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ABSTRACT

We investigate the statistical mechanical properties of spin models on the

square lattice, using the technique of transfer matrices. With the aid of ex-

act diagonalisation we obtain results which indicate that excitations of the

transfer matrix can be thought of as physical objects which we term topo-

logical excitations, which are domain walls in the case of the Ising model at

low temperature. Inspired by these results, we extend the usefulness of Baker-

Campbell-Hausdorff formula by finding and proving a new representation. This

mathematical result is the major contribution of this thesis to the wider liter-

ature. Applying perturbation theory to it allows us to perturbatively find the

eigenvalues of a square lattice transfer matrix in a way reminiscent of a high-

temperature expansion. We then do so for the Ising model, comparing our

results to known formulae, and extend the calculation to Potts models.
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CHAPTER 1

INTRODUCTION

Statistical mechanics is a firmly established pillar of modern physics. It arises

from physicists’ and mathematicians’ attempts to connect microscopic be-

haviour to observed macroscopic trends. This work will focus on magnetic

models wherein microscopic spins on a lattice contribute to macroscopic ob-

servables like the magnetisation or the heat capacity.

This thesis is structured as follows. First, this chapter contains some basic

background material: initially introducing the Ising model then generalising it

to Potts models; discussing the analytic tool of transfer matrices; and explain-

ing this work’s primary numerical technique of exact diagonalisation via the

power method.

Chapter 2 will then show some of these ideas in action. We shall discuss nu-
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CHAPTER 1. INTRODUCTION

merical results concerning the Ising model on different variations of a square

lattice. We will argue that the corresponding transfer matrix contains infor-

mation that is useful beyond the partition function and present evidence in

favour of this view. In particular, we will show how the differences between

eigenvalues of a transfer matrix can be viewed through the physical lens of

domain walls, presenting detailed modelling [1]. As far as we are aware this

physical interpretation is novel, though of course these excitations are well

known in terms of correlation lengths.

We will then move on to chapter 3. This chapter is the major mathematical

contribution that this work makes to the statistical mechanics literature and

physics more generally [2]. It presents a proof of an alternative representation

of the Baker-Campbell-Hausdorff formula, a theorem which is fundamental in

the study of Lie groups and Lie algebras [3–5]. It is also highly relevant when

considering transfer matrices, as we shall discuss. The chapter also goes into

detail on how best to think naturally about this formula, presenting additional

representations which may prove much more useful.

In chapter 4 we will apply the time-honoured technique of perturbation the-

ory to the aforementioned Baker-Campbell-Hausdorff formula. This allows us

access to the eigenvalues of a given transfer matrix through our new represen-

tation. This chapter is a much more recent development than the previous and

so should not be thought of as being held to the same level of rigour. Instead,
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1.1. THE ISING AND POTTS MODELS

we shall exactly calculate the formula for the first few orders and discuss trends

observed.

Chapter 5 will then be the culmination of this work; we shall apply the previ-

ously calculated perturbation theory to the Potts model and see how useful it

is. We will take some time to do this first for the Ising model, where we can

compare our results to the exact formula, before moving on to the more general

and non-integrable Potts model. The result is essentially a new analytic tech-

nique for interrogating square lattice spins models, similar to high-temperature

expansion [6].

Finally, chapter 6 will conclude this work. We will briefly discuss what has

been learned before moving on to the more important topic of what is still

to be discovered. We will attempt to provide some hints as to what future

directions this project may take.

1.1 The Ising and Potts models

We will first discuss the basic models we will be dealing with and their histories.

First, likely the most famous and widely known magnetic model in physics;

the Ising model [7].

The Ising model was first written down by Wilhelm Lenz in 1920 [8] and later

given as a problem to his student Ernst Ising, who solved it in one-dimension
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CHAPTER 1. INTRODUCTION

in his thesis [9]. The model itself is alluringly simple, describing a set of spins

which each have two states; up or down. In the absence of a field its energy

may be written as

H = −1

2

∑

〈ij〉
Jijσiσj , (1.1)

where σi ∈ {1, −1} denotes the spin on site i and 〈ij〉 denotes pairs of adjacent

sites. The factor of a half is to account for double counting. The variable Jij

describes the interaction between two spins. Throughout this thesis we will be

assuming a uniform ferromagnetic interaction, that is that Jij ≡ J and J > 0

to make the spins prefer to align.

The binary nature of this Ising model makes it particularly pleasant to work

with computationally but also permits great mathematical breakthroughs [10–

23]. The square lattice Ising model was solved by Onsager in 1944 [11,12] and

we shall discuss a solution of it in more detail later in this chapter. This solu-

tion is incredibly important as, unlike the 1D version, the two-dimensional Ising

model contains a phase transition where at a certain non-zero temperature

the spins cease to be ferromagnetically aligned and instead enter a disordered

phase. It is one of the simplest models to exhibit a phase transition.

While some materials do appear to have Ising like properties, the primary

reason the Ising model is studied is the possibility of theoretical advancement.

[24] This has been further highlighted by the concept of universality [25]. In

6



1.1. THE ISING AND POTTS MODELS

basic terms, universality is the fact that many seemingly different models,

and thus materials, exhibit the same behaviour within some critical region

surrounding a phase transition. What matters is the models symmetries, rather

than any other microscopic features. One would then just need to solve the

simplest model in any given universality class to gain insight into all models

in that class. Familiar concepts such as critical exponents arise from such

discussions. As the 2D Ising model is likely to be the simplest model in its

class, studying it is the sensible route to understanding the wider universality

class.

Of course, not all phase transitions are in the 2D Ising universality class. The

Potts model [26], not to be confused with the planar Potts or clock model,

is a natural generalisation of the Ising model whose universality class(es) are

typically distinct. Essentially, the Potts model, or more accurately the q-state

Potts model, contains spins which can point in any of q directions. One may

think of these different directions as being on a q − 1 dimensional simplex,

though typically the energy is written as the sum of Kronecker delta func-

tions

H = −J
∑

〈ij〉
δ(si , sj). (1.2)

Here, si ∈ Zq denotes the spin on the site i. Again we are assuming a uniform

ferromagnetic interaction in the absence of a magnetic field. Of course, under

such a formulation the obvious coincidence of the Ising model and the 2-state

7



CHAPTER 1. INTRODUCTION

Potts model is slightly obscured by a rescaling. Consequently some authors

prefer to assign the energy −J if the spins are aligned and J/(q−1) if they are

not. This formulation would make the aforementioned simplex analogy less

tenuous, but in the interests of mathematical simplicity this document shall

prefer the prescription as written above.

This mathematical preference should not be unexpected. The Potts model

is not one that is particularly motivated by real-life materials [26]. A more

realistic model is the planar Potts model mentioned previously. This model,

also known as the clock model, contains spins who can point in any of q

evenly spaced directions around a clock-face whose interactions are dependent

of the cosine of their relative orientation. It was suggested to Renfrey Potts

by his supervisor Cyril Domb [27], a noticeable trend in the histories of these

magnetic models. It is, however, a much more complicated model than the

regular Potts model that we will be dealing with in this thesis. Generically it

lacks duality for example, that is the ability to map low- to high-temperature,

which is something we shall discuss in slightly more detail later. It also leads

to a more complicated final expression for some of our later results in chapter

5 [28]. In that chapter, however, it will be stressed that all results we present

for the simpler model can also be obtained for the more complicated one and

how they differ will be hinted at. For now assume that any further mention

of the Potts model is referring to the regular q-state Potts model as has been

8



1.2. TRANSFER MATRICES

presented.

1.2 Transfer matrices

Transfer matrices are an analytic tool which may be deployed against problems

with translational symmetry [29]. They make solving one-dimensional prob-

lems particularly simple and also generalise neatly to two dimensions. They

form the mathematical backbone of this thesis so a thorough understanding of

them is crucial. Such an understanding is best formed through examples. As

such, this section shall present the solution to the 1D Ising model, generalise

that to the 1D Potts model, then move on to the more formidable 2D Ising

model.

First, the 1D Ising model. As transfer matrices require translational invariance

let us assume our spins are on a ring of size N such that

H = −J
N∑

j=1

σjσj+1 , (1.3)

is the energy of the system, with σN+1 = σ1. We may rewrite this as the sum

of energies of pairs of spins, that is

H =
N∑

j=1

Eσjσj+1
, (1.4)

9



CHAPTER 1. INTRODUCTION

where

Eσjσj+1
= −Jσjσj+1 . (1.5)

The partition function is thus

Z =
∑

σ1, σ2, ..., σN

e−βEσ1σ2e−βEσ2σ3 · · · e−βEσN−1σN e−βEσNσ1 . (1.6)

Next, we introduce the transfer matrix T̂ with elements

Tσiσj = e−βEσiσj , (1.7)

or explicitly

T̂ =



T↑↑ T↑↓

T↓↑ T↓↓


 =



eβJ e−βJ

e−βJ eβJ


 . (1.8)

This allows us to rewrite the partition function as

Z =
∑

σ1, σ2, ..., σN

Tσ1σ2Tσ2σ3 · · ·TσN−1σNTσNσ1 , (1.9)

where we can immediately recognise matrix multiplication and thus write

Z =
∑

σ1

T̂Nσ1σ1 ≡ tr
(
T̂N
)
. (1.10)

Note, if the matrix T̂ is diagonalisable then there exists a matrix M such that

10



1.2. TRANSFER MATRICES

T̂ = MΛM−1 where Λ is a diagonal matrix. The cyclical properties of the

trace thus allow us to write

Z = tr
(
ΛN
)

= λN1 + λN2 = λN1

(
1 +

λ2
λ1

)
, (1.11)

where λ1 and λ2 are the two entries of the matrix Λ, with λ1 ≥ λ2 chosen

without loss of generality, also known as the eigenvalues of the transfer matrix

T̂ . Of course, if the two eigenvalues are distinct then in the thermodynamic

limit, that is N → ∞, the partition function depends on λ1 alone. This is

indeed the case here. As such, we have found that the problem of solving

the 1D Ising model reduces to finding the largest eigenvalue of its transfer

matrix.

Generalising this result to the Potts model is relatively straightforward. One

merely needs to replace the energy Eσjσj+1
with

Esjsj+1
= −Jδ(sj, sj+1) . (1.12)

The transfer matrix is q × q rather than 2× 2, but the approach remains the

same. The matrix is very simple with each diagonal element being exp(βJ)

while all other elements are unity. As such this is not a particularly difficult

matrix to diagonalise.

Let us now turn to a non-trivial problem; the square lattice Ising model. We

11



CHAPTER 1. INTRODUCTION

will offer a whistle-stop tour of the solution based on excellent paper by Shultz,

Mattis, and Lieb [13]. First, we begin by writing down the energy,

H = −J
∑

i, j

(σi, jσi, j+1 + σi, jσi+1, j) . (1.13)

We now have two indicies to indicate the two dimensions of the square lattice.

Again, we insist of having periodic boundary conditions with both σi, j = σi+N, j

and σi, j = σi, j+M .

Under this toroidal geometry we shall consider the transfer matrix as being

split into perpendicular and parallel parts, which do not commute. These are

depicted in figure 1.1.

T̂⊥

T̂//

Figure 1.1: Depiction of the perpendicular and parallel parts of the transfer
matrix acting on the square lattice, as described in the text.
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1.2. TRANSFER MATRICES

Considering the perpendicular component as a ring around the torus, we

have

T̂⊥ = exp

(
βJ
∑

j

τ zj τ
z
j+1

)
. (1.14)

Here the operators ταj ≡ I ⊗ · · · ⊗ I ⊗ τα ⊗ I ⊗ · · · ⊗ I are 2N × 2N matrices

written in terms the standard Pauli matrices τα, with α = x, y, z. This matrix

is essentially doing the same thing as those we have already discussed, albeit

in a larger space.

The parallel operator, which acts to transfer between each 1D chain, is given

by

T̂// =
∏

j

[
eβJ + e−βJτxj

]
. (1.15)

The first exponential is for the case where the spin on the first ring is meant

to be aligned with the spin on the second, while the second exponential is

for when they are not aligned. The spin-flip operator τxj acts to enforce this

non-alignment, connecting states where spins are opposite.

Next note that Pauli matrices have the property exp(b0τ
α) = cosh b0+sinh b0τ

α

and so we may recast equation (1.15) as

T̂// = eb0N exp

(
βJ̃
∑

j

τxj

)
, (1.16)

13



CHAPTER 1. INTRODUCTION

where

sinh 2βJ̃ sinh 2βJ = 1 . (1.17)

This relation is known as the Kramers-Wannier duality [30–32] and is incred-

ibly important: it relates high-temperature to low-temperature, essentially

saying that by relabelling J as J̃ one can map physics below the transition

temperature to that above. We will have more to say on this later in this

work.

Returning to the calculation, we can combine these two parts into the full

transfer matrix,

T̂ ≡ T̂
1
2

// T̂⊥ T̂
1
2

// . (1.18)

Our aim is to diagonalise this transfer matrix and our approach will be to

write it as a single exponential. First we shall apply the rotation z → −x in

order to make the bilinear part in the exponents τxj τ
x
j+1 and the linear part τ zj .

Upon performing the Jordan-Wigner transformation this will leave us with a

quadratic expression in fermionic operators, with which we may proceed.

To that end, let us introduce the raising and lowering operators

τ±j =
1

2

(
τxj ± iτ yj

)
. (1.19)

14



1.2. TRANSFER MATRICES

Using the inverse Jordan-Wigner transformation [33],

τ+j = exp

(
−iπ

j−1∑

n=1

f †nfn

)
f †j , (1.20)

τ−j = exp

(
iπ

j−1∑

n=1

f †nfn

)
fj , (1.21)

we may represent the transfer matrix in terms of a collection of standard

fermionic second-quantised operators f †j . We note that

τ zj = f †j fj − fjf †j , (1.22)

τxj τ
x
j+1 = (f †j − fj)(f †j+1 + fj+1) . (1.23)

However, things are slightly more complicated for the case j = N . There we

have

τxNτ
x
1 = −(−1)N (f †N − fN)(f †1 + f1) , (1.24)

where N =
∑

j f
†
j fj is the number of fermions in the state. The parity of this

operator is a conserved quantity which splits the overall space in two. In terms

of the spin operators this is given by

Σ̂ =
∏

j

τ zj =⇒ Σ̂2 = 1 . (1.25)

Returning to our transfer matrix, upon performing a Bloch transform we

15



CHAPTER 1. INTRODUCTION

have

T̂// = eb0N exp

(
βJ̃
∑

k

(
fkf

†
k − f †kfk

))
, (1.26)

and

T̂⊥ = exp
(
βJ
∑

k

[
cos k

(
f †kfk + f †−kf−k

)
−sin k

(
f †kf

†
−k − fkf−k

) ])
. (1.27)

The splitting of the space from the conserved quantity Σ̂ manifests itself in

the definition of the Bloch k’s. For an odd number of fermions we are in the

periodic subspace and k is an Nth root of unity, as usual. However, for an

even number of fermions k is instead an Nth root of negative unity and we are

in the anti-periodic subspace.

We can represent this problem in terms of new operators

σxk = f †kf
†
−k − fkf−k , (1.28)

σyk = i
(
f †kf

†
−k + fkf−k

)
, (1.29)

σzk =
1

2

(
f †kfk − fkf †k + f †−kf−k − f−kf †−k

)
(1.30)

where the expressions for σxk and σzk come from the exponents of the transfer

matrix, noting that
∑

k cos k = 0 in order to give us the extra 1, while σy is

obtained from iσxkσ
z
k. These operators automatically satisfy the commutation

16



1.2. TRANSFER MATRICES

relations

[σαk , σ
β
k ] = 2iεαβγ σ

γ
k , (1.31)

and as such provide a representation of spin. They also satisfy

(σxk)2 = (σyk)
2 = (σzk)

2 = 1− P̂1 , (1.32)

where

P̂0 = f−kfkf
†
kf
†
−k , (1.33)

P̂2 = f †kf
†
−kf−kfk , (1.34)

P̂0 + P̂1 + P̂2 = 1 . (1.35)

These operators P̂n project onto the states which have n fermions collectively

on the sites k and −k. This means that if we have zero or two fermions,

the application of 1 − P̂1 gives unity and as such we are in a spin-half sub-

space, while if we have just one fermion it gives zero and we are in a spin-zero

subspace.

We may now write our transfer matrix as

T̂ = eb0N
∏

k

e
βJ̃
2
σzk
∏

k

e−βJ(cos k σ
z
k+sin k σyk)

∏

k

e
βJ̃
2
σzk , (1.36)

where we have noted that, for different values of k, bilinear fermionic opera-

17



CHAPTER 1. INTRODUCTION

tors commute and so we may write the sum in the exponent as a product of

exponentials. Due to this, we may consider each k component of the transfer

matrix separately. Noting that σzk = σz−k and σxk = −σx−k to give us the factors

of two in the exponents, we may write

eβJ̃σ
z
ke−2βJ(cos kσ

z
k+sin kσyk)eβJ̃σ

z
k =

[
cosh βJ̃ + sinh βJ̃σzk

]

× [cosh 2βJ − sinh 2βJ (cos kσzk + sin kσyk)]

×
[
cosh βJ̃ + sinh βJ̃σzk

]

≡ e−2βµk[cos pkσ
z
k+sin pkσ

y
k] .

(1.37)

Using our relation sinh 2βJ̃ sinh 2βJ = 1, we see that

cosh 2βµk =
cosh2 2βJ

sinh 2βJ
− cos k , (1.38)

sinh 2βµk cos 2pk = cosh 2βJ

(
cos k − 1

sinh 2βJ

)
, (1.39)

sinh 2βµk sin 2pk = sinh 2βJ sin k . (1.40)

While this was done for k 6∈ {0, π}, those two special values give the same

results as above.

18
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From this we can find that

T̂ = eb0N
∏

k

e−µk[cos 2pkσ
z
k+sin 2pkσ

x
k ] (1.41)

At this point we have essentially finished. We have achieved our aim in writing

the transfer matrix as a single exponential and the subsequent extraction of

its eigenvalues is not too onerous a task. We will end the calculation at this

point as its main message for the purpose of this work was never what the

actual eigenvalues were.

Writing it as a single exponential is not merely a mathematical convience but

also of physical significance. If the largest eigenvalue of the transfer matrix is

the partition function, then it is also related to the free-energy via

z = e−βF . (1.42)

As such, we could write

T̂ = e−βF̂ , (1.43)

defining a free-energy operator F̂ . We have effectively just found this operator

in the case of the square lattice Ising model. One ought to consider this

operator as a (d − 1)-dimensional quantum mechanical Hamiltonian, if the

corresponding transfer matrix was for a d-dimensional statistical mechanics
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model. This idea is well known in the literature [25]. Standard ideas concerning

the spectra of Hamiltonians apply to this model, with energy being replaced

by free-energy [1]. We shall have more to say on such operators in the next

chapter, chapter 2.

These messages should also be taken into account when reading the mathemat-

ical chapters 3 and 4 as well as the culminating chapter, chapter 5, where we

shall be trying to find the partition function of the Potts model. Of course, we

shall not be as successful as in this Ising calculation because the model is non-

integrable, but lessons, particularly from the early parts of this calculation,

may be learned.

1.3 The power method

The previous section introduced the concept of transfer matrices and argued

they are useful tools in solving certain translationally invariant problems. One

may question if they can be useful for other, non-solvable, problems as well.

The answer is that they can [1,34–38] and this section shall provide the frame-

work for how transfer matrices may be used as a numerical tool as well as

analytic. Note we will be assuming the diagonalisability of the transfer matri-

ces we work with throughout this thesis.

The concept of exact diagonalisation is well known in the quantum mechanical
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literature, so with the formulation of a transfer matrix as the exponential of a

free-energy operator we ought to be able to apply the same techniques here.

Exact diagonalisation just means expressing a finite system as a matrix and

diagonalising that matrix with a computer. As such, there are a range of

algorithms that one can choose from to achieve this task, each with their own

list of benefits and drawbacks.

All numerical calculations in this work have been done using a very basic

algorithm called the power method. The power method, when given a matrix,

will return its largest eigenvalue, which is ideal for our purposes. Its benefits

are simple: you do not need to store the entire matrix, but rather just encode

how it acts on a given state; it is robust to numerical error; and it is simple

to code. Its main drawback is that it is extremely slow when employed on a

dense matrix [39–41]. Some choose to use a sparse matrix approximation to

alleviate this issue, essentially crossing out matrix elements deemed too small.

However, that is not an issue for us as we will discuss in chapter 2 and we shall

not need to make any such approximations.

The idea is to repeatedly apply the matrix to a vector, with the hope that

it eventually converges to the eigenvector of the dominant eigenvalue. This

is ensured through the same logic we previously used to claim that we only

care about the largest eigenvalue of the transfer matrix. Let us begin with a
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random vector

u =
N∑

i=1

aiui (1.44)

where ai 6= 0 are random numbers while each ui are the eigenvectors of our

N ×N matrix M . In practice one does not know the eigenvectors beforehand

so instead one chooses the elements of the vector u at random, in any conve-

nient basis, to ensure that the resulting weights ai are almost never zero. In

particular, we desire there to be a non-zero overlap between this vector and

the eigenvector associated with the largest eigenvalue. A random choice is just

a probabilistically guaranteed way of achieving this.

Repeatedly applying this matrix to the vector gives

MNu =
N∑

i=1

aiλ
N
i ui , (1.45)

where we assume λ1 ≥ λ2 ≥ · · · ≥ λN . As before, we may write

MNu = λN1

[
a1u1 +

N∑

i=2

ai

(
λi
λ1

)N
ui

]
. (1.46)

If λ1 > λ2 then each of these fractions will tend to zero and we may read off

the eigenvalue.

If we wish to find higher eigenvalues then this is just as simple. We merely

replace the matrix M with the same matrix minus the outer product of the
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largest eigenvector with itself multiplied by the eigenvector. That is,

M →M − λ1u1uT1 . (1.47)

This essentially sets the previous largest eigenvalue to zero and makes the

previous second-largest eigenvalue the new largest, allowing the power method

to be employed again. This process can be repeated as many times as you

desire, computational memory permitting.
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CHAPTER 2

MOTIVATION

Note that this chapter contains blocks of text taken from reference [1].

This chapter is intended to provide initial motivation and justification for the

major driving force of this work, namely that the spectra of transfer matrices

correspond to what we term topological excitations [1]. One can also think

of these excitations as quasi-particles, though we will not pursue that inter-

pretation here. The necessarily empirical flavour of this section is something

to be embraced; it is hoped that if someone finds themselves entangled in the

mathematics of the following chapters they can refer back to here to convince

themselves that there is indeed light at the end of the tunnel.

Numerical techniques may perhaps provide such a light. Exact diagonalisa-

tion, as the name suggests, provides the exact answer to a finite problem. As

25



CHAPTER 2. MOTIVATION

such we can use it to ask questions of analytically tricky models which are

physically interesting. This chapter will discuss two such sets of models: sim-

ple square lattice Ising models, where the lattice has been rotated with respect

to the direction of transfer; and bilayer Ising models. The former is interesting

because of course the physics ought to be no different from the exactly solv-

able case, but the transfer matrix changes. This will give insights as to the

nature of its excitations and what they describe, even if the partition function

must remain unaltered. The latter will prove a curious case, where changes

of behaviour in the excitations will occur. In this case, the text is taken from

reference [1]. First, however, we shall turn our attention to the numerical

technique itself.

2.1 Numerical technique

For all models on which we shall perform calculations, the fundamental numer-

ical technique will remain the same. Firstly, we begin with the one-dimensional

spin Hamiltonian

H = −
N∑

n=1

an
∑

j

Sj · Sj+n , (2.1)

where for the moment we shall choose Sj ≡ σj ẑ, with σj ∈ {−1, 1}, to be

Ising spins on a chain whose sites are labelled by the index j. By appropriately

choosing the coupling constants an and taking the limit N →∞, this may be
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0

1

N − 1

N

N + 1

t̂ T̂

Figure 2.1: Depiction of helical boundary conditions as described in the text.
In the thermodynamic limit this leads to the square lattice, as described by
equation (2.2). The sub-matrix t̂ acts to ratchet the chain of spins highlighted
in red along one. That is, spin zero transfers to spins one, spin one to spin two,
and so on until spin N tranfers onto spin N + 1. The transfer matrix which
is equivalent to the cylindrical transfer matrix, which transfers one ring to
another, is thus N applications of the sub transfer matrix t̂. This is described
in equation (2.3).

used to probe two-dimensional geometries. For example, setting a1 = aN ≡

J with all other matrix elements vanishing leads to the square lattice Ising

model

H = −J
2

∑

〈jj′〉
σjσj′ . (2.2)

This geometry is depicted in figure 2.1 and will be the object of discussion for

this section. The notation 〈jj′〉 implies the sum is over all neighbouring j and

j′, and hence the factor of one half resolves double counting. Further examples,

also accompanied by pictorial aides, will appear later in this chapter.
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By employing helical boundary conditions we have introduced an infinitesimal

spiral to our system. This has no effect on bulk quantities in the thermody-

namic limit, meaning that in practice we may examine the two-dimensional

system by extrapolating from relatively modest system sizes. The true benefit

of these boundary conditions lies in the sparse Hamiltonian matrix; there are

only as many elements in a given row or column as spin degrees of freedom, two

for the Ising model. This contrasts with the more widely-used cylindrical ge-

ometry, for which the resulting matrix is dense. While the matrix itself is larger

in the helical case, as there are fewer symmetries to extract, there is a large

computational advantage to working with sparse rather than dense matrices.

This advantage allows us to perform calculations on much larger systems than

would otherwise be accessible. A representative maximum system size for the

Ising model using a cylindrical geometry may be N ∼ 15 [34, 35, 38] In more

numerically demanding works we have managed to calculate on systems up to

N = 29 [1]. The benefits of doing so in this chapter though are minimal.

The global Ising symmetry, however, still remains. As an example, consider

an Ising model in its ferromagnetic ground state, where all spins are aligned.

The labelling of the orientation of each spin, either up or down, is irrelevant.

This irrelevance halves the state-space, and therefore the size of any matrix,

and removes the double ground-state. In practice this is done by introducing a

floating basis and rewriting the Hamiltonian in terms of variables τj = σjσj+1.
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These new variables then describe the relative orientation of each spin, rather

than the absolute. Of course, one fewer variable is now required which accounts

for the reduction of state-space. The symmetric- and antisymmetric-subspaces

then are defined as the collections of states with eigenvalue 1 or −1 respectively

with respect to the parity operator
∏

j σ
x
j , where σxj is the spin-flip Pauli matrix

acting on site j. This was seen previously as part of the exact solution, in

equation (1.25).

From the Hamiltonian we may construct a transfer matrix

T̂ = t̂N ≡ e−βF̂ , (2.3)

where explicitly

〈σ0, σ1, . . . , σN | t̂ |σ′0, σ′1, . . . , σ′N〉 = e−βJ(σ0σ1+σ0σN )

N−1∏

j=0

δσj+1, σ′j
. (2.4)

As shown in figure 2.1, the submatrix t̂ acts to ratchet along the spiral to

the following spin site while the full transfer matrix T̂ transfers one to the

right of the starting site. The free-energy operator F̂ should be interpreted

as a quantum mechanical Hamiltonian which, in the thermodynamic limit, is

one-dimensional. Standard ideas concerning the spectra of Hamiltonians, in

particular energy gaps (think of the metal insulator dichotomy, for example),

shall apply to this operator with energy replaced by free-energy. Note, there
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is no reason to believe this quantum mechanical operator to be local even if

the underlying statistical mechanics model is.

As discussed earlier, the free-energy operator is the prime focus of this work

and so we shall spend some time in this section viewing eigenvalues of the

submatrix t̂ through the lens of the free-energy operator. We may define a

free-energy gap in terms of these eigenvalues as

∆Fm ≡
N

β
log

t0
tm

, (2.5)

where t0 is the largest eigenvalue and thus becomes the partition function in

the thermodynamic limit, while m labels the eigenvalues in the symmetric

subspace in order.

In practice we tend to calculate the largest two eigenvalues of this submatrix

using the power method for a variety of system sizes. From these calcula-

tions we may obtain ∆F1(N, T ), where T ≡ 1/β is the temperature. We then

employ polynomial extrapolation for these finite systems at a fixed tempera-

ture to effectively obtain ∆F1(∞, T ) ≡ ∆F (T ). This is directly analogous to

the finite-size scaling of exact diagonalisation results common in the quantum

mechanics literature. However, it performs exceptionally well in this thermo-

dynamic context, as discussed in detail in [1] where astonishingly accurate

numerical results were obtained. As previously mentioned, the finite data is
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

T

∆
F

(T
)

Figure 2.2: The free-energy gap between the two largest eigenvalues in the
symmetric subspace for the square lattice Ising model. Dashed lines indicate
data for finite systems with N ∈ {2, 3, . . . , 17}. The black solid line is a
polynomial extrapolation to the infinite system.

exact to machine precision and so the lone source of error must be the poly-

nomial extrapolation.

Figure 2.2 shows this approach in action for the square lattice Ising model.

The dashed lines, the exact finite data, are extrapolated at each temperature

point to provide the solid line, which is purported to provide the answer for

the infinite system. A quick note ought to be made about convergence. At low

temperature several higher lying eigenvalues are almost degenerate with the
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Figure 2.3: Depiction of a physical interpretation of the free-energy gap. (a)
a domain wall with no fluctuation. (b) a domain wall with the energetically
cheapest fluctuation.

first excitation. As such, convergence for low temperature requires many more

iterations than at more moderate temperatures, making it a practical impos-

sibility to obtain results in this region. Fortunately, however, it is physically

fairly obvious what one would expect these calculations to show; successive

lines of ∆F (T ) = 4J , in figure 2.2 for example.

Let us turn now to the interpretation of this figure. We shall talk solely of the

extrapolated result, which is an attempt to approximate the infinite system,

rather than the finite data. We interpret the function ∆F (T ) as describing how

the free-energetic cost of a topological excitation changes with temperature,

while the other ∆Fm(T ) describe topological excitations of higher cost. For

the Ising model at low temperature this ought to be thought of as a domain

wall of infinite extent, propagating in direction of transfer. This is depicted in

figure 2.3(a). At zero temperature the free-energetic cost of such an excitation
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and its energetic cost, 2J , coincide. For a periodic system there must exist an

even number of such domain walls, hence the observation of 4J in figure 2.2

is consistent with this interpretation. As the temperature is increased slightly,

entropic fluctuations of the kind displayed in figure 2.3(b) occur, reducing the

free-energetic cost of the excitation. At some point then the cost will become

zero and a phase transition will occur. Indeed, this is perhaps the best way

of defining a phase transition in our formalism: ∆F (Tc) ≡ 0. This is easily

understood from an Ising model perspective. The transition in that case is

defined by the change from the low-temperature ordered phase, where there is

a single divergent cluster of one spin orientation, to a high-temperature disor-

dered phase. As the transition temperature is approached the energetic cost of

the domain wall is increasingly compensated for by entropic gain, until both

exactly balance and macroscopic domain walls are permitted. As we are effec-

tively calculating a correlation length, these observations make sense.

Let us attempt to model this, however simply, to provide some credulity to

these assertions. A natural start may be a partition sum, say

∆F = −2T log
(
e−2βJ + 2e−4βJ

)
. (2.6)

The first exponential describes the situation in figure 2.3(a), while the second

describes 2.3(b). The latter is multiplied by two to indicate the fluctuation
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can occur either upwards into the region of + spins or downwards into the

region of − spins. The entire expression is also multiplied by two to take

into account that there must be a pair of domain walls in a periodic system,

though we assume these are sufficiently separated as to be independent. A

more thorough analysis would of course suggest the function

∆F = −2T log

(
e−2βJ + 2

m∑

n=2

e−2nβJ
)
. (2.7)

Both the basic model and this ever-so-slightly more sophisticated one are

plotted in figure 2.4, with the latter having the sum performed up to m =

3, 4, 5, ∞, and compared to the extrapolation of figure 2.2. We see that all

functions perform well at low temperature, though the more basic functions

fade away as temperature is increased. This is to be expected. As the temper-

ature increases longer range fluctuations become increasingly relevant until,

at the transition temperature, fluctuations of all ranges are equally important

and macroscopic domain walls form. A foible of the Ising model, namely its in-

tegrability, requires that the function (2.7) is indeed the exact answer when the

infinite sum is calculated. This plot then should be considered both a success-

ful testing of our interpretation of these eigenvalues as well as a confirmation

of the extrapolations accuracy.

A physical interpretation of the high-temperature results is also possible. As
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Figure 2.4: Comparison of the extrapolated result for the free-energy gap
calculated via exact diagonalisation with various modelling results described in
the text. The blue lines describe the formula (2.7) for the cases m = 2, 3, 4, 5.
The black line indicates the same formula for m =∞, which is the exact result.

the Ising model exhibits Kramers-Wannier duality, displayed in equation (1.17),

one can exactly map calculations from low to high temperature and any as-

sociated interpretations must also be so mapped. Mathematically, instead of

having a single spin-flip operator in the free-energy operator we would instead

have a neighbouring pair of such operators.

This then concludes our remarks on the general numerical approach and inter-

pretation. To reiterate, we exactly diagonalise a set of one-dimensional spin
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Hamiltonians, extrapolate the results for each temperature point, then inter-

pret that extrapolation as being the free-energy cost of a topological excitation

as a function of temperature. It will turn out that for all models we consider in

this work the dichotomy in interpretation of domain walls at low-temperature

and spin-waves at high-temperature will remain true, though this is may not

be truly generic.

2.2 Rotated lattice

As promised, our next example begins with equation (2.1) where again we

use Ising spins. The difference to the previous section will lie in the choice of

coupling constants an. We shall choose many different sets of these coupling

constants, each of which will correspond to what we shall term a rotated lat-

tice. These geometries, as the name suggests, are square lattices which have

been rotated with respect to the direction of transfer by some angle θ. One

may think that this ought to have no effect as nothing fundamentally has

changed and indeed for thermodynamic quantities this view is entirely correct.

The magnetisation, phase transition, and any other number of quantities one

wishes to list will remain untouched. However, the rotation does change the

direction in which the transfer matrix performs its transfer and thus does affect

its excitations and the free-energy gap. If our low-temperature domain wall
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interpretation withstands this change then our level of confidence in it may

increase.

θ

p

ny

nx

l

0

1

N

ỹ

x̃

y

x

Figure 2.5: Depiction of a rotation. We call the black dots the underlying
helical lattice while the blue circles represent the actual position of the spins.
The submatrix t̂ acts to ratchet the chain of spins highlighted in red along one.
That is, spin zero transfers to spin one, spin one to spin two, and so on until
spin N transfers to spin N + 1. The mismatch parameter α is then given by
the fraction ny/p.

Figure 2.5 depicts a rotation and labels some useful variables. To define a

certain rotation one may use the variable θ, the angle of this rotation. However,

it is more convenient to recognise that this θ must be the arctangent of a

rational number, if the rotation is to be commensurate with the underlying
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square lattice. Hence the variables nx and ny are introduced through the

equation

θ = tan−1
(
nx
ny

)
. (2.8)

Of course, many pairs of nx and ny will give the same θ but it is numerically

sensible to use the smallest pair, which results in the smallest transfer matrices.

The variable p, which measures the distance between states in a given column

and whose utility shall be shortly introduced, can then be calculated via

p2 = (nxl)
2 + (nyl)

2 = l4 =⇒ p = n2
x + n2

y , (2.9)

where l is the distance between neighbouring spins.

Let us give an example for clarity. The choice of coupling constants

aN = a2N−1 = J , (2.10)

with all others zero, gives a rotation of angle θ = tan−1(1/2) ≈ 27◦. We should

note that the size of the transfer matrix scales with the largest index of these

bonds, so that in this case it will be of size 22N−1 × 22N−1. There will thus be

roughly half as many systems for us to study and use in any extrapolation for

this rotation compared to the previous section. Other rotations will be even

more severely restricted.
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Adapting equations (2.3) and (2.4), we construct a transfer matrix

T̂ = t̂N−α ≡ e−βF̂/l , (2.11)

where α is given by the ratio ny/p. As the submatrix t̂ is designed to transfer

between spins, say between those labelled 0 and 1 in figure 2.5, while the

transfer matrix t̂ ought to transfer from one underlying lattice to the next along

the x direction, the mismatch parameter α is a required alteration. Similarly,

the factor of l dividing the free-energy operator is key to calculating quantities

on a per-unit-length basis, allowing sensible comparisons between different

rotations. The free-energy gap, adapting the definition (2.5), is given by

∆Fm =
1

β
l(N − α) log

t0
tm

. (2.12)

Let us discuss now what our topological excitation picture would predict, at

least for low temperature. Duality, of course, remains for this model so this

is not overly restrictive. The topological excitations would still be expected

to be the domain walls discussed in the last section, but now the direction

in which they travel is slightly less obvious. Overall they must move in the

direction of transfer, denoted as the x direction in figure 2.5. However, the

question remains whether they prefer the x̃ or the ỹ directions. Depending on

the choice of angle θ one of these will be easy direction, in which fewer bonds
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are broken per unit length in the x direction, while the other will be a hard

direction. The energy cost per unit length of a domain wall propagating in the

x̃ and ỹ directions is given by

Ex̃ =
2J

cos θ
, and Eỹ =

2J

sin θ
, (2.13)

respectively. Clearly both are greater than the unrotated cost of 2J and so

one would expect the free-energy gap to be larger for a rotated lattice than for

the unrotated case at zero temperature and to increase as the lattice is further

rotated. Next, for sufficiently low temperature one would expect the domain

wall to move in only the low energy direction, giving a relatively constant

free-energetic cost similar to that in the unrotated case as seen in figure 2.2.

However, as temperature is increased we would expect fluctuations, arising

form the domain wall occasionally travelling in the high energy direction, to

be encouraged in order to gain entropically. Hence the free-energy cost should

reduce. Crucially, however, it should reduce independently from the previously

discussed reduction due to fluctuations of the groundstate. As such, one would

expect it to reduce sooner in the rotated case, with the temperature at which

it does so being determined by the rotation. Everything just described is

exhibited in figure 2.6(c), strengthening the case of our interpretation.
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Figure 2.6: The accuracy of the domain wall description for low temperature
for (a) the rotation tan θ = 1/2 (b) the rotation θ = π/4. (c) Free-energy gap
between the largest two eigenvalues in the symmetric subspace of the transfer
matrix. Each line represents a different rotation of a square lattice. Note how
larger rotations lead to a more immediate entropic effect against the constant
energetic cost at zero to low temperatures.

We ought also to discuss modelling, similar to that of the previous section.

The expected free-energy cost, accounting for the two choices of direction but

no other fluctuations, can be written as

∆F = −2λT log
[
e−

1
λT
Ex̃ + e−

1
λT
Eỹ
]
, (2.14)
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where

λ ≡ 1

2

(
1

cos θ
+

1

sin θ

)
, (2.15)

scales the results on a per-unit-length basis. This modelling is compared to

the numerically obtained answer for the angle θ = tan−1(1/2) in figure 2.6(a)

and shows good agreement.

There is also a special case highlighted in figure 2.6. This is when θ = π/4 and

Ex̃ = Eỹ. The zero-temperature degeneracy leads to the domain wall having

an arbitrary choice of proceeding in the x̃ or ỹ directions, which manifests

itself in the free-energy gap having non-zero gradient at zero temperature. We

would expect, and indeed find, the slope at that point to be 2
√

2 log 2; the

log 2 reflects the choice of two equal directions, the outer factor of two the pair

of domain walls, and the
√

2 is the length scaling we previously discussed. The

modelling of equation (2.14) also works remarkably well for this rotation, as

shown in figure 2.6(b).

This section has been one of success, albeit limited. We have made the most

minor change to our first system and shown that our interpretation is robust to

this change. However, we have not even changed the fundamental Hamiltonian,

instead just altered the direction in which the transfer matrix operates. We

ought not, then, be too proud of ourselves; much is left to be done if we are to

be convinced.
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2.3 Bilayer lattice

This next section aims to be more persuasive. Not only will our topological

excitation picture survive, it will thrive as we find excitations described by ob-

jects which are not merely the simple domain walls of the past sections. This

shall still be done within an Ising framework, but now we shall change the in-

teractions in the Hamiltonian to those of a bilayer system. This section is taken

from reference [1], though the aim of that paper was different to the current

goal. There we were attempting to argue for some technical alterations to a

particular scaling law involving multiple-layered systems, specifically treating

each layer as an effective magnetic field for its neighbours and using this to find

the critical exponent for magnetic susceptibility, γ [42–61]. Such technicalities

do not concern us here, though analysis of the accuracy of our numerical tech-

nique in finding the transition temperature of a model may be of interest if

one is both of a numerical temperament and sceptical of our use of polynomial

extrapolation of exact diagonalisation results. For the purpose of this section,

however, we shall instead be leaning on just the section entitled Modelling the

topological excitations.

First, however, let us begin with our now familiar starting point equation (2.1),
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Figure 2.7: Depiction of helical boundary conditions as described in the text.
In the thermodynamic limit this leads to the square lattice with nearest neigh-
bour (dashed lines) and second-nearest neighbour (solid lines) interactions, as
described by equation (2.18). This may be thought of as a two-layered sys-
tem, coupled by the dashed bonds, though otherwise the red and blue sites are
identical.

again using Ising spins. To form our desired lattice we shall choose

a1 = aN−1 ≡ J1 , (2.16)

aN−2 = aN ≡ J2 , (2.17)

with all others zero. This is depicted in figure 2.7 and leads to the Hamilto-

nian of the square lattice with nearest and second-nearest neighbour interac-

tions

H = −J1
∑

〈jj′〉1

σjσj′ − J2
∑

〈jj′〉2

σjσj′ . (2.18)
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Figure 2.8: Depiction of two styles of topological excitations. The red and blue
sites indicate different layers, while + and − indicates the value of the Ising
spin at each site. a) A localized excitation, with a line of flipped spins in one
layer. b) A domain wall running through both layers, separating the system
into a region of + spins and a region of − spins. For a periodic system these
must appear in pairs, though they may be well separated and so be thought
of as independent.

We again construct a transfer matrix from equations (2.3) and (2.4), writ-

ing

T̂ = t̂N−1 ≡ e−βF̂ , (2.19)

and similarly defining a free-energy gap as

∆Fm =
N − 1

β
log

t0
tm

. (2.20)

Figure 2.8 depicts two natural styles of topological excitations for this model.

These were obtained by observation of the numerical data and careful thought.

It may be harder to systematically find all such excitations for a more sophis-

ticated model. The first is a line of flipped spins in just one of the layers.
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Every horizontal step breaks two intra- and four inter-layer bonds, resulting in

a energy cost of 8J1 + 4J2 compared to the groundstate. The second is a do-

main wall which cuts through both layers, leaving a region of up spins on one

side and down spins on the other. As this is a periodic system, such domain

walls must come in pairs and hence the energy cost of such an excitation is

2(2J1 + 4J2). Clearly for low λ ≡ J1/J2 the localised excitation is cheaper and

so at low temperature would be preferred. However, this model is in the 2D

Ising universality class [1] and hence the phase transition is controlled by ex-

citations of the second type, as discussed in our first example of the unrotated

square lattice. As such there must be a crossover between the two as tem-

perature is increased, caused by the aforementioned fluctuations. In essence

we expect thermal fluctuations to cause the localised excitation to spread out

over some range, whose average is determined by the temperature, though the

edges remain bound. This costs an energy proportional to λ multiplied by the

range and thus cannot expand indefinitely. Once sufficiently spread out, it is

preferable to instead flip some of the spins in the other layer to match those of

the excitation. Such an unbound excitation is then indistinguishable from the

independent pair of domain walls, albeit dressed with thermal fluctuations. It

is this prediction that we will use to test the validity of our assertion.

We can again use a simple partition sum argument to model each style of

topological excitation. For the localised excitation the free-energy cost may be
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2.3. BILAYER LATTICE

written as

∆Flocal = −T log
(
2e−β(8J1+4J2) + e−β(4J1+8J2)

)
. (2.21)

The three exponents come from the three directions the excitation can choose

to go in a given step: 45◦ up, 45◦ down, or horizontally across. The first two of

course have the same energetic cost as we previously discussed, while the final

may be thought of as the cheapest fluctuation. Similarly for the Ising domain

wall excitation we may write

∆FIsing = −2T log
(
e−β(2J1+4J2) + 2e−β(4J1+4J2)

)
. (2.22)

This is equivalent to equation (2.6).
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Figure 2.9: The free-energy difference for the first and second excitations for
the J1-J2 model at λ ≡ J1/J2 = 1, where N = 16-25. Odd data is dashed
while even data is dotted. The solid lines are fits to models of topological
excitations described in the text along with an extrapolation to infinity from
the odd curves for the first excited state.

In figure 2.9 we plot the first two excitations, that is ∆F1 and ∆F2 in the lan-

guage of equation (2.20), for the J1-J2 system for N = 16-21 and λ ≡ J1/J2 =

1. We overlay each of the two approximate models given above. As expected,

for very low temperatures the localised excitation model (2.21) fits remarkably

well to the first excitation and the Ising domain wall description (2.22) to the

second. The two models then cross around T ≈ 2 where indeed we see an

avoided crossing in the exact data, indicating a change of behaviour. Beyond
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this point neither line fits well as both are in fact low-temperature expansions

and low-temperature pictures. To improve the fit more expensive fluctuations

would need to be included. We have tested this modelling for various values

of λ and find similar results to that just described. Changing the bond ratio λ

alters where this crossover takes place. When λ is small the bonds between lay-

ers are weak compared to those within each layer, meaning that the localised

excitation can spread out further within one layer before it changes behaviour.

This pushes the crossover closer to the transition temperature.
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Figure 2.10: The free-energy difference for the J1-J2 model for λ ≡ J1/J2 = 0.1,
for even systems with N = 6-22. The solid lines are first excitations and the
dashed lines second excitations for N = 6, 8, 10.
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Finally, there is a style of excitation only present in some even sized systems.

These excitations are when one layer is of opposite spin to the other, incurring

an energy cost of 4(N−1)J1. This can be seen in Fig. 2.10 for λ ≡ J1/J2 = 0.1,

where systems of size 6, 8, and 10 all exhibit this phenomenon. Initially the

free-energy cost of these excitations is constant, as there is no natural way for

these to gain entropically, before there is an avoided crossing similar to what

was previously described. After this point the lines behave as usual. These

superfluous, from the point of view of the thermodynamic limit, excitations

impact any extrapolation. Odd systems, of course, have Möbius boundary

conditions, meaning there is only one lattice.

In this example, then, we have seen that the simple picture of topological

excitations provide clear physical interpretations in a variety of situations.

It predicts crossings of eigenvalues from an expected change of behaviour of

excitations and even helps one to understand seemingly irrelevant excitations

in small systems. Thus it provides a helpful intuition for otherwise mysterious

numerical results. This model is in many ways the most useful of our examples;

it is certainly the most convincing.
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2.4 Summary

To summarise, this section has developed a numerical basis for our future

work. We have been able to see the eigenvalues of transfer matrices in a

physical light, namely as the free-energetic cost of a topological excitation.

These excitations, which can also be thought of through a quasi-particle lens,

can be described through a simple picture inferred from the zero-temperature

limit then extended beyond this point. We use the word topological to indicate

that each excitation is split by an infinite energy barrier from another, and that

the number of domain walls, in the case of the ordinary square lattice Ising

model, acts as a topological number. This terminology may not be appropriate

in the case of more sophisticated models.

Several distinct pieces of modelling over differing geometries has lent credence

to this view, extending a zero-temperature picture into low temperature. Of

course, this is still restricted to low temperature until better modelling is per-

formed.

Let us review the examples of this section with this terminology in mind. First,

the ordinary square lattice Ising model. Here we saw that the excitations of the

transfer matrix corresponded, at zero temperature, to pairs of domain walls

of infinite extent. Through modelling we could extend that picture away from

zero temperature by including fluctuations. To be clear, we define a topological
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excitation by its zero temperature behaviour then try to extend the interpre-

tation using modelling. There is still, even with these fluctuations, an infinite

energy gap between this excited state and the groundstate. As we know that

the quasi-particles for the square lattice Ising model are independent, these

pairs of domain walls can be arbitrarily close to one another; the separation in

the domain wall picture maps to momenta in the quasi-particle picture.

Next, let us turn to the bilayer Ising example. In this case we saw a interesting

change of behaviour from one style of topological excitation to another. Again,

each excitation is defined by its zero-temperature behaviour and modelling ex-

tends the interpretation to low temperature. The first style of excitation, which

dominates the low temperature behaviour for bilayer models with sufficiently

weak between-layer bonds, is a bound pair of domain walls in one of the layers.

If fluctuations could destroy these domain walls then the excitation would not

be distinct from the groundstate and hence the plot in figure 2.9, for example,

would hit zero immediately. This does not occur and so this bound pair of

domain walls must be protected. Indeed, as eigenvectors of a Hermitian matrix

are forced to retain their integrity through the requirement that eigenvectors

with different eigenvalues must be orthogonal, mathematically these excita-

tions cannot appear and disappear. In reality, what happens as fluctuations

become more relevant is that the bound pair become less strongly bound and

they spread out over one layer, until it is free-energetically favourable to turn
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into the independent pair of domain walls cutting through both layers we see

closer to the transition temperature.

We have also seen the usefulness of transfer matrices as a tool for examining

different square lattice models. It is this usefulness which we shall attempt to

build upon for the remainder of this work.
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CHAPTER 3

THE BAKER-CAMPBELL-

HAUSDORFF

FORMULA

The major mathematical result of this thesis is contained within this chapter.

This has two unfortunate consequences. Firstly, it means that a paper has

already been written about this result, namely [2], and as such this chapter

will be largely drawn from that work. The tone and mathematical level may

therefore not be perfectly suited to a thesis, but we have attempted to alleviate

this issue by including several more examples and explanations. If one, quite

sensibly, prefers a terser treatment then [2] is perhaps a more enjoyable read.

Secondly, a physically inclined reader may find the absence of any real physics,
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beyond a passing mention in this introduction, off-putting. Such a reader, then,

is invited to skip vast swathes of this chapter. One does not need to know how

to prove something in order to use it, after all. They could join us again in

section 3.3, wherein we give some examples of our result, then continue on to

the following chapter where physics shall once again return.

With the administrative preamble being over, let us now turn to the actual

content of this chapter. The title, The Baker-Campbell-Hausdorff formula,

may elicit nods of understanding or perhaps a murmur of expectation from a

reader who is familiar with this theorem [5,62–71]. We ended the last chapter,

after all, with a formula

T̂ = T̂
1
2
⊥ T// T̂

1
2
⊥ , (3.1)

or more pertinently

e−βF̂ = e−βF̂// e−βF̂⊥ e−βF̂// . (3.2)

In this latter formulation we essentially know both F̂// and F̂⊥ for a given prob-

lem but wish to find the overall free-energy operator F̂ . As such a symmetric

form of the Baker-Campbell-Hausdorff (BCH) formula

S(A, B) = log
(
eA e2B eA

)
, (3.3)

for two matrices A and B, appears painfully relevant. The more standard BCH

formula, which can be easily transformed into the above symmetric form, is
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usually given as

Z(X, Y ) ≡ log
(
eXeY

)
= X+Y+

1

2
[X, Y ]+

1

12
([X, [X, Y ]] + [Y, [Y, X]])+· · · ,

(3.4)

and tends to be followed by a statement saying that extending this series

is truly difficult and no mere exercise in pattern recognition. The work of

Campbell [72, 73], Baker [74–76], Hausdorff [77], and others [5] whose names

were omitted for fear the theorems title was becoming too long (Poincaré

[78,79] contemporaneously and more recently Dynkin [80] come to mind), was

to show that under certain conditions this series must converge and that every

order can be written in terms of commutators. This latter point is important in

the theory of Lie algebras, where the commutator is thought of as a Lie bracket

and the theorem is really about the relationship between Lie groups and Lie

algebras. Luckily for us, however, such considerations are largely irrelevant

and we are solely concerned with the practical use of this formula in finding a

Z given an X and a Y .

Dynkin [80] found this formula explicitly in terms of commutators for every

order, where order means combined powers of X and Y . Unfortunately, this

means that if a truncation of the series is to give a good approximation to

the full expansion both X and Y must be sufficiently close to zero. Instead,

however, there is an alternative representation which contains all orders of X
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but is linear in Y . Letting LXY ≡ [X , Y ] denote commutator operators, it is

given by

Z(X, Y ) = X +
1
2
LX

sinh
(
1
2
LX
)
(
e

1
2
LXY

)
+O(Y 2) . (3.5)

The aim of this chapter will be to extending this representation to all powers

of Y . That is, express Z(X, Y ) as

Z(X , Y ) = X +
∞∑

n=1

Gn

(
e

1
2
LXY

)n
, (3.6)

finding explicitly the operators Gn, which will depending non-trivially on com-

mutator operators LX . This series may be truncated and give a good approx-

imation to the full expansion if only Y is small, as opposed to both X and Y

in the previous. The radius of convergence of this new series is not currently

known. One would imagine that it is at least as large as that of the regular

Baker-Campbell-Hausdorff series, but we have not proved this.

The chapter is structured as follows. Section 3.1 contains the derivation of the

main result, that is calculating the operators Gn. It will be split into various

parts. Some of the demarcations are superficial, intended to help the reader

parse the result more easily, but others do indeed mark a shift of thought, strat-

egy, or ideology. Next, section 3.2 argues, based upon a conjecture, that the

result remains a sum of commutators, as would be expected. As we mentioned

previously, these sections can be safely ignored by any reader who wishes to
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avoid mathematical detail. Instead they may prefer to proceed to section 3.3,

where finite examples are given and discussed which provides immediately us-

able formulae for the Gn. Section 3.4 proves an alternative representation for

the operators Gn, which is perhaps more practical as it deals with some appar-

ent singularities which shall be encountered. Finally in section 3.5 we argue

that this result is particularly useful in the basis where the non-perturbative

matrix is diagonal. In this case the operators become merely functions of real

numbers and so it is elementary to perform calculations with them. This will

be true throughout the rest of the thesis.

3.1 Derivation of the main result

We start with the symmetric version of the BCH formula we previously men-

tioned,

S(A, B) = log
(
eA e2B eA

)
. (3.7)

While this formulation is more natural to work with than (3.4), we may trans-

form each into the other and so they are equivalent. We shall employ the nota-

tion for commutators which shall be used throughout this article, LB ≡ [A, B]

and LnB ≡ [A, [A, . . . , [A, B] . . . ] ], and thus write the Hadamard formula

as

eABe−A = eLB . (3.8)
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This then implies

eAeBe−A = ee
LB , (3.9)

from which we may see easily that S(A, B) = Z(2A, 2 exp(−L)B) = Z(2 exp(L)B, 2A)

and additionally Z(X, Y ) = S(X/2, exp(LX/2)Y/2). The factors of two are

introduced here in order to simplify the final representation.

Our task ahead is to expand equation (3.7). The matrix B will be our focus,

with the aim being to write the expansion as a power series in this matrix.

Once we achieve this, we will examine the coefficients of the power series in

depth and obtain closed form expressions.

We will employ the identity

logM = log(1− (1−M))

= −
∞∑

l=1

1

l
(1−M)l

= −
∞∑

l=1

1

l

l∑

m=0

(−1)m
l!

m!(l −m)!
Mm , (3.10)

setting M = exp(A) exp(2B) exp(A). Note, this is expected to converge if M

is in a neighbourhood of the identity. We will find that Mm separates into the

sum of several parts. Each of these parts will take the form fi exp(2mA)gi, for

m-independent quantities fi and gi. The fi and gi may then each be pulled

out of the above sums, leaving exp(2mA) in place of Mm. We will then use the
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identity in reverse to obtain log(M) =
∑

i fi 2Agi. This then constitutes the

fundamental mathematical approach and is hopefully a sufficient indication of

what is to come.

3.1.1 Expanding Mm in powers of B

We will now focus on calculating Mm. We may use the Hadamard formula

(3.8) to symmetrically move exponentials of A to the edges. For example, we

may write

M2 = eAe2BeAeAe2BeA (3.11)

= e2A
(
e−Ae2BeA

) (
eAe2Be−A

)
e2A (3.12)

= e2Ae2e
−LBe2e

LBe2A , (3.13)

and

M3 = eAe2BeAeAe2BeAeAe2BeA (3.14)

= e3A
(
e−2Ae2Be2A

)
e2B

(
e2Ae2Be−2A

)
e3A (3.15)

= e3Ae2e
−2LBe2e

0LBe2e
2LBe3A . (3.16)
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Continuing this idea we find

Mm = emA




m−1
2∏

n=−m−1
2

exp
(
2e2nLB

)

 emA , (3.17)

where we must take the product in the correct order, namely increasing n. We

may then Taylor expand the exponentials involving B

Mm = emA




m−1
2∏

n=−m−1
2

∞∑

kn=0

1

kn!

(
2e2nLB

)kn

 emA , (3.18)

and gather terms in orders of B,

Mm = emA


1 + 2


 ∑

−m−1
2
≤n1≤m−1

2

e2n1LB




+22


 ∑

−m−1
2
≤n1<n2≤m−1

2

e2n1LBe2n2LB +
1

2!

∑

−m−1
2
≤n1≤m−1

2

e2n1LBe2n1LB


+ · · ·


 emA .

This will be described in more detail throughout this section.

In the above expression, we must think of each term exp(2niL)B as one object

- that particular commutator operator L is acting on that particular matrix

B and so the two are intrinsically linked. It is helpful to formalise this link,

labelling the pair with an index. Then we understand that the operator Li

acts on only the matrix Bi, and no other. We can then label each such pair.

This allows the commutation of operators and matrices with different labels,
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enabling us to pull out all matrices B out of each sum in the above expression.

Explicitly,

Mm = emA


1 + 2


 ∑

−m−1
2
≤n1≤m−1

2

e2n1L1


B1

+22


 ∑

−m−1
2
≤n1<n2≤m−1

2

e2n1L1e2n2L2 +
1

2!

∑

−m−1
2
≤n1≤m−1

2

e2n1(L1+L2)


B1B2 + · · ·


 emA

(3.19)

≡ emA [F0 + F1(L1)B1 + F2(L1, L2)B1B2 + F3(L1, L2, L3)B1B2B3 + · · · ] emA .

(3.20)

3.1.2 Rewriting FN in terms of fundamental sums SN

Our first aim has thus been achieved; we have expanded the formula (3.7) with

a power series in the matrix B. The next is to find closed form expressions for

the coefficients FN . First we define the sum SN as

SN(L1, L2, . . . , LN) ≡ 2N
∑

−m−1
2
≤n1<n2<···<nN≤m−1

2

e2n1L1e2n2L2 · · · e2nNLN ,

(3.21)
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then the first few of the coefficients FN are given by

F0 = 1 ,

F1(L1) = S1(L1) ,

F2(L1, L2) = S2(L1, L2) +
2

2!
S1(L1 + L2) ,

F3(L1, L2, L3) = S3(L1, L2, L3) +
2

2!

(
S2(L1 + L2, L3) + S2(L1, L2 + L3)

)
+

22

3!
S1(L1 + L2 + L3) .

(3.22)

Writing the coefficients FN for an arbitrary order N is a problem in partition-

ing. As seen in the above examples, the string L1 + L2 + · · · + LN is split in

all possible ways. The resultant substrings are then used as arguments for the

sums Sn. However, each sum is also divided by factorials. These factorials are

determined by the length of the substrings used as arguments. For example,

the string L1 +L2 +L3 may be split in the following ways giving the following

factorials:

L1 + L2 + L3 −→ 3! ,

L1 + L2 , L3 −→ 2! 1! ,

L1 , L2 + L3 −→ 1! 2! ,

L1 , L2 , L3 −→ 1! 1! 1! ,

(3.23)

demonstrating how F3 was constructed in equation (3.22).

There are then two major hurdles to finding closed form expressions for each
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coefficient of the power series. The first is to calculate the explicit sum SN . As

we may think of the sum SN as N finite geometric series, it may be expected

to have 2N terms. However, it may be split into N + 1 parts, each of which

is a collection of infinite geometric series. This lifting of the constraint is

crucial and will be discussed shortly. The second hurdle is then to perform the

partition sum, that is to calculate FN given the functions Sr.

3.1.3 Calculating SN

It is useful at this point to deal with a concrete example. Consider the

sum

S2(L1, L2) ≡
∑

−m−1
2
≤n1<n2≤m−1

2

22en1L1en2L2 . (3.24)

The summation variables, n1 and n2, are constrained from both above and

below. We may think of these constraints as forming a triangle, as depicted

in figure 3.1. The sum may then be thought of as the combination of three

semi-constrained sums, constructed by taking a given vertex of the triangle
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and extending the constraining lines to form infinite sectors. Explicitly,

∑

−m−1
2
≤n1<n2≤m−1

2

22e2n1L1e2n2L2 = 22


 ∑

n1<n2≤m−1
2

e2n1L1e2n2L2




− 22


 ∑

n1<−m−1
2

e2n1L1

∑

n2≤m−1
2

e2n2L2


+ 22


 ∑

n2≤n1<−m−1
2

e2n1L1e2n2L2


 ,

(3.25)

or, using the labels for regions shown in figure 3.1,

1 =
(

1 + 2
)
−
(

2 + 3
)

+ 3 . (3.26)

We may then evaluate the sums on the right-hand side to obtain

S2(L1, L2) =
coth(L1)− 1

sinh(L1 + L2)
em(L1+L2) +

1

sinh(−L1)

1

sinh(L2)
em(−L1+L2)

+
coth(−L2)− 1

sinh(−L1 − L2)
em(−L1−L2) .

It is here that we shall see our first substantial divergence from the paper [2];

the generalised calculation and proof thereof was, in that work, relegated to

an appendix. As this is a thesis and thus intended to be ever-so-slightly more

pedagogical instead we shall perform this calculation now. Generalising this

idea to the sum SN involves N + 1 vertices of an N -dimensional tetrahedron.

The constraining lines are extended, creating N + 1 sums similar to those in
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Figure 3.1: A depiction of the parameter space of n1 and n2 in equation (3.25).
Solid lines imply inclusiveness of that line in a given sum, while dashed imply
the line of parameters is excluded. The variables of the original sum are
constrained to the triangle formed from the vertices marked with a red circle.

equation (3.25).

If we wish to calculate the sum SN , as defined in (3.21), first we ought to note

that

∑

−m−1
2
≤n1<n2<···<nN≤m−1

2

=
∑

n1<n2<···<nN≤m−1
2

−
∑

−m−1
2
>n1<n2<···<nN≤m−1

2

, (3.27)

which is demonstrated by the diagram below. In this, circles represent the

variables of the sum and their position along the line indicates the value said

variables take, while rectangles represent the bounds of the sums. Open rect-

angles and circles allow equality, while filled do not.
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m−1
2 nN

nN−1

n2

n1

−m−1
2

=

m−1
2 nN

nN−1

n2

n1

−

−m−1
2n1

m−1
2 nN

nN−1

n2

This identity has transformed the constrained sum on the left into two sums.

One of these is semi-constrained, as we were targeting, while the other has one

semi-constrained and N − 1 constrained variables. Applying this idea again

gives

∑

−m−1
2
>n1<n2<···<nN≤m−1

2

=
∑

n1<−m−1
2

n2<···<nN≤m−1
2

−
∑

−m−1
2
>n1≥n2<···<nN≤m−1

2

, (3.28)

or pictorially,

−m−1
2 n1

m−1
2 nN

nN−1

n2

=

−m−1
2 n1

m−1
2 nN

nN−1

n2

−

−m−1
2 n1

n2

m−1
2 nN

nN−1

n3

The number of constrained variables on the right hand side is now reduced

to N − 2. We can continue this until there are no such variables remaining,
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resulting in an identity relating a sum with N constrained variables to N + 1

sums with only semi-constrained variables.

A generic term in this identity for the particular sum (3.21) is given by

2N
∑

nr≤···≤n1<−m−1
2

nr+1<···<nN≤m−1
2

e2n1L1e2n2L2 · · · e2nNLN

=


(−1)r2r

∑

nr≤···≤n1<−m−1
2

e2n1L1 · · · e2nrLr



2N−r

∑

nr+1<···<nN≤m−1
2

e2nr+1Lr+1 · · · e2nNLN

 ,

that is,

−m−1
2

n1

n2

nr−1

nr

p2

pr

m−1
2

nN

nN−1

nr+2

nr+1

pN−1

pr+1

A simple change of variables, indicated on the picture above, gives


(−1)r2r

−m−1
2
−1∑

n1=−∞
e2n1(L1+···+Lr)

0∑

p2=−∞
e2p2(L2+···+Lr) · · ·

0∑

pr=−∞
e2prLr




×


2N−r

−1∑

pr+1=−∞
e2pr+1Lr+1 · · ·

−1∑

pN−1=−∞
e2pN−1(Lr+1+···+LN−1)

m−1
2∑

nN=−∞
e2nN (Lr+1+···+LN )


 ,
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which may be trivially calculated. Using the identities

−2

−m−1
2
−1∑

n=−∞
e2nx =

−2e−(m+1)x

1− e−2x =
e−mx

sinh(−x)
, −2

0∑

n=−∞
e2nx =

−2

1− e−2x = coth(−x)−1 ,

(3.29)

and

2

m−1
2∑

n=−∞
e2nx =

2e(m−1)x

1− e−2x =
emx

sinh(x)
, 2

−1∑

n=−∞
e2nx =

2e−2x

1− e−2x = coth(x)− 1 ,

(3.30)

we find that the final result is

SN(L1, . . . , LN) =
N∑

r=0

S̃r(−Lr, −Lr−1 , . . . , −L1)S̃N−r(Lr+1, Lr+2, . . . , LN)

× em(−L1−···−Lr+Lr+1+···+LN ) , (3.31)

where S̃0 ≡ 1 and

S̃r(x1, . . . , xr) =
sr−1(x1, . . . , xr−1)

sinh (x1 + x2 + · · ·+ xr)
for r ∈ Z+ , (3.32)

where similarly s0 ≡ 1 and

sr−1(x1, . . . , xr−1) =
r−1∏

j=1

[coth(x1 + x2 + · · ·+ xj)− 1] for (r − 1) ∈ Z+ .

(3.33)

There are several things we ought to note from this result. Firstly, the N + 1
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different forms that the exponential above may take clearly correspond to the

vertices of the N -dimensional tetrahedron discussed previously. As we men-

tioned earlier, this exponential, containing all the m-dependence, is crucial in

reversing the identity (3.10). Next, note the splitting of each term into S̃r and

S̃N−r functions. This structure remains for the coefficients FN , as we shall

see shortly, and appears fundamental to the problem. Furthermore, the rep-

resentation of the result in hyperbolic functions is perhaps not unexpected;

previous results in equation (3.5) showed that the order B term is best writ-

ten with a sinh function. Finally, the arguments of the hyperbolic functions

only ever contain sums of the commutator operators Li. As such it is math-

ematically sensible to think of the active variables not as these commutator

operators L1, L2, L3 etc., but rather as strings of such operators, for example

L1, L1 +L2, L1 +L2 +L3 etc. We will discuss such strings in much more detail

in later sections, in particular section 3.5.

3.1.4 Rewriting FN as a partition sum in terms of fr

Our next task is to perform the partition sum, or in other words calculate FN

given the now known Sr. Once again it is useful to turn to an example. Using
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the above results, we can simply read off that

F3(L1, L2, L3) ≡ S3(L1, L2, L3) +
2

2!

[
S2(L1, L2 + L3) + S2(L1 + L2, L3)

]
+

22

3!
S1(L1 + L2 + L3)

(3.34)

= C0e
m(L1+L2+L3) + C1e

m(−L1+L2+L3) + C2e
m(−L1−L2+L3) + C3e

m(−L1−L2−L3)

(3.35)

where

C0 =

(
coth(L1)− 1

)(
coth(L1 + L2)− 1

)
+

2

2!

[(
coth(L1)− 1

)
+
(

coth(L1 + L2)− 1
)]

+
22

3!
sinh (L1 + L2 + L3)

,

C1 =


 1

sinh (−L1)







(
coth(L2)− 1

)
+

2

2!
sinh (L2 + L3)


 ,

C2 =




(
coth(−L2)− 1

)
+

2

2!
sinh (−L1 − L2)





 1

sinh (L3)


 ,

C3 =

(
coth(−L3)− 1

)(
coth(−L2 − L3)− 1

)
+

2

2!

[(
coth(−L3)− 1

)
+
(

coth(−L2 − L3)− 1
)]

+
22

3!
sinh (−L1 − L2 − L3)

.

Within this example many of the previous themes are exposed. As in the sums

SN , the result splits into N+1 terms. Each of these terms likewise separate into

an m-dependent exponential and an m-independent function (the Ci above).

The final similarity is the factorisation of these functions, shown clearly in

C1 and C2. More generally, this factorisation arises from partitioning. Any

sums which contribute to the coefficient of a given exponential with argument
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m(−L1 − · · · − Lr + Lr+1 + · · · + LN) must contain a partition between Lr

and Lr+1. Any other partitioning which occurs to the left of the split affects

a given sums contribution to the term independently of any partitioning to

the right. More concretely, in the example above the function C1, associated

with the exponential with argument m(−L1 + L2 + L3), is contributed to by

any sums in equation (3.34) with a partition between L1 and L2. These are

S3(L1, L2, L3) and S2(L1, L2 + L3). In the former there is another partition

between L2 and L3, giving rise to the coth term in the right factor of C1, while

in the latter there is no such extra partition.

These arguments necessitate the partition sum to take the form

FN(L1, L2, . . . , LN) =
N∑

r=0

F̃r(−Lr,−Lr−1 , . . . , −L1)F̃N−r(Lr+1, Lr+2, . . . , LN)

× em(−L1−···−Lr+Lr+1+···+LN ) , (3.36)

where F̃0 ≡ 1 and

F̃r(x1, . . . , xr) =
fr−1(x1, . . . , xr−1)

sinh (x1 + x2 + · · ·+ xr)
for r ∈ Z+ . (3.37)
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3.1.5 A partition formula for fr

The function fr−1(x1, x2, . . . , xr−1) will be a partition sum of the functions sn

which are given from (3.33). For example, we find

f2(x1, x2) = s2(x1, x2) +
2

2!

(
s1(x1) + s1(x2)

)
+

22

3!

=
[

coth(x1)− 1
][

coth(x1 + x2)− 1
]

+
2

2!

([
coth(x1)− 1

]
+
[

coth(x1 + x2)− 1
])

+
22

3!
,

in both C0 and C3 above. In general, fr−1(x1, x2, . . . , xr−1) is a sum of terms,

each involving a product of coth functions minus one. As we have just seen for

for f2, in each of these terms there will be a number of these functions missed

out. In a term where m such functions in a row have been missed out, the

coefficient will be am+1 ≡ 2m/(m+ 1)!. This then implies that

fr−1 = ar +
r−1∑

n=1

∞∑

p1=1

· · ·
∞∑

pn+1=1

ap1ap2 · · · apn+1

×
[

coth(x1 + x2 + · · ·+ xp1)−1
]
· · ·
[

coth(x1 + x2 + · · ·+ xp1+···+pn)−1
]
δr, p1+···+pn+1 ,

(3.38)

where δi, j is the Kronecker delta. We must now understand the combinatorial

aspect of partitioning expressed in this sum.

While superficially complicated, this sum is actually very simple. In essence,

the sum index n counts how many coth functions have not been missed out
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and the numbers pi give the positions of these. Alternatively, the numbers

pi − 1 can be interpreted as counting how many functions have been missed

out in a row. As an example, one of the terms in the functions f4 which has

two coth functions missing (so n = 2 remain) is

[
coth(x1)− 1

][
coth(x1 + x2)− 1

][
coth(x1 + x2 + x3)− 1

][
coth(x1 + · · ·+ x4)− 1

]

p1 − 1 = 1 p2 − 1 = 0 p3 − 1 = 2

In the function fr−1 there are r − 1 different coth functions; for example,

f2(x1, x2) has coth(x1) and coth(x1 + x2). The sum index n indicates the

number of coth functions in a given term. If there are only n such functions

in a term, that means (r − 1) − n are missing. These missing coth functions

determine the numerical coefficient of the term, given by the numbers am+1.

However, how each function was missed out is important - if m in a row are

missed out then they are replaced with am+1. The indices of the second sum, pi,

are designed to convey this information. For example, if p2 is 1 then there has

been nothing missed out between the first coth and the second. If, however,

it took any other value then p2 − 1 possible coth functions must have been

missed out between these two functions. Continuing this logic gives all terms

in the above sum.
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3.1.6 Resumming the partition formula

We are now going to obtain a simpler form of this function. The brackets in

the sum may be expanded, putting the function into the form

fr−1 = tr +
r−1∑

n=1

∞∑

p1=1

· · ·
∞∑

pn+1=1

tp1tp2 · · · tpn+1

× coth(x1 + x2 + · · ·+ xp1) · · · coth(x1 + x2 + · · ·+ xp1+···+pn) δr, p1+···+pn+1 .

(3.39)

The coefficient tp1tp2 · · · tpn+1 is of course still a product of equivalent numbers

tpi as the same partitioning arguments apply. In other words, the numbers pi

still label the size of gaps in the product of coth functions and each provide a

number tpi which depends only upon this size, independent of the location of

the gap. Comparing the constant term, that is when all coth functions have

been missed out, of (3.38) with that of (3.39) gives

tr =
r−1∑

n=0

(−1)n
∞∑

p1=1

· · ·
∞∑

pn+1=1

ap1 · · · apn+1 δr, p1+···+pn+1 . (3.40)

This sum, once computed for an arbitrary index, will give all numbers tpi

which appear in equation (3.39). The key to computation is to lift the con-

straint imposed by the Kronecker delta, and as such we may employ generating
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functions. First multiply both sides by xr, and sum over r:

∞∑

r=1

trx
r =

∞∑

r=1

r−1∑

n=0

(−1)n
∞∑

p1=1

· · ·
∞∑

pn+1=1

ap1ap2 · · · apn+1 δr, p1+···+pn+1x
r (3.41)

=
∞∑

n=0

(−1)n

[ ∞∑

p1=1

ap1x
p1

]
· · ·
[ ∞∑

pn+1=1

apn+1x
pn+1

]
. (3.42)

Now each of the sums over pi can be done freely, resulting in

(
1−

∞∑

k=1

tkx
k

)(
1 +

∞∑

k=1

akx
k

)
= 1 . (3.43)

The above is an expression of a kind of ‘partition duality’. It is true for any

sequence {ak} and defines a dual sequence {tk} which satisfies equation (3.40).

This also implies that equation (3.40) is invertible, that is one can exchange

ak and −tk and the equation will still hold. Of course, what has been done

here is to replace the (coth(x) − 1) of equation (3.38) with (coth(x) − 0) in

equation (3.39). One could instead replace it with a more general (coth(x)−λ),

with the analysis being analogous to that which has been performed, though

currently λ = −1, 0, 1 are the only useful cases as they have been used in this

chapter.

In the present case recall ak ≡ 2k−1/k! and hence it is simple to calculate

that
∞∑

k=0

tkx
k = tanh(x) = x− 1

3
x3 +

2

15
x5 − 17

315
x7 + · · · , (3.44)
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demonstrating the numbers tk are generated by tanh. When combined with

equation (3.39), this then gives us a clean formula for fr−1 and thus FN . That

is, fr−1 is a sum of products of coth functions. In each term of this sum, some

even number of these functions in a row will be missed out and replaced with

the numbers tk which come from the Taylor expansion of tanh(x). We will

give finite examples of this concept for clarity in section 3.3.

3.1.7 Revisiting Mm and implementing the fundamental

mathematical approach

Our focus will now turn to the exponential in equation (3.36). It is here that we

will reverse the identity (3.10). We may now rewrite equation (3.20) as

Mm = e2mA +
∞∑

N=1

emA

(
N∑

r=0

F̃rF̃N−re
m(−L1−···−Lr+Lr+1+···+LN )

)
B1 · · ·BNe

mA ,

(3.45)

where we have suppressed the arguments of the functions for brevity. Upon

repeated application of the Hadamard formula (3.8) we can see this as

Mm = e2mA +
∞∑

N=1

N∑

r=0

F̃rF̃N−r B1 · · ·Br e
2mABr+1 · · ·BN . (3.46)
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We may then employ the identity (3.10) in reverse, obtaining

logM = 2A+
∞∑

N=1

N∑

r=0

F̃rF̃N−r B1 · · ·Br 2ABr+1 · · ·BN . (3.47)

Using the commutator operators Li, the matrix A in the above expression may

be moved to either side of the matrices B, via

B1 · · ·Br ABr+1 · · ·BN = (−L1 − L2 − · · · − Lr)B1 · · ·BN + AB1 · · ·BN

(3.48)

= (Lr + Lr+1 + · · ·+ LN)B1 · · ·BN +B1 · · ·BN A .

(3.49)

The case m = 0 in equation (3.46) gives

1 = 1 +
∞∑

N=1

N∑

r=0

F̃rF̃N−rB1 · · ·BN , (3.50)

which implies that for all N > 0,

N∑

r=0

F̃rF̃N−r = 0 . (3.51)

This identity is extremely useful and will appear again later in this work and

has been checked for up to 10th order. For now it allows the extraneous final

terms in equations (3.48) and (3.49) to be dropped and hence logM to be
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written in the form

logM = 2A+
∞∑

N=1

[
N∑

r=0

F̃rF̃N−r (−L1 − · · · − Lr + Lr+1 + · · ·+ LN)

]
B1 · · ·BN .

(3.52)

This then gives the promised expansion in powers of the matrix B. To be clear,

the string B1B2 · · ·BN does not imply a matrix product, as the operators Li

are to be acted upon it, interspersing this string with commutators operators

and then turning it into a simple matrix product involving both B and A

matrices.

3.1.8 Final form

To summarise, we have found that

log
(
eAe2BeA

)
= 2A+

∞∑

N=1

GN B1 · · ·BN , (3.53)

where

GN =
N∑

r=0

F̃r(−Lr,−Lr−1 , . . . , −L1)F̃N−r(Lr+1, Lr+2, . . . , LN)

× (−L1 − · · · − Lr + Lr+1 + · · ·+ LN) , (3.54)
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F̃r(x1, . . . , xr) =
fr−1(x1, . . . , xr−1)

sinh (x1 + x2 + · · ·+ xr)
for r ∈ Z+ , F̃0 ≡ 1 ,

(3.55)

and

fr−1 = tr +
r−1∑

n=1

∞∑

p1=1

· · ·
∞∑

pn+1=1

tp1tp2 · · · tpn+1

× coth(x1 + x2 + · · ·+ xp1) · · · coth(x1 + x2 + · · ·+ xp1+···+pn) δr, p1+···+pn+1 .

(3.56)

Here the numbers tpi are given from the Taylor expansion of tanh(x). Finite

examples are given in section 3.3.

3.2 Representation as a sum of commutators

It is well known that, beyond the initial terms, the Baker-Campbell-Hausdorff

formula may be written as the sum of commutators. Unfortunately, for our

new representation (3.53) this is not immediately evident. Of course, the

commutator operators Li contained within GN will be applied to each matrix

Bi to form commutators. However, this would naturally lead to products of

commutators when, say, a term like LiLj is applied to BiBj. In this section

we will give a representation for which each term is a single commutator. This

representation will rely on unproved identities of the function GN , which have
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been demonstrated for up to N = 10 and thus may be true.

The first identity involves picking one argument of GN , say L1, then changing

its position while preserving the order of the other arguments. Explicitly for

G4, the following identity is true:

G4(L1, L2, L3, L4)+G4(L2, L1, L3, L4)+G4(L2, L3, L1, L4)+G4(L2, L3, L4, L1) = 0 .

(3.57)

The next identity involves picking two arguments, say L1 and L2. This time

the position of both arguments is allowed to change, preserving both their own

order and the order of the remaining arguments. Explicitly for G4,

G4(L1, L2, L3, L4) +G4(L1, L3, L2, L4) +G4(L1, L3, L4, L2)

+G4(L3, L1, L2, L4) +G4(L3, L1, L4, L2) +G4(L3, L4, L1, L2) = 0

In general we conjecture that identities hold where n < N arguments of GN

are picked and are dealt with in an analogous way to above. Again, it should

be noted that this has been tested successfully up to N = 10 and there is no

reason to believe this should fail at any higher order.

From these identities it follows, as we shall shortly prove, that

GN B1 · · ·BN =
1

N
GN [[. . . [[B1, B2], B3], . . . ], BN ] , (3.58)
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and hence that

log
(
eAe2BeA

)
= 2A+G1B1 +

∞∑

N=2

1

N
GN [[. . . [[B1, B2], B3], . . . ], BN ] . (3.59)

To begin the proof, subject to the identities we have just discussed, note that

the commutator on the right-hand-side of the above equation may be written

in terms of permutations of the string B1 · · ·BN . That is,

1

N
GN [[. . . [[B1, B2], B3], . . . ], BN ]

=
1

N
GN

{
()− (1NN −1 . . . 2)B

}
· · ·
{

()B− (132)B
}{

()B− (12)B
}
B1 · · ·BN ,

(3.60)

where (n1n2 . . . nN)B represents a permutation of the string B1 · · ·BN .

Next we may relabel the indices in each term, keeping the order B1 · · ·BN

and instead permuting the arguments of the function GN(L1, . . . , LN). For

example,

(132)B G4(L1, L2, L3, L4)B1B2B3B4 = G4(L1, L2, L3, L4)B3B1B2B4

= G4(L2, L3, L1, L4)B1B2B3B4

= (123)GG4(L1, L2, L3, L4)B1B2B3B4 .
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In general, for any permutation P ,

PB GN(L1, . . . , LN)B1 · · ·BN = P−1G GN(L1, . . . , LN)B1 · · ·BN , (3.61)

and so we may rewrite equation (3.60) in terms of permutations on GN as

1

N
GN [[. . . [[B1, B2], B3], . . . ], BN ]

=
1

N

{
()G − (12)G

}{
()G − (123)G

}
· · ·
{

()G − (1 . . . N)G
}
GNB1 · · ·BN

=
1

N

[
()G +

N∑

m=1

(−1)m
∑

1<nm<···<n1≤N
(1 . . . nm)G · · · (1 . . . n1)G

]
GNB1 · · ·BN

(3.62)

We may also write the identities of the function GN in this permutation style.

Most relevantly, choosing the arguments Lm, Lm−1, . . . , L1 and changing their

position with respect to the remaining arguments Lm+1, Lm+2, . . . , LN while

keeping the two sets internally ordered may be written as

∑

1≤nm<···<n1≤N
(1 . . . nm)G · · · (1 . . . n1)GGN(L1, L2, . . . , LN) = 0 . (3.63)

As an example, for m = 2 and N = 4 the above reads

G4(L2, L1, L3, L4) +G4(L2, L3, L1, L4) +G4(L2, L3, L4, L1)

+ G4(L3, L2, L1, L4) +G4(L3, L2, L4, L1) +G4(L3, L4, L2, L1) = 0 .

84



3.3. FINITE EXAMPLES

We may split the sum in the identity in to two cases: nm = 1 and nm 6= 1.

This gives

(−1)
∑

1<nm<···<n1≤N
(1 . . . nm)G · · · (1 . . . n1)GGN

=
∑

1<nm−1<···<n1≤N
(1 . . . nm−1)G · · · (1 . . . n1)GGN , (3.64)

where we have suppressed the argument to the function GN for brevity. This

leads naturally to recursion. Using lower order identities, that is starting at

m− 1 not m and so on, we can see that

(−1)m
∑

1<nm<···<n1≤N
(1 . . . nm)G · · · (1 . . . n1)GGN = GN . (3.65)

The left hand side of the above is exactly what is obtained when expand-

ing equation (3.62), collecting all terms involving m permutations multiplied

together. Exactly N copies of this occur, thus proving equation (3.58).

3.3 Finite examples

While we have derived the general formula in the preceding sections, it may be

helpful to examine several low-order terms explicitly. This section will begin

with the functions fr, for r = 0 . . . 5, highlighting the patterns we have pre-

viously discussed. From these we may immediately write down the operators
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GN , the targets of this work, and indeed we will do so for N = 1 . . . 5.

To begin, consider the functions fr. The first few of these functions are given

by

f0 ≡ 1 ,

f1 = c1 ,

f2 = c1c12 −
1

3
,

f3 = c1c12c123 −
1

3

(
c1 + c123

)
,

f4 = c1c12c123c1234 −
1

3

(
c1c12 + c1c1234 + c123c1234

)
+

2

15
,

where we have used compact notation (c123 = coth(x1 + x2 + x3), for exam-

ple). Here the structure we previously discussed becomes apparent. In equa-

tion (3.56) the term in the sum where n = r − 1 forces each pi to be equal

to one, giving the full product of coth functions with none missing. This is

the leading term in each of the examples above. To generate the rest of the

terms, we replace neighbouring pairs of coth functions in this term with −1/3,

neighbouring quadruplets with 2/15, and so on. All possible such replace-

ments appear in the above functions, where the replacing numbers are given
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from

tanhx = x− 1

3
x3 +

2

15
x5 − 17

315
x7 + · · · (3.66)

=
∞∑

n=1

22n(22n − 1)B2nx
2n−1

(2n)!
, (3.67)

where Bn is the nth Bernoulli number.

We will now examine the targets of this work, namely the operators GN . We

previously mentioned that the leading term G1 is already well known and

while this was calculated for the regular Baker-Campbell-Hausdorff formula

Z(X, Y ), it is of course trivial to map it to the symmetric version S(A, B).

Using the general formulae of the preceding section, it would be natural to

write

G1 =

[
1

sinh(L1)

]
L1 +

[
1

sinh(−L1)

]
(−L1) . (3.68)

Of course, as both x and sinh(x) are odd functions, the minus signs are irrel-

evant and there is only really one term.

Next, at second order and third order we find that

G2 =

[
coth(L1)

sinh(L1 + L2)

]
(L1 + L2) +

[
1

sinh(−L1)

] [
1

sinh(L2)

]
(−L1 + L2)

+

[
coth(−L2)

sinh(−L1 − L2)

]
(−L1 − L2) ,
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and

G3 =

[
coth(L1) coth(L1 + L2)− 1

3

sinh(L1 + L2 + L3)

]
(L1 + L2 + L3)

+

[
1

sinh(−L1)

] [
coth(L2)

sinh(L2 + L3)

]
(−L1 + L2 + L3)

+

[
coth(−L2)

sinh(−L1 − L2)

] [
1

sinh(L3)

]
(−L1 − L2 + L3)

+

[
coth(−L3) coth(−L2 − L3)− 1

3

sinh(−L1 − L2 − L3)

]
(−L1 − L2 − L3) .

With these, some general themes begin to emerge. We can immediately see

that each term factorises into two parts, written above with square brackets. In

a given term, all commutator operators with a plus sign gather into one of these

parts while those with a minus sign gather into the other. The only question

that remains is how to determine the arguments to each coth function.

Let us consider, for example, the term involving−L1−L2−L3+L4+L5+L6+L7

in G7. Pictorially, the arguments for each function can be found from the

diagram

−L1 − L2 − L3 + L4 + L5 + L6 + L7 .

Here, the top red lines highlight the arguments of each sinh function, while

the blue lines show the arguments to the coth functions. Combined with the

previous discussion on how to write down these coth functions to form the
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numerators, this says how to write GN for any order N . Of course equation

(3.54) already provides such a formula, but perhaps observing these patterns

for finite results may provide a more intuitive understanding.

For reference, the next two orders in the expansion are given by

G4 =

[
c1c12c123 − 1

3
(c1 + c123)

s1234

]
(L1 + L2 + L3 + L4)

+

[
1

s1

] [
c2c23 − 1

3

s234

]
(−L1 + L2 + L3 + L4)

+

[
c2
s12

] [
c3
s34

]
(−L1 − L2 + L3 + L4)

+

[
c3c23 − 1

3

s123

] [
1

s4

]
(−L1 − L2 − L3 + L4)

+

[
c4c34c234 − 1

3
(c4 + c234)

s1234

]
(−L1 − L2 − L3 − L4) ,

and

G5 =

[
c1c12c123c1234 − 1

3
(c1c12 + c1c1234 + c123c1234) + 2

15

s12345

]
(L1 + L2 + L3 + L4 + L5)

+

[
1

s1

] [
c2c23c234 − 1

3
(c2 + c234)

s2345

]
(−L1 + L2 + L3 + L4 + L5)

+

[
c2
s12

] [
c3c34 − 1

3

s345

]
(−L1 − L2 + L3 + L4 + L5)

+

[
c3c23 − 1

3

s123

] [
c4
s45

]
(−L1 − L2 − L3 + L4 + L5)

+

[
c4c34c234 − 1

3
(c4 + c234)

s1234

] [
1

s5

]
(−L1 − L2 − L3 − L4 + L5)

+

[
c5c45c345c2345 − 1

3
(c5c45 + c5c2345 + c345c2345) + 2

15

s12345

]
(−L1 − L2 − L3 − L4 − L5) .
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Here we have made the notation more compact by writing, for example, s1 =

sinh(L1) and c23 = coth(−L2 − L3).

3.4 Apparent singularities and an alternative

representation

One may, upon reading section 3.3 and the examples therein, be concerned

that the operators GN appear divergent. Both coth(x) and 1/ sinh(x) have

simple poles when their argument is zero. In this section, however, we will

provide the framework for removing these apparent singularities at will. While

this can be done using the operators as given in the preceding section, we have

found it is better to rewrite and potentially simplify using hyperbolic identities,

creating alternative representations. In this section we shall discuss one such

alternative and use it as the basis for an algorithmic approach to removing

singularities, which is performed in detail in appendix A. Also in appendix A

is an exhaustive list of possible singularities in the operators G1, G2, G3, and

G4, and the result of removing them.

The starting point for obtaining this alternative representation is the m = 0
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identity (3.51),

N∑

r=0

F̃r(−Lr,−Lr−1 , . . . , −L1)F̃N−r(Lr+1, Lr+2, . . . , LN) = 0 . (3.69)

Recalling the definition

F̃r(x1, . . . , xr) =
fr−1(x1, . . . , xr−1)

sinh (x1 + x2 + · · ·+ xr)
, (3.70)

and that F̃0 ≡ 0, we may extract the two outer terms, that is r = 0, N , to

give

fN−1(L1, . . . , LN−1)− fN−1(−LN , . . . , −L2)

sinh(L1 + · · ·+ LN)

= −
N−1∑

r=1

fr−1(−Lr, . . . , −L2)

sinh(−L1 − · · · − Lr)
fN−r−1(Lr+1, . . . , LN−1)

sinh(Lr+1 + · · ·+ LN)
.

The key to this representation is to eliminate all sinh functions. To that end,

we may use the hyperbolic identity

1

sinh(−L1 − · · · − Lr)
1

sinh(Lr+1 + · · ·+ LN)
=

coth(−L1 − · · · − Lr)− coth(Lr+1 + · · ·+ LN)

sinh(L1 + · · ·+ LN)
,

(3.71)

to rewrite the right-hand-side of the above equation, and thus eliminate the

sinh function. At this point there is a clear divide, with half of the terms

containing the variable L1 but not LN and the other half containing LN but
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not L1. We may reorganise the equation to separate each half by the equals

sign which, along with linear independence of the functions involving L1 and

LN , implies that each half separately must be equal to some constant. That

is, for the L1 dependent half,

fN−1(L1, . . . , LN−1)+
N−1∑

r=1

coth(−L1 − · · · − Lr)fr−1(−Lr, . . . , −L2)fN−r−1(Lr+1, . . . , LN−1)

= const ≡ aoddN . (3.72)

One of the striking features of this representation is the factorisation structure

which has been ubiquitous in this work, that is the split into fr−1 and fn−r−1.

Its presence here gives reassurance that this formula is natural. Secondly,

outside of the fN−1, all dependence on the variable L1 appears only in the

outer coth terms. We may think of these terms as linearly independent basis

functions, with the fr−1fN−r−1 terms cast as coefficients. This then gives a

more controlled way of dealing with these formulae. We will use this equation

to rewrite the overall operator GN , but first we must find the constant.

We may find this constant term by taking the limit L1 → ±∞ in fN−1, which

has the effect of setting each coth to one or minus one. Adapting an equation

for fN−1, namely equation (3.38), we find

lim
L1→±∞

fN−1 = (±1)NaN ≡ (±1)N
2N−1

N !
, (3.73)
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and so taking the same limits on equation (3.72) gives

(±1)N−1aN ±
N−1∑

r=1

fr−1fN−r−1 = aoddN . (3.74)

We may then sum the two equations contained in (3.74) to find the con-

stant

aoddN =





0, N even,

aN , N odd,

(3.75)

with generating function

∞∑

N=1

aoddN xN = cosh(x) sinh(x) = x+
2

3
x3 +

2

15
x5 + · · · . (3.76)

Similarly, we may subtract the equations (3.74), giving a set of identities which

will prove useful when dealing with apparent singularities,

N−1∑

r=1

fr−1fN−r−1 =





aN , N even,

0, N odd,

≡ aevenN (3.77)

where

∑

n

aevenn xn = sinh2(x) = x2 +
1

3
x4 +

2

45
x6 + · · · . (3.78)

Returning to the alternative representation, we may now rewrite the overall

operators GN . Using the hyperbolic identity (3.71) to combine all sinh func-
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tions and the recursion relation (3.72) to eliminate both instances of fN−1, we

can see that

GN = 2s(L1 + · · ·+ LN) gN (3.79)

where

s(x) =
x

sinh(x)
, (3.80)

gN = aoddN +
N−1∑

r=1

E(L1 + · · ·+ Lr, Lr+1 + · · ·+ LN)

× fr−1(−Lr, . . . , −L2)fN−r−1(Lr+1, . . . , LN−1) , (3.81)

and

E(x, y) =
x coth(x)− y coth(y)

x+ y
. (3.82)

It is fairly clear that both s(x) and E(x, y) are regular and infinitely differen-

tiable and as such any apparent singularity involving L1 or LN is automatically

safe in this representation.

Note that this representation only deals with the case where one of the ar-

guments is zero. Demonstrating that any other limits are safe involves the

identities just introduced in equation (3.77). This is done carefully for a par-

ticular example in appendix A, but is also done exhaustively in that same

appendix for G1, G2, G3, and G4. We should note that in applications it is
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usual, rather than unusual, that such singularities are relevant. As such, the

representation presented in this section should be considered as the starting

point for practical use of the new formula. Indeed, we shall treat it as such in

future chapters.

3.5 Choice of basis

In this section we shall discuss the sums of commutator operators, that is

strings like L1 + L2 + · · · + Lr. We previously suggested that these were

mathematically natural to use as arguments to various functions. It turns out

that in the basis where the matrix A is diagonal, if such a basis exists, these

sums result in the difference between two eigenvalues of A. As we shall see,

this drastically reduces the complexity of using the new representation and is

really the true use of this formula in this thesis.

First let us consider the matrix elements of LB ≡ [A, B]:

[
LB
]
n1n2

= An1n′Bn′n2 −Bn1n′An′n2 , (3.83)

where we assume summation over repeated indices. If A is a diagonal matrix

then its matrix elements are given in terms of its eigenvalues as Anm = anδnm,

where δnm is the Kronecker delta. Hence in the basis A is diagonal the above
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is given by

[
LB
]
n1n2

= (an1 − an2)Bn1n2 . (3.84)

More generally, for any Taylor expandable function f , it can be seen that

[
f(Li+Li+1+· · ·+Li+r)B1B2 · · ·BN

]
n1nN+1

= f(ani−ani+r+1
)Bn1n2Bn2n3 · · ·BnNnN+1

.

(3.85)

This is a simple yet powerful result. If the function f is replaced with sinh

or coth functions, then we may determine GN without difficulty. This would

allow calculations to be done numerically with relative ease as all the strings of

commutator operators are replaced by real numbers. It is this choice of basis,

then, which gives the results of this chapter a practical raison d’être.
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Figure 3.2: (a) The Boltzmann suppression factor as a function of the difference
of eigenvalues. (b) The function g2. Note it appears to limit to ±1 as the
eigenvalue difference tends to infinity, and is bounded.

We ought to say a few words about the full expansion in this basis. Using
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the notation of section 3.4, note that we may extract an overall factor of

s(L1 + L2 + · · · + LN) as, at each order, the argument of this function is the

same difference of eigenvalues. That is,

[S(A, B)]nn′ =

[
2A+

∞∑

N=1

GNB1 · · ·BN

]

nn′

= 2anδn, n′ + 2s(an − an′)
(
Bnn′ + g2(an − an1 , an1 − an′)Bnn1Bn1n′

(3.86)

+ g3(an − an1 , an1 − an2 , an2 − an′)Bnn1Bn1n2Bn2n′ + · · ·
)
,

where again we assume summation over repeated indices. We may interpret the

function s as a Boltzmann suppression factor, appropriately named when one

considers potential applications in quantum and statistical mechanics, which

reduces the weight of any matrix element for whom the difference in eigenvalues

an − an′ is sufficiently large. It is plotted in figure 3.2a, for reference.

The reduced functions gN , then, are what remains. Figure 3.2b displays g2,

which has several features generic to these functions. Firstly, it appears to be

bounded and its extrema occur as its arguments diverge. It can be proved,

though we shall not do so here, that under such limits the relatively com-

plicated gN and the comparatively simple fN−1 coincide. Then finding these

extrema is elementary as each constituent coth function within fN−1 takes

values ±1. That these limits do in fact correspond to the extrema of gN is
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not proved, but we have numerically verified this up to g8 and the results are

displayed in table 3.1. Furthermore, we may obtain a generating function for

the outermost of these bounds which is given by

b(x) =
1− e−2x
1 + e−4x

= x+ x2 − 4

3
x3 − 5

3
x4 +

122

45
x5 + · · · (3.87)

This series is absolutely convergent when |x| < π/4, though this is not proved

here. It is entirely possible for the series to converge outside of this region, how-

ever. This provides reassurance that the series (3.86) converges for sufficiently

small B.

Function Lower bound Upper bound
g2 -1 1
g3 −4/3 2/3
g4 −5/3 5/3
g5 −6/5 32/15
g6 −122/45 122/45
g7 −1088/315 676/315
g8 −227/63 227/63

Table 3.1: Bounds of the functions gN , obtained using the procedure outlined
in the text and numerically verified

3.6 Summary

We have found and proved a new representation for the Baker-Campbell-

Hausdorff formula. This representation is a perturbative expansion in just

one of two matrices, as opposed to both in the original representation, though
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its radius of convergence has not been calculated. The series may then be

truncated and give a good approximation to the full expansion for situations

where only this second object is small, as we shall describe in more detail

in subsequent chapters. For physical problems this then would give access

to a much larger parameter space than is currently available. Additionally,

new problems for which the original representation was unusable may now be

tackled. Transfer matrices in statistical mechanics is an example of one such

problem, which is indeed what we shall spend the rest of this work dealing

with.
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CHAPTER 4

PERTURBATION THEORY

The previous chapter left us with a mathematical result which we may use

to find the free-energy operator F̂ for a given model. However, in statistical

mechanics one is rarely interested in this operator. Instead we care more about

its eigenvalues, in particular the groundstate which is the free-energy. Chapter

2 also argued that we ought also to care about the first excited state. Perhaps

then we should concentrate on calculating these numbers, rather than the oper-

ator itself. Fortunately there is a technique all physicists and mathematicians

are familiar with which does just that: perturbation theory.

In this section we shall introduce the particular form of perturbation theory we

shall need to use, then apply it to our new Baker-Cambell-Hausdorff formula.

We will be able to calculate the subsequent formula explicitly up to sixth
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order and will offer some suggestion as to what we expect later results to be.

However, we do not currently have a full, rigorous answer.

4.1 General perturbation result

We start with the eigenvalue equation for some matrix H acting on its ground-

state eigenvector

(H − ε0) |ψ〉 = 0 . (4.1)

We shall introduce the perturbation theory by setting

H = H(0) +H(1) +H(2) + · · · , (4.2)

ε0 = ε
(0)
0 + ε

(1)
0 + ε

(2)
0 + · · · , (4.3)

|ψ〉 = |0〉+
∑

n 6=0

(ϕ(1)
n + ϕ(2)

n + · · · ) |n〉 , (4.4)

where the set of vectors |0〉 , |1〉 , |2〉 , . . . are an orthonormal basis for the ma-

trix H(0). One should think of quantities x(n) as being perturbative, where

x can be any of H, ε0, or ϕn. That is, x(1) � x(2) � x(3) � · · ·, but

x(n1)x(n2) · · ·x(nm) ∼ x(n1+n2+···+nm). Alternatively, think of x(n) = λnx̃(n)

where λ is the small formal expansion parameter and x̃(n) is of order one.

This λ is consistent across variables, meaning H(N) ∼ ε
(N)
0 ∼ ϕ

(N)
n . Whichever

way you formulate this, the task is to write down a formula at each order in
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the perturbation theory and find the ground-state eigenvalue ε
(N)
0 . This will

involve knowing the coefficients ϕ
(1)
n , ϕ

(2)
n , . . . , ϕ

(N−1)
n which we shall shortly

calculate. Note we are assuming that there are no degeneracies.

Momentarily going back to the Baker-Campbell-Hausdorff expansion, we will

think of the perturbative matrices as having matrix elements

〈n|H(0) |n〉 = 2Ann , (4.5)

〈n|H(1) |m〉 = G1(an − am)Bnm , (4.6)

〈n|H(2) |m〉 =
∑

n1

G2(an − an1 , an1 − am)Bnn1Bn1m , (4.7)

〈n|H(3) |m〉 =
∑

n1n2

G3(an − an1 , an1 − an2 , an2 − am)Bnn1Bn1n2Bn2m , (4.8)

and so on. We are of course working in the basis for which A is diagonal.

For now, however, we shall deal with this perturbation theory in the abstract.

First, the zeroth order equation simply states

(H(0) − ε(0)0 ) |0〉 = 0 =⇒ ε
(0)
0 = 〈0|H(0) |0〉 . (4.9)

Recall H(0) is diagonal and

ε(0)n ≡ 〈n|H(0) |n〉 .
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Next, replacing variables in equation (4.1) with their perturbative equivalents,

at N -th order we have the equation

(H(N) − ε(N)
0 ) |0〉+

N∑

r=1

∑

n6=0

(H(N−r) − ε(N−r)0 )ϕ(r)
n |n〉 = 0 . (4.10)

As we wish to find the groundstate eigenvalue ε0 we should first target ε
(N)
0 .

To do so we may multiply the above equation from the left by the eigenvector

〈0|, obtaining

ε
(N)
0 = 〈0|H(N) |0〉+

N−1∑

r=1

∑

n6=0

〈0|H(N−r) |n〉ϕ(r)
n . (4.11)

As this equation depends on the variables ϕ
(r)
n we ought to also target ϕ

(n)
N in

our formula at N -th order. This can be done by multiplying said formula from

the left by the vector 〈n|, which gives

〈n|H(N) |0〉+
N−1∑

r=1

(∑

m6=0

〈n|H(N−r) |m〉ϕ(r)
m − ε(N−r)0 ϕ(r)

m

)
+
∑

m6=0

〈n|H(0) |m〉ϕ(N)
m −ε(0)0 ϕ(N)

n = 0 ,

(4.12)

where we have separated the case r = N and also changed the dummy variable.

Noting that 〈n|H(0) |m〉 = δnmε
(0)
n , we may write

ϕ(N)
n =

1

ε
(0)
0 − ε(0)n

[
〈n|H(N) |0〉+

N−1∑

r=1

(∑

m 6=0

〈n|H(N−r) |m〉ϕ(r)
m − ε(N−r)0 ϕ(r)

n

)]
.

(4.13)
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We may substitute our formula for ε
(0)
N into the above to obtain a recursion

relation for the variables ϕ
(N)
n , though writing this out now is perhaps not

necessary.

To summarise, we have a recursion relation for the variables ϕ
(M)
n , from which

we can find said variables in terms of the matrix elements of the perturbative

matrices. We can then find ε
(N)
0 using these variables, with M < N , which

gives us a perturbative formula for the groundstate ε0 of our original matrix

H.

We shall now give a few examples, finding the perturbative groundstate up

to third order. To do so we need to calculate both ϕ
(1)
n and ϕ

(2)
n using the

recursion relation, finding

ϕ(1)
n =

1

ε
(0)
0 − ε(0)n

〈n|H(1) |0〉 , (4.14)

and the slightly more complicated

ϕ(2)
n =

1

ε
(0)
0 − ε(0)n

〈n|H(2) |0〉+
∑

m6=0

1

(ε
(0)
0 − ε(0)n )(ε

(0)
0 − ε(0)m )

〈n|H(1) |m〉 〈m|H(1) |0〉

− 1

(ε
(0)
0 − ε(0)n )2

〈0|H(1) |n〉 〈n|H(1) |0〉 . (4.15)

These can then be used to find the variables in which we are interested. We
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already know

ε
(0)
0 = 〈0|H(0) |0〉 , (4.16)

and the first order result is similarly trivial:

ε
(0)
1 = 〈0|H(1) |0〉 . (4.17)

At second order, however, we must now use our formula for ϕ
(1)
n to find

ε
(2)
0 = 〈0|H(2) |0〉+

∑

n6=0

1

ε
(0)
0 − ε(0)n

〈0|H(1) |n〉 〈n|H(1) |0〉 . (4.18)

Third order is even more complicated as we must use both ϕ
(1)
n and ϕ

(2)
n to

find

ε
(3)
0 = 〈0|H(3) |0〉

+
∑

n6=0

1

ε
(0)
0 − ε(0)n

〈0|H(2) |n〉 〈n|H(1) |0〉

+
∑

n6=0

1

ε
(0)
0 − ε(0)n

〈0|H(1) |n〉 〈n|H(2) |0〉

+
∑

n,m 6=0

1

(ε
(0)
0 − ε(0)n )(ε

(0)
0 − ε(0)m )

〈0|H(1) |n〉 〈n|H(1) |m〉 〈m|H(1) |0〉

−
∑

n6=0

1

(ε
(0)
0 − ε(0)n )2

〈0|H(1) |n〉 〈n|H(1) |0〉 〈0|H(1) |0〉 . (4.19)

At this point patterns become clear, with essentially the order of the ma-

trix H(3) being split in all possible ways, down to H(2)H(1), H(1)H(2), and
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H(1)H(1)H(1). Post-split these are then multiplied by the inverse of the differ-

ence between the groundstate eigenvalue and some exited eigenvalue, both of

the matrix H(0). The way this is written is also fairly clear. One can use these

patterns to write down higher order perturbative results, then check against

a machine generated result coming from the recursion relations. It would be

prohibitively complex to proceed to much higher order in the way we have

presented the first few orders.

4.2 Applying perturbation theory to the Baker-

Campbell-Hausdorff series

We will now consider how to apply this general perturbation result to the

Baker-Campbell-Hausdorff series calculated in the preceding chapter. As men-

tioned earlier, we shall set

〈n|H(0) |n〉 = 2an , (4.20)

〈n|H(1) |m〉 = G1(an − am)Bnm , (4.21)

〈n|H(2) |m〉 =
∑

n1

G2(an − an1 , an1 − am)Bnn1Bn1m , (4.22)

〈n|H(3) |m〉 =
∑

n1n2

G3(an − an1 , an1 − an2 , an2 − am)Bnn1Bn1n2Bn2m , (4.23)
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and so on. We are of course working in the basis for which A is diagonal,

setting Ann ≡ an.

We shall begin by calculating the examples discussed in the previous section,

namely ε
(0)
0 , ε

(0)
1 , ε

(0)
2 , and ε

(0)
3 . Both zeroth and first order are trivial, giv-

ing

ε
(0)
0 = 2a0 , (4.24)

and

ε
(1)
0 = G1(0)B00 = 2B00, (4.25)

respectively. At second order we have a non-trivial, yet still simple, result,

ε
(2)
0 =

∑

n1

G2(a0−an1 , an1−a0)B0n1Bn10+
∑

n1 6=0

1

2(a0 − an1)
G1(a0−an1)B0n1G1(an1−a0)Bn10 .

(4.26)

The first sum may be split into two cases, n1 6= 0 and n1 = 0. The former

gives

∑

n1 6=0

[
G2(a0 − an1 , an1 − a0) +

1

2(a0 − an1)
G1(a0 − an1)G1(an1 − a0)

]
B0n1Bn10 ,

(4.27)

which can be simplified by noting

G2(a0 − an1 , an1 − a0) +
1

a0 − an1

G1(a0 − an1)G1(an1 − a0) = 2f1(an1 − a0) .

(4.28)
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We shall discuss this simplification in more detail and generality shortly, so it

is not essential to verify it here. Instead we shall move to the latter of the two

cases, namely n1 = 0, which gives

G2(0, 0)B00B00 , (4.29)

which equals zero as G2(0, 0) = 0. In general GN(0, 0 , . . . , 0) = 0 for N > 1

due to identities discussed in the previous chapter. This leaves the result

ε
(2)
0 = 2

∑

n1

B0n1Bn10 f1(a0 − an1) . (4.30)

Finally at third order we have

ε
(3)
0 =

∑

n1, n2

G3(a0 − an1 , an1 − an2 , an2 − a0)B0n1Bn1n2Bn20

+
∑

n1, n2 6=0

1

2(a0 − an2)
G2(a0 − an1 , an1 − an2)B0n1Bn1n2G1(an2 − a0)Bn20

+
∑

n1 6=0, n2

1

2(a0 − an1)
G1(a0 − an1)B0n1G2(an1 − an2 , an2 − a0)Bn1n2Bn20

+
∑

n1 6=0, n2 6=0

1

4(a0 − an1)(a0 − an2)
G1(a0 − an1)B0n1G1(an1 − an2)Bn1n2G1(an2 − a0)Bn20

−
∑

n1 6=0

1

4(a0 − an1)
2
G1(a0 − an1)B0n1G1(an1 − a0)Bn10G1(0)B00 . (4.31)

Again, we need to think about when the n1 or n2 dummy variables may be
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zero or are disallowed from being so. If n1 6= 0 and n2 6= 0 then we have

∑

n1 6=0 ,n2 6=0

[
G3(a0 − an1 , an1 − an2 , an2 − a0)

+
1

2(a0 − an2)
G2(a0 − an1 , an1 − an2)G1(an2 − a0)

+
1

2(a0 − an1)
G1(a0 − an1)G2(an1 − an2 , an2 − a0)

+
1

4(a0 − an1)(a0 − an2)
G1(a0−an1)G1(an1−an2)G1(an2−a0)

]
B0n1Bn1n2Bn20 .

(4.32)

If one is zero and the other not then we have

∑

n1 6=0

[
G3(a0 − an1 , an1 − a0, 0) +

1

2(a0 − an1)
G1(a0 − an1)G2(an1 − a0, 0)

+G3(0, a0 − an1 , an1 − a0) +
1

2(a0 − an1)
G2(0, a0 − an1)G1(an1 − a0)

− 1

4(a0 − an1)
2
G1(a0 − an1)G1(an1 − a0)G1(0)

]
B00B0n1Bn10 . (4.33)

Both n1 and n2 equal to zero of course leads to zero, as before. These expres-

sions can both be simplified, leading to the result

ε
(3)
0 = 2

∑

n1 6=0 ,n2 6=0

B0n1Bn1n2Bn20 f2(a0−an1 , an1−an2)−
∑

n1 6=0

B00B0n1Bn10 f2(a0−an1 , 0) .

(4.34)

Without calculation we shall give the next two results, ε
(4)
0 and ε

(5)
0 , though
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these will be largely meaningless until the following section where we shall

explain how to write these down using simple patterns. We ought to note that

we have also calculated ε
(6)
0 but it would be unreasonable to present that here.

Instead, an inordinate amount of space shall be dedicated to

ε
(4)
0 = 2

∑

n1 6=0 ,n2 6=0 ,n3 6=0

B0n1Bn1n2Bn2n3Bn30 f3(a0 − an1 , an1 − an2 , an2 − an3)

−2
∑

n1 6=0 ,n2 6=0

B0n1Bn10B0n2Bn20

[
f3(a0 − an1 , a0 − an2 , an1 − a0)

+ f3(a0 − an1 , a0 − an2 , an2 − a0)
]

−
∑

n1 6=0 ,n2 6=0

B00B0n1Bn1n2Bn20

[
f3(a0 − an1 , 0, an1 − an2)

+ f3(a0 − an1 , an1 − an2 , 0)
]

+
∑

n1 6=0

B00B00B0n1Bn10 f3(a0 − an1 , 0, 0) , (4.35)
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and

ε
(5)
0 = 2

∑

n1 6=0 ,n2 6=0 ,n3 6=0 ,n4 6=0

B0n1Bn1n2Bn2n3Bn3n4Bn40 f4(a0 − an1 , an1 − an2 , an2 − an3 , an3 − an4)

−2
∑

n1 6=0 ,n2 6=0 ,n3 6=0

B0n1Bn10B0n2Bn2n3Bn30

[
f4(a0 − an1 , a0 − an2 , an1 − a0, an2 − an3)

+ f4(a0 − an1 , a0 − an2 , an2 − an3 , a0 − an1)

+ f4(a0 − an1 , a0 − an2 , an2 − an3 , a0 − an3)
]

−
∑

n1 6=0 ,n2 6=0 ,n3 6=0

B00B0n1Bn1n2Bn2n3Bn30

[
f4(a0 − an1 , 0, an1 − an2 , an2 − an3)

+ f4(a0 − an1 , an1 − an2 , 0, an2 − an3)

+ f4(a0 − an1 , an1 − an2 , an2 − an3 , 0)
]

+
∑

n1 6=0 ,n2 6=0

B00B0n1Bn10B0n2Bn20

[
f4(a0 − an1 , 0, a0 − an2 , an1 − a0)

+ f4(a0 − an1 , 0, a0 − an2 , an2 − a0)

+ 2f4(a0 − an1 , a0 − an2 , 0, an1 − a0)

+ 2f4(a0 − an1 , a0 − an2 , 0, an2 − a0)

+ f4(a0 − an1 , a0 − an2 , an1 − a0, 0)

+ f4(a0 − an1 , a0 − an2 , an2 − a0, 0)
]

+
∑

n1 6=0 ,n2 6=0

B00B00B0n1Bn1n2Bn20

[
f4(a0 − an1 , 0, 0, an1 − an2)

+ f4(a0 − an1 , 0, an1 − an2 , 0)

+ f4(a0 − an1 , an1 − an2 , 0, 0)
]

−
∑

n1 6=0

B00B00B00B0n1Bn10 f4(a0 − an1 , 0, 0, 0) . (4.36)
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4.3 Understanding the perturbation result

We left the previous section having presented a collection of long and mysteri-

ous formulae. This section will attempt to remove at least part of the mystery,

though unfortunately not much can be done about the length. It will be neces-

sarily vague, pattern-based, and non-rigorous. This is by design; this formula

is not completely under control and to pretend otherwise would be dishonest.

The section after this will deal with what can and cannot be proven, but we

will give some indication throughout as to what ground is solid and what is

more unstable.

Firstly, let us begin by understanding the pattern for the B matrices. To begin

writing down ε
(N)
0 we first start with the zero-zero-th matrix element of the

product of N of the B matrices. That is, for example at fifth order,

∑

n1 ,n2 ,n3 ,n4

B0n1Bn1n2Bn2n3Bn3n4Bn40 . (4.37)

If none of these indices are allowed to be zero then we have the first term in

equation (4.36)

∑

n1 6=0 ,n2 6=0 ,n3 6=0 ,n4 6=0

B0n1Bn1n2Bn2n3Bn3n4Bn40 . (4.38)

If instead either n2 or n3 equals zero then, after relabelling the dummy indices,
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we have the second term

∑

n1 6=0 ,n2 6=0 ,n3 6=0

B0n1Bn10B0n2Bn2n3Bn30 , (4.39)

while if instead we allowed either n1 or n4 to be zero we would have the third

term

∑

n1 6=0 ,n2 6=0 ,n3 6=0

B00B0n1Bn1n2Bn2n3Bn30 . (4.40)

This logic then continues, giving the remaining terms in equation equation

(4.36).

Next we need to think about the weights which are multiplying each of these

paths through products. That is, for ε
(5)
0 , the functions f4. Of course, in general

for ε
(N)
0 we would expect these functions to be fN−1. Let us think again about

the first term in equation (4.36). It has matrix elementsB0n1Bn1n2Bn2n3Bn3n4Bn40

with weight f4(a0 − an1 , an1 − an2 , an2 − an3 , an3 − an4). This is perhaps best

visualised as

B0n1 Bn1n2 Bn2n3 Bn3n4 Bn40

↓ ↓ ↓ ↓

f4(a0 − an1 , an1 − an2 , an2 − an3 , an3 − an4) , (4.41)

which makes it fairly obvious how to transcribe the arguments from the B’s.
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Next recall that the function f4 is made up of coth functions whose arguments

are the sum of arguments of the f4, which in this case are a0 − an1 , a0 − an2 ,

a0−an3 , and a0−an4 . If the final Bn40 were allowed to contribute an argument

to an f , then the constituent coth would diverge, indicating why there is no

such arrow in the above diagram.

This is also seen in our next example, where the matrix elements are

B0n1Bn10B0n2Bn2n3Bn30. As written, this would be transcribed to an f4 as

B0n1 Bn10 B0n2 Bn2n3 Bn30

↓ ↓ ↓ ↓

f4(a0 − an1 , an1 − a0, a0 − an2 , an2 − an3) , (4.42)

but the arguments to the coth functions would be a0 − an1 , 0, a0 − an2 , and

a0−an3 . The second of these clearly leads to a divergence and so this ordering

is prohibited. Instead, we should reorder these matrix elements to give an
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allowed weight. Sensible options are

B0n1B0n2Bn10Bn2n3Bn30 → f4(a0 − an1 , a0 − an2 , an1 − a0, an2 − an3) ,

(4.43)

B0n1B0n2Bn2n3Bn10Bn30 → f4(a0 − an1 , a0 − an2 , an2 − an3 , an1 − a0) ,

(4.44)

B0n1B0n2Bn2n3Bn30Bn10 → f4(a0 − an1 , a0 − an2 , an2 − an3 , an3 − a0) ,

(4.45)

which are exactly those found in equation (4.36). A few notes on ordering.

Think of Bninj as an opening element for nj and a closing one for ni, then any

order of B’s must only close something which has already been opened. Next,

from symmetry we are permitted to always begin our sequence with B0n1 , i.e.

the opening variable for n1.

Terms involving B00 elements follow identical logic to that just discussed. Take,

for example, the term involving B00B0n1Bn1n2Bn2n3Bn30. Clearly we cannot

start our string with B00 as that would suggest zero is the first argument to

f4 which in turn would give zero as an argument to a coth function. Likewise,

it cannot appear at the end of the string as then the sum of the arguments

would equal zero. Instead it must appear in each of the other three available
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spots, giving

B0n1B00Bn1n2Bn2n3Bn30 → f4(a0 − an1 , 0, an1 − an2 , an2 − an3) , (4.46)

B0n1Bn1n2B00Bn2n3Bn30 → f4(a0 − an1 , an1 − an2 , 0, an2 − an3) , (4.47)

B0n1Bn1n2Bn2n3B00Bn30 → f4(a0 − an1 , an1 − an2 , an2 − an3 , 0) , (4.48)

which again are the functions given in equation (4.36).

We shall now turn to the overall sign of these terms. In equation (4.36) some

terms appeared with a plus sign, namelyB0n1Bn1n2Bn2n3Bn3n4Bn40, B00B0n1Bn10B0n2Bn20,

and B00B00B0n1Bn1n2Bn20, while others appear with a minus sign, namely

B0n1Bn10B0n2Bn2n3Bn30, B00B0n1Bn1n2Bn2n3Bn30, andB00B00B00B0n1Bn10. De-

ciding on this sign is actually very straightforward and involves partitioning.

Simply put, split the term into all independent parts and each partition gives

a minus sign. For example, B00|B0n1Bn10|B0n2Bn20 is split into three indepen-

dent parts, giving two partitions, and so has an overall plus sign. To give

a second example, B0n1Bn10|B0n2Bn2n3Bn30 splits into two independent parts,

giving one partition, and so has an overall minus sign.

Finally, the keen-eyed observer will notice some factors of two in the fourth

term of equation (4.36). These numerical factors are somewhat mysterious

and come from several sources in higher order eigenvalues ε
(N)
0 . At this level,

however, they are understood. The factors of two appear on the terms with B
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ordering

B0n1B0n2B00Bn20Bn10 and B0n1B0n2B00Bn10Bn20 . (4.49)

If one thinks of a B00 as somehow ‘pausing’ in the sequence, then when it is in

this position we can choose to ‘pause’ either the open n1 or the open n2. This

choice gives a factor of two. In any other sequences in this term there is no

such choice and so no numerical factors appear. In later terms, we could have

for example the sequence

B0n1B0n2B0n3B00 · · · , (4.50)

where the dots indicate that any permitted sequence could follow. This term

would have a numerical factor of three, thanks to the choice of three open

variables in this position, coming from that particular B00. Any subsequent

B00 within the remaining sequence could also contribute numerical factors in

a similar fashion, with all such factors being multiplied to give the overall

number.

As mentioned previously, other numerical factors also appear and seem to be

related to the numbers of open variables, irrespective of the presence of a B00.
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For example, the sequence

B0n1B0n2B0n3Bn10Bn20Bn30 , (4.51)

has a factor of two, which appears to come from the fact that at some point

there were three open variables. As another example, the sequence

B0n1B0n2B0n3B0n4Bn10Bn20Bn30Bn40 , (4.52)

has a factor of six, which may be a factor of two from the point there were

three open variables and a factor of three from the point where there were

four open variables. As a final example, and to illustrate the mystery, the

sequence

B0n1B0n2B0n3Bn3n4Bn10Bn20Bn40 , (4.53)

has a factor of six. It has a point at which there are three open variables and

then this is maintained to the next point, which appears to be a consideration

when determining this number. Why this is so and the general rule-set for

finding these numbers is currently unknown.

To summarise, with these simple but admittedly non-rigorous rules we can eas-

ily write down all sequences of B matrices involved in an eigenvalue ε
(N)
0 , find

the corresponding weights fN−1 multiplying each sequence, and say what sign
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each sequence must have. We hit a stumbling block, however, in determining

numerical factors which multiply some of these fN−1 functions. We have found

up to ε
(6)
0 rigorously using the previously discussed perturbation theory and

checked this rule-set with success.

4.4 Summary

To summarise, we have applied perturbation theory to our new representa-

tion of the Baker-Campbell-Hausdorff formula. This allows us access to the

eigenvalues of the resultant operator. While this has been done in an ad-hoc

manner without a full rigorous answer, we do have absolutely correct answers

up to sixth order. We may now use these formulae to interrogate physical

models.
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CHAPTER 5

APPLYING PERTURBATION

THEORY TO THE POTTS

MODEL

With the mathematics of the previous chapters having been completed we may

finally turn our attention away from such general concerns and towards practi-

cal matters. The q-state Potts model, held in abeyance since the introductory

remarks, will be the focus of this chapter. It is not a particularly physical

model, with the exception of some low q examples. However, it is a model

with a clear mathematical foundation. Recall the basic ethos; spins which

align gain energy while spins which do not, do not. This simplicity lends itself

well to mathematical interrogation.
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Other models can, of course, also be investigated using the techniques dis-

played here. We certainly do not wish to give the impression that only such

symmetric models are accessible. What complications arise from abandoning

the simplicity of the Potts model will be highlighted when they appear.

We shall begin this chapter by introducing the transfer matrix for the q-state

Potts model and combining it with the previous Baker-Campbell-Hausdorff

formula to find a low-temperature expansion for its partition function. We

will find a great simplification of the formula, hinted at in the previous section.

We shall then argue that duality allows us to immediately write down a high-

temperature variant of this expansion. To consolidate this knowledge we will

then provide plots for certain values of q, focusing particularly on the Ising

case of q = 2. Note, we do not discover new physics in this chapter, nor did we

set out to do. Instead we provide a new technique which can then contribute

to the search for new phenomena.

5.1 Low-temperature expansion

Recall from chapter 1 that the transfer matrix for a square lattice model may

be split

T̂ = T̂
1
2
⊥ T̂//T̂

1
2
⊥ , (5.1)
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where T̂⊥ represents the transfer matrix for a ring of the cylinder while T̂// the

matrix which transfers one ring to another. Explicitly for the q-state Potts

model we may write

T̂⊥ = eβJ
∑
j

∑
α|α〉j |α〉j+1〈α|j〈α|j+1 . (5.2)

Note, the integer α ∈ Zq denotes the spin at a given site while j denotes the

site itself, and 〈α|j |β〉i = δαβδij as one would expect. For the other constituent

part of the transfer matrix we have

T̂// =
∏

j

(
eβJ +

∑

αβ

|α〉j 〈β|j − 1

)
, (5.3)

where identity matrices may be placed where appropriate if one is so inclined.

Here the first part ( eβJ ) concerns the situation where two neighbouring spins

are aligned and energy is gained, while the second part describes the result

when the spins are not aligned. The minus one allows for the case α = β in

the sum. This should be compared with the transfer matrix for the Ising case,

presented in equation (1.15).

As in the Ising case, we wish to write both of these constituent transfer matrices

as exponentials so we can use our Baker-Campbell-Hausdorff formula. This is

automatically done in the case of T̂⊥ but requires some effort for T̂//. First let
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us define Sj =
∑

αβ |α〉j 〈β|j, then note

S2
j =

∑

αβγδ

|α〉j 〈β|j |γ〉j 〈δ|j (5.4)

= q
∑

αδ

|α〉j 〈δ|j (5.5)

= qSj . (5.6)

Hence

e
βJ̃
q
Sj =

∑

n

(βJ̃
q
Sj)

n

n!
= 1 +

1

q
Sj

(
eβJ̃ − 1

)
. (5.7)

Now then, we wish to recast the parallel transfer matrix as

T̂// = eb0+
βJ̃
q

∑
j(Sj−1) , (5.8)

where b0 and J̃ are to be found. Parenthetically we ought to remark on the

choice of variables. At first glance, writing βJ̃/q may seem strange as one

could quite easily combine this into a single variable. However, we will find

that this variable essentially acts as the high-temperature equivalent as βJ .

The inclusion of the β then is immediately transparent; what then of the

q? The answer to this lies in symmetry. Below the transition temperature

spins predominantly point in but one of q directions. Above the transition

temperature they are largely free to point in any of these directions. The new

bond strength then must be divided by this number to be comparable to the
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uni-directional bond strength. This becomes much clearer when one reaches

the duality relation, which we shall do momentarily.

Using our newly found identity we may write

eb0+
βJ̃
q

∑
j(Sj−1) = eb0

∏

j

e−
βJ̃
q

[
1 +

1

q
Sj

(
eβJ̃ − 1

)]
(5.9)

= eb0
[

1

q
e−

βJ̃
q

(
eβJ̃ − 1

)]N∏

j

[
q

eβJ̃ − 1
+ Sj

]
. (5.10)

Comparison with equation (5.3) implies

eb0
[

1

q
e−

βJ̃
q

(
eβJ̃ − 1

)]N
= 1 , (5.11)

where N denotes the size of the ring, and

q

eβJ̃ − 1
= eβJ − 1 . (5.12)

The former can be used to find b0 and the latter b, but the latter should also

be arranged into a more proper form

q = (eβJ − 1)(eβJ̃ − 1) (5.13)
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and compared to the famous Kramers-Wannier duality for the Ising model

sinh(2βJ) sinh
(

2βJ̃
)

= 1. (5.14)

Equation (5.13) is a duality relation for the Potts model. This will prove

invaluable in mapping a low-temperature expansion to high-temperature, cir-

cumventing the need to additional calculation. It also provides the transition

temperature, if one sets J = J̃ . If these are both set to unity, as we will do in

later numerical calculations, then we find that Tc = 1/ log
(
1 +
√
q
)
. For now,

however, we have succeeded in our aim to write both T̂⊥ and T̂// as exponentials

and thus can use the Baker-Campbell-Hausdorff formula.

We now have

T̂ ≡ e−βF̂ = e
1
2
βJ

∑
j

∑
α|α〉j |α〉j+1〈α|j〈α|j+1 eb0+

βJ̃
q

∑
j(Sj−1) e

1
2
βJ

∑
j

∑
α|α〉j |α〉j+1〈α|j〈α|j+1

(5.15)

with the task being to find the free-energy operator F̂ . We may rewrite this

as

e−βF̂ = eb0eAe2BeA , (5.16)

where

A ≡ 1

2
βJ
∑

j

∑

α

|α〉j |α〉j+1 〈α|j 〈α|j+1 , (5.17)
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and

B ≡ 1

2

βJ̃

q

∑

j

(Sj − 1) =
1

2

βJ̃

q

∑

j

(∑

αβ

|α〉j 〈β|j − 1

)
, (5.18)

to put it in a form familiar from the previous chapters. The task now is to

find the partition function, Z, via

logZ = b0 + ε
(0)
0 + ε

(1)
0 + ε

(2)
0 + · · · , (5.19)

where ε
(n)
0 , which shall be restated shortly, are the perturbative values calcu-

lated in the previous chapter.

First, recall that ε
(0)
0 = 2a0, the largest eigenvalue of the matrix A, hence

ε
(0)
0 = NβJ . (5.20)

Next consider ε
(1)
0 = 2B00. Our matrix for B is entirely off-diagonal, so B00 = 0

and therefore ε
(1)
0 = 0. This fact leads to great simplification later in the

perturbation series as all parts which contain a B00 are automatically zero.

This is true in the calculation of any model’s partition function but ceases to

be true when one wishes to calculate higher excitations.

Now let us turn to the first non-trivial calculation, ε
(2)
0 . Recall,

ε
(2)
0 = 2

∑

n1

B0n1Bn10 f1(a0 − an1) . (5.21)
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This formula is essentially saying that the matrix B acts on the groundstate

0 to take it to the state n1, then acts on the state n1 to take it back to the

groundstate. The matrix B acts on a state by taking a spin on a site and

changing it; as such, the state n1 can differ from the groundstate 0 only by a

single spin-flip. However, this spin-flip can be on any of the N sites and the

spin can be flipped to any of q − 1 different states. Pictorially,

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0 0α 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

Here the zeros indicate spins which are in their groundstate alignment, chosen

arbitrarily as one of the q spin options, while α indicates a spin which is not in

this orientation. The eigenvalue of the matrix A associated with the excited

state is

an1 = a0 − βJ , (5.22)

as the flipped spin has broken two of the bonds, hence we have

ε
(2)
0 = 2(q − 1)N

(
1

2

βJ̃

q

)2

f1(βJ) . (5.23)

We have thus calculated the logarithm of the partition function to second
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order in our perturbative series. Later calculations follow very similar, albeit

increasingly complicated, logic.

Turning now to calculating ε
(3)
0 ,

ε
(3)
0 = 2

∑

n1 6=0 ,n2 6=0

B0n1Bn1n2Bn20 f2(a0−an1 , an1−an2)−
∑

n1 6=0

B00B0n1Bn10 f2(a0−an1 , 0) .

(5.24)

Of course, as mentioned previously B00 = 0 and so the second part of this

equation is irrelevant. The first part essentially tells us that by a single spin-

flip we go from the groundstate to n1, by a single spin-flip from n1 to n2, then

by a single spin-flip from n2 back to the groundstate. These restrictions limit

what these states may be. The first state, n1, can be thought of identically

as before so the only new thing to consider is n2. Any amount of thought

will lead one to the conclusion that the only possible option is the following

diagram

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0 0α 0 0 · · ·

n2 : · · · 0 0 β 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

As before α must not be the same orientation as zero but also β must be
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different from both α and zero. Any attempts in the second step to flip a spin

other than the one previously flipped will prevent a return to the groundstate.

We thus have

an1 = a0 − βJ , (5.25)

as before, and

an2 = an1 (5.26)

as no additional bonds have been broken. As such, we have found

ε
(3)
0 = 2(q − 1)(q − 2)N

(
1

2

βJ̃

q

)3

f2(βJ, 0) . (5.27)

As a final example, let us now think about ε
(0)
4 ,

ε
(4)
0 = 2

∑

n1 6=0 ,n2 6=0 ,n3 6=0

B0n1Bn1n2Bn2n3Bn30 f3(a0 − an1 , an1 − an2 , an2 − an3)

−4
∑

n1 6=0 ,n2 6=0

B0n1Bn10B0n2Bn20

[
f3(a0 − an1 , a0 − an2 , an1 − a0)

+ f3(a0 − an1 , a0 − an2 , an2 − a0)
]

−
∑

n1 6=0 ,n2 6=0

B00B0n1Bn1n2Bn20

[
f3(a0 − an1 , 0, an1 − an2)

+ f3(a0 − an1 , an1 − an2 , 0)
]

+
∑

n1 6=0

B00B00B0n1Bn10 f3(a0 − an1 , 0, 0) . (5.28)
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Only the first two terms are non-zero and need to be considered. Take the first

term. A possible diagram, following in the footsteps of our previous results,

is

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0 0α 0 0 · · ·

n2 : · · · 0 0 β 0 0 · · ·

n3 : · · · 0 0 γ 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

Here we require that α 6= 0, β 6= 0 and β 6= α, and γ 6= 0 and γ 6= β but not

γ 6= α. That is, the states n1 and n3 could very well be the same. They do not

have to be, but they can be without issue. This leads to the contribution

(q − 1)(q − 2)22N

(
1

2

βJ̃

q

)4

f3(βJ, 0, 0) . (5.29)

This is, of course, not the only permissible diagram. With four spin-flips

allowed to us we have the freedom to flip more than one spin and still return
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to the groundstate. For example,

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0 0α 0 0 · · ·

n2 : · · · 0 0αα 0 · · ·

n3 : · · · 0 0α 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

In this diagram the second spin to be flipped can be either side of the first one,

picking up a factor of two, and either spin could be reversed between n2 and

n3, picking up another factor of two. The energy difference between states,

however, does not change as no additional bonds have been broken; instead a

domain wall has merely been moved. This contribution is thus

(q − 1)8N

(
1

2

βJ̃

q

)4

f3(βJ, 0, 0) . (5.30)

Another acceptable diagram is the same as before but the second spin-state is
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different to the first. That is,

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0 0α 0 0 · · ·

n2 : · · · 0 0αβ 0 · · ·

n3 : · · · 0 0α 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

Again, the second spin can appear on either side of the first and either of

the two spins can disappear as we go from n2 to n3. This time, however, the

energy of state n2 differs from that of n1 and n3 as an additional bond has

been broken. Here

an2 = an1 −
1

2
βJ (5.31)

and

an3 = an2 +
1

2
βJ (5.32)

hence this diagrams contribution is

(q − 1)(q − 2)8N

(
1

2

βJ̃

q

)4

f3(βJ,
1

2
βJ, −1

2
βJ) . (5.33)
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Finally, consider the diagram

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0α 0 0 0 · · ·

n2 : · · · 0α 0 β 0 · · ·

n3 : · · · 0α 0 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

It does not matter if β = α or not as the energy of the state n2 would always

be

an2 = an1 − βJ , (5.34)

and the energy of the state n3

an3 = an2 + βJ , (5.35)

Likewise, it does not matter where the second spin is flipped, so long as it

does not neighbour the first. If it did neighbour the first it would be one of

the diagrams we have already considered. As such, this diagram’s contribution

is

(q − 1)24N(N − 3)

(
1

2

βJ̃

q

)4

f3(βJ, βJ, −βJ) . (5.36)

This expression may give cause for alarm; there is an N2 component. We are
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essentially calculating a free-energy, after all, which is an extensive quantity

and thus we expect everything to be of order N . Fear not. We still have the

second term in ε
(0)
4 to consider and we will conveniently find that its contri-

butions as such that they exactly cancel any N2 term here. Indeed, in higher

order calculations of ε
(0)
m it will always be such that the very first term, that

containing B0n1Bn1n2 · · ·Bnm−1nmBnm0, is the only term with contributions of

order N . It will have other parts as well, of order N2, N3, etc, but these

corrections will be found in the other terms of ε
(m)
0 with precisely the opposite

sign. Thus if one is being practical one can only calculate the diagrams for

the very first term and just disregard anything which is not of order N , safe

in the knowledge that it would cancel anyway. To be clear, this is not a rigor-

ous statement. It is, however, exactly what one would expect to happen from

physical concerns.

To illustrate this point, let us now consider the second term in ε
(4)
0 , namely

−
∑

n1 6=0 ,n2 6=0

B0n1Bn10B0n2Bn20

[
f3(a0 − an1 , a0 − an2 , an1 − a0)

+ f3(a0 − an1 , a0 − an2 , an2 − a0)
]
. (5.37)

The cancelling minus sign is already conspicuously present. Look first at the B

matrices. They clearly separate into two distinct parts, similar perhaps to the

separated spins in the problematic final diagram. It is this separation which
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allows one to claim that of course it cannot contribute to the extensive free-

energy and that of course some miraculous mathematical cancellation must

take place. To see this miracle take place consider the only diagram which is

acceptable to this term,

groundstate : · · · 0 0 0 0 0 · · ·

n1 : · · · 0α 0 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

n2 : · · · 0 0 0 β 0 · · ·

groundstate : · · · 0 0 0 0 0 · · ·

We have split this diagram into two parts, to represent the two independent

parts B0n1Bn10 and B0n2Bn20 The first spin α can be any of q − 1 variants on

any of N sites. Similarly the second spin β can also be any of q−1 variants on

any of N sites; it does not care about the previous existence of the first spin.

The energies of these states are of course identical,

an1 = an2 = a0 − βJ , (5.38)
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and so careful inputting of this information into the term (5.37) provides

−4(q − 1)2N2

(
1

2

βJ̃

q

)4

f3(βJ, βJ, −βJ) . (5.39)

This cancels exactly with the N2 contribution calculated before.

The final answer is then

ε
(4)
0 = (q − 1)(q − 2)22N

(
1

2

βJ̃

q

)4

f3(βJ, 0, 0)

+ (q − 1)8N

(
1

2

βJ̃

q

)4

f3(βJ, 0, 0)

+ (q − 1)(q − 2)8N

(
1

2

βJ̃

q

)4

f3(βJ,
1

2
βJ, −1

2
βJ)

− (q − 1)212N

(
1

2

βJ̃

q

)4

f3(βJ, βJ, −βJ) .

These results indicate how to perform this calculation in the most simple way.

There are better and worse ways to proceed which may be more generalisable.

However, the calculation as presented is intended to be clear and understand-

able and the underlying physical ideas immediately apparent. In order to aid

this clarity we shall now present specific Potts models and plot the results,

starting of course with the Ising model.
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5.2 Perturbation results for q = 2

The 2-state Potts model is the simplest starting point for showing tangible

results. It is the Ising model, albeit rescaled slightly. In a typical ferromagnetic

Ising set-up spins which align gain energy while spins which do not lose energy;

if we just put q = 2 into the previous results we would obtain the former but

not the latter. We will calculate with the Potts formulation but perform this

rescaling when it comes to comparing to exact results in plots.

The physical simplicity of the Ising model leads to mathematical simplicity

in the perturbation result. As there are only two spin-states, up or down, we

can no longer have the situation where a spin on one site changes from the

ground-state configuration to another, then to another again, then back to

the ground-state. This eliminates all odd orders in the previous calculation as

well as greatly reducing the terms in all even orders. This reduction appears

mathematically as anything multiplied by q − 2 is zero when q = 2. The

previous results thus become

logZ = b0 +NβJ + 2N

(
1

2

βJ̃

q

)2

f1(βJ)

+ 8N

(
1

2

βJ̃

q

)4

f3(βJ, 0, 0)− 12N

(
1

2

βJ̃

q

)4

f3(βJ, βJ, −βJ) . (5.40)

We can go much further than fourth order. One could do this by hand, in the
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style of the previous section. However, it is much simpler to cheat and use

various observations to our advantage. First, recall the claim that it is only

the first term, for example B0n1Bn1n2Bn2n3Bn30 at fourth order, which will

contribute objects of order N . If we take this to be true then we only need to

calculate this term and ignore any results which are of higher order, with the

assumption that these extraneous results would be inevitably cancelled with

the uncalculated terms.

We can take this one step further and say exactly what we will be ignoring. At

fourth order we noticed that there was a term of order N2, thanks to the two

distinct parts that four spin-flips allows. At sixth order then we can predict

that six spin-flips will allow there to be a maximum of three independent parts

and hence we would expect a term of order N3. There will also be terms of

order N2 and N , so in general the terms we calculate will be multiplied by a

third order polynomial in N . Logically then we would expect that at M -th

order the terms in our perturbation theory will be multiplied by a M/2-th

order polynomial in N .

This observation leads to a method of cheating the calculation, as alluded to

earlier. We can ask a computer to calculate all the different possible states

resulting from a spin-flip for a finite ring and write down the energies of each

of these states. We can then count the number of states with the same energy.

If we do this for enough different sized rings then we will have enough data
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to use Lagrange interpolation to find exactly the M/2-th order polynomial we

are seeking. The energies we record can then be used as arguments for the

functions fM−1 and the result thus immediately written down.

With this computer aided mathematics we can go much further than one could

reasonably hope to by hand. Indeed, as we shall see shortly, we have used this

technique to get to order ten.

First, however, let us illustrate this point with a concrete example. Take fourth

order, which we have already calculated. We have four spin-flips to use and

we must begin and end in the groundstate without returning there in-between.

Let us begin with a finite ring of size four in its groundstate,

0 0 0 0

Without loss of generality we can tell the computer to instead begin with the

state

0 0 0 1

effectively putting in the application of B0n1 by hand. This small optimisation

effectively divides the polynomial we are calculating by N and thus reduces the

number of finite systems we need by one. It is merely translational invariance

in action.

Next then we ask the computer to print out all possible states which differ
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from this by a single spin-flip and are not the groundstate, and also to print

out the energy difference between these new states and the last. It returns to

us the following

0 0 1 1 Energy difference : 0

0 0 0 1 → 0 1 0 1 Energy difference : βJ

1 0 0 1 Energy difference : 0

We then take the each state in turn and ask it to remove a spin-flip to help us

slowly get back to the groundstate.

0 0 1 1 → 0 0 0 1 Energy difference : 0

0 0 1 0 Energy difference : 0

0 1 0 1 → 0 0 0 1 Energy difference : −βJ

0 1 0 0 Energy difference : −βJ

1 0 0 1 → 0 0 0 1 Energy difference : 0

1 0 0 0 Energy difference : 0

We thus have 4 routes with energy differences (βJ, 0, 0) and 2 routes with
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energy differences (βJ, βJ, −βJ), where we have included the first difference

from the groundstate to the state 0 0 0 1 in the energy differences.

Repeating this process with a ring of five spins provides 4 routes with energy

differences (βJ, 0, 0) and 4 routes with energy differences (βJ, βJ, −βJ). As

we are expecting a polynomial of up to N2 but have effectively divided it by

N , this data is sufficient to calculate the result. We are expecting the result

to be

N(c1 + c2N)f3(βJ, 0, 0) +N(d1 + d2N)f3(βJ, βJ, −βJ)

Reintroducing the factor ofN to our data gives the simultaneous equation

4(c1 + 4c2) = 16 and 5(c1 + 5c2) = 20 =⇒ c1 = 4 , c2 = 0 , (5.41)

4(d1 + 4d2) = 8 and 5(d1 + 5d2) = 20 =⇒ d1 = −6 , d2 = 2 . (5.42)

As we are ignoring anything other than the order N contribution we thus have

the answer

ε
(4)
0 = 8N

(
1

2

βJ̃

q

)4

f3(βJ, 0, 0)− 12N

(
1

2

βJ̃

q

)4

f3(βJ, βJ, −βJ) , (5.43)

which is precisely what was calculated earlier, after we reintroduce the factors

of 2(βJ̃/2q)4.

This idea can be put into practice with a computer and results up to tenth
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order obtained. In principle one could go further but the number of states

increases exponentially with each order and so obtaining the twelfth order

result is prohibitively expensive in time. Code could be perhaps optimised

to somewhat reduce this time, but realistically this Ising calculation is more

proof-of-concept rather than something interesting in and of itself. As such,

one should not expend too much effort on it.

The reason that the Ising model is a good test calculation, beyond the imme-

diate benefit of a binary system when we perform these computational tricks,

is that an exact solution exists. We can thus compare our perturbative results

to this exact solution to see how well it performs, then hope that its level of

performance can be considered similar in models for which we do not have

a solution. It is customary to compare not the partition function but rather

an observable. The heat capacity is a sensible choice. As the Ising model

undergoes a second order phase transition, it is the second derivative of the

free-energy which diverges. It will be interesting to see how our perturbative

calculation approaches the singularity at the critical point.

The heat capacity is given by

C = β2 ∂
2

∂β2
logZ , (5.44)

and we have conveniently calculated a formula for logZ. The exact result is
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the rather complicated formula [81]

C =
2

π
(βJ coth 2βJ)2

[
2K(k)− 2E(k)− (1−

√
1− k2)

(π
2

+
√

1− k2K(k)
)]

,

(5.45)

where

K(k) =

∫ π
2

0

[
1− k2 sinx

]− 1
2 dx ,

E(k) =

∫ π
2

0

[
1− k2 sinx

] 1
2 dx ,

are elliptic integrals and

k ≡ 2 sinh 2βJ

cosh2 2βJ
. (5.46)

Despite its somewhat intimidating form this can be easily plotted alongside

our perturbative calculation and the results seen in figure 5.1. What is shown

in this figure is a succession of perturbative plots, each including one more

perturbative order than the last. In other words, the line which performs

worst is the perturbative calculation up to second order, the next worst the

calculation up to fourth order, and so on until the line which performs the

best is the calculation up to tenth order. Beneath this plot are a pair of lines

with circles drawn on. The first blue circle on the top line indicates the point

at which the second order calculation ceases to agree with the exact answer to

machine accuracy, the second blue circle the point at which the fourth order
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ceases to agree to machine accuracy, and so on. The second line contains

the same information to but within 1% rather than machine accuracy. The

bounding red circles indicate zero temperature and the transition temperature,

to give an indication of scale. For reference, the transition temperature of the

square lattice Ising model is 2/ log
(
1 +
√

2
)
∼ 2.27 when J = 1 as in the

figure.

As we can see, the perturbative calculations perform exceptionally well. They

agree with the exact answer to machine accuracy for a large temperature range

then to within one percent, which is more accurate than one can detect by eye,

for much further. Of course, they do not and indeed cannot reach the critical

point but this is not unexpected. As this is similar to the well-known high-

temperature expansion in methodology this new technique must also suffer

from the same impotency in the face of a divergence. This is not to be decried

but rather accepted as the cost of using a perturbative technique. There are

ways to ameliorate this condition, such as the use of Padè approximants, but

this will not be discussed here.

If we were to add more orders to the calculation we would expect that the

additional region of agreement between the new order and the exact solution

to decrease with each order added. That is, the amount of benefit one gets

from each additional order would be smaller and smaller. In principle, one

would need to go to infinite order to reach the critical point.
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Figure 5.1: The heat capacity of the Ising model. The black line represents the
exact results. The blue lines represent the result coming from the perturbative
series, including more terms up to tenth order. The blue circles below indicate
how accurate the perturbative series is, with red circles setting the scale at
T = 0 and T = Tc. The first blue circle on the top line appears where
the lowest order perturbative answer ceases to agree with the exact result to
machine accuracy, the second the next lowest order, etc. The blue circles
on the bottom line perform the same role but appear when the perturbative
answer ceases to agree with the exact result to within 1% accuracy.
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The basic physical idea behind this is fairly obvious. At low temperatures

fluctuating spins are fairly isolated. At a slightly higher temperature, however,

it is more likely that its neighbours will also fluctuate. As the temperature

increases so does the probable range of this fluctuating neighbourhood. The

perturbation calculation takes into account more and more spins at higher and

higher order, reflecting this physical observation.

5.3 Perturbation results for q ≥ 3

Let us now turn to more complicated Potts models. For q ≥ 3 there exists

no exact solution for the q-state Potts model and so we cannot compare our

perturbation results to a known answer, as before. Instead, we must use some

other method to determine for what temperature range the result is valid.

One obvious way is to check where different orders of the expansion agree. If

up to some temperature the second order expansion is the same as all higher

order expansions to machine accuracy, one can assume it is also the same as

the exact answer to the same accuracy. This assumption is grounded in the

previous results for the Ising model, where this was fact.

At some temperature the second order result will begin to differ. At this point

we must say it has become incorrect and no longer consider it accurate. The

third order should continue to agree with higher orders, however, for more
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of the temperature range before it too disagrees. Following this trend we

may find the highest temperature that our second-highest order agrees with

our highest order and claim we know we have the correct answer to a given

accuracy below that point. Beyond this point it is likely that we still have the

correct answer, contained within our highest order, but unfortunately we have

no way of verifying it.

Figure 5.2 shows this picture for the q = 3 Potts model. We can confirm the

veracity of our answer up to fourth order for some of the temperature range,

but our fifth order result is somewhat wasted. We should note that while the

agreement up to machine accuracy seems to be only at a low temperature,

before any significant features have occurred in the heat capacity, this was

also true in our Ising calculation. In that model we saw that the data still

looked to the eye extremely accurate beyond that point. As such, it is likely

that we are seeing the real shape of the heat capacity in this plot.
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Figure 5.2: The heat capacity of the 3-state Potts model. The lines represent
the result coming from the perturbative series, including more terms up to
fifth order. The blue circles below indicate how accurate the perturbative
series is, with red circles setting the scale at T = 0 and T = Tc. The first blue
circle on the line below appears where the lowest order perturbative answer
ceases to agree with the highest order answer to machine accuracy, the second
circle when the next lowest order answer ceases to agree with the highest order
answer, etc.

Next, figure 5.3 shows the accuracy of our result for a variety of Potts models.

The Ising result up to fourth order has also been displayed for reference. Scaled

by their differing transition temperatures, the results we get are remarkably

similar in each case. However, there does seem to be a slight trend that shows

149



CHAPTER 5. APPLYING PERTURBATION THEORY TO THE POTTS
MODEL

the region of accuracy for our perturbative series increasing as a function of

q. More work would need to be done to understand and indeed confirm this.

It is though an early indication that this perturbative formula may hold some

interesting hidden information.

q = 2 T

q = 3 T

q = 4 T

q = 5 T

q = 6 T

q = 7 T

q = 8 T

q = 9 T

q = 10 T

q = 50 T

q = 100 T

q = 500 T

q = 1000 T

Figure 5.3: Accuracy of the perturbative formula for various Potts models.
The red circles set the temperature scale at T = 0 and T = Tc. The first blue
circle on the line below appears where the lowest order perturbative answer
ceases to agree with the highest order answer to machine accuracy, the second
circle when the next lowest order answer ceases to agree with the highest order
answer, etc.
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CHAPTER 6

CONCLUSION AND

OUTLOOK

This work has explored a small subset of statistical mechanics ideas on the

square lattice. We began by employing exact diagonalisation on transfer ma-

trices, recasting the matrix as a free-energy operator and arguing in the process

that one ought to care for more than just its groundstate. We have ended by

finding just its groundstate for the Potts model. Such is the curse of a project

of finite length, among other things. As such, these concluding remarks will be

followed by an outlook; a proposal of what future work may look like through

the eyes of someone unlikely to do it.

First, however, let us remember what this work has accomplished. Chapter 2,
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the motivational chapter which began this work, proposed thinking of transfer

matrices as the exponential of a free-energy operator and thinking of that free-

energy operator as any self-respecting quantum mechanist would: through its

spectrum. It argued that its spectrum described physical phenomena, namely

thermalised domain walls propegating in the direction of transfer. It presented

copious amounts of numerical evidence to back this up. We were then left

asking the question – can we attack this analytically?

Chapter 3 presented a way in which we could. It is really the highlight of

this work, solving a problem in mathematics which had been open for over

a hundred years. Of course one could argue, with some justification, that no

one in the intervening century had considered it a problem, but that does not

take away from the solving of it. Nor should it reduce its future significance

to theoretical physics.

Chapters 4 and 5 presented just one way in which the new representation of

the Baker-Campbell-Hausdorff formula has the potential to be exceptionally

valuable. The former essentially simplified the mathematics to the point that

any reasonably competent physicists could use it. No longer would they have

to worry about the adjoint endomorphisms or complicated operators of the

preceding chapter. Instead we just use perturbation theory, that ubiquitous

technique that theorists seemingly imbibe in the cradle, along with a curi-

ous disdain for pure mathematics. The latter chapter then saw the resulting
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perturbative formula used in action, deployed against the Potts model. No

one can argue that this model is not important, at least on a mathematical

level.

However, this formula has the potential to be used much more widely. The

technique we presented in those later chapters can just as easily be used on any

square lattice spin model, be it the clock model or something more general.

Beyond statistical mechanics as well it has potential, though perhaps it is safer

for the purposes of this document not to comment further.

6.1 What is to be done?

This section will contain some suggestions for natural future work on this

project. It will be arranged in the order that these issues arose in this docu-

ment, but this is not the order that they should be dealt with.

6.1.1 Proving the non-singularity of the Baker-Campbell-

Hausdorff formula

This proposal concerns the L’Hôpital issues discussed in chapter 3. We could

not prove the formula is non-singular which rankles ever so slightly. It is the

only non-proved part of that chapter and thus rankles ever so slightly. However,
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it is fairly obvious that the formula is not singular so this suggestion is more

intended to soothe ones conscience rather than provoke serious mathematical

invention.

6.1.2 Making perturbation theory rigorous

This proposal is, however, intended to be taken seriously. Chapter 4 was

astonishingly unsatisfying, particularly when following the previous chapter.

Admittedly the work contained within it is much more recent and thus much

more raw, but it still causes distress. We only calculated the perturbative

Baker-Campbell-Hausdorff formula up to some finite order, rather than finding

a general formula. The finding and proving of this formula should be high on

anyone’s agenda.

Just finding it would be an accomplishment, as the numerology at the end of

the section attests. One could also consider just proving parts of the formula, as

the subsequent section demonstrated that large swathes of the result inevitably

cancels.

6.1.3 Proving cancellation

This cancellation, observed at the beginning of chapter 5 for the Potts model, is

expected to take place from purely physical concerns. Proving mathematically
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that it must do so would be a great boon.

6.1.4 Calculate higher eigenvalues

Chapter 5 presented a way to use the perturbative Baker-Campbell-Hausdorff

formula to find the groundstate of the Potts model’s associated free-energy

operator. One can also use it to find other eigenvalues, thus finally achieving

what was intended at the beginning of this work. This is a significantly harder

calculation, though still fairly straightforward, but time pressure has led to

this remaining undone.

6.1.5 Use the results to say something meaningful

We just calculated the perturbative formula, we did not actually use it to say

anything. The Potts model is a very interesting in its own right and one could

ask our technique to shine some light on it. Whether this is done by the use

of Padè approximants to extrapolate to the critical region, as suggested in the

text, or otherwise, it is something that remains undone.

In particular, the Potts model changes the nature of its phase transition as q

is changed. It goes from being a second order transition for q ≤ 4 to a first

order transition. While we discussed the idea that one would need to calculate

the perturbative formula to infinite order to get accurate results for the Ising
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model at the critical point, this may not be true for a first order transition.

Instead, as the low-temperature expansion would know nothing of the state it

is meant to jump to at the critical point, it may just sail past it oblivious to the

transition the model undergoes. Without knowledge of that transition, why

should it require an infinite order to reach this point? That is, in principle the

calculation of the low-temperature expansion could provide machine accurate

results up to and indeed beyond the transition temperature, with any error only

beginning beyond this point. The high-temperature version would do the same,

with errors only beginning below the transition temperature. The combination

of these results then would, in principle, give the partition function to machine

accuracy for all temperature. We should stress, however, that this discussion

is highly speculative.

6.1.6 Apply the results to more models

Finally, the most obvious future direction. We have presented work here on

the Potts model alone. Anyone can see that the technique is not special to

this model and exploration into other realms has only just begun.
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APPENDIX A

ALGORITHMICALLY

REMOVING APPARENT

SINGULARITIES

This appendix will provide an algorithmic approach to removing any appar-

ent singularities in the operator ĜN , using the representation and identities

provided in section 3.4. For immediate use, the first four operators ĜN have

formulae provided for all possible singularities which are given towards the

end of this appendix. However, first the general trends shall be discussed

via a single larger example, namely Ĝ6 when all of L2, L3, L4, and L5 are

simultaneously zero.
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In the language of section 3.4, that is equation (3.79), the relevant part of Ĝ6

without any singularities may be written as

g6(L1, L2, L3, L4, L5, L6) = E(L1, L2 + L3 + L4 + L5 + L6) f4(L2, L3, L4, L5)

+ E(L1 + L2, L3 + L4 + L5 + L6) f1(−L2)f3(L3, L4, L5)

+ E(L1 + L2 + L3, L4 + L5 + L6) f2(−L3,−L2)f2(L4, L5)

+ E(L1 + L2 + L3 + L4, L5 + L6) f3(−L4,−L3,−L2)f1(L5)

+ E(L1 + L2 + L3 + L4 + L5, L6) f4(−L5,−L4,−L3,−L2) .

There are five limits to be taken and the order in which they should be per-

formed is crucial. For the approach which will be laid out in this section,

it is best to work from the outside in. That is, it is best to take the limit

L2 + L3 + L4 + L5 → 0 first, followed by L3 + L4 + L5 → 0, and so on. The

reason for this will become apparent shortly. For now, under the first limit,

both the first and last lines appear singular while the rest are regular. The

identity, associated with aeven6 in equation (3.77),

f4(L2, L3, L4, L5) + f1(−L2)f3(L3, L4, L5) + f2(−L3,−L2)f2(L4, L5)

+ f3(−L4,−L3,−L2)f1(L5) + f4(−L5,−L4,−L3,−L2) =
2

45
,

allows one to replace the f4 in the first line. The singular part then be-
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comes

[E(L1 + L2 + L3 + L4 + L5, L6)− E(L1, L2 + L2 + L3 + L4 + L5 + L6)]

× f4(−L5,−L4,−L3,−L2)

= E(1)(L1, L6)×(−L2−L3−L4−L5)f4(−L5,−L4,−L3,−L2)+O((L2+L3+L4+L5)
2) ,

where

E(n)(x, y) ≡
dn

d(−x)n (x cothx)− dn

dyn
(y coth y)

x+ y
. (A.1)

In the limit L2 → −L3 − L4 − L5 note, using equation (3.72),

(−L2 − L3 − L4 − L5)f4(−L5,−L4,−L3,−L2)→ f3(−L5,−L4,−L3) .

This is the first of four direct limits that will be taken during this example

and is the most simple; more will be said later of the general form of these

expressions. For now, when L2 → −L3−L4−L5, it has been found that

g6 =
2

45
E(L1, L6) + E(1)(L1, L6)f3(−L5,−L4,−L3)

+ [E(L1 − L3 − L4 − L5, L3 + L4 + L5 + L6)− E(L1, L6)] f1(L3 + L4 + L5)f3(L3, L4, L5)

+ [E(L1 − L4 − L5, L4 + L5 + L6)− E(L1, L6)] f2(−L3, L3 + L4 + L5)f2(L4, L5)

+ [E(L1 − L5, L5 + L6)− E(L1, L6)] f3(−L4,−L3, L3 + L4 + L5)f1(L5) .
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The next limit to consider is when L3 + L4 + L5 → 0. In this case both lines

one and two appear singular, and again an identity should be used to rewrite

one of them. The identity now is associated with aeven5 and states

f3(L3, L4, L5)+f1(−L3)f2(L4, L5)+f2(−L4,−L3)f1(L5)+f3(−L5,−L4,−L3) = 0 .

This then can be used to replace the f3 in the first line. One may wonder

about the choice of how to use this identity; should the f3 in the first line or

the opposing f3 in the second line be replaced? The generic answer to this is

to replace the function multiplying the highest E(n), in order to form a simple

expression to be limited. With this the singular part becomes

{
[E(L1 − L3 − L4 − L5, L3 + L4 + L5 + L6)− E(L1, L6)] f1(L3 + L4 + L5)− E(1)(L1, L6)

}

× f3(L3, L4, L5) .

This is the second direct limit which shall be taken in this example and contains

features that appear in all that remain. First note that Taylor expansion

gives

E(x− y, y + z) = E(x, z) +
∞∑

r=1

E(r)(x, z)
yr

r!
, (A.2)

as the denominator of E is unchanged. This then is the reason to take the

limits from outside to in as described before, as all subsequent expansions will
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necessarily be of this form. In general, after n limits have been taken, the

singular parts of gN will take the form

[E(x− y, y + z)− E(x, z)] fn(y, 0, . . . , 0)−
n∑

r=1

1

r!
E(r)(x, z)fn−r(y, 0, . . . , 0)

=
1

(n+ 1)!
E(n+1)(x, z) y +O(y2) . (A.3)

This is proved using a generating function for fn(y, 0, . . . , 0). Using this

knowledge for the current example, the second limit L3 → −L4 − L5 may be

taken to leave

g6 =
2

45
E(L1, L6) +

1

2
E(2)(L1, L6)f2(−L5,−L4)

+
{

[E(L1 − L4 − L5, L4 + L5 + L6)− E(L1, L6)] f2(L4 + L5, 0)− E(1)(L1, L6)f1(L4 + L5)
}

× f2(L4, L5)

+
{

[E(L1 − L5, L5 + L6)− E(L1, L6)] f3(−L4, L4 + L5, 0)− E(1)(L1, L6)f2(−L4, L4 + L5)
}

× f1(L5) .

The third limit to take is that when L4 + L5 → 0, with lines one and two

appearing singular. The approach now is hopefully becoming familiar. First

use the identity, associated with aeven4 ,

f2(L4, L5) + f1(−L4)f1(L5) + f2(−L5,−L4) =
1

3
,
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to replace the f2 in the first line. The relevant term is then

{
[E(L1 − L4 − L5, L4 + L5 + L6)− E(L1, L6)] f2(L4 + L5, 0)

−E(1)(L1, L6)f1(L4+L5)−
1

2
E(2)(L1, L6)

}
f2(L4, L5)→

1

3!
E(3)(L1, L6)f1(−L5) ,

and hence in the limit L4 → −L5,

g6 =
2

45
E(L1, L6) +

1

6
E(2)(L1, L6) +

1

3!
E(3)(L1, L6)f1(−L5)

+

{
[E(L1 − L5, L5 + L6)− E(L1, L6)] f3(L5, 0, 0)− E(1)(L1, L6)f2(L5, 0)− 1

2
E(2)(L1, L6)f1(L5)

}

× f1(L5) .

The final limit in this example is when L5 → 0. Now a rather trivial identity

may be used,

f1(L5) + f1(−L5) = 0 ,

to replace the f1 in the first line. The relevant term under this limit then

is

{
[E(L1 − L5, L5 + L6)− E(L1, L6)] f3(L5, 0, 0)− E(1)(L1, L6)f2(L5, 0)

− 1

2
E(2)(L1, L6)f1(L5)−

1

3!
E(3)(L1, L6)

}
f1(L5)→

1

4!
E(4)(L1, L6) ,
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leaving

g6 =
2

45
E(L1, L6) +

1

6
E(2)(L1, L6) +

1

4!
E(4)(L1, L6) .

This then concludes the example for this appendix. The lessons to draw from

it are as follows. First, take sequential limits from out to in; this allows the

expansion (A.2) to be used as the denominator of E is untouched. Second,

using this approach all relevant terms under a limit will be of the form defined

in equation (A.3). The limit then can be easily taken and the regular formula

found.

More complicated situations than those discussed in this appendix can occur,

for example if there are gaps in the set of variables tending to zero. Having

L2, L3 → 0 while simultaneously taking the limit L5 → 0 is one such example,

as there is a gap between variables due to L4 6= 0. These can be dealt with in an

analogous fashion to those of this appendix, but it requires more complicated

identities and careful handling.

What follows is concrete and usable formulae for the first four operators, in all

possible cases. The first two operators are trivial, as

Ĝ1 = 2s(L1) , Ĝ2(L1, L2) = 2s(L1 + L2)E(L1, L2) ,

are clearly regular. The first non-trivial example then is Ĝ3. This has six

apparent singularities, of which five involve either L1 or L3 and thus are already
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resolved. What remains then is the limit L2 → 0. In this case,

Ĝ3(L1, 0, L3) = 2s(L1 + L3)

[
2

3
+ E(1)(L1, L3)

]
,

where E(n) is defined by equation (A.1).

Next, Ĝ4 has ten apparent singularities with three of these being independent

of L1 or L4. Explicitly these are when L2 → 0, L3 → 0, L2 + L3 → 0. There

is also a double singularity when two of these are taken simultaneously.

For the first limit, it can be found that

Ĝ4(L1, 0, L3, L4) = 2s(L1+L2+L3)

{
1

3
E(L1, L3+L4)+E

(1)(L1, L3+L4)f1(L3)

+ [E(L1 + L3, L4)− E(L1, L3 + L4)] f2(−L3, 0)

}
.

The second limit can be easily found using the identity Ĝ4(L1, L2, L3, L4) =

Ĝ4(−L4,−L3,−L2,−L1). The third limit yields

Ĝ4(L1, L2, −L2, L4) = 2s(L1 + L4)

{
1

3
E(L1 + L2, −L2 + L4)

+[E(L1 + L2, −L2 + L4)− E(L1, L4)] f1(−L2) f1(−L2)−E(1)(L1, L4) f1(−L2)

}
.

164



Finally, the fourth, double singularity, limit gives

Ĝ4(L1, 0, 0, L4) = 2s(L1 + L4)

[
1

3
E(L1, L4) +

1

2
E(2)(L1, L4)

]
.
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[14] N.M. Švrakić. Critical temperatures of ising models. Physics Letters A,
80(1):43 – 44, 1980.

[15] R.J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic
Press, 1973.

[16] Tsong-Ming Liaw, Ming-Chang Huang, Yen-Liang Chou, Simon Lin, and
Feng-Yin Li. Partition functions and finite-size scalings of ising model
on helical tori. Physical review. E, Statistical, nonlinear, and soft matter
physics, 73:055101, 06 2006.

[17] David Aasen, Roger Mong, and Paul Fendley. Topological defects on
the lattice i: The ising model. Journal of Physics A: Mathematical and
Theoretical, 49, 01 2016.

[18] R. Baxter. The surface and corner free energies of the square lattice ising
model. Journal of Physics A: Mathematical and Theoretical, 50, 06 2016.

[19] Fred Hucht. The square lattice ising model on the rectangle i: Finite
systems. Journal of Physics A: Mathematical and Theoretical, 50, 09
2016.

[20] Fred Hucht. The square lattice ising model on the rectangle ii: Finite-size
scaling limit. Journal of Physics A: Mathematical and Theoretical, 50, 01
2017.

[21] N. Izmailian and Chin-Kun Hu. Finite-size effects for the ising model
on helical tori. Physical review. E, Statistical, nonlinear, and soft matter
physics, 76:041118, 11 2007.

[22] N. Izmailian. The critical ising model on a torus with a defect line. EPL
(Europhysics Letters), 111:60010, 01 2015.

[23] Armen Poghosyan, N. Izmailian, and Ralph Kenna. Exact solution of the
critical ising model with special toroidal boundary conditions. Physical
Review E, 96, 10 2016.

[24] W. P. Wolf. The Ising model and real magnetic materials. Brazilian
Journal of Physics, 30:794 – 810, 12 2000.

[25] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press,
2011.

168



BIBLIOGRAPHY

[26] F.Y. Wu. The Potts model. Rev. Mod. Phys., 54:235–268, 1982. [Erratum:
Rev.Mod.Phys. 55, 315–315 (1983)].

[27] R. B. Potts. Some generalized order-disorder transformations. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 48(1):106–109,
1952.

[28] M.W. Long J.C. Moodie. Statistical mechanics on the square lattice.
Unpublished.

[29] Jutho Haegeman and Frank Verstraete. Diagonalizing transfer matrices
and matrix product operators: A medley of exact and computational
methods. Annual Review of Condensed Matter Physics, 8(1):355–406,
2017.

[30] H. A. Kramers and G. H. Wannier. Statistics of the two-dimensional
ferromagnet. part i. Phys. Rev., 60:252–262, Aug 1941.

[31] H. A. Kramers and G. H. Wannier. Statistics of the two-dimensional
ferromagnet. part ii. Phys. Rev., 60:263–276, Aug 1941.
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