential.

This work is the largest single cell study of the immune microenvironment in mycosis fun-
goides, and utilises two novel methods to discriminate tumour and TIL, adding substantially to
our understanding of the aetiology and progression of mycosis fungoides. Developing new ther-
apeutic targets in mycosis fungoides must ensure that the infiltrating T cells are retained while
targeting the tumour population, and this work identifies several avenues by which this could be
achieved.
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Chapter 1

Introduction

1.1 The Immune System in Humans

Historically, the immune system’s primary function has been seen to protect us within our envi-

ronmental niche from foreign pathogens. More recently the immune system’s importance in pro-

tecting us from malignancy has been recognised. In-vivo cancers have genetic mutations at the

root of their aetiology, and the protein products of these mutations are chopped up and presented

on the tumour cell for immune surveillance by the T cells of our immune system. Recognition of

what is not ‘self’ is a key principal of our adaptive immune system, and the immune recognition

of cancer as ‘non-self’ is a common finding in human malignancy. If our immune system is ca-

pable of cancer recognition, it is also capable of removing cancer. This is likely to be true in the

majority of malignant transformations that arise, but cancer which presents clinically represents

the outcome of a selective process in which it has evaded immune control, and might therefore

be seen as the exception to cancer immunology, rather than the rule. What allows some cancers

to slip through the sophisticated cancer surveillance provided by our immune system is of great
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research interest. The answer may relate to the pliability and adaptability of our immune system

- a necessary requirement to deal with the enormous number of potential antigens, with cancers

appearing to exploit this flexibility.

1.1.1 Overview of the Immune System in Humans

The human immune system is a complex network of trillions of cells from several cell subsets

capable of dynamically interacting with both other immune cells, somatic cells, pathogens and

cancer. Our understanding of this complex interaction is incomplete, and so it can be difficult

to predict or model the expected behaviour when attempting to understand how pathogenesis

occurs or how treatments may work.

The innate and adaptive arms of the immune system respectively provide a rapid and specific

response to pathogen invasion. The immune response usually starts with the innate system de-

tecting injury, the key cell being the macrophage, which plays a sentinel role, with other cells

of the myeloid lineage, in almost all tissue types, going by many synonyms. This is capable of

detecting non-self proteins by way of toll-like receptors. The pathogen is phagocytosed, digested,

and peptides presented on the cell surface by way of Major Histocompatibility Complex (MHC)

molecules. Cytokines and interferons are produced, stimulating a systemic response, increasing

the production of immune cells, and recruiting innate cells to the site of injury. Neutrophils, with

their poly-segmented nuclei, move rapidly through tissue, arriving in large numbers and creating

the ‘pus’ of an inflammatory response. Usually the innate response is sufficient to clear common

infections, but its response is better adapted to bacterial rather than fungal, viral or encapsulated

organisms[5].

The adaptive immune response is named because of its ability to ‘remember’ antigen. A key

characteristic of this system is highly specific intercellular signalling enabled by the immunoglob-
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ulin superfamily. These encode the B cell and T cell surface receptors which are capable of identi-

fying foreign antigen, down to the accuracy of single point mutations[6]. The CD4+ T helper (Th)

cell is the orchestrator of the adaptive response, capable of supporting several types of cellular

response directed at the type of pathogen.

The importance of our adaptive immune response is demonstrated by the mortality associated

with a prolonged low T cell count, as seen in untreated HIV infection or graft failure following

bone marrow transplant. This is usually due to infection, but increased rates of some cancers is

also seen[7], underlining the importance of the adaptive immune response in cancer surveillance.

Cells within the human body must present self-peptide on surface MHC molecules, and failure to

do so will activate natural killer cells resulting in their deletion. So far DNA mutations appear to

be a universal feature of human cancers[8], and if these produce a protein, these may be presented

on MHC-I as neo-antigens. T cells recognise these antigens as non-self, resulting in an important

adaptive immune response to cancer[9].

1.1.2 Overview of the Adaptive Immune System

The evolution of the immune system can be traced back in Animalia to sponges, which demon-

strate allo-reactivity between organisms [10]. The adaptive immune system features antigen-

specific immune cells with memory, and is a more recent evolutionary adaptation, appearing to

have roughly coincided with the evolution of vertebrates [11]. It seems likely that there was an

evolutionary pressure to move the site of cellular blood production to the bone marrow, where

stem cells can divide in a UV-free environment [12]. The Adaptive Immune System (AIS) is char-

acterised by specific antigen recognition and memory of such an event.

A key facilitator of the AIS is intercellular signalling by way of the Immunoglobulin (Ig) super-

family, resulting in an antigen-specific response. The Ig superfamily genes make up many of the
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Cluster of Differentiation (CD) antigens seen on key cells of the AIS, defining several subgroups

such as T cells (CD3+), Th cells (CD4+), T cytotoxic (Tc) (CD8+), B cells (CD19+), as well as being

important in the innate immune response, as seen on Natural Killer (NK) cells and macrophages

(Fcγ). These molecules are also capable of generating a highly variable region, which can result

in a receptor conformation specific to an antigen. This is achieved through recombination of sev-

eral variable, diverse & junctional ‘V(D)J’ gene segments, which allows for around 1015 potential

unique conformations of the resultant protein[13, 14, 15]. This recombination occurs in B and T

cells in a process which is an example of a rare occurrence of physiological DNA editing, called

VDJ recombination.

Both B and T cells undergo selection which deletes cells with a high affinities for self, result-

ing in an adult repertoire of adaptive immune cells capable of recognising non-self antigen, and

ignoring self. This is the basis for the specific non-self antigen immune response, allowing an

organism to occupy its environmental niche without pathogen invasion.

1.1.3 VDJ recombination and the T Cell Receptor

In T cells, the T Cell Receptor (TCR) receptor provides the antigen specificity, whilst in B cells it

is through the B cell receptor and antibody. Both of these receptors have a related structure. The

antigen-specific region is constructed from two chains, the TCR constructed from an alpha and

beta chain, which is analagous to the heavy and light chain of the B cell antibody. The combination

of these two chains results in three regions termed the Complementarity-Determining Region

(CDR) 1, 2, & 3, comprising a three-dimensional molecular structure with a high binding affinity

to the antigen, and unique to that T cell, unless the T cell has undergone clonal expansion.

There are a huge number of potential pathogenic antigens. The evolutionary solution to this

challenge is recombination of the VDJ genetic region of the TCR, resulting in a highly variable
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genetic region, generating a highly diverse range of receptors. The VDJ region has 44 variable,

27 diverse and 6 junctional genes, which are genetically spliced in a process, which, along with B

cell hypermutation, class switching, meiosis, and LINE-1 retrotransposons in neural tissues[16], is

one of the rare examples of physiological DNA editing by the host for purposes other than repair.

VDJ recombination occurs in the developing T cell in the thymus. The lymphocyte is initially

committed to the T cell lineage by expression of Notch proteins. At this point the cell does not

express the common T cell marker CD3, nor the co-receptors CD4 or CD8, and is termed ‘double-

negative’. During this double-negative phase, the β-chain is first re-arranged, with D spliced onto

J, then V onto DJ. T cell maturation does not proceed further until a productive β-chain is formed,

which then pairs with a surrogate α-chain, creating the pre-TCR. These cells proliferate and start

to express CD3. After proliferation stops, CD4 and CD8 are expressed and these cells are termed

‘double-positive’. The α-chain then undergoes rearrangement until the cell is able to express an

α:β TCR.

The thymus has the unique ability to express proteins normally seen only in other tissues

of the body. This is realised through the AIRE gene, which is capable of switching on genes

normally only expressed in other organs of the body. In this way it acts like a ‘sandbox’1 for T

cell development, and is where positive and negative selection occurs. A T cell which binds with

a weak affinity to antigen receives a survival signal, which is known as ‘positive selection’. The

T cell can continue to rearrange both of the cell’s α-chains (on each chromosome) until positive

selection occurs. In fact, it is possible for a T cell to express two α-chains, though it is unlikely

that both will recognise antigen, as recombination ceases as soon as positive selection occurs.

At this stage T cell fate is partially determined, with antigen specificity to Major Histocompat-

ibility Complex I (MHC-I) or Major Histocompatibility Complex II (MHC-II) determining whether
1A term taken from computing as a place where untested or potentially dangerous software can be run without

causing damage.
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the cell will express either CD8 or CD4. Some T cells at this stage express high levels of CD25,

and are fated to become natural TREGs.

Extra variation to the TCR is introduced by the repairing of base-pair errors, leading to a

potential of around 1015 unique conformations of the resulting protein[13]. The genetic recombi-

nation occurs on somatic DNA, an irreversible process, which gives rise to B and T cell clonality.

In order to possess the ability to respond to a future pathogen, the adaptive immune system must

retain a reservoir of B and T cells thoughout the body which it can recruit near to the site of an

infection in order to find a reactive immune cell. This reservoir contains a full repertoire of our

immune response, and it is important that these cells are not self-reactive. Highly self-reactive

cells are removed in what is termed ‘negative selection’. See Figure 1.1 for a depiction of T cell

development and differentiation.

The γδ T cell

While most T cells express the αβ T cell receptor, a smaller proportion of T cells expressing the γδ

T cell receptor are known as γδ T cells. These cells have functional and anatomical distinctions

from its αβ counterpart. While αβ T cells are known to play a key role in the adaptive immune

response, a process which is coordinated from the secondary lymphoid organs, γδ T cells tend to

be found in epithelial tissues, and are thought to have a first-line role in infection response and

antigen presentation, bearing some similarities to dendritic cells[17]. The γδ T cell receptor is not

MHC-restricted and has a diverse ability to recognise antigens including glycoproteins, lipids,

phosphoantigens and many others[18].

The development of the γδ T cell occurs in the thymus at a similar time to the αβ T cell, and

they also undergo Variable-Diverse-Joining (VDJ) recombination. In fact, undifferentiated T cells

appear to undergo VDJ recombination of both TCR γ, δ and β genes at a similar point[19], with

TCRD being the first to recombine[20]. There is evidence that successful recombination of the
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γδ TCR fates the cell to this lineage[21], otherwise fating the cell to expressing the αβ TCR, or

apoptosis should rearrangement not succeed.

1.1.4 Central Tolerance

Whilst VDJ recombination is largely a stochastic process, the resulting T cell repertoire diversity

is not, being optimised to react to pathogens, while not being self-reactive. The mechanism by

which this occurs is termed central tolerance. As previously discussed, positive selection plays a

role in the developing T cell, ensuring a TCR which is productive and reactive. Negative selection

is thought to occur with a high affinity interaction between TCR and self-antigens presented in

the thymus, resulting in deletion of self-reactive T cell clones.

Around 98% of T cells generated in the thymus die by apoptosis.

1.1.5 Antigen Presentation

TheTCR receptor imparts specificity to a T cell for a given antigen presented on theMHCmolecule.

All cells present a sample of their intracellular proteins on their surface via MHC-I molecules in

the form of a short peptide cleaved by the proteasome. The peptide/MHC complex then binds to

the T cell receptor. Recognition of non-self antigen in this context provides protection against

intracellular pathogens, including viruses, certain bacteria, protozoa and fungi, by deletion of the

cell. In a similar fashion, extracellular protein can be presented by APCs on the related MHC class

II molecules. These are surveyed by CD4+ T cells, which have a central directing and licensing2

role in the adaptive response.

As the vast majority of T cells will not be reactive to a particular antigen, presentation must

occur in a way that optimises the probability of pairing the correct TCR. This role is carried
2CD4+ T cells play a licensing role with B cells and CD8+ T cells, permitting their proliferation in response to

antigen.
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anatomically by the lymphoid system, a vascular system which parallels our venous drainage,

taking extracellular fluid from tissues to draining lymph nodes. Lymph nodes catalyse the adap-

tive immune system’s response to antigen. Pathogenic antigens flow towards the lymph node,

often carried by dendritic cells. Here they are held and presented to T cells flowing through the

node, optimising the T cell - antigen encounter[22].

1.1.6 The Communication of Specificity

Given the small chance of finding a reactive TCR:MHC, it is important that when antigen speci-

ficity occurs, the response of the adaptive immune system exploits this. Currently, it is not clear

how the TCR activates the T cell, as there is little evidence of conformational TCR change on bind-

ing[23]. Several competing models exist[24] for this mechanism. The co-receptor scanning model

proposes CD4 and CD8 scanning of TCR:MHC until a CD4/CD8 associated with the cytoplasmic

protein Lymphocyte-specific Protein Tyrosine Kinase (Lck) is encountered (a somewhat stochastic

event), resulting in phosphorylation of Immunoreceptor Tyrosine-based Activation Motif (ITAM)

tyrosines in CD3 and TCR-ζ, recruiting Zeta-chain Associated Protein Kinase 70 (ZAP-70), whose

phosphorylation triggers downstream signalling, Ca2+ influx, activation, differentiation & prolif-

eration.

Another model, potentially compatible with the co-receptor scanning model, is the kinetic

segregation model[25]. This model proposes that TCRs are constantly being phosphorylated and

dephosphorylated in a stochastic process which does not lead to TCR activation normally. This

phosphorylation is caused by Lck, with dephosphorylation by CD45, a surface receptor with a

large extracellular component. When an immunological synapse forms, the close binding prox-

imity leads to exclusion of CD45. As specific TCRs bind to MHC at the synapse, there is a shift

towards phosphorylation of CD3 and TCR-ζ, triggering the activation cascade.
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1.1.7 The Initiation of the Adaptive Immune Response

Extracellular antigen is presented on MHC-II by antigen-presenting cells to CD4 T cells. In order

to activate the T cell, two signals must occur simultaneously. One of these is via the CD3/TCR

complex, and the other is via a co-stimulatory receptor. The naïve T cell can then activate, dif-

ferentiate and proliferate into clonal memory T cells. Without the co-stimulatory signal, T cell

deletion or anergy results, a state of functional inertness.

These CD4 T cells can take on several forms, including T helper 1 (Th1), T helper 2 (Th2), T

helper 17 (Th17) and induced TREG. The fate determination of the T cell appears in-vitro to be

dependent on the cytokine environment that occurs during the activation of the T cell. IL-12 and

Interferon-γ (IFN-γ) guide differentiation T naïve (TN) into Th1, IL-2 & IL-4 into Th2, IL-6, IL-21

and later IL-23 into Th17, and IL-2 & Transforming Growth Factor β (TGF-β) for iTREG.

Once differentiation into one of these phenotypes is initiated, a positive feedback look is es-

tablished where by these cells produce cytokines which encourage further differentiation into the

same lineage (mainly IFN-γ, IL-4, IL-21 & TGF-β). This early differentiation into a lineage-specific

adaptive immune response is therefore self-sustaining, however, the in-vivo ‘decision-making’

that occurs prior to an established Th response is less well understood[26].

The lineage of the differentiated Th cell has a marked effect on the resulting immune response.

Th1 supports an intracellular response, with recruitment and proliferation of Tc cells which recog-

nise self-antigen on MHC-I, and macrophages. This type of response is optimised to delete self

cells which present non-self antigen, and is the type of immune response necessary for control of

viruses, intracellular pathogens and cancer.

The Th2 response produces the signature cytokines IL-4, IL-5 & IL-13, supporting an extra-

cellular response, with recruitment of B cells, as well as eosinophils, basophils and mast cells.

Th cells play a major role in controlling the B cell response, by binding MHC-II and licensing
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B cell activation and hypermutation. This immune response is optimised to target bacteria and

parasites, especially contributing to mucosal immunity.

The Th17 response produces the cytokines IL-17A, IL-17F & IL-21, stimulating production and

recruitment of neutrophils, in a response which is generally suited to combatting extracellular

bacteria and fungi.

The fate of an adaptive immune response to a pathogen has consequences on the resulting

pathology. The two clinical manifestations of leprosy, lepromatous and tuberculoid, are a direct

result of varying adaptive immune fate. The disease is controlled better with a Th1 response,

but there is more immune neurological damage, whereas with a Th2 response, the patient has

widespread bacteria, with resulting thickened skin.

The Th1 lineage appears most adapted to cancer control[27, 28, 29], and a better understanding

of how a cancer-specific Th response is fated will be important in understanding the aetiology of

cancer, as well as how cancer may deviate the immune response to its favour.

1.1.8 Peripheral Tolerance

Whilst the potential range of antigen specificity of the TCR receptor is large at 1015, we know that

we do not have this many T cells in the human body, as 1015 T cells would weight >500 kg[15]. The

human T cell repertoire is estimated at around 1012, with possibly only 108 distinct TCRs, though

this is a difficult metric to measure as T cells reside throughout the body. For these reasons, the

TCR must be cross-reactive, and some antigens can bind several TCRs.

To accomodate the cross-reactivity, there are extra mechanisms for tolerance, and those occur-

ring outside of the thymus are termed peripheral tolerance. These mechanisms include TREG cells,

induced-TREG cells, induction of anergy by tolerogenic Dendritic Cell (DC)s and deletion. Immune

checkpoint receptors are believed to play an important role in peripheral tolerance, modulating
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the T cell response to limit the immune response. Loss of these receptors results in autoimmune

disease[30, 31, 32].
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Figure 1.1: Depiction of important pathways of T cell development and differentiation. HSC: haematopoietic stem cell
precursor, CLP: common lymphoid progenitor, DNx: double negative cells, DP: double positive cell, Th: T helper cell, N:
naïve, CM: central memory, EM: effector memory, EMRA: effector memory, NB: a single cell represents various types of
EMRA and exhausted cells. Various pathways not depicted for simplicity, including: T cell reversion to naïve, immune
deviation between Th phenotypes, reversion of exhaustion.
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1.2 Cutaneous T Cell Lymphoma

Figure 1.2: The drawing accompanying the first clinical description of mycosis fungoides[33].

Cutaneous T Cell Lymphoma (CTCL) is an umbrella term for a collection of lymphomas whose

primary site is the skin. The most prevalent disease in this category is Mycosis Fungoides (MF),

which was described in 1806 by French physician Jean-Louis-Marc Alibert[33]. He observed a

patient with a “mushroom-like fungal disease” who had large tumours emanating from his face.

Unfortunately, despite the disease having no connection to fungal infection (nor mushrooms), the
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name persists. The concept that MF was, in fact, a cancer related to Hodgkin lymphoma not being

realised until more than 100 years later[34]. The observation that MF cells had a xenospecific

response to sheep erythrocytes led to the understanding that MF was a disease of T lympho-

cytes[35], but it wasn’t until 1987 that the clonal nature of the disease was demonstrated[36] by

sequencing the TCR gene.

A sister disease to Mycosis Fungoides (MF) is the rarer Sézary syndrome (SS), which is of-

ten considered as the leukaemic variant of MF. While they are both usually composed of CD4 T

cells, Sézary syndrome (SS) has distinctive morphological characteristics (cerebriform nuclei) and

a poorer prognosis.

Making up the second largest group of CTCL are the CD30 +ve cutaneous lymphomas. These

include lymphomatoid papulosis Type C and primary cutaneous anaplastic large cell lymphoma,

with CD30+ large-cell transformed MF categorised under the MF subgroup. The remaining CTCL

groups are harder to classify, and include B cell lymphomas as well as NK tumours.

The diagnosis of cutaneous lymphoma cannot be made on histology alone, but is comple-

mented with medical history, examination, radiology and clonality studies. Staging CTCL is par-

ticularly important from a therapeutic and prognostic viewpoint, and those with systemic disease

will often undergo bone marrow examination (bone marrow involvement being rare in CTCL).

Skin disease is divided into patch (an eczema-like rash), plaque (hardened, raised flat lesions) and

tumour type (round growths).

1.2.1 Aetiology and Genetics

MF is a rare disease, with an incidence of around 7.5 per million persons per year[37], which often

presents with a long preceding history of a rash or eczema. Due to the high prevalence of rashes

and eczema, and the rarity of MF, aetiology is difficult to establish. There does not appear to be
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any clear genetic or environmental risk factors to acquiring the disease, although it does show a

higher incidence with increasing age. Analysis of mutations in MF have shown a high proportion

of dinucleotide polymorphisms in a profile simlilar to that of melanoma[38], a disease known to

be related to sunlight exposure. This suggests that many of the mutations in MF are related to

UV radiation, though it is not clear whether this is aetiological, treatment-related, or simply a

confounding affect of the disease being in the skin. Unlike melanoma, sun exposure is not a risk-

factor for disease, and to confuse matters more, MF has a preponderance for areas generally not

exposed to the sun.

MF is associated with HLA-DR5 and HLA-DQB1 loci[39]. HLA associations are a feature of

autoimmune diseases[40], though the mechanism for this is not clear. Several possible mecha-

nisms have been proposed, including incomplete thymic tolerance and promiscuous restriction

of the TCR. This may suggest that MF begins as an autoimmune skin condition, with a clonally-

expanded activated T cell population in the skin which transforms to malignancy. Indeed, there is

already a precedent for T cell lymphomas arising from an autoimmune T cell mediated inflamma-

tory response in the case of enteropathy-associated T cell lymphoma, which arises from coeliac

disease.

Genomic mutation analysis confirms mutations occur as drivers of MF, and while some of

these are shared amongst other cancers (TP53, KRAS, NRAS for example[41, 42]), others are rele-

vant to the T cell, with mutations seen in the TCR, IL-2 & JAK-STAT pathways[38, 43], suggesting

that T cell activation and cell-signalling pathways are important features of oncogenesis.

Some attempts at the specificity of the tumour TCR has been attempted, by demonstrat-

ing growth of tumour lines by exposing them to dendritic cells loaded with apoptosing tumour

cells[44]. It is not clear, however, what specific peptide the tumour TCR recognises. MHC-II pep-

tide presentation has also been investigated, and it may indicate that the idiotypic region of the

tumour TCR is a tumour antigen to the patient’s CD3+ CD8+ T cell (CD8) T cells. Peptides iso-
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lated from the MHC-II receptor were sequenced and found to have homology with the clonotypic

TCR[45]. More research needs to be performed in this area to validate these findings.

1.2.2 Staging and Prognosis

MF is an indolent low-grade non-Hodgkin lymphoma. Despite being incurable, it has a good

prognosis with survival usually in the order of decades. However, around one third of patients

will present with advanced disease, and in another quarter the disease will progress. At this

point, no treatment has been proven to prolong survival, and life expectancy is around 3 years.

It is important to have accurate prognostic indicators for this disease, as treatments range from

mild and well tolerated, to those with severe side effectis associated with significant mortality.

The current staging system was devised in 2007 by the International Society for Cutaneous

Lymphoma (ISCL) and European Organisation for Research and Treatment of Cancer (EORTC),

expanding on the TNM system to a Tumour-Node-Metastasis-Blood (TNMB) classification (Table

1.2), stratifying patients into nine stages (Table 1.3).

Lesion-stage Description

Patch Skin lesion without elevation or induration

Plaque Skin lesion elevated or indurated

Tumour ≥1cm nodular lesion

Table 1.1: Biopsy stage of lesion definitions.
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TNMB-stage Description

T1 Patches & plaques <10% BSA

T1a Patches only

T1b Plaques ± patches

T2 Patches & plaques ≥10% BSA

T2a Patches only

T2b Plaques ± patches

T3 Tumours

T4 Erythroderma ≥ 80% BSA

N0 No clinically abnormal lymph node

N1 LN > 15mm, dermatopathic

N1a Clone-negative

N1b Clone-positive

N2 Early involvement with MF of LN

N2a Clone-negative

N2b Clone-positive

N3 Loss of LN architecture

M0 Disease limited to skin / LN / blood

M1 Visceral involvement

B0 ≤ 5% blood involvement

B0a Clone-negative

B0b Clone-positive

B1 ≥ 5% & <1000/μL Sézary cells

B1a Clone-negative

B1b Clone-positive

B2 ≥ 1000/μL Sézary & positive clone

Table 1.2: ISCL & EORTC TNMB classification for MF and SS.
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Clinical stage T N M B

IA T1 N0 M0 B0-1

IB T2 N0 M0 B0-1

IIA T1-2 N1-2 M0 B0-1

IIB T3 N0-2 M0 B0-1

IIIA T4 N0-2 M0 B0

IIIB T4 N0-2 M0 B1

IVA1 T1-4 N0-2 M0 B2

IVA2 T1-4 N3 M0 B0-2

IVB T1-4 N0-3 M1 B0-2

Table 1.3: ISCL/EORTC clinical staging of MF and SS.

Unfortunately, the current staging system doesn’t include known prognostic factors, such as

large cell transformation, folliculotropic disease, or high lactate dehydrogenase[46]. There is also

wide variation in the overall survival of the various stages, with some more advanced stages

having better survival rates than lower stages. For these reasons, work is underway to develop a

prognostic index (PROCLIPI study [47]).

Recently, deep TCR-sequencing of biopsied lesions has shown a far greater prognostic benefit

over the clinical stage of the biopsy. This technique is able to accurately measure the proportion

of malignant T cells versus the infiltrating T cells, and demonstrates a malignant percentage of

>25% puts the patient into a poor risk group with a median survival of around 5 years rather than

decades[48].

Staging may be useful to prognosticate patients at diagnosis, and in determining optimal

treatment, but is less useful for assessing response to treatment. For this, the Modified Sever-
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ity Weighted Assessment Tool (MSWAT) is used, which is essentially a measure of skin disease

burden. The palm of the hand is used as an approximate 0.5% of Body Surface Area (BSA) and

the percentage of disease coverage is measured, with a 1x factor for patch-stage, 2x factor for

plaque-stage and 4x factor for tumour-stage disease (see Table 1.1), yielding an MSWAT score of

between 0 and 400.

1.2.3 Management

No treatment in MF has been shown to improve overall survival[49], and the selection of treat-

ment for CTCL depends on whether disease is skin-limited or systemic. Skin-limited disease is

ideally treated with locally-directed therapy[50]. MF is particularly sensitive to external beam

radiotherapy[51], and there can also be beneficial abscopal effects on other disease areas[52]. To-

tal skin electron beam therapy (TSE)[53] and psoralen with UVA (PUVA) are alternatives[54].

Retinoids, such as bexarotene[55], are used effectively in MF, as well as other immunomodula-

tory drugs, such as interferon[56]. Systemic or extensive tumour-type disease usually requires

multi-agent chemotherapy, such as cyclophosphamide, doxorubicin, vincristine & prednisolone

(CHOP) or gemcitabine. Such a regimen does not usually provide lasting disease-free remission,

however[57]. Brentuximab-vedotin can induce a lasting response in CD30+ disease[58]. Ad-

vanced disease is difficult to treat, often requiring intensive inpatient chemotherapy to achieve

disease control. If the patient is fit enough, and remission can be achieved, they should go on to

receive an allogeneic bone marrow transplant, a treatment which can provide long-lasting disease

control, but has a high treatment-related mortality[59].

Treatments in MF, and T cell lymphomas in general, are an area of unmet need, with a lack of

specific agents to target the disease. Part of the reason for this is that the tumour’s cell of origin

(the CD4+ T cell) plays a crucial role in human survival. Without CD4+ T cells, we rapidly become
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susceptible to infections and cancer, as demonstrated by the morbidity and mortality of acquired

immunodeficiency syndrome (AIDS).

1.3 The Immune System in Cancer

The Somatic Mutation Theory theory of cancer causation postulates mutations causing cell pro-

liferation in the context of oncogenic and tumour-suppressor mutations[8]. The tenet that a cell

which does not respond to normal signals controlling tissue growth and apoptosis can become

cancerous with driver mutations is a simplification which may ignore more fundamental changes

in epigentics[60] and doesn’t take into account the role of the adaptive immune system in protec-

tion from cancer.

MHC-I expression allows for immune surveillance of non-self/mutated proteins, a feature of

cancer which so far appears to be universal[61] (although non-mutated cancers have been shown

to exist experimentally[62]). Lack of MHC-I expression activates NK cells (the missing self hy-

pothesis[63]), triggering cell killing. The robust system occurring in the thymus to ensure self and

non-self recognition by AIRE expression ensures that immune evasion by cancer is theoretically

difficult.

However, the immune system cannot be a rigid sytem for many reasons. Saving one T cell for

every possible antigen that can be presented onMHC-I orMHC-II is physically not possible, and so

it has been argued that T cells must be cross-reactive[15]. It is not clear if all genomic antigens are

expressed in the thymus, although small amounts are enough to induce central tolerance[64]. As

an example, recombination of the BCR and TCR, and somatic hypermutation of the BCR generates

novel genetic code, and so it isn’t possible to tolerise against all possible self protein sequences.

Furthermore, genetic mutations do not necessarily signify a cancer cell. We accumulate genetic

mutations as part of the aging process[65], for which an immune response would be detrimental.
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Theremust also be a balance between pathogen eradication and limiting tissue destruction that

has been found at some point in the evolution of the adaptive immune system. Most humans tol-

erate genomic integration of viruses, which our immune systems control rather than remove[66].

Presumably there is an evolutionary benefit to limiting the immune response if eradication is not

feasible, conserving resources and limiting damage to healthy tissue.

As discussed previously, the Th phenotype fate decision at antigen encounter is a process

which is incompletely understood in-vivo, and the incorrect Th fate can result in markededly

different outcomes for the organism.

Each of these exceptions require a certain amount of flexibility in the adaptive immune re-

sponse, and it might be this flexibility which can allow cancer to arise.

Cell proliferation has many means by which it may attract the attention of the immune sys-

tem, including danger signals, and stress signals[5]. Cell dormancy is a known cancer avoid-

ance mechanism and senescent cells can themselves signal to the immune system through the

senesence-associated secretory phenotype (SASP)[67]. As such it is likely that a prospective tu-

mour cell must acquire the phenotype of reduced immunogenicity and genomic instability at an

early stage of development.

1.3.1 Mechanisms of Immune Evasion

The terminology of ‘immune evasion’ of cancer can appear to attribute intent to the cancer. In

reality, we see a heavily pre-selected population of cancer cases which have persisted despite the

presence of the adaptive immune system, and these ‘evasion’ mechanisms, which may primarily

be tumour- or immune-related, reflect selection of resistant tumour subclones.
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Cancer immunoediting

Genomic instability and epigenetic deregulation allows cancer to rapidly accrue mutations, adapt

phenotype and develop cellular heterogeneity. Clonal evolution of tumour populations originally

hypothesised that more aggressive subclones would outcompete the parent clone[68]. More re-

cently, the concept of cancer immunoediting has been described[69], where subclones capable of

avoiding immune destruction are selected for, creating a selection pressure for immune-evading

tumour evolution.

Defective MHC function

Downregulation of MHC-I is a common phenotype of cancer evasion[70], and might be seen as

part of the broader ‘cold’ phenotype of cancer[71]. The premise is that MHC-I downregulation

prevents the cancer cell from presenting non-self antigen to CD8+ T cells, though this should

identify the cells for NK cell killing by missing self. The MHC-I phenotype of a cancer is likely

related to cancer immunoediting, selecting an NK cell over a Tc cell response. Why one may be

preferable to another is not clear, and it leads to the question of how an MHC-I downregulated

cancer is able to avoid NK cell mediated killing. Having said this, NK cell exhaustion is a common

feature of many cancers and it is possible that successful tumourogenesis requires evasion from

both T cell and NK cell recognition[72].

Regulatory cells

A cancer may be able to influence its immune microenvironment by recruiting cells which mod-

ulate the immune response. The role of TREGs in cancer is not clear. TREG cells clearly have a

negative effect on the Th1 response, producing TGF-β and IL-10 cytokines, which can be highly

immunosuppressive[73]. TREG cells are found in cancer by varying amounts, but they are not
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established to have a negative role in cancer overall[74], and appear to have a positive prognostic

effect in some cancers[75].

Other immunosuppressive cells are also implicated in cancer, such as Myeloid-Derived Sup-

pressor Cell (MDSC)[76], M2 macrophages[77] and certain Th subsets.

Immune deviation

Immune deviation was originally described in the adaptive immune response to Salmonella[78],

noting that the immune response could be delayed-type hypersensitivity or antibody-based, de-

pending on the form of flagellin presented as antigen. A Th2 response is generally seen as an

inadequate host response to cancer[27], although this must be weighed against successful clini-

cal use of antibodies in cancer treatment, and possible humoral benefits in cancer clearance[79].

In colorectal cancer Th2 preponderance was not associated with a poorer prognosis, although

another potential cytokine deviation, Th17, was associated with a poorer prognosis, with a Th1

response being beneficial[29].

Immune checkpoints

Peripheral tolerance relies on intercellular regulation of the immune response. Some of this is

achieved through TREG cells and cytokines, but it is also mediated by activating and inhibitory

receptors on immune subsets. These receptors can be identified by ITAM, a motif which can

be found on the intracellular part of an activating receptor, and a Immunoreceptor Tyrosine-

based Inhibitory Motif (ITIM), a motif found on the intracellular part of an inhibitory receptor.

Homology search for the ITIM-domain has identified 109 proteins in the human genome, of which

only a proportion are currently known to be inhibitory immune receptors[80].

The combination of activating and inhibiting ligands and receptors are termed ‘immune check-

points’. They can supply the necessary co-stimulatory signals required for initiation of the adap-
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tive immune response, or induce tolerance of immune cells.

Several cancers have been found to over-express immune checkpoint ligands, with attention

focussing on PD-L1[81]. This can send an inhibitory signal to the cancer-specific immune re-

sponse, inhibiting activation, cell killing and immune proliferation. Blocking this pathway has

become a major new paradigm in cancer treatment, in the form of immune checkpoint inhibitors,

which have shown remarkable efficacy in treating melanoma[82] and lung cancer[83]. In lym-

phoma, immune checkpoint inhibition has not yet proven its worth, although Hodgkin lymphoma

is currently the subject of phase-III clinical trials[84], showing promising results in phase-II.

An unusual property of haematological cancers, especially lymphomas, is that the PD-1 re-

ceptor can be a tumour antigen[85], as the receptor is physiologically expressed on B as well as

T cells[86]. In theory, this could reverse the concept of the tumour inhibiting TIL, potentially

leading to unexpected consequences of immune checkpoint inhibition in lymphoma patients.

While there are associations between tumour immune checkpoint ligand expression and effi-

cacy of immune checkpoint inhibitors, other Antigen Presenting Cell (APC)s are also known to

express immune checkpoint ligands, and infiltrating T cells often over-express immune check-

point receptors. This is probably why immune checkpoint inhibition is effective even when cells

do not express immune checkpoint ligands[83].

Inflammation

While an active adaptive immune response is beneficial in cancer control, uncontrolled inflamma-

tion in the tumour microenvironment is not[87]. This may particularly pertain to an exaggerated

Th response, or innate immune cell infiltration, with inflammation thought to be a key hallmark

of cancer[88], promoting tumour growth and furthering genetic instability.

24



1.3.2 T cell Exhaustion

T cell exhaustion was originally described in mice infected with Lymphocytic Choriomeningitis

Virus (LCMV) in CD8+ T lymphocytes. Using the model of perforin-knockout mice, or high-

dose intracranial infection to demonstrate persistent infection, scientists found decreased IFN-γ

production at day 15 compared to day 9 of infection in CD8+ T cells[89]. In another study, chronic

infection of LCMV was modelled by injecting mice with a large viral dose, resulting in persistent

CD8+ T cells with almost no IFN-γ production[90], when compared to T effector memory (TEM)

cells specific for the same epitope.

The phenomena of T cell exhaustion can be seen in aging, in the context of chronic human in-

fections of both Cytomegalovirus (CMV) and Epstein-Barr Virus (EBV), although occurring over

a timescale of years rather than days. T cell exhaustion in HIV infection was shown to be associ-

ated with high PD-1 expression, and functionality of T cells could be returned with PD-1/PD-L1

blockade[91, 92]. It became clearer with further studies in the LCMV mouse model that multiple

inhibitory receptors were expressed by the exhausted T cell phenotype[93].

T cell exhaustion doesn’t have a single definition, rather there are certain features that char-

acterise the state. One of these features is reduced functionality of a chronically-exposed T cell

when compared to an effector memory T cell. This decreased functionality can manifest in de-

creased IFN-γ, TNF and IL-2 production, decreased cytotoxicity and proliferation. Another feature

is of high co-expression of immune checkpoint receptors, such as PD-1, TIM-3, LAG-3 & CTLA4.

Lastly, removal of the chronic antigen exposure does not reverse this phenotype[94].

In cancer, a similar phenotype of T cells is seen[95, 96], although with cancer there is no

obvious control which the exhausted T cells can be compared to, given we do not clinically see

clearance of cancer. For this reason, the exhaustion profile in cancer is less well defined[97].

The purpose of T cell exhaustion is also not clear. The term might be an unfortunate naming,
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implying a failure of T cell function, when it may be an evolutionary adaption to limit tissue dam-

age in the context of chronic antigen exposure, or to preserve replicative potential by reduction

in proliferation[98]. The original descriptions of T cell exhaustion compare chronically active T

cells with previously inactive TEM cells, and so a comparatively decreased functionality may not

be unexpected.

Immunecheckpoint receptors have been successfully targeted in anti-cancer therapy[82, 99], a

mechanism which heralds a departure from both cytotoxic chemotherapy and targeted biological

therapy, and providing evidence that T cell exhaustion is a real and reversible concept in clinical

cancer. We have also seen a negative side to immune checkpoint inhibition, with marked stim-

ulation of the immune system resulting in potentially severe autoimmune side effects[100]. One

of the most appealing aspects of attempting to reverse T cell exhaustion in cancer is the poten-

tial wide application across cancer types. Being able to harness a very cancer-specific immune

response to such a heterogeneous disease offers promise in the future management of cancer.

1.3.3 Immune Checkpoints

CTLA4

CTLA4 is an inhibitory receptor found exclusively on T cells[101]. It is part of the immunoglob-

ulin superfamily, and has a similar structure to the co-stimulatory receptor, CD28. It also binds

the same ligands as CD28, namely CD80 and CD86. CTLA4 blockade became the first immune

checkpoint to be clinically targeted, and the first to receive FDA approval[102].

The evidence for CTLA4 as an inhibitory receptor of T cells is demonstrated by the suppres-

sion of proliferating murine T cells[101]. Mutations resulting in haploinsufficiency of CTLA4 in

humans results in a severe disease phenotype characterised by autoimmunity, T reg dysfunction,

autoreactive B cell proliferation and over-activated T cells[31].
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The mechanism of action is currently unclear, but there is some evidence to suggest CTLA4

binds TCR-ζ preventing tyrosine phosphorylation post TCR binding. However, this pathway has

not been fully elucidated, and more recent studies have found that CTLA4 may also function

by trans-endocytosis of the ligands CD80 and CD86, decreasing the available ligand to stimulate

CD28[103].

Phase III clinical trials of CTLA4 blockade have shown a degree of clinical efficacy. A direct

comparison of tremelimumab versus physician’s choice in melanoma resulted in trial cessation

for futility. However, extended follow-up revealed a non-significant survival advantage, and a

significantly increased duration of response[104]. Another phase III study demonstrated a sur-

vival advantage of ipilimumab against an experimental vaccine gp-100 in melanoma (10.1 month

versus 6.4 months)[105]. A double-blind randomised trial found the combination of nivolumab

with ipilimumab demonstrated significantly improved progression free survival when compared

with ipilimumab alone[106].

PD-L1, PD-L2 & PD-1

PD-1, or programmed cell death protein 1, was discovered in 1992[107], and identified to be part

of the immunoglobulin superfamily. It was initially found to be expressed on cells undergoing

apoptosis in the thymus, though its expression was found to be seen on activated T cells[108], B

cells[86], monocytes[109] and dendritic cells[110].

PD-1 does not share its ligands, PD-L1 and PD-L2, with CD28, although they form part of the

B7 family, like CD80 and CD86. Physiological PD-L1 expression appears to be much broader than

PD-1, with expression on most haematopoietic cells, as well as parenchymal cells such as vascu-

lar endothelial cells, pancreatic islet cells and keratinocytes[111]. PD-1 expression is generally

confined to haematopoietic tissue[112], where it is seen on APCs and T cells especially of Th2

phenotype[113].
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Stimulation of T cells by CD3 antibody in the presence of PD-L1 results in decreased prolif-

eration and cytokine production[114]. Binding of PD-L1 to PD-1 appears to inhibit association

of TCR-ζ with ZAP-70, preventing its phosphorylation and subsequent propagation of the T cell

activation cascade. In the same study, the downstream protein kinase PKC-θ was also downregu-

lated[115] with PD-1 binding. Double knock-out mice lacking the PD-1 receptor develop a severe

autoimmune dilated cardiomyopathy[116], and PD-L1/PD-L2 deficient mice spontaneously de-

velop auto-immune diabetes[117], suggesting the PD-1-PD-L1/L2 pathway has an important role

in maintaining peripheral tolerance.

There are several licensed PD-1 and PD-L1 blockers currently available, with more in de-

velopment. Licensing was fast-tract approved by the U.S. Food and Drug Administration (FDA)

based on phase-II trials in patients with metastatic cancer[118] for nivolumab and pembrolizumab

(PD-1 inhibitors). Phase-III studes have supported the observed efficacy; a double-blind placebo-

controlled trial comparing dacabazine with nivolumab in metastatic melanoma demonstrated a

hazard ratio of 0.43 for nivolumab and significantly better overall survival[82]. Another phase-

III study compared docetaxel with nivolumab in non-small cell lung cancer, and found similarly

impressive results[99].

PD-L1 overexpression is seen frequently in cancer[119], and does appear to affect the efficacy

of checkpoint blockade. The cellular basis for this overexpression is not clear, though copy number

variation has been detected by Fluorescent In-Situ Hybridisation (FISH) for PD-L1 and PD-L2 in

Hodgkin’s lymphoma[120], and structural variants resulting in PD-L1 over-expression have been

detected in Adult T cell lymphoma, diffuse large B cell lymphoma and stomach adenoma[121].

PD-1 blockade has been trialled in 24 patients with MF and SS, and saw much more modest

responses, with an objective response rate of around 38%[122]. There is current interest in com-

bining radiotherapy with immune checkpoint inhibition to induce a synergistic effect[123], and

there are current trials to investigate the efficacy of this in cutaneous lymphoma.
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TIM-3/Galectin-9

TheT cell/transmembrane, immunoglobulin andmucin domain (TIM) 3 receptor belongs to a fam-

ily of receptors in mice, being one of three which are found to be present in humans. Expression

is seen on T cells, both CD4+, CD8+ and TREG, as well as innate immune cells such as NK cells,

DCs and MDSCs[124].

TIM-3 blockade in a mouse model accelerated autoimmune diabetes and graft-rejection in

transplant[32], in a Th1 dependent manner. A fusion TIM-3-Ig was used to identify a ligand on

CD4+ T cells, and also used to blockade the signal, resulting in Th1 proliferation and Th1 cytokine

release[125].

The ligand to TIM-3 was later discovered to be Galectin-9, and administration of Galectin-9 in

a mouse model selectively decreases IFN-γ secreting cells[126]. Further ligands have since been

discovered, including phosphatidylserine[127] which binds all TIM family members, the alarmin

HMGB1[128] and CAECAM1[129].

The therapeutic potential of TIM-3 blockade is of particular interest because of its negative

immunological role across a broad range of adaptive and innate immune cells, as well as its bias

towards a Th1 response. Due to its expression on these cells, it is thought that TIM-3 may play a

role in regulating tolerance at sites of tissue injury.

LAG-3

One of the earliest immune checkpoint inhibitors to be discovered, and another member of the

immunoglobulin superfamily, LAG-3 is expressed on activated CD4, CD8 and NK cells[130]. Sur-

prisingly, the ligand was found to be MHC-II[131], which would not normally be expected to be

bound by CD8+ or NK cells, and the receptor appears to block the CD4-MHC-II interaction. More

recently, another ligand, LSECtin, has been found which is present on melanoma cell lines and
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expressed in the liver[132].

LAG-3 knock-out mice do not have overt autoimmune disease, but rather have subtle T cell

defects which are observed with superantigen stimulation resulting in increased T cell prolifer-

ation and splenomegaly in a mouse model[133]. LAG-3 -/- TREG cells were unable to suppress

homeostatic T cell proliferation[134], suggesting that LAG-3 may exhibit its function primarily

through TREG regulation. This was also seen in a mouse model which used a haemagglutinin

antigen, and tolerised the CD4+ T cells by injecting at a sub-lethal dose. These cells were then

capable of protecting from a lethal dose of CD4+ T cells, and were found to express high levels of

LAG-3[135, 136].

It has been demonstrated that an intracellular KIEELEmotif is required for LAG-3 signalling[134],

but the downstream effects of this receptor are unknown.

IMP321 is a soluble LAG-3Ig fusion protein used in several phase I/II clinical trials. A phase

I trial in pancreatic cancer with gemcitabine did not demonstrate any activity, though it was

thought to be administered at sub-therapeutic doses and was found to be safe[137]. IMP321 ad-

ministered with paclitaxel at higher doses in metastatic breast cancer found an overall response

rate of 50%[138].

TIGIT

T cell immunoreceptorwith Ig and ITIMdomains, or TIGIT, is anothermember of the immunoglob-

ulin superfamily. It is expressed on activated, memory and T reg cells as well as NK cells. TIGIT

binds the ligands CD155 and CD112[139], which, in analogy to CTLA4, can also bind the co-

stimulatory receptor CD226[140]. What is unusual about TIGIT is that is can also act as a ligand

for CD155, which also contains an ITIM domain, resulting in IL-10 secretion from DCs[141].

While some of the effects of T cell inhibition may be mediated through DC IL-10 production,

there is also a cell-intrinsic pathway which downregulates intracellular components of the TCR
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receptor[142] to achieve T cell inhibition. Interestingly, TIGIT binding results in upregulation of

IL-2, IL-7 & IL-15 which promotes T cell survival, as well as its inhibition.

Other Immunecheckpoints

Fas Receptor (FasR) reacts with intracellular caspases to initiate cell apoptosis. It binds Fas Lig-

and (FasL), and there is evidence of its use as a cytotoxic mechanism in tumour death following

chemotherapy[143]. Loss of Fas Receptor (FasR) is a common finding in MF, and appears to be

seen on more aggressive forms of the disease[144], with a potential genetic loss as the cause[145].

B and T lymphocyte attenuator, or BTLA is a receptor with a similar structure to PD-1, and

also binds a member of the B7 family, B7H4. It is generally downregulated in viral infections, but

noted to be upregulated in melanoma. A vaccine with the addition of CpG oligodeoxynucleotides

was found to downregulate BTLA and decrease BTLA-mediated inhibition[146].

1.4 The Immune System in Mycosis Fungoides

1.4.1 Evidence for an Immune Response in Mycosis Fungoides

Tumour infiltrating lymphocytes have been observed in histological studies of CTCL from as early

as the 1980s[147], with smaller lymphocytes appearing admixed with the larger tumour cells of

CTCL. Reinhold et al., in 1990[148] used the property of the tumour cells being larger to separate

out the tumour and TIL population using discontinuous gradient centrifugation. They confirmed

the monoclonal nature of the tumour cells, and noted the ability of the TILs to demonstrate a

‘suppressor-inducer’ ability on pooled Peripheral Blood Mononuclear Cells (PBMC).

Systemic immunosuppression has been noted to be a feature of CTCL, particularly in advanced

stages of the disease[149], and a lower proportion of CD8 cells in the tumour is correlated with
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a poorer prognosis[150], suggesting the tumour creates an immunosuppresive environment, and

that the degree to which this is achieved correlates with outcome. Asadullah et al[151] looked at

the systemic immune response in CTCL, and noted that activation markers of circulating T cells

were high in early-stage disease, but returned to normal levels in advanced disease, implying

disease progression may be linked to loss of an effective immune response.

The mRNA cytokine profile analysis of tumour cell lines of CTCL revealed a Th2 appearance,

with high IL-4, IL-5 and IL-10 production[152], the tumour cell line expanding when exposed to

IL-4 and IL-7. Reactive Tc lymphocytes from the patient were unable to kill tumour cells, and this

was attributed to TGF-β production by the tumour cell line.

Much of the research in CTCL has a bias towards SS, partly because of the ease of obtaining

cells from a blood sample over cells from a skin biopsy. The cytokine production of leukaemic

CTCL has been shown to have high levels of Th2 cytokines, including IL-4, IL-13 and IL-10, with

low IFN-γ and Tumor Necrosis Factor Alpha (TNF-α), although IL-17 was not assessed[153].

It is thought that MF starts as a Th1 phenotype and progresses to a Th2 phenotype with dis-

ease progression[154], however, the evidence for this is limited, and confounded by the high TIL

infiltrate in early-stage disease[155]. The cytokine profile of MF has been assessed using various

methods. PCR of Peripheral Blood (PB) found increased production of IL-17[156]. Immunohis-

tochemistry of MF also demonstrated high IL-17[157], or a Th2 phenotype in SS and a balanced

Th1/Th2 phenotype in MF[158], though differentiating between tumour and TIL was not possible,

and again these studies are likely confounded by the TIL infiltrate. mRNA expression of IL-17

was assessed in MF and SS, supporting a Th17 phenotype of CTCL[159], with some evidence to

support greater neutrophilic involvement in patients with high IL-17 production.

MF has also been reported to be of a TREG phenotype, with a history of very early studies

demonstrating a suppressor effect in-vitro[160, 161]. It was also noted that TIL populations could

also demonstrate a suppressor effect in-vitro[148]. TREG CD4 T cells were discovered in 1995[162],
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and tumour cells fromMF cultured with DCs loaded with apoptosed CTCL were found to develop

a TREG phenotype[44]. Further studies asking whether CTCL is a malignant proliferation of TREGs

has not supported this view[163, 164]. In larger studies, FOXP3+ expression can be seen in a small

subset of malignant cells[165], though the staining was frequently weaker, which can be seen in

activated CD3+ CD4+ T cell (CD4) T cells.

1.4.2 Immune Checkpoint Expression in Mycosis Fungoides

CTCL has a UV mutational signature[38] similar to melanoma, which makes immune checkpoint

inhibition an intriguing potential therapy. However, there is a paucity of studies looking at im-

mune checkpoints in CTCL.

Immunohistochemical studies have looked at and observed the presence of PD-1 and PD-L1

expression in TIL and tumour cells respectively[166], though with discrimination between cell

types based on morphology. PD-1 expression was noted to be present in all patch and plaque

cases, but less so at the tumour stage of disease, though without clarification of cell type. PD-L1

showed the reverse expression, with increasing expression in later/tumour stages of the disease,

though this was not statistically shown, the study had small n numbers.

A larger immunohistochemical study found marked differences between MF and SS PD-1 ex-

pression, with MF expressing significantly less PD-1 on tumour cells compared to SS[85], though

TIL was not assessed. Another recent study took a comprehensive look at immune checkpoint re-

ceptors PD-1, CTLA-4, PD-L1, LAG-3, TIM-3 & ICOS, using flow cytometry and RNA-sequencing,

comparing to healthy skin[167]. The cells were obtained by explanting tissue biopsies in culture

medium and analysing the émigrés. Increased immune checkpoint expression was seen in T cells

from disease samples by flow cytometry, and this was supported by the RNA-sequencing demon-

strating increased markers of exhaustion with increasing stage of disease. This study did not
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discriminate between tumour and TIL cells, so may be confounded by the increasing proportion

of tumour cells seen in later stages.

HLA-G protein expression is normally associated with the immune tolerance of pregnancy,

though RNA expression has been observed in advanced stage CTCL[168].

1.5 Aims of Study

The principle aim of this study is to investigate the immune microenvironment of mycosis fun-

goides by discriminating between the tumour and tumour infiltrating lymphocytes. This will

allow us to perform a detailed immunophenotypic and functional analysis of the disease, with a

plan to identify targets for potential tumour cell killing, or immune-cell enhancement.
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Chapter 2

Methods

This study received ethical permission from West Midlands, Coventry & Warwickshire Research

Ethics Committee on the 8th January 2016, and formed part of the NIHR/UKCRN portfolio (ID:

20187). All procedures were conducted in line with the Declaration of Helsinki.

Adult patients diagnosed with MF and visible disease were approached for the study. Patients

were consented for the study and a 6mm punch biopsy and 20ml of PB were taken. PB was

analysed from 10 age-matched healthy donors, and two patient skin biopsies were taken at sites

of uninvolved normal skin. Patients with patch, plaque or tumour MF were selected. One patient

with SS had tumourous skin involvement. Patient details can be found in the tables in Appendix A.
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2.1 Method Illustration

Figure 2.1: Method illustration. PB: Peripheral blood, V-beta: T Cell Receptor V-beta region.

Simplified method diagram showing the steps involved in obtaining and analysing a single cell

suspension. A 6mm punch biopsy was obtained from the patient, manually macerated, and placed

on a rotator overnight. The sample was filtered and washed, and a portion of the sample was used

to stain with 24 anti-TCR-Vβ antibodies to determine clonotypy. 16 ml peripheral blood was taken

from the patient, and the peripheral blood mononuclear cells were isolated using density gradient

centrifugation. The clonotypic TCR-Vβ antibody was selected for inclusion in the phenotyping
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panels, and skin and blood samples were analysed on the flow cytometer sequentially.

2.2 Patient Anonymisation & Sample Number Generation

A linker spreadsheet was maintained stored on a university computer and encrypted using SHA-

512, it stored the patient’s first name, surname, date of birth, hospital number, and anonymisation

number.

patient

⏞⏞⏞⏞⏞CTCL⏟
study

020⏟
a

XX⏟
b

sample
⏞02⏟
c

𝐶⏟
d

Study CTCL

a. sequential 3 digit patient-specific number

b. patient initials converted to ‘XX’

c. sample number (sequential from consent of patient)

d. sample fraction (sequential for sample)

Patient number constructed from study, a & b

Lesion number constructed from study, a, b & c

Sample number constructed from study, a, b, c & d

Figure 2.2: Anonymisation procedure

At time of consenting to the study, the patient number was generated from the study (CTCL),

a: patient number (3 digit incremental number), and b: patient initials converted to ‘XX’. This
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anonymised identifier was then used for all samples taken from the clinical area to the laboratory.

2.3 Sample Retrieval

Ensuring patient consent obtained, biopsy site was prepared with ChloraPrep 3ml applicator (2%

chlorhexidine gluconate, 70% isopropyl alcohol), and skin infiltrated with 5mls Xylocaine (lido-

caine 2% and adrenaline 1:200’000) to raise a bleb. A 6mm punch biopsy was applied down to

subcutaneous tissue. Sterile forceps were used to lift and curved scissors used to clip. The biopsy

sample was then placed into a sterile 7ml bijou container filled with GrowthMedia (GM).The skin

edges were then opposed using 2x 4-0 sutures and a dressing applied.

2.4 Media Preparation

Wash media

RPMI (Sigma-Aldrich) with 1% penicillin-streptomicin (Hyclone).

Growth media

RPMI (Sigma-Aldrich) with 10% fetal bovine serum (Gibco, ThermoFisher), 1% L-glutamine (Hy-

clone) & 1% penicillin-streptomicin (Hyclone).

Single cell media

RPMI (Sigma-Aldrich) with 10% fetal bovine serum (Gibco, ThermoFisher).
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Phosphate buffered saline

Oxoid phosphate buffered saline (Dulbecco A) tablets (Thermo Scientific) were dissolved in 100ml

of water.

MACS buffer

In 10l of Phosphate Buffered Saline (PBS) add 50g of bovine serum albumin and 7.44g of EDTA

powder. Filter into 1l sterile bottles.

Freezing media

Heat inactivated foetal bovine calf serum (Gibco, ThermoFisher) with 10% v/v Dimethyl sulfoxide

(DMSO, Sigma-Aldrich, sterile, high purity).

2.5 Generation of Single Cell Suspension

Tissue

The biopsy was placed onto a sterile plate, and macerated with sterile scalpels. The pieces were

added to 5mls of growth media & 0.1% w/v collagenase D (Sigma-Aldrich) in a 15ml centrifuge

tube and placed on a rotator (Miltenyi) and incubated at 37℃, 5% CO₂ overnight. Filtration was

performed through a 70μm filter, washing through with GM, and using the rubber plunger of a

10ml syringe to gently agitate material on the filter. The 15ml centrifuge tube was washed twice

with 7.5ml of GM. Filtrate and washes were placed in a 50ml centrifuge tube, which was topped

up to 35mls with GM.

The sample was washed twice at 1800rpm for 5 minutes using GM.
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Peripheral blood

PB was diluted 1:1 with Wash Media (WM), layered on lymphoprep (axis-shield) and centrifuged

at 2000rpm for 30 minutes without brake. The PBMC layer was extracted and washed twice

(1500rpm, 10 minutes) with WM.

2.6 Sample Handling

Due to the low cell count obtained from skin samples, and the different nature of tumour cells

compared to PBMC, a careful technique for cell washing is necessary to retain cell number and

viability for analysis.

Washing cells

Sample handling was performed in 5ml round-bottomed polystyrene tubes. Single cell suspen-

sionswere obtained as in section 2.5 andwashed in 4mlsWM, then centrifuged (HeraeusMegafuge

1.0 / 1.0R) at 1500rpm with brake on for 5 minutes, unless specified otherwise. After completion

of the spin, samples must be promptly removed without knocking the tube, and the supernatent

gently decanted off.

Cell resuspension

Cells can then be resuspended in the required volume using either 30x gentle pipette-motions of

40μl or 10x 200μl-1ml pipette-motions, taking care not to introduce bubbles, and rotating the tube

during resuspension. The resuspension media depends on the respective method.
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Cell freezing

Aim for no more than 5 million cells per vial. Wash cells using wash media or growth media. Pour

off supernatent and resuspend in drip. Slowly drip n x 1ml of freezing media onto cells, where n

is number of vials. Divide up sample into cryovials (1.8ml Nunc, Sigma Aldrich), place promptly

into freezing container (Mr Frosty™, ThermoFisher Scientific) and then place container into -70

or -80℃ freezer. After 3 hours sample can be transferred to liquid nitrogen storage.

Cell thawing

Pre-warm 8mls of growth media. Place vial in water bath at 37℃ until defrosted. Transfer sample

to 15ml centrifuge tube. Slowly drip growth media onto sample. Centrifuge, discard supernatent

and promptly resuspend.

2.7 Flow Cytometry

Flow cytometry was performed on a four-colour ten-channel Beckman-Coulter Gallios flow cy-

tometer, in 5ml polypropylene round-bottomed tubes on a a multi-tube carousel loader.

2.7.1 Assessment of TCR-Vβ Expression on T Cells Within Tissue

One seventh of sample was divided into 8x 5ml round-bottomed polypropylene tubes, then sus-

pended in 100ul MACS buffer and stained with Fc blocker (FcX Trustain, biolegend) for 10 minutes

followed by anti-CD3, CD4, CD8, CD7 and TCR-Vβ region-specific antibodies (Table B.2) for 30

minutes in the dark at 5℃. They were then washed, 1μl viability dye added (propidium iodide,

Miltenyi) and analysed on the flow cytometer at low speed. FCS3 files were analyzed in Kaluza

(v1.5) and ‘clonograms’ generated based on TCR-Vβ-specific staining.
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Assessment of TCR clonotypy is subjective, even in the context of the DNA-PCR technique.

In clinical practice, the BIOMED assay is used, which uses PCR primers to cover TCRB, TCRD and

TCRG genes. The result is assessed by electropherogram (essentially a density plot of amplicon

size), with a subjective assessment of whether the spread is gaussian (polyclonal) or exhibits a

clonotypic spike (clonal)[169]. While most assays will clearly show a positive or negative result,

there are many pitfalls to the interpretation, especially in samples which produce an unclear re-

sult. This can occur when smaller peaks are obscured by polyclonal amplicon peaks, or where

multiple peaks occur. With increasing age or strong adaptive immune responses, there is increas-

ing probability of oligoclonal or even small monoclonal populations[170].

The flow-cytometric antibody is less sensitive than the PCR method, and has a documented

false negative rate of 34% in samples with clear Southern blot PCR clonotypy[171]. It was hy-

pothesised this was due to the incomplete coverage of the TCR-Vβ families. Like with the PCR

technique, there is no formal algorithm to determine clonotypy, instead subjective interpretation

is applied within the clinical context. In this study, a maximum TCR-Vβ percentage population

was measured for each sample. The distribution of the peak size formed a bimodal population (see

Figure 3.11), allowing for clonotypy to be defined by samples with max peak size of more than

40%, and non-clonotypy as those with a max peak size of less than 25%.

2.7.2 Assessment of Surface Markers

Cells suspended in MACS buffer were stained with Fc blocker, anti-CD3, anti-CD4, anti-CD8,

the selected anti-TCR-Vβ, anti-CD14, anti-CD19, anti-CD56, anti-PD1, anti-PD-L1, anti-PD-L2,

anti-TIGIT, anti-TIM3, anti-LAG3, anti-Galectin 9, anti-HLA-DR, anti-MHC-I, anti-CD95, anti-

Fas Ligand (FasL). Cells were stained for 30 minutes at 4℃, washed in MACS buffer and stained

with propidium iodide prior to analysis. See Tables B.4, B.5 & B.7 for fluorophore, clone and
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antibody source.

2.7.3 Identification of T Regulatory Cells

Cells werewashed twice with PBS prior to addition of 1υl of fixable viablity dye and 5μl Fc receptor

blocker (Biolegend) for 10 minutes. Antibodies against CD3, CD4, CD8, CD25 and the identified

‘clonotypic’ TCR-Vβ were used to stain cells at Room Temperature (RT) for 20 minutes. Cells

were then washed in MACS buffer and resuspended in residual volume of buffer.

2ml of FOXP3 buffer A (1X, BD Human FoxP3 buffer set) was added and sample vortexed, then

incubated at RT. The sample was spun at 2000rpm for 5 minutes, and the supernatent pipetted off

(with caution as pellet is buoyant). 2ml of MACS buffer added and sample washed at 2000rpm for

5 minutes, with wash buffer pipetted off, then resuspended in residual wash buffer.

0.5ml of FOXP3 buffer C(1X, BD Human FoxP3 buffer set) added, and sample incubated for 30

minutes in the dark at RT. Sample was then washed twice with 2mls of MACS buffer at 2000rpm

for 5minutes, again carefully pipetting off supernatent. Sample resuspended in 100μlMACS buffer

and stained with anti-FoxP3 (259D, AF647, Biolegend), vortexed, then incubated for 30 minutes

in the dark, at RT.

Samples were then washed with MACS buffer at 2000rpm for 5 minutes, supernatent pipetted

off leaving approximately 50μl for PB or residual volume for skin sample. The sample should be

analysed promptly by flow cytometry. See Table B.6 for antibody clone, fluorophore and sources.

2.7.4 Intracellular Cytokine Staining

The majority of the work-up and bench work for this laboratory work was carried out by Jack

McMurray as part of his Masters, with supervision and help from the author. The results were

analysed separately by each author.
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The Paraformaldehyde (PFA)-saponin method of intracellular cytokine staining with stimula-

tion using Phorbol 12-myristate 13-acetate (PMA) and ionomycin was selected for these experi-

ments. This technique for intracellular cytokine staining is well established and reliable[172], and

was a technique we had successully worked-up in our laboratory. There are several methods by

which cells can be stimulated to produce cytokines, and these can result in different profiles of

cytokine production. The combination of PMA and ionomycin is a potent mitogen, while retain-

ing cell viability. However, it is unlikely to be optimal for all cytokines investigated in the panel,

especially in regard to IL-10 production[173]. The process of cell perforation and activation also

has an impact on the expression of cell surface markers, which can limit the interpretability of

cell surface expression in this context.

Cells were added to 1ml warm GM, and stained with anti-CD107a if necessary. Cells sup-

plemented with 2μl 500X (1X concentration) protein transport inhibitor cocktail (eBioscience),

mixed by pipette, then split into two 5ml round-bottomed polypropylene tubes. 1μl of 500X (1X

concentration) cell stimulation cocktail (eBioscience) added to sample for stimulation, mixed with

pipette, and then incubated at 37℃, 5% CO₂ for 4 hours.

Samples were agitated, washed twice with PBS and resuspended in 100ul PBS. 1μl fixable

viability dye was added followed by 5μl FcR block for 10 minutes. Antibodies against CD3, CD4,

CD8 and specific TCR-Vβ were added prior to incubation in the dark for 20 minutes at RT. Sample

washed PBS and resuspended in residual volume. 50μl of 4% PFA (Sigma-Aldrich) was added and

vortexed prior to incubation for 15 minutes in dark at RT, washed in MACS buffer at 2000rpm for

5 minutes, and resuspended 50μl of MACS buffer. 10μl of 4% saponin (Sigma-Aldrich) added, and

sample incubated for 10 minutes in dark at RT.

Intracellular cytokine antibodies against IFN-γ, IL-4, IL-10, IL-17A, Granzyme-B, IL-2 were

added and incubated for 25 minutes in dark at room temperature prior to wash and analysis. See

Tables B.8 and B.11 for antibody clones, fluorophores and sources. Samples then incubated for 25
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minutes in the dark at RT.

Sample washes in MACS buffer at 2000rpm for 5 minutes, supernatent pipetted off, and cells

resuspended in residual volume plus 0-25μl MACS buffer. Samples analysed promptly on flow

cytometer.

2.7.5 Compensation and Titration

Single-stained positive and negative beadswere stained usingmanufacturer’s recommended stain-

ing concentration for 30 minutes in the dark at RT in MACS buffer. Beads were washed in MACS

buffer at 2200rpm for 10 minutes. Supernatent discarded using pipette. Samples were run on

the flow cytometer at low speed using the experiment voltages. Spillover matrix was calculated

for each channel by measuring the gradient between peak density of positive and negative beads

when plotted with primary channel on x-axis, and spillover channel on y-axis. This matrix was

applied to the FCS3 files using Kaluza.

Surface antibodies were titrated using healthy donor PBMC and recorded for specific cell num-

bers. The titration with maximum difference between positive and negative populations were

selected for staining research samples, and recorded in Appendix A.

2.7.6 Quality Control

Prior to use Flow-Check Pro Fluorospheres and Flow-Set Pro Fluorospheres (Beckman-Coulter)

were analysed daily on a Levey-Jennings chart to ensure alignment and fluorescence was stable.
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2.8 Single Cell RNA Sequencing

2.8.1 Laboratory Methods

The laboratorywork involved in obtaining the sample, digestion and flow cytometry cell sorting to

providing single cell suspension at a concentration of 900-1000 cells/μl was performed the author.

The laboratory work subsequent to obtaining a single-cell suspension, including bead binding,

Post-GEM-RT, cDNA amplication, target enrichment of TCR, TCR enriched library construction,

5-prime gene expression library construction and sequencing was performed by ‘Genomics Birm-

ingham’ as a paid service by Valerie Pestinger and Celina Whalley.

Sample preparation

A 6mm punch biopsy sample was obtained and the overnight digestion protocol followed to gen-

erate a single cell suspension.

Cell sorting

Cells were stained with Fc blocker (FcX Biolegend) for 10 minutes, then anti-CD3 antibody (Table

B.13), for 30 minutes at 4℃, washed in MACS buffer, then resuspended in 300μl and stained with

1μl propidium iodide prior to flow cytometry cell sort (see Table B.13). Sample was analysed on a

BD FACSAria II flow cytometer, and cells sorted on CD3+ PI- into single cell media.

Bead binding

Sample washed and resuspended to achieve a cell concentration of 900-1000 cells/μl, with target

cell recovery of 8000. A cell viability count with methylene blue was performed to confirm via-

bility. Master mix prepared with 50μl RT Reagent Mix, 5.9μl poly-dT RT Primer, 2.4μl Additive
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A and 10μl RT Enzyme Mix B (10X genomics) with nuclease-free water to 100μl. The single cell

suspension was mixed thoroughly and added to the master mix, which was then loaded onto the

Chromium Chip A, in the 10x Chip Holder onto row 1. Gel beads were vortexed for 30 seconds,

and loaded onto the chip, row 2. 270μl of partitioning oil was added to the chip row 3. The 10x

gasket was added, and the sample run on the Chromium Controller.

The resulting Gel Beads-in-Emulsion (GEM)s are transferred to the tube strip and placed on a

thermal cycler at 53℃ for 45 minutes, 85℃ for 5 minutes, then held at 4℃.

Post GEM-RT

125μl of Recovery Agent was added to the sample, and left at RT for 60 seconds. 125μl was pipetted

from the bottom of the tube, sample vortexed, then 200μl of prepared Dynabeads Cleanup Mix

added andmixed by pipette, followed by 10minute RT incubation. Sample placed on 10xMagnetic

Separator at high position until solution cleared. Supernatent removed and washed twice with

80% ethanol. Sample centrifuged, and placed on magnet at low position. Remaining ethanol

removed, and left to air dry.

Elution Solution I (35.5μl) added to sample, and mixed by pipette, incubated for 1 minute at

RT. Placed on magnet at low position until solution cleared, then 35μl transferred to new tube

strip.

cDNA amplification

Nuclease-free water was combined with 50μl Amplification Master Mix, 5μl cDNA Additive and

2μl cDNA Primer Mix, and added to sample, and pipette mixed, then centrifuged briefly. The strip

was incubated in a thermal cycler according to protocol in Table 2.1.
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Cycles Temperature Time

1 98℃ 45 seconds

13 98℃ 20 seconds

67℃ 30 seconds

72℃ 1 minute

1 72℃ 1 minute

1 4℃ hold

Table 2.1: Thermal cycling program for cDNA amplification.

Sample was added to 60μl of SPRIselect reagent, pipette mixed, incubated at RT for 5 minutes.

Sample placed on magnet set at high position until solution cleared, and supernatent removed.

Sample washed twice with 80% ethanol, centrifuged briefly and then placed on magnet at low

position. Remaining alcohol removed and sample allowed to dry. Buffer EB (45.5μl) added, mixed

by pipette, incubated for 2 minutes. Sample returned to magnet set at high until solution cleared,

then 45μl of sample transferred to new strip. cDNAyieldmeasured by taking 1μl for QC onAgilent

Bioanalyzer High Sensitivity chip.

Target enrichment of TCR

2μl of sample taken and added to 33μl nuclease-free water, 65μl Target Enrichment 1 Reaction

Mix (Nuclease-free water, amplification Master Mix, cDNA Additive & T Cell Mix 1) added and

pipetted to mix. Sample then placed on a thermal cycler according to protocol in Table 2.2.
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Cycles Temperature Time

1 98℃ 45 seconds

10 98℃ 20 seconds

67℃ 30 seconds

72℃ 1 minute

1 72℃ 1 minute

1 4℃ hold

Table 2.2: Thermal cycling program for TCR enrichment

SPRIselect reagent (80μl, 0.8X) added to sample, pipette mixed, then incubated for 5 minutes

at RT. Strip placed on magnet at high setting until solution cleared, and supernatent discarded.

Sample washed twice with 80% ethanol, then centrifuged and placed on magnet at low setting.

Remaining ethanol removed, and air-dried for 2 minutes. Sample removed from magnet, and

35.5μl of Buffer EB added, mixed with pipette, then incubated for 2 minutes at RT. Placed magnet

at low setting until solution cleared, and 35μl transferred to new tube strip.

Target Enrichment 2 Reaction Mix (5μl Nuclease-free Water, 50μl Amplification Master Mix,

5μl cDNA additive, 5μl T Cell Mix 2) added to sample, pipette mixed, and centrifuged briefly, then

incubated in thermal cycler as per Table 2.2.

SPRIselect reagent (50μl) added to sample, pipette mixed, and incubated at RT for 5 minutes.

Sample placed onmagnet at high setting until solution cleared, then 145μl supernatent transferred

to new tube strip. SPRIselect reagent resuspended, and 30μl added to sample, pipette mixed, and

incubated for 5 minutes. Sample placed on magnet at high setting, and 170μl of supernatent was

discarded. Sample was then washed twice with 80% ethanol, centrifuged briefly, then placed on

magnet at low setting. Remaining ethanol removed, and sample removed frommagnet. Buffer EB
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(45.5μl) added and pipette mixed, then incubated for 2 minutes at RT. Sample placed on magnet at

low setting until solution cleared, and then 45μl transferred to a new tube strip. 1μl used for QC

on Agilent Bioanalyzer High Sensitivity chip.

TCR enriched library construction

Nuclease free water added to 50ng of sample to make up 20μl and placed in tube strip on ice.

Fragmentation Mix (5μl Fragmentation Buffer, 10μl Fragmentation Enzyme Blend, 15μl nuclease-

free water) added to sample, and pipette mixed and centrifuged briefly. Transferred into a cooled

thermal cycler with protocol in Table 2.3.

Step Temperature Time

1 4℃ hold

2 32℃ 2 minutes

3 65℃ 30 minutes

4 4℃ hold

Table 2.3: Thermal cycling program for TCR fragmentation, end repair and A-tailing.

Sample removed from thermal cycler and 50μl of Adaptor LigationMix (17.5μl of nuclease-free

water, 20μl Ligation Buffer, 10μl DNA Ligase, 2.5μl Adaptor Mix) added to 50μl of sample, pipette

mixed and centrifuged briefly, then incubated in thermal cycler at 20℃ for 15 minutes, then held

at 4℃.

SPRIselect reagent vortexed, and 80μl added to sample, mixed with pipette, and incubated for

5 minutes at room temperature. Sample placed on magnet at high setting until solution cleared,

supernatent discarded. Washed twice with 80% ethanol, centrifuged briefly, and placed on magnet

at low setting. Remaining ethanol removed, and allowed to air dry. Sample removed frommagnet,

50



and 30.5μl of Buffer EB added, pipette mixed and incubated for 2 minutes at RT. Sample placed on

magnet at low setting until solution cleared and 30μl of sample moved to new tube strip.

Sample index PCR mix was prepared (8μl of nuclease-free water, 50μl of Amplification Master

Mix, 2μ SI-PCR Primer) and 60μl added to 30μl sample. Chromium i7 Sample Index (10μl) added to

sample, pipette mixed and centrifuged briefly. Sample incubated in thermal cycler using protocol

in Table 2.4.

Cycles Temperature Time

1 98℃ 45 seconds

9 98℃ 20 seconds

54℃ 30 seconds

72℃ 20 seconds

1 72℃ 1 minute

1 4℃ hold

Table 2.4: Thermal cycling program for sample index PCR.

Sample retrieved from thermal cycler and 80μl of SPRIselect Reagent added, pipette mixed

and incubated at 5 minutes at RT. Sample placed on magnet at high setting until solution cleared,

and supernatent removed. Washed twice with 80% ethanol, and placed on magnet at low setting.

Remaining ethanol removed and air dried for 2 minutes. Sample removed frommagnet and 35.5μl

of Buffer EB added, then incubated for 2 minutes at RT. Sample placed on magnet at low setting

until the solution cleared. 35μl transferred to a new tube strip. 1μl analysed onAgilent Bioanalyzer

High Sensitivity chip for QC.
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5’ gene expression library construction

Nuclease free water added to 50ng of sample to make up 20μl and placed in tube strip on ice.

FragmentationMix (15μl of nuclease-free water, 5μl Fragmentation Buffer and 10μl Fragmentation

Enzyme Blend) was added to the sample, mixed with pipette, centrifuged briefly then transferred

to pre-cooled (4℃) thermal cycler, programmed to 32℃ for 5 minutes, then 65℃ for 30 minutes,

then held at 4℃.

SPRIselect Reagent (30μl) added to sample, pipette mixed, incubated at 5 mins at RT. Sample

placed on magnet at high position, 75μl of supernatent transferred to new tube strip. SPRIselect

Reagent (10μl) added to sample, mixed by pipette and incubated for 5 minutes at RT. Sample

placed on magnet at high position and 80μl of supernatent discarded. Sample washed twice with

80% ethanol, centrifuged and placed on magnet set to low, remaining ethanol removed. Sample

removed from magnet, 50.5μl of Buffer EB added, mixed by pipette, then incubated for 2 minutes.

Sample placed on magnet at high position, and 50μl of sample taken forward to new tube strip.

Adaptor Ligation Mix (17.5μl nuclease-free water, 20μl Ligation Buffer, 10μl DNA Ligase, 2.5μl

Adaptor Mix) added to sample, then incubated in thermal cycler for 15 minutes at 20℃, then held

at 4℃.

SPRIselect Reagent (80μl) added, pipette mixed, incubated for 5 minutes at RT. Placed on mag-

net at high setting and supernatent discarded. Sample washed twice with 80% ethanol, centrifuged

briefly and placed on the magnet at low position, remaining ethanol removed and air dried. Re-

moved from magnet and 30.5μl Buffer EB added, and pipette mixed. Incubated for 2 minutes at

RT, placed on the magnet at low position until solution cleared, 30μl taken forward onto new tube

strip.

Sample Index PCR Mix (8μl nuclease-free water, 50μl Amplification Master Mix, 2μl SI-PCR

Primer) was pipette mixed, centrifuged briefly, then added to sample, with 10μl of Chromium i7
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Sample Index, pipette mixed, then centrifuged. Sample incubated in thermal cycler with protocol

in Table 2.5.

Cycles Temperature Time

1 98℃ 45 seconds

14 98℃ 20 seconds

54℃ 30 seconds

72℃ 20 seconds

1 72℃ 1 minute

1 4℃ hold

Table 2.5: Thermal cycling program for 5’ expression.

SPRIselect (60μl) reagent added to sample, mixed with pipette, incubated for 5 minutes at RT,

placed on magnet at high position, and 150μl supernatent taken to new tube strip. SPRIselect

(20μl) added to sample, mixed with pipette, incubated for 5 minutes, placed on magnet at high

position until solution cleared. Supernatent discarded, and beads washed twice with 80% ethanol,

centrifuged briefly, then placed on magnet at low position, remaining ethanol removed. Sample

removed from magnet, 35.5μl of Buffer EB added, and pipette mixed, incubated for 2 minutes,

placed on magnet at low position, and 35μl of sample transferred to new tube strip. 1μl analysed

using Agilent Bioanalyzer High Sensitivity chip for QC.

Sequencing

Libraries denatured and diluted in preparation for Illumina sequencing. Four VDJ libraries were

sequenced together on a NS Mid 300 flow cell on a NextSeq 500. The 5’ expression libraries were

sequenced on High 150 flow cells on a NextSeq 500. VDJ libraries were sequenced at target 5000
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reads/cell, and 5’ expression at target 50’000 reads/cell.

2.9 Data Analysis

2.9.1 Flow Cytometry FCS Pre-processing

Kaluza v. 1.5 was executed in the Windows 7 operating system on a personal computer. R v.

3.6.1[174], tidyverse v. 1.2.1, tidyr v. 0.8.3.9000 were used for analysis in the Ubuntu linux 18.04

operating system on an Intel Broadwell-class personal computer.

FCS3-format flow cytometry data was analyzed using Kaluza (Beckman-Coulter v1.5) using a

sequential gating strategy to identify singlets, lymphocytes, T cells and a Boolean strategy to iden-

tify the five populations of interest: PB CD8 (CD3+ CD8+ PB), PB CD4 (CD3+ CD4+ specific-TCR-

Vβ- PB), TIL CD8 (CD3+ CD8+ skin), TIL CD4 (CD3+ CD4+ specific-TCR-Vβ- skin) & Tumour

(CD3+ CD8- specific-TCR-Vβ+ skin). Parameters were obtained by gating on negative popula-

tions or by measuring geometric mean of fluorescence (MFI).

2.9.2 Flow Cytometry Expression Analysis

Further analysis was performed in R and statistical comparisons were generally tested using either

Mann-Whitney U, Mann-Whitney-Wilcoxon or Wilcoxon rank-sum test (MWW) for unpaired

comparisons, Wilcoxon signed-rank test (Wilcoxon) for paired, and Kruskal-Wallis for assessment

of variance. Data was database-joined with biopsy (using lesion number) and patient data (using

patient number) to allow further analysis.
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2.9.3 Diversity Analysis

The Simpson diversity index was calculated from the TIL TCR-Vβ families using the following

formula, where 𝑛𝑖 is the number of cells belonging to one TCR-Vβ family, and 𝑁 is the number

of cells in total.

1 − ∑𝑅
𝑖=1 𝑛𝑖(𝑛𝑖 − 1)
𝑁(𝑁 − 1) (2.1)

2.9.4 Data Preparation for High Dimensional Analysis

Flow cytometry

The fold-change inverse hyperbolic sine was calculated against the PB T cell subsets, which al-

lowed for normalisation between samples. Missing data was imputed using the random forest

machine learning technique, which allows for high-dimensional analysis without allowing miss-

ing data to skew results.

Principal component analysis was performed on the tissue T cell subset of each patient, using

fold-change surface marker expression immune checkpoint receptors, ligands, MHC-I and HLA-

DR, using the Singular Value Decomposition (SVD) method by the function of the same name,

and the first two principal components were used for plotting.

Single cell RNA sequencing

The filtered gene matrices were imported into R for further analysis, using the packages ‘scater’

and ‘scran’. Data was normalised by UMI count using the cellranger software, by a scaling factor

for each cell to the median UMI count per cell. This was then merged with TCR TRA and TRB

data by cell barcode.
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2.9.5 High Dimensional Analysis

In order to maximise the amount of information obtained from experiments in immunology, re-

search technology allows us to measure increasing numbers of parameters with each observation.

This trend can be seen in flow cytometry, which currently ranges from 10 to 30 simultaneous pa-

rameters measured, and mass cytometry, which can measure up to 50, and scRNA-seq, which can

measure expression of around 5000 - 10’000 genes per cell. A similar trend can be seen in the

collection of clinical patient data, where connected electronic database systems make it techni-

cally easier to obtain many variables per patient. The implications of analysis are non-linear. Not

only can each additional parameter be assessed and compared in a controlled experiment, but the

relationships between each parameter can also be investigated.

This can lead to both difficulties and opportunities in analysis. Traditionally, flow cytometry

data was analysed using sequential two-dimensional gating[175]. Without understanding the

biology of themarkers measured, this can be viewed as dimension reduction by ‘arbitrary discard’,

where two dimensions are selected to compare the relationship and view possible populations.

This scales poorly with more dimensions. For example, with four parameters measured (as with

early flow cytometers, and therefore four dimensions), six two-dimensional comparisons need

to be made. With 30 parameters measured, 435 comparisons need to be made. To compound

matters, viewing only two parameter dimensions of a structurally complex dataset may mean

that a population is not visible no matter which parameter dimensions are selected. This can

be due to the shape of the data, with large populations obscuring smaller ones, or populations

requiring separation using a combination of parameters (an orthogonal dimension).

There are, however, advantages in obtaining higher-dimensional data. Not only can more

hypotheses be tested using the same number of patient samples (and the clinical risk and incon-

venience to the patient that this entails), but clusters of cells or patient groups can become more
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clearly defined if the correct analysis techniques are used.

Euclidean distance

Tomeasure the difference in phenotype of high-dimensional observations, Euclidean distance can

bemeasured according to the following formula, where q and p are the patients, T cell populations

or cells being compared in 𝑖 of 𝑛-space.

√
𝑛

∑
𝑖=1

(𝑞𝑖 − 𝑝𝑖)2 (2.2)

The Euclidean distance is related to the Pythagorean theorem, which can be used to calculate

the distance, allowing measurement of distance in a straight line in high-dimensional space.

Principal component analysis

Principal Component Analysis (PCA) is a dimension reduction technique that was originally de-

scribed by Pearson in 1901[176]. It can be thought of as fitting a multidimensional ellipsoid to

the data, with the longest axis becoming the first principal component. This dimension is re-

moved by effectively compressing the data in that orthogonal dimension, reducing the number of

dimensions by one. The process is repeated until all dimensions are reduced.

The technique preserves relative positions of the data within the dataset, in essence moving

the data to a new coordinate system. The new coordinate system preserves the greatest variability

(and therefore information) in the lower Principal Component (PC). This transformation is useful

for many reasons. Because the greatest variabilty is preserved within the lower PC, dimensions

can be reduced by selecting the first consecutive PCs, while maintaining much of the information

of the dataset.

This technique can be used for analysis or algorithms that don’t scale well with increasing di-
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mensions, and it can also be used to find which markers contribute most to the dataset variability.

The first two PCs can be used to visualise the data, although this is usually only possible for data

without much structural complexity.

SVD and PCA are mathematically related if the data is centred around zero. Both SVD and

PCA return a set of eigenvectors, which are the principal axes of the new coordinate system. The

values projected on the eigenvectors provide the principal components (one for each dimension),

which are the transformed values. SVD obtain singular vectors (the principal axes) and singular

values, and can be used to calculate these same principal components.

SVD generates a covariance matrix as the initial step, which is thought to be computationally

more efficient and algorithmically more stable than PCA[177].

For scRNA-seq 50 components were selected for further analysis. A scree plot demonstrated

an elbow at around 10 components, and the t-Distributed Stochastic Neighbour Embedding (tSNE)

algorithm performs poorly beyond 50 dimensions. Strangely, only 7.0% of variance was captured

in the first 50 components, and this was similar across scRNA-seq experiments.

MNN

Mutual Nearest Neighbours (MNN) seeks to find similar populations between batches of ex-

periments, applying a high dimensional vector subtraction to batches other than the reference

batch[178]. This has the useful end result of correcting for batch variations, and is especially

important in scRNA-seq, where significant variation occurs, and would not otherwise allow for

identification or comparison of cell populations between experiments.

MNN is achieved initially through a dimension reduction step using PCA, then observations

(cells in this case) are identified of similar type across batches, using an orthogonal vector to align

the cell subtypes.

Marker gene enrichment was performed by selecting genes involved in Th differentiation and
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finding correlated genes. These were added to a list of highly variable genes. This list was used

in the initial dimension reduction step as part of the MNN analysis.

tSNE

t-Distributed Stochastic Neighbour Embedding (tSNE) analysis is a form of dimension reduction

which is particularly adept at displaying structurally complex multiparametric data in a two or

three-dimensional form. The algorithm seeks to describe pairs of observations by the probability

that they are similar in the high dimensional coordinates. The probability of similarity is calcu-

lated using aGaussian centred around the observation. A two or three-dimensional representation

(which is initiated randomly) is iterated upon to achieve a similar probablity distribution. This po-

sitions observations which are similar to each other in the high-dimensional space, close together

in the low dimensional representation, allowing visualisation of complex data at low dimensions.

It does not maintain the overall relationship between distant groups of populations, but does tend

to maintain similarity between similar groups[179].

tSNE was performed on compensated flow cytometry data which was sequentially gated from

singlet, lymphocyte, CD3+, PI-, CD14-, CD19-, CD56- cells, as well as scRNA-seq data, using the

Rtsne R package v.0.15. The Barnes-Hut implementation was used to reduce the computation

time.

2.9.6 Clustering

Hierarchical clustering

Hierarchical clustering is an algorithmwhich can provide a range of cluster numbers. Themethod

starts with initially assigning each observation to its own cluster. It then identifies the two closest

observations in high-dimensional space (using Euclidean distance), merging this into a new cluster
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with the coordinate of the mean of the combined clusters. This is then repeated until there is one

single cluster. A dendrogram can be formed from this sequence of merging clusters, which allows

various cut-offs of cluster number.

This method is commonly used in ordering columns and rows in heatmaps. As the algorithm

starts on a micro scale (it is generally an agglomerative algorithm), the clustering can be quite

inconsistent with biological data, likely as a result of sensitivity to noise[180].

K-means

K-means clustering is an algorithm which can find communities in high-dimensional data. It

requires a value 𝑘, and then randomly seeds 𝑘 cluster centroids into the high-dimensional space.

For each observation, the closest centroid is found, and the observation is classified as belonging to

this cluster. The centroid is then moved to the mean point of the cluster, and the process repeated

until the clusters are stabilised. K-means is more robust to noise than hierarchical clustering, and

works well on biological data that isn’t too structually complex. It performs less well on biological

data with small populations which can be phenotypically distinct, but close together or close to

large clusters, and other algorithms have sought to address this issue[181, 182].

The 𝑘 value was determined visually when 𝑘-means was applied to patient data. Clustering

was performed using the 𝑘-means method on the same multiparametric protein expression data

as PCA with k = 3. Further analyses were also performed with 𝑘 = 4.

Louvain

In biological systems, graph-based clustering appears to be effective in identifying cell subsets[183].

This method starts by connecting cells to other cells based on their phenotypic similarity and

shared neighbours. This creates a network or graph of observations. The Louvain clustering

method is a machine-learning algorithmwhich starts by assigning each cell to its own group[184].
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It then proceeds to coalesce groups in an effort to increase the overall modularity of the network.

Modularity is a measurement of the actual fraction of edges that occur within groups minus the

fraction that would occur if edges were distributed randomly. It can be used as an indicator of the

effectiveness of the clustering algorithm, or the structural order of natural systems[185].

The scRNA-seq data was constructed into a graph using 𝑘-nearest neighbours with Jaccard

coefficient weighting, in the MNN-reduced space. This graph was then used to perform Louvain

clustering on. Flow cytometry data was constructed into a weighted graph using the Phenograph

algorithm[186], which uses a similar method of creating a graph using 𝑘-nearest neighbours, ap-
plying weights to the graph by calculating the Jaccard coefficient, and then applying the Louvain

clustering method to the graph.

2.9.7 Survival Analysis

This was performed using Survival v.2.43 and survminer v.0.4.4 packages.

2.9.8 Force-Directed Covariance Graph

In order to understand the relationships between cell types and surface markers, covariance of cell

marker expression on each cell type wasmeasured (across patients). Covariance was selected over

correlation as this retained the impact of effect size, and prevented smaller batch effects from being

over-represented. A ranked method was chosen as not all variables were normally distributed.

Covariance below -10 and above +15 were selected as thresholds for graph representation, and a

weighted graph was constructed using the package igraph with the relationships that remained.

For visualisation purposes the Fructerman-Reingoldmethod of force-directionwas used to display

the graph[187].
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2.9.9 Single Cell RNA Sequencing Pipeline

The initial bioinformatics pipeline (bcl conversion, aligning, counting) was performed by the au-

thor. Further analysis was performed by the author with assistance fromDr Christopher Yau, who

contributed code which was rewritten and expanded on by the author. The author devised the

cluster entropy method to identify tumour. Computations were performed using the University

of Birmingham’s BlueBEAR HPC service, which provides a High Performance Computing service

to the University’s research community. Initial bioinformatics was performed using batched jobs

on the high performance linux cluster, utilising 24 core Broadwell-class nodes with 128Gb RAM.

Further work was performed in R v. 3.6.1, scater v. 1.23.2, scran v. 1.12.1, tidyverse v. 1.2.1.

2.9.10 Aligning and Counting

The raw basecall (BCL) files were converted to FASTQ using bcl2fastq (Illumina). ‘cellranger

count’ was used to perform alignment (using STAR aligner) to GRCh38 human reference genome,

which was then filtered and counted. ‘cellranger vdj’ was used to assemble the contigs of the VDJ

regions, for each cell, also aligned to GRCh38.

2.9.11 Identification of Tumour and TIL in scRNA-seq

Package ‘vegan’ v.2.5-2 was used to calculate TCR entropy per cluster using the Shannon method,

identifying the tumour (Shannon entropy < 1) and oligoclonal TIL (1 ≤ Shannon entropy < 5). If

a tumour cluster was identified, the largest clonotype of the cluster was obtained. This clonotype

was used to define tumour by VDJ.
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2.9.12 Identification of TIL Populations

The analysis was split into tumour and TIL populations. The TIL dataset had Louvain clustering

repeated, and ‘findMarkers’ was used to find overexpressed genes of each cluster. This was then

used to identify the TIL clusters. Once cells were classified, the proportions of cell types in each

experiment could be assessed.

2.9.13 Differentially Upregulated Genes

Differential expressionwas compared between the tumour population and the CD4TIL population

for each tumour sample, using scran’s ‘findMarkers’ function, which utilises the Welch t-test, a

statistical test which performs well for single cell RNA seq data despite not necessarily meeting

the criteria for being parametric[188]. Differentially expressed genes were then intersected to

find those which are recurrently so.

2.9.14 Visualisation of Genes

A heatmap was generated using 25% of the TIL cells and each sample. The TIL were Louvain

clustered, and recurrent differentially expressed genes were 𝑘-means clustered.

The recurrent differentially expressed genes were profiled in the TIL population, with dis-

tances calculated between the genes by using Euclidean distance. This was then used to construct

a weighted 𝑘-nearest neighbour graph. This gives an idea of which genes co-vary in the physio-

logical TIL cells. The network was then plotted as a force-directed graph.
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2.9.15 Clonotype Analysis

TRA and TRB CDR3s were assessed for clonality, and each TIL cluster was split into high and

low clonotypy, by comparing single CDR3 versus those with 2 or more cells. ‘findMarkers’ was

used to find differentially expressed genes in expanded T cell populations. An Euler diagram was

created to assess shared clonotypes between TIL T cell subtypes, and between patients.

2.9.16 Statistical Analysis

Some, but not all, markers were parametrically distributed. However, for general applicability,

non-parametric methods were used. P-values throughout the study are not corrected for multiple

testing unless stated otherwise.

2.10 Mathematical Model

Ordinary Differential Equation (ODE) analysis was performed on Julia v. 1.0.4, DifferentialEqua-

tions v. 6.3.0, Plots v 0.25.2.

The model was developed in combination with the multiscale mathematical team originally in

the numerical language Matlab, encoded into a function. I translated this code into the numerical

language Julia and added the discrete and continuous callback functions for simulations. Starting

parameters were found by trial and error owing to a lack of experimental parameters available for

the model. The ODE-solver Tsit5 was used, which uses the Tsitouras Runge-Kutta method[189].

The code used to solve the steady state model is shown in Figure 2.3.
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2.10.1 Simulations

Chemotherapy A dose of chemotherapy was assumed to proportionally reduce both tumour

and TIL acutely by a factor of 0.001. This was simulated using a callback function in 6 cycles

between time points 200 and 250.

Growth Mutation A mutation affecting the growth rate of the tumour by a factor of 1.5 was

implemented using a callback function at t = 200.

Exhaustion Exhaustion was modelled on the assumption that progressively decreased T cell

killing and TIL activation would occur, with increased TIL turnover. This was modelled using a

continuous callback function which used a logistic function by a maximum factor of 5.
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using DifferentialEquations
using Plots
using Parameters

# the model as a function
function ctcl(dy,y,p,t)

@unpack α, αs, γ, γs, β, βs, δ, ρT, ρI, ϵ, ϕT, ϕI = p

T = y[1]
TS = y[2]
I = y[3]
IS = y[4]

N = T + TS + I + IS

dy[1] = β * T - γ * T * I - γs * T * IS - ρT * N * T + ϕT * TS
dy[2] = βs * TS - γ * TS * I - γs * TS * IS + ρT * N * T - ϕT * TS
dy[3] = α * (T + TS) * I - δ * I - ρI * N * I + ϵ + ϕI * IS
dy[4] = ρI * N * I + αs * (T + TS) * IS - δ * IS - ϕI * IS

end

# parameter values
p = (α = 1e-3, αs = 1e-4, γ = 1e-3, γs = 1e-4, β = 1, βs = 0.1,

δ = 0.10, ρT = 1e-3, ρI = 1e-3, ϵ = 0, ϕT = 1, ϕI = 1)

# initial values
T0 = 1
TS0 = 0
I0 = 0.1
IS0 = 0

u0 = [T0, TS0, I0, IS0]
dy = zeros(4,1)

tspan = (0.01, 400.0)

# solve
problem = ODEProblem(ctcl, u0, tspan, p)
solution = solve(problem, Tsit5(), reltol = 1e-8, abstol = 1e-8)

Figure 2.3: Code to solve the steady state ordinary differential equation model of cutaneous T cell

lymphoma, in the numerical language Julia.
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Chapter 3

Delineation of Tumour and Reactive T Cells

Within Mycosis Fungoides Using

TCR-Vβ-specific Antibodies

3.1 Introduction

The reactive T cell infiltrate of mycosis fungoides can range from being the dominant T cell popu-

lation in early stage disease, to aminority population, in advanced disease[190]. As theMF tumour

is also a T cell, the tumour and reactive populations can be difficult to differentiate. This is a crit-

ical requirement for understanding how to boost ‘reactive’ immune responses whilst decreasing

the tumour burden.

Taking advantage of the genetic recombination event that occurs early in T cells prior to

transformation, the clonal TCR sequence can be used as a signature of T cells. Using a set of

24 antibodies directed to different families of TCR-Vβ, I elected to try an approach of using flow
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cytometry to separate tumour and reactive populations, using the assumption that large clonal

Vβ families were most likely to represent tumour.

In order to be able to remove the confounding factor of the tumour to TIL ratio, identification

of whether a cell is a tumour or TIL to the resolution of the cell is required. There are other po-

tential methods to investigate phenotypic differences between samples. RNA sequencing in bulk

can theoretically be deconvoluted to identify known cell populations, however this has not been

validated in this setting, and would not be able to phenotype the tumour population as this is

an unknown. TCR sequencing would provide a more sensitive and accurate measurement of the

TCR repertoire in a sample, but even combined with RNA sequencing, would not provide pheno-

typic information on cell subsets. Mass cytometry is capable of higher simultaneous parameter

measurement compared to flow cytometry, but did not have the full set of Vβ antibodies easily

available for this technique. scRNA-seq is capable of phenotypic measurement of gene expression

on a cellular basis, as well as simultaneous TCR sequencing and so would be capable of tumour

to TIL differentiation, though this technique is many orders of magnitude more expensive than

flow cytometry.

Immunohistochemical approaches were also considered, and some work-up was performed

with multi-colour immunohistochemical staining with up to 7 fluorescent antibodies. Unfortu-

nately this technique suffered with dye saturation issues, which limited interpretability. Laser

dissection of cells would have allowed for sequencing of individual cells, however these isn’t a

reliable and objective method of determining a cell type by morphology alone. Another approach

considered was to culture cell tumour and TIL populations separately, allowing for extensive phe-

notypic analysis of each cell type. Unfortunately, cell culturing is not only know to be difficult in

MF, but will likely affect the phenotype of the cell, which may limit interpretation of the result.

There are some deficiencies of the flow cytometric approach. The range of antibodies available

does not cover all TCR-Vβ families and as such it maymiss some tumourswhich express a different
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TCR. The Vβ-specific antibodies are only specific to V-region domains, not individual clones, and

therefore a TCR-Vβ family containing the clonal tumour populations will also contain TIL that

share usage of the sameVβ-family. The corollary to this problem is that the kit will not detect a low

tumour burden, as it will not be possible to detect the tumour population unless it is proportionally

larger than the existing TIL population of that family. Using fresh samples without culturing the

cells severely limits the number of cells available for analysis.

However, flow cytometry with the TCR-Vβ antibodies does allow for identification of the

tumour clone in many cases, at a reasonable cost, and with clear demarcation of cell subset popu-

lation, as well as simultaneous measurement of surface, intracellular and intranuclear markers, on

a cell which is not too far removed from its physiological state in the tumour microenvironment.

3.2 Methods

A 6mm punch biopsy was taken from consenting patients, and manually macerated using sterile

scalpels. This was then placed in growth media with collagenase D (0.1% w/v) in a rotator, and

left overnight at 37℃ and 5% CO2. The following morning the sample was passed through a 70µm

filter as washed twice to produce a single cell suspension of T cells.

Aminor fraction of the single-cell suspension was used with the Beckman Coulter 24 antibody

Vβ kit. If a clonal Vβ family was identified, that antibody would be used in further flow cytometry

phenotype experiments. The antibodywas then used to discriminate a tumour and TIL population.

The clonal Vβ was also used to exclude any circulating tumour cells from the peripheral blood.
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3.3 Efficacy of Cell Retrieval

To assess the optimal approach to cell retrieval, three samples were obtained from a patient with

mycosis fungoides, two tumour samples and one plaque sample. The samples were split in half,

with a 1 hour digest used on one half and an overnight digest used on the other half. Haemocy-

tometer staining was used to count the number of cells released from the tissue.

Figure 3.1: Comparison of cell release according to nature of sample digestion technique and

clinical stage of tumour.

This preliminary study showed that the overnight digestion technique retrieved 7.5xmore cells

than the one hour technique (Figure 3.1). As such, overnight digestion was used for preparation

of all samples used in subsequent analysis.
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Figure 3.2: Cell counts from flow cytometry experiments of gated CD4 and CD8 T cells used in

the analysis. Results are split by flow cytometry panel, with panel 1,2 & 4 being surface staining,

panel 3 intranuclear, and panel 5 intracellular staining. It can be seen that the viable cells retrieved

from skin are an order of magnitude smaller than the number of cells available from the peripheral

blood, and there is high inter-sample variability.

Figure 3.2 illustrates the cell count for CD4 and CD8 T cell populations from each experi-

ment. The number of T cells retrieved from skin is substantially smaller than that available from

peripheral blood and careful laboratory technique must be employed to ensure the cell count is

retained until analysis on the flow cytometer. Of note, panel 3 and panel 5 are intra-nuclear and

intra-cellular staining panels, but I was able to analyse a similar cell number as panel 1, 2 & 4,

which were surface markers.
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3.4 Retention of Cell Markers

There is concern that the collagenase D may cause some loss of markers from the cell surface,

although it is used at a low concentration (0.1% w/v). The samples from the overnight digestion

and 1 hour technique were therefore stained with antibodies directed to surface markers and

compared by flow cytometry.

Figure 3.3: Comparison of surface marker staining by different cell suspension techniques

Overnight digestion did not result in any loss of surfacemarkers, andmostmarkers had similar

staining intensity (Figure 3.3), although there was some slight increase in CD8 and PD-L1 staining.

To assess whether the degree of digestion affected surface markers, healthy donor PBMC was

obtained, split into three, and frozen down. Three vials were thawed, two were added to growth
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media with collagenase D, one was rotated for 2 hours, then washed, and the other was rotated

overnight. The third vial was rested in growthmedia overnight. The three samples were compared

for surface marker staining of CD3, CD4, CD8, PD-1 and PD-L1.

Figure 3.4: Comparison of healthy donor peripheral blood surface marker staining by degree of

digestion. a. CD4+ PD-1, b. CD4+ PD-L1, c. CD8+ PD-1, d. CD8+ PD-L1

This demonstrates that for PD-1 and PD-L1, there was not progressive down-regulation of

surface expressionwith degree of digestion. However, therewas a slight decrease in PD-L1 surface

expression on CD4 cells with increasing digestion. Overall, the degree was slight, but should be
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borne in mind in experiments, especially if comparing peripheral blood versus digested tissue.

3.5 Phenotypic Profile of Dissociated Tissue

A small sample of cells (1/56th) from the tissue digestion was analysed by flow cytometry along-

side the full phenotypic analysis. Sequential gating was performed to identify singlet, lympho-

cytes and CD19-, CD14-, viable cells. These were then exported from each experiment and anal-

ysed in R. The data was analysed using tSNE and louvain clustering to prevent looking over cell

populations which can occur in sequential gating when cells lose surface markers (Figure 3.5).
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Figure 3.5: Analysis of cells investigated by flow cytometry with the phenotype panel. There is

no correction for number of cells from each experiment but the tSNE is useful for classifying the

groups of cells allowing further analysis.

Analysis using tSNE of the phenotypic groups has shown a large population of cells which,

while being viable and identified as lymphocytes using forward and side-scatter, do not stain with

any of these markers: CD2, CD3, CD4, CD5, CD7, CD8, TCR-αβ, TCR-γδ, CD56, CD19, CD14. The

tSNEs include all cells from each sample, we can divide up the cells percentage-wise to further

breakdown the phenotypic profile (Figure 3.6).
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Figure 3.6: Number of cells within each lymphocyte subset expressed as percentage of sample.

CD4: CD3+ CD4+, CD7_neg: CD3+ CD7-, CD8: CD3+ CD8+, DNEG: CD3+ CD4- CD4-, NK:

CD56+, NKT: CD3+ CD56+, no_surface: No surface markers stained, NA: unclassifiable
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There is a notable population of cells which do not appear to express any of the markers

from this antibody panel. There is also significant variation between patient skin samples in the

number of cells that cannot be phenotyped. It is not clear what cell this population represents.

The lymphocyte gate is deliberately wide, so a possibility is innate cells. CD14 is not present on

the panel, so the dendritic cell population is not identified. Surface marker downregulation is

a phenotype seen in T cell lymphomas[191] as well as other cancer types[71], so this may also

represent a tumour population. After the unidentified cells, the next most common subsets were

CD4+ CD7+, CD4+ CD7-, and CD8+ T cells.

3.6 Clonogram Results

A fraction of cells obtained frompatient sampleswas set aside to determine clonality of the sample.

This step was crucial to being able to differentiate between tumour and TIL later. The proportion

of cells used was set at 1/(n+1), where n was the number of panels to be run on the sample. This

was a balance between acquiring enough cells to recognise clonality while leaving enough cells

for further experimentation.

There is no strict criteria for determining TCR clonality using the antibody kit, and the kit

is not licensed for clinical diagnostics. In the context of clinically diagnostic PCR TCR analysis,

there is also a subjective aspect to the interpretation of clonality.

The clonogrampanel includedmarkers to determineCD4+, CD8+ andDoubleNegative (DNEG)

and Double Positive (DPOS) populations. CD4, CD8 and DNEG populations were analysed for

clonality, using the cell subtype as the denominator. Examples of clonotypic samples vs non-

clonotypic samples can been seen in Figure 3.7.

Clonotypic samples were often obvious from the clonogram, but where the peak Vβ family

made up less than 40% of the cell population, the result was harder to categorise. Using the
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Figure 3.7: Examples of clonograms obtained from patient samples. The x-axis represents staining
with each TCR-Vβ-specific antibody and the proportion of cells that stained with each antibody
is shown on the y-axis. The three samples on the top row were determined to have expressed
clonality, whilst those on the bottom were not.

available data, I also used othermethods to help support the supposition that the clonal population

was derived from a tumour population.

• Peak Vβ percentage

• Z-score of peak Vβ percentage

• CD7 expression of peak Vβ cells

• Flow cytometry forward and side-scatter of peak Vβ cells

The Z-score for each Vβ family can be calculated by subtracting the mean and dividing by the

standard deviation of known Vβ family frequencies (Figure 3.1). It gives an idea of how abnormal

the size of the Vβ family is, although with two caveats: these values are based on peripheral blood

and not tissue, and cell-numbers from tissue are lower, which increases noise.
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The CD7 expression is lost on many cases of MF. As such the pattern of CD7 expression was

also assessed to give confidence that a clonal Vβ-specific population did represent tumour cells.

The flow cytometric forward and side-scatter profile of cell populations gives an assessment of

their respective size and complexity. Transformed proliferative cancer cells are frequently larger

and more complex[148] than their normal counterpart due to increased cell activity.

Panel Vβ family CD4.mean CD4.SD CD8.mean CD8.SD
a vb5.3 1.09 0.30 0.92 0.39
a vb7.1 1.93 0.62 3.39 1.23
a vb3 4.37 2.29 4.44 3.13
b vb9 4.07 1.19 3.47 1.52
b vb17 5.46 1.02 5.06 1.97
b vb16 0.95 0.26 0.80 0.45
c vb18 1.92 0.46 0.57 0.41
c vb5.1 6.71 1.15 3.22 1.62
c vb20 2.60 1.12 2.31 1.50
d vb13.1 4.03 0.98 3.42 0.91
d vb13.6 1.86 0.49 1.60 0.70
d vb8 4.81 0.77 4.06 2.06
e vb5.2 1.33 0.38 1.12 0.57
e vb2 9.36 1.44 5.43 1.89
e vb12 1.82 0.38 1.29 0.56
f vb23 0.48 0.25 1.34 0.96
f vb1 3.32 1.50 4.24 1.62
f vb21.3 2.46 0.53 2.39 0.93
g vb11 0.87 0.26 0.92 0.46
g vb22 4.26 1.11 3.17 1.19
g vb14 2.59 0.65 5.74 2.55
h vb13.2 2.81 1.18 3.34 1.80
h vb4 2.03 0.37 1.90 0.80
h vb7.2 1.12 0.75 2.44 2.34

Table 3.1: Frequency of TCR-Vβ-specific T cells in the peripheral blood of healthy donors. As
obtained from Beckman-Coulter IOMark reference sheet.
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3.7 Discrimination of Tumour/TIL

Lesion number Clonotypic Vβ-family

1 CTCL002XX06 TRUE vb1

2 CTCL004XX02 TRUE vb20

3 CTCL005XX02 TRUE vb16

4 CTCL006XX01 FALSE

5 CTCL007XX01 TRUE vb17

6 CTCL008XX01 TRUE vb13.1

7 CTCL010XX01 TRUE vb2

8 CTCL013XX02 FALSE

9 CTCL014XX01 TRUE vb13.6

10 CTCL015XX04 FALSE

11 CTCL017XX01 TRUE vb5.3

12 CTCL017XX02 TRUE vb5.3

13 CTCL017XX05 TRUE vb5.3

14 CTCL018XX01 FALSE

15 CTCL020XX02 FALSE

16 CTCL021XX01 FALSE

17 CTCL022XX01 FALSE

18 CTCL023XX02 FALSE

19 CTCL024XX01 TRUE vb4

20 CTCL025XX01 FALSE

21 CTCL025XX02 FALSE

22 CTCL026XX01 TRUE vb8

23 CTCL027XX01 FALSE

24 CTCL028XX01 FALSE

25 CTCL028XX02 FALSE

26 CTCL029XX01 TRUE vb14

27 CTCL030XX01 FALSE

28 CTCL032XX01 TRUE vb13.6

29 CTCL033XX01 FALSE

30 CTCL035XX01 FALSE

31 CTCL036XX01 TRUE vb16

32 CTCL036XX02 TRUE vb16

33 CTCL037XX01 FALSE

34 CTCL039XX01 FALSE

35 CTCL042XX01 FALSE

36 CTCL043XX01 FALSE

37 CTCL045XX01 FALSE

38 CTCL045XX02 FALSE

39 CTCL046XX01 FALSE

40 CTCL047XX01 TRUE vb12

41 CTCL047XX02 FALSE

42 CTCL049XX01 TRUE vb2

43 CTCL050XX01 FALSE

44 CTCL051XX01 FALSE

45 CTCL052XX01 TRUE vb5.1

46 CTCL053XX01 FALSE

47 CTCL054XX01 TRUE vb8

48 CTCL055XX01 FALSE

49 CTCL056XX01 TRUE vb22

50 CTCL057XX01 TRUE vb2

51 CTCL058XX01 FALSE

Table 3.2: Summary of clonotypic determination of individual tumour samples according to Vβ

family.
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Using the peak Vβ percentage, clonotypic samples were identified (Table 3.2), and for these, tu-

mour cell population was identified using a Boolean gating strategy (CD3+ AND NOT (CD4-

CD8+) AND TCR-Vβ+ AND SKIN) with example 2D flow-cytometry plots as seen in Figure 3.8,

which demonstrates clear clonotypic populations.

Figure 3.8: Representative 2D flow cytometry gating strategy to demonstrate populations. Cells

were identified using a Boolean method for the analysis. Peripheral blood sequential gating is

seen on the top row, cell suspension from skin dissociation is seen on the bottom row.

The tumour populationwas then assessed for forward- (FS) and side-scatter (SS) characteristics

on flow cytometry, which demonstrated significant (p < 0.0001 as comparison to peripheral blood

CD4, CD8 and skin CD4 and CD8 populations) increase in the average FS and SS of the tumour

population, suggesting that the identified tumour population are larger and more complex cells

than other T cell subsets (Figure 3.9).
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Figure 3.9: Average forward- and side-scatter profile of T cell subset populations identified as ‘tu-

mour cells’ compared to T cells from Peripheral Blood (PB) and Tumour Infiltrating Lymphocytes

(TIL). Tumour populations are seen to represent larger and more complex cells.

CD7 expression is often down-regulated in mycosis fungoides, and was assessed on tumour
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cell populations and compared to the CD4 TIL and HD PB CD4 population. A CD4+ CD7- T cell

population is a normal finding in healthy peripheral blood, but it can be seen in Figure 3.10 that 4

out of 5 populations measured had almost 100% CD7 downregulation in the tumour population.

While CD7 downregulation is common in MF, it is not a consistent feature.

Figure 3.10: Lack of CD7 expression can be used to confirm tumour cell origin of large TCR-

Vβ-specific T cell populations. a. Representative clonograms are plotted for samples where CD7

expression was concurrently measured, for CD4 (top row, n = 3) and CD8 (bottom row, n = 3). It

can be seen that large Vβ family-specific T cell populations have a high percentage of CD7- cells

(in orange). b. CD7 expression was compared on 5 clonotypic samples against the CD4 TIL and

CD4+ T cells from the blood of healthy donors. It is observed in 4 of 5 patients that the identified

tumour population is largely CD7 negative.

A discussion of the difficulties and pitfalls in TCR clonality assessment can be found in Section

2.7.1. The approach taken here was to measure the maximum TCR-Vβ peak, and visualise this as a

density plot. This revealed a bimodal distribution with only a few samples in a grey area between

around 20% and 40%. The samples which fell in between the two distributions had their peak TCR-
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Vβ measured using a larger number of cells. Due to the limited number of cells available for the

8-panel clonogram experiment, there is a higher degree of variation in the clonogram population

size. Only 1/8th of the cells used for the phenotypic panels were used for the clonogram panels,

which meant that some samples had been initially determined to be non-clonotypic only until

after the phenotypic samples had been run (Figure 3.11).

It could then be determined that clonotypic samples had TCR-Vβ-specific populations that

represented between 43% and 98% of the denominator T cell population (either CD4 or DNEG).

In contrast, the non-clonotypic samples had peak TCR-Vβ populations between 0.45% and 23% of

the T cell population.

Figure 3.11: a. Size of peak Vβ family for samples deemed clonotypic or not clonotypic (data

from clonogram panels). b. Data supplemented from the phenotypic expression panels, which

ran using 8x the cell number, for samples with an intermediate Vβ population size, demonstrating

the decision to determine non-clonotypy in some samples.
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To demonstrate the range of constituent T cell populations from the skin samples, the size

of each T cell population was calculated and plotted (Figure 3.12). This demonstrates the wide

variation in the ratio of the different T cell subsets within individual tumours.

Figure 3.12: Size of T cell subset populations within skin samples, for all clonotypic samples.

All the assigned ‘tumour’ samples had clonotypy of more than 40% of their respective T cell

population. The samples with a smaller tumour population were either clonotypic in the CD4-

CD8- DNEG T cell population (CTCL052XX, CTCL047XX and CTCL007XX) or the tumour popu-

lation was identified in the peripheral blood (CTCL004XX).

Of the four DNEG tumour populations, two were confirmed also by clinical immunohisto-

chemistry (CTCL047XX & CTCL024XX). The other two samples had been determined to be CD4+

tumours by the histopathologist although in both cases the tumour population determined by flow

cytometry showed increased side and forward-scatter, as well as large peak TCR-Vβ populations

(50% for CTCL007XX, 90% for CTCL052XX).

86



3.8 Discussion

A single-cell multi-parametric technique is necessary to identify the tumour population and ex-

plore the expression of associated surface markers. My work showed that flow cytometry is an

appropriate technology for this use as developed with the use of TCR-Vβ-specific antibodies, even

in skin samples.

Obtaining a single-cell suspension from the tissue is required for this technique, which presents

two problems. The first is having a technique which provides adequate cell numbers for analysis.

Cell numbers are variable and often very low using the overnight digestion technique, and this

limits the statistical power of downstream analysis. The technique itself may also affect the phe-

notype of the cells, although from my preliminary work this appears have a minimal affect on the

surface expression.

Many samples do not have an identifiable tumour population and there are potentially several

reasons for this. Firstly the repertoire of TCR-Vβ-specific antibodies is not complete, and the

sensitivity of the flow-cytometric technique is known to be less than that of the PCRmethod[171].

In addition, some samples demonstrated some CD3 downregulation, which may be associated

with parallel downregulation of the TCRαβ heterodimer to which the TCR-Vβ-specific antibodies

bind. As such the tumour population is not identifiable by sequential gating or by the clonogram.

Indeed, as seen in Figure 3.6, many samples did have a large population of cells which fell into

the lymphocyte gate but nonetheless expressed no tested markers. Defective production of the

TCR with concurrent CD3 downregulation has been observed in this disease[192]. Finally, this

technique is only valid for a tumour population large enough to result in a signal in the clonogram,

as smaller populations will not be observed against either the reactive T cells within the same

TCR-Vβ family or other TCR families. This is due to the antibodies only being able to identify

families of TCR receptor rather than the specific TCR sequence.
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TCR-Vβ-specific antibodies identified the tumour population in 43% of patients. For these

samples I was therefore able to clearly identify ‘reactive’ CD4+ andCD8+T cells within the tumour

infiltrating lymphocytes or peripheral blood and as such this approach opened up a range of new

opportunites for downstream analysis.
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Chapter 4

Analysis of the Phenotype of Tumour

Infiltrating Lymphocytes in Mycosis

Fungoides

4.1 Introduction

The importance of the immune response in mycosis fungoides is a topic of considerable interest

and large numbers of reactive T cells are typically observed within the tumour microenviron-

ment[148]. These TIL have previously been suggested to contribute to an immunosuppressive

microenvironment[193], and may even mediate a systemic immunosuppressive effect. T cell ‘ex-

haustion’ is an established concept in cancer progression and has prompted successful therapies

through checkpoint blockade[82]. Given my success in using TCR-Vβ-specific antibodies to sepa-

rate tumour and reactive T cell populations I was interested in assessing the extended phenotype

of reactive T cells and comparing this to the tumour population.
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4.2 Methods

Biospies obtained from consenting patients were dissociated using the overnight digestion tech-

nique, filtered into a single cell suspension and washed. A portion of the sample was used to de-

termine clonotypy using all 24 TCR-Vβ antibodies. If clonotypy was determined, the clonotypic

TCR-Vβ antibody was selected for the phenotyping flow cytometry panels, allowing tumour-TIL

discrimination (see Tables B.4, B.5, B.6 & B.7). If the sample was not-clonotypic, only the CD8

populations were retained for analysis in these panels. Some polyclonal samples were analysed

in further panels (Tables B.9, B.10 & B.11) with TIL populations identified by CD7 expression and

polyclonality.

4.3 The Memory Phenotype of Tumour Infiltrating

Lymphocytes in Mycosis Fungoides

The memory phenotype of T cells was assessed in peripheral blood and TIL CD4+ and CD8+

populations (Figure 4.1), using anti-CCR7 and anti-CD45RA antibodies to classify T cells in TN

(CD45RA+ CCR7+), T central memory (TCM) (CD45RA- CCR7+), TEM (CD45RA- CCR7-) & T ef-

fector memory RA (TEMRA) (CD45RA+ CCR7-) populations.
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Figure 4.1: a. Memory populations of CD4+ and CD8+ T cells in blood and skin (TIL only). b.

Comparison of naive and effector memory populations in blood versus skin (TIL) demonstrate the

increase in effector cells in skin TIL (p values calculated by MWW test). N: Naive, CM: Central

memory, EM: Effector memory, EMRA: Effector memory RA

TIL within the tumour clearly have a different memory profile to those in peripheral blood,

with under-representation of naive cells, slightly increased central memory and significant over-

representation of the effector memory phenotype for both CD4 and CD8 (p-value 0.03 and 0.01

respectively, MWW test). This suggests that T cells are activated and potentially involved in an

adaptive immune response at the site of disease.

To investigate this further, I examined the immune checkpoint receptor expression of TIL and

compared it to blood.
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4.4 The Profile of Immune Checkpoint Expression on Tumour

Infiltrating Lymphocytes

I next went on to examine the pattern of expression of a range of immune checkpoint proteins

on TIL populations within skin and on blood samples. In particular I utilised antibodies against

PD-1, PD-L1, PD-L2, FasR, FasL, tim-3, galectin-9, TIGIT, MHC-I, HLA-DR, LAG-3.

Figure 4.2: Immune checkpoint receptor expression on PB and TIL in CD8 (blue) and CD4 (green)

T cell populations. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical

test is MWW.

TIL populations were found to have marked and significantly increased expression of immune

checkpoint receptors PD-1, TIM-3, Fas & TIGIT (Figure 4.2). The expression of immune check-

point receptor proteins is often upregulated on recently activated T cells but a profile of sustained

expression of checkpoint molecules on chronically activated cells has been characterised as a state

of functional ‘exhaustion’[91].
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Figure 4.3: MHC-I and MHC-II/HLA-DR show marked increase in expression on TIL vs PB. NS: P

> 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is MWW.

I was also interested in assessing the expression of MHC-I and MHC-II (HLA-DR) molecules

on the T cell subsets as these are indicative of an activated state. Of interest, these were increased

on TIL populations, further suggesting a state of local activation.
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Figure 4.4: Expression of immune checkpoint ligands on T cells in PB and TIL. CD8+ T cells are

show in blue and CD4+ T cells in green. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****:

P ≤ 0.0001. Statistical test is MWW.

As well as the immune checkpoint proteins, I proceeded to determine the expression of check-

point ligands. As such I next included antibodies against PD-L1, PD-L2, FasL, Galectin-9 & LAG-3.

Of note, the immune checkpoint ligands did not generally show increased expression on TIL com-

pared to PB (Figure 4.4). There is some increased expression of PD-L1 on TIL CD8 compared to

PB CD8, but expression levels are already low compared to the CD4 population. There is also

significant increase in Galectin-9, although this is a small effect size compared with the overall

pattern of expression.
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4.4.1 Immune Checkpoint Co-Expression

Figure 4.5: TIL show significantly increased co-expression of immune checkpoint receptors, in

keeping with the T cell exhaustion phenotype. a. Percentage co-expression of PD-1 and TIGIT in

PB & TIL for CD4 and CD8. b. Ratio of co-expression to single-expression in PB vs TIL in CD4

and CD8 populations. Statistical test is MWW

As co-expression is a common feature of the exhausted T cell phenotype, I assessed the combina-

torial pattern of expression of checkpoint proteins. The co-expression of PD-1 and TIGIT was of

particular interest, and was available on the same panel for multiparametric assessment (Figure

4.5). TIL showed increased co-expression of PD-1 and TIGIT on both CD4+ (33.6% vs 5.2%) and

CD8+ T cells (35.1% vs 8.8%) compared to peripheral blood. As checkpoint receptor expression

was higher in TIL, the ratio of co-expression to single-expression was also measured. This also

showed significantly increased co-expression in TIL compared to PB.
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4.4.2 Immune Checkpoint Expression by Memory Phenotype

The changes in the immune checkpoint profile of T cells could, in part, be explained by the changes

seen in the memory profile of the T cells between PB and TIL (Figure 4.1). To investigate this

possibility, I measured immune checkpoint receptor expression (PD-1, TIGIT, FasR, TIM-3 &HLA-

DR) on each memory phenotype of the T cell subsets, and compared TIL with PB.

Figure 4.6: Immune checkpoint receptor expression varies by memory subset, particularly for PD-

1, TIGIT on CD8, FasR and HLA-DR. Expression of PD-1, TIGIT, FasR, TIM-3 & HLA-DR on TIL

by T cell memory subtype for CD4 and CD8 populations. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***:

P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is Kruskal-Wallis.

The TIL population does show variation in checkpoint receptor expression by memory subset,

especially in PD-1, TIGIT (CD8+ only), FasR and HLA-DR (Figure 4.6). To see whether immune

checkpoint receptor expression and HLA-DR remained upregulated in TIL compared to PB within

the memory subsets, this was then compared on an individual basis for each immune checkpoint

receptor.
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Figure 4.7: PD-1 expression on T cell memory subsets for CD4 and CD8, comparing peripheral

blood against skin/TIL. N: naive, CM: central memory, EM: effector memory, EMRA: effector

memory-RA. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is

MWW.

Examining PD-1 expression (Figure 4.7) by memory subset demonstrates that significant PD-1

overexpression in TIL occurs in the CD8+ TCM and TEM population only. This suggests that the

upregulation of PD-1 in the CD4+ TIL population (see Figure 4.2) is due to the expansion of the

effector memory phenotype over naive.
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Figure 4.8: FasR expression on T cell memory subsets for CD4 and CD8, comparing peripheral

blood against skin/TIL. N: naive, CM: central memory, EM: effector memory, EMRA: effector

memory-RA. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is

MWW.

FasR expression (Figure 4.8) does not show significant increase in TIL populations compared

to PB when restricted to memory subsets. This suggests that the observed increase in FasR is

explained mostly by the shift in T cell memory profile between PB and TIL.
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Figure 4.9: TIGIT expression on T cell memory subsets for CD4 and CD8, comparing peripheral

blood against skin/TIL. N: naive, CM: central memory, EM: effector memory, EMRA: effector

memory-RA. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is

MWW.

TIGIT expression (Figure 4.9) appears to showmarked increased expression on TIL in all mem-

ory subsets for both CD4 and CD8 T cells, although significance was limited to naïve CD4, central

memory CD4, naïve CD8 and effector memory CD8.

99



Figure 4.10: TIM-3 expression on T cell memory subsets for CD4 and CD8, comparing periph-

eral blood against skin/TIL. N: naive, CM: central memory, EM: effector memory, EMRA: effector

memory-RA. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is

MWW.

TIM-3 expression shows less variation between the T cell memory subsets, and has signifi-

cantly increased expression on TIL compared to PB in central and effector memory CD4, as well

as central memory CD8.
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Figure 4.11: HLA-DR expression on T cell memory subsets for CD4 and CD8, comparing periph-

eral blood against skin/TIL. N: naive, CM: central memory, EM: effector memory, EMRA: effector

memory-RA. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001. Statistical test is

MWW.

Despite the large variation in HLA-DR expression between the T cell memory subsets (Figure

4.1), there was significantly increased HLA-DR expression in TIL compared to PB in all subsets

(Figure 4.11).
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Upregulation of surface markers in TIL occurs by changes within memory subsets as well as

changes in memory phenotype

Upregulation of immune checkpoint receptors in TIL populations compared to PB is explained

mostly by upregulation within the T cell memory subset, and this can be seen clearly in CD8+

PD-1 expression, CD4+ and CD8+ TIGIT expression, and in HLA-DR for both CD4+ and CD8+ T

cells. Changes in CD4+ PD-1 expression and FasR are explained mainly by shifts in the memory

profile between PB and TIL.

4.5 Uninvolved Skin

While an active immune response in tissue recruits T cells from PB, a large number of T cells

reside in the skin, and a comparison to the phenotype of these cells is also necessary. Two patients

consented to a 6mm skin punch biopsy of ‘normal’ skin, which was processed in the same fashion

as the disease samples.

It should be noted that uninvolved skin from patients is often not ‘normal’, as had been demon-

strated in studies which have compared uninvolved skin with skin from healthy donors[194],

finding a mononuclear cell infiltrate around vessels in the dermis, which demonstrated some epi-

dermotropism. In a psoriasis mouse model, uninvolved skin was transplanted into an unaffected

mouse, resulting in a psoriatic disease phenotype[195], suggesting the presence of pathological

passenger T cells in uninvolved tissue. For the purposes of this section, normal skin will refer

to uninvolved patient skin. It was not possible to obtain truly normal skin biopsies from healthy

donors as this was not covered by the project ethics.
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Figure 4.12: CD4+ and CD8+ T cell numbers per experiment, comparing punch biopsies taken

from diseased sites versus uninvolved skin.

There were two challenges to investigating uninvolved skin. Patients were reluctant to un-

dergo an extra biopsy of normal skin, and these biopsies had markedly less available cells to ex-

amine (Figure 4.12). Whereas from diseased skin we were able to run a median of 1206 CD4 and

357 CD8 cells per flow cytometry experiment, this dropped to 31 CD4 and 24 CD8 in uninvolved

skin. These cells were analysed using the same antibody panels as for PB and skin, examining

PD-1, TIGIT, FasR, TIM-3, MHC-I and HLA-DR expression (Figure 4.13).
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Figure 4.13: Uninvolved skin immune checkpoint receptor expression compared with PB and

TIL for CD4 and CD8 subsets. PB: Peripheral blood. TIL: Tumour infiltrating lymphocytes. NS:

Normal / uninvolved skin

Conclusions drawn from an n value of 2 with such low numbers are tentative, but the expres-

sion of immune checkpoint receptors on uninvolved skin T cells is seen in Figure 4.13. Visually,

uninvolved skin appears to have a phenotype similar to PB for PD-1, TIGIT, FasR and HLA-DR.

For TIM-3 and MHC-I, the uninvolved skin has a phenotype more similar to TIL.

4.6 Healthy Donor

While running concurrent patient PB (TCR-Vβ negative) provides a useful comparison for the

TIL and tumour phenotype, as well as adjusting for inter-sample and inter-patient variability, this

may be affected by the PB patient phenotype. To investigate this, I compared patient PB and TIL

with age-matched healthy donor PB (Figure 4.14).
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Figure 4.14: Healthy donor PB expression of immune checkpoint receptors (PD-1, TIGIT, FasR

and TIM-3), ligands (PD-L1, PD-L2) and MHC receptors against patient PB and TIL for CD4 and

CD8 populations. HD: healthy donor peripheral blood, PB: patient peripheral blood, TIL: tumour

infiltrating T lymphocytes. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001.

Statistical test is MWW.
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Interestingly, Healthy Donor (HD) expression of PD-1, FasR and HLA-DR has a value interme-

diate to patient PB and TIL. This may suggest that patient PB has an inverted expression profile

compared to the micro-environment, which could suggest either down-regulation of these recep-

tors, or migration of cells from PB into tissue. TIM-3 had higher HD expression than patient PB

(p = 0.004), but similar expression to TIL.

TIGIT demonstrates significant upregulation in TIL compared to HD (p = 0.0004). MHC-1

showed significantly lower expression in healthy donor. PD-L1 showed decreased expression in

patient PB for both CD4 and CD8 populations, as well as CD4 TIL.

Overall, there are some significant differences in HD PB, which likely represents a systemic

immune effect of disease present in the patient population. TIL vs PB comparisons remain valid,

but these differences may represent T cell migration to the tissue.

4.7 TIL Cytotoxic Profile

Another aspect of T-cell exhaustion other than high and co- expression of immune checkpoint

receptors is decreased function of the T cells. To investigate this, TIL were assessed for CD107a

expression, and PMA/ionomysin-stimulated TIL were assessed for IFN-γ, granzyme-B & IL-2 pro-

duction.
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Figure 4.15: CD107a, granzyme-B & IL-2 production in Peripheral Blood (PB) and Tumour Infil-

trating Lymphocytes (TIL). Statistical test is MWW.

TIL demonstrated recent antigen encounter, with significant upregulation of CD107a in both

CD4 (8.7% vs 0.8% p = 0.021) and CD8 (12% vs 2.7% p = 0.045) (Figure 4.15a). Potentially, as a

result of this, there is significantly decreased Granzyme-B production in TIL (Figure 4.15b). The

ability to produce IL-2 was actually increased in CD8 TIL compared to PB (Figure 4.15c, Not

Significant (NS)), though significantly decreased in CD4 (Figure 4.15c, 12% vs 52%, p = 0.0013).

Also of interest is that spontaneous IL-2 production occurred without stimulation for CD8 (37%)

but was not observed for CD4 (2%).
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Figure 4.16: IFN-γ production in Healthy Donor (HD), patient Peripheral Blood (PB) & Tumour

Infiltrating Lymphocytes (TIL), for CD4 (green) and CD8 (blue) T cell subsets. Statistical test is

Kruskal-Wallis.

IFN-γ production showed large variability between patients (Figure 4.16), with CD8TIL demon-

strating 43% production, which was similar to patient PB but appeared less than HD PB (58%, NS).

22% of CD4 TIL was productive of IFN-γ, which seemed higher than PB (11%, NS).

TIL in MF appear to be encountering antigen, and have significantly decreased production

of granzyme-B. CD4 IL-2 production is significantly decreased, whereas CD8 IL-2 production

appears to be retained. There is high variability in IFN-γ production between patients, but no

significant decrease in production.

4.8 TREG Population is Expanded in TIL

Intra-nuclear staining using fixation and permeabilisation was successful in retrieving enough

cells for analysis (Figure 3.2), and was effective in identifying CD25+ FOXP3+ cells (Figure 4.17).

108



Figure 4.17: Assessment of TREG population in tumour infiltrating lymphocytes. A. Peripheral

blood CD4 population CD25 vs FOXP3 staining, with quadrant gate. B. TIL CD4 population CD25

vs FOXP3 staining, with quadrant gate. C. Percentage TREG of respective T cell population demon-

strating significantly increased TREG in CD4 TIL population vs CD4 PB (p = 0.009 paired MWW).

The CD4 TIL compartment showed an increased proportion of TREG (14.5% vs 5.8% median,

p-value = 0.009 paired MWW), with some samples approaching 30%.

4.9 Leukaemic Involvement of Mycosis Fungoides

A subset of patients (n = 4) had significant detectable blood involvement. It is conceivable that

this patient group may have a different PB or TIL phenotype compared to those without blood

involvement. To investigate this, I compared patients with blood involvement against those with-

out, looking across PB and TIL expression of PD-1, TIM-3, FasR, TIGIT, PD-L1, PD-L2, MHC-I,

HLA-DR, IFN-γ production & TREG percentage.
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Figure 4.18: Blood involvement of disease, comparing surface marker expression, TREG and IFN-γ,

in PB & TIL of CD4 and CD8 T cell subsets. The CD4 comparision required clonotypic samples,

resulting in decreased statistical power. NS: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****:

P ≤ 0.0001. Statistical test is MWW. PB: peripheral blood, TIL: tumour infiltrating lymphocytes

This analysis (Figure 4.18) showed significant upregulation of PD-1 (p = 0.008), FasR (p = 0.03),

TIGIT (p = 0.048), MHC-I (p = 0.038) and HLA-DR (p = 0.005) in the PB of CD8 T cells found in

patients with significant blood involvement. This is a picture seen in the TIL when compared to

PB, which suggests that CD8 in these cases may be tumour-specific, and that this is a phenotype

observed in a tumour-encountering T cell.

The phenotype is somewhat reflected in the TIL population as well as the CD4 population

(though not significant, likely due to the lower n numbers of clonotypic samples).
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4.10 Diversity of TCR-Vβ Repertoire

To investigate the diversity of the TCR-Vβ repertoire within the microenvironment, the TCR di-

versity of the micro-environment was measured from the clonogram (TIL population), and com-

pared to healthy donor peripheral blood (Figure 4.19).

Figure 4.19: TCR-Vβ Simpson’s diversity of CD4+ and CD8+ populations in patient TIL versus

healthy donor PB. Statistical test is MWW.

There was a slight decrease in CD8 diversity compared to CD4 (0.929 vs 0.936, NS) but TIL had

similar diversity to HD PB.While it might be expected that TIL demonstrates increased oligoclon-

ality, it may be that the Vβ-family antibody technique does not permit the resolution necessary

to observe this.

4.11 Trends of Tumour Infiltrating Lymphocyte with

Disease Progression

To investigate the effect of the TIL phenotype on disease status, the cohort was divided into the

majority clinical stages, plaque versus tumour. For CD8+ data, n = 18 for plaque and n = 18 for
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tumour, for CD4+ data, n = 11 for plaque and n = 8. N-values were lower for memory and cytokine

assessment. The phenotype was compared between these clinical stages.

Memory phenotype

Figure 4.20: Memory profile of TIL in plaque and tumour-stage disease. T naïve (TN). T central

memory (TCM). T effector memory (TEM). T effector memory RA (TEMRA).

To assess memory phenotype, the percentage of TN, TCM, TEM & TEMRA of CD4+ and CD8+ TIL

subsets were compared to disease stage (Figure 4.20. No trends were observed in the memory

profile of the micro-environment with disease progression.
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Immune checkpoint phenotype

To investigate the question of whether T cell exhaustion contributes to disease progression, im-

mune checkpoint markers and ligands, MHC-I, HLA-DR, IFN-γ and TREG populations were as-

sessed between plaque and tumour-stage disease on PB, TIL CD4+ and CD8+ populations (Figure

4.21).

Figure 4.21: Comparison of PD-1, TIGIT, FasR, TIM-3, PD-L1, PD-L2, MHC-I, HLA-DR, IFN-γ

production, TREG percentage on PB and TIL of CD4+ and CD8+ T cell subsets, when compared by

biopsy stage of lesion (plaque versus tumour). Statistical test is MWW, not corrected for multiple

testing.

Immune checkpoint receptor expression remained surprisingly consistent when compared

across stage of disease. Not correcting for multiple-testing, there was significant increase in PB

CD8 TIGIT expression (p = 0.03) and also CD8 PB TREG percentage. Given the small effect size

and loss with with multiple correction testing, these are unlikely to be physiologically significant
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results. Given n number is 18 for each group in CD8+ population, it is more surprising that such

little effect on T cell exhaustion is seen with disease stage.

Figure 4.22: Comparison of PD-1, TIGIT, FasR, TIM-3, PD-L1, PD-L2, MHC-I, HLA-DR, IFN-γ

production, TREG percentage on PB and TIL of CD4+ and CD8+ T cell subsets, when compared by

clinical stage of lesion (IIb versus III). Statistical test is MWW, not corrected for multiple testing.

In order to assess whether the overall disease stage of the patient has a stronger association

with the TIL phenotype, samples were divided by the T stage of the patient (see Table 1.2) into

T2b and T3, which represents the overall disease state of patient. Again, this demonstrated a

remarkably similar phenotype between clinical stages, with only a significant increase in PB FasR

expression (p = 0.03), and PB CD4+ TREG fraction.

In both analyses of biopsy and clinical stage, the small differences seen were observed in

PB. MF is thought to have a systemic effect on immunity with progressive disease[196], which

may explain the small changes seen here. What we do not see evidence for is any progression
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of exhaustion with disease stage. This would suggest that T cell exhaustion occurs at an earlier

stage of the disease than we are observing, and is not a factor in later disease progression.

TCR diversity

The Simpon’s diversity index of the TCR family was assessed by flow cytometry and compared

between plaque and tumour-stage disease for CD4+ and CD8+ T cell populations.

Figure 4.23: Simpson’s diversity of CD4+ and CD8+ TIL populations split by plaque- versus

tumour-stage disease, compared to healthy donor PB. Statistical test is MWW.

No differences in diversity occurred with advancing disease (Figure 4.23).

CD107a expression

CD107a expression is a surrogate of recent antigen encounter and degranulation. We have already

observed significantly increased CD107a in the TIL population compared to PB (Figure 4.15). To

assess whether this antigen encounter changes with disease stage, I compared the plaque- versus

tumour-stage and CD107a expression.
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Figure 4.24: CD107a surface expression in CD4+ and CD8+ TIL vs biopsy stage. Statistical test is

MWW.

Remarkably, CD107a expression decreases with progression for both CD4 (19% to 1.7%, p =

0.04) and CD8 (20% to 4.0%, glsns) TIL populations. This would suggest TIL is encountering less

antigen in later disease, which is paradoxical given advanced disease usually has a higher ratio of

tumour to TIL.

4.12 Discussion

What has been demonstrated is a flow cytometric technique capable of separating the tumour and

TIL population on a cellular level, which is the only method by which the ratio of tumour to TIL

can be controlled for. This is essential to understanding the true phenotype of the TIL population.

What this reveals is a surprisingly homogeneous population with these features:

• Predominantly TCM and TEM

• An expanded TREG population
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• Overexpression of immune checkpoint receptors

• High expression of MHC-I and MHC-II

• High co-expression of immune checkpoint receptors

• Recent antigen encounter as suggested by CD107a expression

• Decreased cytotoxicity as suggested by granzyme-B

• Decreased IL-2 production in CD4

• Preserved IL-2 production in CD8

• Retained, but variable, IFN-γ production

• Tumour blood involvement may push PB towards a TIL phenotype

• TCR diversity is not dissimilar to peripheral blood

T cell ‘exhaustion’ was originally described in CD8 T cells responding to viral infections in

mice[89, 90]. The concept has been applied to human cancer, and is believed to play a key role in

the establishment of cancer. What we have shown is that both CD4 and CD8 TIL in MF demon-

strate some of the features of T cell exhaustion, such as upregulation of immune checkpoint re-

ceptors, high co-expression, decreased granzyme-B and CD4 IL2 production. However, they do

still appear to retain some functional activity, with CD8 IL2 production preserved, and both CD4

& CD8 capable of producing IFN-γ.

The TCR repertoire (as judged by the antibody profile) appears broadly similar to HD PB

(Figure 4.19), which may suggest that the TIL response is not as oligoclonal as we would expect.

While CD107a expression is markedly increased in TIL, it is still expressed on a minority of T cells

(Figure 4.15a), which may suggest that only a subset of T cells are engaging with antigen, and the
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rest may be a bystanding reactive T cell infiltrate not engaged with tumour. We address both of

these concepts in a later chapter with higher resolution TCR profiling.

The idiom of T cell exhaustion is that tumour growth occurs due to dysfunction of T cells,

though the evidence for this mechanism being the cause rather than an effect of cancer estab-

lishment in an immunocompetent host is limited[94]. An alternative hypothesis is that T cells

engaged in a chronic adaptive immune response take on a phenotype which allows for disease

control without significant collateral tissue damage. Treatment of cancer using immune check-

point inhibitors are frequently limited by toxicity related to immune over-activation[197].

We did not find evidence of further T cell exhaustion with disease progression in MF (Figures

4.21, 4.22), which may suggest that T cell exhaustion occurs earlier on in the disease process.

Indeed, the early T cell exhaustion papers noted exhaustion occurring within days of antigen

exposure[89, 90].

TIL appears to encounter less antigen with disease progression (Figure 4.24), which is espe-

cially surprising as with later stages of disease there tends to be a higher tumour to TIL ratio.

This may suggest that advanced disease is characterised by a change in tumour antigenicity and

resulting immune escape.
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Chapter 5

The Tumour Phenotype of Mycosis

Fungoides

5.1 Introduction

Little is known of the immune phenotype of mycosis fungoides[166, 85, 167], which likely relates

to the difficulty in obtaining skin biopsies of this rare disease, and differentiating between the

similar TIL and tumour populations. The technique of utilising a clonogram on fresh MF biopsies

to determine the tumour population demonstrated successful identification of the TIL popula-

tion and revealed a surprisingly homogeneous phenotype across the study population. Using

the tumour-specific TCR-Vβ antibody with multiparametric flow cytometry allows for detailed

immunophenotyping of the tumour cells, with concurrent assessment of the TIL population.
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5.2 Methods

Biopsies obtained from consenting patients were dissociated using the overnight digestion tech-

nique, filtered into a single cell suspension and washed. A portion of the sample was used to de-

termine clonotypy using all 24 TCR-Vβ antibodies. If clonotypy was determined, the clonotypic

TCR-Vβ antibody was selected for the phenotyping flow cytometry panels, allowing identification

of the tumour population (see Tables B.4, B.5, B.6 & B.7). The phenotype of this population was

compared initially with other T cell subsets. For further analysis, the skin T cell subset pheno-

types were normalised against the concurrently analysed PB T cell population using the inverse

hyperbolic sine fold change. Missing values (3.4%) were imputed using the random forest algo-

rithm[198]. Principal component analysis was performed on each skin T cell subset by patient.

Clustering of patients was performed using the 𝑘-meansmethod. tSNE dimension reduction of the

cellular population was performed on compensated and transformed flow cytometry data gated

onto viable CD3+ T cells. Survival analysis was performed in R using the survival library.

120



5.3 The Tumour Immune Checkpoint Phenotype

Figure 5.1: Surface expression (MFI) of immune checkpoint receptors PD-1, TIGIT, FasR & TIM-3,

on T cell populations compared to tumour (yellow). Statistical test is Kruskal-Wallis. HD CD4:

Healthy donor CD4+ peripheral blood, PB CD4: Patient peripheral blood CD4+, TIL CD4: Patient

CD4+ tumour infiltrating lymphocytes, TIL CD8: Patient CD8+ tumour infiltrating lymphocytes,

PB CD8: Patient peripheral blood CD8+, HD CD8: Healthy donor CD8+ peripheral blood.
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Expression of PD-1, TIGIT, FasR & TIM-3 were measured on the tumour cell populations and

compared with patient PB, TIL and HD CD4+ and CD8+ T cell populations (Figure 5.1). Interest-

ingly, this revealed a tumour phenotype which had a median not dissimilar to CD4 TIL or CD8

TIL, but with marked heterogeneity, especially seen in PD-1, TIGIT and FasR.

Despite the heterogeneity, the PD-1 expression on the tumour population was significantly

upregulated compared to PB CD4 or HD CD4 (p < 0.001 & p = 0.013), but not TIL CD4. TIGIT

expression was significantly upregulated compared to PB CD4 (p = 0.01) but not compared to TIL

CD4 or HD CD4. FasR did not show any significant differences with CD4+ populations. TIM-3

did demonstrate significant upregulation compared to both PB CD4 and TIL CD4 (p = 0.0001 & p

= 0.014). All statistical tests were MWW.
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Figure 5.2: Surface expression (MFI) of immune checkpoint ligands PD-L1, PD-L2, FasL &

Galectin-9, on T cell populations compared to tumour (yellow). Statistical test is Kruskal-Wallis.

Next, the expression of immune checkpoint ligands PD-L1, PD-L2, FasL and Galectin-9 was as-

sessed on tumour and compared to the other T cell populations (Figure 5.2). Surprisingly, tumour

did not appear to over-express immune checkpoint ligands. PD-L1 also showed large variation,

but otherwise had expression similar to the CD4 population. There was no consistent upregula-

tion of PD-L2 or FasL. There were some variations in GAL-9, but these were of a small effect size,
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and the flow cytometry histograms did not show convincing differences.

PD-L1 did not show any statistically significant differences from CD4+ T cell populations.

PD-L2 expression showed slight upregulation compared to PB CD4 (p = 0.04), but not compared

to TIL CD4 or HD CD4. FasL did not show any significant differences between the other T cell

populations. Galectin-9 did show significant upregulation compared to HD CD4 (p = 0.003), PB

CD4 (p = 0.0012) & TIL CD4 (p = 0.017), though the effect size was very small, and this result is

unlikely to be physiologically significant. All statistical tests were MWW.

Figure 5.3: MFI surface expression of MHC-1 & HLA-DR, on each T cell population compared to

tumour. Statistical test is Kruskal-Wallis.

The expression of MHC-I and MHC-II/HLA-DR was assessed on the tumour population. Ex-

pression of MHC-I was found to be preserved in the observed tumour population (Figure 5.3),

which suggests that MF does not attempt immune evasion by MHC-I downregulation. In fact,

MHC-I expression on tumour was significantly increased compared to PB CD4 (p = 0.0003) and
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HD CD4 (p < 0.0001). HLA-DR expression is highly variable, with some samples expressing a

markedly higher surface expression compared to PB. Despite this variability, the tumour popula-

tion showed significant upregulation compared to PB CD4 (p < 0.0001) and HD CD4 (p = 0.016),

but not TIL CD4.

5.4 The Tumour Population is Heterogeneous

Figure 5.4: The standard deviation of surface markers were compared across each T cell subset.

Statistical test is Wilcoxon

Despite there being some significant trends in tumour expression compared to other T cell pop-

ulations, the increased variability is the most striking feature of the tumour phenotype. To test

this, the standard deviation was taken of each surface marker within each T cell population. A

paired analysis shows that the tumour population is significantly more variable (across the study
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population) than the CD4 TIL (p = 0.0025) and CD8 TIL (p = 0.0025) populations (Figure 5.4). This

suggests that there may not be consistent regulation changes in the immune phenotype of the

tumour population, and there may be an underlying structure to surface expression.

5.5 Principal Component Analysis of Tumour Phenotype

The high variability of the tumour phenotype may be due to increased variation of surface mark-

ers, or the result of several tumour phenotypes. As we are measuring several continuous param-

eters (features) on several samples, the data was suitable for a multidimensional approach which

can help analyse, cluster and visualise the structure of the data. For this descriptive analysis, an

involved skin sample from a patient with SS was included.

PCA allows visualisation of multidimensional data, compressing orthogonal dimensions of

largest variance into new components, ordered by variance[176]. A more in-depth discussion of

this technique can be found in Subsection 2.9.5. SVD was used to obtain the PCs, of which PC1

explained 69.6% variance, PC2 explained 11.1%, PC3 explained 8.2% and PC4 explained 4.2%. The

purpose of using PCA in this situation is to allow the structure of the tumour phenotype data to

be visualised. Taking the first two components allows us to display 80% of the variance in two

dimensions, suitable for plotting.
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Figure 5.5: Principal Component (PC)1 plotted against PC2, using fold-expression (versus PB) of

each patient’s surface marker profile for the T cell populations TIL CD4 (green), TIL CD8 (blue)

& tumour (yellow).

PCA analysis clearly demonstrates remarkable homogeneity of the TIL populations when

compared to tumour (Figure 5.5). Tumour is markedly heterogeneous, appearing to clustering

into three groups. Two of these groups have a clearly different phenotype to TIL, whereas one

group has some similarity with TIL.
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Figure 5.6: Fold-change (FC) expression of tumour population compared to PB for surface markers

which vary across the demographic. Red represents upregulation, blue downregulation. Scales

limited to -1 to +2.

To understand the phenotypic groups of the tumour population, I represented the fold-change

expression of HLA-DR, PD-L1, FasR, PD-1, TIGIT & MHC-I by a colour scale (red = upregulation,

blue = downregulation). This analysis shows co-expression of HLA-DRV HIGH, PD-L1 & FasR in

some samples (bottom left corner), versus HLA-DRHIGH, PD-1 & TIGIT in another (larger central

group). On the right, the samples are generally not overexpressing surface antigens, with HLA-

DRLOW and FasRLOW.
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5.6 Clustering of Tumour Phenotype

In order to further analyse the tumour phenotype, the samples were classified into clusters using

the 𝑘-means method. The clusters were then used to create a heatmap of these groups, coloured

by fold-change (red: increased, blue: decreased), with markers arranged by hierarchical clustering

(Figure 5.7).
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Figure 5.7: Clustered heatmap demonstrating the three tumour populations with respective fold-

change expression (compared to PB). Red = upregulation, blue = downregulation.

The heatmap clearly highlights the differences between these groups, with an ‘evasive’ group

at the top with very high HLA-DR, FasR & PD-L1, a large ‘exhausted’ group with moderately
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increased HLA-DR, PD-1, MHC-I & TIGIT, and a small ‘cold’ group with decreased HLA-DR, FasR

& PD-L1.
Evasive Very high expression of HLA-DR, increased expression of FasR& PD-L1. PD-1 and TIGIT

are at similar levels to PB.

Exhausted Up-regulation of MHC-I, TIGIT and & PD-1. Moderate upregulation of HLA-DR, but

decreased PD-L1 expression compared to PB. FasR expression is variable in this group.

Cold Downregulation of HLA-DR, FasR and PD-L1. Continues to express MHC-I at similar levels

to PB.

Table 5.1: Description of the three tumour phenotypes identified.

The evasive phenotype is termed due to its immunosuppressive phenotype, with high expres-

sion of PD-L1 and TIGIT. The concept of a locally immunosuppressive tumour is seen commonly

in other cancers[199], and is thought to play a role in disease progression of MF[166]. However,

PD-L1 upregulation forms a minority of my study population. It is also associated with HLA-DR

expression, a protein normally only expressed on professional antigen presenting cells, but which

is seen aberrantly expressed in other cancers. In melanoma, HLA-DR expression is associated

with response to PD-1 blockade[200], and in colorectal cancer, very high expression is associated

with a poorer outcome[201]. These findings may suggest that immune checkpoint therapy will

have use in a subset of MF patients.

The exhausted phenotype makes up the largest demographic, and has a phenotype similar to

the TIL, with high expression of PD-1, TIGIT, moderate HLA-DR expression, and variable FasR.

Interestingly, while PD-L1 tends to be less than the CD4+T cell PB counterpart, it is not necessarily

absent on the tumour or in the microenvironment. The concurrent high expression of PD-1 would

imply that the tumour is receiving an inhibitory signal through PD-1 slowing proliferation. This
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phenotypemay be the result of a chronic TCR activation state seen inMF[202, 203], with PD-1 and

TIGIT expression occurring simply as side-effects. Logically, immune checkpoint therapy in this

cohort could result in release of the tumour population and sudden progression of the disease,

and, indeed, a skin flare is observed in around 25% of patients treated[204], though it does not

appear to continue and some do appear to respond later.

The cold phenotype does still have enough markers present for this population to be identi-

fied as malignant and a T cell, though in the flow cytometry plots, progressive downregulation of

both CD3 and TCR-Vβ could be seen to be occurring. I hypothesise this phenotype is decreasing

surface expression to reduce immunogenicity[71], and this may explain why there were several

experiments that could not identify a tumour population - these could be the progression of the

cold phenotype in a tumour population to the point where they are not identifiable on flow cytom-

etry. Loss of T cell markers is a common diagnostic challenge in systemic T cell lymphoma, with

loss of TCR and CD3 seen in over 60% of angioimmunoblastic T-cell lymphoma, for example[205].

This can also be seen in cutaneous T cell lymphoma, with one study demonstrating dim CD3 in

11/44 (25%) patients which correlated perfectly with TCR-αβ expression[206]. More generally, a

‘cold’ phenotype has been described in other cancer types, with disease progression associated

with antigen downregulation in breast cancer[207], and a lack of infiltrating CD8 T cells associ-

ated with a poor outcome in pancreatic cancer[208]. MHC-I downregulation has been observed

in colorectal carcinoma, and interestingly reduction, but not complete loss, is associated with a

poorer prognosis[209].

FasR downregulation was seen in both the cold phenotype and part of the exhausted pheno-

type. This is a well recognised immune evasion mechanism by MF, and is known to impart a

poorer prognosis[144, 145]. FasR is a known death receptor, which is known to play an important

role in the regulation of the adaptive immune response. In my own surface staining, I observed

high levels of FasR in the TCM, TEM & TEMRA populations (Figure 4.8). There is, however, some
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evidence that FasR may play a tumourigenic role in some cancers, with some signalling necessary

to sustain cancer growth[210].

5.7 Comparison of Cluster Phenotype with TIL Phenotype

Although TIL phenotype shows less variation than tumour (Figure 5.5), I investigated the TIL

population by cluster to see if the TIL phenotype followed or constrasted with the tumour phe-

notype.

Figure 5.8: Fold-change expression of tumour, CD4 & CD8 TIL compared to PB for surface ex-

pression of immune checkpoint receptors, compared by cluster. Statistical test is Kruskal-Wallis.

CD4 TIL appears to follow the phenotype of tumour in PD-1, PD-L1, MHC-I and HLA-DR.

Variations in TIL between clusters is less than in tumour, and does not meet significance except
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in the case of FasR in CD4 TIL.This demonstrates again the TIL population is fairly homogeneous,

but the small amount of variation seen may take the phenotypic lead from tumour, which may

suggest a cytokine driver for these surface markers.

There is an interesting discrepancy in FasR expression. CD4 TIL expression of FasR in the

exhausted group is high, whereas it can be down-regulated in the tumour population. This dis-

crepancy is not seen in the cold phenotype. Genetic alterations to the FAS gene are frequently

found in MF[211, 212, 145]. As the tumour cell remains a CD4+ T cell, it should continue to re-

spond to the microenvironment in a way similar to the TIL population. Genetic loss of the FAS

gene may explain how tumour can down-regulate FasR while TIL FasR expression remains high.

5.8 Confirmation of Phenotype with Flow Cytometry Data

While the effect size of tumour surface phenotypes appear to be large, I proceeded to confirm

that these results reflected real changes in the compensated flow cytometry data by plotting a

histogram of each T cell population for a representative patient.

Figure 5.9: Histogram of surface markers by population on sample CTCL036XX01. (purple: un-

stained, red: PB CD4, green: TIL CD4, blue: tumour, orange: TIL CD8.)
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Using the clonotypic sample CTCL036XX01, we can see that the analysed flow cytometry

data (Figure 5.9) correlates with the heatmap expression (Figure 5.7), with a tumour phenotype

expressing low FasR, high PD-1, similar PD-L1, high TIGIT compared to PB CD4. It can also be

observed that TIM-3 expression occurs mainly on TIL CD8.

Figure 5.10: Expression of HLA-DR by population on samples CTCL024XX01 (low),

CTCL036XX01 (high) & CTCL017XX01 (very high). (purple: unstained, red: PB CD4, green: TIL

CD4, blue: tumour)

HLA-DR expression on three samples from representative clusters can be seen in Figure 5.10.

This confirms the findings seen on the PCA and heatmap, demonstrating HLA-DRLOW, HLA-

DRHIGH & HLA-DRV HIGH. The similar expression of HLA-DR on TIL can also be seen, although

the wide spread suggests some intra-sample heterogeneity.

5.8.1 tSNE Analysis of Clusters

t-Distributed Stochastic Neighbour Embedding (tSNE) is a machine learning dimension reduction

method that attempts to maximise the local structure of high dimensional data on a low dimen-

sional representation. It creates a representation of the high-dimensional data as a probability

distribution of similarity, which is then represented in a low dimensional form (2 dimensions in
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this case) by iteratively adjusting the low dimensional representation to make the distribution

similar to the high dimensional form. This allows visualisation of high dimensional data in a way

that is not possible using histograms, dotplots or PCA.
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Figure 5.11: Multiplexed tSNE plots of viable CD3+T cells from biopsies ofMF. Each dot represents

a CD3+ T cell. The tSNE dimension reduction is a representation of the high dimensional flow

cytometry data, the x and y axis do not represent any quanitity. Cells which appear close together

on this plot have a similar phenotype, whereas cells which are far apart, have a distant phenotype.

The tumour, CD4 TIL, CD8 TIL populations are clearly delineated by this method. A. Evasive

phenotype. Red: PD-1 expression, Blue: PD-L1 expression. B. Exhausted phenotype. Red: PD-1

expression, Blue: PD:L1 expression. C. Cold phenotype. Blue: TIM-3 expression. Green: HLA-DR

expression.

The expression of PD-L1 in the evasive phenotype can be clearly observed by the blue coloura-

tion of the tumour cells in Figure 5.11a. The lack of PD-1 expression means that the tumour cells
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are coloured blue (representing PD-L1 expression) rather than purple. In the exhausted pheno-

type, the tumour cells are red, as they express high PD-1 and low PD-L1. The cold phenotype is

coloured by HLA-DR and TIM-3 expression, demonstrating the low HLA-DR expression in green

on the tumour cells.

Also of interest are the TIL, which show variable expression of both PD-1 and PD-L1 (Fig-

ure 5.11a and 5.11b), and some co-expression (magenta), and have a heterogeneous distribution

within the microenvironment on a cellular level. This contrasts to the TIL phenotype on a pop-

ulation level, which is homogeneous. The tumour phenotype demonstrates the inverse, a more

homogeneous phenotype on a cellular level, but a heterogeneous phenotype between patients.

5.9 Asssessment of a TREG Phenotype in Tumour

It has previously been reported that CTCL is a malignant proliferation of TREG cells[44]. To assess

this, intranuclear staining of FOXP3 was combined with CD25 expression to assess whether the

tumour population expressed a TREG phenotype, and a representative sample is shown in Figure

5.12.

138



Figure 5.12: Plot of CD25 against FOXP3 expression in PB CD4, TIL CD4 & tumour T cell popu-

lations on an intranuclear flow cytometry panel, with quadrant gating determined by the CD8+

population. From sample CTCL036XX01.

Observing the percentage of TREG of the overall cohort, it can be seen that CD25+ FOXP3+

TREG is generally found in the TIL CD4 population rather than tumour (Figure 5.13), and there is

significantly less TREG found in the tumour population compared to TIL CD4 (p = 0.003, MWW

test).
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Figure 5.13: CD25+ FOXP3+ TREG as a percentage of the respective T cell population of HD CD4,

PB CD4, TIL CD4 and tumour. Statistical test is MWW.

Of note, one sample (CTCL017XX01) did show high expression of FOXP3 of 27%, though with-

out a CD25+ phenotype. It may be that this phenotype is seen in a small subset of patients.

5.10 Tumour Phenotype and Clinical Outcome

While digestion and use of anti-TCR-Vβ is ideal for measuring multi-parametric markers on the

tissue T cells, it is less likely to represent the cell numbers as accurately, given the duration of lab-

oratory processing required. Nonetheless, I proceeded to assess the size of the T cell populations,

and found a clear trend for higher tumour percentages and a lower TIL:tumour ratio in later stage

disease (Figure 5.14).
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Figure 5.14: T cell population sizes by biopsy stage. A. Tumour percentage of total CD3 by biopsy

stage. B. Ratio of CD4 to tumour by biopsy stage. C. Ratio of CD8 to tumour by biopsy stage.

To investigate whether the heterogeneity of the tumour population represented a form of

disease progression, I compared the biopsy stage to the tumour and TIL phenotype.

Figure 5.15: PCA plot of coloured by biopsy stage for tumour, TIL CD4, TIL CD8. Red: patch.

Green: plaque. Blue: tumour-stage.

PCA of the three microenvironment populations were illustrated by biopsy stage (Figure 5.6).
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The stage of the biopsy does not appear to correlate with the cluster/phenotype of the tumour,

nor either PCA components.

Figure 5.16: Comparison of stage on the expression of immune checkpoint receptors and ligands

on the tumour population. Statistical test is MWW.

While the tumour clusters did not appear to correlate with biopsy stage, I assessed each surface

marker of the tumour cells and compared the biopsy stage. This did not reveal any trends or

significant differences with disease progression (Figure 5.16).

5.11 Euclidean Distance from CD4 TIL

With evidence that TIL is encountering less antigen (Figure 4.24), and that the tumour takes on

one of three phenotypes, I hypothesised that disease progression may be associated with the tu-

mour phenotype phenotypically diverging from the TIL CD4. To compare phenotypic differences

of multiparametric populations, I utilised the Euclidean distance between cell populations as a

marker of difference. The T cell populations were compared both to the mean CD4 TIL pheno-

type, and the microenvironment CD4 TIL phenotype.
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Figure 5.17: A. Euclidean distance of surface phenotype from mean TIL CD4, for TIL CD4, TIL

CD8 & tumour. B. Euclidean distance of surface phenotype from sample TIL CD4, versus biopsy

stage.

This reinforced the heterogeneous phenotype of the tumour population, which ranged from

similarity with TIL CD4, to being markedly different (Figure 5.17a). TIL CD8, on the other hand,

is a more homogeneous population with a phenotype similar to that of TIL CD4.

Comparing Euclidean distance between tumour and associated TILCD4 for each sample shows

that there is a significant phenotypic deviation from TIL CD4 associated with disease progression

(Figure 5.17b).

5.12 Discussion

The most striking feature of the tumour phenotype is its heterogeneity across patient samples

(Figure 5.4), especially when compared to TIL (Figure 5.5). The spectrum of expression observed
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across TIL and tumour illustrate the power of TCR-Vβ technique to discriminate between tumour

and TIL populations which show broad phenotypic similarity in early stage disease and marked

differences in late disease, despite a wide variation in ratios of tumour to TIL.

Evaluating the three phenotypic clusters identified in section 5.5, the evasive and exhausted

clusters have some mirrored differences. While PD-L1 is overexpressed on evasive tumour, PD-

1 is not. The reverse is seen in the exhausted phenotype, with PD-1 upregulated, and PD-L1

often down-regulated (but often still present) compared to PB. The lack of a PD-L1HIGH PD-1HIGH

phenotype suggests that this may have an (expected) adverse affect on tumour growth.

Immune checkpoint ligand overexpression was not consistently seen on the tumour, although

the ‘evasive’ phenotype population did display high PD-L1 expression. In fact, the majority of

tumour samples expressed high levels of PD-1, which would seem paradoxical and inhibitory to

tumour growth. The PD-1 receptor is upregulated in activation[108], and T cell activation in MF

is believed to play a role[202] in the development of MF, which may explain this phenotype.

The concept that tumour would attempt to control the local immune response by immunosup-

pression is complicated by the fact that, derived from similar cell types, the tumour may remain

sensitive to some of these inhibitory cues. In fact, any reduction in immune proliferation by the

tumour may have a substantial negative effect on its growth, and there is likely to be complex

interaction with the tumour:TIL ratio, which may suggest that evasion strategies for the tumour

could differ in early versus late stage disease.

We saw in our TIL analysis that while TIL retained some functionality, they appeared to be

engaging antigen less (as a proportion) with disease progression, despite representing a smaller

proportion of cells (Figure 4.24). This raises the question of whether the three observed tumour

phenotypes relate to evasion strategies in the disease. The cold phenotype, with general down-

regulation of surface markers is a known evasion strategy in other cancers[71, 207, 208, 209], and

this may be a less extreme phenotype of the 50% of samples where clonotypy was not observed,
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which may represent an extreme form of the cold phenotype.

The over-expression of HLA-DR is noteworthy, and very high expression is an aberrant phe-

notype of colorectal cancer as well as glioma, conveying a poor prognosis in both cases[201, 213].

This is intriguing because HLA-DR is generally expressed on leukocytes (hence its name, human

leukocyte antigen) and is the key receptor in antigen presentation. In T cells, HLA-DR is upregu-

lated in activation[214], so this may be an explanation for its presence, especially since persistent

TCR activation and subsequent chronic activation is a feature of MF as evidenced by JAK-STAT

and NF-κB constitutive signalling[215]. On the other hand, very high HLA-DR expression was as-

sociated with the ‘evasive’ phenotype, which does not have especially high PD-1, another marker

seen upregulated in T cell activation. The fact that HLA-DR over-expression occurs in tumours of

cell types that do not present antigen, may suggest that HLA-DR over-expression could provide

a survival advantage to the tumour. This may occur by taking on an APC phenotype (with high

HLA-DR and PD-L1) and synapsing with TIL CD4, or possibly other tumour cells. This has the

potential to cause confusion in the adaptive immune response.

Lastly, progression of the disease did not vary with tumour phenotype, neither directly with

markers (Figure 5.16) nor with cluster (Figure 5.15). However, we were able to demonstrate that

with progression of disease, the tumour phenotype phenotypically diverged from the TIL CD4.

This phenotypic divergence combined with decreased TIL engagement strongly suggests immune

evasion occurs with progression to advanced stages.
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Chapter 6

Tumour Evasion and Disease Progression

6.1 Introduction

With little evidence that tumour consistently over-expresses immune checkpoint ligands, except

in a minority of cases, nor appears to take on a TREG phenotype, the hypothesis that tumour

establishes and progresses by means of local immune suppression questioned.

If we consider the tumour T cell as retaining physiological functions and responses to inter-

cellular signalling, this may not be surprising. From the tumour cell perspective, local immuno-

suppression may have a zero-sum benefit in the tumour:TIL ratio, and this benefit may depend

on whether the majority of surrounding cells are TIL or tumour.

To investigate this concept further, we developed a mathematical model that simulated the

local immunosuppression on two populations, TIL and tumour. Both of these populations were

capable of entering a suppressed state, where they were less capable of killing or proliferating.

Modelling an inflammatory state with an effective immune response versus a immunosuppres-

sive microenvironment is a false dichotomy. The Th cell is the coordinating cell of the adaptive
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immune response, and can direct a variety of immune responses, some of which fall outside of

the Th1/TREG axis, such a Th2 and Th17.

Figure 6.1: Anti-cancer adaptive immune responses arranged by inflammatory status and effec-

tiveness, taken from ideas and references as discussed in sections 1.1.7 and 1.3.1.

I hypothesised that the immune response may be deviated to favour an ineffective immune

response, which retains inflammation (Figure 6.1). The cytokine production of the T cell subsets

were assessed to answer this question.

6.2 Methods

The mathematical model was developed in collaboration with the multiscale maths group, for

the full methods please see chapter 2. The ordinary differential equation was solved in the Julia

numerical language, with use of callback functions to manipulate the model during the computed

time period.
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For functional assessment of the T cell populations, 6mm punch biopsies were taken from con-

senting patients, digested overnight, filtered, then a proportion was stained with 24 anti-TCR-Vβ

antibodies to construct a clonogram. The clonotypic population was identified, and the remain-

ing sample was supplemented with protein transport inhibitor, and half was stimulated with PMA

and ionomycin. The sample was stained with anti-CD3, -CD4, CD8 and the specific TCR-Vβ, then

fixed, and perforated with saponin, then staied with antibodies against IFN-γ, IL-4, IL-10 & IL-17A.

6.3 Mathematical Model of Tumour:TIL Interaction

A simplifiedmodel of themicroenvironment interaction was created with four actors. The tumour

cell, represented by T, can shift to a suppressed state TS, depending on the microenvironment

immunosuppression level (NρT &NρI). Immune cells (I and IS) proliferate in an antigen-dependent

manner, which is related to the tumour population size α(T + TS). They kill the tumour population

at a rate dependent on their population size and γ. There is also influx and efflux/apoptosis of

immune cells (ε and δ).
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Figure 6.2: Mathematical model of the immune microenvironment in MF. T: Tumour cell. TS:

Tumour cell (suppressed). I: Immune cell. Is: Immune cell (suppressed). β: Tumour growth

rate. βs: Tumour growth rate (suppressed). Immune growth rate is dependent on antigenicity of

tumour antigens, by amount α. Immune cell killing of tumour cells is determined by γ and γS.

There is a constant return of suppressed T cells to the non-suppressed state (φS & φS). NρT & NρT

represents rate at which tumour & immune cells are converted to a suppressed state. ε represents

an influx of immune cells into the microenvironment. δ represents apoptosis of immune cells.

This allows us to use the following mathematical equations to model our system.
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̇𝑇 = 𝛽𝑇 − 𝛾𝐼𝑇 − 𝛾𝑠𝐼𝑠𝑇 − 𝜌𝑇 𝑁𝑇 + 𝜙𝑇 𝑇𝑠 (6.1)

̇𝑇𝑠 = 𝛽𝑠𝑇𝑠 − 𝛾𝑇𝑠𝐼 − 𝛾𝑠𝑇𝑠𝐼𝑠 + 𝜌𝑇 𝑁𝑇 − 𝜙𝑇 𝑇𝑠 (6.2)

̇𝐼 = 𝛼 (𝑇 + 𝑇𝑠) 𝐼 − 𝛿𝐼 − 𝜌𝐼𝑁𝐼 − 𝜙𝐼𝐼𝑠 + 𝜖 (6.3)

̇𝐼𝑠 = 𝛼𝑠 (𝑇 + 𝑇𝑠) 𝐼𝑠 − 𝛿𝐼𝑠 + 𝜌𝐼𝑁𝐼 − 𝜙𝐼𝐼𝑠 (6.4)

𝑁 = 𝑇 + 𝑇𝑠 + 𝐼 + 𝐼𝑠 (6.5)

Figure 6.3: Set of equations used tomathematically model the system. See Table 6.1 for description

of terms.

6.3.1 Parameter Selection

Our initial literature search did not find a dataset that could be used to estimate the parameters

of T cell growth, killing and death. It is known that T cell expansion occurs following expo-

sure to antigen[216, 217], and that this response can depend on the amount of antigen as well as

the number of T cells initially[218]. T cells will also apoptose as antigen is removed[219], their

number decreasing rapidly from the transition from TN to TEM cells. In steady state, there is a

homeostatic control of T cell clone number, which may play a role in maintaining diversity in the

TN population[220]. The physiological significance of these mouse studies may be undermined

by the supraphysiological number of starting T cells present, and different kinetics can be seen

when using much smaller numbers of cells, demonstrating the more expected logarithmic expan-

sion following antigen exposure[221]. While there are mouse and in-vitro studies looking at T

cell expansion, it is difficult to use these results to inform parameter selection for our cancer im-
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munologymodel. The literature focusses on the initial immune exposure rather than a chronically

exposed state as seen in MF, and does not take into account persistence of the tumour antigen.

A more recent study used the relationship between starting T cell number on expansion[218] to

model the decay of antigen’s impact on proliferation. Without data that could be applied to our

model, the parameters in this case were found by trial and error (Table 6.1). There is a current on-

going study where we will be able to assess the change in tumour and TIL proportion in response

to immune checkpoint therapy. It is hoped this will allow us to fit the parameters on relevant

physiological human data.
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Description Parameter Value

Immune cell proliferation 𝛼 10−3
Immune (s) cell proliferation 𝛼𝑠 10−4
Tumour cell growth rate 𝛽 1

Tumour (s) growth rate 𝛽𝑠 0.1

Immune cell killing 𝛾 10−3
Immune (s) cell killing 𝛾𝑠 10−4
Suppression of immune cell 𝜌𝐼 10−3
Suppression of tumour cell 𝜌𝑇 10−3
Reversion of immune cell 𝜙𝐼 1

Reversion of tumour cell 𝜙𝑇 1

Immune cell influx 𝜖 0

Immune cell death 𝛿 0.15

Total T cell number 𝑁 0.15

Tumour cell number 𝑇 1

Tumour (suppressed) number 𝑇𝑠 0

Immune cell number 𝐼 0.1

Immune (suppressed) number 𝐼𝑠 0

Table 6.1: Parameters used for mathematical model.

The model was run with the parameters in Table 6.4.
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6.3.2 Simulations

Figure 6.4: Mathematical model shown reaching a steady state, with tumour killing by immune

cells (orange) matching tumour growth (blue).

When the simulation is run (Figure 6.4), the establishment of the tumour initially creates an unsta-

ble fluctuating environment where immune cells rapidly respond to the antigenic cells, and almost

eliminate the tumour. After several cycles, the system stabilises into a dynamic equilibrium, with

the immune cells outnumbering the tumour cells 5.7:1.

As this is modelled using an ordinary differential equation, the tumour population will never

reach zero, and so does not allow for clearance of the cancer. In reality, this scenario may result in

eradication of the tumour, as seen by low tumour population early on in the response. A stochastic

differential equation may show this initial tumour clearance better, but as mentioned previously,

the clinical presentation of the disease shows an absolute selection bias to tumour that was not
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cleared by the initial immune response. This model simulates this scenario.

Figure 6.5: Bifurcation diagram demonstrating how varying ρ (overall immunosuppression of

microenvironment) affects the tumour and TIL numbers.

To assess the effect of microenvironment immunosuppression, I measured the effect of vari-

ation in ρ (local immunosuppression) on the steady state cell numbers (Figure 6.5). Surprisingly,

microenvironment immunosuppression has little overall affect on the relative T cell populations,

which is partially supportive of our previous findings.
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Figure 6.6: Simulation of 6 cycles of chemotherapy delivered during steady state.

We simulated 6 cycles of chemotherapy, which occurred at steady state (Figure 6.6). During

the chemotherapy, the tumour cells appeared to escape immune control, though this changed

after the course with the immune system responding and reducing tumour numbers for a period

of time before a steady state scenario was reached again.
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Figure 6.7: Simulation of the tumour gaining a mutation resulting in an increased division rate.

To assess the effect of a driver mutation occuring in the tumour, I simulated a mutation occur-

ring at time 200, which results in its growth rate was increasing by 50% (Figure 6.7). This didn’t

have much effect on the tumour size, though the increased proliferation rate of the tumour was

being met by increased immune cell killing.
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Figure 6.8: Simulation of TIL developing characteristics of an exhausted phenotype, with de-

creased killing and proliferation.

Exhaustion of TIL was simulated by decreasing proliferation and killing of the TIL population.

This change allowed the tumour population to expand and overtake the TIL size (Figure 6.8).

6.3.3 Caveats

As previously discussed, the adaptive immune response is highly complex, with multiple sig-

nalling pathways between and within several subtypes of cells. A mathematical model needs be

general enough to simulate the aspect of the complex system wishing to be explored, while re-

alistically including structures necessary for the system to be explored[222]. Unfortunately, the

highly complex nature of biology puts a limit on the complexity of the mathematical model in

order for the model to be computable. As a result real biological systems need to be broken down
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into constituent parts for the model[223], and that necessitates simplification.

This model focusses on the interaction between tumour and TIL, and their change into a sup-

pressed state and back again. The paucity of laboratory data for this has meant that parameters are

not fitted on real data, which is a significant limitation of this model, though one which current

research may be able to mitigate.

6.4 Correlation of Markers

Understanding how surface markers on one cell population may influence surface markers on a

another cell population may provide insight into the signalling systems involved in the cancer

microenvironment. Covariance of markers on cell subsets may suggest common control of ex-

pression or reinforcement of intercellular signalling. To investigate these pathways, I measured

the covariance of surface marker expression between each T cell population, comparing it to other

surface markers on other T cell populations (see Section 2.9.8 for methods). Covariance which

reached a threshold effect size were retained, and a graph was constructed.
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Figure 6.9: Force-directed graph of threshold covariance between surface markers on T cell pop-

ulations. Red edges: Positive covariance. Blue edges: Negative covariance. Gold nodes: Tumour.

Green nodes: TIL CD4. Blue nodes: TIL CD8.

The resulting graph (Figure 6.9) has some expected findings. TREG percentage in the TIL CD4

population covaries with CD25 and TIGIT on TIL CD4. PD-1, TIGIT, TIM-3 and FasR appear

closely related on TIL CD8, echoing the TIL exhaustion phenotype.

PD-1 on the tumour population interestingly inversely covaries more strongly with PD-L1 on

TIL CD4, rather than the tumour population. This might suggest the tumour PD-1 phenotype is

influenced by the PD-L1 microenvironment expression of the immune response, a phenotype of

the tumour established early on in the disease while it is the minority cell type. Tumour PD-L1

takes a central position in the graph, covarying with TIL CD4 PD-L1, and TIL CD8 FasR. MHC-I

appears to be closely related on all T cell populations, which might suggest MHC-I expression is
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controlled by the microenvironment.

6.5 The Th Phenotype of Mycosis Fungoides

With limited evidence that immune evasion by the tumour population occurs through immuno-

suppression, with lack of consistent upregulation of PD-L1 (Figure 5.2), nor expression of a TREG

tumour phenotype (Figure 5.12 & 5.13), and little effect of immunosuppression on overall cell

numbers in a simulated model (Figure 6.5), I proceeded to assess the Th phenotype of T cell sub-

sets, with the hypothesis that a non-effective cancer adaptive immune response that retains an

inflammatory phenotype may be favoured by tumour cells, as suggested by Figure 6.1.

There has long been interest in the cytokine activity of the CTCL microenvironment, with

references to a ‘macrophage inhibitory factor’ as early as 1980[149]. An early study of disaggre-

gated tumour tissue, cloned out with IL-2 and stimulated with PHA was able to obtain 11 clones

for analysis. The clones obtained were interestingly only thought to be TIL cells, despite the tu-

mour population making up the majority on immunohistochemistry (reflecting a long history of

difficulty in culturing tumour cells in CTCL). ELISA demonstrated production of IFN-γ, TNF-α,

IL-2 and IL-4 in the TIL population[193]. Thereafter, most studies are performed on leukaemic

cells, with a study in 1996 performed on SS identifying production of IL-10 and IFN-γ on mRNA

PCR of tumour cells[224]. In a similar study of tumour cell lines obtained from SS patients, mRNA

PCR noted a Th2 phenotype in the tumour vs a Th1 phenotype in the TIL. In a larger study on pa-

tient samples, Chong et al 2008[156] also performed mRNA PCR on 18 patient samples of CTCL,

again analysing peripheral blood only. They noted that early CTCL had higher production of

IL-2, IL-4 and IFN-γ, whereas later stage CTCL noted increased production of IL-5, IL-10, IL-13

and IL-17. Caution should be noted in studies using mRNA as a surrogate for cellular production,

and disease in the PB compartment may not reflect what is occurring in the microenvironment
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of the tumour. Guenova et al 2013[225] used a similar TCR-Vβ technique as the author to dis-

criminate between tumour and TIL in peripheral blood, using cell permeabilisation and antibody

staining. This study found benign populations produced both Th1 and Th2 cytokines, whereas the

malignant population produced high quantities of IL-4 and IL-13, supporting the hypothesis that

CTCL can take on a Th2 phenotype. There is also literature supporting a Th17 phenotype, with

mRNA[159] expression and immunohistochemical expression[157] of IL-17. This study adds sig-

nificantly to this literature by using TCR-Vβ to clearly discriminate tumour and TIL in uncultured

skin biopsies and peripheral blood, multiparametrically analysing IFN-γ, IL-4, IL-17 & IL-10.
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Figure 6.10: Cytokine production of IFN-γ, IL-4, IL-17a & IL-10 in HD CD4, PB CD4, TIL CD4 &

tumour as a percentage of the CD4 T cell subset.

Analysis of the cytokine production of CD4 T cell subsets and tumour showed an increased

percentage of Th17 in PB CD4 (6%), TIL CD4 (14%) and tumour (24%) (Figure 6.10) compared to

HD (1%, p = 0.004, p = 0.0002, p = 0.0002, respectively. MWW test.). A median 12% of tumour

cells were of a Th1 phenotype, which was lower than TIL CD4 (22%, not significant). There was

significantly increased IL-4 production in tumour (13%) compared to TIL (1.9%, p = 0.04, MWW
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test). IL-10 production mirrored the 5.13 phenotype seen previously (Figure TREG), with most

production seen in the TIL CD4 population (median 5.2%).

Figure 6.11: Cytokine production of IFN-γ, IL-4, IL-17a & IL-10 in HD CD8, PB CD8 & TIL CD8

as a percentage of the CD8 T cell subset.

Cytokine production of CD8+ T cells were also assessed. As seen previously, 43% of TIL CD8

retained the ability to produce IFN-γ. CD8 T cells of both PB and TIL showed increased production

of IL-17a (48% in TIL, 29% in PB and 6% in HD, p < 0.0001 for comparison with HD. MWW test.).
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A small number of TIL CD8 produced IL-4 (2.6%) and IL-10 (4.6%).

Overall, CD4+ and CD8+ TIL demonstrate a marked shift towards the Th17 phenotype, with

the tumour producing significantly more IL-17A and IL-4, than other T cell subsets. The TIL re-

sponse does maintain a Th1 population, and the CD8+ TIL retain production of IFN-γ, which sug-

gests that the immune response shows some functional capacity, despite the high co-expression

of immune checkpoint receptors and decreased cytotoxic functionality seen previously.

6.5.1 Cellular Cytokine Production

The overall percentage of cells producing a specific cytokine is a summary of a more complex cel-

lular dynamic. To investigate production of cytokines on a cellular level, representative clonotypic

sample CTCL049XX01 was analysed using tSNE.
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Figure 6.12: tSNE of CTCL049XX01, demonstrating CD4, CD8 & specific TCR-Vβ surface expres-

sion. Clustering and manual determination of clusters was used to produce the T cell population

plot in the lower right. Note that due to stimulation, CD4 downregulation can be observed.

Due to cell stimulation, significant CD4 downregulation is seen (Figure 6.12), but TIL CD4,

TIL CD8 and tumour populations were easily identified. The analysis was split using these popu-

lations.
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Figure 6.13: Analysis was split according to T cell population, and tSNE was performed on each

population.

tSNE was performed on each T cell population to allow for clearer comparision (Figure 6.13).
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Figure 6.14: IFN-γ, IL-4, IL-17a & IL-10 cytokine production by T cell population.
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Cellular cytokine analysis reveals a strikingly different pattern of production for the various

T cell subtypes (Figure 6.14). The TIL CD4 population is made up of separate Th1, Th2, Th17 &

TREG subsets, with very little co-production of cytokines. The TIL CD8 population has a large

IFN-γ-producing population, of which around half are polyfunctional, with concurrent IL-17a

production.

The tumour population demonstrates marked polyfunctionality, and can not easily be classi-

fied as a particular Th phenotype. There is a large IL-4 producing subset, with some blending of

cytokine production with IL-10 and even IFN-γ. IL-17a production appears to occur in a discrete

sub-population, which may represent a subclone.

Figure 6.15: Multiplexed tSNE of cytokine production by T cell subset. Red: IFN-γ production.

Blue: IL-4 production. Green: IL-17a production. Magenta: IL-10 production. NB: the magenta

colour in the tumour population is a combination of IFN-γ, IL-4 & IL-10 production.

Multiplexing cytokine production together clearly demonstrates the polyfunctionality of the

T cell subsets (Figure 6.15), with TIL CD4 showing discrete, almost mutually exclusive, subpopula-

tions. A subpopulation of TIL CD8 produces both IFN-γ& IL-17a production (red, green, combined

giving yellow). The tumour population produces IFN-γ, IL-4 & IL-10 (red, blue & magenta), with

a subpopulation mainly producing IL-17a (green).
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6.5.2 Disease Progression

To assess changes in functionality with disease progression, cytokine production was compared

on plaque versus tumour-stage samples. It should be noted that patient numbers are limited for

this comparison, which subsequently limits interpretability.

Figure 6.16: IFN-γ, IL-17A, IL-4 & IL-10 production (%) of Tumour, TIL CD4 & TIL CD8 T cell

subsets, by biopsy stage. MWW test.

With progression in disease stage, there was a trend for decreasing cytokine production (Fig-

ure 6.16) in all T cell subsets. This was most marked for IL-17a in tumour (p = 0.043, MWW test)

and TIL CD4 (p = 0.043, MWW). It is not clear what the significance of this is, on possibility is
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that immune deviation is not necessary given immune evasion is already achieved, and the tumour

evolves to make better use of cellular resources. Or as the tumour population is now dominant

in the microenvironment, less cytokine production is required to produce the required immune

deviation of a smaller TIL population. Interestingly, the IL-10 producing tumour were generally

of plaque-stage rather than tumour-stage, which may suggest that an immunosuppressive envi-

ronment maintains a more indolent disease.

6.6 Survival Analysis

To investigate the survival of patients within the cohort, data on date of diagnosis, date of biopsy,

death and time of follow-up was collected. These were analysed using Kaplan-Meier estimates of

survival.
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Figure 6.17: Kaplan-Meier curve showing overall survival of investigated cohort from time of

diagnosis.

Overall survival of the cohort from time of diagnosis demonstrates a median survival of more

than 15 years (Figure 6.17), which is likely to be an underestimate of the general MF population,

given the selection bias inherent in obtaining biopsies of patients with active disease.
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Figure 6.18: Kaplan-Meier curve showing overall survival of investigated cohort from time of

biopsy.

Overall survival of the cohort from the time of biopsy (Figure 6.18) reveals that patients were

biopsied towards the final stages of their disease progression.
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Figure 6.19: Kaplan-Meier curve showing overall survival of investigated cohort from time of

biopsy, by tumour cluster. Statistical test is log-rank.

The cluster phenotype of the tumour was assessed for prediction of survival, and showed

marked differences in prognosis of the three groups (Figure 6.19). The population for which

clonotypy was not determined, had a survival similar to the ‘exhausted’ phenotype. The ‘cold’

phenotype demonstrated a poor median survival approximately 1 year, whereas the ‘evasive’

group did not have any deaths. These results must be interpreted in the context of low n num-

bers of each group, and so any conclusions need to be interpreted with caution. Due to the low

n-numbers, it is also not possible to model this result with known prognostic factors due to the

risk of over-fitting the data.
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Figure 6.20: Kaplan-Meier curve showing overall survival of investigated cohort from time of

biopsy, by tumour cluster into four groups. Statistical test is log-rank.

As lack FasR expression is associated with a more aggressive phenotype of CTCL[144], 𝑘-
means clustering was performed with 𝑘 = 4, which separated out the ‘exhausted’ phenotype

into a FasRhigh TIGITlow, and FasRlow TIGIThigh group. The FasRhigh group showed good survival,

whereas the FasRlow group demonstrated poor survival with amedian survival of less than 5 years.

6.7 Discussion

It is likely that immune deviation plays an important role in the development ofmycosis fungoides.

The microenvironment interactions are especially complex in a T cell malignancy, as the Th cell

normally has a central role in coordinating the adaptive cancer response, and it is likely that,
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either for stochastic reasons or due to immunoediting, the tumour cell will display a phenotype

best suited to compromise a successful immune response.

By the time of diagnosis, the disease and immune response will have been long-established,

for years or longer, and at this early stage the immune dynamic likely represents that of the

‘equilibrium’ state of the immune evasion model[226]. This can be observed in the steady-state of

ourmathematical model, where initial clearance has failed, and the tumour and TIL cells settle into

a state of cancer control (Figure 6.4). Our model didn’t find a strong effect of immunosuppression

(Figure 6.5 or growth rate (Figure 6.7) on the overall tumour:TIL ratio, but simulation of exhaustion

of the TIL did result in a switch of population size to TIL becoming the minority population.

This study is the first in tissue MF to attempt to ascertain the Th phenotype concurrently on a

cellular level, additionally discriminating between tumour and TIL subpopulations. Interestingly,

IL-10 was not over-produced in tumour, reflecting the lack of a TREG phenotype seen earlier, and

reflecting the small effect of immunosuppression on cancer growth seen in our mathematical

model. There was a significant skew towards the Th2 and Th17 phenotype in the tumour popula-

tion (Figure 6.10), although to classify the tumour as a particular Th phenotype may be futile, as

individual tumours did not restrict themselves to the cytokines of particular lineages, with some

tumour cells producing both IFN-γ and IL-4 (Figure 6.14). Both the Th2 and Th17 phenotypes

are inflammatory, and IL-4 and IL-17A production likely contributes to the growth of the cancer,

while subverting the effective anti-cancer Th1 response[28, 29, 227, 228, 229].

In the previous chapter, we also saw that the tumour phenotype becomes more divergent with

progression (Figure 5.17b), and we have observed a concurrent decrease in cytokine production.

This may suggest that immune deviation is established earlier in the disease, while an immune

escape phenotype is seen in more advanced disease.

Survival analysis may show that the surface expression cohorts have a different prognosis,

with patients who have low FasR and high TIGIT appearing to have a worse prognosis than those
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with the ‘exhausted’ or ‘evasive’ phenotype. The association of low FasR and a poor prognosis has

been observed previously[144] (thoughwith a smaller populationwithout significance). However,

further studies are needed to confirm whether this holds true with greater patient numbers.
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Chapter 7

Single cell RNA Sequencing with TCR

Profiling of Mycosis Fungoides

7.1 Introduction

Understanding the interaction of the complex cellular microenvironment ultimately requires an

understanding of the surface markers expressed. The use of Vβ flow cytometry techniques has

proven of immense value in phenotyping the T cell populations, but it does not do this to the

resolution of a single cell.

Single cell RNA analysis has the theoretical potential to provide both the sequence clonotype

as well as the RNA expression profile of the cell, allowing cell-by-cell precision in both tumour-

TIL discrimination and expression. However, there are significant technical hurdles involved in

obtaining RNA expression and TCR clonotype for each cell.

The first technical issue is that the T cell receptor genes are located on four loci, which can

be large (TRA is 1 megabase), containing repeated similar genes. Due to genetic recombination,
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the somatic gene is highly-variable, and will not easily align to a reference genome. With short-

read sequencing, it is difficult to align and reconstruct the cell’s true T cell receptor sequence,

although recently developed software attempts to find the diverse TCR sequences by predicting

splice points.

Another approach to finding TCR sequences from shotgun sequencing (short read next gen-

eration sequencing) is to use primers targeting the VDJ region, which are then amplified and the

contigs used to reconstruct the TCR. This has the advantage of ensuring the reads are restricted

to the TCR, as well as providing enough reads to ensure overlap and depth of sequencing for a

confident sequence. The downside is that this does not allow for concurrent exome expression

data.

The technique I used split the cDNA, with half used for whole exome expression, and the

other half used with primers to amplify the TCR sequence. Libraries were prepared separately,

sequenced individually, and then recombined in the analysis by pairing a cell barcode.

7.2 Methods

Four 6mm biopsies were obtained from four consenting patients with mycosis fungoides. These

were processed using the same overnight digestion technique as described previously. The single-

cell suspension was filtered and stained with anti-CD3 (clone SK7, APC-Fire750, biolegend) anti-

body and propridium iodide. A cell-sorter retrieved cells which were CD3+ and PI- into a single

cell suspension. This suspension was resuspended to around 900 cells/μl and loaded onto the 10X

Chromium chip, where the cells are combined with the gel beads in the microfluidic circuitry,

controlled by the 10X Chromium controller. cDNA is then amplified, and the samples were split

for 5’ expression and VDJ library preperation. The libraries were then sequenced on Illumina se-

quencers. Reads were aligned and counted using cellranger software. The resulting data was then
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analysed in R using the scater and scran libraries. For full methods see section 2.8.

7.3 Single Cell RNA Sequencing and TCR-Vβ analysis

Quality metrics for each sample analysed is demonstrated in Table 7.1. Some variability in the

number of cells retrieved for analysis was observed, but overall, the sequencing quality was ex-

cellent.

Sample Cells Reads Genes UMI Genes (t) Mapped Q30

CTCL023XX05 5082 102’128 1102 2681 18’004 91% 87.8%

CTCL046XX05 3139 80’577 1607 4530 18’537 93.3% 82.6%

CTCL063XX01 2609 208’346 1279 2865 18’114 92.7% 88.5%

CTCL064XX01 6322 47’245 926 2079 18’181 92.4% 92.1%

Table 7.1: Whole exome 5’ sequencing quality metrics. Sample: Lesionnumber, Cells: Number

of cells sequenced, Reads: Median number of reads per cell, Genes, Median number of genes

identified per cell, UMI: Median UMI per cell, Genes (t): Total number of genes identified per

sample, Mapped: Percentage of reads mapped successfully to genome, Q30: Q30 quality metric of

exomic RNA.

The TRB CDR3 sequence was retrieved in 82% of cells, which is consistent with published

manufacturer data for the technology. However, TRA sequences were less well retrieved (54%)

(Table 7.2). Traditionally, TRA sequencing has been difficult, presumably due to the large size of

the locus, and in fact our clinical standard for TCR clonality (BIOMED-2) avoids TRA sequencing

altogether[230] for this reason. 10x Genomics state that TRA has less reads mapped than TRB,

and this is due to lower expression levels[231], however, studies of TRA and TRB expression show

generally similar levels[232].
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Sample Cells TRA TRB TRA% TRB%

CTCL023XX05 3872 2074 3118 54 81

CTCL047XX05 2478 1029 2070 42 84

CTCL063XX01 1701 1085 1370 64 81

CTCL064XX01 4026 2257 3279 56 81

Table 7.2: Number of TCR CDR3 sequences retrieved for α and β TCR chains.

To assess the clonotypy of each sample, the number of cells expressing a given CDR3 was

counted, and this was plotted as a clonogram (Figure 7.1). Of the four samples, two displayed clear

clonotypy (Figure 7.2). These samples (CTCL047XX and CTCL064XX) were taken from plaque-

stage mycosis fungoides. Sample CTCL023XX was taken from a tumour-stage lesion, which had

previously been analysed by flow cytometry, where the sample also failed to show clonotypy by

Vβ antibodies. Sample CTCL063XX was taken from an early stage patient with a patch lesion.

In early stage MF, biopsies are often not clonotypic[233], and this likely relates to early stage

disease having a high number of infiltrating T cells, which can often be oligoclonal. With a large

infiltrating T cell presence, identifying the tumour clone from TCR sequencing alone is unlikely

to be possible. This is the likely explanation for lack of clonotypy in the early-stage patch sample

CTCL063XX01, and it should be noted a simple clonogram of TCR sequences does not fully utilise

the combined power of TCR and transcriptomic sequencing, which is able to identify the tumour

population as shown later in Section 7.4.2.

The same argument can not be made of sample CTCL023XX05, which is a tumour-stage sam-

ple with histologically confirmed high tumour burden. There are some potential reasons for not

finding a tumour population in this sample. The cancer cells can be heavily mutated[234], and

can paradoxically be more fragile in an in-vitro environment, with noted difficulties in grow-
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ing out tumour clones from samples[193], and so the overnight digestion may have resulted in

the preferential death of tumour cells. CD3 surface expression downregulation is well-described

in CTCL[206], with 25% shown to have decreased CD3 expression, with some having complete

absence. This is highly correlated with TCR downregulation. A strategic decision was made to

cell-sort by CD3+ and viability, which unfortunately would exclude tumour that did not express

CD3. This was to ensure that T cells made up the majority of the cells analysed, so allowing for

TCR sequencing on the majority of cells. In future, another approach may be to ensure the cells

express at least one T cell antigen (CD2, CD3, CD4, CD5, CD7 & CD8), which may reduce the risk

of missing the tumour population.

Due to the high resolution of immune profiling, it is difficult to visualise all of the clonotypes,

although it can be noted that many are expressed in only one cell. The top 25 largest clonotypes

were identified, and arranged in descending order and shown in Figure 7.2.
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Figure 7.1: The frequency of each clonotype is plotted in this barplot ‘clonogram’. The y-axis is

log10 transformed.
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Figure 7.2: The frequency of the 25 largest clonotypes of each sample is plotted against the CDR3

sequence. The y-axis is log10 transformed.

To investigate this further, cell expression data was dimension reduced to 50 dimensions using

PCA and then the tSNE algorithmwas applied. Each cell was then coloured by the retrieved CDR3
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sequence of the TCR β chain (Figure 7.3).

Figure 7.3: tSNE of individual samples, coloured by TCR β chain CDR3 sequences.

This clearly demonstratedmonoclonal tumour populations in samples CTCL047XX andCTCL064XX01,

184



as evidenced by a large population of cells which demonstrate the same CDR3 sequence. Smaller

oligoclonal/clonal clusters can also be seen in CTCL023XX and CTCL063XX. As the dimension

reduction process was applied to each sample individually, the relative positions of the cells in

each plot cannot be compared across samples.

In order to allow comparision between samples, Mutual Nearest Neighbours (MNN) was used

to dimension reduce cells from each sample in a way which allows similar cells to be compared

across experiments, correcting for any batch effects in the process. This permits analysis of sub-

populations that may be shared across experiments. These are demonstrated in Figure 7.4.
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Figure 7.4: tSNE of individual samples applied to the MNN dimension reduced data, coloured by

TCR β chain CDR3 sequences. This allows for comparison of cell phenotypes across samples.

MNN analysis has allowed the cell expression to be dimension-reduced in a way that allows

comparison between samples, clearly showing the tumour populations separated from a central
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TIL population. The clonotypic populations of CTCL023XX appear to have migrated towards the

bottom right cluster, whereas the small oligoclonal cluster of CTCL063XX takes a similar position

to the tumour cluster of CTCL064XX.

7.4 Identification of Tumour Population

Two approaches can be taken to identify the tumour population. The first approach is to simply

find the largest TCR α-chain and β-chain clonotype. This has the advantage of identifying the

largest clonotype, but it may miss out on cells due to the poorer retrieval of CDR3 sequence

(Table 7.2). Another approach is to cluster the cells, and then to analyse the clone diversity of

the clusters. This has the advantage of identifying clusters that appear to be tumour, and may

help to recognise whether a sample has a population of tumour cells, though it may also over-

classify other non-tumour cells which have a similar phenotype, and also miss tumour phenotype

heterogeneity.

7.4.1 Global Clonotype Method

The data was split by sample, and frequencies calculated for each CDR3 sequence. The largest

clonotypes were retrieved for α- and β-chains. These clonotypes are shown in Table 7.3.

Sample TCR α-chain CDR3 TCR β-chain CDR3

CTCL023XX05Z CAVRDSNYQLIW CASSDGQGDTGELFF

CTCL047XX05Y CATDARLTF CAISQGYNEQFF

CTCL063XX01A CAVTLLSGGYNKLIF CSARDDGQTGEQYF

CTCL064XX01A CAMSAVGQFYF CASSIGYSTYTDTQYF

Table 7.3: The CDR3 sequence of the largest clonotypes of each sample.
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These clonotypes were used to identify the largest alpha and beta TCR clones in each sample.

These were plotted using tSNE dimension reduction in Figure 7.5.

Figure 7.5: tSNE coloured by cells expressing the dominant clonotype for both α and β chains in

each sample.
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While this technique has identified what is likely to be tumour populations in CTCL047XX

and CTCL064XX, it has identified a small clone in CTCL023XX which appears to be of a TIL

phenotype (as seen by the polyclonal nature of its surrounding cells, Figure 7.4). This strategy has

clearly failed for CTCL063XX, as the dominant α-chain does not appear on the same cells as the

dominant β-chain.

7.4.2 Cluster Entropy Method

In order to optimise use of both TCR and clonotype information, I devised an approach to identify

monoclonal clusters which were suspicious of being tumour. The MNN-reduced data was clus-

tered using the Louvain method, which allows me to classify the cells by their membership. There

are several clustering methods available (see section 2.9.4), and Louvain clustering is optimised

for finding populations within very high dimensional data[184]. This can be seen in Figure 7.6.
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Figure 7.6: a. Cells from all experiments dimension reduced using tSNE on MNN, coloured by

their assigned Louvain cluster. b. Bar-plot showing the number of cells within each cluster as a

percentage of the sample. The variation is size of clusters between patients can be observed.

Louvain clustering identified 7 clusters. These clusters have some correlation with the tSNE

dimension reduction, which helps with the visualisation of the clusters. There is significant inter-

sample variability in the cluster sizes (Figure 7.6b), even when taking into account the variation

in cell numbers between the experiments.

TCR entropy is one of several ways to measure TCR diversity, and in this case I used the

Shannon entropy to calculate the diversity of the clusters. Lower TCR entropy demonstrates a

more clonal TCR population. The β-chain was used due to the higher retrieval of sequences.
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Figure 7.7: Cells coloured by Shannon entropy of the assigned cluster, with results split by sample.

When cells are coloured by cluster TCR entropy (Figure 7.7), very low entropy clusters can

be observed in CTCL047XX and CTCL064XX, as well as CTCL063XX. CTCL023XX is notable for

lacking a low-entropy cluster. Amongst the TIL population, the entropy can also be observed

to vary between clusters, with some clusters having intermediate or high entropy. This likely

suggests T cell expansion of some TIL clonotypes.
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The clusters were binned into low, intermediate and high entropy clusters, using the cut-offs of

0-1 for low, 1-5 for intermediate and >5 for high, which were determined visually. These clusters

were then analysed to determine the α- and β-chain sequences giving rise to the low entropy.

These are presented in Table 7.4.

Sample TCR α-chain CDR3 TCR β-chain CDR3

CTCL047XX05Y CATDARLTF CAISQGYNEQFF

CTCL063XX01A CAYRSDFQGGSEKLVF CSAPKSPPTFYNEQFF

CTCL064XX01A CAMSAVGQFYF CASSIGYSTYTDTQYF

Table 7.4: The CDR3 sequence of the largest clonotype of each low-entropy cluster. CTCL023XX

was not deemed to have a low-entropy cluster.

The CDR3 sequences retrieved from this method bears some differences from those seen in

Table 7.3, notably by lacking a sequence for CTCL023XX (due to the lack of a low entropy cluster)

and for the sequences of CTCL063XX being different. This allows us to use either two methods

of defining tumour: the low entropy clusters, or the tumour-associated CDR3s. Both approaches

are compared in Figure 7.8.
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7.4.3 Defining Tumour

Figure 7.8: Comparison of twomethods to define tumour vs TIL. On the top row are cells identified

by a cluster Shannon entropy of <1. On the bottom row are cells identified from the dominant

CDR3s of the low-entropy cluster from Table 7.4.

Both techniques appear to clearly isolate a cell population in each of the samples for which there is

a suspected tumour population. There are some differences, most notably in CTCL047XX, where

the cells without a retrieved CDR3 are flagged up as not tumour in the CDR3 method, when

they are likely to be tumour. There also appear to be cells in the TIL clusters which have the

clonotypic CDR3 of the tumour. Both techniques are likely to have certain false positive and false

negative rate for determining tumour, and the choice of method probably depends on the question

being asked. Either way, gross differences in expression are unlikely to be affected significantly

by choice of either method, and both are far more specific than the surface antibody technique
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described in the previous chapters.

Figure 7.9: Assessment of tumour population’s expression of CD5 & CD7, proteins which are

commonly downregulated in mycosis fungoides, by tSNE (six figures on the left) and group com-

parison (figure on right). Statistical test is MWW.

There isn’t an objective way of defining a tumour cell, and while it is clear that there are

tumour populations in CTCL047XX and CTCL064XX, we have also identified a small population

in CTCL063XX,which is less clearly tumour. Thiswas a patch samplewith less cells retrieved from

the dissociation process compared to the other three samples, so a smaller tumour populationmay

have been expected. CD5 and CD7 expression is commonly downregulated in malignant mycosis
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fungoides T cells, so this was assessed on the proposed tumour populations by visualisation using

tSNE, as well expression between tumour and CD4 populations (see Figure 7.9, note that the

determination of the CD4 population is covered later). This shows significant downregulation of

both CD5 and CD7 of these tumour populations for all three samples.

On balance, the combination of this expectedly small population having a markedly different

phenotype to the TIL population (as evidenced by its separation on tSNE), maintaining a tumour

phenotype similar to another tumour population (CTCL064XX01), with CD5 and CD7 downreg-

ulation similar to both other tumour populations, and having in itself low entropy and clonality

suggests to me that this is indeed the tumour population.

It is not clear why the population in CTCL064XX is not completely of the same TCR sequence,

even if the majority are. Further work is warranted in manually analysing the sequences in this

population to assess if they are similar, particularly in the bioinformatic process of deciding on

which TCRA and TCRB chain to take forward in the analysis, as it is common for a cell to have

more than one rearranged TCRA or TCRB due to the TCR rearrangement process and diploidy.

A more complex bioinformatic pipeline would be required that could account for the possibility

of more than one TCRA or TCRB per cell.

7.5 Identification of T cell Subsets

To understand the significance of the low, intermediate and high entropy cells, I investigated the

phenotype of the clusters to identify the TIL subsets. 10459 individually sequenced cells formed

part of this analysis, with clusters being compared by identifying significantly upregulated genes

between clusters using the Welch t-test.

At the time of analysis, there was limited software available for this. Software is developing

rapidly in this area, and there is a recent comparison between various approaches[235], using
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22 different software methods, on 27 different datasets. Of note, 21 out of 27 datasets were of a

smaller size than only the TIL aspect of this study, and none were from a skin setting, with only

two from human cancer tissue. This study notes particular difficulty in identifying T cell subsets.

As a result, and given there were only a limited number of clusters to identify, a manual ap-

proach was taken which starts by initially looking for marker genes of each cluster by finding

those genes which are differentially upregulated in those clusters. It should be noted that iden-

tification of single T cell subsets through transcriptomic methods is not as established as using

specific surface protein expression, and this area is likely to improve in the future.

Clusters 2 and 5 were removed from this analysis as they have already been deemed to be

tumour populations (Figure 7.6). The top 20 genes upregulated in each cluster are shown in Table

7.5.
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Cluster 1 Cluster 3 Cluster 4 Cluster 6 Cluster 7

IL7R EEF1A1 ZFAS1 IL32 CCL5

S100A4 PABPC1 PPP1R15A BATF GZMK

TMEM173 LTB ARID5B FOXP3 CST7

LAG3 AC090498.1 MALAT1 GNG8 CD8A

EEF1A1 GIMAP4 SQSTM1 S100A4 NKG7

LGALS3 TPT1 IL7R TMSB10 GZMA

CYBA FAU SAMSN1 IL2RA CD8B

GPX1 LIMD2 TAF1D CD27 CXCR4

ZFP36L2 EEF1B2 NR3C1 CD74 CMC1

S100A6 GIMAP7 SNHG12 TIGIT HCST

ANXA1 SELL SELK UCP2 LYAR

CXCR6 FXYD5 ANXA1 PIM2 CYBA

CD52 SARAF STK17B AC133644.2 CCL4

TPT1 GNB2L1 HSPD1 LTB CLIC3

JAML TCF7 AHR MTRNR2L8 ANXA1

FTH1 IL7R DUSP4 LIMD2 CD74

LTB LDHB XBP1 AC017002.1 CD52

TC2N SESN3 HSP90AB1 CARD16 EEF1A1

FXYD5 AES KMT2E TNFRSF18 HLA-C

KLRB1 NACA NOP58 RTKN2 HLA-B

Table 7.5: The top 20 significantly upregulated genes of each non-tumour cluster.

Cluster 6 is identified as a CD4 TREG population, as shown by high expression of FOXP3,
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IL2RA (CD25) & TIGIT. Cluster 7 is identified as the CD8+ T cell population, with up-regulated

GZMK (Granzyme K), CD8A, CD8B & CCL5. Cluster 4 is likely to represent non-viable T cells,

as demonstrated by expression of heat shock proteins (HSPD1 & HSP90AB1) and PPP1R15A, a

gene which plays a role in stress-induced cell death. This population may have occurred due to

processing, or the cells may have been dying in-vivo.

Clusters 1 and 3 are both likely to be CD4+ T cells, given lack of CD8+ expression. Cluster 1 no-

tably has high production of TMEM173, or stimulator of interferon genes (STING), ANXA1/annexin

1, which increases the activation of T cells, and LTB, a member of TNF family. Notably CXCR6

is highly expressed, which is seen on more differentiated, higher cytokine producing CD4 T

cells[236] and is a marker of the effector memory type on CD8 T cells [237]. The highest dif-

ferentially expressed gene is IL7R, which plays a key role in T cell differentiation, and can seen

expressed in persistent CD4 Th1 effector memory cells[238], which overall suggests that cluster

1 is a CD4 effector memory Th1 phenotype.

We know from our analysis of the memory phenotype of TILs and their cytokine production,

that the TIL CD4 population in MF mainly consists of TCM and TEM subtypes (Figure 4.1), and

IFN-γ is produced by around 25% of the CD4 population (Figure 4.16). It is likely then that Cluster

3 is the CD4+ TCM population, especially as it expresses high levels of SELL / L-selectin, which is

expressed on TCM, but not TEM CD4 cells.

With this knowledge, we can proceed to label the clusters with our assigned T cell subtypes,

as well as look at the overall number of cells assigned to these groups, and how they vary between

samples (Figure 7.10).
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Figure 7.10: Cells were assigned to belonging to either tumour, CD4 TCM, CD4 TEM, CD8, TREG,

non-viable or NA, using Louvain-clustered expression data, TCR sequences and resulting entropy,

as well as differentially expressed genes. a. Cell subsets are visualised using tSNE for all com-

bined (by MNN) experiments. b. Cells colours by Shannon entropy of clusters for combined

experiments. c. Mean percentage of cells assigned to each T cell subset, with standard error bars.

c. Breakdown of cells assigned to respective T cell subset by sample. CD4 CM: CD4+ central

memory, CD4 EM: CD4+ effector memory, T-reg: T regulatory cell, CD8: CD8+ T cell.
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Assignment of cells to their T cell subset allows for some observational insights from the tSNE

dimension reduction. Complete separation of the tumour populations from the TILs suggests that

despite a superficial similarity between tumour and TIL (CD3+, CD4+, morphological appearance,

clonality), tumour RNA expression is markedly different to the TIL, and with more variance than

the differences observed within the TIL subsets.

We can also observe that from our small sample of three tumour samples, one has a markedly

different phenotype to the other, which fits with our understanding that the tumour cells show

population-wide heterogeneity. The tumour samples are not further clustered, which also sug-

gests that tumour cells display sample-wide homogeneity. Again, these findings are in keeping

with the protein surface expression data.

The TIL population has clustered into four clusters when the Louvain method is applied to the

entire dataset, excluding the cluster of dying cells. These are CD4 TCM, CD4 TEM, TREG and CD8.

Figure 7.10b shows that the CD8 cluster has the lowest entropy, and so is the most oligoclonal.

This is followed by CD4 TEM, which also displays an intermediate entropy. TREG and CD4 TCM

appear to be polyclonal.

The number of clusters identified in the TIL population is partly a product of the other cells

present, and the structure of the data. To interrogate the TIL population further, tumour and

non-viable cells were excluded, and dimension reduction and clustering repeated, which revealed

some of the finer structure, and further subsets. However, identifying T cell subsets from RNA ex-

pression is not a validated process, and while the CD8 and TREG populations were easily identified,

the TCM and TEM CD4 populations were harder to identify.

To visually check these clusters are correctly identified, we can also colour the cells by their

individual marker expression as seen in Figure 7.11.
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Figure 7.11: Expression of genes showing differential expression between clusters, plotted on

tSNE-reduced dataset. 201



The expression plots reveal greater complexity than the differential expression analysis would

suggest, however, CD8, FOXP3, SELL and CXCR6 do clearly discriminate between the four TIL

clusters. The heatshock protein expression of the non-viable cluster may suggest that the non-

viable population is actually smaller than the Louvain cluster would suggest, and there may be

another small unidentified cluster. It can also be observed through CCL5, LAG3 and IL7R ex-

pression, that there is further detailed structure within the TIL population than the four Louvain

clusters would suggest.

7.6 Differentially Expressed Genes in Tumour Versus TIL

Subsets

The importance of our T cell adaptive immune response in cancer is illustrated by several exam-

ples. These include the importance of both CD4+ and CD8+ T cells in CAR-T cell therapy[239],

the prognostic effect of CD4 and CD8 subpopulations in various cancers[28, 29, 201], and the re-

sulting improvement in survival when blocking the inhibitory T cell receptor PD-1 receptor in

patients with cancer[102].

Unfortunately, these cells bear close proximity and similarity to the tumour cells, which them-

selves impart the opposite prognosis on survival[48]. Comparing the differential expression of the

tumour sample against the reactive T cells allows for selective targeting of the tumour cells.

While the benefits of CD4 and CD8 TIL T cells appear fairly clear, the role of TREG cells in the

microenvironment is less so. As a result, tumour cells were compared to CD4 (both TCM and TEM)

to provide a comparison that reflected intrinsic properties of the tumour over its cell of origin, to

prevent over-emphasising differences between CD4, CD8 and T-reg cells.

For each sample with a tumour population, cells were identified that belonged to either the
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tumour or the CD4 subset. Differential expression was measured for all genes using the Welch

t-test, comparing tumour vs TIL for each sample. A false discovery rate was applied to the p

value, and the list was reduced to only those with a p value of < 0.05. These lists were combined,

and the mean effect size was calculated for each significant gene. The list was then ordered by

reverse effect size, and the top 25 results are shown in Table 7.6. It should be noted that although

the dataset could be considered fairly large from the perspective of cell number for scRNA-seq

given the current cost of sequencing, the comparison is limited to only four patients, and so these

findings are unlikely to be applicable to the patient population as a whole.

The top 100 genes were retrieved and manually curated to form a list of upregulated genes of

potential interest. Log gene expression was then plotted by cell type for each gene. In the figures,

expression for each sample was not shown, with the amalgamated comparisions shown instead,

however, all listed genes were significantly up-regulated in tumour vs CD4 TIL for each sample.
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Figure 7.12: Gene expression of ACTB, GAPDH, IL32, RHOA, S100A4 & S100AF by T cell subset,

over whole dataset. Statistical test is MWW without multiple testing correction.

Figure 7.12 shows genes which were significantly upregulated in tumour compared to the

CD4 TIL population that had a large effect size, but also displayed substantial expression in the

T cell subsets. ACTB is beta-actin, representing an anabolic upregulation of the tumour cell,

mutations in this gene have been seen in a B-cell lymphomas[240]. GAPDH, or glyceraldehyde

3-phosphate dehydrogenase is a key enzyme of the glycolysis pathway, providing cellular energy.

IL-32 has previously been seen to be upregulated in mycosis fungoides[241, 242], and is a pro-

inflammatory cytokine capable ofmobilising the innate immune system [243], but has been shown

to downregulate CCL5 (expressed highly on CD8 TIL, Figure7.11), and can be seen here expressed
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highly in the TREG population as well. RHOA is another gene (a GTPase) associated with actin, and

is likely involved in cell-division of the tumour cell. It is a recurrently mutated gene in CTCL[244],

and is seen in two other systemic T cell lymphomas[245, 246]. Also of note aremutations in cGK1β

seen in CTCL, which result in failure to phosphorylate RHOA[247]. S100A4 and S100A6 are both

calcium-binding proteins, which have wide involvement in cellular processes, and are implicated

in the metastatic potential of breast cancer[248]. Antibodies have been developed to S100A4 as a

potential anti-cancer agent[249].

Figure 7.13: Gene expression of CD82, CD96, GNLY, LGALS1, LGALS3&TNFSF10 by T cell subset,

over whole dataset. Statistical test is MWW without multiple testing correction.

Next, genes with relevance to the immune system were assessed (Figure 7.13). CD82 appears
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to be important in the transport of HLA class II proteins[250], which appears to be important in

some subtypes of MF as seen previously. CD96 is an immune checkpoint receptor which binds to

ligand CD155 and bears some sequence similarity to DNAM-1. It competes with TIGIT for this

receptor and is seen as a potential target for immune checkpoint inhibition therapy. GNLY, or

granulysin is found in granules (hence increased expression in the CD8 lineage), is cytolytic and

pro-inflammatory, and associated with good outcomes in cancer, whereas low granulysin in CD4

TEM is associated with poor outcomes[251]. LGALS1 and LGALS3 are Galectin-1 and Galectin-

3. Galectin-1 is expressed on Hodgkin lymphoma cells and appears to decrease functionality

of CD8+ T cells[252], and Galectin-3 is associated with a wide range of intracellular tumour-

supporting mechanisms[253]. TNFSF10 encodes TRAIL, a cytokine which induces cell death by

binding death receptors DR4 and DR5.
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Figure 7.14: Gene expression of AC092580.4, BHLHE40, HOPX, MRPS6, MTHFD2, NBAS,

SAMSN1 & STK17B by T cell subset, over whole dataset. Statistical test is MWWwithout multiple

testing correction.

Other genes of interest are shown in Figure 7.14. AC092580.4 is a non-coding RNA, which

is upregulated in AML[254]. BHLHE40 encodes a basic helix-loop-helix pattern, which is again

likely related to anabolic processes of the cell. HOPX is an embryonic homeodomain protein.

MRPS6 is a ribosomal gene and MTHFD2 is a mitochondial gene, possibly related to increased

protein and energy usage of tumour cells. NBAS, or neuroblastoma-amplified gene was originally

identified overexpressed in neuroblastoma cell lines[255]. It plays a role in the endoplasmic retic-

ulum. SAMSN1 is a scaffold protein, and may play a role as tumour-suppressor in myeloma[256].

STK17B is implicated in carcinogenesis and metastatic ability of hepatocellular cancer[257] and

its expression is seen in CTCL cell lines[258].
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Figure 7.15: Gene expression of individual cells dimension reduced using tSNE for AC092580.4,

ACTB, CD82, IL32, LGALS1, LGALS3, S100A4, S100A6.

To demonstrate the intrasample heterogeneity of genes with upregulated expression, tSNE

plots were created with selected upregulated genes of interest. These are shown in Figure 7.15,

and highlights the heterogeneity of expression.

Heatmap of differentially expressed genes

To visualise differentially expressed genes in the tumour population (both up and down-regulated),

the expression of the top 75 differentially expressed genes were shown for the three tumour pop-

ulations and 25% of the TIL population, for comparison (Figure 7.16).
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Figure 7.16: Heatmap of RNA expression of whole dataset, with cells as columns and genes are

rows. Constructed by identifying 75 top differentially expressed genes between tumour and TIL

cells. TIL population was subsampled to 25% to allow easier visualisation of tumour population.

Cells are Louvain clustered for TILs, then separated by sample for tumour. Genes were 𝑘-means

clustered.
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7.6.1 Force Directed Graph

To investigate the relationship between differentially expressed genes, I utilised the expression

profiles of the TIL population to better understand the relationship between various genes. This

was done by representing each gene in a high dimensional space, where the dimensions are each

of the >10’000 TIL cells. 𝑘-nearest neighbours was use to find genes that had similar expression

profiles, and thereforemore likely to be involved in similar pathways. Genes that were recurrently

up or down-regulated in the tumour population compared to TIL were represented in this fashion.
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Figure 7.17: Force-directed graph of significantly upregulated and downregulated genes in the

tumour population. The graph used 𝑘-nearest neighbours from the TIL data, to associated genes

which are co-vary, and therefore likely to be involved in similar signalling pathways. Orange:

Genes which are recurrently upregulated in tumour versus CD4 TIL. Green: Genes which are

recurrently downregulated in tumour versus CD4 TIL.

When arranged in a graph, the upregulated genes are clustered separately from the downreg-

ulated genes, suggesting that genes that are upregulated in the tumour population may be part of

a similar physiological pathway.
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7.7 Genes Involved in T Cell Expansion

There is a large skew of T cell clonality in the microenvironment, with many CDR3 sequences

observed in only one T cell, but some CDR3 sequences represented in 10 or more cells . To inves-

tigate differences in gene expression between T cells which appear to have clonally expanded, I

compared the expression of expanded T cells against singlet T cells. This was analysed within T

cell type to control for variations in clonality between T cell populations.

Cell population Clonal Singlet Clonal (%)

TIL CD4 TCM 88 2314 3.66

TIL CD4 TEM 970 1245 43.8

TIL CD8 989 559 63.9

TREG 741 1505 33.0

Table 7.7: Clonal (two or more cells with same CDR3 sequence within T cell subset) and singlet

cell numbers by T cell subset.

Initial analysis demonstrated clear variation in clonality between the T cell subsets (Table 7.7).

The TCM population was relatively non-clonal, with only 3.66% of T cells showing any clonality.

At the other extreme were TIL CD8 which had 63.9% of their T cells clonally expanded (two or

more cells sharing same TCR β sequence). TEM showed 43.8% clonality, and TREG 33%.
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Figure 7.18: Euler diagram showing TCR β CDR3 sharing between T cell subsets.

An Euler diagram of shared TCR sequences shows a surprising distribution between T cell

subsets (Figure 7.18), with TREG & CD4 EM sharing 57 CDR3 sequences, and CD4 CM & CD4 EM

sharing 60. At present it is not clear why CD8+ T cells are sharing TCR specificity with CD4+ T

cell subsets.

Differential expression was assessed between clonal and singlet T cells within each T cell

subset. Only a single gene reached significance once corrected for false-discovery rate, in the TIL

CD8 subset (Table 7.7).

Gene Cell population p-value FDR Fold-change

HMGB3 TIL CD8 0.00 0.01 0.02

Table 7.8: Significantly upregulated genes in clonal tumour infiltrating lymphocytes, after cor-

recting for multiple testing.
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The HMGB3 gene is present in haematopoietic stem cells, and expression appears to play a

role in differentiation[259], appearing to push cells towards differentiation over self-renewal.

214



Gene Cell population p value Fold-change

CD4 TCM HSPA8 0.01 0.22

LY6E 0.00 0.20

UQCRB 0.01 0.20

UBL5 0.00 0.20

STK4 0.01 0.20

CD4 TEM MT-CO1 0.00 0.22

MT-CO3 0.01 0.16

EEF2 0.00 0.13

PFN1 0.00 0.09

MT-ND2 0.01 0.09

CD8 SRGN 0.00 0.15

TSC22D3 0.01 0.13

KLRB1 0.01 0.11

SLC25A6 0.00 0.11

SLC25A5 0.00 0.11

TREG MT-CO2 0.00 0.24

MT-ND3 0.01 0.18

CST7 0.00 0.13

PASK 0.00 0.11

SRSF5 0.00 0.10

Table 7.9: Top genes in each infiltrating T cell subset that are differentially expressed in clonal

expanded T cells.
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A less-stringent criterion of p < 0.01 was applied, and the top 5 fold-change differentially

expressed genes were obtained for each T cell subset (Table 7.7).

7.8 Constant Region

There is current therapeutic interest in targeting T Cell Receptor Beta Constant (TRBC)-1 by a

CAR T cell approach for T cell lymphomas[260]. To investigate whether any of the three identified

tumour samples would be suitable for this type of therapy, cells were assessed for expression of

TRBC1 & TRBC2, and this was categorised by tumour versus TIL category, by sample.

Tumour population / TIL TRBC1 TRBC2

TIL 3818 4775

CTCL047XX05Y 237 634

CTCL063XX01A 2 15

CTCL064XX01A 15 326

Table 7.10: Number of cells expressing TRBC1 and TRBC2 constant domains grouped by tumour

infiltrating lymphocytes and tumour population by sample.

This analysis reveals the tumour populations are skewed towards a TRBC2 constant region in

all three samples. However, this skew is not absolute, representing 72% of the CTCL047XX tumour

population, 88% of the CTCL063XX tumour population and 96% of the CTCL064XX population.
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Figure 7.19: Constant region domain TRBC1 or TRBC2 coloured on tSNE-reduced dataset.

7.9 Discussion

In this chapter I demonstrate a novel approach to investigating T cell lymphomas, exploiting the

TCR clonality of mycosis fungoides to discriminate at a cellular level between tumour and TIL

within the microenvironment. It is not the first study using scRNA-seq, with one study which

examined a single patient with SS, sequencing peripheral blood[261], and another, more extensive

study, which examined skin from 5 patients with MF comparing to 4 from healthy donors, as well

as immunohistochemistry[262]. In both of these studies, concurrent TCR sequencing was not

performed, nor was batch correction, which results in marked separation between cells from the

various experiments.
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This technique was successful, sequencing 17’152 cells, and obtaining VDJ sequences on 57%

of the cells. I also developed a novel method to identify tumour populations by computing the

entropy of the TCR of each cluster. This successfully identified tumour populations in three of the

four samples (Figure 7.7), which demonstrated CD5 and CD7 downregulation, in keeping with a

tumour phenotype (Figure 7.9).

Investigation of the TIL population appeared capable of identifying CD8+ T cells, as well as

three CD4+ T cell subsets: TCM, TEM and TREG. Despite utilising marker enrichment techniques,

neither dimension reduction nor clustering techniques appeared capable of identifying the Th

subtypes.

Differential expression analysiswas used to identifymarkers significantly up or down-regulated

in the tumour population compared to the CD4 TIL population. These genes have particular sig-

nificance in T cell cancer, as there is differential expression between a group of cells we wish to

target and a group of cells wewish to preserve. Genes identified as being significantly upregulated

broadly fell into immune signalling, calcium binding, cellular energy & structural elements. In an-

other published study which employed a similar technique on SS (though comparing flow-sorted

leukaemic population against peripheral blood), they also noted SAMSN1 to be differentially up-

regulated[261].

Bulk RNA sequencing studies examine the overall change in gene expression of the tissue

environment witha comparator (often benign dermatoses or healthy skin), whereas this study

used the infiltrating CD4 T cells as the comparator. Despite this methodological difference, there

are certain geneswhich have been found to be significantly upregulated in both approaches. These

include GNLY, which has been found to be upregulated in advanced stage disease in a large study

of 157 patients[263] using targetted sequencing of paraffin embedded tissue, and SELL[264]. A

study which took a similar approach to this project compared SS malignant cells with CD4 T cells

in 3 patients, differentiating them using the TCR-Vβ technique. They noted increased ADAM8 (a
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metalloproteinase) and GPR68 (involved in pH homeostasis) in the malignant population, which

were also found in this analysis. Interestingly they found upregulation of CD4, CD59 and EPHA4,

all of which were significantly downregulated in this study[265]. Of particular interest is the

finding that RHOA is recurrently mutated in CTCL[244], and that a study examining recurrent

mutations in cGKIβ gene in JURKAT cells, found this hindered downstream phosphorylation of

RHOA[247]. This functionally results in increased NFAT activity, enhancing the TCR response.

While in previous chapters using a flow-cytometry technique I was unable to find differences

in diversity between healthy donor and the TIL population (Figure 4.23), using a high-resolution

technique we were able to determine that the CD4+ TCM population had only expanded 3.66% of

their T cells, suggesting that the majority of the TCM population was not actively engaged with

tumour, but remained part of the reactive infiltrate. This is in contrast to 63.9% of the TIL CD8

population being oligoclonal. Surprisingly few clonotypes (60) were shared between TCM and TEM

Investigating features of cells which have clonally expanded revealed one gene of interest only

in the CD8 population, HMGB3, which appears to play a role in controlling self-renewal versus

differentiation in haematopoietic stem cells[259].

Lastly, analysis of the constant domain of mycosis fungoides reveals a bias towards TRBC2

over TRBC1, although it does not appear to be an absolute feature of the tumour, which is not

surprising given the constant region is not part of the VDJ recombination.

219



Gene CTCL047XX05Y CTCL063XX01A CTCL064XX01A p-value
GNLY 1.30 5.60 1.20 < 1e-04
S100A4 2.26 1.74 2.42 < 1e-04
EEF1A1 -1.05 -1.98 -2.63 < 1e-04
IL32 3.00 1.19 1.43 < 1e-04
LGALS1 0.65 1.99 2.96 < 1e-04
TPT1 -2.22 -1.46 -1.79 < 1e-04
PABPC1 -0.86 -2.23 -2.36 < 1e-04
AC092580.4 1.85 2.07 1.35 < 1e-04
IL7R -0.97 -2.17 -1.86 < 1e-04
SARAF -1.55 -1.43 -1.98 < 1e-04
S100A6 1.01 1.85 2.06 < 1e-04
CST7 0.16 2.83 1.31 < 1e-04
LGALS3 2.17 0.54 1.38 < 1e-04
EEF1B2 -0.96 -1.38 -1.46 < 1e-04
SAMSN1 0.90 1.85 0.80 < 1e-04
GIMAP7 -1.39 -0.99 -1.12 < 1e-04
GNB2L1 -0.92 -1.24 -1.20 < 1e-04
HLA-B -1.19 -1.31 -0.85 < 1e-04
KRT86 0.00 2.07 1.21 0.04593
LDHB -1.00 -0.92 -1.31 < 1e-04
GAPDH 1.00 1.01 1.16 < 1e-04
PFDN5 -1.01 -1.10 -1.03 < 1e-04
AC090498.1 -0.65 -1.20 -1.16 < 1e-04
MRPS6 0.12 1.85 0.99 < 1e-04
EEF1D -0.44 -0.80 -1.66 < 1e-04

Table 7.6: Top 25 differentially expressed genes of tumour populations vs CD4 TIL, effect size
shown in log fold-change, p-value is after false discovery rate correction.
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Chapter 8

Discussion

This work represents one of the largest and most detailed immunophenotypic studies of myco-

sis fungoides, and the only study to exploit the TCR clonotype to differentiate between tumour

and tumour infiltrating lymphocytes within the disease microenvironment. This has provided

much new insight into the pathogenesis and progression of mycosis fungoides, but it has also

undermined some of the simple narratives of the disease.

T cell exhaustion is well observed in cancer, but is difficult to define, particularly as we do not

have an understanding of what represents an effective adaptive immune response to cancer in

vivo. The phenotype of the tumour infiltrating T cells observed certainly demonstrates some of the

features of T cell exhaustion (high immune checkpoint receptor expression with co-expression,

low CD4+ IL-2 production, low granzyme-B production), but it also retains some functionality,

with both CD4+ and CD8+ retaining some production of IFN-γ.

The other striking observation of the TIL phenotypewas its consistency. Despite what appears

to be a heterogeneous disease, TIL demonstrate a similarly activated and exhausted profile across

the population, and across disease stage. This suggests that the TIL phenotype is determined early
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on in disease progression. In fact, it is possible that the phenotype is acquired within the very

early stages of the disease, given the rapid induction of T cell exhaustion seen when encountering

virus[89, 90].

The tumour phenotype also brought surprises. The lack of consistent immune checkpoint

ligand expression, a TREG tumour phenotype or increased IL-10 tumour production goes against

the common belief that mycosis fungoides demonstrates progressive immunosuppression with

progression. I hypothesised that this was due to the complex bi-directional signalling occurring

between tumour and TIL, and constructed a mathematical model which simulated the tumour

control by the adaptive immune system. Given the limitations of mathematical modelling in the

context of a complex cellular interaction, the model did suggest that microenvironment immuno-

suppression affected the kinetics of the disease, but had less impact on the balance between tu-

mour and TIL.

Patients who present with mycosis fungoides already show a strong selection bias towards

an immune response which has failed to control the disease. There is unlikely to be much of an

evolutionary pressure on the cancer to slow a process which it is already exceeding in.

The tumour population showed heterogeneity, clustering into three groups of distinct pheno-

types. I was able to show a concurrent decrease in degranulation of TIL and increased divergence

of the tumour phenotype with disease progression, which fits the narrative of immune escape oc-

curring in the more advanced stages of mycosis fungoides. Surival analysis of the three clusters

identified suggested there may be a differential survival benefit, with the high PD-L1 expressing

group (‘evasive’) showed better survival. Further study with higher patient numbers are needed

to confirm this, and the low n-numbers of this study did not allow for a multivariate analysis.

The CD4+ T cell plays a central role in the adaptive immune system, and is capable of deviating

the response, optimising it against different types of pathogens. The ideal anti-cancer immune

response is usually seen as the intracellular Th1 response which recruits CD8+ T cells. The Th2
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and Th17 responses remain inflammatory, but recruit a humoral or innate response. It was not

surprising to find that the tumour consistently mimicked these two phenotypes, with significantly

increased production of IL-4 and IL-17a.

However, the tumour is not easily categorised into a Th phenotype. While IL-4 and IL-17

production was increased compared to other T cell subsets, the tumour population was also ob-

served producing IFN-γ, with some producing IL-10. This inconsistency of the Th phenotype was

also seen on the cellular level, with some tumour cells co-producing IFN-γ and IL-4, suggesting

that rather than acquiring a Th phenotype, tumour cells have pathologically dysregulated their

cytokine production.

Figure 8.1: Model of disease progression in mycosis fungoides.
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With these observations, I constructed a model of disease progression in MF (Figure 8.1). An

initial transformation event occurs to a skin-homing CD4+ T cell, resulting in a cancerous change.

The initial immune response may eliminate the disease, but in presenting cases this has not oc-

curred, and eventually an established dynamic equilibrium is formed with a high TIL to tumour

ratio, as seen in early-stage disease. At an early stage, T cell exhaustion occurs, which allows the

tumour population to dominate the microenvironment. At this point immune deviation to a Th2

and Th17 phenotype creates an inflammatory microenvironment suitable for tumour growth, but

less suitable for cancer clearance. In the late stages of the disease, the disease evades the immune

system by developing into either an evasive, exhausted or cold phenotype.

Inmycosis fungoides, two T cell populations hold dichotomous prognostic influence, and these

two populations are anatomically and phenotypically close. To successfully treat the disease re-

quires a discriminatory approach, both in investigation, and therapeutics. Too much collateral

damage to the immune response will be detrimental, and complete removal of the T cell popula-

tion is disastrous for the patient.

Single cell RNA sequencing with TCR immune profiling is a powerful technique to identify

differences in gene expression between these populations, identifying the tumour population even

in early stage mycosis fungoides. The technique has identified many genes which are significantly

and recurrently up and down-regulated in tumour cells compared to the CD4 population, high-

lighting the fact that the tumour cells have a markedly different gene expression profile compared

to their infiltrating counterparts.

Differences between the cancer and the infiltrating cells have the potential to be exploited,

and further single cell sequencing will be useful to clarify the spectrum of disease expression

phenotypes. Antigen-specific T cell killing is likely to occur only by the infiltrating T cells, and

enhancing killing without increasing proliferation should increase immune control of the disease.

This could be achieved by deviating the immune response back towards the Th1 phenotype.
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While we have exploited the TCR-Vβ rearrangement to investigate this disease, little has been

done to target this therapeutically. Single cell RNA sequencing was able to retrieve the TCR CDR3

sequence of oligoclonal CD4+ and CD8+ T cell populations, and it may be that this can become

part of a personalised cellular therapy for patients in the future, potentially by grafting tumour-

specific TCRs onto functionally effective Th1 and Tc effector cells.

8.1 Future work

The limited number of patients on which scRNA-seq was performed impacts the ability of this

technique to provide useful insights to the population as a whole. Further single cell RNA se-

quencing of patient samples are needed to account for the heterogeneity of the disease. This

would investigate the possibility of a metabolic dysregulation common to the disease, despite the

phenotypic differences, which would make an ideal rational target. It will also allow for phe-

notypic characterisation of early stage disease, the phenotype of which has not been adequately

assessed due to the limitations of bulk sequencing.

Enhancing the T cell killing of the tumour is also of interest, and investigation of antigen pre-

sentation within themicroenvironment would be useful to understandwhat the infiltrating T cells

can ‘see’. It may be that the adaptive immune system already exploits the TCR-Vβ rearrangement

to control the disease, and this has been previously observed in B cell malignancies[266]. If a tu-

mour cell’s antigenicity is partly determined by its TCR rearrangement, future cellular therapy for

the disease could potentially use off-the-shelf T cells specific for a range of commonly presented

TCR rearrangements.

Current work looking at sequential biopsies of patients with MF and the impact of immune

checkpoint inhibition would provide excellent material to select parameters for the mathemati-

cal model. Functional studies could support this, using an in-vitro model of cell killing. Recent
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research has found that tumour populations can be maintained ex-vivo, so further work in this

area would be useful to assess T cell killing to assess potential therapeutic targets identified from

above.

A realistic model of mycosis fungoides is required to investigate the effectiveness of drug

and cellular treatments, while taking into account the delicate balance between the infiltrating

immune cells and the tumour cells. A human immune systemmousemodel is capable of recreating

the adaptive human immune system within a mouse, complete with MHC restriction, and would

be a good model to assess the effectiveness of potential future treatments arising out of metabolic

or cellular targeting of the disease.
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Appendix A

Patient Details
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Sample Age Diagnosis Clonotypic Biopsy stage Clinical stage
CTCL002XX06 61 MF TRUE tumour IB
CTCL004XX02 74 MF TRUE erythrodermic IVA2
CTCL005XX02 75 MF TRUE plaque IB
CTCL006XX01 68 MF FALSE plaque IB
CTCL007XX01 67 MF TRUE plaque IB
CTCL008XX01 59 MF TRUE plaque IA
CTCL010XX01 66 MF TRUE erythrodermic IVA1
CTCL013XX02 24 MF FALSE patch IB
CTCL014XX01 74 MF TRUE tumour IIB
CTCL015XX04 75 MF FALSE tumour IB
CTCL017XX01 54 MF TRUE tumour IIB
CTCL017XX02 54 MF TRUE plaque IIB
CTCL017XX05 55 MF TRUE post_tx IIB
CTCL018XX01 76 MF FALSE tumour IIB
CTCL020XX02 73 MF FALSE tumour IIB
CTCL021XX01 68 MF FALSE patch IA
CTCL022XX01 62 MF FALSE tumour IIB
CTCL023XX02 87 MF FALSE tumour IIB
CTCL024XX01 63 MF TRUE tumour IIB
CTCL024XX01 63 MF TRUE tumour IIB
CTCL025XX02 70 MF FALSE plaque IIB
CTCL026XX01 60 MF TRUE plaque IB
CTCL026XX01 60 MF TRUE plaque IB
CTCL027XX01 69 MF FALSE plaque IB
CTCL028XX01 82 MF FALSE tumour IIB
CTCL028XX02 82 MF FALSE plaque IIB

Table A.1: Clinical details of patient cohort (part 1). post_tx: post-treatment sample.
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Sample Age Diagnosis Clonotypic Biopsy stage Clinical stage
CTCL029XX01 75 MF TRUE tumour IB
CTCL029XX01 75 MF TRUE tumour IB
CTCL030XX01 81 MF FALSE tumour IIB
CTCL032XX01 69 SS TRUE tumour IVA2
CTCL033XX01 76 MF FALSE tumour IB
CTCL035XX01 43 MF FALSE erythrodermic IIIA
CTCL036XX01 65 MF TRUE tumour IB
CTCL036XX02 65 MF TRUE patch IB
CTCL037XX01 53 MF FALSE patch IA
CTCL042XX01 51 MF FALSE tumour IB
CTCL043XX01 36 MF FALSE plaque IB
CTCL045XX01 70 MF FALSE plaque IB
CTCL045XX02 70 MF FALSE normal_skin IB
CTCL046XX01 47 MF FALSE plaque IB
CTCL047XX01 66 MF TRUE plaque IIB
CTCL047XX02 66 MF FALSE normal_skin IIB
CTCL049XX01 83 MF TRUE plaque IIB
CTCL050XX01 27 MF FALSE plaque IIA
CTCL051XX01 62 MF FALSE plaque IA
CTCL052XX01 69 MF TRUE plaque IA
CTCL053XX01 59 FCC FALSE plaque IB
CTCL054XX01 43 MF TRUE tumour IIB
CTCL055XX01 69 MF FALSE tumour IIB
CTCL056XX01 26 MF TRUE plaque IB
CTCL057XX01 74 MF TRUE plaque IB
CTCL058XX01 78 MF FALSE tumour IA

Table A.2: Clinical details of patient cohort (part 2).

229



Appendix B

Flow Cytometry Panels

Channel Voltages
FSI 333/5
FSP 333/5
SSI 250/20
SSP 250/20
FL1 471/1
FL2 447/1
FL3 494/1
FL4 508/1
FL5 587/1
FL6 538/1
FL7 480/1
FL8 551/1
FL9 416/1
FL10 446/1

Table B.1: Channel voltages for Gallios flow cytometer (Beckman Coulter).
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Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 TCR-Vβ FITC B-C 10
FL2 TCR-Vβ PE B-C 10
FL3 PI 1
FL4
FL5 CD7 CD7-6B7 PE-Cy7 biolegend 343114 1
FL6
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.2: Clonogram panel. B-C: Beckman-Coulter, CA, U.S. PI: propridium iodide.

Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 CD2 TS1/8 FITC biolegend 309205 2.5
FL2 CD7 CD7-6B7 PE biolegend 343105 2
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 PI 1
FL4 CD5 UCHT2 PerCP-Cy5.5 biolegend 300619 2.5
FL5 TCR-αβ IP26 PE-Cy7 biolegend 306719 2.5
FL6 TCR-γδ B1 APC biolegend 331211 2.5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9 CD56 5.1H11 BV421 biolegend 362551 2.5
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.3: Phenotype panel. PI: propridium iodide.
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Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 TCR-Vβ FITC B-C 10
FL2 TCR-Vβ PE B-C 10
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 PI 1
FL4 TIGIT MBSA43 PerCP-EF710 eBioscience 46-9500-41 5
FL5 PD-1 EH12.2H7 PE-Cy7 biolegend 329917 1
FL6 PD-L2 MIH18 APC biolegend 345507 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9 PD-L1 29E,2A3 BV421 biolegend 329713 1
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.4: Panel 1. B-C: Beckman Coulter, CA, U.S. PI: Propridium iodide.

Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 TCR-Vβ FITC B-C 10
FL2 TCR-Vβ PE B-C 10
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 PI
FL4 Galectin 9 PM1-3 PerCP-Cy5.5 biolegend 348909 5
FL5 HLA-DR LN3 PE-Cy7 biolegend 327018 1
FL6 LAG3 11C3C65 AF647 biolegend 369303 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9 Tim3 F38-2E2 BV421 biolegend 345007 1
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.5: Panel 2. B-C: Beckman-Coulter, CA, U.S. PI: Propridium iodide.
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Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 TCR-Vβ FITC B-C 10
FL2 TCR-Vβ PE B-C 10
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 FVD Zombie Red biolegend 1
FL4 IL-10 JES3-9D7 PerCP-Cy5.5 biolegend 501417 5
FL5 CD25 M-A251 PE-Cy7 BD 557741 5
FL6 FOXP3 259D AF647 biolegend 320213 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9 TGF-β1 TW4-2F8 BV421 biolegend 349613 5
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.6: Panel 3, Intranuclear staining panel. B-C: Beckman-Coulter, CA, U.S. BD: Becton Dick-
inson, New Jersey, U.S. FVD: Fixable viability dye.

Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 TCR-Vβ FITC B-C 10
FL2 TCR-Vβ PE B-C 10
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 PI 1
FL4
FL5 MHC-I W6/32 PE-Cy7 biolegend 311429 2.5
FL6 FasL NOK1 APC BD 564262 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9 FasR DX2 BV421 biolegend 305623 1
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.7: Panel 4. B-C: Beckman-Coulter, CA, U.S. biolegend: Biolegend, CA, U.S.
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Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 TCR-Vβ FITC B-C 10
FL2 TCR-Vβ PE B-C 10
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 FVD Zombie Red biolegend 1
FL4 IFN-γ B27 PerCP-Cy5.5 biolegend 506527 5
FL5 IL-4 MP4-25D2 PE-Cy7 biolegend 500823 5
FL6 IL-10 JES3-19F1 APC biolegend 506807 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Cy7 biolegend 344818 1
FL9 IL-17A BL168 BV421 biolegend 512321 5
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.8: Panel 5, intracellular staining panel . B-C: Beckman-Coulter, CA, U.S. biolegend: Bi-
olegend, CA, U.S. FVD: Fixable viability dye.

Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 CCR7 G043H7 FITC biolegend 353215 1
FL2 CD45RA HI100 PE biolegend 304107 2.5
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 PI 1
FL4 CD7 CD7-6B7 PerCP/Cy5.5 biolegend 343116 1
FL5 HLA-DR LN3 PE-Cy7 biolegend 327018 1
FL6 TIGIT A15153G APC biolegend 372705 2.5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Fire750 biolegend 344840 1
FL9 FasR DX2 BV421 biolegend 305623 1
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.9: Panel 6. biolegend: Biolegend, CA, U.S. PI: Propidium iodide.
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Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 CCR7 G043H7 FITC biolegend 353215 1
FL2 CD45RA HI100 PE biolegend 304107 2.5
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 PI 1
FL4 CD7 CD7-6B7 PerCP/Cy5.5 biolegend 343116 1
FL5 PD-1 EH12.2H7 PE-Cy7 biolegend 329917 1
FL6 CD28 CD28.2 APC biolegend 302911 1
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Fire750 biolegend 344840 1
FL9 Tim3 F38-2E2 BV421 biolegend 345007 1
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.10: Panel 7. biolegend: Biolegend, CA, U.S. PI: Propidium iodide.

Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1 Granzyme B QA16A02 FITC biolegend 372205 5
FL2 CD107a H4A3 PE biolegend 328608 5
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 FVD Zombie Red biolegend 1
FL4 CD7 CD7-6B7 PerCP/Cy5.5 biolegend 343116 1
FL5 CD25 M-A251 PE-Cy7 BD 557741 5
FL6 CD127 A019D5 APC biolegend 351315 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Fire750 biolegend 344840 1
FL9 IL-2 MQ1-17H12 BV421 biolegend 500327 5
FL10 CD8 RPA-T8 BV510 biolegend 301048 1

Table B.11: Panel 8, intracellular staining panel. biolegend: Biolegend, CA, U.S. BD: Becton Dick-
inson, New Jersey, U.S. FVD: Fixable viability dye.
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Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1
FL2 CD7 CD7-6B7 PE biolegend 343105 2
FL3 CD14 HCD14 PE-dazzle594 biolegend 325634 3
FL3 CD19 HIB19 PE-dazzle594 biolegend 302252 2
FL3 CD56 5.1H11 PE-dazzle594 biolegend 362544 2
FL3 PI 1
FL4 CD8 miltenyi 1
FL5 HLA-DR LN3 PE-Cy7 biolegend 327018 1
FL6 CD25 M-A251 APC biolegend 356110 5
FL7 CD4 OKT4 AF700 biolegend 317425 1
FL8 CD3 SK7 APC-Fire750 biolegend 344840 1
FL9 VioletTrace thermofisher C34571
FL10

Table B.12: Panel 9. biolegend: Biolegend, CA, U.S. thermofisher: ThermoFisher, MA, U.S. PI:
Propidium iodide.

Channel Antibody Clone Fluorophore Source Catalogue μl/test
FL1
FL2
FL3 PI 1
FL4
FL5
FL6
FL7
FL8 CD3 SK7 APC-Fire750 biolegend 344840 1-5
FL9
FL10

Table B.13: Panel 10. biolegend: Biolegend, CA, U.S. PI: Propidium iodide.
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