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Abstract

School of Computer Science

Department of Computer Science

Doctor of Philosophy

The Hierarchical Organisation and Dynamics of Complex Networks

by David MCDONALD

Complex networks offer flexible representations of complex heterogeneous real-

world systems. They are often weighted, attributed, directed and/or dynamic. As

such, gaining an overall understanding of information flow through these systems

remains a challenging problem in the machine learning community. This thesis pro-

vides a comprehensive examination of the hierarchy inherent to many complex net-

works, with the following contributions:

• The first algorithm to learn low dimensional non-Euclidean representations of

attributed nodes in a weighted complex network.

• The first algorithm to learn low dimensional non-Euclidean representations of

attributed nodes in a directed complex network.

• A framework to explore the multi-scale organization of meso-scopic architec-

tures in signalling networks, allowing for the identification of statistically sig-

nificant drug-able targets.

Through these contributions, the work proposed in this thesis contributes towards a

greater understanding of the hierarchy in the organization and dynamics of complex

real-world systems.
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Chapter 1

Introduction

1.1 Complex Networks

Throughout our world, we observe complex systems – groups of elements that con-

nect to each other through relations in a non-uniform way. Through these relations,

these elements are able to work together and function as a coherent whole that is

greater than the sum of its parts. We see this in the simple relationships amongst

people that form an entire society; in the iterations between genes, proteins and

metabolites that form a living organism; and in the links between pages that make

up the internet. Within these systems, interactions are not controlled globally, but

emerge locally based on some local organisation that gives rise to new levels of or-

ganisation. In this way, we see that the organisation of complex systems is hierarchi-

cal: elements belong to many different systems on many different scales, with all the

levels affecting each other (Barabási and Albert, 1999).

Many complex systems observed in nature can be represented as a complex net-

work. A complex network is a graph that is comprised of non-trivial and non-

uniform features (Barabási and Albert, 1999). Despite being characterised as com-

plex objects, we have observed that many real world networks – ranging from pro-

tein interaction networks to the internet – possess shared features that unite such

seemingly disparate subject and give rise to the prevailing popularity of their study.

For example, we have observed that these complex networks follow scale-free dis-

tribution of node degree (Barabási and Albert, 1999; Barabási, 2009). Connections

are preferentially made between nodes with a probability proportional to their ex-

isting degree, giving rise to the so-called preferential attachment model, a model
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that adheres to the old adage ‘popularity is attractive’. Furthermore, many complex

networks are characterised by the ‘small world’ phenomenon – where one would

expect a small average shortest path length and a high degree of clustering (Watts

and Strogatz, 1998); and are typically very sparse with the number of edges in the

same order as the number of nodes Barabási and Albert, 1999.

Already, we have seen the application of complex network models to the prob-

lems of identification of biologically relevant modules according to genetic expres-

sion profiles (Ideker et al., 2002); the multi scale detection of the function and struc-

ture of brain networks (Ashourvan et al., 2019); and testable protein functional pre-

dictions (Palla et al., 2005; Zhang et al., 2016b). And with the growing availability of

data and drive of the network science community, models are becoming more and

more complex, with the integration of multiple types of data and more sophisticated

analysis techniques.

Network science is the interdisciplinary endeavour of making sense of the com-

plex networks that we observe in nature. It unites scientists from such varied fields

as mathematics, computer science, medicine, biology and sociology. Researchers

from all these fields and more have contributed their expertise and perspective. This

section aims to give a brief overview of some of the interesting areas of research hap-

pening in this field. For the purpose of brevity, the review presented here will only

focus on the fundamental concepts that will prove to be relevant for this thesis. For

a more general overview of network science, the reader is pointed towards Barabási,

2002.

To fully understand a network’s function, we must consider both its structure

and the dynamics that take place upon it (Lambiotte et al., 2011). Its structure is

characterised by its topology: the sets of features defined by purely by the vertices

and edges of the network, discounting any additional prior knowledge that we may

have about what system the network is modelling. For example, we may observe

a high degree of clustering, short paths between any two nodes in the network,

and a heterogeneous degree distribution. Such features are ubiquitous across real-

world systems (Barabási and Albert, 1999). On the other hand, dynamics represent

the systems at work, and are specific to that system. For example, how the gene

expression levels in patients with breast cancer change over time.
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1.1.1 Complex Network Modelling

A complex network, in its simplest form, is typically modelled as a graph:

G = (V, E) (1.1)

V denotes the set of entities – called nodes – in the network. E ⊆ V ×V is the set of

relations – or edges – between them. The number of nodes in a network is given by:

N = |V| (1.2)

and the number of edges m is:

m = |E| (1.3)

Directed Networks

Complex networks may be undirected, meaning that edges do not carry direction, or

directed, meaning the opposite. Concretely, if a network is undirected then for two

nodes u, v ∈ V, (u, v) ∈ E =⇒ (v, u) ∈ E, whereas (u, v) ∈ E 6=⇒ (v, u) ∈ E for

the directed case. Directed networks are sometimes called di-graphs.

Self-loops

Self-loops are edges that connect nodes to themselves. The set of self-loops is ac-

cordingly defined as:

Eself = {(u, v) ∈ E | u = v} (1.4)

Adjacency Matrix

An alternate complex network representation is the adjacency matrix. An adjacency

matrix A is an N × N square matrix, where the elements of the matrix indicate

whether pairs of vertices are adjacent or not in the graph:

Auv 6= 0 ⇐⇒ (u, v) ∈ E (1.5)
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For a simple undirected network, A is a symmetric {0, 1}N×N matrix. The relation-

ship between a graph and the eigen-values and eigen-vectors of its adjacency matrix

is studied in spectral graph theory (Von Luxburg, 2007).

1.1.2 Attributed Networks

Often the nodes and edges of complex networks are annotated with additional in-

formation, called attributes. The propose of the node attributes is to provide further

information about the elements within a system. Likewise, edge attributes can better

characterise the relations between nodes. Interpretation of attributes is entirely de-

pendent of the system that the network is modelling. For example, attributes may be

used to describe node document contents or labels in citation network (Bojchevski

and Günnemann, 2018); location and relationship type in social networks (Kipf and

Welling, 2016); or node type in heterogeneous networks (Chang et al., 2015). The ex-

tra information provided by attributes can provide an extra insight into the system

as a whole (Hou, He, and Tang, 2020).

1.1.3 Weighted Networks

A special case of edge attributes are edge weights. This weight can have a variety

of meanings, but, when the value is positive, is typically taken to be the strength,

intensity, or the capacity of the relationships between nodes (Barrat et al., 2004).

Many concepts generalise to weighted graphs. For example, the adjacency ma-

trix becomes a weighted adjacency matrix, W, where each element in W contains the

weight of the edge between two nodes.

1.1.4 Signed Networks

Another special case of edge-attributed networks are signed networks. Signed net-

work are networks where each edge is assigned a positive or negative sign. Signed

networks are particularly useful for encoding the topology of regulatory and sig-

nalling networks – where edges representing an activatory relationship are assigned

a positive sign, and inhibitory relationships are labelled with a negative sign. Signed
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networks can also be used to represent the topology of boolean networks (see sec-

tion 1.5.6).

1.1.5 Bi-Partite Networks

A bi-partite network is a class of attributed network, where nodes are assigned to

one of two groups, V1 and V2, where V1 ∪ V2 = V and V1 ∩ V2 = φ. Every edge in

the network connects a node from group V1 to a node in V2. An example bi-partite

network is a metabolic network, where V1 is the set of metabolite and V2 is the set of

reactions. An edge between metabolite m ∈ V1 and reaction r ∈ V2 indicates that m

takes part in reaction r (Christensen and Nielsen, 1999).

1.1.6 General Complex Networks

Note that, in general, all complex networks can be considered attributed, weighted

networks with no loss of information. In the case of unweighted networks, we can

simply set W = A, that is: set the weight of all edges in the network to 1. Nodes

in unattributed networks can be assigned one-hot feature vectors to trivially make

them attributed. Furthermore, node features may be composed from micro-scale

topological features, such as degree, or betweenness centrality (see section 1.2).

1.1.7 Basic Network Concepts

This subsection introduces some basic concepts and definitions related to networks

that will be referred to throughout the thesis.

Neighbours

The neighbours of a node u are all the nodes v ∈ V that are adjacent to u. That is: v is

a neighbour of u ⇐⇒ (u, v) ∈ E. An isolated node is a node with no neighbours.

Paths

A path between two nodes u and v is a node sequence of some arbitrary length l

n1, ...., nl beginning with node n1 = u and ending with node nl = v. The sequence is

built using the edges in E such that: ∀i ∈ [0, l − 1], (ni, ni+1) ∈ E.
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The shortest path, SP(u, v), between a pair of nodes u, v ∈ V is the minimum

number of edges connecting them. In other words, it is the path connecting nodes u

and v with minimum length. This is sometimes called a geodesic, and indicates the

“closeness” of arbitrary pairs of nodes in the network – according the the manifold

described by that network (Tenenbaum, De Silva, and Langford, 2000).

For unweighted networks, shortest path length is the number of nodes in the short-

est path between two nodes. In weighted networks, shortest path lengths are deter-

mined by the total sum of edge weights in a path, rather than the number of ele-

ments.

Reachability

Reachability refers to the ability to traverse from one vertex to another within a net-

work. A vertex s can reach a vertex t if there exists a path which starts at s and ends

at t.

Cycle / Feedback Loop

A cycle C = (u, ...., u) (that we refer to as a feedback loop in this thesis) is a non-

empty path where the start and end nodes are the same, and the only repeated node

in the path is the start node. For a signed network, we further define a coherent

feedback loop as a cycle where every edge has the same sign.

Random Walks

A random walk across the nodes of a network is a sampling method for network-

based data. It is highly related to the concept of a ‘path’. The key difference is that

random walks do not have a specific destination in mind.

A random walk starting from node u is a stochastic process based on the idea

of a walker walking randomly over of the nodes of the network. It is used to build

a sequence of nodes n1, ..., nl of length l where n1 = u. The random walk process

is iterative and for iteration i with ni = v being the current position of the random

walker, the position of the walker for iteration i + 1 is a random choice based on
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any number of factors. The factors may include: first order connection (Perozzi, Al-

Rfou, and Skiena, 2014), higher order connection (Grover and Leskovec, 2016), or

node or edge attributes (Hou, He, and Tang, 2020), for example. Random walking is

typically a Markovian process, but that is not a requirement. Random walking can

be used to explain the movement of molecules according to Brownian motion.

Subnetworks

A subnetwork S = (VS, ES) of a network G = (V, E) is a network whose vertex set

is a subset of the vertex set of G and whose edge set is a subset of the edge set of G.

In this case, we write:

S ⊆ G (1.6)

and

S ⊆ G ⇐⇒ VS ⊆ V ∧ ES ⊆ E (1.7)

holds.

Connectedness

An undirected network is said to be connected if a path exists between all nodes in

the network. If a network is not connected, then it can be broken into connected

components, disjoint subnetworks of the original network that are connected.

These concepts naturally generalise to directed networks. If a path exists be-

tween any node pair in a directed network, then that network is strongly connected.

A directed network is weakly connected if the undirected equivalent of the network

is connected. Of course, all strongly connected networks are also weakly connected.

Furthermore, directed networks that are not weakly or strongly connected can be

broken up into weakly or strongly connected components.
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(A) Example scale-free directed network with
N = 50 nodes.

(B) Example of a scale-free degree distribution.

FIGURE 1.1: Examples of both a scale-free network and a log-log plot of degree against
frequency in the network. (A) shows a small scale-free network with N = 50 nodes. This
network contains 4 ‘hubs’ of high degree. (B) plots degree against frequency for a larger
scale-free network. Note that both axes are on a logarithmic scale. The red line plots a
straight line of best fit. The close adherence to this line of best fit reflects how well the

underlying network fits a scale-free distribution.

1.1.8 Characteristics of Real-World Complex Networks

Complex networks built from real-world complex systems often display a number

of common characteristics, despite coming from diverse areas of study. Such charac-

teristics include a heavy tail in the degree distribution, a high clustering coefficient,

assortativity or disassortativity among vertices, community structure, and hierarchi-

cal structure (Barabási, 2002).

Scale Free Degree Distribution

In addition to connecting to similar nodes, nodes in complex networks often connect

to ‘popular’ nodes – that is nodes of high degree. In fact, the variation between

high assortativity and high dis-assortivity across complex networks from different

areas implies some implicit trade off between connections made from popularity vs

connections made from similarity (Papadopoulos et al., 2012).

The preference for nodes to connect to nodes of high degree gives rise to scale-free

networks. A network is said to be scale-free if its degree distribution – the probability

that a node selected uniformly at random has a certain number of links – follows
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a mathematical function called a power law. Characteristically, scale free networks

contain many nodes with small degree and a small number of nodes with degree that

is orders of magnitude larger than the average - these vertices are often called “hubs”

(Barabási and Albert, 1999). See figure 1.1 for examples of a scale-free network and

a scale-free degree distribution.

It is worth noting that, by definition, there is no inherent threshold above which

a node can be viewed as a hub. If there were a hard threshold to determine a hub,

the network would not be scale-free. This is because, as the name implies, there is no

inherent scale to scale free networks, meaning that “zooming in” or “zooming out”

on the network would not change the degree distribution (Barabási, 2002).

Some networks with a power-law degree distribution (and specific other types

of structure) can be highly resistant to the random deletion of vertices (Cohen et al.,

2000).

Important examples of scale-free networks include the internet (Adamic et al.,

2000), social networks (Leskovec and Mcauley, 2012), and the hierarchy of nouns

(Nickel and Kiela, 2017).

Small World Networks

A network is said to be a small-world network by analogy with the small-world hy-

pothesis (popularly known as six degrees of separation). The small world hypothesis

is the idea that two arbitrary people in the social network of the world are connected

by only six degrees of separation. In other words, that the diameter of this social

network is not much larger than six. This property was, famously, tested experi-

mentally by Stanley Milgram in 1967 (Milgram, 1967).

Furthermore, it has been demonstrated that, with the addition of only a small

number of long-range links, a regular graph, in which the diameter is proportional

to the size of the network, can be transformed into a “small world” in which the

average number of edges between any two vertices is very small (mathematically,

it should grow as the logarithm of the size of the network), while the clustering

co-efficient stays large. It is known that a wide variety of abstract graphs exhibit

the small-world property, for example, random graphs and scale-free networks

(Barabási and Albert, 1999). Furthermore, real world networks such as the World
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Wide Web and the metabolic network also exhibit this property (Krioukov et al.,

2009).

Assortativity

Assortativity is the property that nodes like to connect to similar nodes. The defini-

tion of similarity often varies, but a common mixing measure is node degree. Nodes

tend to connect with nodes of similar degree.

Interestingly, technological and biological networks typically show dis-

assortative mixing, or disassortativity, as high degree nodes tend to attach to low

degree nodes (Newman, 2003).

1.2 Microscopic Network Features

When characterising complex networks, we commonly examine the micro-scale –

considering each individual node and edge separately. Features such as node de-

gree, betweenness centrality and clustering co-efficient would be characterised as

micro-scale complex network features, for example.

1.2.1 Node Degree

The degree kn of node n is the number of edges incident to it:

kn = |{(u, v) ∈ E | u = n ∨ v = n}| =
N

∑
i=1

Ani (1.8)

The self-degree of a node n is the number of self-loops incident to it:

kself
n = |{(u, u) ∈ Eself | u = n}| = Ann (1.9)

For directed networks, degree may be further divided into in-degree, kin
n , the number

of incoming edges to node n:

kin
n = |{(u, v) ∈ E | v = n}| =

N

∑
i=1

Ain (1.10)
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and out-degree, kout
n , the number of outgoing edges from node n:

kout
n = |{(u, v) ∈ E | u = n}| =

N

∑
i=1

Ani (1.11)

Naturally,

kn = kself
n + kin

n + kout
n (1.12)

For weighted networks, the sum of the weights of the edges incident to a node is

called node strength:

sn =
N

∑
i=1

Wni (1.13)

1.2.2 Betweenness Centrality

Betweenness centrality bcn of node n is a measure of node centrality based on short-

est paths. It is defined as the fraction of all shortest paths in the network that pass

through n:

bcn = ∑
u 6=n 6=v

σuv(n)
σuv

(1.14)

where σuv is the total number of shortest paths from node u to v, and σuv(n) is the

number of those paths that pass through node n.

1.2.3 Clustering Coefficient

The clustering co-efficient is a measure of the degree to which nodes in a network

tend to cluster together. Two measures exist. The local measure quantifies how close

a node’s neighbours are to a clique – a fully connected subnetwork (Watts and Stro-

gatz, 1998). The global clustering co-efficient is called transitivity (see section 1.3.2).

1.3 Macroscopic Network Features

Macro scale features are features of the complex network as a whole. Many micro-

scale features, such as node degree k and betweenness centrality bc, can be used to
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characters networks at the macro level by averaging across all nodes in the network.

In this thesis, we denote mean micro measures using 〈·〉 – for example 〈k〉 is the

mean node degree across all nodes in the network.

1.3.1 Network Density

Network density, ρ, is the ratio of the number of edges, m, in a network to the total

possible number of edges. That is:

ρ =
2m

N(N − 1)
(1.15)

for undirected networks, and:

ρ =
m

N(N − 1)
(1.16)

for directed networks, where N = |V| is the number of the nodes in the network.

Networks with very low density – such as most real world networks – are called

sparse.

1.3.2 Transitivity

The global clustering co-efficient T (sometimes called transitivity) is based on the

ratio of closed triplets to all triplets in the network and is computed as:

T =
number of closed triplets

number of all triplets
(1.17)

A ‘closed triplet’ refers to a fully connected three node subnetwork (sometimes

called a triangle) (Wasserman, Faust, et al., 1994).
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(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

(K) (L) (M)

FIGURE 1.2: An enumeration of all possible non-isomorphic 3-node directed motifs.

1.3.3 Network Diameter

The diameter D of a connected network is a global, or macro-scale measure and is

defined as the greatest shortest path distance between any pair of nodes in the net-

work:

D = max
u,v∈V

|SPuv| (1.18)

1.4 Meso-scopic Complex Network Features

Between the micro- and macro-scales, we have the meso-scale – characterised by

higher-order architectural features comprised of sets of entities in the network. Meso-

(or intermediate-) level analyses are occasionally specifically designed to reveal con-

nections between micro- and macro-levels (Rombach et al., 2014). Understanding

higher order network organisation is a necessary starting point for higher-resolution

modelling of complex biologic processes (Csete and Doyle, 2004).
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1.4.1 Network Motifs

One of the most enriched meso-scopic features of real-world complex networks are

network motifs. Network motifs are patterns of interconnections occurring in com-

plex networks at numbers that are significantly higher than those in randomised

Erdös-Renyi networks (Milo et al., 2002). Each motif may reflect a framework in

which particular functions are achieved efficiently. They have been studied to un-

cover structural design principles of complex networks (Milo et al., 2002; Alon,

2007). Considering only undirected networks, motifs can be divided into a-cyclic

(linear or tree-like) and cyclic, i.e., those with loops. For directed networks, the loops

can be further divided into feed-forward and feedback loops (Milo et al., 2002). Fig-

ure 1.2 provides an enumeration of all possible three node motifs in a directed net-

work.

1.4.2 Hierarchical Organisation

Hierarchical organisation refers to nodes in a complex network dividing into groups

that “further subdivide into groups of groups, and so forth over multiple scales”

(Clauset, Moore, and Newman, 2008).

1.4.3 Modular Structure

Complex networks often display a modular structure: subsets of nodes that contain

a higher degree of inter-connectivity than the rest of the network (Girvan and New-

man, 2002; Palla et al., 2005; Lancichinetti, Fortunato, and Kertész, 2009). Finding

the modular structure of a network based on its topology is commonly referred to as

the problem of ‘community detection’ (Girvan and Newman, 2002). While a rigor-

ous definition for a ‘community’ within a network still seems to elude the scientific

community (Lancichinetti, Fortunato, and Kertész, 2009), the most popular defini-

tion is the planted l-partition model. This was popularised thanks to Girvan and

Newman in their seminal work (Girvan and Newman, 2002), and states that as long

the probability of a node being connected to its group is greater than the probabil-

ity of it being connected to the rest of the graph, then the resulting groups are the

communities in the network.
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This is characterised by the modularity measure Q(S) of a subnetwork S, given

by:

Q(S) =
1

2m ∑
u,v∈S

[
Auv −

kukv

2m

]
(1.19)

Modules often have an interpret-able meaning – for example, they correspond to

friendship groups in a social network; functional modules in Protein-Protein Interac-

tion (PPI) networks; and scientific disciplines in co-authorship networks. Biological

networks, including animal brains, exhibit a high degree of modularity.

A convincing case has been made that ‘community detection’ is not a well-posed

problem, but an ‘umbrella term’ with many facets that emerge from what it is about

the network that we are interested in (Schaub et al., 2017). For example, searching

for closely knit nodes requires a discrete clustering algorithm, whereas searching

for structurally similar nodes leads to an approach like the stochastic block model

(SBM) (Decelle et al., 2011).

Appendix A.1 in the appendices provides a review of literature related to identi-

fication of modular structure.

1.4.4 Core-Periphery Structure

A core-periphery structure is defined as a modular structure comprised of two parts:

the core and the periphery. The core is a central to the structure and is a densely con-

nected subnetwork, while the periphery is a set of sparsely connected, and usually

non-central set of nodes, which are linked to the core. We note that all nodes in the

core are central but not all central nodes form a network core. While the definition

of a core and a community is similar, a core will connect densely with nodes in the

periphery, whereas a community does not (Kojaku and Masuda, 2017).

There may be one core-periphery structure in a network, or multiple. Further-

more, some nodes in the notwork may not belong to either a core or a periphery and

can be considered noise or residual nodes (Kojaku and Masuda, 2017). In the case

of multiple cores, two situations are possible. We first define a “global core” to be

the core of the entire structure at study. In the first situation, a local core will be the

global core, if it is the only local core that occupies a central position in the network,
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and all other local cores are peripheral. Such a situation occurs if the network has a

hierarchical modular structure with one single module, i.e., the global core, being at

the top of the hierarchy. The second situation is that the “global core” does not exist,

i.e., no single local core occupies a central position in the network.

1.4.5 Bow-tie Architecture

A bow-tie or hourglass structure is a core-periphery structure found in directed net-

works, which consists of three layers: input, output and middle layers (Supper et

al., 2009). The input and output layers (often referred to as in- and out-components)

are peripheral layers are nodes connected with incoming and outgoing edges re-

spectively. The mid-layer is the core, which is also called the “waist”, or “knot”,

or the “selector”. The core is the strongly connected component in the network –

meaning that every node in the core can be reached by any other node by respecting

edge direction (see section 1.1.7) (Timár et al., 2017). Furthermore, the core contains

both feed-forward and feedback loops. Feedback loops are of particular relevance

in signalling networks, for example, where the signal obtained from receptors in the

input layer can be de-noised, filtered and integrated (Brandman et al., 2005). Speak-

ing in terms of motifs, we would expect that the number of feedback loop motifs

to be enriched in the core, and for the in- and out-components to be composed of

many acyclic motifs and feed-forward loops. Multiple bow-tie architectures may be

found within any biological network (Friedlander et al., 2015). Figure 1.3 provides

an example of a small network displaying the bow-tie architecture.

Although bow-tie architectures are conceived as a special case of the core-

periphery structures in directed networks, they are distinct network architectures.

By definition, in a core-periphery structure, the core nodes should be both central

and densely connected. However, for a bow-tie architecture, the only requirement

for core nodes is that they are strongly connected, which means that they are not

central and they might not be densely connected. Therefore, we should regard the

bow-ties as a distinct network architecture rather than a special case of the core-

periphery structure.
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FIGURE 1.3: An example bow-tie network. The three components are identifiable by colour.
blue: in-component, red: core, and green: out-component. The core is the only component
that is strongly connected: each node in the core is reachable from every other node in the
core. Nodes in the in-component connect sparsely to other nodes in the in-component and
nodes in the core. Likewise, nodes in the out-component are sparsely connected to core

nodes and other nodes in the out-component.

1.4.6 Why Study Meso-Scale Network Architectural Features?

As previously mentioned, the study of meso-scopic features is of particular impor-

tance for complex networks as they provide an understanding of the linking between

the micro and the macro, as well as explain emergent dynamical behaviour that the

system exhibits.

For example: consider modular structure in social networks. Modular structure

in social networks could correspond to friendship circles. Friendship circles explain

the micro – edges are more likely to form between people in the sample social circle;

they explain the macro – the number of social circles would have an effect on the

transitivity of the network; and information will flow through more easily between

members of the same social circle than between members of different social circles.
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1.5 Dynamics on Complex Networks

As mentioned in section 1.4, many complex networks are enriched in the presence

of meso-scopic architectural features. However, network architectures include not

only topological structure but also interaction functions. By including interaction

functions, network architectures can represent both the functional and logical organ-

isation of entities. Network dynamics is the study of networks whose status changes

over time (Nagler, Levina, and Timme, 2011; Majdandzic et al., 2014). Status may

refer to a network’s connections, a network’s internal state, or both. A network that

is not dynamic, we henceforth refer to as static.

1.5.1 Dynamic Network Topology

The changing of a network’s connections over time refers to the addition and dele-

tion of nodes and edges in a network over time. This is typically modelled dis-

cretely and will give rise to time-series network snapshots described by a series of

T graphs indexed by t: {G(t) = (V(t), E(t)) | t ∈ [1, T]}. The theory that the un-

derlying dynamical processes guiding network formation can be inferred by using

network snapshots to build a dynamical model drives the study of topologically dy-

namic networks. Commonly, inductive models aim to predict future links emerging

in a system with more accuracy than a single static network snapshot can provide

(Hamilton, Ying, and Leskovec, 2017; Bojchevski and Günnemann, 2018).

1.5.2 Dynamic Network State

This thesis is concerned primarily with the changing of a network’s internal state –

characterised by the changing of node values, with changes being driven by update

rules based on a node’s connections. Modelling of network dynamics can be broadly

broken down into two categories: boolean networks (Kim, Park, and Cho, 2013) and

ordinary differential equation (ODE) dynamic networks (Cheng et al., 2012; Wu et

al., 2014; Zhang et al., 2018). We henceforth focus on boolean networks. As a primer

for boolean networks, the next section introduces boolean logic.
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TABLE 1.1: A truth table of three atomic boolean functions: logical negation: ¬, AND ∧, and
OR ∨. Logical negation in an operation of one boolean variable, whereas AND and OR are
functions of two variables. Rows in the table correspond to different combinations of values
for the boolean variables p and q. Many further atomic operations exist, but are omitted for

brevity. The reader is pointed towards Whitesitt, 2012 for more details.

Boolean Variables Logical Negation Boolean Connectives
p q ¬p ¬q p ∧ q p ∨ q

0 0 1 1 0 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 1 1

1.5.3 Boolean Logic

A boolean variable is a variable that can have only two possible values: true (1),

or false (0). A boolean literal is either a boolean variable p or its negation ¬p. The

negation of a boolean variable p is given by ¬p := 1− p. Logical negation is often

called the NOT operator.

A boolean function f : {0, 1}n → {0, 1} is a function of n boolean variables

that evaluates to either 0 or 1. The negation operation can be considered an atomic

boolean function from {0, 1} → {0, 1}. Further atomic boolean functions include the

AND (or conjunctive) operation: ∧, which accepts an arbitrary number of boolean

literal inputs and returns true if all the literals are true, and the OR (or disjunctive)

operation: ∨, which accepts an arbitrary number of literal inputs and returns true

if at least one literal is true. Table 1.1 provides a truth table of these three atomic

boolean operations.

1.5.4 Boolean Clauses

A boolean clause is a finite collection of boolean literals. The most common clause is

the disjunctive clause, in which all literals are connected by the OR logical operator.

A disjunctive clause is true (evaluates to 1) if at least one of its literals is true.

On the other hand, a conjunctive clause is a set of all literals connected by the

AND logical operator, and evaluates to true when all of its component literals eval-

uate to true.
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f = (x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ x7 ∧ (x8 ∨ x9 ∨ x10) ∧ ¬x11

FIGURE 1.4: An example of a boolean function f that is in CNF. f is a function of 11 boolean
variables: x1, ..., x11.

1.5.5 Conjunctive Normal Form

A boolean function is in conjunctive normal form (CNF) if it is the conjunction of one

or more disjunctive clauses. That is: it is ‘an AND of ORs’. The only propositional

connectives a formula in CNF can contain AND, OR, and NOT. Furthermore, the

NOT operator can only be used as part of a literal. A general boolean function can be

arbitrarily complicated, however all boolean functions can be transformed into CNF,

and so only the AND, OR and NOT operators are, in general, necessary. Figure 1.4

provides an example of a boolean function in CNF.

1.5.6 Boolean Networks

A boolean network consists of a discrete set of N boolean variables each of which has

a boolean function (possibly different for each variable) assigned to it. Each function

takes input from a subset of those variables and its output is what determines the

state of the variable it is assigned to (Kauffman, 1969). This set of functions, in effect,

determines a topology on the set of variables – which are then considered nodes in

a network.

We define an update to a network state to be the transition of one network state

to another according to the rules of the system. We differentiate between the “syn-

chronous” update scheme (where all nodes in the network update their values at

the same time), and the “asynchronous” update scheme, where a node is selected

at random (according to some prior distribution) to have its value updated. The

seemingly simple synchronous model was only fully understood in the mid 2000s

(Drossel, 2008). For the remainder of this thesis we will be only considering the

synchronous update scheme.

Boolean networks have been used in biology to model regulatory networks. Al-

though Boolean networks are a crude simplification of genetic reality where genes
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are not simple binary switches, there are several cases where they correctly capture

the correct pattern of expressed and suppressed genes (Albert and Othmer, 2003).

Formal Definition of a Boolean Network

The dynamics of a synchronous boolean network is taken as a discrete time series

where the state of the entire network at time t + 1 is determined by evaluating each

variable’s function on the state of the network at time t.

Formally, we define xi(t) ∈ {0, 1} to be the boolean value of node i at time t.

Furthermore, we define x̄i(t) to be the logical negation of boolean variable xi: x̄i(t) =

¬xi(t). Concretely, the value for node i at time t + 1 is determined by the boolean

function fi, a function over the input nodes of i as:

xi(t + 1) = fi(x1(t), ..., xN(t)) (1.20)

Note that, the general form for fi can be written as a function for all nodes in the net-

work j ∈ [1, N], where only the input nodes contribute to the output of the function.

The state x ∈ {0, 1}N of a boolean network is defined as the set of values in {0, 1}

for every node in the boolean network. It follows that, for a network of size N, there

are 2N possible states for that network to be in.

1.5.7 Network Attractors

We define the state transition graph (STG) or state “landscape” of a boolean network

to be the graph formed by all the possible states that a network can be in, with

connections between states if an update will take the network from the first state to

the second.

We define an “attractor” to be a set of states that the network will reach that it

will never leave through any normal updates. Attractors may be a set of size 1, in

which case they are called “steady-state” or point attractors, or they may be cycles of

arbitrary period n. The set of states that lead to an attractor is called the basin of the

attractor. The time it takes to reach an attractor is called transient time (Drossel, 2008).

In the case of regulatory and signalling networks, attractors typically correspond

directly to phenotypes (Huang et al., 2005; Kim, Park, and Cho, 2013).
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1.5.8 Hamming Distance

For two boolean network states x, y ∈ {0, 1}N , the distance between them is given

by Hamming distance:

DH(x, y) =
N

∑
i=1
|xi − yi| (1.21)

Hamming distance can be interpreted as the number of modifications required to

transform boolean state x into y (or vice-versa). Sometimes mean hamming distance

is reported instead:

mDH(x, y) =
1
N

DH(x, y) =
1
N

N

∑
i=1
|xi − yi| (1.22)

which is the expected hamming distance between states x and y for a particular

boolean variable (node) in the network.

1.5.9 Criticality

Dynamic systems that exhibit complex behaviour are often said to be poised right

between order and disorder (Roli et al., 2018). This property is called criticality and

its presence is a characteristic feature of real world dynamical complex networks.

In fact, criticality is hypothesised to drive both the robustness and evolve-ability of

living processes (Daniels et al., 2018).

Informally, criticality can be thought of as the general robustness that biological

systems exhibit – up until a breaking point where the system enters a disorder state

that it cannot return from. It has been shown that the average criticality in biological

networks is not predictable solely from macro-scale properties such as mean degree

〈k〉 and mean bias1 in the logic functions (Daniels et al., 2018).

Average Sensitivity

Average sensitivity 〈s〉 is a popular measure of criticality, largely due to its scale-

ability – making it suitable for even very large networks (Daniels et al., 2018). It is

1The mean activity bias p of a boolean function f is the probability that that function takes value 1
(Shmulevich and Kauffman, 2004).
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defined to be an indicator of the critical transition in boolean network from an or-

dered to a chaotic phase (Shmulevich and Kauffman, 2004). It is a measure of the

expected change to the network at time t + 1 after flipping a single bit at time t. Ac-

cordingly, this puts the critical value at 〈s〉 = 1. A value of 〈s〉 much less than one

would indicate that the network is operating in the ordered regime, and, similarly,

a value much greater indicates disorder. As such, we expect boolean models of bi-

ological models to have a value of 〈s〉 very close to 1, indicating that the network is

operating right on the limit of order and disorder. This was shown to be the case in

Daniels et al., 2018.

Defining the discrete boolean network dynamics as x(t+ 1) = f (x(t)), then ∂ fi(x)
∂xj

measures the sensitivity of node i to bit-flipping the value of node j for state x:

∂ fi(x)
∂xj

= fi(x1, ..., xj, ..., xN)⊕ fi(x1, ..., x̄j, ..., xN) (1.23)

where ⊕ is the exclusive OR operation2. Simply put, ∂ fi(x)
∂xj

is the number of nodes

that have different values at time t + 1 cause by flipping the bit of boolean variable

xj at time t.

Using this definition, the average sensitivity of a boolean network of size N is:

〈s〉 = 1
N

N

∑
i=1

〈
N

∑
j=1

∂ fi(x)
∂xj

〉
x

(1.24)

where 〈·〉x here means the expected value with respect to state x.

Other Measures of Criticality

Another measures of criticality include the Derrida curve3 (Balleza et al., 2008) and

perturbation avalanches (Serra et al., 2007).

2Recall x̄ is the logical negation of boolean variable x.
3The Derrida curve consists of plotting the mean hamming distance at time t+ 1, mdH(t+ 1), versus

the mean hamming distance at time t, mdH(t), over sampled pairs of states. If the network is operating
in the chaotic regime, then small Hamming distances tend to diverge and the Derrida curve lies above
the main diagonal for small initial Hamming distances (Balleza et al., 2008).
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1.5.10 Control Kernel

The control kernel of a given boolean network model of a bio-molecular regulatory

network is defined as the minimal set of network nodes needing to be regulated to

drive the network state to converge to any desired attractor regardless of the sys-

tem’s initial state (Kim, Park, and Cho, 2013). Here, ‘regulated’ refers to pinning the

values of those nodes to their values in the desired attractor.

Previously, we saw that boolean networks can potentially converge to a number

of different attractors, corresponding to a number of different phenotypes for a cell.

However, by pinning the values of a set of nodes in the network, the state landscape

can be sufficiently changed such that all states converge to a desired attractor. The

choice of value to pin the nodes in this set is governed by their value in the desired

attractor (Kim, Park, and Cho, 2013).

It has been shown that the size of the control kernel was related to both the topo-

logical and logical characteristics of a network (Kim, Park, and Cho, 2013). In addi-

tion, the control kernel of the human signalling network included many drug targets

and chemical-binding interactions, suggesting a therapeutic application of the con-

trol kernel (Kim, Park, and Cho, 2013). This second property makes the identification

of a control kernel an attractive area of research.

We henceforth refer to a node belonging to at least one control kernel to be a

control node.

1.6 Network Embedding

Traditionally, networks are represented as graphs G = (V, E), where V is the set of

nodes in the network and E is the set of edges describing the relationships between

nodes. However, when dealing with large networks – containing billions of nodes –

traditional approaches suffer some drawbacks (Cui et al., 2018).

First and foremost of these drawbacks is computational complexity. Most net-

work processing algorithms must be iterative or combinatorial in nature. Shortest

path length, for example, can be used as an abstraction of node similarity, and is de-

termined by a combinatorial process in O(N3). Further, we may employ a stochastic
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node-traversal approach to estimate node similarity and this process involves itera-

tively sampling neighbours in the network until convergence.

Next, is applicability to downstream machine learning tasks. Machine learning

has recently exploded in popularity, largely due to the successes of deep learning on

a variety of disparate tasks. However, most machine learning models assume that

data is represented as independent vectors. This means that most methods cannot

be applied directly to network data described in the traditional way. One naive

approach is to model entities using their row on the adjacency matrix. This explicitly

preserves the local information described by E, but is typically prohibitively high-

dimensional.

Finally, traditional representations are difficult to make parallel. Distributed

computing is the de-facto gold standard for computing in the age of dig data, how-

ever, traditional network representation methods are not well suited for this. This

is because nodes linked in E would have to be split up across servers, creating a

performance bottleneck (Cui et al., 2018). While limited progress has been made to

address these issues (for example: see “NetworKit: A tool suite for large-scale net-

work analysis”), the performance depends largely on the topological properties of

the underlying graph.

Due to these aforementioned drawbacks, network embedding has achieved enor-

mous popularity and success. Network embedding can be seen as a form of un-

supervised representation learning and involves learning low-dimensional repre-

sentations of the entities in a network such that relationships between the entities is

preserved. Typically, the entities that are learned are the nodes in the graph (Perozzi,

Al-Rfou, and Skiena, 2014), however, it may be the graph in its entirety (Defferrard,

Bresson, and Vandergheynst, 2016). Further, the embedding process may consider

more than the first order similarity described by E.

Network embedding overcomes the computational complexity limitation of tra-

ditional representation techniques by mapping many iterative and combinatorial

operations to constant operations in the embedding space. In the example men-

tioned above, node similarity between any pair of nodes can be determined directly

using the metric function of the space, no sampling required.

By learning dense representations of entities in the network, network embedding
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is able to de-noise the network while preserving the intrinsic structural information

(Cui et al., 2018), further improving performance over the raw network represen-

tation. In general, network embedding is capable of supporting a diverse array of

downstream tasks, such as node classification, (Grover and Leskovec, 2016; Kipf

and Welling, 2016), graph reconstruction (Nickel and Kiela, 2017), node clustering

(Wang et al., 2017c), network visualisation (Herman, Melançon, and Marshall, 2000)

and link prediction (Wang, Cui, and Zhu, 2016).

The diversity of downstream goals is what separates network embedding from

the related field of graph embedding (Fu and Ma, 2012). The latter focuses primarily

on the graph reconstruction task: that is learning low dimensional representations

of a graph from which the original information in the graph can be recovered. In

addition to reconstruction, network embedding is typically concerned with network

inference tasks, in which we are free to incorporate any additional information that

we feel is relevant the inference task that we are interested in.

1.6.1 Structure Preserving Network Embedding

Network structure is a crucial factor in network inference. Many inference tasks

could be performed in the graph domain, but, as previously mentioned, the graph

domain suffers from a number of problems – chief of which is the problem of high di-

mensionality. Because of this, much work has been done in preserving rich structural

information. High-order measures of similarities, for example shared neighbours

(Tang et al., 2015), community membership (Wang et al., 2017c), or random walk

proximity (Perozzi, Al-Rfou, and Skiena, 2014) can be included to further improve

the quality of the resulting embedding with respect to the performance measures of

choice.

1.6.2 Network Embedding with Attributes

In addition to structural information, networks may be richly annotated with side

information or attributes. Normally, the attributes describe information from a dif-

ferent source to the source of the interactions in the network and so incorporating



Chapter 1. Introduction 27

them in the network embedding process is often helpful for a wide number of down-

stream tasks (Li et al., 2017c). However, the actual act of attribute incorporation can

be challenging and often great care must be taken to balance the weight of topologi-

cal and attribute information in the embedding process.

1.6.3 Directed Network Embedding

As discussed in section 1.1.1, many networks are directed, meaning that the relation-

ships between nodes are asymmetric. This proves to be a challenge for network em-

bedding as many approaches learn a single node representation in a symmetric met-

ric space. However, it is possible to overcome these challenges in a number of ways.

One solution is to learn multiple representations of a single node (Sun et al., 2019).

This allows for an symmetric measure of distance in the following way: Suppose

two nodes in the network u and v have two different learned representations each:

xu 6= yu ∈ Rn and xv 6= yv ∈ Rn. If D(u, v) := ||xu − yv|| and D(v, u) := ||xv − yu||,

then, in general, D(u, v) 6= D(v, u).

Another solution is to remove the relax the strict metric requirements and use

an asymmetric measure of similarity. For example: use Kullback-Leibler divergence

(Bojchevski and Günnemann, 2018).

1.6.4 Supervised Network Embedding

So far, we have only discussed network embedding in the unsupervised setting.

That is, we do not consider any labels in the embedding process, only structural

and side information. However, if we have a specific goal in mind and have the

target information, we can leverage network embedding as representation in and

end-to-end process (Li et al., 2017a). We can use the network embedding as a latent

hidden layer and augment the supervised objective with an additional objective on

the hidden layer to preserve the structural information in the network. This has been

shown to perform well even with partial information, that is in the semi-supervised

setting when some label information is missing (Kipf and Welling, 2016).
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1.6.5 Hyperbolic Network Embedding

A recent trend in network embedding research is to suppose that the hidden metric

space underpinning many complex networks is, in fact, hyperbolic (Papadopoulos

et al., 2010). A hyperbolic metric space has been shown to explain the scale-free de-

gree distribution observed in real-world networks (Krioukov et al., 2009). Moreover,

it can explain the small-world effect observed in complex networks (Papadopoulos,

Psomas, and Krioukov, 2015), help with routing of information packets around the

network (Papadopoulos et al., 2010) and explains the implicit trade-off between pop-

ularity and similarity that controls a node’s connections (Papadopoulos et al., 2012).

In fact, it has been shown that hyperbolic network geometry emerges spontaneously

from models of growing simplicial complexes that are purely combinatorial (Bian-

coni and Rahmede, 2017; Bianconi and Ziff, 2018), and can explain link percolation

transition (Kryven, Ziff, and Bianconi, 2019). Further details on hyperbolic spaces

are provided in section 1.7.2.

1.6.6 General Form of Network Embedding

Network embedding considers a network G = (V, E) of N nodes with |V| = N, and

E is the set of edges. For the general case, the matrix W ∈ RN×N is used to encode

the weights of these edges, where Wuv is the weight of the interaction between node

u and node v, where Wuv 6= 0 ⇐⇒ (u, v) ∈ E. If the network is unweighted,

then Wuv = 1 for all (u, v) ∈ E. Furthermore, the matrix X ∈ RN×d describes the

attributes of each node in the network. These attributes may be discrete or contin-

uous. If the network does not have attributes, then we can set d = N and X = IN

to the N-dimensional identity matrix. This allows us to formulate the problem of

network embedding as follows:

Problem 1. Given a network, described by G = (V, W, X), find low dimensional repre-

sentations of the nodes in the network such that any desired properties of the network are

preserved. The described problem may or may not be supervised.

Problem 1 is intentionally vague: the form the learned representations as well

as the measure of the quality of a learned embedding depends entirely on what is

meant by ‘desired properties’. For example: if the purpose of the embedding is
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FIGURE 1.5: The effect of embedding objective in the outcome. The left shows an example
network G. The nodes in G belong to one of two classes, marked in blue and red respec-
tively. Furthermore, the nodes in G are annotated with attributes. For clarity, we have only
highlighted one group of nodes possessing similar attributes, which have been drawn with
a green circle. On the right, we have plotted three example embeddings resulting from
consideration of three different embedding objectives. Top-right shows an embedding that
preserves only topological information. Middle-right shows an embedding preserving topo-
logical and attribute information. Finally bottom-right shows an embedding that prioritises

class separation.

to preserve local structure, then the preservation of neighbourhoods in the learned

space is important, however if the goal is clear class separation, with respect to

known node labels, then neighbourhood preservation may be de-prioritised in

favour of large margins between classes. Figure 1.5 provides an example of this,

where three different embedding objectives are considered for the same network,

producing three different embeddings.

1.6.7 Relationship to Manifold Learning

Network embedding is closely related to the field of manifold learning. Indeed,

many classical non-linear manifold learning techniques, such as Isomap (Tenen-

baum, De Silva, and Langford, 2000) and Laplacian Eigenmaps (Belkin and Niyogi,



Chapter 1. Introduction 30

2002), must first construct nearest neighbour graphs based on dissimilarities be-

tween samples before dimensionality reduction takes place. Many of these tech-

niques are directly applicable to embedding of (single-layer, unweighted) complex

networks by simply omitting the graph construction step. In practice, however,

these methods are not suitable. Isomap, for example, is inapplicable to real-world

networks, since it requires the expensive computation of all shortest paths in the

network.

1.7 Hyperbolic Geometry

This section introduces the concept of non-Euclidean geometry before going into

detail regarding hyperbolic geometry – a geometry that will be used in chapter 3

and chapter 4.

1.7.1 Introduction to Non-Euclidean Geometry

Everyone is familiar with Euclidean geometry. This is the geometry of the world in

which we live. It lives in a space that is connected (the space cannot be broken up as

the union of open subsets), flat and isotropic (the Gaussian curvature4 of the space is

zero for all points in the space) (Reynolds, 1993).

Euclidean Geometry obeys all of the Euclid’s postulates that seem “obviously

true” in the world that we live in. These consist of axioms such as the existence of

a straight line segment between two points, a circle being uniquely described by a

centre and a radius, and the parallel postulate: that given a line l and a point P not on

l, there exists exactly one line through P that is parallel to (does not intersect) l.

Moving beyond familiar Euclidean geometry, there are three types of connected,

isotropic spaces:

• Euclidean, with Gaussian curvature equal to 0,

• Spherical, with strictly positive Gaussian curvature, and

4Gaussian curvature K of a surface S at a point P, we find the normal vector at P, and then define
a normal plane as a plane that intersects the surface and contains the normal vector. The intersection
of a normal plane and the surface will form a curve called a normal section and the curvature of this
curve is the normal curvature. For most points on most surfaces, different normal sections will have
different curvatures; the maximum and minimum values of these are called the principal curvatures,
call these K1 and K2. The Gaussian curvature is the product of the two principal curvatures K = K1K2.
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FIGURE 1.6: Parallel postulate for hyperbolic space. Both lines x and y pass through point P
and are parallel to line l.

• Hyperbolic, with strictly negative Gaussian curvature.

We shall not focus on Spherical geometry here (however, it will become a useful

comparison later). Instead the hyperbolic geometry shall be the focus of this two

chapters of this thesis.

1.7.2 Hyperbolic Geometry

Hyperbolic geometry is what one obtains by negating Euclid’s fifth postulate, the

parallel postulate. This means that, in hyperbolic geometry, there exists a line l and

a point P not on l such that at least two distinct lines parallel to l pass through P

(Krioukov et al., 2010) (see figure 1.6).

Hyperbolic spaces and trees are very similar (Krioukov et al., 2010). Informally,

trees can be thought of as “discrete hyperbolic spaces” and can be embedded into

a two dimensional hyperbolic plane without distortion (Sarkar, 2011; De Sa et al.,

2018).

Furthermore, hyperbolic space cannot be embedded into Euclidean space with-

out distortion. Informally, hyperbolic spaces are “larger” and have more “space”

than Euclidean spaces (Krioukov et al., 2010). For example: the area A of a circle of

radius r, does not grow quadratically with r, as we are used to in Euclidean space5,

but grows exponentially with r as A = 2π cosh(ζr− 1)6.

Because of the distortion caused by representing hyperbolic spaces in Euclidean

spaces, there are not one but many equivalent models of hyperbolic spaces (Cannon

et al., 1997). Each model emphasises different aspects of hyperbolic geometry, and

5Recall that the area of a circle is given by A = πr2 in Euclidean geometry.
6ζ =

√
−K and cosh is Hyperbolic cosine function: cosh(x) = (ex + e−x)/2.
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(A) Poincaré disk (B) Klein disk

FIGURE 1.7: Lines on the Poincaré and Klein disks. (A) plots five parallel lines on the
Poincaré disk. Every one of l1, l2, l4 and l4 is the arc of a circle, is parallel to l and meet
the boundary at right angles. (B) plots lines on the Klein disk. Each straight Euclidean line

on the Klein disk maps to a straight line hyperbolic geometry.

can be freely mapped to each other with an isometry, but no model simultaneously

represents all of its properties.

1.7.3 Poincaré Disk

Traditionally, the most popular model of hyperbolic geometry is the Poincaré disk

P2 (called the Poincaré ball Pn for n > 2 dimensions). Here, the entire hyperbolic

plane is represented as the interior of a Euclidean unit ball, sitting in a Euclidean

ambient space, where the centre of the circle represents the origin of the space and

the boundary of the ball represents infinity (Krioukov et al., 2010; Nickel and Kiela,

2017). Euclidean and hyperbolic distances (re and rh respectively) from the disk cen-

tre are related exponentially by re = tanh(rh/2). Shortest paths between points on

the Poincaré disk (called geodesics) are given by the diameters of the disk (if both

points lie on a diameter) or Euclidean circle arcs that contain both points and in-

tersect the boundary of the ball perpendicularly. Figure 1.7A shows a number of

parallel lines on the Poincaré disk.

For machine learning practitioners, this model has the advantage that it is con-

formal: the Euclidean angles in the model are equal to the hyperbolic angles in the

underlying hyperbolic geometry.

1.7.4 Klein Disk

Similar to the Poincaré disk, we have also the much less popular Klein disk model

of hyperbolic geometry Kn. This model also represents hyperbolic geometry as a
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FIGURE 1.8: The relationship between the two-dimensional hyperboloid model H2 (shown
in red) and the Poincarè disk P2 (drawn in black). The blue lines map isometrically to each

other.

unit disk (or ball) in an ambient Euclidean space. This model preserves straight

lines: straight Euclidean lines map to straight hyperbolic lines. This has the natural

advantage that linear separability on the disk reflects separability in the underlying

geometry that it is representing. Figure 1.7B provides an example of a number of

straight lines on the Klein disk. However, unlike the Poincaré ball, the Klein disk is

not conformal, and the Euclidean angles in the model are not equal to hyperbolic

angles.

1.7.5 The Hyperboloid Model

Unlike disk models, that sit in an ambient Euclidean space of dimension n, the hy-

perboloid model of n-dimensional hyperbolic geometry, Hn, is an n-dimensional

hyperboloid manifold that sits in n + 1-dimensional Minkowski space-time. Both

the Poincaré and Klein models can be viewed as one-to-one projections from points

on the hyperboloid to points on disks orthogonal to the main axis of the hyper-

boloid (Krioukov et al., 2010). Informally, we can see these relationships as anal-

ogous to the relationship between a projected map and a globe (Reynolds, 1993).

Figure 1.8 demonstrates the relationship between the two dimensional hyperboloid

and Poincaré disk.
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Since the hyperboloid model is relevant to two upcoming chapters, we shall now

introduce it in more detail.

Minkowski Space-time

n + 1-dimensional Minkowski space-time (denoted a Rn:1) is defined as the combi-

nation of n-dimensional Euclidean space with a time co-ordinate t. A point u ∈ Rn:1

has spacial coordinates ui for i = 1, 2, ..., n and time co-ordinate un+1.

Minkowski Bilinear Form

The Minkowski bilinear form is defined as:

〈u, v〉Rn:1 =
n

∑
k=1

ukvk − ψ2un+1vn+1 (1.25)

where ψ is the speed of information flow in the system (normally set to 1 for simpli-

fied calculations). Further details have been omitted for brevity, however the reader

is directed to Clough and Evans, 2017 for more details. The bilinear form acts as an

inner product and allows (among other things) the computation of vector norms in

the familiar way:

||u||Rn:1 :=
√
〈u, u〉

Rn:1
(1.26)

It is worth noting at this point that n + 1-dimensional Minkowski space-time con-

tains the entire n-dimensional Euclidean space: Rn ⊂ Rn:1. Rn is the set of all

x ∈ Rn:1 such that its time co-ordinate xn+1 = 0. Furthermore, the Minkowski

bilinear form (equation (1.25)) is a generalisation of the Euclidean inner product and

is equivalent for all x ∈ Rn = {x ∈ Rn:1 | xn+1 = 0}. However, it is possible for

〈u, u〉Rn:1 < 0 and so norms may be imaginary.

Hyperboloid Definition

The points u ∈ Rn:1 satisfying:

Hn = {u ∈ Rn:1 | 〈u, u〉Rn:1 = −1∧ un+1 > 0} (1.27)
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define the hyperboloid model (Wilson and Leimeister, 2018). The first condition

(〈u, u〉Rn:1 = −1) defines a hyperbola of two sheets, and the second
(
un+1 > 0

)
se-

lects the top sheet.

Distance on the Hyperboloid

Geodesics between points on the model are given by the hyperbola formed by the

intersection of Hn and the two dimensional plane containing the origin and both

of the points (Reynolds, 1993). The distance along the geodesic between two points

u, v ∈Hn is given by:

DHn(u, v) = arccosh(−〈u, v〉Rn:1) (1.28)

and can be considered analogous to the length of the great circle connecting two

points in spherical geometry (Reynolds, 1993).

Tangent Space of a Point on the Hyperboloid

The tangent space of a point u ∈Hn is defined as:

TuHn = {x ∈ Rn:1 | 〈u, x〉Rn:1 = 0} (1.29)

TuHn is the collection of all points in Rn:1 that are orthogonal to point u ∈ Hn,

with respect to the Minkowski bilinear form. It can be shown that 〈x, x〉Rn:1 > 0

∀x ∈ TuHn ∀u ∈ Hn (Reynolds, 1993). In other words, the tangent space of the

hyperboloid is positive definite (with respect to the Minkowski bilinear form) for

all points u ∈ Hn on the hyperboloid. This property defines Hn (equipped with

the Minkowski bilinear form) as a Riemannian manifold (Reynolds, 1993). Further-

more, ||x||Rn:1 ≥ 0 for all vectors x ∈ TuHn, for any point u ∈ Hn allowing for full

Riemannian gradient descent (Wilson and Leimeister, 2018; Nickel and Kiela, 2018).
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FIGURE 1.9: µ0 on the one-dimensional hyperboloid H1 = {(x, y) | x2 − y2 = −1}.

Bottom Tip of the Hyperboloid

We now define the “bottom tip” of the hyperboloid as:

µ0 := [0, ..., 0, 1]T ∈Hn (1.30)

µ0 is the point on the upper hyperboloid with zeros for all of its spacial co-ordinates

and 1 as its time co-ordinate. Figure 1.9 highlights µ0 on the one-dimensional hyper-

boloid.

Note the following property of the tangent space µ0:

Tµ0Hn = {x ∈ Rn:1 | 〈x, µ0〉Rn:1 = 0} ≡ Rn (1.31)

In other words, Tµ0Hn is the entire n-dimensional Euclidean space (every point in

n + 1-dimensional Minkowski space with a 0 time co-ordinate). That is, the set of all

x ∈ Rn:1 such that xn+1 = 0. Furthermore, in this space, Euclidean and Minkowski

norms coincide7: ∀x ∈ Tµ0Hn, ||x|| ≡ ||x||Rn:1 .

Exponential Map

The exponential map, Expu(x) : TuHn → Hn, is a Riemannian operation to trans-

port vectors from the tangent space of a point u ∈ Hn on the hyperboloid to the

hyperboloid itself. It is defined as:

Expu(x) = cosh(r) · u + sinh(r) · x
r

(1.32)

7The Euclidean norm ||x|| of x ∈ Rn:1 is the usual norm of Euclidean geometry considering only
the spacial co-ordinates of x.
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FIGURE 1.10: Example of the exponential map on the hyperboloid. We show a points on the
hyperboloid u ∈Hn, as well its corresponding tangent space TuHn given by the dotted line.
The red line shows how Expu transports vector X from the the tangent space of vector u to
the hyperboloid. The hyperbolic distance DH1 (v, Expu(x)) of vector u and Expu(x) is equal

to the Minkowski norm of x.

FIGURE 1.11: Example of the logarithmic map on the hyperboloid. We show two points on
the hyperboloid u, v ∈ Hn, as well the tangent space TuHn of point u given by the dotted
line. The red line shows how Logu transports vector v from the hyperboloid to the tangent

space of vector u.

where r = ||x||Rn:1 =
√
〈x, x〉Rn:1 denotes the Minkowski norm of x. This is anal-

ogous to the exponential map in spherical geometry which maps points from the

tangent space of a point on the sphere back to the sphere itself8. Figure 1.10 pro-

vides an example of the exponential map transporting a vector from the tangent

space of a vector on the hyperboloid to the hyperboloid itself.

Logarithmic Map

The inverse of the exponential map, the logarithmic map, Logu(v) : Hn → TuHn,

transports a vector v ∈Hn from the hyperboloid to the tangent space of an arbitrary

point u ∈Hn. We set α = − 〈u, v〉Rn:1 and compute x = Logu(v) : Hn → TuHn as:

x = Logu(v) =
arccosh(α)√

α2 − 1
(v− αu) (1.33)

8The spherical exponential map is given by Expp(v) := cos(||v||) · p + sin(||v||) · v/||v||. Compare
this to the hyperboloid case. For a concrete example: imagine that u was a point on the globe. A plane
flies (seemingly in a straight line to the passengers of the plane) parallel to the surface of the globe in a
straight direction of x for a distance of ||x||. Then u′ = Expu(x) is the point on the globe that the plane
will land at.
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FIGURE 1.12: Example of the parallel transport operation on the hyperboloid. We show
two points on the hyperboloid u, v ∈ Hn, as well their corresponding tangent spaces TuHn

and TvHn given by the dotted lines. The point x ∈ TvHn lies on the tangent space of point
v. The red arrow shows how x is mapped from TvHn to TuHn via PTv→u. Since PTv→u is

norm-preserving, then ||x||Rn:1 ≡ ||PTv→u (x) ||Rn:1 .

For u, v ∈ Hn, the logarithmic map computes the vector x = Logu(v) ∈ Rn:1 with

the following properties. First, x is orthogonal to u with respect to the Minkowski bi-

linear form: 〈u, x〉Rn:1 = 0. Next, the Minkowski norm of x is equal to the hyperbolic

distance between u and v:

||Logu(v)||Rn:1 = DHn(u, v) (1.34)

A consequence of this is that, when v = u, Logu(v) = 0. Finally, the direction of x

from the origin, is the same are the direction of the geodesic from u to v (Nagano

et al., 2019). Another noteworthy property of Logu is that for v, w ∈ Hn is that for

x = Logu(v) and y = Logu(w):

||x− y||Rn:1 6= DHn(v, w) (1.35)

That is, Logu does not preserve distances between arbitrary vectors, only distances

to u. Figure 1.11 provides an example of the logarithmic map operation on the one-

dimensional hyperboloid.

Parallel Transport

The hyperboloid parallel transport operation, PTu→u′(x) : TuHn → Tu′H
n, provides

a smooth norm-preserving mapping between tangent spaces on a Riemannian man-

ifold (Nagano et al., 2019). It transports a vector x ∈ TuHn to y ∈ Tu′H
n. It is



Chapter 1. Introduction 39

computed as:

y = PTu→u′(x) = x +
〈u′ − αu, x〉Rn:1

α + 1
(u + u′) (1.36)

where α = − 〈u, u′〉Rn:1 . We provide an example of the parallel transport operation

in figure 1.12.

Note that, by setting u′ = µ0 = [0, ..., 0, 1]T, we are able to transport any vector

x in the tangent space of an arbitrary point u ∈ Hn to the n-dimensional Euclidean

space that is the tangent space of bottom tip of the hyperboloid, µ0. On other words,

we can define the parallel transport to Rn operation as PTu→µ0(x) : TuHn → Rn, since

Tµ0Hn = Rn.

1.8 Research Questions

Due to the ubiquity of complex real-world systems and flexibility of complex net-

works to model those systems, this thesis focuses on feature extraction techniques

for complex networks. This thesis provides frameworks for learning representations

of both micro- and meso-scopic features, preserving their inherent hierarchy, whilst

transforming them into suitable forms for further analyses.

The next subsections introduce the major research questions that this thesis in-

tends to answer in detail.

1.8.1 Hyperbolic Embedding of Weighted and Attributed Undirected

Networks

As discussed in section 1.1.6, all (undirected) complex networks can be considered

attributed and weighted networks. Furthermore, as mentioned in section 1.6, net-

work embedding can overcome the numerous drawbacks of graph-based inference

approaches by learning low-dimensional representations where node attributes and

weights can be incorporated in the learning process. Section 1.6.5 shows that low-

dimensional hyperbolic node representations can better explain phenomenon that

complex networks exhibit – phenomenon such as a high clustering co-efficient, a

scale-free degree distribution and the small world principle.
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Existing hyperbolic approaches, however, cannot currently handle the embed-

ding of attributed networks. In addition, many attributed network embedding ap-

proaches do not allow for the explicit control of the trade-off between topology and

attributes in the learned embedding (see section 1.6.2). Based on this, the first re-

search question of this thesis is:

• Can existing hyperbolic network embedding approaches be improved by gen-

eralising to attributed and weighted networks, whilst allowing for explicit con-

trol of the trade-off between topology and attributes in the embedding proce-

dure?

A flexible framework for low-dimensional hyperbolic representation learning on the

nodes in an undirected complex network with attributed nodes and weighted edges

is introduced in chapter 3. The details of the approach are described in section 3.2.

1.8.2 Hyperbolic Embedding of Attributed and Directed Networks

All complex networks can be considered directed networks. Following on from the

previous question, it is natural to ask if hyperbolic embedding can be applied to

attributed and directed networks. As highlighted in section 1.6.3, directed network

embedding is a challenging task as metric spaces naturally provide a symmetric

similarity measure over the nodes in the learned space.

Inspired by previous works (Bojchevski and Günnemann, 2018), we investigate

whether an inductive approach for learning low-dimensional node representations

of an attributed and directed network is suitable for hyperbolic space. Here, ‘induc-

tive’ means mapping directly from node attributes which has the advantage of han-

dling the embedding of unseen nodes – making any solution suitable for time-series

(see section 1.5.1) or incomplete complex networks exhibiting properties explained

by hyperbolic geometry – such as a scale free degree distribution. This gives rise to

the second research question:

• Can existing inductive attributed and directed network embedding ap-

proaches be extended to hyperbolic space?

Chapter 4 proposes a solution to this question, that is described in section 4.2 and

validated in section 4.3.
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1.8.3 Hierarchical Organisation of Network Architectures

To understand the overall behaviour of dynamic networks, understanding of the

micro scale is not enough. Meso-scopic network properties – the complex, high-

order interplay of nodes – are what drive the network to perform a function (Supper

et al., 2009). Furthermore, meso-scale features are arranged hierarchically, just as

nodes are arranged hierarchically in the network. Small feedback loops merge to

form tight, modular, strongly connected structure, which gives way to the larger

architectures within the network, such as the bow-tie architecture. But how do the

dynamics of the network flow through this hierarchy? In light of this, the third

research question is:

• Does the hidden hierarchy of small, local architectures in signalling networks

drive global network behaviour?

The purpose of this question is to understand the relationships between local and

global dynamics in intra-cellular networks, as well as to identify targets for control.

A general framework for decomposing the components of bow-tie networks into a

hierarchy of loops is provided in section 5.2 and the impact of deep core feedback

loops on the global behaviour of a network is investigated and discussed in sec-

tion 5.4.

1.9 Thesis Contributions

The main purpose of the work proposed in this thesis is to provide frameworks that

can better make sense of all the structured data that is produced in the age of big data

and of high-throughput biological experiments. It will generate knowledge from

that data through the means of extracting useful and easy-to-interpret features from

complex network models – knowledge that will allow for the automatic generation

of predictions or further study by domain experts. This will be achieved through

novel network embedding and feature extraction techniques and contributes to the

field in the following three aspects:
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• We propose a novel approach to embed attributed and weighted networks

to hyperbolic space, achieving state-of-the-art results on a number of down-

stream tasks through the use of random walk network sampling and a novel

hyperboloid learning algorithm (chapter 3).

• We develop a novel inductive embedder model to embed attributed directed

network to distributions in hyperbolic space, as well as a novel method for

measuring asymmetric similarity between those distributions (chapter 4).

• Using a simple iterative merging approach, we show that highly modular co-

herent feedback loops found within strongly connected components of sig-

nalling networks with missing information significantly affect network be-

haviour and so make promising candidates for future drug targets (chapter 5).

• Based on the algorithms and methods proposed in this thesis, we have devel-

oped the following open-source software:

– HEAT (https://github.com/DavidMcDonald1993/heat);

– HEADNet (https://github.com/DavidMcDonald1993/HEADNET);

– IMPLISig (https://github.com/DavidMcDonald1993/IMPLISig).

1.10 List of Publications

This thesis summarises the contributions of the following publications:

• David McDonald and Shan He (2020b). “HEAT: Hyperbolic Embedding of At-

tributed Networks”. In: International Conference on Intelligent Data Engineering

and Automated Learning. Springer, pp. 28–40. Winner: best paper award.

• David McDonald and Shan He (2020a). “HEADNet: Hyperbolic Embedding

of Attributed Directed Networks”. In: IEEE Transactions on Neural Networks and

Learning Systems. Submitted.

• David McDonald, Sami Cass Darweish, and Shan He (2020). “Multi-scale Hier-

archical Decomposition of Bow-tie Architectures in Intra-cellular Networks”.

In: Bioinformatics. Preparing for submission.

https://github.com/DavidMcDonald1993/heat
https://github.com/DavidMcDonald1993/HEADNET
https://github.com/DavidMcDonald1993/IMPLISig
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1.11 Thesis Organisation

This thesis consists of six chapters, focusing on uncovering the hidden hierarchy of

real-world complex networks. The first chapter introduces the background and the

importance of this topic. We state the research questions to be studied and sum-

marise the contributions.

In chapter 2, we review the important literature in related fields. Section 2.1 in-

troduces widely used undirected network embedding techniques. Then section 2.2

focuses on embedding techniques specifically for directed networks. Section 2.3 re-

views related works in uncovering higher-order meso-scopic architectural features

in complex networks, as well as their relationships to overall network dynamics.

In chapter 3, we study network embedding of attributed networks to hyperbolic

space. Section 3.1 describes the motivation and defines the problem. Section 3.2

proposes a novel two-step network embedding approach that incorporates node at-

tributes to generate random walks that provide the basis for a novel learning ob-

jective to learn low-dimensional hyperbolic representations of nodes in a network.

Our approach is validated on a number of real-world benchmark complex network

datasets in section 3.3.

In chapter 4, we expand upon the work proposed in chapter 3 by looking at

hyperbolic embedding of attributed directed networks. Section 4.1 introduces the

subject and defines the formal problem. We propose a simple objective function and

optimisation strategy for the problem in section 4.2. In section 4.3, we validate our

approach on a number of downstream machine learning tasks.

In chapter 5, we propose a general framework for uncovering the hierarchical

modular structure of loops in components of bow-tie architectures found within reg-

ulatory and signalling networks. Section 5.1 provides the motivation for this work.

Section 5.2 describes the general framework. Finally, section 5.4 validates the pro-

posed method.

Chapter 6, the final chapter, concludes the thesis and proposes several promising

future directions for the work presented here, based on literature.
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Chapter 2

Literature Review

This chapter reviews all literature relevant to the concepts identified in chapter

1, highlighting existing research on complex network representation learning and

higher-order network architectural features. Section 2.1 reviews literature related to

undirected network embedding. Section 2.2 examines directed network embedding

techniques. Section 2.3 looks at complex network architectural features, as well as

their relationship to global dynamics and network control. Finally, section 2.4 sum-

marises the chapter.

2.1 Undirected Network Embedding

Problem 1 identified in section 1.6 describes the problem of learning low dimen-

sional representations of nodes in a (possibly weighted and attributed) network. To

address this problem, approaches have been proposed from many disciplines and

angles.

2.1.1 Matrix Factorisation Based Approaches

Matrix factorisation methods, with the goal of learning low-rank representation for

the original matrix, can naturally be applied to solve the problem of network embed-

ding. In many matrix factorisation models, Singular Value Decomposition (SVD)

is commonly used in network embedding due to its success at finding a low-rank

approximation (Zhan et al., 2018). Non-negative matrix factorisation is often used

because of its advantages as an additive model (Li et al., 2019). Vicus (Wang et al.,

2017a) is able to better captures local behaviour of networks by constructing a novel
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matrix based upon the graph Laplacian that incorporates neighbourhood informa-

tion explicitly.

2.1.2 Random Walk Based Approaches

An emerging network embedding paradigm comes from natural language process-

ing (NLP). In particular, the skip-gram model and the Word2Vec algorithm that aims

to vectorise words and phrases in a Euclidean ‘semantic’ space such that similar

words are mapped close together (Mikolov et al., 2013a; Mikolov et al., 2013b). The

principle idea is, given a corpus of words and a particular sentence, generate a ‘con-

text’ for each input word with the aim of maximising the likelihood of observing

context words in the embedding space, given the input word. Similarities are mea-

sured by dot products and accordingly, observation probabilities are computed us-

ing a multi-layer perception with a linear hidden layer and softmax output. Through

the use of sub-sampling and negative sampling (replacing softmax with sigmoid),

training can be made very efficient and the resulting embeddings can be obtained

from the activation of the hidden units. This idea naturally extends to networks,

where sentences are replaced by ‘neighbourhood graphs’ generated from random

walks. Furthermore, the shallow architecture of the skip-gram model has been re-

placed with multiple non-linear layers to learn the highly non-linear relationships

between nodes by adopting a deep learning framework. Examples include Deep-

walk (Perozzi, Al-Rfou, and Skiena, 2014) and LINE (Tang et al., 2015).

By introducing additional parameters into the random walk to control a breadth

vs. depth first neighbourhood search, node2vec (Grover and Leskovec, 2016) is

able to identify neighbourhoods of nodes with high homophily and high structural

similarity. The use of these parameters to control the random walk, therefore con-

trolled the definition of community and offered great flexibility to the practitioner

to customised the search based on exactly what they are looking for. In detail, for

a given a source node u, node2vec defines a random walk of length l as a sequence
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n1 = u, ..., nl defined by the following probability distribution:

P(ci = x|ni−1 = v ∧ ni−2 = t) =


αtxwxv/Z if (x, v) ∈ E,

0, otherwise.
(2.1)

where

αtx =



1
p if |SP(t, x)| = 0,

1 if |SP(t, x)| = 1,

1
q if |SP(t, x)| = 2.

(2.2)

and Z is a normalising constant and |SP(t, x)| is the shortest path length between

nodes t and x (see section 1.1.7).

In this approach, two parameters are introduced to the random walk: p and q. p

is the so-called return parameter that controls how far away from the source node u

that the walk explores. When it is set to a high value, the likelihood of backtracking

is low – ensuring that the walk explores more of the network. On the other hand,

when it is high, the walk does not venture far from u. q is the in-out parameter: when

q > 1, the walk is biased to nodes close to t, whereas, q < 1 biases towards nodes

that are further away. In combination, p and q offer a flexible trade-off between

depth-first and breadth-first search.

Random walk based approaches use a sliding window of size c – called the win-

dow or context size – to build a set of pairs of nodes that should be embedded close

together. The setting of c has been shown to be robust and depends largely on the

sampling budget (Grover and Leskovec, 2016).

2.1.3 Deep Neural Networks

The fundamental problem of network embedding is learning a mapping from one

vector space to another. Matrix factorisation based approaches assume that the map-

ping is linear, however, this may not be the case. Deep neural networks provide a

complex non-linear mapping between vector spaces that have seen huge successes

in other fields, and so is a natural and appealing choice for network embedding.
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SDNE (Wang, Cui, and Zhu, 2016) propose a semi-supervised deep model with

a custom loss function based on first- and second-order proximity to avoid biasing

the embeddings to maximised the margins between classes and preserve local in-

formation. SDAE (Cao, Lu, and Xu, 2016) employ a novel ‘surfing’ random walk

approach sample the network and then train a series of stacked auto-encoders. Fur-

thermore, SiNE (Wang et al., 2017b) use deep learning to learn representations of

signed networks. End-to-end solutions, such as PALE (Man et al., 2016), employ

network embedding techniques as part of achieving a larger end-goal (in the case of

PALE, that is network alignment for predicting anchor links).

2.1.4 Embedding with Attributes and Labels

Embedding of networks with side attributes is challenging as one must always be

aware of the trade off between topological and attribute similarity. Some approaches

embed based on statistics of attributes, and pairs of attributes (Gibert, Valveny, and

Bunke, 2012); and known community structure (Wang et al., 2017c); while others

draw from the well known fields of manifold learning and multi-view learning to

align the projections based on topology and attributes (Li et al., 2017c); and deep

learning has also been used (Liao et al., 2018). Text-assisted Deepwalk (TADW)

(Yang et al., 2015) generalizes Deepwalk (Perozzi, Al-Rfou, and Skiena, 2014) to

nodes with text attributes. By generalising from regular pixel lattices to arbitrary

graphs, it is possible embed and classify entire small graphs (Niepert, Ahmed, and

Kutzkov, 2016; Defferrard, Bresson, and Vandergheynst, 2016). Additionally, even

multi-layer networks have been embedded (Liu et al., 2017).

Since node labels are distinct from topology and attributes and contain addi-

tional information, it can be informative to incorporate them in the embedding pro-

cess when they are wholly or partially known. The popular Graph Convolutional

Network (GCN) (Kipf and Welling, 2016) extend and simplify existing graph con-

volution approaches to embed nodes in a semi-supervised setting. Furthermore,

GraphSAGE (Hamilton, Ying, and Leskovec, 2017) introduces an inductive frame-

work for online learning of node embeddings capable of generalising to unseen

nodes. LANE (Huang, Li, and Hu, 2017b) can deal with weighted/unweighted net-

works and binary/real valued attributes and labels. It employs spectral methods to
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FIGURE 2.1: Hyperbolic law of cosines. Two points u = (ru, θu) and v = (rv, θv) are
a distance of ru and rv from the origin of the Poincaré disk respectively. The angu-
lar distance between u and v is given by ∆θuv = π − |π − |θu − θv||. Then the length
of the geodesic between u and v is given by: DP2(u, v) = arccosh(cosh(ru) cosh(rv) −

sinh(ru) sinh(rv) cos(∆θuv)).

find the separate latent embeddings to jointly model and unify topology, attributes

and labels. RoSANE Hou, He, and Tang, 2020 introduces a scalable framework

based on the Skip-Gram model for embedding sparse networks.

It is worth noting that, by transforming an unweighted graph into a so-called

‘flow graph’ (Lambiotte et al., 2011) – by weighting links by node expression or at-

tribute similarity, for example – many embedding techniques that are applicable to

weighted graphs can be applied to unweighted graphs with node attributes. Addi-

tionally, dynamic networks can be transformed into attributed networks by anno-

tating nodes and edges, and then embedding techniques can be applied to preserve

dynamics (Iacobelli and Figueiredo, 2016). Furthermore, GloDyNE Hou et al., 2020

adapts Skip-Gram for network embedding in a dynamic setting.

2.1.5 Hyperbolic Network Embedding

As mentioned in section 1.6.5, an emerging popular belief in the literature is that the

metric space that underpins complex networks is not Euclidean, but it hyperbolic.

One of the most popular hyperbolic embedding models is the Popularity-Similarity

(or PS) model (Papadopoulos et al., 2012). This model extends the “popularity is at-

tractive” aphorism of preferential attachment (Barabási and Albert, 1999) to include

node similarity as a further dimension of attachment. Informally, nodes ‘like to con-

nect to popular’ nodes but also nodes that ‘so the same thing’ (see section 1.1.8). The

PS model sustains that the clustering and hierarchy observed in real world networks

is the result of this simple principle (Papadopoulos et al., 2012). This model has a
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clear interpretation in two dimensional hyperbolic space, where nodes are assigned

radial co-ordinates and are placed on a hyperbolic disk, with radial coordinates rep-

resenting popularity and angular coordinates representing similarity. Then the hy-

perbolic distance dP2(u, v) between two nodes with polar co-ordinates u = (ru, θu)

and v = (rv, θv), given by the hyperbolic law of cosines (see figure 2.1) as:

DP2(u, v) = arccosh [cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(∆θuv)] (2.3)

∆θuv = π − |π − |θu − θv|| (2.4)

controls their connection probabilities. Nodes with short hyperbolic distances show

a higher probability of being connected. HyperMap (HM) (Papadopoulos, Psomas,

and Krioukov, 2015), a pioneering PS model embedding method, employed maxi-

mum likelihood (ML) to search the space of all PS models with similar structural

properties as the observed network, to find the one that fit the original network best.

This was later extended by Papadopoulos, Aldecoa, and Krioukov, 2015.

Due to the computationally demanding task of maximum likelihood estima-

tion, heuristic methods were developed to improve upon existing PS model em-

bedding techniques. For example, LABNE (Alanis-Lobato, Mier, and Andrade-

Navarro, 2016a) uses Laplacian Eigenmaps was to efficiently estimate the angular

coordinates of nodes in the PS model. The same authors later extended LABNE

with LABNE+HM, which combined both exact and heuristic approaches to lever-

age the performance of ML estimation against the efficiency of heuristic search, with

the trade-off defined with a user controlled parameter (Alanis-Lobato, Mier, and

Andrade-Navarro, 2016b). See figure 2.2 for a pair of example embeddings pro-

duced with LABNE+HM. Additionally, many classical manifold learning techniques

can be applied in the PS model setting with a framework called coalescent embedding

(Thomas et al., 2016). Mercator (García-Pérez et al., 2019) also employs both machine

learning and maximum likelihood methods to learn PS network embeddings.

The n-dimensional Poincaré ball can provide more degrees of freedom in the

embedding process and capture further dimensions of attractiveness than just “pop-

ularity” and “similarity”. The algorithm proposed in Nickel and Kiela, 2017 embeds

networks to the Poincaré ball using retraction updates to optimise an objective that
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(A) Cora_ML (B) Citeseer

FIGURE 2.2: Example PS model embedding of the (A) Cora_ML and (B) Citeseer citation net-
works produced using LABNE+HM (Alanis-Lobato, Mier, and Andrade-Navarro, 2016b).
Radial positions are determined based on node degree. Angular co-ordinates are initially
provided using Laplacian Eigenmaps, and then optimised using HM within a window size
of 2π

100 radians. Node colour corresponds to angular co-ordinate. Network temperature
was set to the default 0.1. Network scaling exponents were set to the auto-computed 3.000

(Cora_ML) and 2.866 (Citeseer).

aims to maximize the likelihood of observing true node pairs versus arbitrary pairs

of nodes in the network. The authors were able to embed hierarchical text corpora,

such that the semantics of word hierarchy was preserved – words with more general

meaning – ‘mammal’, for example – were represented as hyperbolic vectors close to

the origin, whereas word with specific meaning – like ‘tiger’ – could be found close

to the boundary of the ball. This approach was later applied by the same authors on

the hyperboloid model (Nickel and Kiela, 2018), and extended to embed any arbi-

trary parameterised object (Dhingra et al., 2018). Furthermore, hyperbolic skip-gram

models have been proposed (Chamberlain, Clough, and Deisenroth, 2017; Leimeis-

ter and Wilson, 2018), and heterogeneous networks embedded to hyperbolic space

(Wang, Zhang, and Shi, 2019).

Interestingly, Wilson et al., 2014 were able to determine the appropriate curvature

to embed any symmetric dissimilarity data – selecting any of Spherical, Euclidean

or Hyperbolic that is the most appropriate for the data and results in the least opti-

misation.

It is worth mentioning that trees can be embedded in hyperbolic space without

distortion (Sarkar, 2011) and so, some works by embed general graphs to trees and
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then compute an exact distortion-free embedding of the resulting tree (De Sa et al.,

2018).

For attributed hyperbolic network embedding, graph convolution has recently

been generalized to hyperbolic space to allow for non-Euclidean representation

learning on attributed networks (Chami et al., 2019).

2.1.6 Scalability of Network Embedding Algorithms

A common hurdle in network embedding is scale-ability. Even an algorithm with

O(N) complexity can perform poorly when the number of nodes in the network N

is very large, as it typically is for real-world complex systems. Naturally, this leads to

network embedding practitioners to apply simplifications and sampling techniques

in order to provide tractable solutions to real-world problems.

Hierarchical Softmax

Softmax (or the normalised exponential function) for network embedding is defined

as:

p(u | v) =
exp(xT

u xv)

∑v′∈V exp(xT
u xv′)

(2.5)

where u, v ∈ V are nodes in a network with positions xu and xv respectively. Soft-

max has been a popular activation function in the machine learning community for

decades, but its reliance on computing the the summation over denominator for a

single parameter update makes it ultimately unsuitable for network embedding. Be-

cause of this, hierarchical softmax was proposed (Mikolov et al., 2013b). It is built upon

a binary tree where each leaf represents an output, and accordingly transforms the

O(N) complexity of softmax into O (log2(N)). Probabilities are computed by first

building a path from the root of the binary tree to the leaf of interest, and then com-

puting a product of probabilities given by sigmoid functions on all of the internal

nodes of the tree.
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Negative Sampling

An alternative (and increasingly popular) solution to the challenge of network em-

bedding scale-ability it negative sampling. Negative sampling is based on the concept

of noise contrastive estimation (NCE), which essentially states that a good model

should differentiate fake signal from the real one.

Negative sampling objectives typically take the following form:

log p(u | v) = log σ(xT
u xv) +

K

∑
i=1

E
v′∼Pn(u)

[
log σ(−xT

u xv′)

]
(2.6)

where σ(·) is the sigmoid function1.

Pn(·) is the noise distribution that controls the frequency by which a node is se-

lected as a negative sample, which is normally set to be proportional to the frequency

of that node in the network. For example, a common setting of Pn(·) is the uni-gram

distribution to the power of 3/4 (Grover and Leskovec, 2016). In this setting, if a

node v has frequency fv, then its probability for selection is computed as:

pPn(·)(v) :=
f 3/4
v

∑v′∈V f 3/4
v′

(2.7)

‘Frequency in the network’ can mean many things, from degree to number of

occurrences in a corpus of node pairs produce by random walk network sampling

(Grover and Leskovec, 2016). Even what constitutes a negative sample is up for

debate. Most works, however, will exclude nodes that have a relationship with node

u from the set of possible negative samples for node u (Grover and Leskovec, 2016).

K is a hyper-parameter in equation (2.7) that controls the number of negative

samples seen for each positive sample. Obviously, the setting of K involves a trade-

off between training speed and overall final quality. It has been shown that, for small

datasets, K = 10 performs well, and for larger ones, K can be set as low as 3 (Grover

and Leskovec, 2016).

As we can see from the formulation of negative sampling given in equation (2.7),

the original intention was to differentiate signal with logistic regression (Grover and

Leskovec, 2016), however, this is not required, so long as the spirit of differentiating

1The sigmoid function is defined as σ(x) := 1
1+exp (−x) .
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real signal from fake is preserved. For example, Nickel and Kiela, 2017 use negative

sampling as part of an objective function that used softmax.

2.1.7 Evaluation Criteria

Since the problem of network embedding is so general, the measure of a successful

embedding is, naturally, largely problem dependent. For our purposes, we follow

most common practices and evaluate embedding performance in three ways, each

measuring a different and important function of the embedding.

Network Reconstruction

High-quality embeddings should have high-capacity to reflect the original data

(Nickel and Kiela, 2017). As the name implies, network reconstruction is a measure

of the learned embedding to reconstruct the original network. It is an unsupervised

measure that relies only on the edges of the network to act as ground truth. For a

given embedding, nodes are ranked using the distance/similarity measure of the

metric space. The essence of the task is intuitive in that nodes that are adjacent in

the original network should be close together in the learned space, whereas nodes

that are far apart in the network are embedded far apart in the space.

Since E and Ê provide ground truth labels and nodes can be ranked based on

distance – where a smaller distance indicates a higher belief that two nodes should

share a link, global metrics, such as Area Under Receiver Operating Characteristic

(AUROC) and Average Precision (AP), that evaluate rank are preferred. These mea-

sures avoid setting an explicit threshold of distance to say nodes should share a link,

but can be used to determine that threshold later down the line (Fawcett, 2006). In

this setting, every possible threshold is testing – referring to every unique distance

between pairs of nodes of interest. For each setting of threshold, any value greater

than the threshold to set to true and the confusion matrix is determined, along with

the number of True Positives (TP), True Negatives (TN), False Positives (FP), and

False Negatives (FN).

AUROC is the area under the ROC curve that is generated from plotting false

positive rate (FPR) on the x-axis against true positive rate (TPR) on the y-axis for
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TABLE 2.1: A confusion matrix reporting measures commonly required to evaluate a classi-
fier. Each row of the matrix represents the instances in a predicted class while each column

represents the instances in an actual class.

Ground Truth

Positive Negative

Predicted
Positive TP FP

Negative FN TN

every possible setting of a threshold. FPR is the ratio of FP to all negatives (N = FP

+ TN):

FPR =
FP

FP + TN
(2.8)

TPR (also called Recall) is the ratio of TP to all positives (P = TP + FN), and is the

quality of a predictor to detect as many positives as possible:

TPR = Recall =
TP

TP + FN
(2.9)

AUROC ranges between 0 and 1, where a value close to 1 indicates that the predictor

is high-quality: true positives are ranked before true negatives.

AP is the area under the curve generated from plotting recall on the x-axis against

precision on the y-axis, for all possible thresholds. Precision is a measure of a predic-

tors ability to specifically predict true positives while not predicting too many false

positives:

Precision =
TP

TP + FP
(2.10)

AP ranges between 0 and 1, where a value of 1 indicates that a predictor has a high

capacity to be specific, while detecting as many true positives as possible.

Broadly, two categories of network reconstruction measure exist: global network

reconstruction and local network reconstruction. Global network reconstruction

looks at node pairs and ranks the pairs of nodes in the edge set E, against a ground

truth negative set Ê of node pairs not in E (often sampled from V ×V \ E such that

|E| = |Ê|) (Bojchevski and Günnemann, 2018). Often global network reconstruction

would be evaluated using AUROC and AP.
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Local network reconstruction looks at each node in the network individually and

rank all other nodes by distance to that node (Nickel and Kiela, 2017). The idea is

the same: true neighbours should like close and non-neighbours further apart. In

this setting, measures are computed for each node and averaged over all nodes in

the network. Local network reconstruction is evaluating the embedding as a recom-

mender system – for a query node u, what nodes are similar? Typical local network

reconstruction measures are mean Average Precision (mAP), which is the AP for

each node in the network, averaged over all nodes in the network:

mAP =
1
N ∑

u∈V
Precisionu (2.11)

where Precisionu refers to the Precision with respect to query node u. Other local

network reconstruction measures are precision at k (p@k), which looks at the k closest

nodes to a node in the embedding space and reports the precision:

p@k =
number of true recommendations in k closest elements

number of recommendations in k closest elements
(2.12)

Link Prediction

In addition to reconstructing the original data, a common downstream task for em-

beddings is to predict new links. Link prediction is the measure by which embeddings

are able to achieve this.

For static networks, link prediction is evaluated by holding out a small random

sampling of edges from the network. Depending on the algorithm, care may be

taken to ensure that this does not break up connected components or leave any iso-

lated nodes. In this case, as with network reconstruction, a (potentially equal) num-

ber of ground truth non-edges are selected. For structurally dynamic networks, link

prediction is formulated inductively: using G(1), ..., G(t), can we predict G(t + 1)?

In any case, once an embedding is learned, the held-out edges are ranked against

the non-edges and link prediction is evaluated in the same way as network recon-

struction.
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Node Classification

Often nodes in complex networks are labelled. Node classification is the measure to

which node classes can be well separated in the learned space.

Typically the embedding process for node classification is performed in an unsu-

pervised manner – using only topological and, perhaps, node and edge attributes,

to generate a low dimensional representation. However, it may be performed in

a semi-supervised manner – sometimes partial label information may be used in

learning an embedding, in which case node classification is the task of predicting

those labels held out from training (Kipf and Welling, 2016). Once an embedding is

learned, it is used as input to a classifier (a logistic regressor or support vector classi-

fier, for example) that uses small subsets of node labels to assign labels to every node

in the network. The intuition is that high quality embeddings will be able to clearly

separate node classes in the low dimensional space and, therefore, the classifier will

achieve high performance with respect to the held-out labels.

Common measures of classifier performance include: F1 score, precision, recall

and AUROC. F1 is the harmonic mean of precision and recall:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(2.13)

F1 has been criticised since it gives equal importance to precision and recall. In

practice, different types of mis-classifications incur different costs. In other words,

the relative importance of precision and recall is an aspect of the problem (Hand and

Christen, 2018). Other measures are the Matthew’s Correlation Coefficient (MCC)

(Chicco and Jurman, 2020), and the G-measure (the geometric mean of Precision

and Recall) (Tharwat, 2018).

Since, in general, there are more than two classes in most complex networks, the

aforementioned classification measures are reported in the multi-class setting. In

this setting, each class is evaluated separately and the final score is computed as an

unbiased mean (macro-average) or biased mean based on class frequency (micro-

average).
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2.2 Directed Network Embedding

When the weight matrix W describing the connections of a network is asymmetric,

problem 1 becomes the problem of directed network embedding.

2.2.1 Euclidean Directed Network Embedding

Many random walk based approaches can handle both directed and undirected net-

works and are capable of an asymmetric distance measure when both the “source”

and “context” embeddings are retained (Chen, Yang, Tang, et al., 2007; Perozzi, Al-

Rfou, and Skiena, 2014; Grover and Leskovec, 2016). However, care must be taken to

avoid the random walker becoming stuck in a small strongly connected component

in the network – skewing the distribution of node samples. The occurrence prob-

ability of a node in a walk is some implicit measure of node popularity – perhaps

the node has high in-degree or a high probability that a random surfer will teleport

to it (Page et al., 1999). However, for directed networks, a pair of nodes forming a

feedback loop will trap the random walker – inflating the count of those nodes and

forcing the embedding to try “too-hard” to push them apart from the other nodes

in the network. Some random walk based algorithms are tailor made to handle this

drawback using restart (Zhou et al., 2017).

Furthermore, LINE (with second-order proximity) (Tang et al., 2015) is able to

handle directed graphs by assuming that “vertices sharing many connections to

other vertices are similar to each other”. Asymmetric Transitivity Preservation (ATP)

(Sun et al., 2019) aims to directly preserve the inherently asymmetric nature of the

transitive relationships in Community Question Answering graphs, again through

the use of learning separate source, context representations. Knowledge graphs with

heterogeneous (symmetric / asymmetric / one-to-many / many-to-many) relation-

ships have been embedded by Feng et al., 2016.

Embedding of attributed directed networks so far limited to the Euclidean do-

main. Graph2Gauss (G2G) (Bojchevski and Günnemann, 2018) provides an in-

ductive framework to learn Gaussian node representations, based on learning a

Kullback-Leibler divergence based objective. While requiring 2n parameters to learn

an n-dimension representation of a node, this has the advantage of learning a single
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(Gaussian) representation of every node in the network. This is useful for down-

stream tasks beyond link prediction by providing a single vector representation of

a node (the mean of the distribution) upon which to train the downstream model,

like a node classifier. Further, the inductive property of G2G allows it to handle the

embedding of nodes that were not seen during the training process, by learning a

mapping directly from attributes. Despite these desirable features, G2G embeds to

Euclidean space and so the hidden hierarchy of elements may not be well preserved

in low dimensions.

2.2.2 Hyperbolic Directed Network Embedding

Almost all directed network embedding algorithms embed to Euclidean space. The

examples of a non-Euclidean embedding algorithms for directed networks are few.

One approach is to construct a bi-partite network2 from a given directed graph,

where each node is transformed into two nodes in the newly constructed network –

one for incoming edges and one for the outgoing and then embed to the PS model3

(Wu, Di, and Fan, 2019). This model has the drawback that there is only free di-

mension to optimise, constraining the overall representation power of model. Since

the radial co-ordinate of the PS model is a fixed function of node degree, only the

angular similarity co-ordinate is free to optimise.

Directed acyclic graphs (DAGs) can be embedded to the Poincaré disk (Ganea,

Becigneul, and Hofmann, 2018; Suzuki, Takahama, and Onoda, 2019). Of course,

transforming general complex networks into DAGs naturally results in a loss of in-

formation.

2.2.3 Evaluation Criteria

Since directed network embedding is a slight reformulation of problem 1, all of the

evaluation measures identified in section 2.1.7 are applicable to evaluate directed

network approaches.

2See section 1.1.5 for a definition of a bi-partite network.
3The PS model is described in section 2.1.5.
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(A) (B)

FIGURE 2.3: (A) provides and example of a three node motif containing a three node positive
feed-forward loop. The left and top nodes are the inputs, and the right node is the target.
Notice that the left input node modulates the top input node. (B) provides an example of a

three node motif containing a positive feedback loop.

2.3 Network Architectures and Dynamics

2.3.1 Feed-forward Loops

Intricate dynamic properties have been traditionally associated with cascades of cy-

cles (of proteins) (Pomerening, Sontag, and Ferrell, 2003). Cascades of such cycles

form the backbone of most signalling pathways that propagate external stimuli from

the membrane to the nucleus or other distant targets (Kholodenko, 2006).

In addition to cascades, another highly enriched directed acyclic motif in molec-

ular networks are feed-forward loops. Feed-forward loops (FFLs) are small, three-node

motifs containing two input node, one of which modulates the other, and one target

node. Figure 2.3A provides an example of one such motif. Note that the terminology

is a little confusing: despite being commonly referred to as loops in the literature,

FFLs do not contain a cycle in the graph theoretic sense.

FFLs have been well studied in the context of signalling (Mangan and Alon,

2003). They have been found to be responsible for the signal processing functions

that perform information transmission:

• Persistent signal detection: coherent FFLs have been shown to filter out ‘spu-

rious pulses’ (Mangan and Alon, 2003; Chou, 2018).

• Fold-change detection: incoherent FFLs detect input stimulus fold-change and

differentiate this from the noise of the background (Goentoro et al., 2009).
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• Oscillatory signal detection: incoherent FFLs have also been shown to detect

oscillating signals and even count the number of periodic pulses (Zhang et al.,

2016a).

• Pulse shaping: incoherent FFLs can change the waveform of transmitted

pulses. In molecular networks, especially in gene regulatory networks, pulse

shaping is a mechanism for speeding response times (Mangan and Alon, 2003).

2.3.2 Feedback Loops

Within molecular and signalling networks, the notion of feedback is one of the most

fundamental concepts in biological control. Positive feedback amplifies the signal,

whereas negative feedback attenuates it (Kholodenko, 2006). Feedback loops can be

used to sense the duration of signals (Kolch, Calder, and Gilbert, 2005). In addi-

tion, attractor landscape analysis has revealed that feedback loops control cellular

response (Choi et al., 2012). Developmental transcription networks often use motifs

comprised positive-feedback loops that are made up of two transcription factors that

regulate each other (Alon, 2007), and human gene regulatory networks (GRNs) are

enriched in positive-positive two-node loops (Kim et al., 2011b). Furthermore, it has

been shown that cell-cycle networks contains a giant backbone motif spanning the

entire network nodes that provides the main functional response, and the remaining

edges form smaller motifs (Wang et al., 2010).

Positive Feedback Loops

Positive feedback loops are defined as cyclic motifs without any negative feedback

loop. Figure 2.3B provides an example of a three-node positive feedback loop.

The dynamics generated by positive cyclic motifs are ultra-sensitive response and

bi-stability (or multi-stability):

• Ultra-sensitivity generates a sigmoid input-output relationship that is steeper

than a Michaelis (hyperbolic) response. Although ultra-sensitivity can be

achieved by cascades and feed-forward loops, robust ultra-sensitivity is

mainly realised by positive feedback loops (Mitrophanov and Groisman, 2008).
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Ultra-sensitivity amplifies signals, which is an important information process-

ing function for nonlinear information transmission. Usually, positive feed-

back loops amplify the magnitudes of relative changes, i.e., fold changes, de-

tect by feed-forward loops (Goentoro et al., 2009) or allosteric proteins (Olsman

and Goentoro, 2016), rather than absolute changes.

• Bi-stability is a special case of switching dynamics generated by positive feed-

back loops. It has two stable steady-states for a single value of the input. This

characteristic indicates that stable steady-states depend on history, i.e., the di-

rection of the dynamics. Such dependence of the state on its history is also

called hysteresis.

These dynamics enable molecular networks to amplify signals, made binary deci-

sions and store state information. Through artificially evolving dynamical networks

that display specific dynamical characteristics of real-world GRNs related to the cell

differentiation process (namely, hysteresis, and multi-stationarity), it has been shown

that multi-stationarity, in particular, is driven by a high ratio of PFLs to negative

ones (Kim et al., 2008). Furthermore, PFLs have been shown to facilitate switch-like

behaviour (Shin et al., 2010).

Negative Feedback Loops

Negative feedback provides adaption to noise and perturbations, which is important

for maintaining homeostasis of the whole system. Strong negative feedback can also

result in dampened or sustained oscillations for both the input and output nodes:

• Oscillation in molecular networks is used to regulates the timing and speed of

biological processes (Ferrell Jr, Tsai, and Yang, 2011).

• Adaptation is a system’s ability to return to basal or near-basal output level

after responding to a change in input stimulus even when the change is per-

sistent. Adaptation not only allows signalling networks to more accurately

detect changes in a wide range of input, but also plays an important role in

maintaining homeostasis against perturbations (Ma et al., 2009).
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2.3.3 Higher-Order Network Architectures

Small-scale local network architectures can only give rise to simple small-scale dy-

namics, like bi-stability and oscillations. However, complex network architectures

are necessary to generate complex global dynamics to strike a balance between ro-

bustness and flexibility.

General core-periphery structure is ubiquitous in complex systems. The concept

was introduced by Borgatti and Everett, 2000 and entails single dense, cohesive core

and a sparse, unconnected periphery. Identification required a combinatorial ap-

proach. Contemporary methods relax the strict initial definition to search for multi-

ple cores (Rombach et al., 2014; Zhang, Martin, and Newman, 2015), and introduc-

ing residual nodes that do not belong to any core-periphery structure in the network

(Kojaku and Masuda, 2017).

The bow-tie architecture has been well studied for biological networks. Research

suggests that the bow-tie architecture has evolved over time to facilitate robust bi-

ologic function (Kitano, 2004), and, based on their design, also have inherent but

predictable fragilities (Csete and Doyle, 2004). This was studied in detail by Fried-

lander et al., 2015. Furthermore, the strongly-connected processing cores of bow-tie

architectures contain many feedback loops.

In general, the definition of what is meant by ‘bow-tie architecture’ that was

given in section 1.4.5 is one of many. Bow-tie builder (Supper et al., 2009) does

not constrain the core of a bow-tie to be strongly connected, merely that it must be

minimal and central to a desired set of inputs and outputs. Accordingly, they adopt

a greedy heuristic search to identify a core for a set of proteins in order to reconstruct

pathways from a protein-protein interaction (PPI) network.

2.3.4 Boolean Network Control

Controlling boolean networks is the act of identifying the set of driver nodes with

time-dependent control that can guide the system’s entire dynamics. Investigation

into many real-world networks has revealed a number of interesting properties (Ne-

pusz and Vicsek, 2012):

• they are much more controllable than their randomised counterparts;
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• transcriptional regulatory networks are particularly easy to control;

• scale-free degree distributions have better control-ability properties than un-

correlated networks;

• and, positively correlated in- and out-degrees enhance the control-ability of

the proposed dynamics.

A driver node cannot be determined by simple micro-scale topological measures –

for example, driver nodes tend not be high-degree nodes (Liu, Slotine, and Barabási,

2011). Despite this, it has been shown that there is a link between a node’s topolog-

ical position in the underlying hierarchical structure of the network to its ability to

control a directed weighted network (Liu, Slotine, and Barabási, 2012).

Since the task of driver node identification is always subject to the constraint that

the set of driver nodes is as small as possible, often heuristic searches are employed.

For example, a genetic algorithm (GA) was employed to identify the minimal set of

‘control nodes’ for a number of GRNs (Kim, Park, and Cho, 2013). As mentioned

in section 1.5.10, control nodes refer to the set of nodes in the network that must

have their value pinned to their value in a desired attractor state, such that the entire

state landscape of the resulting network transforms into the basin of attraction for

that attractor state. In other words, every initial network state is guaranteed to con-

verge to a desired final state. This opens to the door to promising novel drug target

discovery.

2.3.5 Reducing Complexity of Boolean Networks

Since enumeration of the entire state landscape of a general GRN is intractable4, it

is necessary to reduce its complexity. By reducing a GRN to a kernel, by preserving

important genes, Kim et al., 2011a were able to reduce the complexity of the network

dramatically, while preserving many known drug targets. Furthermore, decompo-

sition of large boolean networks into directed acyclic graphs (DAGs), where each

node represents a strongly connected component (SCC) in the original network, can

reduce the complexity of finding attractors (Zhao, Kim, and Filippone, 2013; Su,

Pang, and Paul, 2019).

4Recall, a boolean network of N nodes will have a state landscape containing 2N unique states.
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2.3.6 Evaluation Criteria

The third research question of this thesis is concerned with “driving global network

behaviour”. Driving network behaviour here refers to controlling the expression of

subsets of nodes in a boolean network to guide overall network behaviour.

Since attractors govern cell fate (Huang et al., 2005), we define the measure of

the impact made to the behaviour of a boolean network to be the impact made in

terms of its attractors (Kim, Park, and Cho, 2013). To determine the attractors of a

boolean network, its state landscape must be computed. If the network is too big,

then this is intractable and so the state landscape is commonly sampled (Helikar et

al., 2008). Sampling typically involves randomly selecting a number of initial states

– say, 10000 – and computing the resulting attractors for those sampled states using

the update scheme of interest (Helikar et al., 2008; Kim, Park, and Cho, 2013). Once

attractors for a boolean network have been determined, the impact of controlling a

set nodes can be measured. This is achieved by pinning that value of the nodes and

determining the resulting attractors for the controlled network. We are concerned

with one primary measure of control: control kernels.

Control Kernel Identification

As discussed in section 1.5.10, a control kernel is a minimal set of nodes required

to drive a network to converge to a desired target state (or set of states) (Kim, Park,

and Cho, 2013). Figure 2.4 provides an example of the effect that a control kernel

has upon the state transition graph of a small boolean network. To evaluate the

success of a potential control kernel, a desired target attractor is selected (commonly

this is attractor with the largest basin – corresponding to ‘normal cell function’ –

but that is not required), and the set of nodes in the potential kernel set have their

values pinned to their corresponding values in the target attractor. In the case that

the desired attractor is cyclic, then a randomly selected state within that attractor is

selected (Kim, Park, and Cho, 2013).

A successful control kernel would force all initial conditions to converge to the

desired attractor, after an arbitrary number of updates. As such, the measure of

kernel success is binary: either this condition is satisfied or it is not. Two kernels
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(A) STG of the original boolean network (B) STG of the controlled boolean network

FIGURE 2.4: Example of the effect of a control kernel on the state transition graph (STG). (A)
provides an example of (a subset of) the STG of a small boolean network. Each node rep-
resents a boolean network state and an edge between states signifies that a state transitions
into the other after a network update. It shows three steady state attractors, identified as the
states with self loops. For each attractor, all states in the corresponding basin are coloured in
the same colour. The red square denotes the primary attractor (the attractor with the largest
basin) which has been set as the target attractor for control. (B) shows the STG of the same
network after control. Now all states belong to the basin of the target attractor, meaning that
any initial network condition is guaranteed to eventually converge to the desired attractor.

may be compared based on size, where a smaller kernel is preferred over a larger

one.

Naturally, when the state space is large, and enumerating all attractors for the

network is computationally infeasible, the sampling strategy mentioned above is

applied to select a number of random initial states, and full basin sizes are estimated

based on the proportion of states in the partially reconstructed STG that fall in the

basin of an attractor.

2.4 Chapter Summary

This chapter has reviewed relevant works in the fields of directed and undirected

network embedding, network architectures and network control.

For network embedding, we had previously defined the general problem of net-

work embedding in problem 1. We saw that the problem is general and ultimately

depends on the downstream tasks of interest. Accordingly, approaches to the task

of network embedding are varied and diverse. Solutions in the literature broadly

fall into two categories: shallow (section 2.1.1) and deep (section 2.1.3). For both
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approaches, random walks are commonly used to sample the network, allowing for

efficient sampling of the network, while allowing for the easy incorporation of node

and/or edge attributes. In addition, the literature has shown that a hyperbolic metric

space can better explain all of the key characteristics of complex networks, compared

to Euclidean spaces. However, few hyperbolic network embedding approaches are

able to generalise to attributed, or even weighted, networks.

Following this, in section 2.2, we review literature related to directed network

embedding, a more challenging variation of problem 1, since most embedding ap-

proaches impose a symmetric measure of similarity over nodes in the target space.

We have seen that random walks can sample directed networks efficiently, with the

caveat that walks must be designed to avoid the walker becoming stuck. Further-

more, the output of any directed network embedding algorithm must accommodate

for an asymmetric measure of similarity between nodes. This may include learn-

ing two representations of each node in the network, or embedding to probability

distributions and using a pseudo-metrics, like Kullback-Leibler divergence5.

In section 2.3, we review known properties of network architectural features. We

saw the importance of both feed-forward and feedback loops in signal processing. In

particular, we note that feed-forward loops are responsible for the detection of per-

sistent signals, positive feedback loops amplify signal, and negative feedback loops

are responsible for robustness to perturbations. We then examined techniques to

uncover larger scale architectural features in dynamic networks and note their role

in the facilitation of signal flow as well emphasising that the cores of bow-tie archi-

tectures defined in section 1.4.5 are highly enriched with feedback loops, whereas

feed-forward loops are found the in- and out-components. Finally, in section 2.3.4,

we reviewed the topic of network control, its relationship to potential drug target

candidates, as well as a common evaluation measure for network control.

5We refer to Kullback-Leibler divergence as ‘pseudo-metric’ since it does not satisfy all the neces-
sary conditions for a function to be considered a metric, but it does generate a topology on the space
of probability distributions.
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Chapter 3

Hyperbolic Embedding of

Weighted and Attributed Networks

Previously, we have introduced the problem of attributed network embedding. The

literature review reported a wide variety of solutions, but none that could handle

general attributed and weighted networks. Furthermore, some approaches could

not directly control the trade-off between topology and attributes. This chapter in-

troduces our approach to address this gap Section 3.1 states the importance of the

problem and the motivation behind our solution. Section 3.2 introduces our solution

in detail. Section 3.3 validates our approach on a number of benchmark datasets

against all of the metrics introduced in section 2.1.7. Finally, section 3.4 summarizes

the chapter.

3.1 Introduction

As introduced previously, the success of machine learning algorithms often depends

upon data representation (Cui et al., 2018). Unsupervised representation learning –

learning alternative (low dimensional) representations of data – has become com-

mon for processing information on non-Euclidean domains, such as complex net-

works. Prediction over nodes and edges requires careful feature engineering (Grover

and Leskovec, 2016) and representation learning leads to the extraction of features

from a graph that are most useful for downstream tasks, without careful design or a

priori knowledge.
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Our literature review has suggested that an emerging representation learning

approach for complex networks is hyperbolic embedding (see section 2.1.5). This

approach is based on compelling evidence that the underlying metric space of many

complex networks is hyperbolic (Krioukov et al., 2010). A hyperbolic space can be

interpreted as a continuous representation of a discrete tree structure that captures

the hierarchical organisation of elements within a complex system (Krioukov et al.,

2010). Furthermore, hyperbolic metric spaces have been shown to explain other

characteristics typical to complex networks, characteristics such as clustering (Kri-

oukov et al., 2010) and the small world phenomenon (Bianconi and Rahmede, 2017).

Hyperbolic spaces therefore offer a natural continuous representations of hierarchi-

cal complex networks (Krioukov et al., 2010).

However, existing hyperbolic embedding approaches cannot deal with at-

tributed networks, of which nodes (entities) are richly annotated with attributes

(Hamilton, Ying, and Leskovec, 2017). For example, a paper within a citation net-

work may be annotated with the presence of keywords, and the people in a social

network might have additional information such as interests, hobbies, and place

of work. These attributes might provide additional proximity information to con-

strain the representations of the nodes. Therefore, incorporating node attributes can

improve the quality of the final embedding, with respect to many different down-

stream tasks (Hamilton, Ying, and Leskovec, 2017).

This chapter proposes the first hyperbolic embedding method for attributed net-

works called HEAT. The intuition behind HEAT is to extract training samples from

the original graph, which can capture both topological and attribute similarities,

and then learn a hyperbolic embedding based on these samples. To extract training

samples, a novel random walk algorithm with a teleport procedure is developed.

The purpose of this walk is to capture phantom links between nodes that do not

necessarily share a topological link, but have highly similar attributes. To learn the

embeddings from these extracted samples, HEAT employs a novel learning objec-

tive that is optimised using full Riemannian stochastic gradient descent (RSGD) in

hyperbolic space.

Thorough experimentation shows that HEAT can achieve better performance on
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several downstream tasks compared with several state-of-the-art embedding algo-

rithms. As a general framework, HEAT can embed both unattributed and attributed

networks with continuous and discrete attributes, which opens the door to hyper-

bolic manifold learning for a wide range of complex networks.

3.2 HEAT: Hyperbolic Embedding of Attributed Networks

3.2.1 Hyperbolic Attributed Network Embedding: Problem Definition

We reformulate problem 1 for hyperbolic attributed network embedding as follows:

We consider a network of N nodes given by the set V with |V| = N. We use E to

denote the set of all interactions between the nodes in our network. E = {(u, v)} ⊆

V × V. We use the matrix W ∈ RN×N to encode the weights of these interactions,

where Wuv is the weight of the interaction between node u and node v. We have

that Wuv 6= 0 ⇐⇒ (u, v) ∈ E. If the network is unweighted then Wuv = 1 for all

(u, v) ∈ E. Furthermore, the matrix X ∈ RN×d describes the attributes of each node

in the network. These attributes may be discrete or continuous. Edge attributes

could be handled by transforming them into node attributes shared by both nodes

connected by the edge. If the network does not have attributes, then we set d = N

and X = IN to the N-dimensional identity matrix.

Problem 2. Given a network, described by G = (V, W, X), find a set of low-dimensional

vectors on the n-dimensional hyperboloid {xv ∈ Hn | v ∈ V}, with n � N. Hyperbolic

distance, given by geodesics on the hyperboloid (see section 1.7.5), reflects node similarity in

the embedding space. The described problem is unsupervised.

3.2.2 HEAT Overview

In order to solve problem 2, we introduce our algorithm HEAT. Our proposed ap-

proach consists of two main components:

1. A novel network sampling algorithm based on random walks to extract sam-

ples than can capture both topological and attribute similarity.

2. A novel learning algorithm that can learn hyperbolic embeddings from train-

ing samples using Riemannian stochastic gradient descent in hyperbolic space.
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3.2.3 Sample the Network using Random Walks with Jump

We propose a novel random-walk procedure to obtain training samples that capture

both topological and attribute similarity. Random walks have been proposed in the

past as a robust sampling method of elements from structured data, such as graphs,

since they provide an efficient, flexible and parallelise-able sampling method (Per-

ozzi, Al-Rfou, and Skiena, 2014). For every node in the network, several walks with

a fixed length l are performed (Grover and Leskovec, 2016). We note that random

walks traditionally take into account only first-order topological similarity, that is:

nodes are similar if they are connected in the network. However, additional topo-

logical similarity can also be considered. For example, second-order similarity be-

tween nodes (that is: the similarity of neighbourhoods) could be incorporated into

the topological similarity matrix using a weighted sum (Wang, Cui, and Zhu, 2016).

We leave this as future work.

We propose that, in addition to standard random walks which capture topolog-

ical similarity, we use attribute similarity to ‘jump’ the random walker to the nodes

with similar attributes. To this end, we define the attribute similarity Y as cosine

similarity of the attribute vectors of the nodes. We assign a value of 0 similarity to

any negative similarity values. That is:

Yuv = max

[
XT

u Xv

||Xu||||Xv||
, 0

]
(3.1)

where || · || is the Euclidean norm. We select cosine similarity as it can readily handle

high dimensional data well without making a strong assumption about the data. We

propose HEAT as a general framework and, so, can change the cosine similarity to

a more sophisticated and problem-dependant measure of pairwise node attribute

similarity.

To define the probability of moving from a node to another based on both topo-

logical and attribute similarity, we then additionally define W̄ and Ȳ to be the row-

normalises versions of the weight matrix W and attribute similarity matrix Y re-

spectively. Each row in W̄ and Ȳ describes a discrete probability distribution cor-

responding to the likelihood of jumping from one node to the next according to

either topological similarity or attribute similarity. In detail, the entry W̄uv encodes
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the probability of moving from node u to v based on the strength of the topological

link between u and v, and Ȳuv likewise encodes the teleport probability based on

attribute similarity.

Controlling the Trade-Off Between Topology and Attributes

To control the trade-off between topology and attributes, we introduce the hyper-

parameter 0 ≤ α ≤ 1. Formally, we use i to denote the ith node in the walk (x0 = s),

and for each step i = 1, 2, ..., l in the walk, we sample πi ∼ U(0, 1) and determine

the ith node as follows:

P(xi = v | xi−1 = u) =


Ŵuv if πi < α,

Ŷuv otherwise.
(3.2)

We follow previous works and consider nodes that appear within a maximum

distance of each other in the same walk to be context pairs (Grover and Leskovec,

2016; Perozzi, Al-Rfou, and Skiena, 2014). We call this maximum distance the

“context-size” and it is a hyper-parameter that controls the size of a local neigh-

bourhood of a node. Previous works show that increasing context size typically

improves performance, at some computational cost (Grover and Leskovec, 2016).

All of the source-context pairs are added into a set D.

3.2.4 Setting α

For practical applications, to set the value of the hyper-parameter α that controls the

trade-off between topology and similarity in the sampling process, we suggest the

following approach: First, randomly sample a proportion of edges from the network

and remove them. Next, select an equal number of ‘non-edge’ node pairs (u, v) ∈

V × V \ E. These two edge sets will form a validation set. Then perform HEAT to

generate hyperboloid embeddings for a range of values of α. Removed edges can

be ranked against the sampled non-edges and a global ranking measure, such as

AUROC or AP, could be used to select a value for α. This procedure is performed in



Chapter 3. Hyperbolic Embedding of Weighted and Attributed Networks 72

section 3.3.4, where we evaluate link prediction. As we show in section 3.3.6, HEAT

is robust in general to the setting of α for three common downstream tasks.

3.2.5 Hyperboloid Embedding Learning

For the hyperboloid embedding learning procedure of HEAT, we aim to maximize

the probability of observing all of the pairs in (u, v) ∈ D in the low-dimensional

hyperbolic space.

We define the probability of two nodes sharing a connection to be a function of

their distance in the embedding space. This is motivated by the intuition of network

embedding that nodes separated by a small distances share a high degree of simi-

larity and should, therefore share a high probability of connection, and nodes very

far apart in the embedding space should share a low probability of connection. This

principle forms the basis of an objective function that is optimised by HEAT to learn

node embeddings.

We make the common simplifying assumption that a source node and neigh-

bourhood node have a symmetric effect over each other in feature space (ie:

P((u, v)) = P((v, u)) for all u, v ∈ V) (Grover and Leskovec, 2016). To this end,

we define the symmetric function:

P̂((u, v)) := −D2
Hn(u, v) (3.3)

to be the un-normalised probability of observing a link between source node u and

context node v, where u and v are their respective hyperbolic positions. We square

the distance because this leads to stable gradients1. We normalise the probability

using:

P((u, v)) :=
1

Z(u)
exp

[
P̂((u, v))

]
(3.4)

Z(u) := ∑
v′∈V

exp
[
P̂((u, v′))

]
(3.5)

where Z(u) is a normalising partition function.

1For x ∈ Hn, and x′ ∈ Hn, lim
x′→x
〈x, x′〉Rn:1 → −1 and lim

x→−1
∂x arccosh2(−x) → 2. Contrast this with

lim
x→−1

∂x arccosh(−x)→ ∞ (De Sa et al., 2018).
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Negative Sampling

Computing the gradient of the partition function Z(u) involves a summation over all

nodes v ∈ V, which for large networks, is prohibitively computationally expensive

(Grover and Leskovec, 2016). Following literature (see section 2.1.6), we overcome

this limitation through negative sampling. We define the set of negative samples for u

as the set of v ∈ V for which we observe no relation with u:

Neg(u) := {v ∈ V | (u, v) 6∈ D} (3.6)

We further define:

NegK(u, v) := {xi ∼Pn Neg(u) | i = 1, 2, ..., K} ∪ {v} (3.7)

to be a random sample with replacement of size K from the set of negative samples of

u, according to a noise distribution Pn including v. Following Grover and Leskovec,

2016, we set Pn = U
3
4 , the uni-gram distribution raised to the 3

4 power2.

We aim to represent the obtained distribution of pairs in a low-dimensional hy-

perbolic space. To this end, we formulate a loss function L that encourages maximis-

ing the probability of observing all positive sample pairs P((u, v)) for all (u, v) ∈ D

and minimising the probability of observing all other pairs. To this end, we define

the loss function L for an embedding Θ = {u ∈ Hn | u ∈ V} to be the the mean

of negative log-likelihood of observing all the source-context pairs in D, against the

negative sample noise:

L(Θ) = − 1
|D| ∑

(u,v)∈D
log

[
exp

(
−D2

Hn(u, v)
)

∑v′∈NegK(u,v) exp
(
−D2

Hn(u, v′)
)] (3.8)

The numerator of equation (3.8), exp
(
−D2

Hn(u, v)
)
, is concerned with the hy-

perbolic distance between nodes u and v in the positive sample set D. Minimising

L involves minimising the distance between u and v in the embedding space. The

denominator ∑v′∈NegK(u,v) exp
(
−D2

Hn(u, v′)
)

is a sum over all v′ in a given sample

2The probability that a node is selected as a negative sample is proportional to its occurrence prob-
ability, that we define to be the number of times that it appeared over all the random walks.
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of size K of the negative samples for node u. Minimising L involves maximising this

term, thereby pushing u and v′ far apart in the embedding space. Overall, we ob-

serve that minimising L involves maximising P((u, v)) for all (u, v) ∈ D as required.

This encourages source-context pairs to be close together in the embedding space,

and u to be embedded far from the noise nodes v′ (Nickel and Kiela, 2017).

3.2.6 Optimisation

Since we use hyperboloid model, unlike some previous works (Nickel and Kiela,

2017; De Sa et al., 2018) that use the Poincaré ball model and approximate gradients

with retraction updates, we are able to use full Riemannian optimisation and so our

gradient computation is exact and possesses a simple form (Wilson and Leimeis-

ter, 2018; Nickel and Kiela, 2018). We follow a three step procedure in to compute

gradients and then update hyperbolic coordinates (Nickel and Kiela, 2018). The pro-

cedure is based on the fact that the loss function L is defined over the whole ambient

Minkowski space Rn:1, which is further defined over Hn ⊂ Rn:1. Therefore, for a

given point on the hyperboloid u ∈ Hn, we can compute the gradient of L with re-

spect to u, denoted ∇Hn

u L ∈ TuHn. Then to perform gradient descent optimisation,

we move u along −∇Hn

u L by a small amount η to x = −η∇Hn

u L ∈ TuHn. Finally we

map x back to Hn using an exponential mapping.

To compute the gradient of L for vector u ∈ Hn with respect to the hyperboloid

∇Hn

u L, we first compute the gradient with respect to the Minkowski ambient space

Rn:1 as:

∇Rn:1

u L =

(
∂L
∂u1

∣∣∣∣
u
, ...,

∂L
∂un

∣∣∣∣
u
,− ∂L

∂un+1

∣∣∣∣
u

)
(3.9)

It follows from equation (3.9) that:

∇Rn:1

u 〈u, v〉Rn:1 = v (3.10)
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(A) (B) (C)

FIGURE 3.1: Three step optimisation on Hn. (A) provides a representation of H1 a one
dimensional manifold in two dimensional Minkowski space R1:1. One point on H1 is high-
lighted: u. The red arrow is an example ∇Rn:1

xu L vector. Finally, TuHn is given by the dotted
black line. (B) highlights the component of ∇Rn:1

xu L lying on TuHn. Finally, (C) presents the
mapping from −η∇Hn

u L back to the Hyperboloid using the exponential map Expu.

Let ouv := −D2
Hn(u, v) and NegK(u) :=

⋃
{v|(u,v)∈D}

NegK(u, v). Then:

∇Rn:1

u L =
1
|D| ∑

v∈NegK(u)
(δvv′ − P((u, v))) · ∇Rn:1

u ouv′ (3.11)

and

∇Rn:1

u ouv = 2 · DHn(u, v)√
〈u, v〉2

Rn:1 − 1
· v (3.12)

where δvv′ is the Kronecker delta function3.

We then use the vector projection formula to compute the projection of the am-

bient gradient to its component in the tangent space:

∇Hn

u L = ∇Rn:1

u L + 〈u,∇Rn:1

u L〉Rn:1 · u (3.13)

Having computed the gradient component in the tangent space of u, we apply

the hyperboloid exponential map (equation (1.32)) to take a vector x ∈ TuHn to its

corresponding point on the hyperboloid.

Altogether, we have that the three-step procedure for computing the new posi-

tion of u, with learning rate η is:

1. Calculate ambient gradient ∇Rn:1

u L (equations (3.11) and (3.12)),

3δvv′ =

{
1, if v = v′,
0, otherwise.
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TABLE 3.1: Network statistics. Key: N is the number of nodes, |E| is the number of edges, d
is the dimension of node features, y is the number of classes.

Network N |E| d y

Cora_ML (Bojchevski and Günnemann, 2018) 2995 8416 2879 7
Citeseer (Bojchevski and Günnemann, 2018) 4230 5358 2701 6
Pubmed (Bojchevski and Günnemann, 2018) 18230 79612 500 3

PPI (LCC) (Hamilton, Ying, and Leskovec, 2017) 3480 54806 50 121
MIT (Hou, He, and Tang, 2020) 6402 251230 2804 32

2. Project ∇Rn:1

u L to tangent ∇Hn

u L (equation (3.13)),

3. Set u = Expu

(
−η∇Hn

u L
)

(equation (1.32)).

Figure 3.1 provides an example of this procedure operating on H1.

3.2.7 Complexity Analysis

Building the attribute similarity matrix has complexity O(N2). Performing random

walks has time complexity O(sNl), where s is the number of walks starting from

each node. This returns sN walks. The sliding window with context-size c will

give at sN(l − c + 1)(c− 1) training pairs. To learn node embeddings, we optimise

equation (3.8) by feeding in all training pairs. The complexity for each pair is O(1 +

K) where K is the number of negative samples, therefore the overall complexity of

learning is O((1 + K)|D|).

3.3 Experimental Validation

3.3.1 Datasets

We evaluate HEAT on three citation networks (Bojchevski and Günnemann, 2018),

one PPI network (Hamilton, Ying, and Leskovec, 2017), and one social network for

MIT university (Hou, He, and Tang, 2020). We select these citation networks because

they are a common set of networks used to evaluation embedding algorithms (Kipf

and Welling, 2016; Bojchevski and Günnemann, 2018). We select the PPI network

to evaluate performance on a different network type than citation. For the PPI net-

work, (Hamilton, Ying, and Leskovec, 2017) use positional gene sets, motif gene sets

and immunological signatures as features and gene ontology sets as labels, collected
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(A) (B) (C)

(D) (E)

FIGURE 3.2: Degree distributions and statistics of the five network datasets. Both axes are
on a log scale. Left to right: (A) Cora_ML, (B) Citeseer, (C) Pubmed, (D) PPI, and (E) MIT.

from the Molecular Signatures Database (Subramanian et al., 2005). Each connected

component represents a different tissue sample. For our experiments, we select the

largest connected component. Features for all networks were scaled to have a mean

of 0 and a standard deviation of 1. We also use a social network for MIT univer-

sity composed from Facebook friendships. Following Hou, He, and Tang, 2020,

we use the “year” attribute as a class label and take the remaining six attributes

as input attributes using a one-hot encoding. Table 3.1 shows the statistics of these

five networks. Figure 3.2 shows log-log plots of the degree distributions of the five

networks. We observe that all five follow a broadly scale-free degree distribution,

characterised by a straight line on a log-log plot, which suggest that a hyperbolic

embedding space is a suitable choice for these networks.

3.3.2 Benchmark Algorithms and Settings

Table 3.2 details all of the benchmark algorithms. For all benchmark methods we

adopt the original source code. We train all methods in an unsupervised manner.

For hyper-parameter settings we follow the suggestions of the original papers. For
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TABLE 3.2: Description of benchmark algorithms

Algorithm Description

DEEPWALK (Perozzi, Al-Rfou, and Skiena, 2014) One of the most successful rep-
resentation learning approaches
based on random walks. Considers
only structural information.

ATTRPURE (Hou, He, and Tang, 2020) Performs SVD on a devised at-
tribute similarity matrix.

TADW (Yang et al., 2015) Uses matrix factorisation to jointly
model attribute and structural in-
formation.

AANE (Huang, Li, and Hu, 2017a) A distributed alternative to TADW.

SAGEGCN (Kipf and Welling, 2016) Graph convolutional network
(GCN) originally designed for
semi-supervised learning but
adapted in (Hamilton, Ying, and
Leskovec, 2017) for unsupervised
learning.

N&K (Nickel and Kiela, 2017) Hyperbolic embedding approach
based only on structural informa-
tion.

DEEPWALK, we set walks per node to 10, walk length to 80, context size to 10 and

top-k value to 30. For TADW, and AANE, we set the balancing factors to 0.2, 0.05,

and 0.8 respectively. For SAGEGCN, we set learning rate to 0.001, dropout rate to 0.5,

batch size to 512, normalisation to true, weight decay rate to 1e− 4 and epochs 100.

For N&K, we set learning rate to 1.0, epochs to 1500, number of negative samples

to 10, batch size to 512, and burn-in to 20 epochs. For HEAT, we set learning rate

1.0, epochs to 5, number of negative samples to 10, batch size to 512, context-size to

10, walks per node to 10, and walk length to 80. We fix α = 0.2 for all experiments,

which we determined using the procedure described in section 3.2.4 on the Cora_ML

network. As shown in section 3.3.6, the performance of HEAT is robust to the setting

of α. For each experiment, we perform 30 independent runs of all algorithms and

report the mean result.

3.3.3 Network Reconstruction

As identified in section 2.1.7, we following common practice and use network recon-

struction to evaluate the capacity of the learned embeddings to reflect the original
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data (Nickel and Kiela, 2017). After training our model to convergence upon the

complete information, we compute distances in the embedding space between all

pairs of nodes according to both models.

Table 3.3 provides a summary of the network reconstruction results. From this

we see that HEAT has a high capacity for learning network structure, even at low

dimensions. Furthermore, by incorporating attributes, performance increased fur-

ther on two out of the five networks studied. Table 3.4 provides statistics from a

one-sided t-test for network reconstruction. We compare against the best bechmark

aglroithm for each network based on AP.

3.3.4 Link Prediction

Following literature (see section 2.1.7), to evaluate the link prediction ability of the

learned embeddings, we randomly select 10% of the edges in the network and re-

move them (Nickel and Kiela, 2017). We then randomly select also an equal number

of true non-edges in the network. An embedding is learned for each incomplete net-

work and pairs of nodes are ranked by distance. Table 3.5 provides a summary of

the link prediction results. T-test statistics of a one-sided t-test between HEATα=0.2

and the best ranked benchmark algorithm according to AP are provided in table 3.7.

From this, we see that HEAT is capable of highly competitive link prediction ability

with and without attributes. We see that the inclusion of attributes improves perfor-

mance on three out of five networks and suggest that this is because of the high level

of homophily4 in citation networks.

3.3.5 Node Classification

To evaluate node classification, we learn an embedding, using complete topological

and attribute information with no knowledge of class labels. We then use an out-

of-the-box Support Vector Classifier (SVC) to evaluate the separation of classes in

the embedding space For hyperbolic embeddings (HEAT and N&K), we first project

to the n-dimensional Klein model of hyperbolic space Kn (see section 1.7.4) , which

preserves straight lines (Cannon et al., 1997). For the PPI network, each protein has

4Here, ‘homophily’ refers to the preference for nodes to connect to similar nodes (Kim and Altmann,
2017).
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TABLE 3.3: Summary of network reconstruction for embedding dimension 10. We present
AUROC and AP scores, mean average precision (mAP) and precision at k (p@k) for k ∈
{1, 3, 5, 10} to 3 decimal places and rank to 1 decimal place. Rank is the average position
that a true edge appears in the list of false edges ranked by distance. For mAP, we rank
distances with respect to each node in the network and compute a separate precision score
for each node, then report the mean of these precision. For p@k, we report the number of
the k closest nodes that are true neighbours. All scores are averaged over 30 random starting

seeds. Standard deviation is given in brackets.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

N&K 209.8(5.7) 0.987(0.000) 0.986(0.000) 0.674(0.002) 0.791(0.005) 0.736(0.005) 0.723(0.004) 0.713(0.004)
AANE 3945.7(29.5) 0.758(0.002) 0.775(0.003) 0.145(0.001) 0.182(0.003) 0.192(0.003) 0.206(0.002) 0.238(0.002)
TADW 539.9(13.4) 0.967(0.001) 0.959(0.001) 0.401(0.002) 0.458(0.004) 0.425(0.004) 0.438(0.003) 0.444(0.005)

ATTRPURE 4768.0(33.3) 0.708(0.002) 0.735(0.003) 0.124(0.001) 0.156(0.004) 0.164(0.003) 0.174(0.003) 0.203(0.002)
DEEPWALK 185.6(7.6) 0.989(0.000) 0.986(0.001) 0.712(0.004) 0.757(0.006) 0.723(0.004) 0.722(0.005) 0.720(0.005)
SAGEGCN 913.9(62.8) 0.944(0.004) 0.935(0.005) 0.289(0.018) 0.304(0.022) 0.341(0.022) 0.363(0.022) 0.392(0.023)

HEATα=0.0 40.9(3.1) 0.998(0.000) 0.997(0.000) 0.853(0.003) 0.874(0.005) 0.869(0.004) 0.858(0.003) 0.850(0.003)
HEATα=0.2 58.6(3.5) 0.996(0.000) 0.995(0.000) 0.838(0.003) 0.895(0.005) 0.838(0.004) 0.823(0.004) 0.813(0.006)
HEATα=1.0 3512.3(57.6) 0.785(0.004) 0.814(0.004) 0.137(0.003) 0.164(0.008) 0.178(0.007) 0.198(0.007) 0.226(0.008)

Citeseer

N&K 67.5(5.1) 0.994(0.000) 0.994(0.001) 0.799(0.003) 0.774(0.005) 0.772(0.006) 0.800(0.006) 0.837(0.005)
AANE 3741.9(26.4) 0.650(0.002) 0.645(0.003) 0.097(0.001) 0.088(0.002) 0.112(0.003) 0.132(0.004) 0.196(0.005)
TADW 297.1(11.6) 0.972(0.001) 0.964(0.002) 0.376(0.002) 0.314(0.004) 0.352(0.005) 0.399(0.005) 0.469(0.009)

ATTRPURE 3922.2(26.6) 0.633(0.002) 0.630(0.002) 0.089(0.001) 0.083(0.002) 0.102(0.002) 0.126(0.003) 0.189(0.004)
DEEPWALK 23.5(2.8) 0.998(0.000) 0.997(0.001) 0.798(0.004) 0.721(0.005) 0.805(0.006) 0.853(0.005) 0.899(0.007)
SAGEGCN 618.9(163.8) 0.942(0.015) 0.939(0.014) 0.216(0.025) 0.160(0.018) 0.291(0.036) 0.364(0.043) 0.470(0.050)

HEATα=0.0 9.6(2.2) 0.999(0.000) 0.999(0.000) 0.830(0.003) 0.740(0.005) 0.898(0.003) 0.932(0.005) 0.967(0.004)
HEATα=0.2 7.6(1.8) 0.999(0.000) 0.999(0.000) 0.926(0.002) 0.899(0.004) 0.894(0.005) 0.908(0.005) 0.933(0.005)
HEATα=1.0 1567.9(24.1) 0.853(0.002) 0.865(0.002) 0.154(0.003) 0.122(0.004) 0.176(0.005) 0.227(0.005) 0.294(0.011)

Pubmed

N&K 451.5(13.0) 0.995(0.000) 0.994(0.000) 0.737(0.002) 0.743(0.003) 0.803(0.002) 0.835(0.002) 0.835(0.002)
AANE 19746.8(60.0) 0.777(0.001) 0.784(0.001) 0.104(0.000) 0.106(0.001) 0.187(0.001) 0.219(0.002) 0.253(0.001)
TADW 2155.6(41.1) 0.976(0.000) 0.973(0.001) 0.514(0.002) 0.502(0.003) 0.550(0.002) 0.600(0.002) 0.617(0.002)

ATTRPURE 25982.8(67.9) 0.707(0.001) 0.707(0.001) 0.097(0.000) 0.098(0.001) 0.175(0.001) 0.207(0.001) 0.241(0.001)
DEEPWALK 565.1(17.0) 0.994(0.000) 0.993(0.000) 0.816(0.002) 0.794(0.003) 0.808(0.002) 0.845(0.002) 0.856(0.002)
SAGEGCN 4118.9(312.0) 0.954(0.004) 0.945(0.004) 0.261(0.018) 0.215(0.016) 0.341(0.017) 0.405(0.019) 0.467(0.019)

HEATα=0.0 95.8(5.8) 0.999(0.000) 0.998(0.000) 0.902(0.001) 0.875(0.002) 0.916(0.002) 0.923(0.001) 0.923(0.001)
HEATα=0.2 166.4(7.3) 0.998(0.000) 0.998(0.000) 0.903(0.001) 0.907(0.002) 0.884(0.002) 0.901(0.002) 0.902(0.002)
HEATα=1.0 12548.0(112.8) 0.858(0.001) 0.856(0.001) 0.096(0.001) 0.085(0.002) 0.161(0.003) 0.197(0.003) 0.242(0.003)

PPI

N&K 6757.7(43.5) 0.938(0.000) 0.940(0.000) 0.421(0.002) 0.801(0.004) 0.699(0.003) 0.664(0.003) 0.640(0.003)
AANE 50719.7(84.4) 0.537(0.001) 0.588(0.000) 0.089(0.000) 0.470(0.002) 0.251(0.001) 0.201(0.001) 0.168(0.001)
TADW 23408.8(95.7) 0.786(0.001) 0.767(0.001) 0.142(0.001) 0.502(0.002) 0.298(0.002) 0.258(0.002) 0.242(0.001)

ATTRPURE 51304.6(107.4) 0.511(0.001) 0.512(0.001) 0.038(0.000) 0.164(0.004) 0.084(0.002) 0.065(0.001) 0.051(0.001)
DEEPWALK 9962.9(85.3) 0.909(0.001) 0.903(0.001) 0.388(0.002) 0.721(0.005) 0.582(0.003) 0.543(0.003) 0.523(0.002)
SAGEGCN 44688.5(1161.1) 0.592(0.011) 0.607(0.010) 0.095(0.004) 0.455(0.005) 0.218(0.007) 0.169(0.007) 0.137(0.007)

HEATα=0.0 4926.0(42.9) 0.955(0.000) 0.952(0.000) 0.468(0.002) 0.782(0.005) 0.696(0.004) 0.664(0.003) 0.643(0.003)
HEATα=0.2 5628.5(52.6) 0.949(0.000) 0.946(0.001) 0.457(0.002) 0.786(0.006) 0.667(0.005) 0.627(0.005) 0.604(0.003)
HEATα=1.0 47878.4(179.4) 0.563(0.002) 0.568(0.001) 0.068(0.000) 0.424(0.002) 0.183(0.001) 0.135(0.002) 0.108(0.002)

MIT

N&K 32506.7(128.6) 0.927(0.000) 0.930(0.000) 0.565(0.001) 1.000(0.000) 0.884(0.002) 0.855(0.002) 0.827(0.002)
AANE 157174.0(135.6) 0.647(0.000) 0.639(0.000) 0.189(0.000) 1.000(0.000) 0.528(0.002) 0.414(0.001) 0.321(0.001)
TADW 79981.9(134.4) 0.820(0.000) 0.814(0.000) 0.397(0.000) 1.000(0.000) 0.760(0.002) 0.700(0.001) 0.639(0.001)

ATTRPURE 171241.0(133.6) 0.615(0.000) 0.617(0.000) 0.184(0.000) 0.993(0.001) 0.543(0.002) 0.428(0.001) 0.323(0.001)
DEEPWALK 33037.6(168.4) 0.926(0.000) 0.919(0.000) 0.578(0.001) 1.000(0.000) 0.857(0.003) 0.819(0.002) 0.782(0.002)
SAGEGCN 89637.4(1885.4) 0.798(0.004) 0.797(0.003) 0.380(0.006) 1.000(0.000) 0.670(0.007) 0.599(0.009) 0.545(0.010)

HEATα=0.0 24776.7(97.4) 0.944(0.000) 0.940(0.000) 0.639(0.001) 1.000(0.000) 0.902(0.002) 0.877(0.002) 0.850(0.002)
HEATα=0.2 28621.0(126.8) 0.936(0.000) 0.934(0.000) 0.633(0.001) 1.000(0.000) 0.901(0.002) 0.870(0.002) 0.839(0.002)
HEATα=1.0 162505.9(1248.6) 0.635(0.003) 0.650(0.002) 0.222(0.002) 1.000(0.000) 0.588(0.003) 0.490(0.004) 0.402(0.005)
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TABLE 3.4: T-test statistics achieved by HEATα=0.2 on the network reconstruction task, for
an embedding dimension of 10. For each network, we select the benchmark algorithm ac-

cording to AP. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

HEATα=0.2 58.6(3.5) 0.996(0.000) 0.995(0.000) 0.838(0.003) 0.895(0.005) 0.838(0.004) 0.823(0.004) 0.813(0.006)
N&K 209.8(5.7) 0.987(0.000) 0.986(0.000) 0.674(0.002) 0.791(0.005) 0.736(0.005) 0.723(0.004) 0.713(0.004)

t-statistic 1.24E+02 1.24E+02 8.65E+01 2.45E+02 8.03E+01 8.61E+01 1.01E+02 8.15E+01
p-value 2.40E-62 2.40E-62 1.55E-60 1.94E-86 2.83E-60 6.84E-60 5.05E-67 1.01E-54
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

HEATα=0.2 7.6(1.8) 0.999(0.000) 0.999(0.000) 0.926(0.002) 0.899(0.004) 0.894(0.005) 0.908(0.005) 0.933(0.005)
DEEPWALK 23.5(2.8) 0.998(0.000) 0.997(0.001) 0.798(0.004) 0.721(0.005) 0.805(0.006) 0.853(0.005) 0.899(0.007)

t-statistic 2.65E+01 2.65E+01 1.98E+01 1.76E+02 1.61E+02 6.59E+01 4.40E+01 2.18E+01
p-value 6.38E-31 6.38E-31 2.87E-23 9.26E-66 4.90E-74 5.42E-56 1.50E-46 3.03E-29
p < 0.05 1 1 1 1 1 1 1 1

Pubmed

HEATα=0.2 166.4(7.3) 0.998(0.000) 0.998(0.000) 0.903(0.001) 0.907(0.002) 0.884(0.002) 0.901(0.002) 0.902(0.002)
N&K 451.5(13.0) 0.995(0.000) 0.994(0.000) 0.737(0.002) 0.743(0.003) 0.803(0.002) 0.835(0.002) 0.835(0.002)

t-statistic 1.05E+02 1.05E+02 7.51E+01 3.60E+02 2.46E+02 1.62E+02 1.44E+02 1.40E+02
p-value 1.50E-56 1.50E-56 1.98E-50 1.43E-71 1.00E-78 2.06E-76 8.45E-73 1.53E-73
p < 0.05 1 1 1 1 1 1 1 1

PPI

HEATα=0.2 5628.5(52.6) 0.949(0.000) 0.946(0.001) 0.457(0.002) 0.786(0.006) 0.667(0.005) 0.627(0.005) 0.604(0.003)
N&K 6757.7(43.5) 0.938(0.000) 0.940(0.000) 0.421(0.002) 0.801(0.004) 0.699(0.003) 0.664(0.003) 0.640(0.003)

t-statistic 9.06E+01 9.06E+01 5.14E+01 6.81E+01 -1.12E+01 -3.02E+01 -3.73E+01 -4.70E+01
p-value 9.11E-63 9.11E-63 5.80E-49 1.80E-52 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 1 1 1 1 0 0 0 0

MIT

HEATα=0.2 28621.0(126.8) 0.936(0.000) 0.934(0.000) 0.633(0.001) 1.000(0.000) 0.901(0.002) 0.870(0.002) 0.839(0.002)
N&K 32506.7(128.6) 0.927(0.000) 0.930(0.000) 0.565(0.001) 1.000(0.000) 0.884(0.002) 0.855(0.002) 0.827(0.002)

t-statistic 1.18E+02 1.18E+02 6.44E+01 2.34E+02 N/A 3.56E+01 2.95E+01 2.43E+01
p-value 4.80E-71 4.80E-71 1.28E-55 3.63E-88 N/A 2.54E-41 7.48E-36 2.28E-32
p < 0.05 1 1 1 1 0 1 1 1

multiple labels from the Gene Ontology (Hamilton, Ying, and Leskovec, 2017). To

evaluate our model in this multi-label case, we adopt a one-vs-all setting, where we

train a separate classifier for each class. Table 3.6 proves a summary of the node

classification results for embedding dimension 5. T-test statistics of a one-sided t-

test between HEATα=0.2 and the best ranked benchmark algorithm according to F1

are provided in table 3.8. While HEAT never ranked first for any network, it consis-

tently ranked highly on all networks unlike all other benchmark algorithms – with

HEATα=0.2 the best overall rank averaged across all the datasets. Further, we observe

that when considering node attributes, i.e., α = 0.2, HEAT outperformed the other

hyperbolic embedding algorithm N&K on all networks. We also note that, even

without node attributes, HEAT obtained better results than N&K on all networks.

Comparing with the Euclidean benchmark algorithms, we observe competitive re-

sults – especially when incorporating attributes.

Figure 3.3 plots AUROC scores achieved by the SVC model after training on 2%
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TABLE 3.5: Summary of link prediction for embedding dimension 10. We present AUROC,
AP, and mean average precision (mAP) to 3 decimal places and rank to 1 decimal place. Rank
is the average position that a true edge appears in the list of false edges ranked by distance.
For mAP, we rank distances with respect to each node in the network and compute a separate
precision score for each node, then report the mean. All scores are averaged over 30 random
starting seeds. Standard deviation is given in brackets. Mean Ranks is the average position

of an algorithm in a ranked list of performance.

Cora_ML PPI

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 96.6(7.9) 0.922(0.006) 0.935(0.005) 0.248(0.008) 722.1(18.2) 0.912(0.002) 0.918(0.002) 0.185(0.004)
AANE 315.3(14.5) 0.743(0.012) 0.761(0.012) 0.098(0.007) 3822.2(38.1) 0.535(0.005) 0.582(0.005) 0.070(0.004)
TADW 72.8(4.9) 0.941(0.004) 0.933(0.005) 0.180(0.008) 2237.5(55.8) 0.728(0.007) 0.722(0.006) 0.080(0.004)

ATTRPURE 356.5(12.4) 0.710(0.010) 0.736(0.011) 0.093(0.005) 3854.5(41.2) 0.511(0.005) 0.511(0.004) 0.018(0.002)
DEEPWALK 178.9(10.7) 0.855(0.009) 0.896(0.006) 0.224(0.010) 1066.4(23.8) 0.870(0.003) 0.873(0.003) 0.144(0.005)
SAGEGCN 160.5(14.9) 0.870(0.012) 0.873(0.010) 0.114(0.008) 3622.2(68.4) 0.560(0.008) 0.574(0.007) 0.067(0.004)

HEATα=0.00 131.8(23.9) 0.893(0.020) 0.928(0.012) 0.276(0.069) 431.6(91.9) 0.948(0.011) 0.947(0.009) 0.255(0.022)
HEATα=0.20 49.0(4.3) 0.961(0.004) 0.963(0.004) 0.288(0.010) 493.0(98.8) 0.940(0.012) 0.940(0.010) 0.241(0.022)
HEATα=1.00 267.5(11.1) 0.782(0.009) 0.811(0.010) 0.096(0.008) 3646.2(40.0) 0.557(0.005) 0.563(0.004) 0.064(0.004)

Citeseer MIT

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 145.5(8.9) 0.820(0.011) 0.853(0.008) 0.204(0.012) 2727.1(35.3) 0.918(0.001) 0.922(0.001) 0.256(0.003)
AANE 284.8(12.7) 0.646(0.016) 0.643(0.016) 0.086(0.007) 11816.8(77.5) 0.646(0.002) 0.638(0.003) 0.098(0.003)
TADW 55.9(5.2) 0.931(0.006) 0.917(0.008) 0.149(0.011) 6133.4(38.8) 0.816(0.001) 0.815(0.001) 0.180(0.003)

ATTRPURE 297.1(12.8) 0.630(0.016) 0.630(0.016) 0.083(0.006) 12823.6(64.3) 0.616(0.002) 0.617(0.002) 0.098(0.003)
DEEPWALK 259.9(9.1) 0.677(0.011) 0.775(0.009) 0.213(0.014) 2834.4(44.7) 0.915(0.001) 0.909(0.002) 0.241(0.003)
SAGEGCN 138.1(13.2) 0.829(0.016) 0.848(0.015) 0.132(0.012) 7142.0(117.9) 0.786(0.004) 0.784(0.003) 0.153(0.004)

HEATα=0.00 16.5(2.5) 0.981(0.003) 0.979(0.005) 0.791(0.014) 2246.9(28.9) 0.933(0.001) 0.930(0.001) 0.279(0.003)
HEATα=0.20 6.3(1.3) 0.993(0.002) 0.994(0.001) 0.810(0.013) 2510.4(38.6) 0.925(0.001) 0.925(0.001) 0.273(0.004)
HEATα=1.00 120.4(6.4) 0.851(0.008) 0.864(0.009) 0.144(0.011) 12442.3(114.6) 0.627(0.003) 0.644(0.003) 0.112(0.003)

Pubmed Mean Ranks

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 801.7(20.4) 0.880(0.003) 0.900(0.003) 0.210(0.004) 3.8 3.8 3.4 3.2
AANE 1503.8(33.5) 0.774(0.005) 0.782(0.005) 0.088(0.002) 7.4 7.4 7.6 7.2
TADW 465.5(18.7) 0.930(0.003) 0.923(0.004) 0.157(0.005) 3.4 3.4 3.6 5

ATTRPURE 1954.5(29.4) 0.706(0.004) 0.706(0.005) 0.082(0.003) 9 9 9 8.8
DEEPWALK 1742.8(28.6) 0.738(0.004) 0.833(0.003) 0.203(0.005) 5.8 5.8 5.4 3.8
SAGEGCN 635.5(41.1) 0.905(0.006) 0.901(0.005) 0.114(0.006) 5 5 5.6 6.4

HEATα=0.00 1531.0(30.1) 0.770(0.005) 0.858(0.003) 0.245(0.005) 3 3 2.6 1.6
HEATα=0.20 274.7(9.9) 0.959(0.001) 0.960(0.002) 0.284(0.004) 1.4 1.4 1.4 1.4
HEATα=1.00 951.7(25.2) 0.857(0.004) 0.856(0.004) 0.077(0.002) 6.2 6.2 6.4 7.6

to 10% training example from each class. From this, we see that HEAT is capable

of achieving highly competitive class separation – often performing on par with the

state-of-the-art TADW – even when only a very small percentage of node labels are

known. Furthermore, we see that HEAT is largely robust to the setting of training

sample proportion.

3.3.6 Parameter Sensitivity

Here we evaluate HEAT’s robustness to the setting of the control parameters. Our

results indicated that the most sensitive parameter is α, which controls the trade off

between topology and attributes. We therefore run HEAT over a range of values

α ∈ [0, 1] in steps of 0.05. Figure 3.4 plots various metric scores for network re-
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TABLE 3.6: Summary of node classification results for embedding dimension 5. Bold indi-
cates best performance. Standard deviation is given in brackets. Mean Ranks is the average

position of an algorithm in a ranked list of performance.

Cora_ML PPI

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.732(0.016) 0.806(0.015) 0.671(0.018) 0.943(0.004) 0.388(0.001) 0.695(0.002) 0.269(0.002) 0.704(0.000)
AANE 0.617(0.001) 0.786(0.001) 0.509(0.001) 0.918(0.000) 0.398(0.002) 0.686(0.002) 0.280(0.002) 0.704(0.000)
TADW 0.764(0.014) 0.823(0.014) 0.713(0.015) 0.965(0.004) 0.393(0.001) 0.689(0.001) 0.275(0.001) 0.704(0.000)

ATTRPURE 0.619(0.001) 0.790(0.001) 0.509(0.001) 0.916(0.000) 0.397(0.001) 0.689(0.002) 0.279(0.002) 0.705(0.000)
DEEPWALK 0.833(0.004) 0.866(0.004) 0.803(0.005) 0.971(0.001) 0.388(0.001) 0.693(0.002) 0.269(0.002) 0.704(0.000)
SAGEGCN 0.578(0.065) 0.696(0.035) 0.499(0.079) 0.903(0.014) 0.388(0.002) 0.693(0.002) 0.270(0.002) 0.704(0.000)

HEATα=0.00 0.790(0.008) 0.848(0.008) 0.740(0.009) 0.960(0.002) 0.389(0.002) 0.694(0.002) 0.270(0.002) 0.704(0.000)
HEATα=0.20 0.834(0.006) 0.874(0.005) 0.798(0.007) 0.976(0.001) 0.389(0.002) 0.693(0.002) 0.271(0.002) 0.704(0.000)
HEATα=1.00 0.538(0.025) 0.700(0.016) 0.438(0.028) 0.889(0.006) 0.390(0.001) 0.691(0.002) 0.272(0.002) 0.703(0.000)

Citeseer MIT

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.468(0.037) 0.839(0.025) 0.326(0.036) 0.844(0.007) 0.501(0.019) 0.859(0.017) 0.354(0.018) 0.932(0.005)
AANE 0.523(0.000) 0.836(0.001) 0.381(0.000) 0.861(0.000) 0.022(0.002) 0.482(0.039) 0.011(0.001) 0.863(0.000)
TADW 0.845(0.002) 0.874(0.003) 0.819(0.002) 0.969(0.001) 0.560(0.002) 0.723(0.003) 0.457(0.003) 0.948(0.000)

ATTRPURE 0.564(0.001) 0.813(0.002) 0.432(0.001) 0.882(0.000) 0.023(0.004) 0.422(0.037) 0.012(0.002) 0.866(0.000)
DEEPWALK 0.858(0.006) 0.881(0.005) 0.836(0.008) 0.973(0.002) 0.537(0.005) 0.831(0.006) 0.397(0.005) 0.949(0.001)
SAGEGCN 0.359(0.074) 0.687(0.046) 0.248(0.069) 0.802(0.023) 0.424(0.022) 0.815(0.017) 0.287(0.018) 0.916(0.006)

HEATα=0.00 0.561(0.027) 0.837(0.017) 0.423(0.031) 0.873(0.004) 0.559(0.009) 0.860(0.007) 0.415(0.010) 0.952(0.001)
HEATα=0.20 0.873(0.005) 0.905(0.005) 0.844(0.007) 0.977(0.001) 0.538(0.010) 0.817(0.008) 0.401(0.012) 0.951(0.001)
HEATα=1.00 0.727(0.003) 0.810(0.005) 0.659(0.004) 0.929(0.001) 0.008(0.006) 0.438(0.156) 0.004(0.003) 0.835(0.004)

Pubmed Mean Ranks

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.744(0.008) 0.769(0.007) 0.720(0.011) 0.893(0.005) 6.6 3.4 6.6 6
AANE 0.735(0.000) 0.755(0.000) 0.715(0.000) 0.899(0.000) 6.2 7.4 6 5.8
TADW 0.788(0.001) 0.807(0.001) 0.769(0.001) 0.921(0.001) 3 4.8 3 3.2

ATTRPURE 0.700(0.000) 0.721(0.000) 0.679(0.000) 0.879(0.000) 5.8 7.8 5.8 5.8
DEEPWALK 0.804(0.003) 0.813(0.002) 0.795(0.003) 0.923(0.001) 3.6 2.4 3.4 2.8
SAGEGCN 0.745(0.029) 0.760(0.024) 0.730(0.034) 0.891(0.014) 7 6.8 7 7.6

HEATα=0.00 0.793(0.003) 0.812(0.003) 0.774(0.003) 0.924(0.002) 4 2.8 4 3.8
HEATα=0.20 0.819(0.003) 0.833(0.003) 0.804(0.003) 0.942(0.001) 2.2 2.2 2.4 2.6
HEATα=1.00 0.735(0.015) 0.757(0.013) 0.715(0.016) 0.895(0.007) 6.6 7.4 6.8 7.4

construction, link prediction, and node classification obtained from a 5 dimensional

embedding. From these plots, we can see the performance of HEAT on the three

tasks on all of the networks is robust to a wide range of values of α. In particular, we

find that performance is most consistent for α ∈ [0, 0.5].

We further investigate the robustness of HEAT to the setting of embedding di-

mension on all three downstream tasks. Figure 3.5 plots AUROC scores for embed-

ding dimensions 5, 10, 25 and 50. From this, we see that the performance of HEAT

is constant over a range of settings of dimension, especially in the case of node clas-

sification – as indicated by the largely flat curves.
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TABLE 3.7: T-test statistics achieved by
HEATα=0.2 on the link prediction task, for
embedding dimension 10. For each net-
work, we select the benchmark algorithm
according to AP. Significant results at a sig-
nificance level of 0.05 are highlighted in

bold.

Cora_ML

Mean Rank AUROC AP mAP

HEATα=0.20 49.0(4.3) 0.961(0.004) 0.963(0.004) 0.288(0.010)
N&K 96.6(7.9) 0.922(0.006) 0.935(0.005) 0.248(0.008)

t-statistic 2.91E+01 2.91E+01 2.41E+01 1.72E+01
p-value 5.31E-31 5.31E-31 2.94E-30 1.67E-24
p < 0.05 1 1 1 1

Citeseer

HEATα=0.20 6.3(1.3) 0.993(0.002) 0.994(0.001) 0.810(0.013)
TADW 55.9(5.2) 0.931(0.006) 0.917(0.008) 0.149(0.011)

t-statistic 5.09E+01 5.09E+01 5.40E+01 2.11E+02
p-value 7.51E-33 7.50E-33 2.25E-32 1.31E-82
p < 0.05 1 1 1 1

Pubmed

HEATα=0.20 274.7(9.9) 0.959(0.001) 0.960(0.002) 0.284(0.004)
TADW 465.5(18.7) 0.930(0.003) 0.923(0.004) 0.157(0.005)

t-statistic 4.94E+01 4.94E+01 5.13E+01 1.08E+02
p-value 1.53E-40 1.53E-40 2.23E-38 2.19E-68
p < 0.05 1 1 1 1

PPI

HEATα=0.20 493.0(98.8) 0.940(0.012) 0.940(0.010) 0.241(0.022)
N&K 722.1(18.2) 0.912(0.002) 0.918(0.002) 0.185(0.004)

t-statistic 1.25E+01 1.25E+01 1.14E+01 1.36E+01
p-value 6.29E-14 6.29E-14 5.15E-13 6.73E-15
p < 0.05 1 1 1 1

MIT

HEATα=0.20 2510.4(38.6) 0.925(0.001) 0.925(0.001) 0.273(0.004)
N&K 2727.1(35.3) 0.918(0.001) 0.922(0.001) 0.256(0.003)

t-statistic 2.27E+01 2.27E+01 9.45E+00 1.92E+01
p-value 1.12E-30 1.12E-30 1.58E-13 6.33E-27
p < 0.05 1 1 1 1

TABLE 3.8: T-test statistics achieved by
HEATα=0.2 on the node classification task,
for embedding dimension 5. For each net-
work, we select the benchmark algorithm
according to F1. Significant results at a
significance level of 0.05 are highlighted in

bold.

Cora_ML

F1 Precision Recall AUROC

HEATα=0.20 0.834(0.006) 0.874(0.005) 0.798(0.007) 0.976(0.001)
DEEPWALK 0.833(0.004) 0.866(0.004) 0.803(0.005) 0.971(0.001)

t-statistic 8.75E-01 6.17E+00 -2.91E+00 1.85E+01
p-value 1.93E-01 4.08E-08 9.97E-01 5.94E-24
p < 0.05 0 1 0 1

Citeseer

HEATα=0.20 0.873(0.005) 0.905(0.005) 0.844(0.007) 0.977(0.001)
DEEPWALK 0.858(0.006) 0.881(0.005) 0.836(0.008) 0.973(0.002)

t-statistic 1.08E+01 1.78E+01 4.36E+00 1.20E+01
p-value 1.68E-15 2.29E-25 2.80E-05 1.20E-15
p < 0.05 1 1 1 1

Pubmed

HEATα=0.20 0.819(0.003) 0.833(0.003) 0.804(0.003) 0.942(0.001)
DEEPWALK 0.804(0.003) 0.813(0.002) 0.795(0.003) 0.923(0.001)

t-statistic 2.07E+01 3.04E+01 1.20E+01 7.15E+01
p-value 2.88E-28 1.28E-35 1.37E-17 1.03E-51
p < 0.05 1 1 1 1

PPI

HEATα=0.20 0.389(0.002) 0.693(0.002) 0.271(0.002) 0.704(0.000)
AANE 0.398(0.002) 0.686(0.002) 0.280(0.002) 0.704(0.000)

t-statistic -1.67E+01 1.27E+01 -1.64E+01 -6.55E+00
p-value 1.00E+00 1.24E-18 1.00E+00 1.00E+00
p < 0.05 0 1 0 0

MIT

HEATα=0.20 0.538(0.010) 0.817(0.008) 0.401(0.012) 0.951(0.001)
TADW 0.560(0.002) 0.723(0.003) 0.457(0.003) 0.948(0.000)

t-statistic -1.16E+01 5.80E+01 -2.46E+01 1.09E+01
p-value 1.00E+00 6.61E-36 1.00E+00 2.76E-12
p < 0.05 0 1 0 1

3.4 Chapter Summary

This chapter presents HEAT to fill the gap of embedding attributed networks in hy-

perbolic space. We have designed a random walk algorithm to obtain the training

samples that capture both network topological and attribute similarity. We have

also derived an algorithm that learns hyperboloid embeddings from the training

samples. Our results on three networks show that, by including attributes, HEAT

can improve the quality of a learned hyperbolic embedding in a number of down-

stream machine learning tasks. We find that, in general, HEAT does not perform

as well in the node classification task compared with the Euclidean benchmark al-

gorithms (table 3.6) than in the network reconstruction and link prediction tasks

(table 3.3): while it is the most consistent across all datasets, it does not rank first on

any particular dataset as it does for reconstruction and link prediction. This could

be attributed to the SVC learning sub-optimal decision boundaries, since it is using
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(A) Cora_ML (B) Citeseer

(C) Pubmed (D) MIT

FIGURE 3.3: Plots of micro-averaged F1 scores against labelled percentage for the (A)
Cora_ML, (B) Citeseer, (C) Pubmed, and (D) MIT networks. Each score is averaged over
30 random starting seeds. HEATα=0.2 considers node attributes, while HEATα=0.0 indicates
the embedding only considers network topology. We present only the results for an embed-

ding dimension of 10 for clarity, but obtain similar results for all dimensions.

a Euclidean optimisation procedure. Many neural network operations, in particu-

lar: logistic regression, have been generalized to the Poincaré ball (Ganea, Bécigneul,

and Hofmann, 2018), and this may provide superior results. However, we leave this

as future work and this is discussed in detail in section 6.2.4.

HEAT provides a general hyperbolic embedding method for both unattributed

and attributed networks, which opens the door to hyperbolic manifold learning on

a wide ranges of networks.
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(A) Network reconstruction:
AUROC

(B) Network reconstruction: AP (C) Network reconstruction:
mAP

(D) Link prediction: AUROC (E) Link prediction: AP (F) Node classification: F1

(G) Node classification: Preci-
sion

(H) Node classification: Recall (I) Node classification: AUROC

FIGURE 3.4: Plots to show the effect of α on downstream machine learning tasks. We fix the
embedding dimension to 5 for these experiments.
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(A) Network reconstruction:
AUROC

(B) Network reconstruction: AP (C) Network reconstruction:
mAP

(D) Link prediction: AUROC (E) Link prediction: AP (F) Node classification: F1

(G) Node classification: Preci-
sion

(H) Node classification: Recall (I) Node classification: AUROC

FIGURE 3.5: Plots to show the effect of embedding dimension on downstream machine
learning tasks. We fix α = 0.2 for these experiments.
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Chapter 4

Hyperbolic Embedding of

Attributed and Directed Networks

This chapter aims to answer our second research question (given in section 1.8.2) and

focuses on hyperbolic attributed directed network embedding. Literature review re-

vealed that directed networks comprise a large subset of all complex networks. Most

directed network embedding algorithms are limited to learning two representations

for each node in the network; few are able to handle attributes and even fewer embed

to hyperbolic space. This is the gap that this chapter aims to fill. Section 4.1 provides

the rationale behind our approach. Section 4.2 introduces our algorithm. Section 4.3

validates our approach on a number of benchmark directed network datasets on

common downstream machine learning tasks. Finally, section 4.4 summarises the

chapter.

4.1 Introduction

Complex networks are models of diverse real-world systems (Papadopoulos et al.,

2012). The ubiquity of complex networks in such fields as the study of protein-

protein interactions, the world wide web and social interaction modelling, has lead

to the study of complex networks emerging as a popular research topic. They are de-

scribed as a set of entities (nodes) and the relations between them (edges). In many

complex networks, edges are directed and this is essential information that charac-

terises the network as a whole. In addition to the structural information described

by edges, often nodes within a complex network are richly annotated with attributes.
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These attributes provide additional information about the elements within the net-

work and this information is necessary to understand the role that these elements

play within the system (Hamilton, Ying, and Leskovec, 2017).

However, when dealing with large networks containing billions of nodes, tra-

ditional network-based approaches suffer some drawbacks, such as computational

complexity, parallelizability and applicability to downstream machine learning tasks

(Cui et al., 2018). To overcome these drawbacks, network embedding is often used to

learn low dimensional representations of the nodes in a large network. By learn-

ing dense representations of entities in the network, network embedding is able to

de-noise the network while preserving the intrinsic structural information (Cui et

al., 2018), further improving performance on downstream tasks over using the raw

network representation.

A recent trend in network embedding research is to suppose that the hidden met-

ric space underpinning many complex networks is, in fact, hyperbolic (Papadopou-

los et al., 2010). A hyperbolic metric space has been shown to explain the scale-free

degree distribution observed in real-world networks (Krioukov et al., 2009). More-

over, it can explain the small-world effect observed in complex networks (Bianconi

and Rahmede, 2017), help with routing of information packets around the network

(Papadopoulos et al., 2010) and explains the implicit trade-off between popularity

and similarity that controls a node’s connections (Papadopoulos et al., 2012).

However, there is no approach that can embed attributed directed networks into

hyperbolic space. This is a significant gap because attributed, directed networks

are the most general form of complex networks modelling real world systems. To

fill this gap, we propose HEADNet, an algorithm that can learn hyperbolic repre-

sentations of arbitrary low dimensions of the nodes in an attributed and directed

network. Moreover, we aim to capture the uncertainty in the learned embeddings

using Gaussian distribution, similar to Bojchevski and Günnemann, 2018, but in hy-

perbolic space. This allows us to characterise node neighbourhood diversity and use

an established asymmetric similarity measure with interpretations in both probabil-

ity and information theory.

To this end, in this chapter we propose:
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1. an embedding model to map attributed nodes to Gaussian distributions in hy-

perbolic space;

2. the use of a node similarity measure in hyperbolic space based on a novel map-

ping procedure to map hyperbolic Gaussian distributions to Euclidean ones,

preserving hyperbolic distance and direction.

HEADNet not only learns low-dimensional representations, but also preserves

1. the network’s latent structural hierarchy;

2. the interplay of attributes and structural information;

3. the direction of relations between nodes in a network

for downstream tasks – such as link prediction – allowing for greater insight into

complex systems than ever before.

4.2 Hyperbolic Embedding of Attributed and Directed Net-

works

4.2.1 Intuition

HEADNet is built upon the principle that nodes in an attributed directed network

can be mapped to Gaussian distributions in hyperbolic space. The intuition be-

hind this approach is that the distributions capture the uncertainty in the learned

representations of nodes. Uncertainty here means that nodes with highly diverse

neighbourhoods – in terms of attribute presence or class label, for example – tend

to be embedded as distributions with greater variance (Bojchevski and Günnemann,

2018). Hyperbolic space is used to reflect the inherent hierarchy of the elements

within many real-world systems. Kullback-Leibler divergence, which is a measure

of the penalty of encoding one distribution as another, is used as an asymmetric

measure of similarity between nodes. This forms the basis of an objective function

that aims to maximize the similarity between true node pairs (the directed edges in

the network), while minimising the similarity between all other node pairs.
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4.2.2 Problem Definition

We reformulate problem 1 for hyperbolic attributed directed network as follows:

We consider a network of N nodes given by the set V with |V| = N. We use E to

denote the set of all interactions between the nodes in our network. E = {(u, v)} ⊆

V × V. We consider the case that the network is directed. That is (u, v) ∈ E 6=⇒

(v, u) ∈ E. Further, the nodes in V may be annotated with d-dimensional attributes

described by matrix X ∈ RN×d. In the special case that nodes do not have attributes,

we set X = IN which is the N-dimensional identity matrix.

Problem 3. Given a directed network, described by G = (V, E, X), find low dimensional

representations of the nodes in the network in hyperbolic space such that the structural in-

formation in network is preserved. The described problem is unsupervised.

4.2.3 HEADNet Overview

To address problem 3, we propose HEADNet, which maps nodes in an attributed

and directed network to n-dimensional Gaussian distributions in hyperbolic space.

The distributions are described by n + 1-dimensional hyperboloid mean vectors,

along with n-dimensional Euclidean vectors corresponding to diagonal covariance

matrices.

HEADNet is comprised of three main steps.

1. The network embedding step. This step addresses the problem described in

problem 3 by using a novel node embedder to transform the nodes in G into

a set of N n-dimensional Gaussian distributions in hyperbolic space. Edges in

E are not required to perform an embedding, however they are used to train

the embedder (see step 3). It is this property that allows HEADNet to embed

unseen nodes after training.

2. The node similarity measurement step. For a pair of nodes, this step takes their

hyperbolic distributions provided by step 1 as input and provides a asymmet-

ric measure of similarity between then.

3. Node representation learning step. This step uses the output of step 2 as part

of a learning objective explicitly based on known connectivity information to
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FIGURE 4.1: Schematic representation of the main steps of the learning procedure for HEAD-
Net. The first step is the embedder which accepts node attributes and outputs Gaussian
distributions in hyperbolic space. Next is the node similarity step that takes two hyperbolic
Gaussian distributions and computes node similarity using Kullback-Leibler divergence. Fi-
nally, the node similarity is passed to an objective function that aims to maximize the sim-
ilarity of true node pairs. The objective function is used to drive the learning of embedder

parameters.

train the embedder model used in step 1. The learning objective is designed to

maximize the similarity between all of the node pairs (u, v) ∈ E and minimize

the similarity of all other pairs of nodes in V ×V \ E.

Figure 4.1 provides an overview of these three steps.

Once the embedder has been trained using step 3, it can then be used by itself

to map nodes to distributions in hyperbolic space (using step 1 only), or it can be

used in conjunction with the node similarity step to query the similarly between any

arbitrary pair of nodes (combining steps 1 and 2). For both applications, the nodes

do not necessarily have to be previously seen during model training.

4.2.4 Network Embedding Step

This section describes how node attributes Xu are mapped to a pair of parameters

(u, Σu) ∈ Hn × Rn describing a Gaussian distribution in hyperbolic space. u is

an n + 1-dimensional vector on the hyperboloid model representing the mean of

the distribution describing node u. Σu is an n-dimensional Euclidean vector that

represents the diagonal covariance matrix of the distribution for node u.

We compute u and Σu as functions of node attributes Xu. Mapping directly

from attributes has the advantage of readily handling previously unseen nodes (Bo-

jchevski and Günnemann, 2018). To this end we propose a novel embedder model.

The embedder is a two-layer feed-forward neural network with two parallel output

layers. We select this architecture as it provides a flexible non-linear mapping be-

tween attributes and distributions, while reducing the overall number of parameters
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compared to two separate models for computing means and variances respectively.

The embedder has three components:

1. a map from attributes Xu to hu, a d′ � d dimensional hidden layer representa-

tion;

2. a map from the hidden representation hu to Euclidean vectors representing

diagonal covariance matrices Σu ∈ Rn;

3. a map from the hidden representation hu to hyperbolic means u ∈Hn.

See figure 4.3 for an overview of the model architecture.

Mapping to Hidden Representation hu

We first map non-linearly1 from node attributes to a latent hidden representation

hu ∈ Rd′ (d′ � N) with:

hu = relu (WhXu + bh) (4.1)

where Wh ∈ Rd′×d and bh ∈ Rd′ are a weight matrix and bias to learn. We share

this intermediary representation hu for computing both u and Σu, which has the

advantage of regularising the model by reducing the overall number of parameters

(Bojchevski and Günnemann, 2018). We select the relu function as a non-linearity to

overcome the vanishing gradients problem. Furthermore, performance of relu was

superior to tanh and sigmoid in some small preliminary benchmark tasks.

Mapping from Hidden Representation hu to Σu

From the hidden representation of node u, hu, we compute its covariance vector Σu

using:

Σu = eluα=1 (WΣhu + bΣ) + 1 (4.2)

1Recall relu(x) := max(x, 0).
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FIGURE 4.2: Example of Expµ0
in operation. µ0 is highlighted at the base of the hyperboloid.

R1, the tangent space µ0is highlighted in red with a point x ∈ R1 in black. The red arrow
shows how Expµ0

takes x to a unique point on the hyperboloid. This new point has the
property that its hyperbolic distance from µ0 is equal to ||x||.

We use the elu function2 to ensure the required positive definiteness in Σ (Bojchevski

and Günnemann, 2018).

Mapping from Hidden Representation hu to u

To map from hidden representation hu ∈ Rd′ to hyperbolic means u ∈ Hn, we ap-

ply some fundamental operations of Riemannian geometry to map from Euclidean

space to hyperbolic space. Specifically, we use the combination of the exponential

map for the hyperboloid and a property about the tangent space of the “bottom tip”

of the hyperboloid.

Often it is useful to transport vectors to and from the hyperboloid and the tan-

gent space of a point on the hyperboloid. In order to achieve this, we apply the

hyperboloid exponential map operation Exp· (see equation (1.32).

In equation (1.30), we defined µ0, the bottom-tip of the hyperboloid. Further-

more, we noted that the tangent space of µ0 is the entire n-dimensional Euclidean

plane (see equation (1.31) for details). We now combine both Exp· and the property

that Tµ0Hn = Rn to define a point-wise non-linearity for the output of a dense neural

network layer. Expµ0
: Rn →Hn is computed as:

Expµ0
(x) =

[
sinh (||x||) x

||x|| , cosh (||x||)
]

(4.3)

for x ∈ Rn, where || · || is the Euclidean norm operation.

2Recall eluα :=

{
x, if x > 0
α (exp(x) + 1) otherwise.
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FIGURE 4.3: Schematic view of the embedder model. The model is a two-layer feed-forward
neural network that is fed node attributes and outputs Gaussian distributions in hyperbolic

space.

Returning to our embedder model, to compute u ∈ Hn, we propose the use of

Expµ0
:

u = Expµ0
(WHn hu + bHn) (4.4)

where WHn ∈ Rn×d′ and bHn ∈ Rn are a weight matrix and bias to learn. The

use of Expµ0 as a non-linearity provides a principled mapping from n-dimensional

Euclidean space (Rn = Tµ0Hn) to Hn as required. Figure 4.2 gives an example of

Expµ0
transporting a vector from R to H1.

Complete Embedder Model

We combine equation (4.1), equation (4.2) and equation (4.4) to construct our embed-

der. Figure 4.3 provides a schematic overview of the complete model.

Number of Parameters of Embedder Model

In total, three weight matrices (Wh ∈ Rd′×d, WΣ ∈ Rn×d′ , and WHn ∈ Rn×d′) and

biases (bh ∈ Rd′ , bΣ ∈ Rn, and bHn ∈ Rn) are to be learned. That is a total of

d× d′ + d′ + 2(d′ × n + n) parameters.
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4.2.5 Node Similarity Measurement Step

This section describes the procedure for computing the similarity measure for any

pair of nodes, using the Gaussian distributions provided by the embedder. We

use Kullback-Leibler divergence as the measure of similarity between node dis-

tributions. For continuous distributions P and Q, Kullback-Leibler divergence

DKL(P || Q) is given by:

DKL(P || Q) :=
∫

x
P(x) log

(
P(x)
Q(x)

)
(4.5)

We see immediately that equation (4.5) is asymmetric in P and Q. When P and Q are

normal distributions, equation (4.5) simplifies to:

DKL(P || Q) = 1
2

[
tr
(
Σ−1

u Σv
)
+ (µu − µv)

T Σ−1
u (µu − µv)− n− log

(
det(Σv)
det(Σu)

) ]
(4.6)

where tr(.) denotes the trace of a matrix and det(.) denotes the determinant of a

matrix.

Mapping Hyperbolic Co-ordinates to Vectors in Euclidean Space

Since our embedder outputs Euclidean covariance matrices, we only require a mod-

ification to the term (µu − µv)
T Σ−1

u (µu − µv) in order to apply equation (4.6). To

this end, we propose a mapping from the hyperbolic mean vectors output by the

embedder to Euclidean vectors, such that hyperbolic relationships are preserved.

This mapping preserves the hyperbolic distance between a given node pair, while

allowing for a simple form of the training objective (see section 4.2.6). For the re-

mainder of this section, we will introduce a mapping Ψu that will replace the term

(µu − µv)
T Σ−1

u (µu − µv) to reflect a hyperbolic distribution, rather than a Euclidean

one. Ψu will behave exactly like the original term in that it will be a weighted sum

over a distance vector. Furthermore, when all variances are identity matrices, then

our derived equivalent to equation (4.6) will become equivalent to hyperbolic dis-

tance squared as expected3.

3Note that this means that we can fix Σ = IN to embed undirected networks. This form of sec-
tion 4.2.6 is equivalent to the loss of HEAT (equation (3.8)).
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For a node pair (u, v), our mapping, Ψ, is a two step procedure that relies upon

u – the hyperbolic mean of node u – to serve as an “anchor point”. The two steps are

1. transport vectors from Hn to the tangent space of the anchor point TuHn;

2. then, transport vectors from TuHn to the tangent space of the bottom tip of the

hyperboloid Tµ0Hn, which is the n-dimensional Euclidean space4.

Transporting Vectors from Hn to the Tangent Space of an Anchor Point

To transport the hyperbolic mean of node v – the vector v ∈ Hn – from a point on

the hyperboloid to a point on the tangent space of the anchor point TuHn, we take

the inverse of the exponential map, that we call the logarithmic map (Nagano et al.,

2019).

As previously mentioned, the anchor point used in the mapping is the hyperbolic

position of the node in the network that we are interested in measuring similarity

with. For example, suppose that we were interested in computing the similarity of

node v to node u. Then we would select the hyperbolic position of node u, given

by u, as the anchor point. The purpose of the first step (transporting to the tangent

space TuHn of the anchor node u) is to preserve the relationship between node v and

the anchor node u. Skipping this step and mapping each point directly from Hn to

Euclidean space (using Logµ0
: Hn → Rn, for example), would distort the distance

between nodes u and v. This is because Logµ0
would preserve the distances to µ0

(see equation (1.34)) and not distances between nodes u and v (see equation (1.35)).

Transporting from Anchor Node Tangent Space to Tµ0Hn

After transporting from v to x ∈ TuHn, we require a second step to map to Euclidean

space. This step must preserve the Minkowski norm of x – since this is the hyperbolic

distance between the nodes u and v – while transforming x into a vector that is

orthogonal to the bottom tip of the hyperboloid (since we know that all of the vectors

orthogonal to the bottom tip are Euclidean vectors). The purpose of mapping to

Euclidean vectors is that they allow for a simple form of the measurement of node

similarity (Bojchevski and Günnemann, 2018).

4Recall Tµ0 Hn = Rn. See equation (1.30).
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(A) (B) (C)

FIGURE 4.4: Example of Ψu on the hyperboloid. (A) shows a representation of H1 a one
dimensional manifold in two dimensional Minkowski space R1:1. Three points in H1 are
highlighted: the bottom tip of the hyperboloid µ0, the anchor point u and v. (B) shows how
the logarithmic map takes v to a vector x ∈ TvH1. The Minkowski norm of x is equal to
the hyperbolic distance between u and v. ||x||R1:1 = DH1(u, v). (C) shows how PTu→µ0

simultaneously transports u to µ0 and x to Ψu(v) ∈ R1. It also shows that Ψu(u) = 0.

Combining the Two Steps

We now combine the above two steps to map from Hn to Rn. For two points u, v ∈

Hn, we can map to the Euclidean space
(
Tµ0Hn) by combining the logarithmic map

operation (equation (1.33)) and the parallel transport5 to µ0 operation PTu→µ0(x) as:

y = PTu→µ0(x) = x +
〈µ0 − βu, x〉Rn:1

β + 1
(u + µ0) (4.7)

where β = − 〈u, µ0〉Rn:1 .

We now introduce Ψu as the composition of equation (1.33) and equation (4.7):

Ψu : Hn → Rn := PTu→µ0 ◦ Logu (4.8)

Figure 4.4 gives an example of Ψu operating on the one-dimensional hyper-

boloid.

We apply our mapping function Ψu to map hyperbolic co-ordinates to vectors in

Euclidean space. For a given node pair (u, v), each mapping from their hyperbolic

co-ordinates u and v to their Euclidean positions Ψu(u) and Ψu(v) is performed

“relative” to the anchor node u.

Here we note some properties of Ψu. In general, for x, y, v ∈Hn:

x 6= y =⇒ Ψx(v) 6= Ψy(v) (4.9)

5Recall the parallel transport operation PTu→v given in equation (1.36).
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and so the Euclidean position of node v (relative to anchor node u), Ψu(v), is wholly

dependent on hyperbolic coordinate u of the anchor node u that is used in the map-

ping. This follows from equation (1.35). In other words, changing u would result in

a different position for Ψu(v).

The Euclidean norm of Ψu(v) is equal to the hyperbolic distance between the

mean vectors of nodes u and v on the hyperboloid (Nagano et al., 2019). That is:

||Ψu(v)|| = DHn(u, v) = arccosh(−〈u, v〉Rn:1) (4.10)

This follows from equation (1.34). Further, the direction of the vector Ψu(v) is the

same as the direction of the geodesic from u to v (Nagano et al., 2019).

We can interpret Ψu as a distance preserving map for all nodes relative to node

u. For all u, v, w ∈ Hn, Ψu preserves distances DHn(u, v) and DHn(u, w), but not

DHn(v, w) (Nagano et al., 2019). Further, we observe that for all u ∈Hn:

Ψu(u) = 0 (4.11)

Figure 4.5 demonstrates an example mapping from H2 to R2, that illustrates how

Ψu preserves hyperbolic distances to node u but distorts all distances between other

nodes.

Node Similarity

Putting everything together, we now propose the following modified form for equa-

tion (4.6) as an asymmetric measure of node similarity in hyperbolic space:

DKL(Nv || Nu) =
1
2

n

∑
i=1

[
Σi

v
Σi

u
+

[
Ψu(v)i]2

Σi
u

− 1− log
(

Σi
v

Σi
u

) ]
(4.12)

where xi is the i-th component of vector x. Note that we omit Ψu(u) since Ψu(u) = 0.

In addition, the terms involving Σ in equation (4.6) simplify to a simple sum over

vector elements since Σ is diagonal (Bojchevski and Günnemann, 2018).
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(A) (B)

FIGURE 4.5: Here we show how the Ψ operator preserves distances relative to the vector
used in the mapping. (A) shows three points u, v, w ∈ H2 on the two-dimensional hyper-
boloid. The red, green and blue lines show the geodesics between the points with lengths of
DH2(v, w), DH2(u, w), and DH2(u, v) respectively. (B) shows their resulting positions in R2

after applying Ψu. Distances DH2(u, v) and DH2(u, w) are preserved but DH2(v, w) is not.

4.2.6 Node Representation Learning

The section describes the learning objective of HEADNet, using the node similarity

computed in the previous section. The learning procedure is based on the idea that

we aim to maximize the similarity between ground truth node pairs – the directed

edges in the network – while simultaneously minimising the similarity between all

other node pairs. Since node distributions are computed by the embedder model,

here ‘learning’ refers to training the embedder model.

Learning Objective

To learn node representations, we select to optimise an energy-based objective (Le-

Cun et al., 2006). Following previous works, we define the energy Euv between two

nodes u and v (which are described by normal distributions Nu and Nv to be:

Euv = DKL(Nv || Nu) (4.13)
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and observe that, in general, Euv 6= Evu as required (Bojchevski and Günnemann,

2018). In addition to readily providing a simple form for an asymmetric measure of

similarity between learned node representations given by DKL, embedding nodes to

normal distributions rather than points can offer greater insight into role of the node

in network. For example, distributions with greater uncertainty, measured by the

determinant of the covariance matrix may correspond to nodes from highly diverse

neighbourhoods in the original network.

In accordance with other energy-based methods, we aim to minimize the energy

(ie: reduce the Kullback-Leibler divergence) for desirable node pairings and, like-

wise, maximize the energy of undesirable pairings. We define the directed edge set

E and the non-edge set V × V \ E to be the sets of desirable and undesirable pairs

respectively. We base our objective on negative log-likelihood:

L = E
(u,v)∼E
S∼Sk

uv

[
Euv + log ∑

(u′,v′)∈S
exp (−Eu′v′)

]
(4.14)

where Sk
uv = {S ⊂ V ×V : |S| = k ∧ (u, v) ∈ S} is the set of all subsets of node pairs

containing exactly k elements and the pair (u, v). The first term (Euv) will cause the

average energy of all pairs (u, v) ∈ E to be reduced. The second, contrastive, term

log ∑(u′,v′)∈S exp (−Eu′v′) causes the energy of all undesirable pairs to be “pulled-

up” a little. The energy of the correct answer is also pulled up, but not as hard as it

is pushed down by the first term (LeCun et al., 2006). The parameter k is a hyper-

parameter used to control the number of incorrect pairs seen for every correct pair.

4.2.7 Optimisation

All parameters in the embedder model are Euclidean and so updated using Adam

optimiser (Kingma and Ba, 2014) with a learning rate of 0.001.

4.2.8 Connection to Variational Autoencoder

A natural comparison can be made between HEADNet and a Variational Autoen-

coder (VAE) (Kingma and Welling, 2013).
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An autoencoder is a neural network designed for dimensionality reduction. The

overall concept is simple and consists of two components: an encoder f (·) and a

decoder g(·). The objective is to learn the best encoding-decoding scheme using

an iterative optimisation process: for example, gradient descent (Rumelhart, Hin-

ton, and Williams, 1985). At each iteration, we feed the autoencoder architecture

(the encoder followed by the decoder) with some data x, we compare the encoded-

decoded output, x̂ = g( f (x)), with the initial data and back-propagate the error,

||x̂− x||, through the architecture to update the weights of the two networks. Thus,

intuitively, the overall autoencoder architecture (encoder and decoder) creates a bot-

tleneck for data that ensures only the main structured part of the information can go

through and be reconstructed. The output of the encoder z = f (x) (the bottleneck)

is often referred to as the ‘latent space’ underpinning the observed data and the act

of encoding to a latent space can be naturally viewed as data embedding.

VAEs are autoencoders that address two drawbacks to traditional autoencoders.

Namely, the lack of interpretability and preserved structure in the latent space. In

theory, with a suitable deep encoder/decoder architecture, the latent space could be

a single dimension, where each data point is represented as a real number, and the

decoder exhibits no reconstruction loss. However, this latent representation would

likely not be informative and provide no insight into the observed data – there would

be no guarantee that similar data points would be represented (embedded) close

together in the latent space, and no guaranteed that sampling the latent space would

produce meaningful data.

VAEs make the natural link between autoencoders and the generation of new,

meaningful data by regularising the latent space representation of the data such that

both the aforementioned issues are addressed. The regularisation is achieved by en-

coding not to points in the latent space, but to distributions and applying a penalty
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to learned distribution that encourage them to be as close to the chosen prior distri-

bution, p(z), as possible6. In this way, both a local and global regularisation of the la-

tent space is ensured (local because of the variance control and global because of the

mean control). It is this regularity that is required in order to make generative pro-

cess possible, and can be expressed through two main properties: continuity (two

close points in the latent space should not give two completely different contents

once decoded) and completeness (for a chosen distribution, a point sampled from

the latent space should give “meaningful” content once decoded). This penalty on

the latent space representations, in addition to the standard reconstruction compo-

nent of the loss, enacts a trade-off between a high-quality reconstruction of the data

and regularity in the latent space which naturally regularises both models.

The connection between VAEs and HEADNet comes from the commonly se-

lected choice of prior: p(z) = N (0, I), a standard Gaussian distribution; as

well as the latent space penalty coming the form of Kullback Leibler divergence

DKL( f (x),N (0, I)). Like HEADNet, the encoder makes the common simplify-

ing assumption of feature independence to encode data points to d-dimensional

means and d-dimensional vectors corresponding to diagonal covariance matrices

(i.e., f (x) = N (µ(x), σ(x))). Furthermore, the architecture of the encoder neural

network is similar to the architecture of the embedder for HEADNet (Kingma and

Welling, 2013).

Through this lens, we can view HEADNet as an encoder that learns uses not

one, but N priors (corresponding to the N nodes in the network) for regularisation,

and that the priors are not fixed (only the shape of them). We leverage the structure

in the network to select priors that we use to regularise each distribution, based

on the distributions of the neighbours in the network. Another difference is that

regularisation involves not only minimising DKL between learned distributions and

priors, but also maximising distances between selected priors (based on negative

6Note that the choice to embed to a distribution in the latent space necessitates a sampling from
that learned distribution which is fed into the decoder. In other words, x̂ = g(z) where z ∼ f (x). In
order to train the two models, the reparameterisation trick is applied in order to back-propagate error
across the sampling process. This essentially reformulates the sampling as a differentiable function of
the distribution parameters. For example, when dealing with a Gaussian prior (p(z) = N (0, I)) and
simplifying the encoded distribution with an assumption of independent variables, one can reformu-
late z ∼ N (µ(x), σ(x)) to the differentiable form z = ζ · σ(x) + µ(x), where ζ ∼ N (0, I) (Kingma and
Welling, 2013).



Chapter 4. Hyperbolic Embedding of Attributed and Directed Networks 104

sampling).

Clearly, a key difference between a VAE and HEADNet is the omission of the

decoder in HEADNet. This leads to a natural extension: By simultaneously learning

a decoder along with our proposed embedder, we would be able to generate new,

meaningful entities in our system. For example: consider a social network where

nodes are annotated with characteristics that describe a person. Each link describes

a friendship, and we find that the network displays characteristics that would make

us believe that a hyperbolic metric space may underpin it. After learning a hyper-

bolic encoder (HEADNet) and a decoder, we would be able to, given a person, “gen-

erate people” that might be friends with that person by sampling from the learned

distribution for that person and decoding to obtain the attributes that that theoretical

person may exhibit. We leave this potential extension as future work.

4.3 Experimental Validation

4.3.1 Datasets

Synthetic Networks

We generate 30 synthetic scale free directed networks with N = 1000 nodes. We

set α, the probability for adding a new node connected to an existing node chosen

randomly according to the in-degree distribution, to 0.41; we set β, the probability

for adding an edge between two existing nodes, to 0.54; and we set γ, the probability

for adding a new node connected to an existing node chosen randomly according to

the out-degree distribution, to 0.05 (Bollobás et al., 2003).

Real World Networks

Table 4.1 details all of the real world networks used and figure 4.6 plots their degree

distributions. We see that all real world networks in this study follow a broadly

power-law distribution, suggesting that a hyperbolic embedding is a suitable ap-

proach. For the two social networks, Twitter and Google+, we use the 10000 features

with the greatest variance.
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TABLE 4.1: Real World Network statistics. Key: N is the number of nodes, |E| is the number
of edges, d is attribute dimension. - indicates no attributes.

Network N |E| d

Cora_ML (Bojchevski and Günnemann, 2018) 2995 8416 2879
Citeseer (Bojchevski and Günnemann, 2018) 4230 5358 602
Pubmed (Bojchevski and Günnemann, 2018) 18230 79612 500

Cora (Bojchevski and Günnemann, 2018) 19793 65311 8710
Wiki_vote (Leskovec and Sosič, 2016) 7115 103689 -
Twitter (Leskovec and Mcauley, 2012) 81306 1768149 10000

Google+ (Leskovec and Mcauley, 2012) 107614 13673453 10000

(A) Cora_ML (B) Citeseer (C) Pubmed (D) Cora

(E) Wiki Vote (F) Twitter (G) Google+

FIGURE 4.6: Degree distributions of the network datasets. Both axes are on a log scale. (A)
Cora_ML, (B) Citeseer, (C) Pubmed, (D) Cora, (E) Wiki Vote, (F) Twitter, and (G) Google+.

4.3.2 Benchmark Algorithms

Since there is no algorithm that can embed attributed directed networks into hy-

perbolic space, we select Euclidean embedding algorithms that can handle directed

networks as benchmark algorithms to compare against (see table 4.2). For all bench-

mark algorithms, we adopt the default hyper-parameter settings. For LINE, we set

the order to second only as the authors claim that this is suitable for directed graphs.

We set the negative ratio to 10 and the number of epochs to 1000. For ATP, we break

cycles using the hierarchical grouping method that the authors demonstrated ob-

tained good results (Sun et al., 2017). We select the log and harmonic transforms as

they are the best performing (Sun et al., 2019). For G2G∗,K={1,3}, we set K to 1 and

3 respectively G2GNA,∗ denotes G2G without attributes. For all G2G models, we
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TABLE 4.2: Description of benchmark algorithms.

Algorithm Variant Description

ATP (Sun et al., 2019)
log ATP (log transform)

harmonic ATP (harmonic transform)

LINE (Tang et al., 2015) 2nd order LINE (second order proximity)

G2G (Bojchevski and Günnemann, 2018)

G2GNA,K=1 G2G w/o attributes, K = 1
G2GNA,K=3 G2G w/o attributes, K = 3

G2GK=1 G2G w/ attributes, K = 1
G2GK=3 G2G w/ attributes, K = 3

N&K (Nickel and Kiela, 2017) - Undirected Poincaré ball

HEADNet

HEADNetNA,Σ=I HEADNet w/o attributes, identity variance
HEADNetNA HEADNet w/o attributes
HEADNetΣ=I HEADNet w/ attributes, identity variance

HEADNet HEADNet w/ attributes

fix the hidden dimension to 128 and train for the default maximum of 2000 epochs.

For N&K, we set learning rate to 1.0, epochs to 1500, number of negative samples

to 10, batch size to 512, and burn-in epochs to 20. For HEADNet, we train for 1000

epochs, stopping early if there is no improvement for 100 epochs, and set the ratio

of negative to positive pairs to k = 10. We set the the dimension of the latent hidden

dimension to d′ = 128. We set a maximum memory limit of 50GB for each algorithm.

4.3.3 Network Reconstruction

We use network reconstruction to evaluate the capacity of the learned embeddings to

reflect the original data (Nickel and Kiela, 2017). After training our model to conver-

gence using complete information, we compute distances in the embedding space

between all pairs of nodes according to both models. We assign the true edges in

the network positive labels and all other pairs as negatives. We then rank node pairs

by their distance in increasing order and, with a sliding threshold, compute both

the average precision (AP) and the area under the receiver operating characteristic

(AUROC) curve, as well as recommender metrics: mAP, and p@k.

Table 4.3 and table 4.4 provides a summary of the network reconstruction re-

sults for embedding dimension 25+25. Results for further dimensions can be found

in appendix C.1. ATP, LINE, G2GNA,K=1, G2GNA,K=3, and HEADNetNA are algo-

rithms that do not use attributes to perform an embedding. G2GK=1, G2GK=3, and

HEADNet use attributes. Comparing between like algorithms with and without at-

tributes, for example: G2GNA,K=1 and G2GK=1, we see that algorithms that do not



Chapter 4. Hyperbolic Embedding of Attributed and Directed Networks 107

TABLE 4.3: Summary of the network reconstruction task on synthetic, Cora_ML and Cite-
seer networks for an embedding dimension of 25+25. For clarity, we only report the results
for an embedding dimension of 25+25, but obtain similar results for all dimensions (see ap-
pendix C.1). HEADNetNA denotes HEADNet without attributes. A dash (–) indicates that
a network did not have attributes. Bold indicates best performance that is significant at a
0.05 level. For each network, for the computation of the t-statistic, we select the benchmark
algorithm according to AP. Significant results at a significance level of 0.05 are highlighted

in bold. Standard deviation is given in brackets.

Synthetic

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 617.7(59.5) 0.642(0.034) 0.663(0.029) 0.018(0.011) 0.006(0.018) 0.011(0.014) 0.017(0.015) 0.030(0.020)
ATP (harmonic) 611.4(53.7) 0.646(0.030) 0.663(0.030) 0.018(0.011) 0.006(0.018) 0.011(0.014) 0.017(0.015) 0.028(0.020)

LINE 1208.6(50.2) 0.301(0.017) 0.379(0.005) 0.010(0.002) 0.014(0.004) 0.048(0.012) 0.084(0.027) 0.119(0.035)
G2GNA,K=1 83.9(9.7) 0.952(0.007) 0.896(0.015) 0.216(0.020) 0.139(0.018) 0.121(0.025) 0.073(0.026) 0.048(0.017)
G2GNA,K=3 95.0(15.0) 0.946(0.009) 0.875(0.023) 0.129(0.018) 0.080(0.016) 0.105(0.025) 0.142(0.031) 0.288(0.072)

HEADNetNA,Σ=I 7.4(1.9) 0.996(0.001) 0.994(0.002) 0.661(0.059) 0.547(0.087) 0.337(0.018) 0.236(0.011) 0.142(0.007)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 52.5(8.7) 0.970(0.006) 0.951(0.008) 0.270(0.017) 0.250(0.015) 0.161(0.010) 0.124(0.008) 0.085(0.006)

HEADNetNA 3.5(1.1) 0.999(0.001) 0.998(0.001) 0.832(0.048) 0.752(0.071) 0.763(0.063) 0.769(0.068) 0.793(0.072)

t-statistic 3.06E+01 2.71E+01 3.02E+01 6.02E+01 3.80E+01 5.14E+01 5.12E+01 5.40E+01
p-value 2.18E-24 8.61E-23 2.13E-24 2.60E-38 2.39E-28 1.54E-31 6.05E-31 3.11E-31
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –

Cora_ML

ATP (log) 4112.2(26.7) 0.511(0.003) 0.526(0.003) 0.035(0.001) 0.019(0.002) 0.032(0.002) 0.044(0.002) 0.072(0.004)
ATP (harmonic) 4069.8(26.4) 0.516(0.003) 0.534(0.003) 0.038(0.001) 0.026(0.002) 0.036(0.002) 0.045(0.002) 0.070(0.004)

LINE 3972.1(35.1) 0.528(0.004) 0.480(0.003) 0.061(0.002) 0.100(0.004) 0.122(0.004) 0.136(0.005) 0.137(0.008)
G2GNA,K=1 55.9(5.0) 0.993(0.001) 0.991(0.001) 0.598(0.007) 0.538(0.012) 0.514(0.012) 0.503(0.012) 0.481(0.017)

NK 103.8(3.4) 0.988(0.000) 0.986(0.001) 0.581(0.003) 0.604(0.007) 0.428(0.003) 0.337(0.002) 0.220(0.001)
HEADNetNA,Σ=I 11.4(3.3) 0.999(0.000) 0.998(0.001) 0.817(0.011) 0.766(0.012) 0.574(0.009) 0.447(0.007) 0.276(0.003)

G2GK=1 64.7(6.9) 0.992(0.001) 0.989(0.001) 0.585(0.008) 0.535(0.013) 0.492(0.010) 0.478(0.012) 0.456(0.018)
G2GK=3 54.4(5.6) 0.994(0.001) 0.991(0.001) 0.609(0.013) 0.559(0.012) 0.538(0.015) 0.527(0.016) 0.504(0.014)

HEADNetΣ=I 17.3(2.8) 0.998(0.000) 0.997(0.001) 0.752(0.003) 0.697(0.006) 0.527(0.002) 0.413(0.001) 0.260(0.001)

Significance Test

G2GNA,K=3 45.5(5.3) 0.995(0.001) 0.992(0.001) 0.643(0.009) 0.586(0.012) 0.583(0.012) 0.571(0.012) 0.538(0.016)

HEADNetNA 3.1(1.3) 1.000(0.000) 1.000(0.000) 0.965(0.012) 0.960(0.014) 0.954(0.016) 0.949(0.018) 0.946(0.018)

t-statistic 4.26E+01 4.26E+01 2.80E+01 1.16E+02 1.13E+02 1.02E+02 9.87E+01 9.18E+01
p-value 1.87E-30 1.87E-30 9.20E-25 1.26E-66 3.27E-68 1.51E-64 2.28E-59 5.82E-64
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 4.4(1.4) 1.000(0.000) 0.999(0.000) 0.939(0.016) 0.932(0.017) 0.912(0.021) 0.902(0.021) 0.894(0.024)

t-statistic 4.12E+01 4.12E+01 2.72E+01 8.75E+01 9.20E+01 7.48E+01 7.48E+01 6.78E+01
p-value 3.69E-30 3.69E-30 2.44E-24 5.71E-53 1.26E-58 8.78E-51 8.13E-49 8.21E-52
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

ATP (log) 2253.6(33.5) 0.580(0.006) 0.588(0.009) 0.024(0.001) 0.008(0.001) 0.027(0.003) 0.034(0.005) 0.068(0.016)
ATP (harmonic) 2238.1(31.6) 0.582(0.006) 0.588(0.009) 0.023(0.001) 0.008(0.001) 0.025(0.003) 0.032(0.005) 0.064(0.017)

LINE 3163.9(29.4) 0.410(0.005) 0.417(0.002) 0.034(0.001) 0.036(0.002) 0.059(0.004) 0.052(0.005) 0.029(0.019)
G2GNA,K=1 6.8(1.6) 0.999(0.000) 0.998(0.000) 0.801(0.006) 0.714(0.009) 0.591(0.012) 0.563(0.015) 0.551(0.070)

NK 27.4(2.4) 0.995(0.000) 0.995(0.001) 0.722(0.004) 0.645(0.008) 0.364(0.002) 0.252(0.001) 0.141(0.000)
HEADNetNA,Σ=I 3.8(1.2) 0.999(0.000) 0.999(0.000) 0.883(0.002) 0.827(0.005) 0.442(0.001) 0.297(0.001) 0.158(0.000)

G2GK=1 16.8(2.9) 0.997(0.001) 0.993(0.002) 0.635(0.012) 0.532(0.016) 0.400(0.021) 0.351(0.023) 0.417(0.069)
G2GK=3 17.4(2.7) 0.997(0.001) 0.993(0.002) 0.620(0.009) 0.511(0.011) 0.406(0.016) 0.372(0.020) 0.462(0.080)

HEADNetΣ=I 15.0(1.9) 0.997(0.000) 0.994(0.002) 0.643(0.003) 0.540(0.006) 0.343(0.001) 0.246(0.001) 0.143(0.000)

Significance Test

G2GNA,K=3 6.2(1.7) 0.999(0.000) 0.999(0.001) 0.780(0.007) 0.670(0.013) 0.622(0.017) 0.592(0.026) 0.593(0.069)

HEADNetNA 2.3(0.8) 1.000(0.000) 1.000(0.000) 0.947(0.011) 0.921(0.016) 0.892(0.026) 0.895(0.028) 0.929(0.041)

t-statistic 1.15E+01 1.15E+01 8.74E+00 7.05E+01 6.68E+01 4.67E+01 4.32E+01 2.30E+01
p-value 6.59E-15 6.59E-15 8.19E-12 6.45E-53 3.30E-55 2.36E-43 5.15E-46 1.25E-27
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 7.8(2.1) 0.999(0.000) 0.996(0.002) 0.773(0.022) 0.711(0.030) 0.702(0.022) 0.684(0.026) 0.699(0.088)

t-statistic -3.14E+00 -3.17E+00 -8.05E+00 -1.51E+00 6.78E+00 1.55E+01 1.35E+01 5.19E+00
p-value 9.99E-01 9.99E-01 1.00E+00 9.30E-01 2.07E-08 5.46E-22 7.92E-20 1.57E-06
p < 0.05 0 0 0 0 1 1 1 1
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TABLE 4.4: Summary of the network reconstruction task on the Pubmed, Cora and Wiki
Vote networks for an embedding dimension of 25+25. For clarity, we only report the results
for an embedding dimension of 25+25, but obtain similar results for all dimensions (see ap-
pendix C.1). HEADNetNA denotes HEADNet without attributes. HEADNetΣ=I denoted
HEADNet with an identity variance. A dash (–) indicates that a network did not have at-
tributes. Bold indicates best performance that is significant at a 0.05 level. For each network,
for the computation of the t-statistic, we select the benchmark algorithm according to AP.
Significant results at a significance level of 0.05 are highlighted in bold. Standard deviation

is given in brackets.

Pubmed

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 64006.9(226.7) 0.278(0.003) 0.381(0.001) 0.063(0.003) 0.060(0.004) 0.118(0.008) 0.130(0.009) 0.134(0.010)
ATP (harmonic) 63820.6(225.7) 0.280(0.003) 0.387(0.001) 0.064(0.003) 0.064(0.004) 0.121(0.008) 0.132(0.009) 0.134(0.010)

LINE 59709.1(278.7) 0.326(0.003) 0.384(0.001) 0.024(0.000) 0.057(0.001) 0.103(0.002) 0.114(0.003) 0.109(0.004)
G2GNA,K=1 186.9(14.5) 0.998(0.000) 0.997(0.000) 0.846(0.006) 0.800(0.007) 0.832(0.011) 0.851(0.009) 0.861(0.007)

NK 409.6(12.8) 0.995(0.000) 0.994(0.000) 0.750(0.002) 0.754(0.003) 0.520(0.001) 0.408(0.001) 0.279(0.000)
HEADNetNA,Σ=I 14.6(3.0) 1.000(0.000) 1.000(0.000) 0.970(0.001) 0.948(0.002) 0.630(0.000) 0.484(0.000) 0.325(0.000)

G2GK=1 1856.6(140.4) 0.979(0.002) 0.969(0.002) 0.263(0.016) 0.166(0.011) 0.270(0.013) 0.327(0.015) 0.387(0.015)
G2GK=3 1473.9(68.0) 0.983(0.001) 0.975(0.001) 0.281(0.008) 0.204(0.007) 0.319(0.007) 0.379(0.007) 0.439(0.008)

HEADNetΣ=I 262.4(10.8) 0.997(0.000) 0.996(0.000) 0.629(0.001) 0.532(0.002) 0.435(0.001) 0.370(0.001) 0.274(0.000)

Significance Test

G2GNA,K=3 47.7(5.5) 0.999(0.000) 0.999(0.000) 0.915(0.002) 0.876(0.003) 0.915(0.005) 0.919(0.005) 0.922(0.004)

HEADNetNA 18.4(2.8) 1.000(0.000) 1.000(0.000) 0.970(0.001) 0.950(0.002) 0.983(0.001) 0.988(0.001) 0.991(0.001)

t-statistic 2.60E+01 2.60E+01 1.62E+01 1.17E+02 1.15E+02 6.73E+01 7.79E+01 9.45E+01
p-value 1.89E-28 1.89E-28 4.00E-20 4.56E-52 1.06E-67 1.46E-37 2.10E-39 2.18E-42
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 272.2(12.6) 0.997(0.000) 0.995(0.000) 0.616(0.009) 0.514(0.009) 0.681(0.007) 0.732(0.006) 0.771(0.006)

t-statistic -8.96E+01 -8.96E+01 -6.94E+01 -1.70E+02 -2.04E+02 -1.47E+02 -1.29E+02 -1.17E+02
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0 0 0 0 0

Cora

ATP (log) 33041.2(69.9) 0.494(0.001) 0.508(0.001) 0.049(0.000) 0.043(0.001) 0.053(0.001) 0.061(0.001) 0.077(0.002)
ATP (harmonic) 32769.0(69.1) 0.498(0.001) 0.514(0.001) 0.053(0.000) 0.053(0.001) 0.058(0.001) 0.064(0.001) 0.078(0.001)

LINE 32541.2(108.1) 0.502(0.002) 0.469(0.001) 0.087(0.001) 0.151(0.002) 0.157(0.002) 0.162(0.002) 0.166(0.003)
G2GNA,K=1 135.6(11.0) 0.998(0.000) 0.997(0.000) 0.808(0.010) 0.795(0.011) 0.742(0.014) 0.724(0.013) 0.719(0.011)

NK 401.7(11.3) 0.994(0.000) 0.993(0.000) 0.740(0.001) 0.787(0.002) 0.574(0.001) 0.449(0.001) 0.286(0.000)
HEADNetNA,Σ=I 13.9(2.8) 1.000(0.000) 1.000(0.000) 0.958(0.001) 0.941(0.002) 0.718(0.001) 0.561(0.000) 0.344(0.000)

G2GK=1 181.7(20.9) 0.997(0.000) 0.996(0.000) 0.763(0.015) 0.746(0.017) 0.684(0.019) 0.672(0.018) 0.675(0.015)
G2GK=3 122.4(14.2) 0.998(0.000) 0.998(0.000) 0.813(0.013) 0.800(0.014) 0.756(0.016) 0.739(0.015) 0.735(0.012)

HEADNetΣ=I 25.7(2.7) 1.000(0.000) 0.999(0.000) 0.929(0.001) 0.919(0.002) 0.694(0.001) 0.544(0.001) 0.337(0.000)

Significance Test

G2GNA,K=3 81.3(10.1) 0.999(0.000) 0.998(0.000) 0.865(0.008) 0.854(0.008) 0.824(0.011) 0.802(0.011) 0.783(0.009)

HEADNetNA 6.8(1.5) 1.000(0.000) 1.000(0.000) 0.988(0.002) 0.988(0.001) 0.983(0.003) 0.980(0.004) 0.975(0.005)

t-statistic 4.00E+01 4.00E+01 3.23E+01 8.70E+01 9.59E+01 7.76E+01 8.59E+01 1.01E+02
p-value 4.53E-28 4.53E-28 1.40E-25 3.36E-40 5.45E-40 1.58E-38 6.33E-43 1.17E-52
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 11.9(2.0) 1.000(0.000) 1.000(0.000) 0.973(0.003) 0.972(0.003) 0.966(0.004) 0.961(0.004) 0.956(0.005)

t-statistic 3.69E+01 3.69E+01 2.97E+01 7.17E+01 7.77E+01 6.75E+01 7.64E+01 9.01E+01
p-value 1.06E-27 1.06E-27 2.46E-25 1.39E-44 3.91E-46 4.39E-39 3.36E-42 2.33E-52
p < 0.05 1 1 1 1 1 1 1 1

Wiki Vote

ATP (log) 53732.0(186.4) 0.482(0.002) 0.503(0.001) 0.030(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.041(0.001)
ATP (harmonic) 53742.5(191.0) 0.482(0.002) 0.503(0.001) 0.030(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.041(0.001)

LINE 72072.5(208.1) 0.305(0.002) 0.375(0.001) 0.034(0.001) 0.070(0.002) 0.127(0.003) 0.152(0.004) 0.176(0.005)
G2GNA,K=1 3933.7(259.6) 0.962(0.003) 0.950(0.003) 0.550(0.010) 0.502(0.011) 0.410(0.014) 0.392(0.012) 0.410(0.012)
G2GNA,K=3 4676.5(167.6) 0.955(0.002) 0.932(0.003) 0.215(0.014) 0.174(0.013) 0.226(0.011) 0.259(0.010) 0.309(0.011)

HEADNetNA,Σ=I 893.8(23.5) 0.991(0.000) 0.988(0.000) 0.838(0.004) 0.839(0.008) 0.580(0.002) 0.475(0.001) 0.360(0.001)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 4269.5(26.1) 0.959(0.000) 0.963(0.000) 0.205(0.001) 0.279(0.003) 0.230(0.002) 0.210(0.001) 0.188(0.001)

HEADNetNA 156.6(12.5) 0.998(0.000) 0.998(0.000) 0.936(0.012) 0.923(0.024) 0.943(0.006) 0.932(0.006) 0.917(0.007)

t-statistic 7.80E+02 7.80E+02 4.31E+02 3.36E+02 1.49E+02 6.35E+02 6.14E+02 5.84E+02
p-value 1.36E-88 1.36E-88 5.35E-84 1.47E-54 1.31E-44 2.29E-70 1.23E-65 6.26E-62
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –
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use attributes outperform their equivalents with attributes. This suggests that at-

tributes act as a natural form of regularisation or constraint on the learning process,

preventing over-fitting to the given training data. Furthermore, we observe that our

algorithm without attributes outperforms all other algorithms according all metrics.

Additionally, by comparing HEADNet to HEADNetΣ=I, we find that training the

variance matrix results in superior performance across all networks, compared with

fixing it to the identity matrix.

4.3.4 Link Prediction

To evaluate link prediction ability, we randomly select 10% of the edges in the net-

work and remove them (ensuring that every node has at least one connecting edge)

(Bojchevski and Günnemann, 2018). We randomly select also an equal number of

non-edges in the network. We then train each model on the incomplete network and

rank the pairs of nodes based on similarity.

Table 4.5 provides a summary of the link prediction results. We see that incorpo-

rating attributes improves the performance on all three algorithms that are capable

of doing so on three out of the four networks: G2GK=1 vs. G2GNA,K=1, G2GK=3

vs. G2GNA,K=3, and HEADNet vs. HEADNetNA. The poorer performance on the

Pubmed network perhaps suggests that the homophily property (that is, nodes with

like attributes are more likely to connect) does not hold as strongly for this network

and using purely topological measures can better predict links. In addition, we see

that the two methods that embed to a hyperbolic space (HEADNetNA and HEAD-

Net) obtain superior performance compared to all of the Euclidean alternatives.

Table 4.6 provides a comparison of mAP scores achieved in the link prediction

task by HEADNet with and without fixing the variance matrix to the identity matrix.

We find that in three out of the four networks, performance is improved when both

the mean and variance matrices are learned simultaneously.

4.3.5 Link Prediction: Unseen Nodes

Mapping directly from attributes allows our model to handle previously unseen

nodes. To evaluate the capacity for HEADNet to predict edges on unseen nodes, we
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TABLE 4.5: Summary of the link prediction task on synthetic, Cora_ML, Citeseer, Pubmed,
Cora and Wiki Vote networks. For clarity, we only report the results for an embed-
ding dimension of 25+25, but obtain similar results for all dimensions (see appendix C.2).
HEADNetNA denotes HEADNet without attributes. A dash (–) indicates that a network did
not have attributes. All measures are reported to 3 decimal places. For each network, for
the computation of the t-statistic, we select the benchmark algorithm according to AP. Sig-
nificant results at a significance level of 0.05 are highlighted in bold. Standard deviation is

given in brackets.

Synthetic (∼173 edges removed) Pubmed (8865 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 88.7(8.1) 0.493(0.041) 0.574(0.040) 0.017(0.020) ATP (log) 7692.6(24.3) 0.132(0.003) 0.327(0.001) 0.083(0.005)
ATP (harmonic) 88.7(8.1) 0.493(0.041) 0.570(0.040) 0.017(0.020) ATP (harmonic) 7682.0(24.9) 0.134(0.003) 0.330(0.001) 0.085(0.004)

LINE 122.0(8.2) 0.301(0.037) 0.383(0.012) 0.018(0.009) LINE 4859.8(52.3) 0.452(0.006) 0.433(0.003) 0.045(0.002)
G2GNA,K=1 47.0(6.7) 0.733(0.045) 0.651(0.051) 0.010(0.005) G2GNA,K=1 66.0(7.5) 0.993(0.001) 0.991(0.001) 0.503(0.012)
G2GNA,K=3 35.2(6.3) 0.801(0.040) 0.738(0.049) 0.023(0.010) NK 107.6(6.2) 0.988(0.001) 0.987(0.001) 0.475(0.005)

G2GK=1 – – – – G2GK=1 284.1(19.9) 0.968(0.002) 0.958(0.003) 0.146(0.006)
G2GK=3 – – – – G2GK=3 229.6(10.4) 0.974(0.001) 0.965(0.002) 0.170(0.004)

Significance Test Significance Test

NK 34.6(9.8) 0.804(0.063) 0.738(0.072) 0.030(0.008) G2GNA,K=3 39.2(4.9) 0.996(0.001) 0.995(0.001) 0.612(0.011)

HEADNetNA 22.3(4.0) 0.876(0.026) 0.866(0.032) 0.051(0.009) HEADNetNA 36.0(4.3) 0.996(0.000) 0.996(0.001) 0.781(0.009)

t-statistic 6.40E+00 5.84E+00 8.95E+00 9.43E+00 t-statistic 2.69E+00 2.69E+00 3.74E+00 6.49E+01
p-value 7.68E-08 4.53E-07 1.95E-11 1.84E-13 p-value 4.68E-03 4.68E-03 2.10E-04 1.06E-53
p < 0.05 1 1 1 1 p < 0.05 1 1 1 1

HEADNet – – – – HEADNet 73.4(6.8) 0.992(0.001) 0.989(0.001) 0.421(0.007)

t-statistic – – – – t-statistic -2.23E+01 -2.23E+01 -2.23E+01 -7.97E+01
p-value – – – – p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 – – – – p < 0.05 0 0 0 0

Cora_ML (842 edges removed) Cora (6532 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 500.4(11.9) 0.407(0.014) 0.446(0.009) 0.031(0.004) ATP (log) 3945.8(35.1) 0.396(0.005) 0.435(0.004) 0.038(0.001)
ATP (harmonic) 496.0(12.2) 0.412(0.014) 0.454(0.010) 0.032(0.004) ATP (harmonic) 3920.1(35.2) 0.400(0.005) 0.440(0.004) 0.040(0.002)

LINE 405.2(11.8) 0.520(0.014) 0.475(0.008) 0.063(0.008) LINE 3159.6(36.1) 0.516(0.006) 0.473(0.003) 0.084(0.004)
G2GNA,K=1 27.1(3.6) 0.969(0.004) 0.965(0.005) 0.240(0.013) G2GNA,K=1 74.8(6.6) 0.989(0.001) 0.989(0.001) 0.456(0.012)
G2GNA,K=3 26.6(3.6) 0.970(0.004) 0.966(0.006) 0.244(0.014) G2GNA,K=3 70.9(7.5) 0.989(0.001) 0.990(0.001) 0.485(0.012)

NK 29.6(3.7) 0.966(0.004) 0.965(0.005) 0.272(0.015) NK 109.4(7.5) 0.983(0.001) 0.984(0.001) 0.479(0.005)
G2GK=3 24.2(3.0) 0.972(0.004) 0.967(0.006) 0.244(0.014) G2GK=1 66.5(5.3) 0.990(0.001) 0.989(0.001) 0.426(0.012)

Significance Test Significance Test

G2GK=1 23.8(2.9) 0.973(0.003) 0.967(0.006) 0.241(0.012) G2GK=3 64.1(5.2) 0.990(0.001) 0.990(0.001) 0.445(0.012)

HEADNetNA 24.4(3.9) 0.972(0.005) 0.974(0.004) 0.394(0.016) HEADNetNA 86.6(5.9) 0.987(0.001) 0.989(0.001) 0.623(0.008)

t-statistic -5.92E-01 -5.92E-01 5.08E+00 4.30E+01 t-statistic -1.57E+01 -1.57E+01 -3.54E+00 6.90E+01
p-value 7.22E-01 7.22E-01 2.69E-06 3.16E-43 p-value 1.00E+00 1.00E+00 1.00E+00 2.48E-51
p < 0.05 0 0 1 1 p < 0.05 0 0 0 1

HEADNet 16.9(2.6) 0.981(0.003) 0.980(0.004) 0.415(0.017) HEADNet 46.1(4.3) 0.993(0.001) 0.993(0.001) 0.661(0.006)

t-statistic 9.69E+00 9.69E+00 1.01E+01 4.60E+01 t-statistic 1.48E+01 1.48E+01 1.56E+01 8.96E+01
p-value 5.41E-14 5.41E-14 2.59E-14 2.98E-43 p-value 3.01E-21 3.01E-21 2.35E-21 3.92E-50
p < 0.05 1 1 1 1 p < 0.05 1 1 1 1

Citeseer (536 edges removed) Wiki Vote (10369 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 303.9(11.2) 0.435(0.021) 0.494(0.021) 0.029(0.004) ATP (log) 5768.5(37.5) 0.444(0.004) 0.471(0.003) 0.013(0.001)
ATP (harmonic) 302.2(11.3) 0.438(0.021) 0.494(0.021) 0.028(0.004) ATP (harmonic) 5768.1(36.1) 0.444(0.003) 0.471(0.003) 0.013(0.001)

LINE 299.9(7.3) 0.442(0.014) 0.433(0.007) 0.040(0.005) LINE 7171.1(48.1) 0.309(0.005) 0.376(0.002) 0.042(0.002)
G2GNA,K=1 28.8(4.6) 0.948(0.008) 0.962(0.007) 0.279(0.015) G2GNA,K=1 478.7(32.7) 0.954(0.003) 0.941(0.004) 0.109(0.005)
G2GNA,K=3 28.5(4.6) 0.949(0.009) 0.962(0.007) 0.264(0.013) G2GNA,K=3 476.3(33.7) 0.954(0.003) 0.932(0.006) 0.114(0.004)

NK 39.1(6.2) 0.929(0.011) 0.945(0.007) 0.265(0.012) G2GK=1 – – – –
G2GK=1 15.0(3.0) 0.974(0.006) 0.972(0.009) 0.259(0.012) G2GK=3 – – – –

Significance Test Significance Test

G2GK=3 14.9(2.8) 0.974(0.005) 0.972(0.008) 0.247(0.012) NK 199.1(7.8) 0.981(0.001) 0.979(0.001) 0.179(0.004)

HEADNetNA 35.0(5.2) 0.937(0.010) 0.951(0.007) 0.370(0.026) HEADNetNA 121.6(8.6) 0.988(0.001) 0.984(0.001) 0.218(0.004)

t-statistic -1.87E+01 -1.87E+01 -1.09E+01 2.32E+01 t-statistic 3.66E+01 3.66E+01 1.65E+01 3.52E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.18E-25 p-value 7.88E-42 7.88E-42 3.25E-23 9.48E-41
p < 0.05 0 0 0 1 p < 0.05 1 1 1 1

HEADNet 12.8(2.1) 0.978(0.004) 0.975(0.007) 0.414(0.020) HEADNet – – – –

t-statistic 3.19E+00 3.19E+00 1.30E+00 3.92E+01 t-statistic – – – –
p-value 1.21E-03 1.21E-03 9.95E-02 6.18E-39 p-value – – – –
p < 0.05 1 1 0 1 p < 0.05 – – – –
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TABLE 4.6: Comparison of HEADNet as a recommender system with and without learning
the variance matrix. We present mAP achieved on the link prediction task. Significant results
at a significance level of 0.05 are highlighted in bold. Standard deviation is given in brackets.

Embedding Dimension

5 10 25 50

Cora_ML

HEADNetΣ=I 0.277(0.019) 0.297(0.016) 0.302(0.015) 0.306(0.017)

HEADNet 0.341(0.022) 0.395(0.020) 0.415(0.017) 0.428(0.023)

t-statistic 1.21E+01 2.08E+01 2.68E+01 2.35E+01
p-value 1.41E-17 2.84E-28 2.36E-34 2.37E-30
p < 0.05 1 1 1 1

Citeseer

HEADNetΣ=I 0.274(0.019) 0.291(0.016) 0.301(0.014) 0.311(0.017)

HEADNet 0.332(0.023) 0.392(0.026) 0.414(0.020) 0.424(0.017)

t-statistic 1.09E+01 1.77E+01 2.56E+01 2.56E+01
p-value 1.13E-15 4.23E-23 1.80E-31 1.55E-33
p < 0.05 1 1 1 1

Pubmed

HEADNetΣ=I 0.317(0.007) 0.389(0.007) 0.436(0.008) 0.441(0.007)

HEADNet 0.302(0.007) 0.374(0.008) 0.421(0.007) 0.436(0.005)

t-statistic -8.07E+00 -7.40E+00 -8.41E+00 -3.57E+00
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

Cora

HEADNetΣ=I 0.484(0.005) 0.558(0.006) 0.575(0.006) 0.578(0.008)

HEADNet 0.540(0.010) 0.625(0.006) 0.661(0.006) 0.664(0.007)

t-statistic 2.80E+01 4.43E+01 4.46E+01 4.46E+01
p-value 1.58E-29 1.58E-46 2.31E-46 2.31E-46
p < 0.05 1 1 1 1

devise the following experiment. We randomly sample 10% nodes from the network

and remove all in- and out- going edges from each of these selected nodes (this may

result in the removal of additional nodes if we remove all of a nodes neighbours).

For each removed edge, we randomly select a pair of nodes as a negative sample.

We then train and evaluate in the same way as in the link prediction experiment. We

compare only against G2G as only G2G can handle unseen nodes.

Table 4.7 shows a summary of the unseen nodes experiment for embedding di-

mensions 5+5 and 10+10. From this, we see that HEADNet can achieve substantially

better results than G2G – outperforming it on all networks by all metrics – in rela-

tively small embedding dimensions. These results suggest that embedding to a hy-

perbolic metric space using attributes can provide an effective method for predicting

the links of previously unseen nodes.
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TABLE 4.7: Summary of link prediction on unseen nodes. For clarity, we only report the
results for an embedding dimension of 5+5 and 10+10, but obtain similar results for all di-
mensions (see appendix C.3). All measures are reported to 3 decimal places with the ex-
ception of mean rank which is to 1 decimal place. Bold indicates best performance that is
significant at a 0.05 level. For each network, for the computation of the t-statistic, we select
the benchmark algorithm according to AP. The selected benchmark algorithm is identified
with an asterisk (*). Significant results at a significance level of 0.05 are highlighted in bold.

Standard deviation is given in brackets.

5+5

Cora_ML (300 nodes removed) Pubmed (1972 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 427.9(67.1) 0.739(0.027) 0.683(0.028) *G2GK=1 2772.4(245.4) 0.836(0.011) 0.814(0.012)
G2GK=3 618.5(78.9) 0.621(0.040) 0.572(0.037) G2GK=3 3914.7(364.3) 0.768(0.019) 0.753(0.016)

HEADNet 255.5(44.4) 0.845(0.018) 0.856(0.016) HEADNet 2043.8(144.9) 0.879(0.007) 0.873(0.007)

t-statistic 11.74 18.04 29.44 t-statistic 14 18.17 23.77
p-value 2.497E-16 4.429E-24 5.682E-32 p-value 1.069E-18 1.987E-23 4.54E-28
p < 0.05 1 1 1 p < 0.05 1 1 1

Citeseer (423 nodes removed) Cora (1980 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 227.3(24.3) 0.774(0.022) 0.792(0.020) *G2GK=1 2465.9(262.6) 0.801(0.019) 0.766(0.023)
G2GK=3 232.9(25.9) 0.768(0.024) 0.786(0.021) G2GK=3 3545.1(376.8) 0.714(0.030) 0.669(0.033)

HEADNet 166.7(23.1) 0.835(0.016) 0.852(0.015) HEADNet 1088.8(74.6) 0.912(0.005) 0.920(0.004)

t-statistic 9.903 12.18 13.24 t-statistic 27.63 30.41 36.42
p-value 2.285E-14 3.059E-17 7.183E-19 p-value 5.196E-25 5.138E-26 2.839E-27

p < 0.05 1 1 1 p < 0.05 1 1 1

10+10

Cora_ML (300 nodes removed) Pubmed (1972 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 428.5(74.4) 0.739(0.032) 0.682(0.033) *G2GK=1 2766.2(215.8) 0.836(0.011) 0.811(0.011)
G2GK=3 636.2(74.2) 0.610(0.037) 0.561(0.033) G2GK=3 3878.4(375.2) 0.770(0.018) 0.754(0.017)

HEADNet 207.6(39.9) 0.874(0.016) 0.884(0.015) HEADNet 1681.7(100.1) 0.900(0.005) 0.897(0.004)

t-statistic 14.34 20.66 30.38 t-statistic 24.97 29.98 39.99
p-value 1.431E-18 1.958E-24 2.442E-29 p-value 1.102E-26 2.446E-29 5.557E-33
p < 0.05 1 1 1 p < 0.05 1 1 1

Citeseer (423 nodes removed) Cora (1980 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 224.8(26.7) 0.776(0.026) 0.793(0.024) *G2GK=1 2464.4(226.4) 0.801(0.017) 0.764(0.022)
G2GK=3 232.9(29.2) 0.768(0.026) 0.786(0.024) G2GK=3 3559.7(348.6) 0.713(0.025) 0.665(0.027)

HEADNet 162.0(19.7) 0.840(0.015) 0.857(0.013) HEADNet 693.3(70.5) 0.944(0.005) 0.949(0.004)

t-statistic 10.36 11.79 13.24 t-statistic 40.9 43.38 46.05
p-value 1.084E-14 8.412E-16 2.365E-17 p-value 3.584E-31 4.407E-31 4.548E-30
p < 0.05 1 1 1 p < 0.05 1 1 1
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(A) Network reconstruction
AUROC

(B) Link prediction AUROC (C) Unseen nodes AUROC

(D) Network reconstruction AP (E) Link prediction AP (F) Unseen nodes AP

FIGURE 4.7: Summary of AUROC scores over embedding dimensions 2+2, 5+5, 10+10,
25+25, and 50+50 for three downstream machine learning tasks. Network reconstruction
(A) AUROC and (D) AP; link prediction (B) AUROC and (E) AP; unseen nodes (C) AUROC

and (F) AP. All measures are averaged over 30 random seeds.

4.3.6 Parameter Sensitivity

Here we evaluate the robustness of HEADNet to the setting of embedding dimen-

sion. Figure 4.7 shows AUROC scores on three downstream machine learning tasks:

network reconstruction, link prediction, and predicting links on unseen nodes over a

range of embedding dimensions: 2+2, 5+5, 10+10, 25+25, and 50+50. We see from the

almost flat curves that HEADNet is robust to the setting of embedding dimension,

and even achieves good performance the 2+2 dimensional setting.

4.4 Chapter Summary

This chapter presents HEADNet to fill the gap of embedding directed networks in

hyperbolic space. We propose an embedding model to map attributed nodes to

Gaussian distributions in hyperbolic space. We further propose the use of a mapping

procedure to map hyperbolic Gaussian distributions to Euclidean ones, preserving

hyperbolic distance and direction, based on previous works (Nagano et al., 2019).

We achieve state-of-the art performance on a number of downstream machine learn-

ing tasks, including predicting neighbours of previously unseen nodes. Our results

show that HEADNet provides a general hyperbolic embedding method for directed



Chapter 4. Hyperbolic Embedding of Attributed and Directed Networks 114

networks with and without node attributes, which opens the door to hyperbolic

manifold learning on a wider range of network than previously possible.
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Chapter 5

Hierarchical Organisation of

Network Architectures

Literature has revealed that dynamic network behaviour is governed by meso-scopic

architectural features (see section 1.4). Meso-scopic features are arranged hierarchi-

cally (Kim et al., 2012; García-Pérez, Boguñá, and Serrano, 2018). As discussed in

section 2.3, local network architectures generate local behaviour, for example: feed-

back loops generate bi-stability and oscillation. However, it is the multi-scale, hierar-

chical organisation of these local architectures that give rise to larger network archi-

tectures, such as the bow-tie architecture, and that generates the complex network

dynamics that allow for critical network behaviour, necessary for a cell’s survival

and reproduction (Roli et al., 2018).

The purpose of this chapter is to investigate this multi-scale arrangement of ar-

chitectures in intra-cellular networks – focusing specifically on the organisation of

coherent feedback loops within the cores of bow-tie architectures and feed-forward

loops found within in- and out-components. Furthermore, we investigate the re-

lationship of local dynamical behaviour to global network behaviour. Section 5.1

introduces our hypotheses that serve as the motivation for our approach. Section 5.2

describes an overview of our algorithm and provides a simple method for iden-

tifying the components in a bow-tie architecture, based on the definition of such

an architecture given in section 1.4.5. Next, section 5.2.2 provides a framework to

identify the position of nodes within a hierarchy of coherent feedback loops found

within the cores of bow-tie architectures based on an iterative subnetwork merging

algorithm. By adapting the algorithm introduced in section 5.2.2, section 5.2.4 can
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decompose in- and out-components of bow-tie architectures into a hierarchy of feed-

forward loops. In section 5.3 we validate the decomposition of the core produced by

the algorithm described in section 5.2.2. We describe our experimental setup and

benchmark datasets, and, in section 5.4, we evaluate our approach on a number of

synthetic and real-world dynamic network models derived from literature. Finally,

section 5.5 summarises the chapter.

5.1 Introduction

Complex networks are models of real-world systems. Real-world systems are al-

ways changing and so complex networks must be dynamic. This may refer to the

changing of a network’s structure, its internal state, or both. An understanding of

the dynamical behaviour of a complex system is essential to understand the system

as a whole, and, as such, the study of the dynamics of complex networks have at-

tracted much attention in a variety of disciplines, such as social network analyses

(Sarkar and Moore, 2006; Braha and Bar-Yam, 2009), multi-agent systems (Jiang and

Wang, 2010), and biological system modelling (Albert and Othmer, 2003; Kim, Park,

and Cho, 2013).

To understand dynamics over the nodes of a complex network, both topolog-

ical and interaction (collectively called architectural) information is required (Liu,

Slotine, and Barabási, 2011). Small-scale network architectures generate rich local

network dynamics, such as bi-stability, and oscillation (Timár et al., 2017). Positive

coherent feedback loops1, in particular, amplify signal, whereas negative coherent

feedback loops attenuate it (Kholodenko, 2006). Feedback loops, in general, form

a subset of network motifs that have been found to be enriched in a diverse array

of organisms, including Escherichia coli (E. coli) (Shen-Orr et al., 2002), Saccharomyces

cerevisiae (budding yeast) (Milo et al., 2002), and human (Odom et al., 2004).

However, localized dynamics are not enough to explain the complex, global be-

haviours of real-world systems. To survive and reproduce in the uncertain and dy-

namic environment, intra-cellular networks must evolve such that can process noisy

and variable information, and this requires the following functional characteristics:

1Recall the definition of coherent feedback loops given in section 1.1.7: a coherent feedback loop is
a cycle in a directed and signed network where each edge has the same sign.
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robustness and flexibility. Striking the balance between these two seemingly conflict-

ing functional properties is the key for a cell to successfully process uncertain and

variable information. An optimal balance enables molecular networks to attain the

highest level of information processing capabilities (Roli et al., 2018). The balance

cannot be realised by simple network architectures with simple dynamics such as

bi-stability or oscillations. Instead, more complex network architectures are required

to generate the necessary global networks dynamics to strike a balance between ro-

bustness and flexibility.

A ubiquitous higher-order network architecture is the bow-tie architecture –

comprised of weakly connected in- and out-components connected to a strongly-

connected core. These cores have been shown to compress signals into a small set

of universal, modular building blocks (Timár et al., 2017), as well as gives rise to the

necessary critical behaviour of the network as a whole (Mitarai, Jensen, and Semsey,

2015). By definition, any two nodes in the core are strongly connected, which means

they belong to the same feedback loop. This definition, therefore, suggests that the

core contains at least one feedback loop or multiple nested feedback loops. As dis-

cussed previously, these feedback loops generate diverse local network dynamics.

When multiple positive and negative feedback loops are coupled, the core gener-

ates complex dynamics, which enables the molecular networks to make robust yet

flexible decisions, producing increasingly diverse and complex cellular behaviour

(Kim, Yoon, and Cho, 2008; Mitarai, Jensen, and Semsey, 2015). This is why nested

feedback loops have been found in many biological networks (Kim et al., 2012).

In addition to the strongly connected core, the in- and out-components meso-

scale architectural components that are responsible for signal de-noising and filter-

ing respectively (Timár et al., 2017). These components are typically acyclic networks

that are, accordingly, enriched by acyclic network motifs such as cascades and feed-

forward loops. Feed-forward loops, particular, are local architectures that have been

shown to produce small-scale dynamical behaviour, such as: persistent signal detec-

tion (Mangan and Alon, 2003; Chou, 2018), fold-change detection (Goentoro et al.,

2009) and pulse shaping (Mangan and Alon, 2003).

However, the link between the scales of network architectures – from small, lo-

calized coherent feedback loops to larger, higher-order processing cores to overall



Chapter 5. Hierarchical Organisation of Network Architectures 118

global network dynamical behaviour – remains largely unexplored. We are left with

the following question: can we predict and control global complex network dynam-

ics based on incomplete information about local network architecture? As loops are

small-scale, local architectures that are found within the components of larger bow-

tie architectures, we accordingly break down our question into the following two

parts:

1. how do local dynamics organize as global dynamics?

2. can we use known information about the relationship between local architec-

tures and local dynamics to predict and control global dynamics? This requires

understanding of both:

(a) how small-scale architectures are organized as larger architectures,

(b) and how this organisation correlated to the organisation of local dynamics

in global dynamics.

Since completely capturing and modelling interactions requires intimate knowledge

of the parameters of the system (for example: reaction rates), which are often un-

known or infeasible to determine, we consider the case when only minimal architec-

tural information is known – that is, only the direction and signs of interactions are

known.

5.1.1 Hypotheses

It has been shown that coherent feedback loops form the information processing

building blocks of complex biological networks (Milo et al., 2002). For example, pos-

itive feedback loops amplify and negative feedback loops attenuate signal, which are

two of the most fundamental information processing steps. Based on these observa-

tions, we further hypothesise that coherent feedback loops are arranged hierarchi-

cally within the cores of bow-tie architectures and that it is this multi-scale organi-

sation of architecture that, ultimately, determine how information is processed and

governs overall global network dynamics (Supper et al., 2009). Furthermore, we hy-

pothesise that it is feed-forward loops, not feedback loops, that are arranged within

the in- and out-components.
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Our claim is that nodes at the deepest levels of the uncovered loop hierarchy

govern the dynamics of the network as a whole, that we divide into two parts:

1. The deeper that a node appears in the coherent feedback loop hierarchy, the

more likely it is to have a significant impact on the output of the network,

2. and, the better candidate that it is to be a therapeutic target.

In the core, we focus on coherent loops because:

• positive feedback loops amplify signal (Kholodenko, 2006), and so, we hypoth-

esise that any change will be accordingly amplified through the hierarchy;

• and negative feedback loops are responsible for reducing signal (Kholodenko,

2006) as well as for network adaptation (Ma et al., 2009), and so, control the

robustness of the global dynamics through the feedback loop hierarchy.

Likewise for the in- and out-components, we consider feed-forward loops since they

are responsible for noise filtering, fold-change detection and the identification of

persistent signals (Mangan and Alon, 2003; Goentoro et al., 2009; Chou, 2018). Ad-

ditionally, (incoherent) feed-forward loops have been shown the be responsible for

pulse shaping (Mangan and Alon, 2003).

To test our hypotheses, we propose IMPLISig (for Iterative Merging of Posi-

tive/negative Feedback Loops in Signalling networks), a general framework that

breaks down the components of the bow-tie architectures with incomplete interac-

tion information into a hierarchy of coherent feedback loops. This enables us to

validate our intuition that the hierarchy of coherent feedback loops in the core deter-

mines how information is processed and governs overall global network dynamics.

5.2 Decomposition of Bow Tie Architectures

The following three sections detail the entire decomposition procedure. It can be

broadly divided into the following three stages:

1. Identification of the three components (the core, in- and out-components) that

form the bow-tie architecture (described in section 5.2.1)
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2. Decomposition of the core into a hierarchy of coherent feedback loops (de-

scribed in section 5.2.2)

3. Decomposition of the in- and out-components into a hierarchy of feed-forward

loops (described in section 5.2.4).

5.2.1 Identification of the Bow-Tie Components

Identification of a bow-tie architecture within a signalling network G = (V, E) is

based on the definition of a bow-tie architecture given in section 1.4.5.

Identifying the Core

We begin with the identification of the core. Recall that the core of the bow-tie archi-

tecture is a large strongly connected component that forms the processing centre of

the system (Timár et al., 2017). Identification of the core requires the simple applica-

tion of Tarjan’s algorithm (Tarjan, 1972). We proceed based on the assumption that

a signalling network under study has exactly one large strongly connected com-

ponent. Note that a general directed network G containing n strongly connected

components can be broken down into n disjoint strongly connected subnetworks:

G = (C1, ..., Cn) where
⋃

i Ci = G and VCi ∩ VCj = ∅ for all i 6= j. Our approach can

be applied to each of those subnetworks Ci in parallel.

Identifying the In- and Out-Components

For a given core, C = (VC , EC) ⊆ G, identification of the in- and out-components is

a trivial task. The in and out components are defined based on reachability2 to all of

the nodes in the core. Since the core is strongly connected, it suffices to check reach-

ability to (and from) just one node c ∈ VC in the core. Based on this, we can identify

the two peripheral components (the in-component I and the out-component O) as

follows:

I :={v ∈ V \ C | HASPATH(G, v, c)} (5.1)

O :={v ∈ V \ C | HASPATH(G, c, v)} (5.2)

2Recall the definition of reachability given in section 1.1.7.
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(A) A three-node positive coherent feedback loop. (B) A three-node negative coherent feedback loop.

FIGURE 5.1: Two examples of coherent feedback loops. (A) shows a positive feedback loop,
which has been shown to amplify a signal, whereas (B) shows a negative feedback loop,
which reduces signal (Kholodenko, 2006). For nodes in the core of bow-tie architecture, we

suggest that both make for promising targets for network control.

where HASPATH(G, u, v) is a boolean function that returns true if network G has a

path from node u to node v. It may be that one or both of the sets I and O is empty.

5.2.2 Decomposition of the Core

Intuition

Literature has shown that feedback loops form the building blocks of complex bi-

ological systems (Milo et al., 2002). As we highlighted in section 2.3.2, coherent

feedback loops are responsible for a number of fundamental signalling operations

in the core of bow-tie architectures. Accordingly, the decomposition of the core is

built upon the identification of highly modular coherent feedback loops. Figure 5.1

provides some examples of small coherent feedback loops, the occurrence of both of

which are enriched in many biological networks (Kholodenko, 2006).

Our algorithm, IMPLISig, decomposes the core of bow-tie architectures based

upon two principles:

1. all directed feedback loops are – trivially – strongly connected,

2. feedback loops of feedback loops are also strongly connected.

The second principle can be understood in the following way: Consider a

strongly connected network S0 of N nodes. A single loop l1 = (u1, ..., un)3 in that

network, containing n > 1 nodes, may, instead, be represented as a single super-

node S1. Here ‘represented’ means that edges incident to the members of l1 are

3Here we use brackets (·) to denote an ordered set of nodes that represents a loop in the network.
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(A) Coherent feedback loop in G0. (B) Coherent feedback loop in G1.

(C) A super-node in S2. (D) An expanded super-node.

FIGURE 5.2: The intuition behind IMPLISig. (A) shows a five node strongly connected com-
ponent within a larger strongly connected network S0 containing N nodes. A coherent feed-
back loop, l1 = (u1, u2, u3), is highlighted in red. In (B), the nodes in l1 have been replaced
with a single super-node, producing a condensed network S1 containing N − 3 + 1 = N − 2
nodes. A new coherent feedback loop, l2 = (S1, v2, v3), is highlighted in blue. (C) shows
the nodes in l2 condensed into a super-node, S2, forming the condensed network S2. (D)
provides an expanded view of S2, where both l2 and l1 are expanded to show the strongly
connected component in S0 that the node S2 in S2 represents. This demonstrates the hierar-

chy of loops that are uncovered by IMPLISig.
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made appropriately incident to S1: edges incoming to members of l1 become edges

incoming to S1, and likewise out-going edges are made out-going. All of the nodes

in l1 are then deleted from the network. We can interpret this new version of the

network as a smaller, ‘condensed’ network S1, that contains N − n + 1 < N nodes.

Principle 1 tells us that the original loop was strongly connected and so the new

super-node represents a strongly connected subnetwork in the original network S0.

If a new loop l2 = (v1 = S1, v2, ..., vm) of size m > 1 – containing that super-

node S1 – is identified in the condensed network S1, then that loop l2 may be re-

placed with a new super-node S2 – forming an even more condensed network S2

that contains even fewer nodes than S1. This new super-node S2 represents a larger

underlying strongly connected component in the original network S0, containing all

of {u1, ..., un, v2, ..., vm}.

The strongly connected property is guaranteed. The nodes in l1 represent a loop

in the original network and so all of {u1, ..., un} are strongly connected. Since l2 is a

loop in the condensed network S1, then a cycle must exist in the original network of

this form: (ui, v2, ..., vm, uj), where ui, uj ∈ l1 and all of v2, ..., vm ∈ l2. Now ui, uj ∈ l1

and so a path exists from uj to ui making a cycle that contains all of {v2, ..., vm}. As

such, we conclude that S2 represents a strongly connected component in S0 contain-

ing all of {u1, ..., un, v2, ..., vm}.

Figure 5.2 provides an illustrative example of this, where we show a strongly

connected subnetwork of a larger network containing five nodes.

Naturally, this process can be iterated repeatedly, producing a series of T more-

and-more condensed networks S0, S1, ..., ST where |ST| = 1. That is, ST contains a

single super node that represents the entire original strongly connected network S0

in a hierarchy of feedback loops. This is principle that IMPLISig is built upon.

IMPLISig Overview

As alluded to in the previous section, the decomposition of the core consists of it-

erating over the following three steps until a given core SCC C = (VC , EC) contains

only one node:
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Begin Input: S,
lmin, lmin

|VS| > 1?

l ← lmin
mode ← pos

Enumerate co-
herent feedback
loops of length l

Score sub-
networks sMAX > 0?

Select maxi-
mum scoring
subnetworks

Combine
overlapping
subnetworks

Merge sub-
networks into
super-nodes

Terminate

mode = pos?mode ← neg Increase loop
size: l ← l + 1

l = lmax?

Set all nodes in
S as subgraph

to collapse

Yes

No

yes

no

yes no

yes

noChange loop type

(1) Identify coherent loops

(2) Score induced subnetworks

(3) Select and merge

FIGURE 5.3: High-level view of IMPLISig algorithm. IMPLISig takes as input a strongly
connected component S, as well as a two integer parameters, lmin and lmax, that set the
minimum and maximum loop sizes to consider. IMPLISig terminates when the entire SCC
has been collapsed into a single node. It can be broadly broken down into three parts: (1)
identify coherent feedback loops, (2) score subnetworks induced by those feedback loops,

and (3) select and merge subnetwork(s).

1. Identify all coherent feedback loops of length n. Our procedure for loop iden-

tification is a depth first search guided by the signs of edges. It is described in

detail in section 5.2.2.

2. Score the subnetwork induced by each feedback loop. The score function is

based on the modularity of the induced subnetwork – rewarding subnetwork

with a high ratio of internal edges to total edges. We informally think of the in-

ternal edges as “pulling” the subnetwork into a super-node where the external

edges pull the nodes apart. See section 5.2.2 for details on the score function.

3. Select the feedback loop(s) for merging. Feedback loops are selected based on

the score computed in the previous step. In the case of multiple best-scoring

subnetworks, we do not arbitrarily break ties and select all of them. In the

case that a node appears in multiple best-scoring subnetworks, we merge those

loops into a single subnetwork. The procedures for selecting loops for collapse

and handling overlaps are detailed in section 5.2.2.

The entire IMPLISig algorithm is described in algorithm 1. A high level overview

is provided in figure figure 5.3.

Algorithm 1 takes as input a strongly connected component C as well as two

additional integer control parameters lmin and lmax, the smallest and largest size loop



Chapter 5. Hierarchical Organisation of Network Architectures 125

Algorithm 1 IMPLISig algorithm: Iteratively collapse a strongly connected compo-
nent C = (VC , EC) into super-nodes.

1: function IMPLISIG(C, lmin, lmax)
2: H← Graph()
3: while |C| > 1 do
4: foundLoop← False
5: for l in [lmin, lmax] do
6: for mode ∈ { pos, neg } do
7: for u ∈ VC do
8: for S’ in FINDCYCLES(C, u, l, ∅, u, mode) do
9: scores[S′]← SCORE(S′)

10: end for
11: end for
12: sMAX ← MAX(scores) . Determine maximum score
13: if sMAX > 0 then
14: foundLoop← True
15: SMAX ← {S′ | scores[S′ ] = sMAX }
16: break
17: end if
18: end for
19: if foundLoop then
20: break
21: end if
22: end for
23: if ¬ foundLoop then
24: . No coherent feedback loop of size ≤ lmax
25: SMAX ← {C} . Combine S into single node
26: end if
27: COMBINEOVERLAPS(SMAX)
28: for SMAX ∈ SMAX do
29: COLLAPSEINTOSUPERNODE(C, H, SMAX)
30: end for
31: end while
32: return H . Node hierarchy is returned
33: end function

to search for before giving up respectively. If lmax has been reached and still no

positive scoring subnetwork has been found, then there are no induced strongly

connected components of size less than or equal to lmax within what remains of C. In

this situation, we collapse all of C into a single super-node and terminate.

Algorithm 1 returns H = (VH, EH), a directed acyclic graph (DAG), that shows

the hierarchy of the nodes and super-nodes in S. The leaves of H are the nodes in

C. The root node of H is a single super-node that represents the entirety of C. Edges

in H show the formation of super-nodes. An edge (u, v) ∈ EH shows that node u

forms part of super-node v. Of course, u may, itself, be a super-node. Figure 5.4
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FIGURE 5.4: Example SCC hierarchy H. The leaves of H: n10, n11, n12, n13, n14 and n15
represent the six nodes in the original SCC. The root node (drawn at the right of the figure)
represents the entire SCC merged together. The intermediary node represents the positive
feedback loop comprised of nodes n10, n11 and n12. The directed edges show node mem-

bership in super-nodes. Nodes in the hierarchy are grouped by their depth.

provides an example of node hierarchy H returned by IMPLISig.

Identifying Coherent Feedback Loops

We defined a coherent feedback loop in section 1.1.7 as a cycle of a signed and di-

rected network comprised only of edges with the same sign. In order to identify all

coherent feedback loops of length n in SCC C, we apply algorithm 2 to identify all

coherent cycles of length n starting from each node u ∈ VC .

Algorithm 2 performs a recursive depth first search on the neighbours of a node.

The functions positiveNeighbours(u) (and negativeNeighbours(u)) return all nodes

v ∈ VC such that (u, v) ∈ EC and (u, v) is a positively (or negatively) signed edges.

To ensure that nodes are not repeated in the cycle, the variable visited holds the list

of previously visited nodes. This list is removed from the list of possible neighbours

to explore. When the depth of the search is one less than the desired length of the

cycle, the possible set of neighbours is equal to the intersection between the set of

neighbours and the original, starting, node (algorithm 2, line 14). Naturally, this is

non-empty when the set of neighbours contains the start node and is empty other-

wise.
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Algorithm 2 Enumerate coherent cycles of length n starting from node u.

1: function FINDCYCLES(G, u, n, visited, start, mode)
2: if n = 0 then . Base case
3: return [[u]] . Search depth is 0, u = start
4: else
5: visited← visited∪ {u}
6: if mode = pos then
7: neighbours← G.positiveNeighbours(u) . Consider positive edges
8: else if mode = neg then
9: neighbours← G.negativeNeighbours(u) . Consider negative edges

10: else
11: neighbours← G.neighbours(u)
12: end if
13: if n > 1 then
14: neighbours← neighbours \ visited . Remove visited nodes
15: else
16: neighbours← neighbours ∩ start . Continue if start ∈ neighbours
17: end if
18: for v ∈ neighbours do
19: for cycle ∈ FINDCYCLES(G, v, n− 1, visited, start, mode) do
20: yield [u] + cycle
21: end for
22: end for
23: end if
24: end function

Subnetwork Score Function

After enumerating a set of coherent cycles, we score the induced subnetwork S′ =

(VS′ , ES′) formed by the nodes in the cycle in the following manner:

SCORE(S′) =
∑u∈S′ kin

u

∑u∈S′ kin
u + kout

u
(5.3)

where kin
u is the number of edges from node u that connect to nodes in subnetwork

S′, and kout
u the number of edges from node u that connect to nodes in S \ S′.

Since the subnetworks are selected based on dynamical information – the signs

of the relations between nodes – we apply a purely topological subnetwork scoring

function that looks for modular structure defined by a high ratio of internal edges to

total possible edges (Lancichinetti, Fortunato, and Kertész, 2009). This is motivated

by our intuition that, for two feedback loops containing the same number of nodes,

the one with a greater ratio of internal to external edges should be selected as that
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FIGURE 5.5: In this example, both the subnetworks induced by the loops (n0, n1, n2) and
(n1, n3, n4) are assigned same score and so would be selected to be collapsed in the same
iteration of IMPLISig. Since these two subnetworks contain an overlapping node (node n1),
then the subnetworks are combined into a single subnetwork containing five nodes before

being collapsed into a super-node.

one forms a more cohesive, functional group4.

Selecting Subnetworks for Collapse

At each iteration of the algorithm, we determine the set of all maximum scoring

subnetworks SMAX. If
∣∣SMAX

∣∣ = 1 (only one subnetwork is maximal) then it is

collapsed using algorithm 4. If no positive scoring subnetwork can be found, that is∣∣SMAX
∣∣ = 0, then either the mode is changed from positive to negative or the cycle

size l is incremented.

In the case of multiple best-scoring subnetworks
(∣∣SMAX

∣∣ > 1
)
, we avoid giving

arbitrary priority to one by selecting all SMAX ∈ SMAX for simultaneous collapse.

Additionally, we merge best scoring subnetworks that overlap (using algorithm 3).

‘Overlapping’ here refers to containing one or more of the same nodes. We see an

Algorithm 3 Combine any maximum-scoring subnetworks that overlap.

1: function COMBINEOVERLAPS( SMAX )
2: NSMAX ← |SMAX| . Number of maximum-scoring subnetworks
3: overlaps← zeros(NSMAX , NSMAX) . Determine pairwise overlaps
4: for i ∈ [1, NSMAX ] do
5: for j ∈ [1, NSMAX ] do
6: overlaps[i, j]← |SMAX

i ∩ SMAX
j |

7: end for
8: end for
9: SMAX ← CONNECTEDCOMPONENTS(overlaps) . Group by overlap

10: return SMAX

11: end function

4Note that IMPLISig is presented as a general framework, and domain/problem-specific score func-
tions could be applied.
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example network that would give rise to this situation in figure figure 5.5. Algo-

rithm 3 is a two-step procedure that:

1. first determines the pairwise overlaps between all maximum-scoring subnet-

works,

2. then, groups subnetworks using the connected components formed from the

overlap matrix.

Collapse a Selected Subnetwork into Super-node

After identifying a subnetwork SMAX ⊆ C for collapse, we merge it into a single

super-node that represents it. We achieve this by inserting a new node S into C,

and systematically removing all the nodes u ∈ SMAX from C, adding any incom-

ing/outgoing connections to the new super-node S. We detail this is algorithm al-

gorithm 4.

Algorithm 4 Collapse a subnetwork SMAX ⊆ C into a super-node S.

1: function COLLAPSEINTOSUPERNODE(C, H, SMAX)
2: C.addNode(S)
3: H.addNode(SMAX)
4: for n ∈ SMAX do
5: H.addEdge(n, SMAX)
6: for (u, v, w) in C.outEdges(n) do . u = n
7: C.addEdge(S, v, w)
8: end for
9: for (u, v, w) in C.inEdges(n) do . v = n

10: C.addEdge(u,S, w)
11: end for
12: C.removeNode(n)
13: end for
14: end function

Termination

IMPLISig terminates when C has been merged into a single node. That is, when

|VC | = 1.
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5.2.3 Computational Complexity of Algorithm 1

For determining all SCCs in a given network we apply Tarjan’s algorithm. The Tarjan

procedure is called once for each node, and considers each edge at most once (Tarjan,

1972). The algorithm’s running time is, therefore, linear in the number of edges and

nodes: achieving O (|V|+ |E|).

For each SCC, we enumerate all directed loops of length l in an SCC con-

taining |VC | nodes requires a depth first search of the neighbours of a node of

depth l. Therefore the computational complexity of FINDCYCLES(·) (algorithm 2)

isO
(
|VC | · 〈kout〉l

)
, where 〈kout〉 is the expected out-degree of a node. Since all loops

of length l ≤ lmax can be discovered as part of a depth-first search of depth lmax

by monitoring depth as part of the search, we can say that the total complexity of

enumerating all cycles of length l ∈ [lmin, lmax] is O
(
|VC | · 〈kout〉lmax

)
.

Scoring each subnetwork is linear to the sum of the degrees of the nodes, which,

in the worst case is O (lmax · 〈k〉) since each subnetwork will contain a maximum

of lmax nodes with expected degree 〈k〉. This must be repeated for all subnetworks.

Identification of the best scoring subnetwork can be made a constant operation if

subnetworks are indexed by score and the best score is maintained as scores are

being computed. This makes the total complexity of scoring K enumerated subnet-

works, each containing at most lmax nodes, and selecting the best scoring subnet-

works from that set is O (K · lmax · 〈k〉)

From a set of n =
∣∣SMAX

∣∣ best scoring subnetworks, determining overlaps re-

quires identification of common vertices between all n subnetworks. Set intersection

between two subnetworks (node sets s and t) is O (min(|s|, |t|)) and this is repeated

for all n · (n − 1) unique pairs of best scoring subnetworks. Since all subnetworks

must contain, at most, lmax nodes, computation of the existence of a common el-

ement in all n best scoring subnetworks is O (n · (n− 1) · lmax), in the worst case.

From this, subnetworks can be grouped according to common elements by deter-

mining connected components in a undirected network containing n nodes – each

representing a best scoring subnetwork, where an edge exists between nodes u and

v if subnetworks u and v contain at least one common node. Supposing that the total

number of pairs of best scoring subnetworks containing a common node is m, then
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the complexity of determining unique groups (algorithm 3) is O (n + m)5.

Merging a subnetwork, containing at most lmax nodes, into a super-node involves

iterating over each node in the subnetwork and adding an edge for each edge inci-

dent to that node, and then removing that node. This has complexity O (lmax · 〈k〉).

At most, there will be n =
∣∣SMAX

∣∣ best scoring subnetworks (in the case that there

were no overlaps), and so the total complexity of merging is O (n · lmax · 〈k〉).

In summary, the total complexity of one iteration of IMPLISig is:

O
(
|VC | · 〈kout〉lmax +K · lmax · 〈k〉+ n · (n− 1) · lmax + n + m + n · lmax · 〈k〉

)

where |VC | is the number of nodes in the SCC; lmin, and lmax are the lower- and

upper-bounds of the loop size to consider; K is the number of subnetworks induced

from loops containing within lmin, and lmax nodes; 〈k〉 is the expected degree of a

node in the network; n is the number of best scoring subnetworks; and m is the

number of overlaps.

At each iteration, the number of nodes, |VC |, decreases and, accordingly, so does

the number of subnetworks K.

5.2.4 Decomposition of the In- and Out-Components

The algorithm described in section 5.2.2 cannot be applied directly to the decompo-

sition of the in- and out-components. This is because the in- and out-components

are not typically strongly connected and so are not enriched with feedback loops.

As discussed in section 1.4.5, we, instead, find an abundance of acyclic and feed-

forward loops in these two components. Section 2.3.1 highlighted the importance of

feed-forward loops, in particular, for noise filtering, fold-change detection and the

identification of persistent signals (Mangan and Alon, 2003; Goentoro et al., 2009;

Chou, 2018). In addition, (incoherent) feed-forward loops have been shown the be

responsible for pulse shaping (Mangan and Alon, 2003). As such, we modify the

algorithm described in the previous section to decompose in- and out-components

into a hierarchy of feed-forward loops.

5This follows from the complexity of determining connected components in an undirected network
being O (|V|+ |E|), since a depth-first search is performed.
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(A) Directed (B) Undirected

FIGURE 5.6: Transforming a directed feed-forward loop into an undirected loop. (A) shows
the feed-forward loop in the original, directed network. This feed-forward loop does not
contain any cycles. (B) shows the same feed-forward loop in an undirected network. This

now does form a cycle and so will be discovered by algorithm 2.

Modifying the Coherent Feedback Loop Core Decomposition

The overall algorithm described by algorithm 1 can be applied to the in- and out-

components with a number of minor modifications to the identification of cycles:

• Identifying feed-forward loops: as previously discussed, in- (and out-) com-

ponents are characterised by their ‘tree-like’ appearance – that is: they connect

into (or out from) the nodes in the core and rarely form directed cycles. How-

ever, by ignoring edge direction, nodes in feed-forward loops will form cycles

where they did not before (see figure 5.6). As such, we transform each of the

in- and out-components into their undirected equivalent before applying algo-

rithm 1. This, in effect, broadens the search to all loops in the network – both

feed-forward and feedback – while still selecting loops based on the ratio of

internal to total edges (using equation (5.3)). Note that lmin ≥ 3 as lmin = 2

would return every edge in the network.

• Allowing for incoherent loops: due the importance of incoherent feed-

forward loops, we relax the requirement for any identified loop to be coher-

ent. Consequently, we ignore edge sign in the search for cycles in line 8 of

algorithm 1.

With the above modifications, our algorithm can be applied to decompose in- and

out-components of bow-tie architectures.
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5.3 Experimental Validation of Core Decomposition

The purpose of this section is to describe the experimental setup of the validation of

the hypotheses introduced in section 5.1.1. Since the core of the bow-tie architecture

is akin to the CPU of the computer, we validate these hypotheses through validation

of the decomposition of the core of the bow-tie architectures found in a variety of

signalling networks. Accordingly, we design the following two experiments to serve

as case studies to validate our approach:

1. Deep Feedback Loops in Bow-Tie Cores Control Global Dynamics The first

experiment focuses on bow-tie architectures and is concerned with measuring

the significance of inhibiting a node in the strongly connected core with respect

to the global network dynamics as a whole. We characterise the effect on the

global network dynamics by measuring the change in expression of a subset

of downstream output nodes. The purpose of this experiment is to validate

hypothesis 1: namely to show that inhibiting nodes found deeply within the

uncovered coherent feedback loop hierarchy will have the greatest effect on

global network dynamics.

2. Control Kernel Recovery & Identification Our second set of experiments is

concerned with validating our second hypothesis: that those same nodes make

better therapeutic target candidates. To this end, our experiment involves re-

covering a literature-curated set of validated control kernels for a variety of

benchmark gene regulatory networks.

The following subsections introduce these experiments as well as the network

datasets in detail.

5.3.1 Deep Feedback Loops in Bow-Tie Cores Control Global Dynamics

To investigate hypothesis 1, we suppose the following:

• that a network G has at least one bow-tie architecture B = (I , C,O) within.

• that a subset of Nout nodes in the out-component O correspond to cell pheno-

type.
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The purpose of the first experiment is to show that core nodes found deep within

the uncovered coherent feedback loop hierarchy have a significant effect on the phe-

notype of the network. Concretely, we measure whether inhibiting nodes in a core

of a bow-tie network G can have a significant effect on those Nout output nodes of

interest.

Details of Experiment

Here we provide details on the experimental setup for the evaluation of hypothesis

1.

We suppose a bow-tie network G = (V, E) that contains a core, C ⊆ V, with in-

and out-components I ⊆ V and O ⊆ V respectively. We measure whether inhibit-

ing nodes in the core C of G can have a significant effect on Nout (where Nout ≤ |O|)

output nodes of interest {oi | i ∈ [1, Nout]} ⊆ O. In the case that the state space

for network G is large6, we sample 10000 randomly selected initial states xi com-

pute their corresponding attractors by partially reconstructing the stage transition

diagram (STG)7.

Let Ns = min
(
10000, 2N) denote the number of sampled unique initial states.

We use I to denote the set of all initial states: I = {xi | i ∈ [1, Ns]}, with |I| = Ns. We

will further use AG = {AG
xi
| xi ∈ I} to denote the corresponding set of attractors for

those initial states xi ∈ I for network G. Note that the elements in AG may not be

unique – different initial states xi ∈ I may belong to the same basin of attraction and

therefore converge to the same attractor. Note also that the attractor for initial state

xi AG
xi
∈ AG is a set of states: AG

xi
= {y1, ..., yk}. |AG

xi
| = k means that the attractor

determined from initial condition xi for network G has period length k. Naturally

|AG
xi
| = 1 =⇒ AG

xi
is a steady state attractor.

Suppose that we are interested in measuring the significance of change for output

node o. Then, for each identified attractor AG
xi
∈ AG, we record the mean activation

of node o. Mean activation 〈AG
xi
〉o for node o for attractor AG

xi
with |AG

xi
| = k is

6Our definition of “large” is network size N > 13, since N = 14 would require consideration of
214 = 16384 > 10000 states.

7Reconstructing the STG refers to iteratively building the STG, starting from each initial state xi.
For each state xi, its neighbour in the STG is computed by performing a network update. Neighbours
are repeated computed until a cycle is found. The found cycle represents the corresponding attractor
for initial condition xi. The period of the cycle may be 1, indicating that the attractor is a steady state
attractor (see section 1.5.7). We focus on the synchronous update scheme only.
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computed as the number of times that node o takes a value of 1 divided by the

period length k of the attractor:

〈AG
xi
〉o =

1
k ∑

y∈AG
xi

yo (5.4)

where yo ∈ {0, 1} is the boolean value that node o takes in state y.

To examine the significance of turning off specific nodes in the core, we per-

form the following: For each node, c ∈ C, in the core of the bow-tie architecture

of the network, we simulate the inhibition of node c. We achieve this by copying

and modifying G by pinning the value of c to 0 to construct Gc, the network with

node c inhibited. We then compute the resulting set of attractors for network Gc,

AGc = {AGc
xi | xi ∈ I}, for each previously sampled initial state xi ∈ I. We again

record the mean activation of output node o of interest.

To evaluate the significance in output activation between the original network

G and modified network Gc, we perform a paired t-test. A paired t-test measures

the significance of the change in the mean difference of output activation for the

resulting attractors of the same initial state xi, In other words, we are measuring the

significance of:

t(c, o; G, I) := E
xi∼I

[
〈AG

xi
〉o − 〈AGc

xi
〉o
]

(5.5)

=
1

Ns
∑

xi∈I

〈AG
xi
〉o − 〈AGc

xi
〉o (5.6)

We then record which core nodes c significantly changed the activation of each

output node o, using a significance level of 0.05. Note that a equation (5.5) is a

signed statistic and both one- and two-tailed t-tests can be performed, depending on

whether or not direction of change of expression is important.

5.3.2 Network Datasets

We validate hypothesis 1 on synthetic random boolean networks displaying the

bow-tie architecture, as well as on three case study boolean network models of the

signalling networks of cancerous cells that we have obtained from literature:



Chapter 5. Hierarchical Organisation of Network Architectures 136

1. the AGS gastric cancer cell line (Flobak et al., 2015),

2. the EGFR-Erbb1 signalling network with an over-expressed Erbb11 receptor

(Samaga et al., 2009),

3. and, a boolean model tumour cell invasion and metastasis (Cohen et al., 2015).

Further experimental details are provided in section 5.3.1.

Synthetic Bow Tie Networks

As a proof of concept, we randomly generate synthetic bow tie networks with three

different core sizes to validate our hypothesis coherent feedback loops are promising

targets. Each of our generated networks contain the three components characteristic

of the bow-tie architecture: the in-, out- and core components.

We aim to validate our intuition that nodes in a coherent feedback loop have

a more significant effect on the expression of output nodes compared to the other

nodes in a strongly connected component that do not belong to a coherent feedback

loop. To this end, we plant a three-node coherent feedback loop in the core of every

synthetic network. The sign of the remaining edges in the network is otherwise

randomly selected, taking care to ensure that exactly one coherent feedback loop

can be found the core.

Construction of the networks is a two step process:

1. generate topology (described by algorithm 5 in the appendices),

2. generate boolean rules based on topology (described by algorithm 9 in the

appendices).

Complete details of synthetic bow-tie generation can be found in appendix D.1 in

the appendices.

For these synthetic bow-tie networks, we consider every node in the out-

component to be an output node of interest. Since the networks are synthetic and

outputs are not associated with phenotype, we do not consider the direction of the

mean change in expression, and, accordingly, we perform two-tailed t-tests to mea-

sure significance.
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TABLE 5.1: Description of the output transcription factors of interest, and their mean activa-
tion across the attractors of 10000 sampled states in the AGS Gastric cancer cell line network

(Flobak et al., 2015).

Role Output Node o Mean Activation Exi∼I〈AG
xi
〉o

Pro-Cancer
RSK 1.0000
TCF 1.0000

cMYC 1.0000

Anti-Cancer
Caspase8 0.0000
Caspase9 0.0000

FOXO 0.0000

Cancerous Case Study Networks

To concretely validate hypothesis 1, we use three boolean network models of can-

cerous networks from literature:

1. a cell fate decision network in the AGS gastric cancer cell line (Flobak et al.,

2015);

2. the EGFR-Erbb1 signalling network (Samaga et al., 2009);

3. and, molecular pathways enabling tumour cell invasion and migration (Cohen

et al., 2015).

Details of these networks – in particular, the output nodes of interest for each of

them – follow.

For these real-world case study networks, direction of change is important. Since

we are dealing with cancerous networks, we are concerned specifically with statis-

tically significant decreases in expression of pro-cancer output nodes relevant and,

likewise, statistically significant increases in expression of anti-cancer outputs. Ac-

cordingly, we use a one sided paired t-test to determine if the expression of each

output gene was significantly difference from the original control network G for

each modified network Gc in the appropriate direction.

AGS Gastric Cancer Cell Line

The AGS Gastric Cancer Cell Line network is a “dynamical model representing a

cell fate decision network in the AGS gastric cancer cell line, relying on background

knowledge extracted from literature and databases” (Flobak et al., 2015). Based on
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TABLE 5.2: Description of the output transcription factors of interest, and their mean acti-
vation across the attractors of 10000 sampled states in the EGFR/ErbB signalling network

(Samaga et al., 2009). We set Erbb11 to always on to simulate a cancerous phenotype.

Role Output Node o Mean Activation Exi∼I〈AG
xi
〉o

Pro-Cancer

elk1 0.0987
creb 0.3005
ap1 0.1241

cmyc 0.0806
p70S6_2 0.0299

hsp27 0.2478

Anti-Cancer pro_apoptotic 0.7522

the “growth score” measure introduced for this network (Flobak et al., 2015), we

identify the six transcription factors (TFs) described in table 5.1 as the output nodes

of interest for our study. We group them into two groups of three depending on

whether they contribute positively or negatively to growth score. We label these

groups pro-cancer and anti-cancer respectively and maintain this group labelling

scheme for the remaining two case study networks. As table 5.1 shows, each pro-

cancer TF o take a value of 〈AG
xi
〉o = 1 for each resulting attractor AG

xi
for each sam-

pled initial state xi ∈ I.

EGFR-Erbb1 Signalling Network

For our next case study, we select the Epidermal growth factor receptor

(EGFR/ErbB1) signalling network (Samaga et al., 2009). To simulate a cancerous

mutation on the network, we mutate the Erbb118 receptor to be always on (simu-

lating over-expression). We follow previous works and consider the activations of

seven output TFs in the network as representative of the cell phenotype. The output

nodes and mean activations are described in table 5.2.

Tumour Cell Invasion and Migration

Our final case study network is Tumour Cell Invasion and Migration (TCIM) net-

work, a logical model of metastasis that was constructed to “recapitulate published

8We determined that over-expressing Erbb11 had the most cancerous effect on the EGFR-Erbb1
network with respect to the output TFs identified in table 5.2. That is, overall, over-expressing Erbb11
caused the greatest increase in the expression of cell growth TFs and greatest decrease in the expression
of the cell death TF.
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TABLE 5.3: Description of the output nodes of interest, and their mean activation across
the attractors of 10000 sampled states in the Tumour Cell Invasion and Migration (TCIM)

network (Cohen et al., 2015).

Role Output Node o Mean Activation Exi∼I〈AG
xi
〉o

Pro-Cancer Metastasis 0.2769

Anti-Cancer
CellCycleArrest 0.66905

Apoptosis 0.1035

experimental results of known gene perturbations on local invasion and migration

processes” (Cohen et al., 2015). This network was validated by the authors on lung

cancer. We select the output nodes detailed in table 5.3 since they are the three “ter-

minal” output nodes – nodes with no outgoing edges – corresponding clearly to

phenotype.

5.3.3 Control Kernel Recovery

For literature validation of hypothesis 2, we see first how many control nodes appear

in core coherent feedback loops, and then – as a global measure of performance – use

the depth of a node in the hierarchy of coherent loops as a predictor for control kernel

membership.

For this, we use five boolean models of gene regulatory networks (GRNs): Sac-

charomyces cerevisae cell cycle (SCCC) (Li et al., 2004), Schizosaccharomyces pombe

(SP) (Wang et al., 2010), Mammalian cortical development (MCD) (Giacomanto-

nio and Goodhill, 2010), Arabidopsis thaliana development (ATD) (Espinosa-Soto,

Padilla-Longoria, and Alvarez-Buylla, 2004; Alvarez-Buylla et al., 2007), and Mouse

myeloid development (MMD) (Krumsiek et al., 2011). Details of the control kernels

identified for those five GRNs by Kim, Park, and Cho, 2013 are given in table 5.4.

5.3.4 Network Statistics

The statistics of all of the networks used in this study are given in table 5.5.
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TABLE 5.4: Control kernels for small GRNS identified in Kim, Park, and Cho, 2013. Each
row within the same network represents a separate control kernel.

Network Control Kernels All in Core (Largest SCC)?

SCCC {Cdh1, MBF, SBF, Sic1} Yes

SP {Cdc25, Rum1, Ste9, Wee1} Yes

MCD

{Fgf8_g} Yes
{Emx2_g} Yes
{Sp8_g} Yes
{Fgf8_p} Yes

{Emx2_p} Yes
{Sp8_p} Yes

ATD
{AP1} Yes
{LFY} Yes
{SEP} Yes

MMD
{GATA_1, EKLF, Fli_1} Yes

{EKLF, Fli_1, PU1} Yes

5.4 Experimental Results

5.4.1 Measuring Significance of Turning off Members of Coherent Feed-

back Loops

As mentioned in section 5.3.2, we used small synthetic bow tie networks, with a sin-

gle planted coherent feedback loop in the core, to validate our intuition that mem-

bers of coherent feedback loops in the cores of bow-tie architectures make for sig-

nificant targets. To this end, we generated 1000 random synthetic bow tie networks

with different core sizes and types planted coherent feedback loop.

Figure 5.7 provides a box-plot of the results of this experiment for Ncore = 6,

showing the expected change in an output node caused by inhibiting a core node.

From left to right: figure 5.7 shows a planted positive feedback loop (achieving a

one-sided p-value of 2.2901E-16), a planted negative feedback loop (achieving a one-

sided p-value of 3.7529E-33), and a mix of a planted positive or planted negative

feedback loop (achieving a one-sided p-value of 2.7695E-27). We see that for both

a planted positive and planted negative feedback loop there was a statistically sig-

nificant increase in the proportion of significantly changed outputs between the two

groups of ‘Planted coherent feedback loop’ and ‘Other core nodes’. This suggests
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TABLE 5.5: Network statistics. For synthetic bow-tie networks, we report the mean and
standard deviation for 1000 samples. Key: N number of nodes; |E| number of edges; 〈k〉
mean degree; 〈bc〉mean betweenness centrality; ρ network density; Nin number of nodes in
the in-component; Ncore number of nodes in the largest SCC; Nout number of nodes in the
out-component; 〈kcore〉mean degree of the core; 〈s〉 average sensitivity (Daniels et al., 2018).
Note that 〈s〉 is missing for SCCC and SP since the logic of those networks is described using
threshold networks. Likewise, ATD is described by a multi-valued network (Espinosa-Soto,

Padilla-Longoria, and Alvarez-Buylla, 2004) and so 〈s〉 is missing.

N |E| 〈k〉 〈bc〉 ρ Nin Ncore Nout 〈kcore〉 〈bccore〉 ρcore 〈s〉
Effect of Inhibition of Core Nodes on Output Nodes

SyntheticNcore=6 19 32.297±2.660 3.400±0.280 0.033±0.004 0.094±0.008 3 6 10 6.883±0.443 0.103±0.011 0.300 0.999±0.030
SyntheticNcore=10 23 41.343±2.828 3.595±0.246 0.043±0.004 0.082±0.006 3 10 10 5.834±0.283 0.100±0.009 0.189 0.999±0.029
SyntheticNcore=15 28 51.803±2.859 3.700±0.204 0.050±0.004 0.069±0.004 3 15 10 5.254±0.191 0.094±0.008 0.129 0.999±0.028

EGFR 104 254 4.885 0.023 0.024 33 34 35 6.088 0.061 0.055 0.954
Gastric 73 141 3.863 0.062 0.027 0 65 8 4.077 0.068 0.031 0.974
TCIM 32 159 9.938 0.024 0.160 2 20 10 12.600 0.035 0.279 0.729

Control Kernel Recovery

SCCC 11 34 5.667 0.086 0.258 2 9 1 6.333 0.114 0.347 –
SP 9 26 5.778 0.125 0.361 1 8 0 6.000 0.141 0.411 –

MCD 10 19 3.800 0.214 0.211 0 10 0 3.800 0.214 0.211 0.900
ATD 15 41 5.467 0.063 0.195 2 10 2 6.200 0.095 0.289 –

MMD 11 30 5.000 0.088 0.227 0 8 4 6.125 0.111 0.411 1.023

that our hypothesis that targeting members of coherent feedback loops will signif-

icantly affect output expression versus targeting incoherent feedback loops. Box

plots for Ncore = 10 and Ncore = 15 can be found in figure D.4 of supplementary

materials.

5.4.2 Cancerous Case Study Networks

Table 5.6 shows the AUROC and AP scores achieved by IMPLISig for predicting

the impact of turning off a core node with respect to the output nodes of interest.

We compare against a number of topological microscopic network features. From

this, we find that a node’s position in the hierarchy of coherent feedback loops can

provide a high quality prediction of the significance of inhibiting it. Strikingly, best

performance is achieved on the Gastric cancer network, a network that exhibits the

most cancerous behaviour in its base state (see table 5.1), beating out all other mea-

sures by a significant margin for both AUROC and AP.

5.4.3 Control Kernel Recovery

In table 5.7, we evaluate the success of a the uncovered position of nodes in the co-

herent feedback loop hierarchy at predicting whether that node belongs to a control

kernel. We see that merge depth provides a reliable indication of a node’s control

node status – achieving AUROC and AP scores greater than 0.5 in four out of the
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TABLE 5.6: Summary of results on case study networks We present AUROC and AP scores
for predicting a significant effect on an output node. The AUROC and AP scores are aver-
aged across all output nodes. All measures are reported to 3 decimal places. Key: k: node
degree, kin: in-degree, kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient,
and cn: core number. For IMPLISig, we use depth in feedback loop hierarchy as a predictor
of significance. Full AUROC and AP scores are given in table D.1 (Gastric Cancer), table D.3

(EGFR), and table D.5 (TCIM) in the appendices.

Gastric EGFR TCIM

AUROC AP AUROC AP AUROC AP

k 0.551 0.175 0.638 0.378 0.488 0.513
kin 0.568 0.148 0.566 0.358 0.473 0.491
kout 0.530 0.160 0.685 0.439 0.526 0.514
bc 0.640 0.244 0.728 0.525 0.491 0.541
cc 0.422 0.134 0.415 0.288 0.555 0.595
cn 0.668 0.160 0.454 0.300 0.471 0.473

IMPLISig 0.831 0.310 0.668 0.556 0.666 0.633

TABLE 5.7: Feedback loop hierarchy position as predictor of control node. We present AU-
ROC and AP scores for predicting a significant effect on an output node. The AUROC and
AP scores are averaged across all output nodes. All measures are reported to 3 decimal
places. Key: k: node degree, kin: in-degree, kout: out-degree, bc: betweenness centrality, cc:
clustering co-efficient and cn: core number,. For IMPLISig, we use depth in feedback loop

hierarchy as a predictor of control kernel membership.

AUROC SCCC SP MCD ATD MMD Mean AUROC

k 0.300 0.250 0.875 0.810 0.688 0.584
kin 0.575 0.625 0.542 0.619 0.563 0.585
kout 0.150 0.000 0.688 0.929 0.688 0.491
bc 0.550 0.125 1.000 0.762 0.719 0.631
cc 0.325 0.500 0.500 0.381 0.406 0.422
cn 0.350 0.500 0.625 0.810 0.625 0.582

IMPLISig 0.300 0.688 0.833 0.881 0.938 0.728

AP SCCC SP MCD ATD MMD Mean AP

k 0.385 0.500 0.889 0.589 0.775 0.628
kin 0.542 0.667 0.678 0.433 0.536 0.571
kout 0.383 0.417 0.800 0.867 0.750 0.643
bc 0.518 0.450 1.000 0.556 0.813 0.667
cc 0.402 0.500 0.600 0.304 0.600 0.481
cn 0.389 0.500 0.667 0.533 0.583 0.534

IMPLISig 0.389 0.650 0.867 0.639 0.900 0.689
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FIGURE 5.7: Comparison of expected significant change in synthetic bow tie networks. Box
plots to show the difference in expected change for three types of synthetic bow tie networks.
Each network has Nin = 3 nodes in the in-component, Ncore = 6 nodes in the core, and
Nout = 10 nodes in the out-component.. Each core was built with a single planted coherent
feedback loop lc of three nodes that the rest of the core was built upon (see algorithm 5).
From left to right: the core feedback loop is positive, negative and either positive or negative.
For each network, the planted coherent loop is the only loop of that type in the entire core
of the network. For each network architecture, 1000 networks G were randomly generated.
Then, for each node c in the core, a new network Gc was created as a copy of G with c
forced off. A two-tailed paired t-test was performed to determine which, if any, of the 10
output nodes displayed a statistically significant mean difference in expression. For each
core node c, the mean number of changed outputs was recorded in one of two groups: if
c ∈ lc, then it was recorded in the group ‘Planted coherent feedback loop’, otherwise it
was recorded in group ‘Other core nodes’. Since there was always three nodes in the core
positive feedback loop, and 1000 networks of each type were generated, then the group size
for ‘Planted coherent feedback loop’ was 3000. The group size of ‘Other core nodes’ was
also 3000. p-values from a one tailed paired t-test performed between the two groups are
reported on the x-axis. The y-axis reported the proportion of significantly changes outputs.

Similar results were obtained for Ncore = 10 and Ncore = 15 (see figure D.4).

five networks. As well, we see that IMPLISig provides the most reliable measure

across all of the networks, achieving the greatest mean AUROC measure of 0.728

and the greatest overall mean AP measure of 0.689. IMPLISig also achieves a mean

rank of 2.4 for both AUROC and AP, the lowest mean rank across all measures (see

table D.14 in the appendices for full rankings). Figure 5.8 provides a representation

of the uncovered decomposition of the cores of four of the GRNs.
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(A) Core of the MMD network (B) Core of the SP network

(C) Core of the ATD network (D) Core of the MCD network

FIGURE 5.8: Decomposition of the cores of four GRNs. (A): decomposition of the core of
the MMD network. The outer black box contains all of the nodes in the largest SSC in the
network (the core of the bow-tie architecture). Within this, the boxes labelled core-1, core-2
and core-3 show the three layers of the uncovered coherent feedback loop hierarchy. Note
that all of the members of the right core-2, that is Fli_1, GATA_1 and EKLF form a control
kernel (see table 5.4). (B): decomposition of the core of the SP network. Two out of the three
members of core-4 belong to the control kernel: Rum1 and Ste9. (C): decomposition of the
core of the ATD network. The three control kernels of {AP1}, {LFY}, and {SEP} can be found
in the thee deepest layers: core-6, core-5 and core-4 respectively. (D): decomposition of the
core of the MCD network. The entirety of this network forms an SCC and so belongs to the

core. Both members of core-2, Fgf8_g and Fgf8_p, are control kernels.
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5.5 Chapter Summary

In this chapter we have presented IMPLISig, a fast and flexible framework to un-

cover the hidden hierarchy of modular, coherent feedback loops in the cores of sig-

nalling networks, as well as the position of peripheral nodes in a hierarchy of mod-

ular feed-forward loops. For core nodes, we have shown that the position of a node

within this hierarchy provides an indication of the significance of the effect that in-

hibiting that node will have upon the output of the network. As well, we have

shown that the same measure is a reliable indicator of a control kernel membership,

and is successful at recovering kernels obtained from literature.This leads us to be-

lieve that IMPLISig could be a useful tool to speed up the identification of novel

therapeutic targets in the future. Overall, we conclude that IMPLISig can help to

bridge the gap between network architectural scales and overall dynamic network

behaviour.

5.5.1 A Note on Decomposing General Network Architecture

While the framework introduced in this chapter has been proposed within the con-

text of bow-tie architectures, it can be readily applied to any signed and directed

network. In the case that the network contains multiple weakly connected compo-

nents, they can be readily identified by treating each edge as an undirected edge and

performing a standard search for connected components. Application of Tarjan’s al-

gorithm can be used to identify any arbitrary number of strongly connected com-

ponents {C1, ..., Cn} within a weakly connected directed network. As discussed in

section 5.2.1, our approach can be applied to each of those subnetworks Ci, i ∈ [1, n],

in parallel. The output would be a directed, acyclic graph, corresponding to a conden-

sation9 of the original network. For each SCC, a loop hierarchy would be produced

by algorithm 1. Based on the promising validation of our approach for bow-tie core

decomposition in section 5.4, we suggest that this general network decomposition

may prove useful in uncovering the flow of information through general signalling

networks, comprised a variety of architectures. The DAG produced by the applica-

tion of Tarjan’s algorithm illustrates the high-level flow of information through the

9A condensation of a directed network is the network produced by replacing all SCCs within the
network with single nodes.
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network from inputs from network inputs to outputs, through multiple SCCs. Ad-

ditionally, IMPLISig could potentially explain the flow through each SCC. In com-

bination, we are able to build a more complete picture of the flow of information

through multiple architectural scales. We leave validation of this intuition as future

work.
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Chapter 6

Discussion

This thesis provides a number of frameworks for low-dimensional modelling of

complex networks, that uncover the hidden hierarchical organisation and dynam-

ics of such networks. After a through literature review of the subject in chapter 2,

we study the problem of low- dimensional representation learning of attributed and

weighted complex networks to a non-Euclidean space in chapter 3, and then exam-

ined the same problem for directed networks in chapter 4. The main challenge stems

from flexibility: general complex networks are ubiquitous yet highly heterogeneous

– and representation learning techniques must, themselves, be flexible enough to

handle a wide range of network types, while learning a low dimensional represen-

tation that can simultaneously capture many meso- and macro-scopic features com-

mon to complex networks – features such as the small-world property, clustering, a

scale-free degree distribution, and node hierarchy. The theme of hierarchy continues

into chapter 5, where we introduce a general framework for uncovering a hidden hi-

erarchy of modular loops in dynamic systems described by boolean networks.This

present chapter now summarises the contributions of this thesis and highlights po-

tential future directions for all of the work proposed here.

6.1 Contributions & Conclusions

This thesis is centrally concerned with a general understanding of the hidden hi-

erarchy of complex networks. From static, attributed and undirected, to static, at-

tributed and directed, to fully dynamic and directed networks. The problems dis-

cussed in the previous chapters are arranged, themselves, hierarchically, with each
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problem becoming progressively more general and more challenging. Since the pri-

mary contributions of this thesis are solutions to those problems, we will state those

contributions broadly in the order in which they appear.

6.1.1 Uncovering the Hierarchical Organisation of Attributed and

Weighted Undirected Networks through Random Walk Network

Sampling and Hyperbolic Embedding

The first major contribution of this thesis is provided in chapter 3, where we in-

troduce HEAT, a framework for learning low-dimensional hyperbolic vector rep-

resentations of nodes in an attributed complex network. Our framework is flexi-

ble enough to handle both discrete and continuous attributes, as well as networks

without attributes. In addition, it controls the trade-off between consideration of

attributes and topology with an easy-to-interpret hyper-parameter.

As a framework, HEAT is easily extensible. For example, the proposed pairwise

node similarity measure based on attributes (equation (3.1)) can be replaced with

any domain- or problem-specific measure of pairwise similarity.

By embedding to hyperbolic space, we find that our method can better preserve

the hierarchy implicit to attributed complex networks. We conclude this from our

experiments, that show that HEAT can outperform a number of popular attributed

network benchmark algorithms on a number of downstream machine learning tasks.

The key difference between HEAT and these attributed embedding benchmarks is

the choice of metric space, and so, our results show that attributed complex networks

have a hidden hierarchy, just as unattributed ones have been shown to have (Pa-

padopoulos et al., 2012; Alanis-Lobato, Mier, and Andrade-Navarro, 2016a; Alanis-

Lobato, Mier, and Andrade-Navarro, 2016b; Nickel and Kiela, 2017). Furthermore,

we show that incorporation of attributes can improve performance on two popular

downstream machine learning tasks – namely, link prediction and node classifica-

tion – justifying the usefulness of embedding as a tool for the simultaneous repre-

sentation of topology as well as attributes.
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6.1.2 Uncovering the Hierarchical Organisation of Attributed and Di-

rected Networks through Inductive Hyperbolic Embedding

We then expanded upon the ideas presented in chapter 3 in the following chapter.

In chapter 4, we extend previous works in the Euclidean domain to first introduce

the problem of representing nodes in an attributed and directed complex network as

low-dimensional Gaussian representations in hyperbolic space, the first formulation

of such a problem.

We then present HEADNet, an inductive framework for tackling this problem.

HEADNet is the first method for attributed and directed hyperbolic complex net-

work embedding to a single, unified node representation (rather than two represen-

tations of each node in the network (Wu, Di, and Fan, 2019)).

Our results show that our approach is well founded: as with undirected net-

works, by supposing that the metric space underpinning directed networks is hyper-

bolic – and, therefore, that the elements of directed networks exhibit some hidden

hierarchy – we are able to achieve state-of-the-art results. As an inductive method,

HEADNet is capable of generalising about a network, ultimately learning the rela-

tionships between attributes and hyperbolic co-ordinates, rather than just learning

a ‘lookup table’ of node positions. The advantage of this is that the embedding

of unseen nodes (and prediction of their position in the hierarchy of the network)

can be readily handled, so long as the attributes of those nodes fall in line with the

distribution of attributes already seen during training. We are not the first to in-

ductively embed nodes in a complex network (for example: both Hamilton, Ying,

and Leskovec, 2017 and Bojchevski and Günnemann, 2018 do this), however, to the

best of our knowledge, we are the first to propose this for embedding attributed and

directed networks to hyperbolic space.

6.1.3 Uncovering the Hierarchical Organisation of Network Architectures

Chapter 5 is concerned with information flow through meso-scopic architectures

found within dynamic networks. We follow on from our previous chapters by not

only looking at more sophisticated forms of complex network (we can consider a

state-changing dynamic network as an attributed directed network, whose attributes
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change over time), but also by considering hierarchy not at the micro-scale – the

hierarchy of nodes in the network – but at the meso-scale – the multi-scale emergence

of loops within medium- to large-sized network architectures – namely, the bow-tie

architecture. This lead to an understanding of the relationship between architectures

and network behaviour as a whole. To this end, we introduce IMPLISig, a flexible

framework for uncovering a hidden hierarchy of modular loops within the three

components of bow-tie architectures in large dynamic networks. As with HEAT,

IMPLISig is customise and extensible. For example: changing the subnetwork score

function (equation (5.3)) naturally results in changes to the discovered hierarchy,

and selection of a score function can be made based on the network and problem at

hand.

We found that the deeper a node is in this uncovered feedback loop hierarchy

of core nodes, the more significant its impact on the output of the network (sec-

tion 5.4.2). We show that members of core coherent feedback loops can have a signif-

icant effect on the output of the overall network – implying that information flows

through the loop hierarchy, being modulated, amplified and attenuated as it does

so. We find that inhibition of members of these core loops have an increased sig-

nificance of expression change over a range of output nodes, compared with the

expected change of inhibiting a node in a large strongly connected component. Fur-

thermore, members of these core loops are prime candidates for network control:

many nodes in control kernels can be found at deep levels of this loop hierarchy

(section 5.4.3). This leads us to conclude that IMPLISig can be used in the future to

reduce the search space for novel drug targets in large intra-cellular networks.

Work still needs to be done, however, to characterise the meaningfulness of the

uncovered hierarchies of the in- and out-component.

6.2 Future Directions

As our literature review has revealed, there are a number of related works that can

be considered for extending the work proposed in this thesis in the future.
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6.2.1 Incorporate Edge Features into Hyperbolic Embedding

In chapter 3 and chapter 4, we leverage additional node attributes into a hyperbolic

embedding procedure. HEAT is even capable of handling weighted edges through

the use of random-walk network sampling. However, as mentioned in section 1.1.3,

weighted edges are a single, special case of general edge attributes. Literature has

shown that explicit incorporation of edge attributes can improve embedding quality

(Goyal et al., 2018a; Goyal et al., 2018b), but, so far, none of these approaches have

been applied to hyperbolic space. HEAT, in particular, would be a prime candidate

for extension in this way: random-walks provides an overall very flexible sampling

method, and extending it to include general edge attributes has already been pro-

posed (Goyal et al., 2018a). As mentioned in section 3.2, the second-order similarity

between nodes could be incorporated into the topological similarity matrix using a

weighted sum (Wang, Cui, and Zhu, 2016).

6.2.2 Incorporate Structural Features into Hyperbolic Embedding

In addition to microscopic edge features, meso-scopic features – such as commu-

nity structure or feedback loop – can also be incorporated into network embedding

(Wang et al., 2017c). Community structure, in particular, is linked with information

flow: gossip flows more easily amongst friends than between friendship groups, for

example. Both HEAT and HEADNet could achieve this through the addition of an-

other term to their respective objective functions. Community memberships could

be considered node labels and the additional term in the objective would transform

the learning into a supervised (or semi-supervised, if only partial memberships are

known) embedding problem, where the weighting of the new term would control

the trade-off between representing the topological and attribute similarity exactly, or

increasing the margins between different communities in the hyperbolic embedding

space.



Chapter 6. Discussion 152

6.2.3 Hyperbolic Embedding of Multi-Layer Networks

Whole networks themselves may form just part of a system as a whole. For exam-

ple, multi-layer networks have recently become popular for jointly modelling multi-

ple layers of a system simultaneously (Mucha et al., 2010; Mucha and Porter, 2010).

Embedding multi-layer networks is a challenging problem since the links between

layers need to be considered differently to intra-layer links, however, consideration

of this macro-level network labelling in the embedding process has been shown to

produce high quality results (Liu et al., 2017). Generalising either HEAT or HEAD-

Net to simultaneously map nodes withing a multi-layer networks to a single, unified

hyperbolic representation is left as future work.

6.2.4 Hyperbolic Neural Networks

Recently, hyperbolic neural networks have been proposed to perform classical neu-

ral network operations in (the Poincaré ball model of) hyperbolic space (Ganea, Bé-

cigneul, and Hofmann, 2018). HEAT and HEADNet provide methods for transform-

ing structured data into a form suitable for these operations, as well as for incorpora-

tion of data from multiple sources (topology and attributes). This has the immediate

consequence that node classification can be performed in native hyperbolic space,

using a hyperbolic classifier, rather than by using a Euclidean classifier trained on

Klein node positions (as we did in chapter 3). This would, no doubt, result in bet-

ter quality node classifications, and would likely improve on the node classification

performance of HEAT reported in section 3.3.5.

In addition, these operations could be used to augment the loss function for semi-

supervised hyperbolic embedding learning, as discussed in section 6.2.2. The gener-

alisation of graph convolution (Defferrard, Bresson, and Vandergheynst, 2016; Kipf

and Welling, 2016) to hyperbolic space (Chami et al., 2019) opens the door to many

interesting extensions of the works proposed here with respect to supervised and

semi-supervised embedding learning.

Finally, we note that HEADNet could be transformed from an embedder of Eu-

clidean attributes to hyperbolic distributions – itself comprised of Euclidean parame-

ters – to a wholly hyperbolic model. It would accept hyperbolic parameters as input,
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and output hyperbolic distributions using only operations in hyperbolic space, and

optimised using full RSGD. In the case of Euclidean node attributes, perhaps they

could be first transformed to hyperbolic attributes using Expµ0
1, for example.

6.2.5 Hyperbolic Variational Autoencoder

Previously, Variational Autoencoder (VAE) (Kingma and Welling, 2013) has been

derived on the Poincaré disk (Chen, Chen, and Zhang, 2018; Mathieu et al., 2019).

As discussed in section 4.2.8, HEADNet has a number of connections to VAEs and

the addition of an encoder would allow use to generate meaningful new members

of a system, based on the learned distributions of existing members.

6.2.6 Embedding Space Analysis

Another interesting direction for future research is analyses of learned hyperbolic

embedding. Given that hyperbolic spaces are continuous approximations of trees

(Krioukov et al., 2010), examining the position of elements within the space can pro-

vide an insight into the position of that element within a hierarchy. For example, in

Nickel and Kiela, 2017, the authors use hyperbolic distance from the origin of the

Poincaré disk to infer the hierarchy of nouns. Since we have shown that incorpo-

ration of attributes can improve downstream performance on a number of common

tasks, it would be interesting to investigate how attributes would affect an entities

perceived position in a hierarchy.

Inspired by community detection in hyperbolic space (Bruno et al., 2019; Wang

et al., 2019), investigation of hierarchy position can be extended further. As men-

tioned in section 6.2.2, community structure can be considered explicitly in the hy-

perbolic embedding process. Explicit consideration of communities in hyperbolic

embedding would actually have an interesting extra advantage over embedding

to a Euclidean space, namely that community hierarchy is preserved. Communi-

ties could be ranked by hyperbolic distance from the origin to give an indication of

how central or important a particular module is. Consider a highly modular PPI

network: communities formed of highly inter-linked proteins that are embedded

close to the origin of the hyperbolic space would, in some sense, ‘be more popular’

1Recall Expµ0 : Rn →Hn. See figure 4.2.
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than those further away. Perhaps those modules are more central to the informa-

tion flow through the network. Moreover, the elements within a particular module

can be ranked by position in hierarchy. The ranking of entire communities could be

achieved in a number of ways, but the simplest seems to be to compute the Frećhet

mean (Wilson and Leimeister, 2018) of all of the vectors belonging to that community

and then determine the hyperbolic distance of that mean point from the origin. This

is left as an interesting future direction.

Naturally, even in the case where community membership or node labels are

not known, investigation into the hierarchical position of groups could still be in-

formative. Clustering algorithms (for example: the recently proposed HDBSCAN

(McInnes, Healy, and Astels, 2017)) can be applied to cluster the hyperbolic vectors

and then these clusters could be ranked by hierarchy in the same way.

6.2.7 Reducing Complexity of Logical Systems

Literature has shown that it is possible to reduce the complexity of boolean net-

works (Kim et al., 2011a). This is closely linked to chapter 5, where we uncover the

hierarchy of information flow. Following on from what is proposed in that chapter,

we suggest investigation into constructing boolean functions for super-nodes such

that the overall dynamical behaviour of the network does not change. Other natural

extensions of IMPLISig are application to continuous dynamical models, as well as

developing a library of score functions to uncover a variety of useful hierarchies.

6.2.8 Flow of Information in Hyperbolic Space

This thesis has claimed that there is a natural connection between the hierarchy of

elements, the hierarchy of groups of elements within a system, and information flow

through that system. Hyperbolic space can capture the hierarchy of elements within

a system, and it has been shown to reflect the spread of information between those

elements. For example: hyperbolic space can be used to efficiently route packets

of information between entities of large networks using only local information (Pa-

padopoulos et al., 2010). A natural question, then, is can a hyperbolic capture the

flow of information between groups of nodes? IMPLISig returns a DAG, H, where
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each element is a node or super-node and each relationship is a ‘participates in’ re-

lationship (see section 5.2 for details). A DAG is a perfect candidate for hyperbolic

embedding (Sarkar, 2011), and if H were to be embedded to a hyperbolic space, the

principle of hyperbolic packet routing (Papadopoulos et al., 2010) could be applied

to potentially reveal the full hierarchical flow of information through a dynamic net-

work.



156

Appendix A

Supplementary for Chapter 2

A.1 Identifying Modular Structure

A.1.1 Cut- and Spectral-Based Approaches

The flagship Kernighan-Lin algorithm (Kernighan and Lin, 1970) focused on ‘cut-

ting’ the network into modules, in such a way that the number of edges cut was

minimised. However, this often favoured cuts of small, peripheral sub-graphs, so

it was adapted into ratio cut (Wei and Cheng, 1991), normalised cut (Shi and Ma-

lik, 2000) and min-max cut (Ding et al., 2001) that took the number of nodes in each

resulting sub-graph into account, and thus resulted in a partition that was more bal-

anced. Contemporary cut-based approaches are concerned more with edges, rather

than vertices and gave rise to a new measure for a good cut, called conductance.

Conductance is still prolific in the literature: it has been used to detect communi-

ties in bipartite networks (Barber, 2007), combined with PageRank (Page et al., 1999)

and used as the basis for a greedy optimisation algorithm (Lancichinetti and Fortu-

nato, 2009) capable of finding overlapping communities at different scales. Spectral

clustering dates back to the work of Donath and Hoffman in 1973 (Donath and Hoff-

man, 1973). However, it was popularised in the early 2000s (Shi and Malik, 2000;

Ng, Jordan, Weiss, et al., 2002; Ding, 2004). Spectral methods rely upon construct-

ing Laplacian matrices from the raw network data and eigen-decomposing them.

Clustering the resulting eigen-vectors results in clusters of the original data points.

Spectral approaches have many advantages over other techniques and, as a result,

they have become popular in the machine learning community for clustering on

non-linear manifolds. According to Von Luxburg, 2007, ‘these methods do not make
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assumptions about the form of the clusters’ and are capable of correctly identifying

typically challenging clusters, such as the famous two spirals example. For commu-

nity detection, they have the additional benefit of efficiency, especially if the graph

adjacency matrix is sparse.

A.1.2 Modularity

Girvan and Newman, 2002 marked a significant advance in the field by providing

the first quantitative measure of a community: modularity. The modularity of a par-

tition of a network (defined in equation (1.19)) scores a network partition by com-

paring the number of links inside a given module with the expected number that

would be found in a random graph of the same size and degree sequence. Here, m

is the number of modules in the partition, ls is the number of links in module s, L is

the total number of links in the network and ds is the total degree of the nodes in s.

Girvan and Newman propose a hierarchical divisive algorithm that removes edges

based on their ‘betweenness’ (the number of shortest paths from two nodes in the

network that go through them) until the modularity quality function is maximised.

The early work of Girvan and Newman has since been expanded upon. For exam-

ple, edge clustering in favour of edge-betweenness (Radicchi et al., 2004), iteratively

adding links to a module based on their expected increase in modularity (Clauset,

Newman, and Moore, 2004), and multi-stage local optimisation in the popular Lou-

vain algorithm (Blondel et al., 2008).

However, it has been shown that modularity-based approaches have their lim-

itations. Fortunato and Barthelemy, 2007 show what they referred to as the ‘res-

olution limit’ - that modularity-based approaches can fail to identify communities

that are smaller in size than a scale that depends on the size of the network, and

this results in incorrect community division in the cases when even small communi-

ties must be considered. Some methods use a ‘resolution parameter’ to control the

scale of the communities detected, however, setting this parameter is difficult as the

scale of communities is not known a-priori and the weak definition of a community

in general. Additionally, most modularity-based methods rely to some extent on

greedy optimisation which has poor accuracy compared to other techniques (Fortu-

nato, 2010).
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A.1.3 Finding Modules with Flow

Another definition of community comes from finding subnetworks where flow con-

gregates. The Markov Clustering algorithm (MCL) simulates a diffusion process on

a graph by repeatedly performing stages of expansion and inflation and only keep-

ing the k largest elements for efficiency (Van Dongen, 2001). Another significant

flow-based approach is the the work of Rosvall and Bergstrom with their famous In-

fomap algorithm (Rosvall and Bergstrom, 2007) that translated the problem of com-

munity detection into the problem of optimally compressing the information in a

graph such that the most information can be uncovered when the compression is

decoded. They used simulated annealing to minimize a function that represented

both compression and data loss resulting in a map that “best captures the commu-

nity structure with respect to the dynamics on the network” (De Domenico et al.,

2015). This approach was also shown to work well with dynamic processes in their

later work (Rosvall and Bergstrom, 2008). Like modularity optimisation, computing

an exact solution to this problem is NP-hard, which facilitates the need for heuristic

algorithms which are computationally expensive (Fortunato, 2010).

A.1.4 Deep Learning for Module Detection

Deep learning has recently taken the computer science community by storm by al-

lowing for computational models that extract features at different levels of abstrac-

tion (LeCun, Bengio, and Hinton, 2015). Many complex networks contain highly

non-linear features (Yang et al., 2016), making the use of deep non-linear models

very appealing. The deep learning community has began to explore the possibilities

of using neural networks for clustering in the graph domain – a key advancement

for identifying modules of close inter-connectivity. Convolutional neural networks

(CNNs), powerful machine learning tools that have proven very successful for chal-

lenging classification tasks that have recently been generalized to take a graph in-

put (Defferrard, Bresson, and Vandergheynst, 2016). CNNs have also been used for

semi-supervised learning on graphs, where they are capable of learning both graph

structure and node features (Kipf and Welling, 2016). However, existing deep learn-

ing models suffer from a high number of parameters to tune, when exposing them
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to unseen networks.

A.1.5 Hierarchical and Multi-scale Module Detection

In many networks representing complex real-world phenomena, finding a single

partition – where each node is assigned to exactly one community – does not ac-

curately reflect the underlying community structure of the data being represented.

Sometimes, nodes can belong to more than one community. Methods that uncover

the hierarchically organized modular structure of complex networks are of special

importance to computational biology as biological systems display nested hierarchy,

with clusters embedded in larger clusters (Ashourvan et al., 2019). Lancichinetti,

Fortunato, and Kertész, 2009 used greedy optimisation to maximize a fitness func-

tion based on conductance with a parameter that controlled the scale of commu-

nities detected. While this algorithm did not use modularity in its fitness function

and so did not suffer from a resolution limit, as pointed out earlier, greedy opti-

misation often returns poor results compared to other heuristic searches (Fortunato,

2010). Further work by the same authors expanded upon the framework provided in

Lancichinetti, Fortunato, and Kertész, 2009, by replacing the simple fitness function

with a function that assessed the statistical significance of communities discovered

(Lancichinetti, Radicchi, and Ramasco, 2010). They also propose overcoming the

shortcomings of a greedy search using a consensus approach (Lancichinetti and For-

tunato, 2012). These later advancements make their work very appealing as they

offer a very simple framework that allows users to input their own quality functions

based on what kind of modules they are hoping to extract, and overcome the weak-

ness of the greedy search with a consensus approach. The consensus approach also

makes the choice of parameter settings more robust (Lancichinetti and Fortunato,

2012).

A.1.6 Multi-layer Module Detection

Community detection within multi-layer network follow from the same principles

as the single layer case. Community detection within multi-layer network follow

from the same principles as the single layer case. In fact, many classical community
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detection algorithms have been generalized for application to multiplayer networks

(Mucha et al., 2010). For example, Ashourvan et al., 2019 used a multi scale varia-

tion of the Louvain algorithm to detect hierarchical communities in functional brain

networks, and De Domenico et al., 2015 generalizes random walking and the map

equation (Rosvall and Bergstrom, 2008) to move across multiple layers.

These algorithms can successfully identify closely related sets of nodes, of differ-

ent types, which, in the context of computational biology can be useful for predic-

tions such as function and interactions. Special cases of multi-layer networks are the

multi-slice networks where the nodes are the same for each layer but the topology

of the network may differ. Examples include: temporal networks where each layer

represents a different time point and networks representing many different types of

interactions amongst nodes (Mucha and Porter, 2010).

A.1.7 Finding Modules Considering Attributes

Community detection traditionally only considers only the structure – or topology

– of the network at hand. However, often nodes in network may be enriched with

additional attributes that are not solely based upon the observed topology of the

network. For example, people in a social network may be annotated with prefer-

ences such as hobbies and interests and we would expect two people with the same

interests to still somehow be similar, even if we do not observe a direct link between

them in the network. Within the context of computational biology, this is perhaps

even more relevant, due to the vast quantity and variety of data now available, and

the successes of integrative models in the past. Integrative models get their name

from the principle of integrating observed data (say, gene expression) with prior

knowledge (often in the form of a known protein interaction network and/or previ-

ously curated functional annotations). Mitra et al., 2013 offers a summary of many

the integrative approaches popular in the literature.

One of the most successful integrative approach is the identification of so-called

‘active modules’. It is a relatively recent trend within the interdisciplinary fields of

network science and translational medicine and aims to augment known physical in-

teractions with observed expression levels to identify connected sub-networks that

are maximally differently expressed. While the problem is related to the topology of
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the network – the sub-graphs must be connected, for example – biologically relevant

modules often do not align with communities based solely on network topology

(He et al., 2016). Computing an exact solution is NP-hard (Ideker et al., 2002), so

the authors employ a heuristic search based on simulated annealing to search for

the maximally scoring sub-graph in the network. Genetic algorithms (GAs) (Klam-

mer et al., 2010), greedy methods (Nacu et al., 2007) and propagation of flow from

cancer genes have since been used (Vandin, Upfal, and Raphael, 2011). More recent

work has employed a memetic algorithm to ensure connected-ness (Li et al., 2017b);

a multi-objective optimisation process to control the trade off between biological ac-

tivity and functional enrichment of the detected modules (Chen, Liu, and He, 2017);

and a cooperative co-evolutionary approach (He et al., 2016). Interestingly, despite

the NP-hardness of the problem, it has been shown that, by transforming the above

problem into the well known Prize Collecting Stein Tree (PCST) problem, exact solu-

tions can be obtained in reasonable computational time with integer programming

(Dittrich et al., 2008).
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Appendix B

Supplementary for Chapter 3

B.1 Network Reconstruction

Here we present additional results for network reconstruction for HEAT. We present

results for embedding dimension 5 (table B.1), 25 (table B.3) and 50 (table B.5). T-

statistics are described in table B.2, table B.4, table B.6 respectively.

B.2 Link Prediction

Here we present additional results for link prediction for HEAT. We present results

for embedding dimension 5 (table B.7), 25 (table B.9) and 50 (table B.11). T-statistics

are described in table B.8, table B.10, table B.12 respectively.

B.3 Node Classification

Here we present additional results for node classification task for HEAT. We present

results for embedding dimension 10 (table B.13), 25 (table B.15) and 50 (table B.17).
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TABLE B.1: Summary of network reconstruction for embedding dimension 5. We present
AUROC and AP scores, mean average precision (mAP) and precision at k (p@k) for k ∈
{1, 3, 5, 10} to 3 decimal places and rank to 1 decimal place. Rank is the average position
that a true edge appears in the list of false edges ranked by distance. For mAP, we rank
distances with respect to each node in the network and compute a separate precision score
for each node, then report the mean of these precision. For p@k, we report the number of
the k closest nodes that are true neighbours. All scores are averaged over 30 random starting

seeds. Standard deviation is given in brackets.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

N&K 253.6(11.1) 0.985(0.001) 0.984(0.001) 0.644(0.003) 0.764(0.005) 0.711(0.005) 0.701(0.005) 0.693(0.006)
AANE 4087.2(34.4) 0.750(0.002) 0.750(0.003) 0.089(0.001) 0.099(0.002) 0.111(0.002) 0.128(0.002) 0.157(0.002)
TADW 984.4(35.8) 0.940(0.002) 0.926(0.003) 0.250(0.005) 0.279(0.006) 0.281(0.004) 0.301(0.005) 0.334(0.008)

ATTRPURE 4691.9(32.6) 0.712(0.002) 0.724(0.003) 0.082(0.001) 0.089(0.002) 0.102(0.002) 0.117(0.002) 0.140(0.002)
DEEPWALK 328.7(13.4) 0.980(0.001) 0.975(0.001) 0.536(0.004) 0.566(0.008) 0.532(0.004) 0.539(0.006) 0.548(0.006)
SAGEGCN 1395.7(130.4) 0.915(0.008) 0.891(0.011) 0.156(0.014) 0.144(0.017) 0.175(0.019) 0.199(0.023) 0.237(0.027)

HEATα=0.00 89.3(3.7) 0.995(0.000) 0.993(0.000) 0.706(0.004) 0.731(0.007) 0.717(0.005) 0.723(0.004) 0.734(0.004)
HEATα=0.20 162.7(6.7) 0.990(0.000) 0.988(0.001) 0.628(0.004) 0.666(0.008) 0.640(0.006) 0.648(0.006) 0.661(0.007)
HEATα=1.00 4071.0(73.5) 0.751(0.005) 0.773(0.005) 0.081(0.003) 0.076(0.005) 0.095(0.006) 0.114(0.005) 0.144(0.007)

Citeseer

N&K 100.6(7.9) 0.991(0.001) 0.992(0.001) 0.791(0.004) 0.766(0.006) 0.765(0.005) 0.792(0.006) 0.832(0.007)
AANE 3782.1(23.8) 0.646(0.002) 0.640(0.003) 0.078(0.001) 0.069(0.002) 0.089(0.002) 0.114(0.002) 0.164(0.004)
TADW 485.3(11.5) 0.955(0.001) 0.944(0.002) 0.259(0.002) 0.208(0.003) 0.257(0.003) 0.296(0.004) 0.363(0.007)

ATTRPURE 3758.1(24.1) 0.648(0.002) 0.643(0.003) 0.075(0.001) 0.066(0.002) 0.081(0.002) 0.101(0.003) 0.149(0.005)
DEEPWALK 39.4(3.5) 0.996(0.000) 0.995(0.001) 0.729(0.004) 0.646(0.006) 0.706(0.007) 0.756(0.009) 0.805(0.009)
SAGEGCN 985.1(126.5) 0.908(0.012) 0.893(0.013) 0.121(0.011) 0.083(0.009) 0.145(0.018) 0.193(0.024) 0.274(0.040)

HEATα=0.00 10.2(2.4) 0.999(0.000) 0.998(0.001) 0.806(0.003) 0.713(0.004) 0.844(0.004) 0.883(0.006) 0.931(0.006)
HEATα=0.20 19.3(2.6) 0.998(0.000) 0.998(0.000) 0.798(0.003) 0.741(0.006) 0.758(0.005) 0.790(0.007) 0.830(0.009)
HEATα=1.00 1631.3(24.4) 0.847(0.002) 0.852(0.003) 0.101(0.002) 0.071(0.003) 0.114(0.006) 0.153(0.007) 0.220(0.009)

Pubmed

N&K 586.3(20.4) 0.993(0.000) 0.992(0.000) 0.704(0.004) 0.708(0.004) 0.773(0.002) 0.810(0.002) 0.816(0.003)
AANE 18340.9(63.1) 0.793(0.001) 0.774(0.001) 0.074(0.000) 0.065(0.001) 0.125(0.001) 0.153(0.001) 0.190(0.001)
TADW 4568.0(35.8) 0.948(0.000) 0.938(0.001) 0.344(0.001) 0.310(0.002) 0.369(0.002) 0.420(0.002) 0.455(0.002)

ATTRPURE 26314.0(72.6) 0.703(0.001) 0.685(0.001) 0.076(0.000) 0.070(0.001) 0.133(0.001) 0.161(0.001) 0.197(0.001)
DEEPWALK 1270.3(31.7) 0.986(0.000) 0.984(0.000) 0.606(0.003) 0.548(0.004) 0.592(0.003) 0.657(0.003) 0.694(0.003)
SAGEGCN 6405.0(311.9) 0.928(0.004) 0.903(0.006) 0.140(0.009) 0.106(0.008) 0.198(0.013) 0.247(0.015) 0.307(0.017)

HEATα=0.00 262.6(9.1) 0.997(0.000) 0.996(0.000) 0.790(0.003) 0.749(0.004) 0.770(0.003) 0.818(0.002) 0.836(0.002)
HEATα=0.20 533.4(14.5) 0.994(0.000) 0.993(0.000) 0.688(0.003) 0.624(0.004) 0.697(0.003) 0.761(0.002) 0.788(0.002)
HEATα=1.00 14115.4(405.1) 0.841(0.005) 0.835(0.004) 0.074(0.002) 0.059(0.003) 0.119(0.004) 0.151(0.005) 0.194(0.006)

PPI

N&K 7217.9(48.5) 0.934(0.000) 0.936(0.001) 0.382(0.002) 0.752(0.006) 0.642(0.004) 0.612(0.003) 0.601(0.003)
AANE 50816.3(87.4) 0.536(0.001) 0.588(0.001) 0.085(0.000) 0.463(0.002) 0.242(0.001) 0.195(0.001) 0.163(0.001)
TADW 29118.4(92.1) 0.734(0.001) 0.717(0.001) 0.106(0.001) 0.461(0.002) 0.236(0.002) 0.193(0.001) 0.172(0.001)

ATTRPURE 51410.8(98.1) 0.510(0.001) 0.511(0.001) 0.038(0.000) 0.163(0.004) 0.084(0.001) 0.065(0.001) 0.051(0.001)
DEEPWALK 16651.9(144.2) 0.848(0.001) 0.832(0.001) 0.231(0.001) 0.562(0.005) 0.385(0.004) 0.352(0.004) 0.345(0.004)
SAGEGCN 46554.1(956.1) 0.575(0.009) 0.587(0.008) 0.080(0.002) 0.435(0.003) 0.194(0.003) 0.146(0.004) 0.115(0.004)

HEATα=0.00 7768.1(62.3) 0.929(0.001) 0.923(0.001) 0.298(0.002) 0.603(0.005) 0.472(0.004) 0.450(0.003) 0.455(0.003)
HEATα=0.20 8681.2(76.5) 0.921(0.001) 0.915(0.001) 0.285(0.002) 0.599(0.006) 0.445(0.005) 0.415(0.005) 0.412(0.004)
HEATα=1.00 49309.2(136.1) 0.550(0.001) 0.556(0.001) 0.068(0.000) 0.425(0.002) 0.182(0.002) 0.135(0.002) 0.107(0.001)

MIT

N&K 33502.6(342.8) 0.925(0.001) 0.927(0.001) 0.551(0.003) 1.000(0.000) 0.863(0.003) 0.832(0.003) 0.807(0.003)
AANE 163472.8(144.0) 0.633(0.000) 0.627(0.000) 0.178(0.000) 1.000(0.000) 0.507(0.001) 0.386(0.001) 0.286(0.001)
TADW 99294.0(352.7) 0.777(0.001) 0.762(0.001) 0.306(0.002) 1.000(0.000) 0.651(0.003) 0.571(0.003) 0.497(0.003)

ATTRPURE 174186.9(191.0) 0.608(0.000) 0.611(0.000) 0.176(0.000) 0.990(0.001) 0.530(0.002) 0.413(0.002) 0.306(0.002)
DEEPWALK 50054.3(384.8) 0.887(0.001) 0.873(0.001) 0.448(0.002) 1.000(0.000) 0.722(0.004) 0.664(0.004) 0.619(0.004)
SAGEGCN 98421.4(3672.5) 0.779(0.008) 0.769(0.007) 0.321(0.007) 1.000(0.000) 0.587(0.010) 0.505(0.011) 0.445(0.011)

HEATα=0.00 32696.9(169.3) 0.926(0.000) 0.918(0.000) 0.528(0.001) 1.000(0.000) 0.792(0.003) 0.748(0.002) 0.716(0.002)
HEATα=0.20 37561.2(395.4) 0.916(0.001) 0.908(0.001) 0.509(0.002) 1.000(0.000) 0.773(0.003) 0.725(0.003) 0.689(0.003)
HEATα=1.00 168980.5(1478.5) 0.620(0.003) 0.630(0.003) 0.193(0.002) 1.000(0.000) 0.502(0.004) 0.397(0.004) 0.314(0.004)
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TABLE B.2: T-test statistics achieved by HEATα=0.2 on the network reconstruction task, for
embedding dimension 5. For each network, we select the benchmark algorithm according

to AP. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

HEATα=0.20 162.7(6.7) 0.990(0.000) 0.988(0.001) 0.628(0.004) 0.666(0.008) 0.640(0.006) 0.648(0.006) 0.661(0.007)
N&K 253.6(11.1) 0.985(0.001) 0.984(0.001) 0.644(0.003) 0.764(0.005) 0.711(0.005) 0.701(0.005) 0.693(0.006)

t-statistic 3.84E+01 3.84E+01 2.35E+01 -1.75E+01 -5.70E+01 -4.96E+01 -3.82E+01 -1.96E+01
p-value 5.78E-38 5.78E-38 1.43E-31 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 1 1 1 0 0 0 0 0

Citeseer

HEATα=0.20 19.3(2.6) 0.998(0.000) 0.998(0.000) 0.798(0.003) 0.741(0.006) 0.758(0.005) 0.790(0.007) 0.830(0.009)
DEEPWALK 39.4(3.5) 0.996(0.000) 0.995(0.001) 0.729(0.004) 0.646(0.006) 0.706(0.007) 0.756(0.009) 0.805(0.009)

t-statistic 2.55E+01 2.55E+01 1.95E+01 7.02E+01 6.37E+01 3.26E+01 1.66E+01 1.05E+01
p-value 4.83E-32 4.83E-32 2.93E-25 1.29E-55 1.46E-55 2.60E-36 1.92E-23 2.99E-15
p < 0.05 1 1 1 1 1 1 1 1

Pubmed

HEATα=0.20 533.4(14.5) 0.994(0.000) 0.993(0.000) 0.688(0.003) 0.624(0.004) 0.697(0.003) 0.761(0.002) 0.788(0.002)
N&K 586.3(20.4) 0.993(0.000) 0.992(0.000) 0.704(0.004) 0.708(0.004) 0.773(0.002) 0.810(0.002) 0.816(0.003)

t-statistic 1.16E+01 1.16E+01 5.12E+00 -2.02E+01 -8.65E+01 -1.26E+02 -8.91E+01 -4.90E+01
p-value 2.48E-16 2.48E-16 1.90E-06 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 1 1 1 0 0 0 0 0

PPI

HEATα=0.20 8681.2(76.5) 0.921(0.001) 0.915(0.001) 0.285(0.002) 0.599(0.006) 0.445(0.005) 0.415(0.005) 0.412(0.004)
N&K 7217.9(48.5) 0.934(0.000) 0.936(0.001) 0.382(0.002) 0.752(0.006) 0.642(0.004) 0.612(0.003) 0.601(0.003)

t-statistic -8.85E+01 -8.85E+01 -1.25E+02 -1.72E+02 -9.88E+01 -1.66E+02 -1.85E+02 -1.98E+02
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0 0 0 0 0

MIT

HEATα=0.20 37561.2(395.4) 0.916(0.001) 0.908(0.001) 0.509(0.002) 1.000(0.000) 0.773(0.003) 0.725(0.003) 0.689(0.003)
N&K 33502.6(342.8) 0.925(0.001) 0.927(0.001) 0.551(0.003) 1.000(0.000) 0.863(0.003) 0.832(0.003) 0.807(0.003)

t-statistic -4.25E+01 -4.25E+01 -1.11E+02 -6.13E+01 N/A -1.12E+02 -1.34E+02 -1.54E+02
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 N/A 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0 0 0 0 0
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TABLE B.3: Summary of network reconstruction for embedding dimension 25. We present
AUROC and AP scores, mean average precision (mAP) and precision at k (p@k) for k ∈
{1, 3, 5, 10} to 3 decimal places and rank to 1 decimal place. Rank is the average position
that a true edge appears in the list of false edges ranked by distance. For mAP, we rank
distances with respect to each node in the network and compute a separate precision score
for each node, then report the mean of these precision. For p@k, we report the number of
the k closest nodes that are true neighbours. All scores are averaged over 30 random starting

seeds. Standard deviation is given in brackets.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

N&K 196.6(4.8) 0.988(0.000) 0.987(0.000) 0.684(0.003) 0.799(0.006) 0.744(0.003) 0.730(0.003) 0.720(0.004)
AANE 3807.3(29.5) 0.767(0.002) 0.789(0.003) 0.204(0.001) 0.278(0.003) 0.269(0.003) 0.281(0.003) 0.308(0.002)
TADW 333.9(9.8) 0.980(0.001) 0.975(0.001) 0.555(0.002) 0.630(0.006) 0.581(0.004) 0.578(0.004) 0.581(0.004)

ATTRPURE 4580.0(37.7) 0.719(0.002) 0.747(0.003) 0.179(0.001) 0.248(0.005) 0.237(0.002) 0.247(0.003) 0.272(0.003)
DEEPWALK 106.2(6.4) 0.994(0.000) 0.992(0.001) 0.824(0.003) 0.856(0.006) 0.837(0.003) 0.832(0.003) 0.826(0.004)
SAGEGCN 536.7(37.5) 0.967(0.002) 0.967(0.002) 0.505(0.021) 0.544(0.024) 0.574(0.015) 0.586(0.014) 0.596(0.013)

HEATα=0.00 30.2(3.3) 0.998(0.000) 0.997(0.000) 0.888(0.002) 0.884(0.004) 0.926(0.003) 0.934(0.002) 0.933(0.002)
HEATα=0.20 24.8(2.3) 0.999(0.000) 0.998(0.000) 0.949(0.001) 0.982(0.002) 0.944(0.002) 0.926(0.002) 0.912(0.003)
HEATα=1.00 3212.2(63.4) 0.803(0.004) 0.832(0.004) 0.197(0.003) 0.267(0.007) 0.266(0.006) 0.282(0.007) 0.296(0.007)

Citeseer

N&K 53.6(3.1) 0.995(0.000) 0.995(0.000) 0.804(0.003) 0.779(0.005) 0.776(0.005) 0.805(0.004) 0.840(0.005)
AANE 3651.8(24.4) 0.658(0.002) 0.653(0.003) 0.112(0.001) 0.101(0.002) 0.127(0.003) 0.156(0.003) 0.200(0.004)
TADW 130.7(6.0) 0.988(0.001) 0.984(0.001) 0.531(0.003) 0.453(0.005) 0.488(0.004) 0.526(0.006) 0.597(0.007)

ATTRPURE 3727.6(28.9) 0.651(0.003) 0.645(0.003) 0.105(0.001) 0.098(0.003) 0.122(0.002) 0.147(0.003) 0.200(0.006)
DEEPWALK 13.8(2.0) 0.999(0.000) 0.998(0.001) 0.834(0.003) 0.761(0.004) 0.855(0.003) 0.899(0.005) 0.942(0.005)
SAGEGCN 204.2(64.5) 0.981(0.006) 0.980(0.005) 0.439(0.037) 0.330(0.028) 0.543(0.034) 0.637(0.033) 0.735(0.030)

HEATα=0.00 10.4(2.3) 0.999(0.000) 0.999(0.000) 0.833(0.002) 0.746(0.004) 0.907(0.004) 0.943(0.004) 0.976(0.003)
HEATα=0.20 4.2(1.1) 1.000(0.000) 1.000(0.000) 0.974(0.001) 0.960(0.003) 0.957(0.003) 0.963(0.003) 0.981(0.004)
HEATα=1.00 1626.8(23.6) 0.848(0.002) 0.867(0.002) 0.191(0.002) 0.163(0.003) 0.223(0.005) 0.273(0.005) 0.338(0.009)

Pubmed

N&K 407.9(11.1) 0.995(0.000) 0.994(0.000) 0.750(0.002) 0.754(0.003) 0.814(0.002) 0.843(0.002) 0.841(0.001)
AANE 18364.4(51.7) 0.793(0.001) 0.810(0.001) 0.142(0.001) 0.156(0.002) 0.251(0.002) 0.284(0.001) 0.313(0.001)
TADW 1564.6(21.7) 0.982(0.000) 0.981(0.000) 0.617(0.002) 0.615(0.002) 0.651(0.002) 0.692(0.002) 0.702(0.002)

ATTRPURE 26544.5(129.1) 0.701(0.001) 0.721(0.001) 0.136(0.001) 0.148(0.002) 0.242(0.002) 0.275(0.002) 0.304(0.002)
DEEPWALK 341.1(9.4) 0.996(0.000) 0.996(0.000) 0.891(0.001) 0.866(0.002) 0.911(0.002) 0.925(0.001) 0.927(0.001)
SAGEGCN 2363.7(336.7) 0.973(0.004) 0.972(0.003) 0.471(0.031) 0.421(0.027) 0.551(0.021) 0.618(0.020) 0.664(0.017)

HEATα=0.00 63.3(4.7) 0.999(0.000) 0.998(0.000) 0.900(0.001) 0.836(0.002) 0.967(0.001) 0.976(0.001) 0.975(0.001)
HEATα=0.20 54.0(3.5) 0.999(0.000) 0.999(0.000) 0.979(0.000) 0.988(0.001) 0.966(0.001) 0.966(0.001) 0.963(0.001)
HEATα=1.00 11864.9(238.1) 0.866(0.003) 0.865(0.002) 0.111(0.003) 0.105(0.004) 0.190(0.005) 0.228(0.006) 0.272(0.007)

PPI

N&K 6625.6(37.9) 0.940(0.000) 0.941(0.000) 0.430(0.001) 0.807(0.005) 0.709(0.003) 0.673(0.002) 0.648(0.002)
AANE 48893.8(81.1) 0.554(0.001) 0.600(0.001) 0.097(0.000) 0.487(0.002) 0.272(0.001) 0.216(0.001) 0.178(0.001)
TADW 20748.6(82.5) 0.811(0.001) 0.797(0.001) 0.201(0.001) 0.574(0.003) 0.392(0.003) 0.354(0.002) 0.338(0.001)

ATTRPURE 51271.6(94.5) 0.512(0.001) 0.512(0.001) 0.037(0.000) 0.165(0.004) 0.085(0.002) 0.065(0.001) 0.050(0.001)
DEEPWALK 4888.4(48.4) 0.955(0.000) 0.952(0.000) 0.630(0.002) 0.919(0.004) 0.831(0.003) 0.784(0.003) 0.735(0.002)
SAGEGCN 41412.4(1209.8) 0.622(0.011) 0.643(0.011) 0.131(0.007) 0.510(0.010) 0.289(0.013) 0.232(0.012) 0.189(0.012)

HEATα=0.00 2703.6(25.4) 0.975(0.000) 0.973(0.000) 0.667(0.002) 0.936(0.004) 0.895(0.002) 0.856(0.002) 0.809(0.002)
HEATα=0.20 3314.2(38.9) 0.970(0.000) 0.968(0.000) 0.673(0.002) 0.959(0.002) 0.885(0.003) 0.839(0.003) 0.786(0.002)
HEATα=1.00 46377.0(127.0) 0.577(0.001) 0.582(0.001) 0.070(0.000) 0.426(0.002) 0.186(0.002) 0.139(0.001) 0.113(0.001)

MIT

N&K 32300.6(82.1) 0.927(0.000) 0.930(0.000) 0.567(0.001) 1.000(0.000) 0.889(0.001) 0.861(0.001) 0.832(0.001)
AANE 152088.1(155.3) 0.658(0.000) 0.652(0.000) 0.198(0.000) 1.000(0.000) 0.550(0.002) 0.440(0.001) 0.343(0.001)
TADW 68191.8(200.5) 0.847(0.000) 0.844(0.001) 0.464(0.001) 1.000(0.000) 0.816(0.002) 0.765(0.001) 0.713(0.001)

ATTRPURE 173328.8(150.9) 0.610(0.000) 0.616(0.000) 0.190(0.000) 0.994(0.001) 0.552(0.002) 0.437(0.001) 0.332(0.001)
DEEPWALK 20138.5(123.9) 0.955(0.000) 0.953(0.000) 0.719(0.001) 1.000(0.000) 0.949(0.001) 0.927(0.001) 0.898(0.001)
SAGEGCN 81151.9(2192.3) 0.818(0.005) 0.829(0.005) 0.463(0.009) 1.000(0.000) 0.783(0.009) 0.726(0.010) 0.674(0.011)

HEATα=0.00 16898.0(72.7) 0.962(0.000) 0.959(0.000) 0.740(0.001) 1.000(0.000) 0.956(0.001) 0.943(0.001) 0.924(0.001)
HEATα=0.20 19954.6(94.6) 0.955(0.000) 0.955(0.000) 0.739(0.001) 1.000(0.000) 0.966(0.001) 0.946(0.001) 0.920(0.001)
HEATα=1.00 155622.6(816.3) 0.650(0.002) 0.674(0.002) 0.258(0.001) 1.000(0.000) 0.655(0.002) 0.568(0.003) 0.485(0.002)
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TABLE B.4: T-test statistics achieved by HEATα=0.2 on the network reconstruction task, for
embedding dimension 25. For each network, we select the benchmark algorithm according

to AP. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

HEATα=0.20 24.8(2.3) 0.999(0.000) 0.998(0.000) 0.949(0.001) 0.982(0.002) 0.944(0.002) 0.926(0.002) 0.912(0.003)
DEEPWALK 106.2(6.4) 0.994(0.000) 0.992(0.001) 0.824(0.003) 0.856(0.006) 0.837(0.003) 0.832(0.003) 0.826(0.004)

t-statistic 6.61E+01 6.61E+01 4.56E+01 1.95E+02 1.14E+02 1.42E+02 1.32E+02 9.88E+01
p-value 9.29E-40 9.29E-40 2.20E-34 3.81E-58 7.81E-48 1.89E-70 5.91E-68 2.33E-65
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

HEATα=0.20 4.2(1.1) 1.000(0.000) 1.000(0.000) 0.974(0.001) 0.960(0.003) 0.957(0.003) 0.963(0.003) 0.981(0.004)
DEEPWALK 13.8(2.0) 0.999(0.000) 0.998(0.001) 0.834(0.003) 0.761(0.004) 0.855(0.003) 0.899(0.005) 0.942(0.005)

t-statistic 2.31E+01 2.31E+01 1.73E+01 2.72E+02 2.31E+02 1.23E+02 6.21E+01 3.64E+01
p-value 5.52E-27 5.52E-27 2.31E-19 3.54E-69 7.85E-78 3.91E-72 3.98E-50 1.05E-40
p < 0.05 1 1 1 1 1 1 1 1

Pubmed

HEATα=0.20 54.0(3.5) 0.999(0.000) 0.999(0.000) 0.979(0.000) 0.988(0.001) 0.966(0.001) 0.966(0.001) 0.963(0.001)
DEEPWALK 341.1(9.4) 0.996(0.000) 0.996(0.000) 0.891(0.001) 0.866(0.002) 0.911(0.002) 0.925(0.001) 0.927(0.001)

t-statistic 1.57E+02 1.57E+02 7.14E+01 3.50E+02 2.67E+02 1.59E+02 1.43E+02 1.29E+02
p-value 4.65E-54 4.65E-54 1.21E-37 1.75E-64 2.93E-62 2.06E-65 4.32E-75 1.88E-71
p < 0.05 1 1 1 1 1 1 1 1

PPI

HEATα=0.20 3314.2(38.9) 0.970(0.000) 0.968(0.000) 0.673(0.002) 0.959(0.002) 0.885(0.003) 0.839(0.003) 0.786(0.002)
DEEPWALK 4888.4(48.4) 0.955(0.000) 0.952(0.000) 0.630(0.002) 0.919(0.004) 0.831(0.003) 0.784(0.003) 0.735(0.002)

t-statistic 1.39E+02 1.39E+02 1.47E+02 1.03E+02 5.00E+01 6.98E+01 7.57E+01 1.00E+02
p-value 1.87E-72 1.87E-72 3.79E-72 1.04E-67 3.01E-43 6.03E-58 3.38E-59 3.20E-66
p < 0.05 1 1 1 1 1 1 1 1

MIT

HEATα=0.20 19954.6(94.6) 0.955(0.000) 0.955(0.000) 0.739(0.001) 1.000(0.000) 0.966(0.001) 0.946(0.001) 0.920(0.001)
DEEPWALK 20138.5(123.9) 0.955(0.000) 0.953(0.000) 0.719(0.001) 1.000(0.000) 0.949(0.001) 0.927(0.001) 0.898(0.001)

t-statistic 6.46E+00 6.46E+00 2.90E+01 9.70E+01 N/A 4.52E+01 5.57E+01 7.41E+01
p-value 1.51E-08 1.51E-08 9.90E-34 3.41E-65 N/A 9.31E-47 1.81E-51 2.26E-57
p < 0.05 1 1 1 1 0 1 1 1
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TABLE B.5: Summary of network reconstruction for embedding dimension 50. We present
AUROC and AP scores, mean average precision (mAP) and precision at k (p@k) for k ∈
{1, 3, 5, 10} to 3 decimal places and rank to 1 decimal place. Rank is the average position
that a true edge appears in the list of false edges ranked by distance. For mAP, we rank
distances with respect to each node in the network and compute a separate precision score
for each node, then report the mean of these precision. For p@k, we report the number of
the k closest nodes that are true neighbours. All scores are averaged over 30 random starting

seeds. Standard deviation is given in brackets.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

N&K 192.4(5.1) 0.988(0.000) 0.987(0.000) 0.689(0.002) 0.803(0.004) 0.748(0.004) 0.733(0.003) 0.722(0.004)
AANE 3779.5(28.0) 0.768(0.002) 0.788(0.002) 0.227(0.001) 0.320(0.004) 0.302(0.003) 0.308(0.002) 0.321(0.003)
TADW 227.7(7.4) 0.986(0.000) 0.984(0.001) 0.668(0.002) 0.738(0.006) 0.692(0.004) 0.684(0.003) 0.684(0.004)

ATTRPURE 4706.9(36.8) 0.712(0.002) 0.738(0.003) 0.198(0.001) 0.286(0.005) 0.264(0.003) 0.268(0.003) 0.283(0.003)
DEEPWALK 67.1(3.9) 0.996(0.000) 0.995(0.001) 0.876(0.002) 0.896(0.004) 0.885(0.003) 0.879(0.003) 0.874(0.002)
SAGEGCN 427.5(37.4) 0.974(0.002) 0.974(0.002) 0.574(0.025) 0.614(0.030) 0.638(0.016) 0.646(0.012) 0.652(0.013)

HEATα=0.00 31.3(3.5) 0.998(0.000) 0.997(0.000) 0.888(0.002) 0.882(0.003) 0.927(0.002) 0.942(0.002) 0.946(0.002)
HEATα=0.20 17.4(1.9) 0.999(0.000) 0.999(0.000) 0.973(0.001) 0.992(0.001) 0.971(0.002) 0.961(0.002) 0.949(0.002)
HEATα=1.00 3087.8(63.6) 0.811(0.004) 0.839(0.004) 0.228(0.002) 0.316(0.005) 0.310(0.004) 0.322(0.004) 0.327(0.005)

Citeseer

N&K 49.8(2.8) 0.995(0.000) 0.996(0.000) 0.804(0.003) 0.779(0.006) 0.777(0.004) 0.807(0.005) 0.841(0.006)
AANE 3476.1(25.2) 0.674(0.002) 0.671(0.003) 0.128(0.001) 0.118(0.002) 0.154(0.003) 0.188(0.004) 0.238(0.005)
TADW 59.2(4.6) 0.995(0.000) 0.992(0.001) 0.636(0.002) 0.545(0.004) 0.576(0.006) 0.613(0.005) 0.687(0.008)

ATTRPURE 3585.6(27.8) 0.664(0.003) 0.662(0.003) 0.120(0.001) 0.114(0.003) 0.147(0.003) 0.179(0.004) 0.229(0.005)
DEEPWALK 9.3(1.7) 0.999(0.000) 0.999(0.000) 0.859(0.002) 0.792(0.004) 0.884(0.003) 0.920(0.004) 0.960(0.003)
SAGEGCN 122.2(35.6) 0.989(0.003) 0.988(0.003) 0.532(0.040) 0.406(0.038) 0.617(0.032) 0.704(0.025) 0.790(0.018)

HEATα=0.00 10.3(2.3) 0.999(0.000) 0.999(0.000) 0.838(0.002) 0.753(0.004) 0.910(0.004) 0.945(0.004) 0.977(0.003)
HEATα=0.20 4.0(1.1) 1.000(0.000) 1.000(0.000) 0.973(0.001) 0.956(0.002) 0.967(0.003) 0.977(0.002) 0.989(0.002)
HEATα=1.00 1654.4(23.3) 0.845(0.002) 0.866(0.002) 0.198(0.002) 0.171(0.003) 0.230(0.004) 0.277(0.004) 0.334(0.006)

Pubmed

N&K 398.4(10.8) 0.996(0.000) 0.994(0.000) 0.754(0.002) 0.759(0.003) 0.817(0.002) 0.845(0.002) 0.843(0.002)
AANE 19395.7(50.7) 0.781(0.001) 0.805(0.001) 0.157(0.001) 0.178(0.002) 0.280(0.002) 0.310(0.002) 0.334(0.001)
TADW 1161.6(14.4) 0.987(0.000) 0.987(0.000) 0.712(0.001) 0.708(0.002) 0.729(0.002) 0.767(0.002) 0.778(0.002)

ATTRPURE 27769.6(96.6) 0.687(0.001) 0.709(0.001) 0.151(0.001) 0.172(0.002) 0.271(0.001) 0.303(0.001) 0.327(0.002)
DEEPWALK 256.0(7.9) 0.997(0.000) 0.997(0.000) 0.913(0.001) 0.881(0.002) 0.944(0.001) 0.951(0.001) 0.952(0.001)
SAGEGCN 1784.6(58.5) 0.980(0.001) 0.979(0.001) 0.564(0.012) 0.516(0.013) 0.628(0.008) 0.694(0.006) 0.729(0.005)

HEATα=0.00 74.6(5.1) 0.999(0.000) 0.998(0.000) 0.872(0.001) 0.787(0.002) 0.962(0.001) 0.981(0.001) 0.985(0.001)
HEATα=0.20 34.4(3.3) 1.000(0.000) 1.000(0.000) 0.990(0.000) 0.994(0.001) 0.985(0.001) 0.984(0.001) 0.982(0.001)
HEATα=1.00 11976.6(64.5) 0.865(0.001) 0.865(0.001) 0.112(0.001) 0.106(0.002) 0.193(0.003) 0.231(0.003) 0.275(0.002)

PPI

N&K 6629.2(38.9) 0.940(0.000) 0.941(0.000) 0.430(0.001) 0.804(0.004) 0.707(0.002) 0.673(0.002) 0.648(0.002)
AANE 46248.1(71.3) 0.578(0.001) 0.616(0.001) 0.106(0.000) 0.497(0.001) 0.282(0.001) 0.226(0.001) 0.190(0.001)
TADW 20453.7(64.3) 0.813(0.001) 0.798(0.001) 0.229(0.001) 0.597(0.003) 0.423(0.001) 0.388(0.002) 0.377(0.001)

ATTRPURE 51040.1(85.3) 0.508(0.001) 0.510(0.001) 0.037(0.000) 0.164(0.004) 0.084(0.002) 0.065(0.001) 0.049(0.001)
DEEPWALK 3182.6(32.5) 0.971(0.000) 0.968(0.000) 0.787(0.001) 0.976(0.002) 0.941(0.002) 0.909(0.002) 0.859(0.002)
SAGEGCN 39875.7(1152.2) 0.636(0.011) 0.660(0.011) 0.153(0.008) 0.547(0.012) 0.333(0.015) 0.272(0.014) 0.222(0.014)

HEATα=0.00 1542.2(27.1) 0.986(0.000) 0.984(0.000) 0.783(0.002) 0.960(0.002) 0.953(0.002) 0.930(0.002) 0.895(0.002)
HEATα=0.20 2089.2(30.2) 0.981(0.000) 0.980(0.000) 0.789(0.002) 0.988(0.002) 0.952(0.002) 0.921(0.002) 0.876(0.002)
HEATα=1.00 45799.9(112.5) 0.582(0.001) 0.588(0.001) 0.071(0.000) 0.427(0.002) 0.189(0.002) 0.143(0.002) 0.118(0.001)

MIT

N&K 32270.3(80.7) 0.927(0.000) 0.930(0.000) 0.566(0.001) 1.000(0.000) 0.889(0.001) 0.862(0.001) 0.833(0.001)
AANE 143678.5(158.9) 0.677(0.000) 0.673(0.000) 0.211(0.000) 1.000(0.000) 0.577(0.001) 0.468(0.001) 0.367(0.001)
TADW 52131.6(115.9) 0.883(0.000) 0.876(0.000) 0.508(0.000) 1.000(0.000) 0.831(0.002) 0.782(0.001) 0.731(0.001)

ATTRPURE 175814.3(153.0) 0.605(0.000) 0.614(0.000) 0.194(0.000) 0.994(0.001) 0.553(0.002) 0.440(0.001) 0.334(0.001)
DEEPWALK 15413.2(79.0) 0.965(0.000) 0.964(0.000) 0.795(0.001) 1.000(0.000) 0.977(0.001) 0.962(0.001) 0.939(0.001)
SAGEGCN 78197.7(1836.1) 0.824(0.004) 0.839(0.004) 0.495(0.009) 1.000(0.000) 0.818(0.005) 0.764(0.006) 0.712(0.007)

HEATα=0.00 12818.5(87.0) 0.971(0.000) 0.968(0.000) 0.791(0.001) 1.000(0.000) 0.967(0.001) 0.959(0.001) 0.946(0.001)
HEATα=0.20 14822.5(83.5) 0.967(0.000) 0.965(0.000) 0.801(0.001) 1.000(0.000) 0.983(0.001) 0.970(0.001) 0.949(0.001)
HEATα=1.00 153389.2(640.4) 0.655(0.001) 0.682(0.001) 0.271(0.001) 1.000(0.000) 0.674(0.002) 0.586(0.002) 0.503(0.002)
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TABLE B.6: T-test statistics achieved by HEATα=0.2 on the network reconstruction task, for
embedding dimension 50. For each network, we select the benchmark algorithm according

to AP. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

HEATα=0.20 17.4(1.9) 0.999(0.000) 0.999(0.000) 0.973(0.001) 0.992(0.001) 0.971(0.002) 0.961(0.002) 0.949(0.002)
DEEPWALK 67.1(3.9) 0.996(0.000) 0.995(0.001) 0.876(0.002) 0.896(0.004) 0.885(0.003) 0.879(0.003) 0.874(0.002)

t-statistic 6.33E+01 6.33E+01 4.06E+01 1.99E+02 1.37E+02 1.36E+02 1.26E+02 1.21E+02
p-value 1.53E-43 1.53E-43 6.64E-34 6.62E-66 5.24E-52 2.40E-67 2.04E-68 1.53E-71
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

HEATα=0.20 4.0(1.1) 1.000(0.000) 1.000(0.000) 0.973(0.001) 0.956(0.002) 0.967(0.003) 0.977(0.002) 0.989(0.002)
DEEPWALK 9.3(1.7) 0.999(0.000) 0.999(0.000) 0.859(0.002) 0.792(0.004) 0.884(0.003) 0.920(0.004) 0.960(0.003)

t-statistic 1.42E+01 1.42E+01 1.19E+01 2.63E+02 1.97E+02 1.05E+02 7.27E+01 4.00E+01
p-value 3.53E-19 3.53E-19 4.65E-15 5.68E-69 1.18E-66 9.26E-68 3.02E-51 1.09E-40
p < 0.05 1 1 1 1 1 1 1 1

Pubmed

HEATα=0.20 34.4(3.3) 1.000(0.000) 1.000(0.000) 0.990(0.000) 0.994(0.001) 0.985(0.001) 0.984(0.001) 0.982(0.001)
DEEPWALK 256.0(7.9) 0.997(0.000) 0.997(0.000) 0.913(0.001) 0.881(0.002) 0.944(0.001) 0.951(0.001) 0.952(0.001)

t-statistic 1.41E+02 1.41E+02 6.00E+01 3.91E+02 2.64E+02 1.70E+02 1.51E+02 1.25E+02
p-value 1.90E-54 1.90E-54 2.01E-35 3.93E-66 1.16E-58 3.24E-75 2.55E-77 2.20E-68
p < 0.05 1 1 1 1 1 1 1 1

PPI

HEATα=0.20 2089.2(30.2) 0.981(0.000) 0.980(0.000) 0.789(0.002) 0.988(0.002) 0.952(0.002) 0.921(0.002) 0.876(0.002)
DEEPWALK 3182.6(32.5) 0.971(0.000) 0.968(0.000) 0.787(0.001) 0.976(0.002) 0.941(0.002) 0.909(0.002) 0.859(0.002)

t-statistic 1.35E+02 1.35E+02 1.20E+02 6.29E+00 2.24E+01 1.91E+01 2.30E+01 3.41E+01
p-value 3.63E-74 3.63E-74 9.33E-71 2.54E-08 4.15E-28 2.32E-26 6.19E-31 2.58E-40
p < 0.05 1 1 1 1 1 1 1 1

MIT

HEATα=0.20 14822.5(83.5) 0.967(0.000) 0.965(0.000) 0.801(0.001) 1.000(0.000) 0.983(0.001) 0.970(0.001) 0.949(0.001)
DEEPWALK 15413.2(79.0) 0.965(0.000) 0.964(0.000) 0.795(0.001) 1.000(0.000) 0.977(0.001) 0.962(0.001) 0.939(0.001)

t-statistic 2.81E+01 2.81E+01 2.13E+01 3.06E+01 N/A 2.76E+01 2.44E+01 3.98E+01
p-value 9.86E-36 9.86E-36 2.26E-29 1.88E-37 N/A 6.82E-30 2.79E-31 9.63E-43
p < 0.05 1 1 1 1 0 1 1 1
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TABLE B.7: Summary of link prediction for embedding dimension 5. We present AUROC,
AP, and mean average precision (mAP) to 3 decimal places and rank to 1 decimal place.
Rank is the average position that a true edge appears in the list of false edges ranked by
distance. For mAP, we rank distances with respect to each node in the network and compute
a separate precision score for each node, then report the mean. All scores are averaged over

30 random starting seeds. Standard deviation is given in brackets.

Cora_ML PPI

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 106.7(9.2) 0.914(0.008) 0.928(0.007) 0.226(0.010) 762.6(21.6) 0.907(0.003) 0.914(0.002) 0.168(0.005)
AANE 316.5(13.0) 0.742(0.011) 0.743(0.012) 0.062(0.005) 3841.6(38.3) 0.533(0.005) 0.577(0.005) 0.069(0.004)
TADW 118.9(9.2) 0.904(0.007) 0.890(0.010) 0.114(0.006) 2500.8(47.6) 0.696(0.006) 0.687(0.006) 0.072(0.004)

ATTRPURE 350.0(11.4) 0.715(0.009) 0.727(0.011) 0.060(0.005) 3864.5(38.9) 0.509(0.005) 0.511(0.004) 0.018(0.002)
DEEPWALK 180.0(11.0) 0.854(0.009) 0.888(0.008) 0.170(0.008) 1403.9(25.6) 0.829(0.003) 0.820(0.003) 0.110(0.004)
SAGEGCN 202.9(29.3) 0.835(0.024) 0.821(0.025) 0.061(0.008) 3692.3(87.1) 0.551(0.011) 0.564(0.009) 0.065(0.004)

HEATα=0.00 23.1(3.6) 0.982(0.003) 0.985(0.002) 0.486(0.009) 610.0(15.4) 0.926(0.002) 0.921(0.002) 0.171(0.006)
HEATα=0.20 18.2(2.1) 0.986(0.002) 0.985(0.002) 0.421(0.010) 686.1(16.1) 0.917(0.002) 0.911(0.002) 0.158(0.006)
HEATα=1.00 309.7(13.5) 0.748(0.011) 0.769(0.012) 0.056(0.005) 3745.2(37.5) 0.545(0.005) 0.553(0.005) 0.064(0.004)

Citeseer MIT

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 158.5(8.5) 0.803(0.011) 0.837(0.008) 0.187(0.011) 2806.7(43.5) 0.916(0.001) 0.919(0.001) 0.247(0.004)
AANE 288.4(13.2) 0.641(0.016) 0.637(0.017) 0.071(0.007) 12319.9(77.6) 0.631(0.002) 0.625(0.003) 0.094(0.003)
TADW 86.8(6.3) 0.893(0.008) 0.874(0.010) 0.105(0.009) 7206.2(86.8) 0.784(0.003) 0.771(0.003) 0.140(0.003)

ATTRPURE 283.3(11.4) 0.648(0.014) 0.644(0.015) 0.070(0.006) 13046.4(65.1) 0.609(0.002) 0.611(0.002) 0.095(0.003)
DEEPWALK 236.7(10.2) 0.706(0.013) 0.792(0.009) 0.189(0.010) 4017.5(51.3) 0.880(0.002) 0.865(0.002) 0.178(0.003)
SAGEGCN 170.6(17.5) 0.788(0.022) 0.793(0.023) 0.069(0.010) 7882.2(415.1) 0.764(0.012) 0.755(0.009) 0.129(0.004)

HEATα=0.00 18.5(2.7) 0.978(0.003) 0.974(0.006) 0.766(0.015) 2755.1(33.4) 0.917(0.001) 0.909(0.001) 0.216(0.003)
HEATα=0.20 7.5(1.6) 0.992(0.002) 0.993(0.002) 0.712(0.015) 3078.7(40.0) 0.908(0.001) 0.901(0.001) 0.205(0.003)
HEATα=1.00 124.7(6.7) 0.846(0.008) 0.851(0.011) 0.094(0.008) 12903.6(119.7) 0.613(0.004) 0.624(0.003) 0.098(0.003)

Pubmed Mean Ranks

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 916.4(34.4) 0.862(0.005) 0.885(0.004) 0.180(0.005) 3.4 3.4 2.6 2.6
AANE 1376.7(27.8) 0.793(0.004) 0.775(0.004) 0.061(0.002) 7.6 7.6 7.6 7.2
TADW 751.2(41.2) 0.887(0.006) 0.870(0.007) 0.096(0.005) 3.8 3.8 4 5

ATTRPURE 1977.3(32.0) 0.703(0.005) 0.685(0.005) 0.063(0.002) 8.8 8.8 8.8 8
DEEPWALK 1725.2(32.9) 0.741(0.005) 0.828(0.004) 0.140(0.004) 5.6 5.6 5.4 3.8
SAGEGCN 799.9(56.1) 0.880(0.008) 0.860(0.007) 0.066(0.004) 5.4 5.4 5.8 7

HEATα=0.00 1546.1(30.7) 0.768(0.005) 0.854(0.003) 0.205(0.004) 2.6 2.6 2.2 1.4
HEATα=0.20 309.4(11.9) 0.954(0.002) 0.953(0.002) 0.209(0.004) 1.6 1.6 2 2.2
HEATα=1.00 1070.1(38.2) 0.839(0.006) 0.835(0.006) 0.059(0.003) 6.2 6.2 6.6 7.8
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TABLE B.8: T-test statistics achieved by HEATα=0.2 on the link prediction task, for embed-
ding dimension 5. For each network, we select the benchmark algorithm according to AP.

Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP

HEATα=0.20 18.2(2.1) 0.986(0.002) 0.985(0.002) 0.421(0.010)
N&K 106.7(9.2) 0.914(0.008) 0.928(0.007) 0.226(0.010)

t-statistic 5.15E+01 5.15E+01 4.60E+01 7.46E+01
p-value 1.44E-32 1.44E-32 1.29E-32 2.24E-59
p < 0.05 1 1 1 1

Citeseer

HEATα=0.20 7.5(1.6) 0.992(0.002) 0.993(0.002) 0.712(0.015)
TADW 86.8(6.3) 0.893(0.008) 0.874(0.010) 0.105(0.009)

t-statistic 6.70E+01 6.70E+01 6.65E+01 1.95E+02
p-value 9.46E-37 9.41E-37 6.87E-36 4.18E-71
p < 0.05 1 1 1 1

Pubmed

HEATα=0.20 309.4(11.9) 0.954(0.002) 0.953(0.002) 0.209(0.004)
N&K 916.4(34.4) 0.862(0.005) 0.885(0.004) 0.180(0.005)

t-statistic 9.14E+01 9.14E+01 8.03E+01 2.58E+01
p-value 2.17E-44 2.17E-44 8.74E-48 9.54E-33
p < 0.05 1 1 1 1

PPI

HEATα=0.20 686.1(16.1) 0.917(0.002) 0.911(0.002) 0.158(0.006)
N&K 762.6(21.6) 0.907(0.003) 0.914(0.002) 0.168(0.005)

t-statistic 1.56E+01 1.56E+01 -3.86E+00 -7.27E+00
p-value 7.09E-22 7.09E-22 1.00E+00 1.00E+00
p < 0.05 1 1 0 0

MIT

HEATα=0.20 3078.7(40.0) 0.908(0.001) 0.901(0.001) 0.205(0.003)
N&K 2806.7(43.5) 0.916(0.001) 0.919(0.001) 0.247(0.004)

t-statistic -2.52E+01 -2.52E+01 -5.65E+01 -4.61E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0
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TABLE B.9: Summary of link prediction for embedding dimension 25. We present AUROC,
AP, and mean average precision (mAP) to 3 decimal places and rank to 1 decimal place.
Rank is the average position that a true edge appears in the list of false edges ranked by
distance. For mAP, we rank distances with respect to each node in the network and compute
a separate precision score for each node, then report the mean. All scores are averaged over

30 random starting seeds. Standard deviation is given in brackets.

Cora_ML PPI

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 93.0(8.0) 0.925(0.007) 0.937(0.005) 0.258(0.010) 713.0(17.6) 0.913(0.002) 0.919(0.002) 0.188(0.004)
AANE 303.3(13.6) 0.753(0.011) 0.774(0.011) 0.145(0.006) 3705.9(42.2) 0.549(0.005) 0.592(0.005) 0.072(0.004)
TADW 59.5(5.1) 0.952(0.004) 0.949(0.005) 0.238(0.010) 2222.8(53.5) 0.730(0.007) 0.730(0.006) 0.091(0.004)

ATTRPURE 345.8(13.9) 0.718(0.011) 0.744(0.011) 0.135(0.006) 3854.9(42.0) 0.511(0.005) 0.511(0.004) 0.018(0.002)
DEEPWALK 181.9(11.2) 0.852(0.009) 0.896(0.006) 0.254(0.009) 890.1(19.2) 0.892(0.002) 0.901(0.002) 0.183(0.005)
SAGEGCN 131.5(10.0) 0.893(0.008) 0.907(0.007) 0.203(0.011) 3511.9(76.8) 0.573(0.009) 0.592(0.010) 0.073(0.004)

HEATα=0.00 67.3(59.6) 0.946(0.049) 0.962(0.032) 0.504(0.212) 262.2(8.3) 0.968(0.001) 0.968(0.001) 0.375(0.007)
HEATα=0.20 20.4(17.7) 0.984(0.014) 0.986(0.013) 0.579(0.185) 330.5(91.1) 0.960(0.011) 0.961(0.009) 0.357(0.032)
HEATα=1.00 250.3(13.4) 0.796(0.011) 0.825(0.011) 0.140(0.007) 3540.3(38.8) 0.569(0.005) 0.577(0.005) 0.064(0.004)

Citeseer MIT

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 128.9(6.7) 0.840(0.008) 0.869(0.007) 0.213(0.012) 2709.5(34.5) 0.919(0.001) 0.922(0.001) 0.258(0.003)
AANE 280.4(10.7) 0.651(0.013) 0.647(0.015) 0.100(0.009) 11569.6(68.5) 0.653(0.002) 0.648(0.002) 0.101(0.003)
TADW 38.4(3.8) 0.953(0.005) 0.947(0.007) 0.209(0.013) 5489.1(67.1) 0.836(0.002) 0.840(0.002) 0.216(0.003)

ATTRPURE 282.6(10.3) 0.648(0.013) 0.645(0.014) 0.098(0.008) 12979.6(63.8) 0.611(0.002) 0.616(0.002) 0.099(0.003)
DEEPWALK 275.9(10.5) 0.657(0.013) 0.767(0.009) 0.230(0.011) 2056.4(31.2) 0.938(0.001) 0.939(0.001) 0.307(0.003)
SAGEGCN 111.8(12.0) 0.862(0.015) 0.888(0.013) 0.250(0.018) 6677.5(172.8) 0.800(0.005) 0.812(0.005) 0.192(0.004)

HEATα=0.00 119.5(70.1) 0.852(0.088) 0.884(0.066) 0.394(0.269) 1827.0(31.5) 0.945(0.001) 0.944(0.001) 0.321(0.003)
HEATα=0.20 26.3(14.0) 0.968(0.017) 0.973(0.015) 0.513(0.228) 2060.6(32.0) 0.938(0.001) 0.940(0.001) 0.316(0.003)
HEATα=1.00 124.9(7.0) 0.845(0.009) 0.865(0.009) 0.179(0.010) 12026.2(94.7) 0.640(0.003) 0.666(0.003) 0.131(0.004)

Pubmed Mean Ranks

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 916.4(34.4) 0.862(0.005) 0.885(0.004) 0.180(0.005) 4.2 4.2 4 3.8
AANE 1376.7(27.8) 0.793(0.004) 0.775(0.004) 0.061(0.002) 7.4 7.4 7.8 7.4
TADW 751.2(41.2) 0.887(0.006) 0.870(0.007) 0.096(0.005) 3.2 3.2 3.4 5.2

ATTRPURE 1977.3(32.0) 0.703(0.005) 0.685(0.005) 0.063(0.002) 9 9 9 8.8
DEEPWALK 1725.2(32.9) 0.741(0.005) 0.828(0.004) 0.140(0.004) 5.4 5.4 5.4 3.4
SAGEGCN 799.9(56.1) 0.880(0.008) 0.860(0.007) 0.066(0.004) 4.6 4.6 4.6 5.4

HEATα=0.00 1546.1(30.7) 0.768(0.005) 0.854(0.003) 0.205(0.004) 3.2 3.2 2.8 1.8
HEATα=0.20 309.4(11.9) 0.954(0.002) 0.953(0.002) 0.209(0.004) 1.6 1.6 1.4 1.4
HEATα=1.00 1070.1(38.2) 0.839(0.006) 0.835(0.006) 0.059(0.003) 6.4 6.4 6.6 7.8
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TABLE B.10: T-test statistics achieved by HEATα=0.2 on the link prediction task, for embed-
ding dimension 25. For each network, we select the benchmark algorithm according to AP.

Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP

HEATα=0.20 20.4(17.7) 0.984(0.014) 0.986(0.013) 0.579(0.185)
TADW 59.5(5.1) 0.952(0.004) 0.949(0.005) 0.238(0.010)

t-statistic 1.16E+01 1.16E+01 1.39E+01 1.01E+01
p-value 1.26E-13 1.26E-13 1.15E-16 2.51E-11
p < 0.05 1 1 1 1

Citeseer

HEATα=0.20 26.3(14.0) 0.968(0.017) 0.973(0.015) 0.513(0.228)
TADW 38.4(3.8) 0.953(0.005) 0.947(0.007) 0.209(0.013)

t-statistic 4.57E+00 4.57E+00 8.79E+00 7.29E+00
p-value 3.24E-05 3.20E-05 3.27E-11 2.40E-08
p < 0.05 1 1 1 1

Pubmed

HEATα=0.20 259.3(9.0) 0.961(0.001) 0.963(0.001) 0.313(0.005)
TADW 407.9(13.5) 0.939(0.002) 0.938(0.003) 0.201(0.005)

t-statistic 5.02E+01 5.02E+01 4.80E+01 8.49E+01
p-value 4.30E-45 4.30E-45 2.80E-41 7.52E-63
p < 0.05 1 1 1 1

PPI

HEATα=0.20 330.5(91.1) 0.960(0.011) 0.961(0.009) 0.357(0.032)
N&K 713.0(17.6) 0.913(0.002) 0.919(0.002) 0.188(0.004)

t-statistic 2.26E+01 2.26E+01 2.37E+01 2.87E+01
p-value 3.58E-21 3.58E-21 5.78E-22 1.21E-23
p < 0.05 1 1 1 1

MIT

HEATα=0.20 2060.6(32.0) 0.938(0.001) 0.940(0.001) 0.316(0.003)
DEEPWALK 2056.4(31.2) 0.938(0.001) 0.939(0.001) 0.307(0.003)

t-statistic -5.16E-01 -5.16E-01 3.15E+00 1.09E+01
p-value 6.96E-01 6.96E-01 1.30E-03 9.68E-16
p < 0.05 0 0 1 1
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TABLE B.11: Summary of link prediction for embedding dimension 50. We present AUROC,
AP, and mean average precision (mAP) to 3 decimal places and rank to 1 decimal place. Rank
is the average position that a true edge appears in the list of false edges ranked by distance.
For mAP, we rank distances with respect to each node in the network and compute a separate
precision score for each node, then report the mean. All scores are averaged over 30 random

starting seeds. Standard deviation is given in brackets.

Cora_ML PPI

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 93.3(7.0) 0.925(0.006) 0.937(0.005) 0.262(0.009) 715.0(17.4) 0.913(0.002) 0.919(0.002) 0.188(0.004)
AANE 305.8(12.2) 0.751(0.010) 0.770(0.009) 0.161(0.007) 3509.4(44.4) 0.573(0.005) 0.609(0.005) 0.074(0.004)
TADW 63.9(4.4) 0.949(0.004) 0.951(0.004) 0.280(0.008) 2313.1(35.3) 0.719(0.004) 0.718(0.005) 0.094(0.004)

ATTRPURE 356.7(12.6) 0.709(0.010) 0.735(0.010) 0.150(0.007) 3855.9(42.5) 0.507(0.005) 0.507(0.004) 0.017(0.002)
DEEPWALK 181.8(11.4) 0.852(0.009) 0.897(0.007) 0.262(0.009) 864.5(17.5) 0.895(0.002) 0.906(0.002) 0.195(0.005)
SAGEGCN 119.8(8.9) 0.903(0.007) 0.919(0.007) 0.235(0.009) 3466.7(85.9) 0.578(0.010) 0.599(0.011) 0.075(0.004)

HEATα=0.00 20.2(3.3) 0.984(0.003) 0.987(0.002) 0.680(0.009) 750.1(17.8) 0.909(0.002) 0.915(0.002) 0.191(0.004)
HEATα=0.20 8.1(1.4) 0.994(0.001) 0.995(0.001) 0.732(0.009) 866.7(23.4) 0.895(0.003) 0.904(0.003) 0.182(0.004)
HEATα=1.00 241.3(13.2) 0.804(0.011) 0.831(0.011) 0.163(0.007) 3496.2(38.8) 0.575(0.005) 0.583(0.005) 0.064(0.004)

Citeseer MIT

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 122.6(7.6) 0.848(0.009) 0.875(0.007) 0.217(0.012) 2706.9(34.3) 0.919(0.001) 0.922(0.001) 0.258(0.003)
AANE 265.6(10.1) 0.670(0.013) 0.667(0.012) 0.117(0.009) 11055.9(98.2) 0.669(0.003) 0.666(0.003) 0.105(0.003)
TADW 34.0(3.2) 0.959(0.004) 0.956(0.006) 0.255(0.013) 4748.4(52.0) 0.858(0.002) 0.858(0.002) 0.227(0.003)

ATTRPURE 270.2(10.0) 0.664(0.013) 0.665(0.013) 0.115(0.009) 13173.5(57.3) 0.605(0.002) 0.614(0.002) 0.100(0.003)
DEEPWALK 286.6(9.5) 0.643(0.012) 0.764(0.009) 0.240(0.010) 1900.2(28.8) 0.943(0.001) 0.946(0.001) 0.333(0.003)
SAGEGCN 91.6(9.1) 0.887(0.011) 0.911(0.009) 0.307(0.020) 6480.1(128.7) 0.806(0.004) 0.822(0.004) 0.209(0.005)

HEATα=0.00 166.7(11.5) 0.793(0.014) 0.840(0.010) 0.219(0.011) 1701.8(31.7) 0.949(0.001) 0.947(0.001) 0.325(0.003)
HEATα=0.20 34.1(3.6) 0.959(0.005) 0.965(0.004) 0.370(0.017) 1891.3(29.1) 0.943(0.001) 0.945(0.001) 0.323(0.003)
HEATα=1.00 128.3(6.8) 0.841(0.008) 0.862(0.009) 0.183(0.011) 11940.5(87.3) 0.642(0.003) 0.672(0.002) 0.138(0.003)

Pubmed Mean Ranks

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

N&K 739.5(18.8) 0.889(0.003) 0.906(0.003) 0.227(0.004) 3.4 3.4 3.4 4.6
AANE 1466.6(20.0) 0.780(0.003) 0.803(0.003) 0.132(0.003) 7.2 7.2 7.6 7.6
TADW 434.1(13.8) 0.935(0.002) 0.937(0.002) 0.235(0.004) 3.2 3.2 3.6 3.8

ATTRPURE 2082.5(27.8) 0.687(0.004) 0.709(0.005) 0.128(0.004) 8.8 8.8 9 8.8
DEEPWALK 1763.3(29.2) 0.735(0.004) 0.825(0.003) 0.257(0.004) 5.8 5.8 5 2.6
SAGEGCN 448.4(30.1) 0.933(0.005) 0.939(0.003) 0.233(0.008) 4.6 4.6 4.6 4.8

HEATα=0.00 1468.9(29.9) 0.779(0.004) 0.858(0.003) 0.228(0.004) 3.6 3.6 3.4 3.2
HEATα=0.20 251.4(8.5) 0.962(0.001) 0.964(0.001) 0.313(0.004) 2 2 2 2
HEATα=1.00 898.9(22.5) 0.865(0.003) 0.866(0.003) 0.093(0.003) 6.4 6.4 6.4 7.6
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TABLE B.12: T-test statistics achieved by HEATα=0.2 on the link prediction task, for embed-
ding dimension 50. For each network, we select the benchmark algorithm according to AP.

Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

Mean Rank AUROC AP mAP

HEATα=0.20 8.1(1.4) 0.994(0.001) 0.995(0.001) 0.732(0.009)
TADW 63.9(4.4) 0.949(0.004) 0.951(0.004) 0.280(0.008)

t-statistic 6.61E+01 6.61E+01 5.89E+01 2.09E+02
p-value 9.31E-39 9.31E-39 1.62E-35 2.40E-85
p < 0.05 1 1 1 1

Citeseer

HEATα=0.20 34.1(3.6) 0.959(0.005) 0.965(0.004) 0.370(0.017)
TADW 34.0(3.2) 0.959(0.004) 0.956(0.006) 0.255(0.013)

t-statistic -1.04E-01 -9.01E-02 6.35E+00 2.92E+01
p-value 5.41E-01 5.36E-01 2.40E-08 6.52E-35
p < 0.05 0 0 1 1

Pubmed

HEATα=0.20 251.4(8.5) 0.962(0.001) 0.964(0.001) 0.313(0.004)
SAGEGCN 448.4(30.1) 0.933(0.005) 0.939(0.003) 0.233(0.008)

t-statistic 3.45E+01 3.45E+01 3.62E+01 4.75E+01
p-value 4.19E-28 4.19E-28 6.96E-32 1.25E-38
p < 0.05 1 1 1 1

PPI

HEATα=0.20 866.7(23.4) 0.895(0.003) 0.904(0.003) 0.182(0.004)
N&K 715.0(17.4) 0.913(0.002) 0.919(0.002) 0.188(0.004)

t-statistic -2.84E+01 -2.84E+01 -2.50E+01 -5.10E+00
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

MIT

HEATα=0.20 1891.3(29.1) 0.943(0.001) 0.945(0.001) 0.323(0.003)
DEEPWALK 1900.2(28.8) 0.943(0.001) 0.946(0.001) 0.333(0.003)

t-statistic 1.19E+00 1.19E+00 -5.84E+00 -1.17E+01
p-value 1.19E-01 1.19E-01 1.00E+00 1.00E+00
p < 0.05 0 0 0 0
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TABLE B.13: Summary of node classification results for embedding dimension 10. Bold
indicates best performance. Mean Ranks is the average position of an algorithm in a ranked

list of performance.

Cora_ML PPI

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.761(0.012) 0.827(0.010) 0.704(0.015) 0.953(0.003) 0.387(0.002) 0.695(0.002) 0.268(0.002) 0.704(0.000)
AANE 0.706(0.001) 0.814(0.001) 0.624(0.001) 0.944(0.000) 0.395(0.001) 0.688(0.002) 0.277(0.001) 0.705(0.000)
TADW 0.837(0.001) 0.869(0.001) 0.808(0.001) 0.983(0.000) 0.393(0.001) 0.688(0.001) 0.275(0.001) 0.705(0.000)

ATTRPURE 0.675(0.002) 0.782(0.001) 0.594(0.002) 0.937(0.000) 0.398(0.001) 0.688(0.001) 0.281(0.001) 0.705(0.000)
DEEPWALK 0.855(0.003) 0.886(0.003) 0.827(0.003) 0.977(0.001) 0.387(0.001) 0.694(0.001) 0.269(0.001) 0.704(0.000)
SAGEGCN 0.679(0.033) 0.758(0.027) 0.616(0.041) 0.933(0.008) 0.388(0.002) 0.694(0.002) 0.269(0.002) 0.704(0.000)

HEATα=0.00 0.804(0.008) 0.858(0.006) 0.756(0.011) 0.965(0.002) 0.388(0.002) 0.694(0.002) 0.269(0.002) 0.704(0.000)
HEATα=0.20 0.849(0.005) 0.884(0.005) 0.817(0.006) 0.980(0.001) 0.388(0.002) 0.694(0.003) 0.269(0.003) 0.704(0.000)
HEATα=1.00 0.655(0.012) 0.757(0.009) 0.578(0.015) 0.927(0.004) 0.390(0.001) 0.690(0.002) 0.272(0.002) 0.702(0.000)

Citeseer MIT

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.516(0.029) 0.856(0.022) 0.370(0.029) 0.861(0.005) 0.508(0.007) 0.858(0.007) 0.361(0.007) 0.937(0.001)
AANE 0.609(0.001) 0.829(0.001) 0.482(0.001) 0.897(0.000) 0.036(0.003) 0.414(0.012) 0.019(0.002) 0.866(0.000)
TADW 0.878(0.003) 0.899(0.003) 0.857(0.003) 0.980(0.001) 0.544(0.001) 0.739(0.002) 0.430(0.001) 0.949(0.000)

ATTRPURE 0.597(0.002) 0.837(0.003) 0.465(0.003) 0.892(0.001) 0.056(0.004) 0.409(0.012) 0.030(0.002) 0.869(0.000)
DEEPWALK 0.927(0.003) 0.939(0.003) 0.916(0.004) 0.987(0.001) 0.661(0.008) 0.841(0.004) 0.544(0.011) 0.965(0.001)
SAGEGCN 0.466(0.069) 0.727(0.031) 0.347(0.069) 0.843(0.023) 0.480(0.018) 0.832(0.013) 0.337(0.017) 0.929(0.003)

HEATα=0.00 0.594(0.019) 0.857(0.012) 0.455(0.023) 0.879(0.003) 0.634(0.007) 0.849(0.006) 0.507(0.010) 0.959(0.001)
HEATα=0.20 0.887(0.003) 0.914(0.004) 0.861(0.004) 0.981(0.001) 0.637(0.007) 0.819(0.008) 0.522(0.011) 0.960(0.001)
HEATα=1.00 0.743(0.003) 0.826(0.004) 0.675(0.004) 0.938(0.001) 0.029(0.007) 0.545(0.050) 0.015(0.004) 0.855(0.002)

Pubmed Mean Ranks

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.763(0.006) 0.786(0.006) 0.742(0.007) 0.909(0.003) 6.8 4 7.2 7
AANE 0.800(0.000) 0.817(0.000) 0.784(0.000) 0.931(0.000) 5.2 7 5 5
TADW 0.833(0.001) 0.846(0.001) 0.822(0.001) 0.951(0.000) 2.8 4.2 2.8 2.4

ATTRPURE 0.774(0.000) 0.791(0.000) 0.757(0.000) 0.916(0.000) 5.8 7.4 5.8 5.4
DEEPWALK 0.823(0.002) 0.834(0.001) 0.813(0.002) 0.937(0.001) 3 2.4 2.8 2.4
SAGEGCN 0.778(0.013) 0.797(0.011) 0.761(0.016) 0.914(0.007) 7 6.4 7 7.4

HEATα=0.00 0.801(0.002) 0.822(0.002) 0.782(0.003) 0.929(0.001) 4.8 3.4 5 4.8
HEATα=0.20 0.833(0.002) 0.846(0.002) 0.821(0.002) 0.949(0.000) 2.6 2.4 2.6 2.8
HEATα=1.00 0.761(0.003) 0.780(0.002) 0.744(0.003) 0.912(0.002) 7 7.8 6.8 7.8
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TABLE B.14: T-test statistics achieved by HEATα=0.2 on the node classification task, for em-
bedding dimension 10. For each network, we select the benchmark algorithm according to

F1. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

F1 Precision Recall AUROC

HEATα=0.20 0.849(0.005) 0.884(0.005) 0.817(0.006) 0.980(0.001)
DEEPWALK 0.855(0.003) 0.886(0.003) 0.827(0.003) 0.977(0.001)

t-statistic -5.80E+00 -1.99E+00 -7.24E+00 1.84E+01
p-value 1.00E+00 9.74E-01 1.00E+00 2.23E-24
p < 0.05 0 0 0 1

Citeseer

F1 Precision Recall AUROC

HEATα=0.20 0.887(0.003) 0.914(0.004) 0.861(0.004) 0.981(0.001)
DEEPWALK 0.927(0.003) 0.939(0.003) 0.916(0.004) 0.987(0.001)

t-statistic -4.98E+01 -2.89E+01 -5.24E+01 -3.01E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

Pubmed

F1 Precision Recall AUROC

HEATα=0.20 0.833(0.002) 0.846(0.002) 0.821(0.002) 0.949(0.000)
TADW 0.833(0.001) 0.846(0.001) 0.822(0.001) 0.951(0.000)

t-statistic -9.39E-01 3.46E-01 -1.98E+00 -1.85E+01
p-value 8.23E-01 3.66E-01 9.72E-01 1.00E+00
p < 0.05 0 0 0 0

PPI

F1 Precision Recall AUROC

HEATα=0.20 0.388(0.002) 0.694(0.003) 0.269(0.003) 0.704(0.000)
ATTRPURE 0.398(0.001) 0.688(0.001) 0.281(0.001) 0.705(0.000)

t-statistic -2.23E+01 1.14E+01 -2.12E+01 -3.66E+01
p-value 1.00E+00 3.60E-14 1.00E+00 1.00E+00
p < 0.05 0 1 0 0

MIT

F1 Precision Recall AUROC

HEATα=0.20 0.637(0.007) 0.819(0.008) 0.522(0.011) 0.960(0.001)
DEEPWALK 0.661(0.008) 0.841(0.004) 0.544(0.011) 0.965(0.001)

t-statistic -1.20E+01 -1.34E+01 -8.13E+00 -2.79E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0
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TABLE B.15: Summary of node classification results for embedding dimension 25. Bold
indicates best performance. Mean Ranks is the average position of an algorithm in a ranked

list of performance.

Cora_ML PPI

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.776(0.009) 0.828(0.009) 0.729(0.011) 0.958(0.002) 0.385(0.001) 0.698(0.001) 0.266(0.001) 0.704(0.000)
AANE 0.742(0.001) 0.813(0.001) 0.683(0.001) 0.953(0.000) 0.398(0.002) 0.684(0.002) 0.281(0.002) 0.704(0.000)
TADW 0.861(0.001) 0.890(0.001) 0.834(0.001) 0.986(0.000) 0.394(0.001) 0.689(0.001) 0.276(0.001) 0.705(0.000)

ATTRPURE 0.739(0.002) 0.812(0.002) 0.678(0.002) 0.951(0.000) 0.400(0.001) 0.684(0.001) 0.283(0.001) 0.705(0.000)
DEEPWALK 0.859(0.003) 0.888(0.004) 0.833(0.003) 0.979(0.001) 0.387(0.001) 0.694(0.002) 0.268(0.002) 0.704(0.000)
SAGEGCN 0.760(0.017) 0.821(0.012) 0.708(0.022) 0.954(0.004) 0.389(0.002) 0.693(0.002) 0.270(0.002) 0.704(0.000)

HEATα=0.00 0.809(0.006) 0.859(0.006) 0.764(0.008) 0.967(0.001) 0.389(0.002) 0.692(0.002) 0.271(0.002) 0.704(0.000)
HEATα=0.20 0.852(0.003) 0.884(0.003) 0.822(0.004) 0.982(0.001) 0.389(0.002) 0.693(0.002) 0.270(0.002) 0.704(0.000)
HEATα=1.00 0.697(0.005) 0.783(0.005) 0.628(0.006) 0.940(0.002) 0.394(0.002) 0.687(0.002) 0.276(0.002) 0.704(0.000)

Citeseer MIT

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.606(0.023) 0.867(0.011) 0.467(0.027) 0.880(0.006) 0.495(0.005) 0.862(0.007) 0.347(0.005) 0.937(0.001)
AANE 0.676(0.001) 0.857(0.001) 0.558(0.001) 0.927(0.000) 0.039(0.004) 0.448(0.018) 0.021(0.002) 0.872(0.000)
TADW 0.881(0.001) 0.912(0.001) 0.853(0.001) 0.982(0.000) 0.512(0.003) 0.715(0.002) 0.399(0.003) 0.947(0.000)

ATTRPURE 0.681(0.004) 0.861(0.005) 0.564(0.005) 0.928(0.001) 0.065(0.003) 0.430(0.007) 0.035(0.002) 0.875(0.000)
DEEPWALK 0.917(0.005) 0.933(0.004) 0.901(0.006) 0.987(0.001) 0.769(0.005) 0.867(0.004) 0.692(0.006) 0.974(0.001)
SAGEGCN 0.646(0.046) 0.800(0.018) 0.544(0.056) 0.904(0.016) 0.515(0.014) 0.823(0.010) 0.375(0.015) 0.935(0.002)

HEATα=0.00 0.641(0.012) 0.860(0.012) 0.512(0.016) 0.890(0.005) 0.749(0.006) 0.876(0.005) 0.654(0.009) 0.970(0.001)
HEATα=0.20 0.889(0.003) 0.914(0.003) 0.865(0.004) 0.984(0.001) 0.733(0.008) 0.844(0.006) 0.649(0.010) 0.970(0.001)
HEATα=1.00 0.755(0.003) 0.834(0.003) 0.690(0.004) 0.944(0.001) 0.058(0.009) 0.509(0.024) 0.031(0.005) 0.866(0.001)

Pubmed Mean Ranks

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.770(0.005) 0.792(0.006) 0.749(0.006) 0.913(0.003) 7.4 4.2 7.6 7.4
AANE 0.816(0.000) 0.830(0.000) 0.802(0.000) 0.939(0.000) 5.6 7 5.6 6
TADW 0.845(0.001) 0.856(0.000) 0.835(0.001) 0.956(0.000) 2.8 3.4 2.6 2.2

ATTRPURE 0.797(0.001) 0.814(0.001) 0.780(0.001) 0.927(0.000) 5.6 7.4 5.4 5.4
DEEPWALK 0.831(0.001) 0.842(0.001) 0.821(0.001) 0.941(0.001) 3 2 3 2.2
SAGEGCN 0.798(0.011) 0.817(0.010) 0.781(0.013) 0.928(0.006) 6 5.8 6 6.2

HEATα=0.00 0.799(0.002) 0.819(0.002) 0.780(0.003) 0.926(0.001) 4.8 4.2 5.2 6
HEATα=0.20 0.835(0.002) 0.847(0.002) 0.822(0.002) 0.950(0.001) 3.2 3 3.2 2.8
HEATα=1.00 0.769(0.002) 0.787(0.002) 0.752(0.003) 0.918(0.001) 6.6 8 6.4 6.8
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TABLE B.16: T-test statistics achieved by HEATα=0.2 on the node classification task, for em-
bedding dimension 25. For each network, we select the benchmark algorithm according to

F1. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

F1 Precision Recall AUROC

HEATα=0.20 0.852(0.003) 0.884(0.003) 0.822(0.004) 0.982(0.001)
TADW 0.861(0.001) 0.890(0.001) 0.834(0.001) 0.986(0.000)

t-statistic -1.50E+01 -8.25E+00 -1.62E+01 -3.67E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

Citeseer

F1 Precision Recall AUROC

HEATα=0.20 0.889(0.003) 0.914(0.003) 0.865(0.004) 0.984(0.001)
DEEPWALK 0.917(0.005) 0.933(0.004) 0.901(0.006) 0.987(0.001)

t-statistic -2.70E+01 -2.20E+01 -2.72E+01 -1.62E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

Pubmed

F1 Precision Recall AUROC

HEATα=0.20 0.835(0.002) 0.847(0.002) 0.822(0.002) 0.950(0.001)
TADW 0.845(0.001) 0.856(0.000) 0.835(0.001) 0.956(0.000)

t-statistic -2.62E+01 -2.23E+01 -2.78E+01 -3.94E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

PPI

F1 Precision Recall AUROC

HEATα=0.20 0.389(0.002) 0.693(0.002) 0.270(0.002) 0.704(0.000)
ATTRPURE 0.400(0.001) 0.684(0.001) 0.283(0.001) 0.705(0.000)

t-statistic -2.86E+01 2.05E+01 -2.84E+01 -3.45E+01
p-value 1.00E+00 2.54E-28 1.00E+00 1.00E+00
p < 0.05 0 1 0 0

MIT

F1 Precision Recall AUROC

HEATα=0.20 0.733(0.008) 0.844(0.006) 0.649(0.010) 0.970(0.001)
DEEPWALK 0.769(0.005) 0.867(0.004) 0.692(0.006) 0.974(0.001)

t-statistic -2.17E+01 -1.82E+01 -2.07E+01 -2.42E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0
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TABLE B.17: Summary of node classification results for embedding dimension 50.
HEATα=0.2 considers node attributes, whereas HEATα=0.0 does not. Bold indicates best per-
formance. Standard deviation is given in brackets. Mean Ranks is the average position of an

algorithm in a ranked list of performance.

Cora_ML PPI

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.775(0.007) 0.824(0.008) 0.732(0.008) 0.958(0.001) 0.384(0.001) 0.699(0.001) 0.264(0.001) 0.704(0.000)
AANE 0.753(0.002) 0.830(0.002) 0.690(0.003) 0.952(0.000) 0.403(0.002) 0.681(0.002) 0.287(0.002) 0.702(0.000)
TADW 0.863(0.001) 0.889(0.001) 0.838(0.001) 0.983(0.000) 0.397(0.002) 0.686(0.002) 0.279(0.002) 0.705(0.000)

ATTRPURE 0.744(0.002) 0.825(0.002) 0.678(0.003) 0.950(0.000) 0.403(0.001) 0.682(0.002) 0.286(0.002) 0.706(0.000)
DEEPWALK 0.857(0.003) 0.883(0.003) 0.833(0.003) 0.979(0.000) 0.388(0.001) 0.693(0.001) 0.269(0.001) 0.704(0.000)
SAGEGCN 0.785(0.013) 0.839(0.010) 0.737(0.017) 0.959(0.003) 0.389(0.002) 0.693(0.003) 0.270(0.003) 0.704(0.000)

HEATα=0.00 0.806(0.005) 0.853(0.004) 0.764(0.007) 0.968(0.001) 0.387(0.002) 0.695(0.002) 0.268(0.002) 0.704(0.000)
HEATα=0.20 0.852(0.003) 0.881(0.003) 0.825(0.004) 0.982(0.000) 0.387(0.002) 0.694(0.002) 0.269(0.002) 0.704(0.000)
HEATα=1.00 0.701(0.006) 0.785(0.006) 0.634(0.008) 0.941(0.001) 0.395(0.002) 0.686(0.002) 0.277(0.002) 0.703(0.001)

Citeseer MIT

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.646(0.015) 0.885(0.011) 0.509(0.019) 0.898(0.005) 0.492(0.003) 0.862(0.006) 0.344(0.003) 0.937(0.001)
AANE 0.716(0.001) 0.879(0.002) 0.605(0.002) 0.937(0.000) 0.044(0.007) 0.449(0.026) 0.024(0.004) 0.875(0.000)
TADW 0.889(0.001) 0.920(0.001) 0.860(0.001) 0.984(0.000) 0.515(0.003) 0.719(0.004) 0.403(0.004) 0.946(0.000)

ATTRPURE 0.718(0.002) 0.875(0.002) 0.609(0.003) 0.938(0.001) 0.077(0.002) 0.462(0.007) 0.042(0.001) 0.878(0.000)
DEEPWALK 0.883(0.005) 0.909(0.004) 0.858(0.006) 0.980(0.001) 0.816(0.003) 0.893(0.002) 0.751(0.004) 0.978(0.000)
SAGEGCN 0.715(0.031) 0.831(0.014) 0.628(0.041) 0.931(0.011) 0.526(0.013) 0.818(0.011) 0.388(0.013) 0.937(0.002)

HEATα=0.00 0.659(0.012) 0.874(0.009) 0.529(0.015) 0.900(0.004) 0.795(0.003) 0.895(0.003) 0.715(0.004) 0.975(0.000)
HEATα=0.20 0.887(0.003) 0.913(0.002) 0.863(0.003) 0.984(0.000) 0.787(0.004) 0.869(0.004) 0.719(0.005) 0.976(0.000)
HEATα=1.00 0.758(0.002) 0.834(0.002) 0.695(0.003) 0.946(0.001) 0.078(0.006) 0.493(0.017) 0.042(0.003) 0.869(0.001)

Pubmed Mean Ranks

F1 Precision Recall AUROC F1 Precision Recall AUROC

N&K 0.774(0.003) 0.795(0.003) 0.755(0.004) 0.916(0.002) 7.6 5 7.8 7
AANE 0.825(0.000) 0.837(0.000) 0.813(0.000) 0.944(0.000) 5.4 6.6 5.6 6.6
TADW 0.858(0.000) 0.868(0.000) 0.849(0.000) 0.960(0.000) 2.2 3.2 2.2 1.8

ATTRPURE 0.801(0.002) 0.816(0.001) 0.786(0.002) 0.929(0.001) 5.8 7.2 5.8 5.4
DEEPWALK 0.833(0.001) 0.844(0.001) 0.823(0.001) 0.942(0.001) 3 3 3 2.8
SAGEGCN 0.811(0.004) 0.827(0.004) 0.796(0.004) 0.935(0.001) 5.2 5.6 5 5.6

HEATα=0.00 0.800(0.002) 0.819(0.002) 0.781(0.002) 0.926(0.001) 5.8 4 6 5.2
HEATα=0.20 0.838(0.002) 0.850(0.002) 0.826(0.002) 0.952(0.001) 3.4 2.6 3 3
HEATα=1.00 0.774(0.003) 0.791(0.002) 0.757(0.003) 0.921(0.001) 6.6 7.8 6.6 7.6
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TABLE B.18: T-test statistics achieved by HEATα=0.2 on the node classification task, for em-
bedding dimension 50. For each network, we select the benchmark algorithm according to

F1. Significant results at a significance level of 0.05 are highlighted in bold.

Cora_ML

F1 Precision Recall AUROC

HEATα=0.20 0.852(0.003) 0.881(0.003) 0.825(0.004) 0.982(0.000)
TADW 0.863(0.001) 0.889(0.001) 0.838(0.001) 0.983(0.000)

t-statistic -1.80E+01 -1.60E+01 -1.53E+01 -1.44E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

Citeseer

HEATα=0.20 0.887(0.003) 0.913(0.002) 0.863(0.003) 0.984(0.000)
TADW 0.889(0.001) 0.920(0.001) 0.860(0.001) 0.984(0.000)

t-statistic -3.17E+00 -1.33E+01 4.46E+00 -1.01E+00
p-value 9.99E-01 1.00E+00 3.95E-05 8.40E-01
p < 0.05 0 0 1 0

Pubmed

HEATα=0.20 0.838(0.002) 0.850(0.002) 0.826(0.002) 0.952(0.001)
TADW 0.858(0.000) 0.868(0.000) 0.849(0.000) 0.960(0.000)

t-statistic -5.94E+01 -5.63E+01 -5.89E+01 -7.04E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0

PPI

HEATα=0.20 0.387(0.002) 0.694(0.002) 0.269(0.002) 0.704(0.000)
AANE 0.403(0.002) 0.681(0.002) 0.287(0.002) 0.702(0.000)

t-statistic -3.74E+01 2.53E+01 -3.62E+01 2.68E+01
p-value 1.00E+00 8.48E-33 1.00E+00 2.16E-33
p < 0.05 0 1 0 1

MIT

HEATα=0.20 0.787(0.004) 0.869(0.004) 0.719(0.005) 0.976(0.000)
DEEPWALK 0.816(0.003) 0.893(0.002) 0.751(0.004) 0.978(0.000)

t-statistic -3.30E+01 -2.95E+01 -2.59E+01 -1.90E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0
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Appendix C

Supplementary for Chapter 4

C.1 Network Reconstruction

Here we present additional results for the network reconstruction task for HEAD-

Net. We present results for embedding dimension 5+5 (table C.1 and table C.2),

10+10 (table C.3 and table C.4) and 50+50 (table C.5 and table C.6).

C.2 Link Prediction

Here we present additional results for the link prediction task for HEADNet. We

present results for embedding dimension 5+5 (table C.7), 10+10 (table C.8) and 50+50

(table C.9).

C.3 Link Prediction: Unseen Nodes

Table C.10 shows the results for the unseen nodes experiment on all networks for em-

bedding dimensions 25+25 and 50+50. Like the link prediction case, we see stronger

performance on all networks over all dimensions than G2G, including the 5+5 case.

Following our findings in table 4.7, we are lead to believe that supposing nodes exist

on a hidden hyperbolic space can better predict the links on nodes that are not seen

during the training process.
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TABLE C.1: Summary of the network reconstruction task on synthetic, Cora_ML and Cite-
seer networks for an embedding dimension of 5+5. HEADNetNA denotes HEADNet with-
out attributes. HEADNetΣ=I denoted HEADNet with an identity variance. A dash (–) in-
dicates that a network did not have attributes. Bold indicates best performance that is sig-
nificant at a 0.05 level. For each network, for the computation of the t-statistic, we select the
benchmark algorithm according to AP. Significant results at a significance level of 0.05 are

highlighted in bold. Standard deviation is given in brackets.

Synthetic

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 632.4(54.6) 0.634(0.025) 0.645(0.024) 0.016(0.011) 0.006(0.018) 0.011(0.015) 0.014(0.014) 0.023(0.016)
ATP (harmonic) 610.5(52.6) 0.647(0.024) 0.652(0.023) 0.016(0.011) 0.006(0.018) 0.009(0.013) 0.013(0.013) 0.023(0.015)

LINE 1209.7(49.7) 0.300(0.017) 0.379(0.005) 0.007(0.001) 0.008(0.002) 0.026(0.008) 0.053(0.016) 0.132(0.041)
G2GNA,K=1 89.5(10.9) 0.949(0.007) 0.892(0.014) 0.170(0.019) 0.089(0.015) 0.061(0.018) 0.042(0.019) 0.044(0.013)
G2GNA,K=3 89.0(10.5) 0.949(0.007) 0.901(0.017) 0.126(0.014) 0.073(0.012) 0.081(0.014) 0.118(0.019) 0.276(0.067)

HEADNetNA,Σ=I 18.4(3.5) 0.990(0.002) 0.985(0.004) 0.325(0.032) 0.182(0.021) 0.160(0.019) 0.151(0.021) 0.112(0.012)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 77.7(9.5) 0.955(0.006) 0.937(0.009) 0.225(0.013) 0.224(0.012) 0.135(0.007) 0.102(0.006) 0.068(0.004)

HEADNetNA 6.3(1.6) 0.997(0.001) 0.995(0.002) 0.595(0.051) 0.458(0.054) 0.531(0.049) 0.536(0.049) 0.619(0.063)

t-statistic 4.04E+01 3.50E+01 3.27E+01 3.83E+01 2.29E+01 4.35E+01 4.83E+01 4.75E+01
p-value 1.79E-28 2.58E-26 2.53E-26 5.95E-29 9.56E-22 4.09E-29 3.50E-30 1.42E-29
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –

Cora_ML

ATP (log) 4178.6(26.8) 0.504(0.003) 0.520(0.003) 0.021(0.000) 0.009(0.001) 0.014(0.001) 0.019(0.001) 0.038(0.003)
ATP (harmonic) 4136.5(26.5) 0.509(0.003) 0.528(0.003) 0.026(0.001) 0.017(0.001) 0.020(0.002) 0.025(0.002) 0.042(0.003)

LINE 3842.6(46.4) 0.544(0.006) 0.491(0.004) 0.086(0.002) 0.109(0.004) 0.154(0.005) 0.185(0.008) 0.232(0.010)
G2GNA,K=1 67.8(8.6) 0.992(0.001) 0.988(0.002) 0.537(0.024) 0.464(0.028) 0.440(0.029) 0.434(0.028) 0.425(0.030)

NK 133.4(5.6) 0.984(0.001) 0.983(0.001) 0.540(0.004) 0.568(0.007) 0.400(0.003) 0.315(0.002) 0.209(0.001)
HEADNetNA,Σ=I 27.9(4.2) 0.997(0.001) 0.995(0.001) 0.673(0.009) 0.614(0.011) 0.460(0.006) 0.365(0.005) 0.238(0.003)

G2GK=1 75.8(8.6) 0.991(0.001) 0.987(0.002) 0.523(0.020) 0.456(0.023) 0.423(0.022) 0.417(0.021) 0.409(0.019)
G2GK=3 65.6(7.2) 0.992(0.001) 0.989(0.002) 0.552(0.019) 0.491(0.020) 0.472(0.020) 0.469(0.018) 0.451(0.016)

HEADNetΣ=I 31.0(7.6) 0.996(0.001) 0.995(0.001) 0.654(0.030) 0.594(0.034) 0.448(0.022) 0.359(0.015) 0.235(0.007)

Significance Test

G2GNA,K=3 57.3(8.6) 0.993(0.001) 0.990(0.002) 0.583(0.024) 0.519(0.024) 0.504(0.028) 0.495(0.028) 0.465(0.026)

HEADNetNA 8.5(2.8) 0.999(0.000) 0.999(0.001) 0.862(0.018) 0.840(0.023) 0.807(0.023) 0.795(0.023) 0.795(0.023)

t-statistic 2.97E+01 2.97E+01 2.46E+01 5.02E+01 5.28E+01 4.61E+01 4.49E+01 5.15E+01
p-value 7.84E-27 7.84E-27 1.70E-26 2.10E-47 5.06E-51 1.38E-46 1.09E-45 6.70E-50
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 9.5(2.7) 0.999(0.000) 0.999(0.001) 0.833(0.018) 0.796(0.023) 0.778(0.021) 0.768(0.018) 0.765(0.019)

t-statistic 2.92E+01 2.92E+01 2.52E+01 4.52E+01 4.61E+01 4.35E+01 4.42E+01 5.05E+01
p-value 2.62E-26 2.62E-26 2.84E-25 1.13E-44 1.30E-47 1.02E-43 1.13E-41 6.71E-47
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

ATP (log) 2415.1(63.1) 0.549(0.012) 0.547(0.016) 0.014(0.001) 0.004(0.001) 0.011(0.001) 0.017(0.002) 0.004(0.019)
ATP (harmonic) 2418.8(62.2) 0.549(0.012) 0.545(0.013) 0.015(0.001) 0.005(0.001) 0.012(0.001) 0.016(0.003) 0.003(0.013)

LINE 3489.6(31.4) 0.349(0.006) 0.392(0.002) 0.031(0.001) 0.036(0.002) 0.090(0.005) 0.082(0.006) 0.158(0.061)
G2GNA,K=1 8.1(2.1) 0.999(0.000) 0.998(0.001) 0.748(0.013) 0.641(0.016) 0.498(0.028) 0.469(0.035) 0.513(0.063)

NK 50.4(4.7) 0.991(0.001) 0.992(0.001) 0.709(0.004) 0.633(0.006) 0.359(0.002) 0.248(0.001) 0.139(0.001)
HEADNetNA,Σ=I 5.1(1.2) 0.999(0.000) 0.999(0.000) 0.832(0.003) 0.756(0.005) 0.419(0.001) 0.285(0.001) 0.155(0.000)

G2GK=1 19.1(3.5) 0.997(0.001) 0.993(0.002) 0.611(0.018) 0.500(0.022) 0.365(0.025) 0.329(0.030) 0.409(0.085)
G2GK=3 19.5(3.6) 0.997(0.001) 0.992(0.002) 0.593(0.020) 0.475(0.023) 0.376(0.025) 0.349(0.025) 0.443(0.076)

HEADNetΣ=I 24.0(3.2) 0.996(0.001) 0.992(0.002) 0.548(0.002) 0.419(0.005) 0.296(0.002) 0.220(0.001) 0.133(0.000)

Significance Test

G2GNA,K=3 7.3(1.8) 0.999(0.000) 0.998(0.001) 0.744(0.010) 0.623(0.014) 0.549(0.030) 0.514(0.040) 0.546(0.074)

HEADNetNA 3.3(1.1) 1.000(0.000) 0.999(0.000) 0.881(0.021) 0.821(0.030) 0.776(0.039) 0.775(0.036) 0.819(0.069)

t-statistic 1.02E+01 1.02E+01 7.93E+00 3.23E+01 3.29E+01 2.54E+01 2.68E+01 1.48E+01
p-value 7.23E-14 7.23E-14 1.39E-10 1.25E-31 4.15E-31 3.03E-32 2.15E-34 1.25E-21
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 11.0(2.6) 0.998(0.000) 0.995(0.002) 0.675(0.021) 0.570(0.028) 0.576(0.023) 0.556(0.019) 0.589(0.095)

t-statistic -6.34E+00 -6.36E+00 -8.53E+00 -1.59E+01 -9.24E+00 3.85E+00 5.22E+00 1.97E+00
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.55E-04 2.65E-06 2.68E-02
p < 0.05 0 0 0 0 0 1 1 1
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TABLE C.2: Summary of the network reconstruction task on the Pubmed, Cora and Wiki
Vote networks for an embedding dimension of 5+5. HEADNetNA denotes HEADNet with-
out attributes. HEADNetΣ=I denoted HEADNet with an identity variance. A dash (–) in-
dicates that a network did not have attributes. Bold indicates best performance that is sig-
nificant at a 0.05 level. For each network, for the computation of the t-statistic, we select the
benchmark algorithm according to AP. Significant results at a significance level of 0.05 are

highlighted in bold. Standard deviation is given in brackets.

Pubmed

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 64106.7(205.6) 0.277(0.002) 0.380(0.001) 0.031(0.001) 0.016(0.002) 0.029(0.003) 0.034(0.005) 0.047(0.006)
ATP (harmonic) 63914.7(204.2) 0.279(0.002) 0.386(0.001) 0.035(0.001) 0.028(0.002) 0.037(0.004) 0.036(0.005) 0.048(0.006)

LINE 58883.2(222.3) 0.336(0.003) 0.388(0.001) 0.040(0.001) 0.071(0.002) 0.159(0.003) 0.201(0.004) 0.241(0.005)
G2GNA,K=1 279.2(39.1) 0.997(0.000) 0.995(0.001) 0.800(0.020) 0.745(0.024) 0.760(0.028) 0.795(0.022) 0.811(0.019)

NK 591.0(23.3) 0.993(0.000) 0.992(0.000) 0.704(0.002) 0.708(0.003) 0.491(0.001) 0.389(0.001) 0.267(0.001)
HEADNetNA,Σ=I 104.9(6.6) 0.999(0.000) 0.998(0.000) 0.853(0.001) 0.825(0.002) 0.531(0.001) 0.416(0.001) 0.289(0.000)

G2GK=1 2045.6(154.6) 0.977(0.002) 0.966(0.002) 0.242(0.014) 0.153(0.008) 0.255(0.010) 0.309(0.013) 0.368(0.014)
G2GK=3 1688.5(145.1) 0.981(0.002) 0.971(0.002) 0.247(0.010) 0.172(0.006) 0.287(0.007) 0.346(0.009) 0.408(0.009)

HEADNetΣ=I 645.6(14.3) 0.993(0.000) 0.990(0.000) 0.487(0.002) 0.388(0.003) 0.335(0.001) 0.295(0.001) 0.230(0.000)

Significance Test

G2GNA,K=3 90.8(6.3) 0.999(0.000) 0.998(0.000) 0.858(0.002) 0.803(0.003) 0.816(0.003) 0.840(0.003) 0.858(0.003)

HEADNetNA 60.7(5.4) 0.999(0.000) 0.999(0.000) 0.889(0.002) 0.851(0.003) 0.873(0.003) 0.896(0.003) 0.910(0.002)

t-statistic 1.98E+01 1.98E+01 1.47E+01 6.97E+01 6.48E+01 6.71E+01 7.83E+01 7.63E+01
p-value 1.79E-27 1.79E-27 3.40E-21 1.04E-57 2.18E-55 7.28E-57 1.08E-60 9.84E-59
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 615.0(41.8) 0.993(0.000) 0.990(0.001) 0.449(0.014) 0.350(0.012) 0.532(0.009) 0.596(0.009) 0.651(0.008)

t-statistic -6.80E+01 -6.80E+01 -6.27E+01 -1.64E+02 -2.05E+02 -1.62E+02 -1.49E+02 -1.29E+02
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0 0 0 0 0

Cora

ATP (log) 33205.9(76.0) 0.492(0.001) 0.506(0.001) 0.028(0.001) 0.015(0.001) 0.019(0.001) 0.022(0.001) 0.034(0.003)
ATP (harmonic) 32914.7(74.4) 0.496(0.001) 0.512(0.001) 0.036(0.000) 0.031(0.001) 0.028(0.001) 0.029(0.001) 0.039(0.003)

LINE 29550.4(182.8) 0.548(0.003) 0.502(0.002) 0.120(0.002) 0.170(0.002) 0.211(0.003) 0.241(0.003) 0.286(0.005)
G2GNA,K=1 162.5(20.6) 0.998(0.000) 0.997(0.000) 0.780(0.017) 0.761(0.019) 0.704(0.022) 0.688(0.021) 0.686(0.018)

NK 635.8(28.4) 0.990(0.000) 0.990(0.000) 0.695(0.002) 0.748(0.002) 0.543(0.002) 0.427(0.001) 0.275(0.001)
HEADNetNA,Σ=I 94.5(6.6) 0.999(0.000) 0.998(0.000) 0.802(0.001) 0.785(0.002) 0.585(0.001) 0.466(0.001) 0.304(0.000)

G2GK=1 237.5(33.6) 0.996(0.001) 0.995(0.001) 0.708(0.029) 0.680(0.034) 0.618(0.032) 0.612(0.029) 0.625(0.025)
G2GK=3 155.9(18.5) 0.998(0.000) 0.997(0.000) 0.772(0.018) 0.752(0.021) 0.708(0.021) 0.694(0.018) 0.696(0.014)

HEADNetΣ=I 108.2(5.8) 0.998(0.000) 0.998(0.000) 0.785(0.001) 0.763(0.002) 0.577(0.001) 0.463(0.001) 0.303(0.000)

Significance Test

G2GNA,K=3 111.9(12.0) 0.998(0.000) 0.998(0.000) 0.824(0.013) 0.809(0.014) 0.766(0.018) 0.745(0.017) 0.733(0.015)

HEADNetNA 28.2(3.0) 1.000(0.000) 0.999(0.000) 0.923(0.004) 0.919(0.004) 0.889(0.005) 0.881(0.005) 0.881(0.005)

t-statistic 3.70E+01 3.70E+01 3.27E+01 3.88E+01 4.02E+01 3.58E+01 4.12E+01 5.05E+01
p-value 1.85E-28 1.85E-28 9.45E-28 3.67E-30 1.29E-30 1.35E-28 7.78E-31 5.60E-34
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 39.0(4.4) 0.999(0.000) 0.999(0.000) 0.890(0.007) 0.874(0.008) 0.864(0.007) 0.861(0.007) 0.863(0.007)

t-statistic 3.11E+01 3.11E+01 2.74E+01 2.40E+01 2.14E+01 2.75E+01 3.35E+01 4.17E+01
p-value 2.52E-28 2.52E-28 3.19E-27 6.06E-27 5.18E-26 4.19E-27 7.74E-31 5.89E-36
p < 0.05 1 1 1 1 1 1 1 1

Wiki Vote

ATP (log) 53362.7(266.8) 0.485(0.003) 0.505(0.002) 0.030(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.041(0.001)
ATP (harmonic) 53393.9(285.4) 0.485(0.003) 0.505(0.002) 0.030(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.041(0.001)

LINE 70632.8(593.1) 0.319(0.006) 0.380(0.002) 0.043(0.001) 0.076(0.002) 0.147(0.003) 0.183(0.003) 0.228(0.003)
G2GNA,K=1 4888.7(498.0) 0.953(0.005) 0.937(0.006) 0.407(0.046) 0.315(0.050) 0.289(0.028) 0.310(0.024) 0.352(0.020)
G2GNA,K=3 4554.3(94.8) 0.956(0.001) 0.937(0.002) 0.222(0.006) 0.159(0.005) 0.203(0.004) 0.238(0.003) 0.291(0.003)

HEADNetNA,Σ=I 2764.4(42.8) 0.973(0.000) 0.963(0.001) 0.514(0.002) 0.468(0.005) 0.356(0.002) 0.302(0.002) 0.241(0.001)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 4603.0(43.5) 0.956(0.000) 0.960(0.000) 0.172(0.001) 0.224(0.003) 0.199(0.002) 0.188(0.001) 0.174(0.001)

HEADNetNA 925.1(42.9) 0.991(0.000) 0.987(0.001) 0.703(0.022) 0.691(0.038) 0.571(0.017) 0.593(0.013) 0.636(0.009)

t-statistic 3.30E+02 3.30E+02 1.65E+02 1.34E+02 6.68E+01 1.22E+02 1.68E+02 2.81E+02
p-value 6.74E-97 6.74E-97 2.76E-69 1.69E-42 6.64E-34 5.99E-42 8.20E-46 1.53E-52
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –
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TABLE C.3: Summary of the network reconstruction task on synthetic, Cora_ML and Cite-
seer networks for an embedding dimension of 10+10. HEADNetNA denotes HEADNet with-
out attributes. A dash (–) indicates that a network did not have attributes. Bold indicates
best performance that is significant at a 0.05 level. For each network, for the computation
of the t-statistic, we select the benchmark algorithm according to AP. Significant results at a

significance level of 0.05 are highlighted in bold. Standard deviation is given in brackets.

Synthetic

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 614.0(52.0) 0.645(0.024) 0.660(0.025) 0.016(0.011) 0.006(0.018) 0.010(0.014) 0.014(0.013) 0.025(0.018)
ATP (harmonic) 598.5(50.1) 0.654(0.025) 0.664(0.025) 0.017(0.011) 0.006(0.018) 0.010(0.013) 0.015(0.014) 0.025(0.018)

LINE 1227.1(48.9) 0.290(0.017) 0.375(0.005) 0.013(0.003) 0.017(0.004) 0.066(0.012) 0.119(0.021) 0.205(0.034)
G2GNA,K=1 85.3(9.7) 0.951(0.007) 0.895(0.014) 0.197(0.018) 0.118(0.015) 0.091(0.019) 0.054(0.018) 0.046(0.019)
G2GNA,K=3 73.9(10.6) 0.958(0.006) 0.910(0.019) 0.137(0.017) 0.085(0.015) 0.103(0.022) 0.136(0.032) 0.292(0.071)

HEADNetNA,Σ=I 10.3(2.5) 0.995(0.001) 0.992(0.003) 0.545(0.091) 0.389(0.103) 0.297(0.045) 0.216(0.022) 0.132(0.008)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 56.9(9.6) 0.968(0.006) 0.949(0.009) 0.262(0.018) 0.247(0.016) 0.156(0.010) 0.120(0.007) 0.080(0.005)

HEADNetNA 4.1(1.6) 0.998(0.001) 0.997(0.002) 0.741(0.045) 0.626(0.061) 0.675(0.051) 0.676(0.049) 0.730(0.050)

t-statistic 2.97E+01 2.60E+01 2.79E+01 5.44E+01 3.30E+01 5.50E+01 6.17E+01 7.02E+01
p-value 1.95E-24 1.46E-22 7.43E-24 9.92E-38 3.00E-27 5.90E-33 9.06E-34 8.19E-35
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –

Cora_ML

ATP (log) 4157.0(26.7) 0.506(0.003) 0.521(0.003) 0.025(0.001) 0.012(0.001) 0.022(0.001) 0.031(0.002) 0.058(0.004)
ATP (harmonic) 4115.2(26.6) 0.511(0.003) 0.528(0.003) 0.029(0.001) 0.020(0.002) 0.026(0.001) 0.034(0.002) 0.058(0.004)

LINE 3864.7(35.2) 0.541(0.004) 0.487(0.003) 0.078(0.002) 0.115(0.004) 0.153(0.003) 0.175(0.006) 0.190(0.011)
G2GNA,K=1 59.3(6.0) 0.993(0.001) 0.990(0.001) 0.578(0.010) 0.510(0.013) 0.488(0.014) 0.479(0.012) 0.461(0.015)

NK 45.9(5.0) 0.995(0.001) 0.992(0.001) 0.637(0.007) 0.577(0.010) 0.574(0.011) 0.561(0.012) 0.530(0.015)
HEADNetNA,Σ=I 110.6(4.8) 0.987(0.001) 0.986(0.001) 0.569(0.003) 0.593(0.007) 0.421(0.003) 0.331(0.002) 0.217(0.001)

G2GK=1 14.7(4.3) 0.998(0.001) 0.998(0.001) 0.772(0.020) 0.721(0.021) 0.536(0.016) 0.419(0.012) 0.264(0.005)
G2GK=3 66.2(8.3) 0.992(0.001) 0.989(0.002) 0.566(0.017) 0.507(0.020) 0.468(0.021) 0.459(0.021) 0.446(0.020)

HEADNetΣ=I 57.5(6.1) 0.993(0.001) 0.990(0.001) 0.594(0.016) 0.540(0.017) 0.519(0.021) 0.510(0.021) 0.488(0.021)

Significance Test

G2GNA,K=3 45.9(5.0) 0.995(0.001) 0.992(0.001) 0.637(0.007) 0.577(0.010) 0.574(0.011) 0.561(0.012) 0.530(0.015)

HEADNetNA 4.1(1.4) 1.000(0.000) 0.999(0.000) 0.950(0.012) 0.943(0.013) 0.932(0.017) 0.927(0.018) 0.925(0.018)

t-statistic 4.43E+01 4.43E+01 3.19E+01 1.25E+02 1.26E+02 9.83E+01 9.50E+01 9.15E+01
p-value 9.51E-32 9.51E-32 1.88E-26 7.85E-62 1.36E-68 1.09E-59 7.43E-59 2.31E-63
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 5.4(1.6) 0.999(0.000) 0.999(0.000) 0.926(0.019) 0.916(0.022) 0.895(0.025) 0.887(0.024) 0.880(0.027)

t-statistic 4.23E+01 4.23E+01 3.01E+01 7.90E+01 7.71E+01 6.49E+01 6.78E+01 6.13E+01
p-value 3.90E-32 3.90E-32 1.50E-27 2.70E-43 6.13E-45 1.29E-42 3.82E-45 1.03E-45
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

ATP (log) 2344.6(56.3) 0.563(0.011) 0.565(0.014) 0.017(0.001) 0.005(0.001) 0.014(0.002) 0.019(0.003) 0.042(0.040)
ATP (harmonic) 2361.2(40.7) 0.559(0.008) 0.558(0.010) 0.017(0.000) 0.006(0.001) 0.014(0.002) 0.018(0.003) 0.027(0.038)

LINE 3258.9(25.1) 0.392(0.005) 0.410(0.002) 0.030(0.001) 0.037(0.001) 0.079(0.004) 0.068(0.005) 0.079(0.024)
G2GNA,K=1 7.3(1.6) 0.999(0.000) 0.998(0.000) 0.777(0.006) 0.679(0.010) 0.553(0.021) 0.530(0.024) 0.553(0.083)

NK 6.8(1.8) 0.999(0.000) 0.998(0.001) 0.763(0.006) 0.648(0.009) 0.591(0.019) 0.564(0.026) 0.600(0.068)
HEADNetNA,Σ=I 34.2(3.6) 0.994(0.001) 0.994(0.001) 0.718(0.003) 0.641(0.006) 0.363(0.003) 0.251(0.001) 0.141(0.000)

G2GK=1 4.7(1.5) 0.999(0.000) 0.999(0.001) 0.844(0.003) 0.772(0.006) 0.423(0.001) 0.285(0.001) 0.155(0.000)
G2GK=3 18.1(3.2) 0.997(0.001) 0.993(0.002) 0.624(0.011) 0.518(0.015) 0.386(0.021) 0.338(0.023) 0.384(0.082)

HEADNetΣ=I 17.5(3.0) 0.997(0.001) 0.993(0.002) 0.612(0.013) 0.500(0.016) 0.393(0.018) 0.362(0.026) 0.454(0.069)

Significance Test

G2GNA,K=3 6.8(1.8) 0.999(0.000) 0.998(0.001) 0.763(0.006) 0.648(0.009) 0.591(0.019) 0.564(0.026) 0.600(0.068)

HEADNetNA 2.5(1.2) 1.000(0.000) 1.000(0.000) 0.929(0.020) 0.896(0.027) 0.853(0.042) 0.851(0.046) 0.892(0.051)

t-statistic 1.09E+01 1.09E+01 9.03E+00 4.50E+01 4.74E+01 3.09E+01 2.99E+01 1.89E+01
p-value 4.73E-15 4.73E-15 3.33E-12 4.74E-32 3.59E-34 3.88E-30 3.37E-32 1.07E-25
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 7.9(2.0) 0.999(0.000) 0.996(0.002) 0.752(0.025) 0.679(0.035) 0.677(0.031) 0.659(0.031) 0.696(0.065)

t-statistic -2.30E+00 -2.34E+00 -7.33E+00 -2.33E+00 4.76E+00 1.30E+01 1.27E+01 5.58E+00
p-value 9.88E-01 9.89E-01 1.00E+00 9.87E-01 1.86E-05 8.93E-18 1.65E-18 3.31E-07
p < 0.05 0 0 0 0 1 1 1 1
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TABLE C.4: Summary of the network reconstruction task on the Pubmed, Cora and Wiki
Vote networks for an embedding dimension of 10+10. HEADNetNA denotes HEADNet
without attributes. HEADNetΣ=I denoted HEADNet with an identity variance. A dash
(–) indicates that a network did not have attributes. Bold indicates best performance that is
significant at a 0.05 level. For each network, for the computation of the t-statistic, we select
the benchmark algorithm according to AP. Significant results at a significance level of 0.05

are highlighted in bold. Standard deviation is given in brackets.

Pubmed

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 64056.3(217.4) 0.277(0.002) 0.380(0.001) 0.044(0.002) 0.032(0.003) 0.063(0.008) 0.072(0.009) 0.085(0.009)
ATP (harmonic) 63868.7(216.7) 0.280(0.002) 0.387(0.001) 0.047(0.002) 0.039(0.003) 0.068(0.007) 0.074(0.009) 0.086(0.009)

LINE 58572.6(362.6) 0.339(0.004) 0.390(0.002) 0.030(0.001) 0.064(0.001) 0.131(0.003) 0.158(0.004) 0.171(0.005)
G2GNA,K=1 221.6(22.3) 0.998(0.000) 0.996(0.000) 0.828(0.011) 0.779(0.012) 0.802(0.018) 0.827(0.014) 0.839(0.012)

NK 450.6(16.0) 0.995(0.000) 0.994(0.000) 0.738(0.002) 0.743(0.003) 0.512(0.001) 0.403(0.001) 0.276(0.000)
HEADNetNA,Σ=I 24.1(3.4) 1.000(0.000) 1.000(0.000) 0.967(0.001) 0.964(0.001) 0.612(0.001) 0.471(0.000) 0.318(0.000)

G2GK=1 1951.4(147.4) 0.978(0.002) 0.967(0.002) 0.252(0.016) 0.159(0.010) 0.261(0.011) 0.317(0.013) 0.377(0.014)
G2GK=3 1525.9(89.5) 0.983(0.001) 0.974(0.001) 0.275(0.009) 0.199(0.008) 0.315(0.007) 0.374(0.007) 0.433(0.007)

HEADNetΣ=I 375.7(12.1) 0.996(0.000) 0.994(0.000) 0.567(0.001) 0.466(0.002) 0.395(0.001) 0.343(0.001) 0.259(0.000)

Significance Test

G2GNA,K=3 53.2(6.6) 0.999(0.000) 0.999(0.000) 0.908(0.004) 0.869(0.004) 0.899(0.009) 0.905(0.007) 0.911(0.006)

HEADNetNA 23.4(3.1) 1.000(0.000) 1.000(0.000) 0.953(0.002) 0.925(0.003) 0.970(0.002) 0.976(0.002) 0.979(0.002)

t-statistic 2.23E+01 2.23E+01 1.48E+01 5.87E+01 5.93E+01 4.36E+01 5.12E+01 6.24E+01
p-value 7.36E-25 7.36E-25 3.59E-19 4.36E-40 1.33E-48 2.80E-30 2.34E-32 5.41E-38
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 373.6(26.7) 0.996(0.000) 0.994(0.000) 0.544(0.011) 0.439(0.009) 0.625(0.007) 0.681(0.007) 0.725(0.006)

t-statistic -6.37E+01 -6.37E+01 -5.55E+01 -1.78E+02 -2.40E+02 -1.33E+02 -1.25E+02 -1.19E+02
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0 0 0 0 0

Cora

ATP (log) 33156.7(72.0) 0.492(0.001) 0.507(0.001) 0.037(0.000) 0.026(0.001) 0.031(0.001) 0.038(0.001) 0.053(0.002)
ATP (harmonic) 32868.4(71.0) 0.497(0.001) 0.512(0.001) 0.043(0.000) 0.038(0.001) 0.039(0.001) 0.043(0.001) 0.055(0.002)

LINE 30716.1(113.5) 0.530(0.002) 0.492(0.001) 0.103(0.002) 0.164(0.003) 0.185(0.003) 0.198(0.004) 0.216(0.006)
G2GNA,K=1 145.6(13.0) 0.998(0.000) 0.997(0.000) 0.797(0.013) 0.782(0.014) 0.727(0.017) 0.710(0.017) 0.707(0.014)

NK 458.3(14.8) 0.993(0.000) 0.993(0.000) 0.728(0.002) 0.777(0.002) 0.566(0.001) 0.443(0.001) 0.283(0.000)
HEADNetNA,Σ=I 26.6(3.4) 1.000(0.000) 0.999(0.000) 0.922(0.001) 0.914(0.002) 0.685(0.001) 0.536(0.000) 0.334(0.000)

G2GK=1 201.6(19.9) 0.997(0.000) 0.996(0.000) 0.742(0.017) 0.720(0.021) 0.658(0.020) 0.647(0.019) 0.654(0.017)
G2GK=3 129.2(14.3) 0.998(0.000) 0.997(0.000) 0.803(0.015) 0.789(0.017) 0.745(0.018) 0.729(0.016) 0.725(0.014)

HEADNetΣ=I 35.2(3.5) 0.999(0.000) 0.999(0.000) 0.907(0.001) 0.897(0.002) 0.676(0.001) 0.531(0.001) 0.333(0.000)

Significance Test

G2GNA,K=3 90.1(13.1) 0.999(0.000) 0.998(0.000) 0.854(0.011) 0.842(0.011) 0.807(0.015) 0.786(0.015) 0.767(0.014)

HEADNetNA 9.9(1.9) 1.000(0.000) 1.000(0.000) 0.980(0.002) 0.981(0.002) 0.973(0.003) 0.967(0.003) 0.959(0.004)

t-statistic 3.32E+01 3.32E+01 2.94E+01 6.00E+01 6.60E+01 5.90E+01 6.41E+01 7.27E+01
p-value 1.24E-25 1.24E-25 1.38E-24 1.07E-33 4.27E-35 5.20E-34 2.65E-35 2.06E-39
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 16.0(3.6) 1.000(0.000) 1.000(0.000) 0.961(0.005) 0.959(0.006) 0.951(0.006) 0.945(0.006) 0.940(0.006)

t-statistic 2.99E+01 2.99E+01 2.68E+01 4.66E+01 4.96E+01 4.85E+01 5.40E+01 6.30E+01
p-value 6.14E-26 6.14E-26 3.37E-24 6.43E-38 1.76E-41 3.66E-36 3.07E-37 2.45E-41
p < 0.05 1 1 1 1 1 1 1 1

Wiki Vote

ATP (log) 53405.2(176.9) 0.485(0.002) 0.505(0.001) 0.030(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.041(0.001)
ATP (harmonic) 53418.3(189.4) 0.485(0.002) 0.505(0.001) 0.030(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.041(0.001)

LINE 70912.2(270.8) 0.316(0.003) 0.379(0.001) 0.036(0.001) 0.078(0.003) 0.146(0.002) 0.178(0.002) 0.213(0.003)
G2GNA,K=1 4179.2(301.6) 0.960(0.003) 0.947(0.003) 0.504(0.019) 0.437(0.022) 0.361(0.019) 0.361(0.015) 0.391(0.013)
G2GNA,K=3 4522.1(145.7) 0.956(0.001) 0.935(0.003) 0.221(0.012) 0.170(0.010) 0.221(0.007) 0.255(0.006) 0.305(0.007)

HEADNetNA,Σ=I 1681.3(31.2) 0.984(0.000) 0.977(0.001) 0.656(0.001) 0.637(0.004) 0.473(0.002) 0.391(0.001) 0.300(0.001)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 4419.5(33.2) 0.957(0.000) 0.962(0.000) 0.185(0.001) 0.252(0.004) 0.216(0.001) 0.201(0.001) 0.182(0.001)

HEADNetNA 426.9(18.1) 0.996(0.000) 0.994(0.000) 0.858(0.006) 0.866(0.013) 0.781(0.006) 0.764(0.005) 0.766(0.004)

t-statistic 5.78E+02 5.78E+02 3.25E+02 5.70E+02 2.41E+02 5.17E+02 6.35E+02 7.35E+02
p-value 9.94E-89 9.95E-89 5.43E-96 2.30E-63 4.87E-56 1.93E-64 2.64E-66 8.11E-67
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –
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TABLE C.5: Summary of the network reconstruction task on synthetic, Cora_ML and Cite-
seer networks for an embedding dimension of 50+50. HEADNetNA denotes HEADNet with-
out attributes. A dash (–) indicates that a network did not have attributes. Bold indicates
best performance that is significant at a 0.05 level. For each network, for the computation
of the t-statistic, we select the benchmark algorithm according to AP. Significant results at a

significance level of 0.05 are highlighted in bold. Standard deviation is given in brackets.

Synthetic

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 695.1(59.6) 0.597(0.037) 0.624(0.036) 0.017(0.011) 0.006(0.018) 0.012(0.014) 0.019(0.014) 0.028(0.018)
ATP (harmonic) 705.8(80.1) 0.591(0.046) 0.616(0.042) 0.016(0.011) 0.006(0.018) 0.011(0.014) 0.018(0.014) 0.028(0.018)

LINE 1229.9(52.0) 0.288(0.016) 0.376(0.005) 0.010(0.002) 0.019(0.006) 0.054(0.016) 0.072(0.025) 0.083(0.028)
G2GNA,K=1 83.7(11.4) 0.952(0.007) 0.897(0.016) 0.223(0.021) 0.147(0.019) 0.133(0.026) 0.083(0.027) 0.053(0.018)
G2GNA,K=3 105.2(15.1) 0.940(0.009) 0.864(0.026) 0.131(0.039) 0.085(0.037) 0.119(0.053) 0.153(0.047) 0.296(0.074)

HEADNetNA,Σ=I 7.1(1.7) 0.996(0.001) 0.994(0.002) 0.701(0.038) 0.609(0.056) 0.348(0.013) 0.242(0.010) 0.146(0.006)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 49.2(9.2) 0.972(0.006) 0.954(0.009) 0.281(0.019) 0.258(0.017) 0.166(0.011) 0.127(0.009) 0.087(0.006)

HEADNetNA 2.6(1.1) 0.999(0.001) 0.998(0.001) 0.887(0.048) 0.834(0.072) 0.839(0.074) 0.842(0.071) 0.860(0.075)

t-statistic 2.75E+01 2.46E+01 2.80E+01 6.43E+01 4.27E+01 4.91E+01 5.43E+01 5.63E+01
p-value 4.82E-23 1.46E-21 1.87E-23 9.16E-41 3.39E-30 1.06E-30 9.00E-32 8.14E-32
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –

Cora_ML

ATP (log) 4083.0(25.8) 0.515(0.003) 0.531(0.003) 0.044(0.001) 0.025(0.002) 0.042(0.002) 0.058(0.002) 0.085(0.006)
ATP (harmonic) 4041.1(25.7) 0.520(0.003) 0.538(0.003) 0.045(0.001) 0.030(0.002) 0.044(0.002) 0.058(0.002) 0.084(0.005)

LINE 4093.9(40.6) 0.514(0.005) 0.473(0.003) 0.060(0.002) 0.097(0.004) 0.110(0.004) 0.118(0.004) 0.124(0.007)
G2GNA,K=1 54.4(4.9) 0.994(0.001) 0.991(0.001) 0.609(0.007) 0.551(0.014) 0.530(0.011) 0.517(0.012) 0.495(0.017)

NK 101.7(3.7) 0.988(0.000) 0.987(0.001) 0.586(0.004) 0.607(0.007) 0.431(0.003) 0.339(0.002) 0.220(0.001)
HEADNetNA,Σ=I 10.6(2.6) 0.999(0.000) 0.998(0.001) 0.823(0.003) 0.776(0.006) 0.577(0.002) 0.448(0.001) 0.277(0.000)

G2GK=1 64.6(7.7) 0.992(0.001) 0.989(0.001) 0.586(0.008) 0.536(0.013) 0.493(0.011) 0.479(0.013) 0.459(0.018)
G2GK=3 55.8(5.5) 0.993(0.001) 0.991(0.001) 0.609(0.011) 0.563(0.011) 0.539(0.014) 0.530(0.013) 0.509(0.013)

HEADNetΣ=I 13.4(2.7) 0.999(0.000) 0.998(0.001) 0.792(0.003) 0.743(0.006) 0.553(0.003) 0.432(0.001) 0.270(0.001)

Significance Test

G2GNA,K=3 44.0(5.6) 0.995(0.001) 0.992(0.001) 0.647(0.007) 0.588(0.011) 0.587(0.009) 0.575(0.010) 0.548(0.012)

HEADNetNA 3.2(1.4) 1.000(0.000) 1.000(0.000) 0.967(0.008) 0.963(0.009) 0.956(0.012) 0.951(0.012) 0.949(0.013)

t-statistic 3.90E+01 3.90E+01 2.78E+01 1.68E+02 1.38E+02 1.35E+02 1.36E+02 1.22E+02
p-value 2.38E-29 2.38E-29 9.02E-25 1.00E-78 4.26E-73 1.13E-71 5.47E-73 2.43E-71
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 4.0(1.4) 1.000(0.000) 0.999(0.000) 0.945(0.014) 0.937(0.016) 0.921(0.019) 0.912(0.021) 0.904(0.021)

t-statistic 3.83E+01 3.83E+01 2.71E+01 1.05E+02 9.85E+01 8.74E+01 8.01E+01 8.00E+01
p-value 7.09E-29 7.09E-29 1.09E-24 4.77E-53 4.89E-62 5.58E-50 3.62E-47 3.39E-51
p < 0.05 1 1 1 1 1 1 1 1

Citeseer

ATP (log) 2171.6(19.9) 0.595(0.004) 0.601(0.006) 0.026(0.001) 0.008(0.001) 0.032(0.003) 0.039(0.004) 0.034(0.006)
ATP (harmonic) 2145.5(21.2) 0.600(0.004) 0.604(0.006) 0.026(0.000) 0.008(0.001) 0.030(0.002) 0.034(0.005) 0.010(0.016)

LINE 3156.9(29.5) 0.411(0.006) 0.418(0.002) 0.052(0.002) 0.053(0.002) 0.057(0.004) 0.050(0.004) 0.010(0.016)
G2GNA,K=1 6.6(1.5) 0.999(0.000) 0.999(0.000) 0.814(0.009) 0.734(0.015) 0.611(0.012) 0.584(0.017) 0.570(0.066)

NK 26.1(1.9) 0.995(0.000) 0.995(0.001) 0.722(0.004) 0.645(0.007) 0.365(0.003) 0.252(0.001) 0.141(0.000)
HEADNetNA,Σ=I 3.5(1.2) 1.000(0.000) 0.999(0.000) 0.892(0.002) 0.839(0.005) 0.447(0.001) 0.300(0.001) 0.159(0.000)

G2GK=1 17.2(3.2) 0.997(0.001) 0.993(0.002) 0.632(0.010) 0.530(0.014) 0.395(0.014) 0.353(0.020) 0.424(0.069)
G2GK=3 17.0(2.8) 0.997(0.001) 0.993(0.002) 0.622(0.009) 0.513(0.014) 0.411(0.016) 0.371(0.023) 0.473(0.066)

HEADNetΣ=I 13.6(1.8) 0.998(0.000) 0.994(0.002) 0.670(0.003) 0.571(0.005) 0.358(0.002) 0.253(0.001) 0.144(0.000)

Significance Test

G2GNA,K=3 6.1(1.8) 0.999(0.000) 0.999(0.001) 0.790(0.010) 0.686(0.017) 0.634(0.016) 0.612(0.019) 0.634(0.054)

HEADNetNA 2.2(0.8) 1.000(0.000) 1.000(0.000) 0.947(0.016) 0.922(0.022) 0.894(0.036) 0.893(0.036) 0.934(0.042)

t-statistic 1.09E+01 1.09E+01 8.05E+00 4.58E+01 4.64E+01 3.57E+01 3.75E+01 2.40E+01
p-value 6.12E-14 6.12E-14 3.84E-11 5.36E-43 1.01E-45 1.94E-32 1.26E-35 6.59E-31
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 7.3(2.1) 0.999(0.000) 0.996(0.002) 0.779(0.019) 0.718(0.028) 0.709(0.024) 0.685(0.023) 0.711(0.084)

t-statistic -2.41E+00 -2.45E+00 -7.60E+00 -2.66E+00 5.38E+00 1.40E+01 1.31E+01 4.19E+00
p-value 9.90E-01 9.91E-01 1.00E+00 9.95E-01 1.14E-06 2.22E-19 5.94E-19 5.64E-05
p < 0.05 0 0 0 0 1 1 1 1
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TABLE C.6: Summary of the network reconstruction task on the Pubmed, Cora and Wiki
Vote networks for an embedding dimension of 50+50. HEADNetNA denotes HEADNet
without attributes. HEADNetΣ=I denoted HEADNet with an identity variance. A dash
(–) indicates that a network did not have attributes. Bold indicates best performance that is
significant at a 0.05 level. For each network, for the computation of the t-statistic, we select
the benchmark algorithm according to AP. Significant results at a significance level of 0.05

are highlighted in bold. Standard deviation is given in brackets.

Pubmed

Mean Rank AUROC AP mAP p@1 p@3 p@5 p@10

ATP (log) 63968.3(223.6) 0.278(0.003) 0.381(0.001) 0.074(0.003) 0.076(0.005) 0.147(0.009) 0.160(0.010) 0.159(0.010)
ATP (harmonic) 63783.3(222.1) 0.280(0.003) 0.387(0.001) 0.075(0.003) 0.078(0.005) 0.149(0.009) 0.161(0.010) 0.159(0.010)

LINE 63021.9(209.2) 0.289(0.002) 0.370(0.001) 0.022(0.000) 0.058(0.001) 0.100(0.002) 0.105(0.003) 0.090(0.003)
G2GNA,K=1 179.4(10.7) 0.998(0.000) 0.997(0.000) 0.850(0.005) 0.805(0.005) 0.838(0.009) 0.856(0.008) 0.866(0.006)

NK 397.6(10.6) 0.996(0.000) 0.994(0.000) 0.754(0.001) 0.759(0.002) 0.522(0.001) 0.410(0.001) 0.280(0.000)
HEADNetNA,Σ=I 14.3(2.9) 1.000(0.000) 1.000(0.000) 0.972(0.001) 0.951(0.001) 0.630(0.000) 0.484(0.000) 0.326(0.000)

G2GK=1 1690.2(106.9) 0.981(0.001) 0.972(0.002) 0.286(0.017) 0.182(0.011) 0.286(0.011) 0.344(0.013) 0.405(0.014)
G2GK=3 1365.3(65.8) 0.985(0.001) 0.976(0.001) 0.293(0.007) 0.210(0.005) 0.326(0.004) 0.387(0.006) 0.448(0.007)

HEADNetΣ=I 257.6(11.1) 0.997(0.000) 0.996(0.000) 0.636(0.001) 0.543(0.002) 0.438(0.001) 0.372(0.000) 0.275(0.000)

Significance Test

G2GNA,K=3 46.9(5.4) 0.999(0.000) 0.999(0.000) 0.915(0.002) 0.877(0.003) 0.918(0.004) 0.922(0.003) 0.924(0.003)

HEADNetNA 17.9(2.8) 1.000(0.000) 1.000(0.000) 0.963(0.003) 0.938(0.006) 0.982(0.001) 0.989(0.001) 0.993(0.001)

t-statistic 2.62E+01 2.62E+01 1.63E+01 7.50E+01 5.19E+01 7.63E+01 9.85E+01 1.27E+02
p-value 8.81E-29 8.81E-29 6.66E-20 1.24E-58 5.67E-44 1.44E-41 6.29E-47 1.26E-53
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 246.0(15.4) 0.997(0.000) 0.996(0.000) 0.641(0.007) 0.539(0.007) 0.699(0.005) 0.747(0.004) 0.786(0.004)

t-statistic -6.70E+01 -6.70E+01 -4.92E+01 -2.18E+02 -2.44E+02 -1.79E+02 -1.76E+02 -1.51E+02
p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 0 0 0 0 0 0 0 0

Cora

ATP (log) 32870.8(69.0) 0.497(0.001) 0.510(0.001) 0.061(0.000) 0.058(0.001) 0.072(0.001) 0.082(0.001) 0.098(0.001)
ATP (harmonic) 32603.2(67.5) 0.501(0.001) 0.516(0.001) 0.064(0.000) 0.065(0.001) 0.075(0.001) 0.084(0.001) 0.098(0.002)

LINE 34214.9(129.9) 0.476(0.002) 0.455(0.001) 0.088(0.001) 0.160(0.002) 0.162(0.002) 0.163(0.002) 0.155(0.002)
G2GNA,K=1 130.2(8.9) 0.998(0.000) 0.997(0.000) 0.814(0.007) 0.800(0.008) 0.750(0.009) 0.732(0.009) 0.725(0.008)

NK 385.2(9.3) 0.994(0.000) 0.994(0.000) 0.744(0.001) 0.790(0.002) 0.577(0.001) 0.451(0.001) 0.287(0.000)
HEADNetNA,Σ=I 14.9(2.5) 1.000(0.000) 1.000(0.000) 0.957(0.001) 0.941(0.001) 0.716(0.001) 0.560(0.000) 0.343(0.000)

G2GK=1 178.6(19.4) 0.997(0.000) 0.996(0.000) 0.766(0.012) 0.748(0.014) 0.688(0.015) 0.675(0.014) 0.679(0.011)
G2GK=3 118.6(11.4) 0.998(0.000) 0.998(0.000) 0.816(0.011) 0.804(0.012) 0.761(0.014) 0.744(0.013) 0.738(0.011)

HEADNetΣ=I 22.0(2.9) 1.000(0.000) 1.000(0.000) 0.940(0.001) 0.930(0.002) 0.703(0.001) 0.550(0.000) 0.340(0.000)

Significance Test

G2GNA,K=3 79.5(6.8) 0.999(0.000) 0.998(0.000) 0.868(0.006) 0.856(0.006) 0.827(0.009) 0.806(0.009) 0.786(0.008)

HEADNetNA 6.1(1.8) 1.000(0.000) 1.000(0.000) 0.990(0.002) 0.990(0.002) 0.986(0.003) 0.983(0.003) 0.978(0.004)

t-statistic 5.76E+01 5.76E+01 4.76E+01 1.05E+02 1.24E+02 9.16E+01 9.94E+01 1.15E+02
p-value 6.81E-35 6.81E-35 4.57E-34 2.54E-44 6.06E-46 6.72E-42 8.09E-47 3.44E-56
p < 0.05 1 1 1 1 1 1 1 1

HEADNet 10.9(2.8) 1.000(0.000) 1.000(0.000) 0.974(0.005) 0.973(0.005) 0.967(0.006) 0.962(0.006) 0.958(0.006)

t-statistic 5.13E+01 5.13E+01 4.28E+01 7.35E+01 8.05E+01 7.08E+01 7.78E+01 9.52E+01
p-value 1.59E-37 1.59E-37 1.18E-35 1.73E-57 2.03E-61 5.65E-51 1.01E-54 2.19E-60
p < 0.05 1 1 1 1 1 1 1 1

Wiki Vote

ATP (log) 53778.0(206.8) 0.481(0.002) 0.503(0.002) 0.031(0.000) 0.013(0.001) 0.022(0.001) 0.028(0.001) 0.042(0.001)
ATP (harmonic) 53758.4(200.7) 0.482(0.002) 0.503(0.001) 0.031(0.000) 0.013(0.001) 0.022(0.001) 0.027(0.001) 0.042(0.001)

LINE 72724.9(193.6) 0.299(0.002) 0.373(0.001) 0.031(0.001) 0.063(0.002) 0.115(0.003) 0.136(0.004) 0.157(0.004)
G2GNA,K=1 3853.7(244.3) 0.963(0.002) 0.951(0.003) 0.563(0.008) 0.524(0.013) 0.431(0.013) 0.408(0.011) 0.419(0.009)
G2GNA,K=3 4714.5(176.9) 0.955(0.002) 0.931(0.003) 0.220(0.013) 0.180(0.013) 0.231(0.011) 0.265(0.009) 0.314(0.009)

HEADNetNA,Σ=I 592.7(25.9) 0.994(0.000) 0.992(0.000) 0.854(0.007) 0.818(0.011) 0.606(0.002) 0.503(0.002) 0.384(0.002)
G2GK=1 – – – – – – – –
G2GK=3 – – – – – – – –

HEADNetΣ=I – – – – – – – –

Significance Test

NK 4184.2(24.7) 0.960(0.000) 0.964(0.000) 0.212(0.001) 0.286(0.003) 0.235(0.001) 0.214(0.001) 0.191(0.001)

HEADNetNA 59.9(9.5) 0.999(0.000) 0.999(0.000) 0.966(0.006) 0.948(0.010) 0.990(0.003) 0.988(0.003) 0.983(0.004)

t-statistic 8.54E+02 8.54E+02 4.42E+02 6.36E+02 3.31E+02 1.43E+03 1.33E+03 1.03E+03
p-value 4.87E-82 4.87E-82 3.87E-90 2.94E-63 6.58E-63 1.05E-104 4.82E-84 8.98E-73
p < 0.05 1 1 1 1 1 1 1 1

HEADNet – – – – – – – –

t-statistic – – – – – – – –
p-value – – – – – – – –
p < 0.05 – – – – – – – –
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TABLE C.7: Summary of the link prediction task on synthetic, Cora_ML, Citeseer, Pubmed,
Cora and Wiki Vote networks for an embedding dimension of 5+5. HEADNetNA denotes
HEADNet without attributes. A dash (–) indicates that a network did not have attributes.
All measures are reported to 3 decimal places. For each network, for the computation of
the t-statistic, we select the benchmark algorithm according to AP. Significant results at a

significance level of 0.05 are highlighted in bold. Standard deviation is given in brackets.

Synthetic (∼173 edges removed) Pubmed (8865 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 88.6(8.7) 0.494(0.041) 0.567(0.040) 0.016(0.020) ATP (log) 7692.5(23.8) 0.132(0.003) 0.327(0.001) 0.032(0.003)
ATP (harmonic) 85.9(8.4) 0.510(0.040) 0.574(0.040) 0.016(0.020) ATP (harmonic) 7680.9(24.4) 0.134(0.003) 0.330(0.001) 0.035(0.003)

LINE 120.9(7.8) 0.307(0.035) 0.384(0.012) 0.020(0.008) LINE 4880.6(62.5) 0.450(0.007) 0.433(0.003) 0.083(0.004)
G2GNA,K=1 48.9(6.4) 0.722(0.042) 0.650(0.049) 0.012(0.007) G2GNA,K=1 98.5(13.3) 0.989(0.002) 0.987(0.002) 0.412(0.029)

NK 43.2(10.2) 0.754(0.067) 0.693(0.070) 0.017(0.007) NK 150.5(8.8) 0.983(0.001) 0.982(0.001) 0.426(0.005)
G2GK=1 – – – – G2GK=1 313.0(20.3) 0.965(0.002) 0.953(0.003) 0.138(0.006)
G2GK=3 – – – – G2GK=3 250.1(16.1) 0.972(0.002) 0.962(0.003) 0.155(0.004)

Significance Test Significance Test

G2GNA,K=3 34.7(5.5) 0.805(0.036) 0.765(0.048) 0.022(0.008) G2GNA,K=3 53.7(6.0) 0.994(0.001) 0.993(0.001) 0.494(0.010)

HEADNetNA 27.7(4.5) 0.845(0.029) 0.842(0.037) 0.046(0.010) HEADNetNA 128.3(8.4) 0.986(0.001) 0.986(0.001) 0.474(0.006)

t-statistic 5.37E+00 4.87E+00 6.94E+00 1.05E+01 t-statistic -3.95E+01 -3.95E+01 -2.85E+01 -8.95E+00
p-value 7.78E-07 4.88E-06 2.40E-09 5.81E-15 p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 1 1 1 1 p < 0.05 0 0 0 0

HEADNet – – – – HEADNet 137.5(9.7) 0.985(0.001) 0.980(0.002) 0.302(0.007)

t-statistic – – – – t-statistic -4.03E+01 -4.03E+01 -3.70E+01 -8.23E+01
p-value – – – – p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 – – – – p < 0.05 0 0 0 0

Cora_ML (842 edges removed) Cora (6532 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 507.2(12.0) 0.399(0.014) 0.440(0.009) 0.017(0.002) ATP (log) 3969.1(34.9) 0.393(0.005) 0.433(0.004) 0.018(0.001)
ATP (harmonic) 502.7(12.1) 0.404(0.014) 0.449(0.010) 0.020(0.003) ATP (harmonic) 3942.2(35.3) 0.397(0.005) 0.438(0.004) 0.022(0.001)

LINE 400.4(14.1) 0.526(0.017) 0.479(0.010) 0.085(0.008) LINE 2934.7(47.5) 0.551(0.007) 0.499(0.005) 0.123(0.004)
G2GNA,K=1 30.9(4.6) 0.965(0.005) 0.960(0.008) 0.210(0.018) G2GNA,K=1 87.5(10.2) 0.987(0.002) 0.987(0.002) 0.424(0.017)
G2GNA,K=3 29.2(4.3) 0.967(0.005) 0.962(0.007) 0.219(0.014) NK 156.8(12.5) 0.976(0.002) 0.979(0.002) 0.442(0.006)

NK 36.9(3.9) 0.957(0.005) 0.958(0.006) 0.251(0.013) G2GK=1 78.3(9.6) 0.988(0.001) 0.987(0.002) 0.386(0.021)
G2GK=1 26.7(3.6) 0.969(0.004) 0.963(0.007) 0.213(0.016) G2GK=3 73.4(5.8) 0.989(0.001) 0.988(0.001) 0.401(0.013)

Significance Test Significance Test

G2GK=3 26.2(3.6) 0.970(0.004) 0.964(0.007) 0.219(0.015) G2GNA,K=3 80.2(8.0) 0.988(0.001) 0.988(0.001) 0.445(0.015)

HEADNetNA 38.5(3.7) 0.956(0.004) 0.959(0.005) 0.302(0.016) HEADNetNA 156.4(7.8) 0.976(0.001) 0.980(0.001) 0.499(0.007)

t-statistic -1.30E+01 -1.30E+01 -2.81E+00 2.06E+01 t-statistic -3.72E+01 -3.72E+01 -2.43E+01 1.74E+01
p-value 1.00E+00 1.00E+00 9.97E-01 1.49E-28 p-value 1.00E+00 1.00E+00 1.00E+00 3.68E-21
p < 0.05 0 0 0 1 p < 0.05 0 0 0 1

HEADNet 25.3(3.5) 0.971(0.004) 0.971(0.005) 0.341(0.022) HEADNet 90.9(5.6) 0.986(0.001) 0.987(0.001) 0.540(0.010)

t-statistic 9.25E-01 9.25E-01 5.07E+00 2.50E+01 t-statistic -6.03E+00 -6.03E+00 -3.25E+00 2.86E+01
p-value 1.79E-01 1.79E-01 2.70E-06 1.10E-30 p-value 1.00E+00 1.00E+00 9.99E-01 7.71E-33
p < 0.05 0 0 1 1 p < 0.05 0 0 0 1

Citeseer (536 edges removed) Wiki Vote (10369 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 319.1(13.6) 0.406(0.025) 0.463(0.025) 0.018(0.002) ATP (log) 5742.5(36.3) 0.446(0.003) 0.472(0.003) 0.013(0.001)
ATP (harmonic) 318.4(12.3) 0.408(0.023) 0.462(0.020) 0.019(0.003) ATP (harmonic) 5745.5(36.2) 0.446(0.003) 0.472(0.003) 0.013(0.001)

LINE 349.0(8.8) 0.351(0.017) 0.395(0.007) 0.045(0.006) LINE 6932.9(74.9) 0.331(0.007) 0.384(0.003) 0.055(0.003)
G2GNA,K=1 29.7(4.6) 0.947(0.009) 0.961(0.007) 0.258(0.015) G2GNA,K=1 576.0(51.3) 0.945(0.005) 0.929(0.006) 0.094(0.007)
G2GNA,K=3 29.1(4.8) 0.948(0.009) 0.961(0.008) 0.239(0.014) G2GNA,K=3 468.8(20.8) 0.955(0.002) 0.937(0.003) 0.105(0.003)

NK 53.5(6.0) 0.902(0.011) 0.925(0.008) 0.255(0.011) G2GK=1 – – – –
G2GK=1 15.6(3.0) 0.973(0.006) 0.970(0.010) 0.248(0.017) G2GK=3 – – – –

Significance Test Significance Test

G2GK=3 15.4(2.7) 0.973(0.005) 0.971(0.009) 0.235(0.016) NK 223.7(8.5) 0.979(0.001) 0.977(0.001) 0.169(0.003)

HEADNetNA 38.6(4.3) 0.930(0.008) 0.941(0.008) 0.283(0.025) HEADNetNA 184.0(9.6) 0.982(0.001) 0.976(0.001) 0.186(0.003)

t-statistic -2.47E+01 -2.47E+01 -1.33E+01 8.86E+00 t-statistic 1.70E+01 1.70E+01 -1.98E+00 2.02E+01
p-value 1.00E+00 1.00E+00 1.00E+00 4.55E-12 p-value 2.59E-24 2.59E-24 9.74E-01 3.89E-28
p < 0.05 0 0 0 1 p < 0.05 1 1 0 1

HEADNet 16.3(3.0) 0.971(0.006) 0.968(0.009) 0.332(0.023) HEADNet – – – –

t-statistic -1.13E+00 -1.13E+00 -9.74E-01 1.92E+01 t-statistic – – – –
p-value 8.69E-01 8.69E-01 8.33E-01 1.20E-25 p-value – – – –
p < 0.05 0 0 0 1 p < 0.05 – – – –
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TABLE C.8: Summary of the link prediction task on synthetic, Cora_ML, Citeseer, Pubmed,
Cora and Wiki Vote networks for an embedding dimension of 10+10. HEADNetNA denotes
HEADNet without attributes. A dash (–) indicates that a network did not have attributes.
All measures are reported to 3 decimal places. For each network, for the computation of
the t-statistic, we select the benchmark algorithm according to AP. Significant results at a

significance level of 0.05 are highlighted in bold. Standard deviation is given in brackets.

Synthetic (∼173 edges removed) Pubmed (8865 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 87.9(8.1) 0.498(0.039) 0.575(0.040) 0.016(0.020) ATP (log) 7693.3(24.0) 0.132(0.003) 0.327(0.001) 0.051(0.003)
ATP (harmonic) 85.8(7.8) 0.509(0.039) 0.582(0.040) 0.016(0.020) ATP (harmonic) 7682.3(24.6) 0.134(0.003) 0.330(0.001) 0.053(0.003)

LINE 120.6(8.0) 0.309(0.037) 0.385(0.013) 0.021(0.007) LINE 4707.8(48.2) 0.469(0.005) 0.441(0.003) 0.060(0.003)
G2GNA,K=1 48.5(7.2) 0.725(0.048) 0.648(0.051) 0.010(0.005) G2GNA,K=1 76.3(9.1) 0.992(0.001) 0.990(0.002) 0.467(0.018)

NK 35.5(10.2) 0.799(0.065) 0.735(0.075) 0.026(0.008) NK 118.2(6.0) 0.987(0.001) 0.986(0.001) 0.461(0.005)
G2GK=1 – – – – G2GK=1 299.3(19.2) 0.966(0.002) 0.956(0.003) 0.143(0.005)
G2GK=3 – – – – G2GK=3 230.9(9.5) 0.974(0.001) 0.965(0.002) 0.169(0.005)

Significance Test Significance Test

G2GNA,K=3 33.9(5.6) 0.810(0.035) 0.760(0.040) 0.023(0.009) G2GNA,K=3 42.5(5.0) 0.995(0.001) 0.995(0.001) 0.578(0.011)
HEADNetNA 24.6(3.7) 0.863(0.024) 0.859(0.029) 0.050(0.011) HEADNetNA 52.0(6.4) 0.994(0.001) 0.994(0.001) 0.643(0.014)

t-statistic 7.59E+00 6.89E+00 1.10E+01 1.06E+01 t-statistic -6.38E+00 -6.38E+00 -4.48E+00 2.06E+01
p-value 3.51E-10 3.67E-09 1.44E-15 2.66E-15 p-value 1.00E+00 1.00E+00 1.00E+00 1.17E-27
p < 0.05 1 1 1 1 p < 0.05 0 0 0 1

HEADNet – – – – HEADNet 89.3(8.0) 0.990(0.001) 0.987(0.001) 0.374(0.008)

t-statistic – – – – t-statistic -2.71E+01 -2.71E+01 -2.60E+01 -8.41E+01
p-value – – – – p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 – – – – p < 0.05 0 0 0 0

Cora_ML (842 edges removed) Cora (6532 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 505.1(12.4) 0.401(0.015) 0.441(0.010) 0.022(0.003) ATP (log) 3962.6(34.9) 0.394(0.005) 0.433(0.004) 0.026(0.001)
ATP (harmonic) 500.8(12.7) 0.406(0.015) 0.450(0.011) 0.024(0.003) ATP (harmonic) 3935.9(35.3) 0.398(0.005) 0.438(0.004) 0.029(0.002)

LINE 397.6(13.6) 0.529(0.016) 0.480(0.010) 0.079(0.009) LINE 2933.3(38.0) 0.551(0.006) 0.498(0.003) 0.104(0.004)
G2GNA,K=1 28.0(3.8) 0.968(0.005) 0.964(0.006) 0.233(0.013) G2GNA,K=1 80.2(8.5) 0.988(0.001) 0.988(0.002) 0.440(0.014)
G2GNA,K=3 27.6(3.6) 0.968(0.004) 0.965(0.006) 0.233(0.014) NK 121.3(8.2) 0.982(0.001) 0.983(0.001) 0.469(0.005)

NK 31.6(3.7) 0.964(0.004) 0.963(0.005) 0.266(0.012) G2GK=1 71.4(5.6) 0.989(0.001) 0.988(0.001) 0.410(0.015)
G2GK=3 24.8(3.2) 0.972(0.004) 0.966(0.006) 0.238(0.016) G2GK=3 66.4(5.0) 0.990(0.001) 0.989(0.001) 0.434(0.013)

Significance Test Significance Test

G2GK=1 24.5(3.2) 0.972(0.004) 0.967(0.006) 0.231(0.016) G2GNA,K=3 73.1(8.2) 0.989(0.001) 0.989(0.001) 0.475(0.017)

HEADNetNA 29.3(3.2) 0.966(0.004) 0.968(0.004) 0.352(0.014) HEADNetNA 105.3(10.1) 0.984(0.002) 0.986(0.001) 0.574(0.009)

t-statistic -5.82E+00 -5.82E+00 1.10E+00 3.10E+01 t-statistic -1.36E+01 -1.36E+01 -8.87E+00 2.77E+01
p-value 1.00E+00 1.00E+00 1.39E-01 1.17E-37 p-value 1.00E+00 1.00E+00 1.00E+00 4.60E-30
p < 0.05 0 0 0 1 p < 0.05 0 0 0 1

HEADNet 18.9(2.5) 0.979(0.003) 0.978(0.003) 0.395(0.020) HEADNet 55.5(4.5) 0.992(0.001) 0.992(0.001) 0.625(0.006)

t-statistic 7.54E+00 7.54E+00 8.82E+00 3.51E+01 t-statistic 1.03E+01 1.03E+01 9.15E+00 4.50E+01
p-value 2.63E-10 2.63E-10 1.00E-11 7.12E-40 p-value 8.82E-14 8.82E-14 1.51E-11 1.18E-33
p < 0.05 1 1 1 1 p < 0.05 1 1 1 1

Citeseer (536 edges removed) Wiki Vote (10369 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 313.4(11.8) 0.417(0.022) 0.475(0.020) 0.022(0.003) ATP (log) 5741.1(38.2) 0.446(0.004) 0.473(0.003) 0.013(0.001)
ATP (harmonic) 311.2(12.6) 0.421(0.023) 0.478(0.023) 0.021(0.003) ATP (harmonic) 5741.9(38.5) 0.446(0.004) 0.473(0.003) 0.013(0.001)

LINE 315.3(7.6) 0.414(0.014) 0.422(0.007) 0.042(0.007) LINE 6972.5(54.4) 0.328(0.005) 0.383(0.002) 0.045(0.003)
G2GNA,K=1 28.7(4.4) 0.948(0.008) 0.962(0.007) 0.268(0.014) G2GNA,K=1 521.1(37.5) 0.950(0.004) 0.936(0.004) 0.101(0.005)
G2GNA,K=3 28.7(4.4) 0.948(0.008) 0.961(0.007) 0.251(0.013) G2GNA,K=3 455.2(22.2) 0.956(0.002) 0.937(0.004) 0.112(0.003)

NK 44.6(5.3) 0.919(0.010) 0.938(0.007) 0.263(0.010) G2GK=1 – – – –
G2GK=1 15.3(2.6) 0.973(0.005) 0.971(0.008) 0.253(0.014) G2GK=3 – – – –

Significance Test Significance Test

G2GK=3 15.2(2.4) 0.974(0.005) 0.971(0.009) 0.240(0.014) NK 208.9(8.3) 0.980(0.001) 0.978(0.001) 0.176(0.004)

HEADNetNA 35.9(5.1) 0.935(0.009) 0.948(0.008) 0.345(0.025) HEADNetNA 135.9(10.1) 0.987(0.001) 0.983(0.002) 0.210(0.004)

t-statistic -2.01E+01 -2.01E+01 -1.08E+01 2.01E+01 t-statistic 3.06E+01 3.06E+01 1.24E+01 3.50E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.66E-24 p-value 7.41E-37 7.41E-37 4.24E-17 5.46E-41
p < 0.05 0 0 0 1 p < 0.05 1 1 1 1

HEADNet 13.7(2.9) 0.976(0.005) 0.974(0.009) 0.392(0.026) HEADNet – – – –
t-statistic 2.05E+00 2.05E+00 1.14E+00 2.78E+01 t-statistic – – – –
p-value 2.27E-02 2.27E-02 1.29E-01 8.24E-30 p-value – – – –
p < 0.05 1 1 0 1 p < 0.05 – – – –
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TABLE C.9: Summary of the link prediction task on synthetic, Cora_ML, Citeseer, Pubmed,
Cora and Wiki Vote networks for an embedding dimension of 50+50. HEADNetNA denotes
HEADNet without attributes. A dash (–) indicates that a network did not have attributes.
All measures are reported to 3 decimal places. For each network, for the computation of
the t-statistic, we select the benchmark algorithm according to AP. Significant results at a

significance level of 0.05 are highlighted in bold. Standard deviation is given in brackets.

Synthetic (∼173 edges removed) Pubmed (8865 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 93.9(10.0) 0.463(0.051) 0.546(0.047) 0.017(0.020) ATP (log) 7692.6(24.3) 0.132(0.003) 0.327(0.001) 0.106(0.005)
ATP (harmonic) 94.9(8.8) 0.457(0.045) 0.540(0.042) 0.016(0.020) ATP (harmonic) 7682.5(25.0) 0.134(0.003) 0.330(0.001) 0.107(0.005)

LINE 122.9(8.2) 0.296(0.037) 0.381(0.012) 0.015(0.008) LINE 5317.1(86.9) 0.400(0.010) 0.411(0.004) 0.042(0.002)
G2GNA,K=1 47.0(7.4) 0.733(0.049) 0.648(0.054) 0.010(0.005) G2GNA,K=1 63.0(6.2) 0.993(0.001) 0.992(0.001) 0.512(0.011)
G2GNA,K=3 37.2(7.1) 0.790(0.045) 0.733(0.053) 0.024(0.009) NK 105.6(6.2) 0.988(0.001) 0.987(0.001) 0.479(0.005)

G2GK=1 – – – – G2GK=1 271.6(18.6) 0.969(0.002) 0.960(0.003) 0.152(0.007)
G2GK=3 – – – – G2GK=3 218.6(10.8) 0.975(0.001) 0.967(0.002) 0.174(0.004)

Significance Test Significance Test

NK 32.8(8.9) 0.814(0.057) 0.749(0.069) 0.033(0.009) G2GNA,K=3 38.2(5.2) 0.996(0.001) 0.995(0.001) 0.624(0.007)

HEADNetNA 20.2(3.9) 0.889(0.024) 0.877(0.027) 0.053(0.011) HEADNetNA 38.7(5.1) 0.996(0.001) 0.996(0.001) 0.782(0.011)

t-statistic 7.14E+00 6.54E+00 9.37E+00 7.69E+00 t-statistic -3.70E-01 -3.70E-01 2.07E+00 6.53E+01
p-value 6.41E-09 4.60E-08 1.03E-11 1.31E-10 p-value 6.44E-01 6.44E-01 2.16E-02 1.32E-49
p < 0.05 1 1 1 1 p < 0.05 0 0 1 1

HEADNet 69.7(5.5) 0.992(0.001) 0.990(0.001) 0.436(0.005)

t-statistic – – – – t-statistic -2.28E+01 -2.28E+01 -2.19E+01 -1.20E+02
p-value – – – – p-value 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p < 0.05 – – – – p < 0.05 0 0 0 0

Cora_ML (842 edges removed) Cora (6532 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 495.9(12.3) 0.412(0.015) 0.451(0.010) 0.039(0.004) ATP (log) 3925.1(34.5) 0.399(0.005) 0.437(0.004) 0.049(0.002)
ATP (harmonic) 491.5(12.5) 0.417(0.015) 0.459(0.011) 0.040(0.004) ATP (harmonic) 3900.2(34.7) 0.403(0.005) 0.442(0.004) 0.050(0.002)

LINE 417.9(10.2) 0.505(0.012) 0.468(0.007) 0.059(0.008) LINE 3374.6(43.1) 0.484(0.007) 0.456(0.003) 0.083(0.003)
G2GNA,K=1 26.1(3.6) 0.970(0.004) 0.966(0.005) 0.247(0.014) G2GNA,K=1 71.6(6.2) 0.989(0.001) 0.989(0.001) 0.463(0.007)
G2GNA,K=3 26.4(3.9) 0.970(0.005) 0.966(0.007) 0.249(0.015) NK 105.7(6.8) 0.984(0.001) 0.985(0.001) 0.482(0.005)

NK 29.2(3.4) 0.967(0.004) 0.965(0.005) 0.273(0.011) G2GK=1 65.3(4.7) 0.990(0.001) 0.989(0.001) 0.431(0.013)
G2GK=3 24.0(3.1) 0.973(0.004) 0.968(0.006) 0.246(0.012) G2GK=3 63.6(4.9) 0.990(0.001) 0.990(0.001) 0.447(0.010)

Significance Test Significance Test

G2GK=1 23.6(2.7) 0.973(0.003) 0.968(0.005) 0.239(0.014) G2GNA,K=3 69.2(6.9) 0.990(0.001) 0.990(0.001) 0.491(0.011)

HEADNetNA 23.0(3.2) 0.974(0.004) 0.975(0.004) 0.399(0.017) HEADNetNA 85.2(6.2) 0.987(0.001) 0.989(0.001) 0.631(0.008)

t-statistic 6.89E-01 6.89E-01 6.14E+00 4.05E+01 t-statistic -9.45E+00 -9.45E+00 -3.20E+00 5.71E+01
p-value 2.47E-01 2.47E-01 5.14E-08 1.23E-43 p-value 1.00E+00 1.00E+00 9.99E-01 1.30E-50
p < 0.05 0 0 1 1 p < 0.05 0 0 0 1

HEADNet 15.4(2.4) 0.983(0.003) 0.983(0.003) 0.428(0.023) HEADNet 46.6(3.9) 0.993(0.001) 0.993(0.001) 0.664(0.007)

t-statistic 1.23E+01 1.23E+01 1.26E+01 3.90E+01 t-statistic 1.57E+01 1.57E+01 1.27E+01 7.45E+01
p-value 5.87E-18 5.87E-18 1.27E-17 1.91E-38 p-value 3.02E-20 3.02E-20 1.99E-16 3.69E-53
p < 0.05 1 1 1 1 p < 0.05 1 1 1 1

Citeseer (536 edges removed) Wiki Vote (10369 edges removed)

Mean Rank AUROC AP mAP Mean Rank AUROC AP mAP

ATP (log) 298.2(12.2) 0.446(0.023) 0.501(0.021) 0.033(0.005) ATP (log) 5769.3(34.9) 0.444(0.003) 0.471(0.003) 0.013(0.001)
ATP (harmonic) 294.5(11.8) 0.452(0.022) 0.505(0.020) 0.032(0.005) ATP (harmonic) 5767.0(33.9) 0.444(0.003) 0.472(0.003) 0.013(0.001)

LINE 302.6(8.3) 0.437(0.015) 0.432(0.007) 0.039(0.007) LINE 7276.5(45.1) 0.298(0.004) 0.373(0.001) 0.039(0.002)
G2GNA,K=1 28.7(4.5) 0.948(0.008) 0.962(0.007) 0.282(0.013) G2GNA,K=1 472.3(27.0) 0.955(0.003) 0.942(0.003) 0.112(0.006)
G2GNA,K=3 28.3(4.3) 0.949(0.008) 0.962(0.007) 0.269(0.011) G2GNA,K=3 474.1(21.1) 0.954(0.002) 0.933(0.004) 0.118(0.004)

NK 37.5(6.1) 0.932(0.011) 0.948(0.008) 0.266(0.013) G2GK=1 – – – –
G2GK=1 14.8(3.1) 0.974(0.006) 0.971(0.009) 0.259(0.014) G2GK=3 – – – –

Significance Test Significance Test

G2GK=3 14.8(2.6) 0.974(0.005) 0.972(0.009) 0.247(0.014) NK 194.5(7.5) 0.981(0.001) 0.980(0.001) 0.180(0.004)

HEADNetNA 33.7(4.6) 0.939(0.009) 0.953(0.007) 0.370(0.029) HEADNetNA 117.5(9.2) 0.989(0.001) 0.985(0.001) 0.216(0.004)

t-statistic -1.95E+01 -1.95E+01 -8.98E+00 2.10E+01 t-statistic 3.55E+01 3.55E+01 1.58E+01 3.26E+01
p-value 1.00E+00 1.00E+00 1.00E+00 1.61E-24 p-value 2.30E-40 2.30E-40 6.61E-22 4.21E-39
p < 0.05 0 0 0 1 p < 0.05 1 1 1 1

HEADNet 12.3(2.2) 0.979(0.004) 0.977(0.007) 0.424(0.017) HEADNet – – – –

t-statistic 4.05E+00 4.05E+00 2.38E+00 4.39E+01 t-statistic – – – –
p-value 7.85E-05 7.89E-05 1.05E-02 9.53E-46 p-value – – – –
p < 0.05 1 1 1 1 p < 0.05 – – – –
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TABLE C.10: Summary of link prediction on unseen nodes on embedding dimensions 25+25
and 50+50. All measures are reported to 3 decimal places with the exception of mean rank
which is to 1 decimal place. Bold indicates best performance that is significant at a 0.05 level.
For each network, for the computation of the t-statistic, we select the benchmark algorithm
according to AP. The selected benchmark algorithm is identified with an asterisk (*). Signifi-
cant results at a significance level of 0.05 are highlighted in bold. Standard deviation is given

in brackets.

25+25

Cora_ML (300 nodes removed) Pubmed (1972 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 417.1(67.1) 0.746(0.028) 0.690(0.029) *G2GK=1 2771.0(231.7) 0.836(0.012) 0.811(0.013)
G2GK=3 644.3(85.2) 0.605(0.042) 0.556(0.036) G2GK=3 4033.5(421.9) 0.761(0.022) 0.742(0.021)

HEADNet 181.1(40.9) 0.890(0.018) 0.899(0.017) HEADNet 1673.4(96.5) 0.901(0.004) 0.902(0.004)

t-statistic 16.44 23.63 33.77 t-statistic 24.97 29.98 39.99
p-value 1.246E-21 6.78E-29 2.625E-34 p-value 1.102E-26 2.446E-29 5.557E-33
p < 0.05 1 1 1 p < 0.05 1 1 1

Citeseer (423 nodes removed) Cora (1980 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 229.8(25.2) 0.772(0.018) 0.789(0.019) *G2GK=1 2391.3(257.9) 0.807(0.018) 0.772(0.020)
G2GK=3 233.9(29.3) 0.768(0.023) 0.785(0.024) G2GK=3 3522.5(334.9) 0.716(0.023) 0.668(0.027)

HEADNet 154.5(21.0) 0.847(0.018) 0.864(0.016) HEADNet 549.4(48.7) 0.956(0.003) 0.959(0.002)

t-statistic 12.59 15.93 16.48 t-statistic 38.44 45.21 50.29
p-value 2.677E-18 3.798E-23 1.756E-23 p-value 4.621E-28 5.124E-30 1.091E-30
p < 0.05 1 1 1 p < 0.05 1 1 1

50+50

Cora_ML (300 nodes removed) Pubmed (1972 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 424.4(71.2) 0.741(0.030) 0.684(0.032) *G2GK=1 2794.7(230.1) 0.835(0.012) 0.808(0.012)
G2GK=3 628.3(94.7) 0.615(0.048) 0.565(0.042) G2GK=3 4091.3(502.5) 0.758(0.026) 0.737(0.026)

HEADNet 170.3(39.6) 0.897(0.017) 0.904(0.017) HEADNet 1659.1(126.7) 0.902(0.005) 0.903(0.004)

t-statistic 17.08 24.31 33.37 t-statistic 23.68 29.15 39.68
p-value 1.075E-21 3.038E-28 7.244E-33 p-value 2.225E-27 2.771E-28 9.815E-32
p < 0.05 1 1 1 p < 0.05 1 1 1

Citeseer (423 nodes removed) Cora (1980 nodes removed)

Mean Rank AUROC AP Mean Rank AUROC AP

*G2GK=1 227.5(27.2) 0.774(0.023) 0.792(0.021) *G2GK=1 2353.5(237.2) 0.810(0.018) 0.776(0.022)
G2GK=3 233.1(27.4) 0.768(0.023) 0.786(0.022) G2GK=3 3710.1(243.9) 0.701(0.020) 0.652(0.023)

HEADNet 151.1(19.3) 0.850(0.016) 0.868(0.015) HEADNet 524.0(58.1) 0.958(0.004) 0.961(0.003)

t-statistic 12.54 15.22 16.22 t-statistic 41.03 43.83 44.78
p-value 1.112E-17 5.016E-21 2.502E-22 p-value 7.509E-30 3.362E-30 2.72E-29
p < 0.05 1 1 1 p < 0.05 1 1 1
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Appendix D

Supplementary for Chapter 5

D.1 Generation of Synthetic Bow-Tie Networks

D.1.1 Generate Topology

Algorithm 5 Construct synthetic bow tie networks with core positive feedback loop.

1: function CONSTRUCTBOWTIE(Nin, Ncore, Nout, |Ecp|max, NplantedLoop, coreLoop-
Type)

2: G← DiGraph()
3: inComponent← {ui | i ∈ [1, Nin]}
4: core← {ci | i ∈ [1, Ncore]}
5: outComponent← {oi | i ∈ [1, Nout]}
6: G.addNodesFrom(inComponent ∪ core ∪ outComponent)
7: plantedLoop← {ci | i ∈ [1, NplantedLoop]} . plantedLoop ⊆ core
8: BUILDCORE(G, core, plantedLoop, coreLoopType) . Build strongly

connected core
9: for u ∈ inComponent do . add edges from inComponent to core

10: numEdges← RANDOMCHOICE([1, |Ecp|max])
11: for i ∈ [1,numEdges] do
12: c← RANDOMCHOICE(core)
13: w← RANDOMCHOICE({-1, 1})
14: G.addEdge(u, c, w)
15: end for
16: end for
17: for o ∈ outComponent do . add edges from core to outComponent
18: numEdges← RANDOMCHOICE([1, |Ecp|max])
19: for i ∈ [1,numEdges] do
20: c← RANDOMCHOICE(core)
21: w← RANDOMCHOICE({-1, 1})
22: G.addEdge(c, o, w)
23: end for
24: end for
25: return G

26: end function
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Generation of bow-tie topology is described in algorithm 5. It requires five input

arguments: Nin, Ncore, Nout, |Ecp|max, NplantedLoop, and coreLoopType. Nin, Ncore, and

Nout are the number of nodes in the in-, core and out-components respectively. Our

networks contain Nin = 3 nodes in the in-component, Nout = 10 nodes in the out-

component, and core size Ncore ∈ {6, 10, 15}. |Ecp|max is the maximum number of

connections connecting periphery nodes to core nodes. That is the maximum num-

ber of connections from nodes in the in component to the core and from nodes in the

core to the nodes in the out component. NplantedLoop is the size of the planted positive

feedback loop. We fix NplantedLoop = 3 for all synthetic networks. coreLoopType is a

flag to set the type of the core feedback loop to be positive or negative.

Algorithm 6 Add cycle to directed graph G.

1: function ADDCYCLE(G, cycle, coreLoopType)
2: cycleLength← LENGTH(cycle)
3: for i ∈ [1, cycleLength] do
4: if coreLoopType = pos then
5: w← 1
6: else
7: w← −1
8: end if
9: G.addEdge(cycle[i], cycle[i + 1% cycleLength], w) . % is the modulo

operator
10: end for
11: end function

Algorithm 7 Add chain to directed graph G.

1: function ADDCHAIN(G, chain)
2: chainLength← LENGTH(chain)
3: for i ∈ [1, chainLength− 1] do
4: w← RANDOMCHOICE({-1, 1})
5: G.addEdge(chain[i], chain[i + 1], w)
6: end for
7: end function

The core of the bow-tie networks is build using algorithm 8 and is based upon

adding cycles (see algorithm 6). The core is initialized as NplantedLoop nodes (the

planted loop) forming a feedback loop. The sign of the feedback loop is determined

using the flag coreLoopType. Then, for each remaining node c ∈ core \ planted-

Loop, a chain [s, c, s] is built beginning from s ∈ plantedLoop and ending with e ∈

plantedLoop (see algorithm 7). Then c is added to the plantedLoop set.
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Algorithm 8 Build a strongly connected core around a positive feedback loop in G.

1: function BUILDCORE(G, core, plantedLoop, coreLoopType)
2: ADDCYCLE(G, plantedLoop, coreLoopType) . create core positive feedback

loop
3: core← core \ plantedLoop
4: while |core| > 0 do . Build up core from planted loop
5: s← RANDOMCHOICE(plantedLoop)
6: c← RANDOMCHOICE(core)
7: e←RANDOMCHOICE(plantedLoop)
8: newChain← [s, c, e]
9: ADDCHAIN(G, newChain) . Allow negative relations

10: core← core \ newChain
11: end while . core is guaranteed to be strongly connected
12: end function

Theorem 1. Algorithm 8 produces a strongly connected core of size Ncore ≥ NplantedLoop.

Proof. Proof by induction on Ncore.

Base case (Ncore = NplantedLoop): since the core is initialized as a positive cycle

of length NplantedLoop, which is trivially strongly connected, then the entire core is

strongly connected.

Inductive hypothesis: the theorem holds for core of size Ncore ≤ n.

Inductive step (Ncore = n + 1): A new chain containing a node c that is not

already in in the core of the core is added to G that begins and ends with nodes s, e ∈

plantedLoop, producing a core size of n+ 1. To prove this core is strongly connected,

we must show that the new node c can reach every node in plantedLoop. This chain

forms a path from s to e. Since s, e ∈ plantedLoop, and |plantedLoop| = n then,

by the inductive hypothesis, plantedLoop is strongly connected and a path exists

from e to s. This forms a cycle C=[s, c, e, ..., s] and every node in C can reach every

other node in C. In particular, c can reach every node in C. Furthermore, since e ∈

plantedLoop, then e can reach every node n ∈ plantedLoop \ C. Now c can reach e

and so c can reach all nodes in plantedLoop \ C. Therefore c can reach all nodes in

C ∪ plantedLoop \ C = plantedLoop as required.

Theorem 1 shows that algorithm 8 produces a core that is strongly connected as

required. To build the bow-tie structure around the constructed core, we sparsely

connect nodes in the in-component to the core and nodes in the core to nodes in the
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FIGURE D.1: An example synthetic bow tie network generated by algorithm 5 with Ncore =
6. Nodes n0 to n2 form the in-component. Nodes n3, n4, and n5 form a (positive) coherent
core feedback loop. Nodes n6, n7, and n8 comprise the remainder of the core. Nodes n3 to
n8 form the largest strongly connected component in the network – the core of the bow-tie

architecture. Nodes n9 to n18 form the out-component.

out-component. Each node in the in- and out-components can have at most |Ecp|max

edges incident to it.

Figure D.1 plots an example synthetic bow-tie network topology generated using

algorithm 5 with Ncore = 6.

D.1.2 Generate Boolean Rules from Topology

After determining a network topology, dynamics must be determined, respecting

the sign of edges. This is achieved using algorithm 9. Our approach is simple, how-

ever generates dynamical behaviour operating at criticality, with an average sensi-

tivity close to 1 (see table 5.5), and derrida curves mirroring the curves produced by

real-world networks (see figure D.3) – a dynamical property of real world dynamical

systems (see section 1.5.9) – suggesting that our approach is valid1.

To build the boolean function fu for node u, we use the set of input nodes Vin
u

that have an edge to u as input to fu. If |Vin
u | = 0 (that is, node u has no input

nodes) then u is an input node and we determine that input nodes should keep

their value. Otherwise, the rule is initialised to be empty, The set of input nodes

1Recall that “biological regulatory networks are more distinguished from random networks by their
criticality than by other macro-scale network properties such as degree distribution, edge density, or
fraction of activating conditions” (Daniels et al., 2018). It follows from this that the generated synthetic
bow tie models are reasonable approximations of real-life biological networks.
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Algorithm 9 Generate boolean rules from a given signed network G.

1: function CREATEBOOLEANRULES(G)
2: rules← []
3: for u ∈ G do
4: inEdges← G.inEdges(u)
5: if LENGTH(inEdges) == 0 then
6: fu ← u . nodes in in-component keep their value
7: else . build rule from incoming edges
8: fu ← ε . initialize empty string
9: inEdges← SHUFFLE(inEdges) . Randomize order of inputs

10: for v, w ∈ inEdges do
11: if w < 0 then . inhibition
12: v← ¬v
13: end if
14: connective← RANDOMCHOICE({∧,∨})
15: fu ← fu + connective + v
16: end for
17: end if
18: fu ← ADDBRACKETS( fu)
19: rules[u]← fu
20: end for
21: return rules
22: end function

v ∈ Vin
u is shuffled and added to the rule one at a time. If the rule is non-empty,

then a randomly selected boolean connective (either AND (∧) or OR (∨) is added

to the rule, before an input node literal is added. If the sign of the edge (v, u) is

positive, the literal for node v is v, otherwise it is the negation of v: ¬v. Once all input

nodes have been processed, we surround the OR terms in fu with brackets using

the ADDBRACKETS(·) function to put fu into CNF (see section 1.5.5). Figure D.2

describes the process of transforming topology into boolean rules.

D.2 Supplementary Information on Datasets

D.2.1 Derrida Curves

Figure D.3 plots the derrida curves for the three case study networks and the three

synthetic bow tie architectures. Comparison between the curves of the synthetic and

real world networks show that our synthetic networks display critical behaviour that

closely mirrors the expected behaviour of real world networks.
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(A) The node n0 and all of the nodes n1, n2, n3, n4, and n5 that connect to it. The nodes n2,
n3, and n4 are assigned an activatory effect on n0, denoted with an arrowhead. The nodes

n1 and n5 are assigned an inhibitory effect on n0, denoted with the line arrowhead.

fn0 := ¬n5∧ n2∨ ¬n1∧ n3∨ n4

(B) The topology in (A) is transformed into boolean rules. Input nodes with an inhibitory
relationship are negated when they added to the rule. Each input node after the first (n5) is

attached to the rule using a randomly selected boolean connective.

fn0 := ¬n5∧ (n2∨ ¬n1) ∧ (n3∨ n4)

(C) Input nodes connected by OR are surrounded by brackets to transform the rule into CNF
(see section 1.5.5).

FIGURE D.2: The procedure for transforming synthetic signed network topology into rules.
(A) shows the subnetwork induced by the node n0 and all of the nodes that have a directed
edge to it. (B) shows a randomly generated boolean rule from the topology described in
(A). The order of the input nodes is shuffled and each input node after the first is connected
by a randomly selected boolean connective. (C) shows how the rule in (B) is transformed
into conjunctive normal form (CNF). Note that the rules described in (B) and (C) are not

equivalent.

D.3 Additional Results: Synthetic Bow-Tie Networks

Figure D.4 shows the box plots of the significance of turning off members of planted

coherent feedback loops for synthetic bow tie networks with Ncore = 10 (fig-

ure D.4A) and Ncore = 15 (figure D.4B) nodes in the core.

D.4 Additional Results: Cancerous Case Study Networks

D.4.1 AGS Gastric Cancer Cell Line

Table D.1 shows full AUROC and AP scores for each output node for the Gastric

cancer network. In table D.2 we show the ranking of IMPLISig compared with a
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(A) Ncore = 6 (B) Ncore = 10 (C) Ncore = 15

(D) Gastric (E) EGFR (F) TCIM

(G) SCCC (H) SP (I) MCD

(J) MMD

FIGURE D.3: Derrida curves for the synthetic ((A) (B) and (C)) and the case study networks
((D) (E) and (F)), and the GRNs ((G), (H), (I), and (J).The x-axes plot mean hamming distance
at time t (mDH(t)), and the y-axes plot mean hamming distance at time t + 1 (mDH(t + 1)).
The black lines denote criticality. The red lines plot mDH(t + 1) against mDH(t) for each
network. The vertical black lines are the standard deviations over 1000 sampled state pairs.
We see for small perturbations at time t, the networks behave close to criticality as expected
(Daniels et al., 2018). This follows from the close proximity of the red line to the black for

small values of mDH(t). This property also follows from average sensitivity 〈s〉 ≈ 1.
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(A) Ncore = 10

(B) Ncore = 15

FIGURE D.4: Additional synthetic bow-tie network results.

number of micro-scopic node features for AUROC and AP for each output, as well

as the mean rank across all outputs For AUROC, we see that IMPLISig ranks first

compared to the benchmarks for all but one output as well as ranking first for all

but two outputs with respect to AP. For both metrics, considering all output nodes

simultaneously, IMPLISig achieved the best performance.

D.4.2 EGFR-Erbb1 Signalling Network

Table D.3 shows full AUROC and AP scores for each output node for the EGFR-

Erbb1 signalling network. Table D.4 shows the rank of IMPLISig with respect to

AUROC and AP against a number of micro-scopic node features. For AUROC, we
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TABLE D.1: AUROC and AP scores for Gastric cancer network. Key: k: node degree, kin: in-
degree, kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient and cn: core
number. For IMPLISig, we use depth in feedback loop hierarchy as a predictor of signifi-

cance.

AUROC Pro-Cancer Anti-Cancer

RSK TCF cMYC FOXO Caspase8 Caspase9 Mean AUROC

k 0.662 0.480 0.480 0.480 0.701 0.504 0.551
kin 0.653 0.507 0.507 0.507 0.649 0.585 0.568
kout 0.568 0.505 0.505 0.505 0.635 0.462 0.530
bc 0.759 0.664 0.664 0.664 0.740 0.347 0.640
cc 0.511 0.348 0.348 0.348 0.623 0.356 0.422
cn 0.695 0.623 0.623 0.623 0.722 0.720 0.668

IMPLISig 0.763 0.896 0.896 0.896 0.726 0.805 0.831

AP Pro-Cancer Anti-Cancer

RSK TCF cMYC FOXO Caspase8 Caspase9 Mean AP

k 0.309 0.095 0.095 0.095 0.418 0.039 0.175
kin 0.223 0.105 0.105 0.105 0.291 0.056 0.148
kout 0.266 0.093 0.093 0.093 0.381 0.033 0.160
bc 0.419 0.168 0.168 0.168 0.507 0.036 0.244
cc 0.177 0.082 0.082 0.082 0.351 0.033 0.134
cn 0.248 0.108 0.108 0.108 0.333 0.057 0.160

IMPLISig 0.376 0.306 0.306 0.306 0.422 0.143 0.310

see that IMPLISig ranks first for predicting significant targets for three output nodes.

For AP, this increases to four. With respect to mean performance over all outputs,

IMPLISig ranks first by both measures.

D.4.3 Tumour Cell Invasion and Migration

Table D.5 shows full AUROC and AP scores for each output node for the TCIM net-

work. In table D.6, we show how IMPLISig ranks compared to other micro-scopic

node features on the TCIM network. IMPLISig scores well for nodes associated with

cell death, but poorly for inhibiting expression of Metastasis. According to both AU-

ROC and AP, we find that IMPLISig ranks first for the output node CellCycleArrest.

Furthermore, IMPLISig out-ranks all benchmarks averaging over all output nodes

of interest.
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TABLE D.2: Gastric network AUROC and AP ranks. Key: k: node degree, kin: in-degree,
kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient and cn: core number.
For IMPLISig, we use depth in feedback loop hierarchy as a predictor of significance. Full

AUROC and AP scores are given in table D.1 of the supplementary materials.

AUROC Pro-Cancer Anti-Cancer

RSK TCF cMYC FOXO Caspase8 Caspase9 Mean Rank

k 4 6 6 6 4 4 5.0
kin 5 4 4 4 5 3 4.2
kout 6 5 5 5 6 5 5.3
bc 2 2 2 2 1 7 2.7
cc 7 7 7 7 7 6 6.8
cn 3 3 3 3 3 2 2.8

IMPLISig 1 1 1 1 2 1 1.2

AP Pro-Cancer Anti-Cancer

RSK TCF cMYC FOXO Caspase8 Caspase9 Mean Rank

k 3 5 5 5 3 4 4.2
kin 6 4 4 4 7 3 4.7
kout 4 6 6 6 4 6 5.3
bc 1 2 2 2 1 5 2.2
cc 7 7 7 7 5 7 6.7
cn 5 3 3 3 6 2 3.7

IMPLISig 2 1 1 1 2 1 1.3

D.4.4 Core Feedback Loops

The identified core coherent feedback loops for the Gastric Cell Line, EGFR and

TCIM networks are {AKT, IKKA, betacatenin, LEF, MMP, RTPK, SCH1, GRB2, GAB,

PI3K, PDK1}, {pi3k, pip3, gab1}, and {SNAI1, TWIST1} respectively.

AGS Gastric Cancer Cell Line

Table D.2 shows the top 10 nodes in the largest strongly connected component in the

Gastric cancer network, ranked by p-values on from a paired t-test. Bold rows indi-

cate nodes belonging to the identified core positive feedback loop. Of the 11 nodes

in the core positive feedback loop, 5 rank in the top 10. Furthermore, betacatenin is

tied for first by mean rank. We note that both Ras and SOS are “one-hop” away from

the identified core positive feedback loop and are merged at iteration 2 by IMPLISig.
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TABLE D.3: AUROC and AP scores for EGFR-Erbb1 network. Key: k: node degree, kin: in-
degree, kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient, and cn: core
number. For IMPLISig, we use depth in feedback loop hierarchy as a predictor of signifi-

cance.

AUROC Pro-Cancer Anti-Cancer

hsp27 ap1 cmyc p70s6_2 elk1 creb pro_apoptotic Mean AUROC

k 0.676 0.637 0.600 0.683 0.579 0.600 0.690 0.638
kin 0.642 0.558 0.498 0.603 0.513 0.498 0.648 0.566
kout 0.679 0.698 0.674 0.745 0.628 0.674 0.698 0.685
bc 0.710 0.676 0.769 0.670 0.814 0.769 0.692 0.728
cc 0.441 0.401 0.441 0.368 0.415 0.441 0.401 0.415
cn 0.500 0.475 0.419 0.455 0.434 0.419 0.475 0.454

IMPLISig 0.750 0.714 0.600 0.688 0.607 0.600 0.714 0.668

AP Pro-Cancer Anti-Cancer

hsp27 ap1 cmyc p70s6_2 elk1 creb pro_apoptotic Mean AP

k 0.260 0.275 0.503 0.332 0.457 0.503 0.314 0.378
kin 0.276 0.267 0.447 0.309 0.429 0.447 0.332 0.358
kout 0.284 0.321 0.599 0.423 0.529 0.599 0.321 0.439
bc 0.311 0.319 0.785 0.342 0.803 0.785 0.327 0.525
cc 0.173 0.192 0.428 0.213 0.392 0.428 0.192 0.288
cn 0.195 0.215 0.421 0.237 0.395 0.421 0.215 0.300

IMPLISig 0.591 0.550 0.564 0.527 0.548 0.564 0.550 0.556

EGFR-Erbb1 Signalling Network

In table D.4, we see the top 15 nodes in the core ranked by p-value of significance.

Each of the nodes in the identified core positive feedback loop, pi3k, pip3, and gab1

rank amongst them. pi3k, in particular, is ranked first for 5 out of 7 outputs of

interest, including being 1 of only 3 targets that rank first for affecting the cell death

associated pro_apoptotic node. We note that vav2, grb2, ras, pi34p2, and shp2 are

one hop away from the the nodes in the core-positive feedback loop. This suggests

that proximity to the core positive feedback loop in the original network may serve

as an alternative measure of core node significance.

Tumour Cell Invasion and Migration

Table D.9 shows the top 10 nodes in the core ranked by mean rank of the significance

of expression change for each of the three outputs of interest. It shows that, of the

three feedback loops identified by IMPLISig, {SNAI1, TWIST1} is the most signifi-

cant, with them both ranking in the top three nodes in the core. Both nodes rank
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TABLE D.4: EGFR network AUROC and AP ranks. Key: k: node degree, kin: in-degree,
kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient and cn: core number,.
For IMPLISig, we use depth in feedback loop hierarchy as a predictor of significance. Full

AUROC and AP scores are given in table D.3 of the supplementary materials.

AUROC Pro-Cancer Anti-Cancer

hsp27 ap1 cmyc p70s6_2 elk1 creb pro_apoptotic Mean Rank

k 4 4 3 3 4 3 4 3.6
kin 5 5 5 5 5 5 5 5.0
kout 3 2 2 1 2 2 2 2.0
bc 2 3 1 4 1 1 3 2.1
cc 7 7 6 7 7 6 7 6.7
cn 6 6 7 6 6 7 6 6.3

IMPLISig 1 1 3 2 3 3 1 2.0

AP Pro-Cancer Anti-Cancer

hsp27 ap1 cmyc p70s6_2 elk1 creb pro_apoptotic Mean Rank

k 5 4 4 4 4 4 5 4.3
kin 4 5 5 5 5 5 2 4.4
kout 3 2 2 2 3 2 4 2.6
bc 2 3 1 3 1 1 3 2.0
cc 7 7 6 7 7 6 7 6.7
cn 6 6 7 6 6 7 6 6.3

IMPLISig 1 1 3 1 2 3 1 1.7

joint first for the significance of the increase of expression of Apoptosis, and TWIST1

also ranks joint first for Metastasis.

D.4.5 P-values

Gastric Cancer Cell Line

Table D.10 shows the p-values of the significance of the changes caused by switching

off each node in the core to each output TF in the Gastric cancer cell dataset.

EGFR-Erbb11 Signalling Network

Table D.11 shows the p-values of the significance of the changes caused by switching

off each node in the core to each output TF in the EGFR-Erbb1 signalling network

dataset.
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TABLE D.5: AUROC and AP scores for TCIM network. Key: k: node degree, kin: in-degree,
kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient and cn: core number.

For IMPLISig, we use depth in feedback loop hierarchy as a predictor of significance.

AUROC Pro-Cancer Anti-Cancer

Metastasis Apoptosis CellCycleArrest Mean AUROC

k 0.585 0.308 0.570 0.488
kin 0.515 0.318 0.585 0.473
kout 0.640 0.364 0.575 0.526
bc 0.630 0.313 0.530 0.491
cc 0.390 0.596 0.680 0.555
cn 0.510 0.394 0.510 0.471

IMPLISig 0.540 0.667 0.790 0.666

AP Pro-Cancer Anti-Cancer

Metastasis Apoptosis CellCycleArrest Mean AP

k 0.586 0.362 0.593 0.513
kin 0.521 0.370 0.583 0.491
kout 0.612 0.389 0.541 0.514
bc 0.706 0.382 0.536 0.541
cc 0.461 0.638 0.684 0.595
cn 0.505 0.408 0.505 0.473

IMPLISig 0.534 0.553 0.811 0.633

TCIM Network

Table D.12 shows the p-values of the significance of the changes caused by switching

off each node in the core with respect to each output TF in the TCIM network.

D.5 Additional Results: Control Kernel Recovery

Table D.13 evaluates the likelihood of nodes in core coherent feedback loops, iden-

tified by IMPLISig to belong to a control kernel. We find the core coherent feedback

loops to be a highly precise measure – achieving a perfect precision score of 1.000 in

two out of the five networks. In all cases, the core feedback loop contained at least

one node belonging to a control kernel. Both nodes identified for the MMC network

(Fgf8_g and Fgf8_p) are control kernels in their own right – targeting just one of

them is sufficient to control the entire network. This is also true for AP1 identified in

the ATD network. Finally, we note that the node Fli_1, identified by IMPLISig, is in
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TABLE D.6: TCIM network AUROC and AP ranks. Key: k: node degree, kin: in-degree,
kout: out-degree, bc: betweenness centrality, cc: clustering co-efficient and cn: core number.
For IMPLISig, we use depth in feedback loop hierarchy as a predictor of significance. Full

AUROC and AP scores are given in table D.5 of the supplementary materials.

AUROC Pro-Cancer Anti-Cancer

Metastasis Apoptosis CellCycleArrest Mean Rank

k 3 7 5 5.0
kin 5 5 3 4.3
kout 1 4 4 3.0
bc 2 6 6 4.7
cc 7 2 2 3.7
cn 6 3 7 5.3

IMPLISig 4 1 1 2.0

AP Pro-Cancer Anti-Cancer

Metastasis Apoptosis CellCycleArrest Mean Rank

k 3 7 3 4.3
kin 5 6 4 5.0
kout 2 4 5 3.7
bc 1 5 6 4.0
cc 7 1 2 3.3
cn 6 3 7 5.3

IMPLISig 4 2 1 2.3

both of the control kernels for the MMD network, identified by Kim, Park, and Cho,

2013 (see table 5.4).

Table D.14 shows AUROC and AP ranks for each output node for the control

kernel recovery task.
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TABLE D.7: Top 10 nodes in core of Gastric cancer network ranked by significance. Rows
highlighted in bold correspond to nodes in the identified core positive feedback loop.

Pro-Cancer Anti-Cancer

RSK TCF cMYC FOXO Caspase8 Caspase9 Mean Rank

Ras 1 2 2 1 1 1 1.3
betacatenin 1 1 1 1 1 3 1.3

SOS 1 3 3 5 1 1 2.3
GRB2 1 4 4 1 1 3 2.3
SHC1 1 5 5 1 1 3 2.7
PI3K 1 6 6 6 1 3 3.8
Raf 1 6 6 6 1 3 3.8

ERK 1 6 6 6 1 3 3.8
PDK1 1 6 6 6 1 3 3.8
MEK 1 6 6 6 1 3 3.8

TABLE D.8: Top 15 nodes in core of EGFR network ranked by significance of change to
each output. Rows highlighted in bold correspond to nodes in the identified core positive

feedback loop.

Pro-Cancer Anti-Cancer

hsp27 ap1 cmyc p70s6_2 elk1 creb pro_apoptotic Mean Rank

rac_cdc42 1 1 5 1 3 1 1 1.9
pi3k 1 1 4 1 4 1 1 1.9
vav2 1 4 7 5 5 1 1 3.4

mek12 7 8 1 9 1 7 8 5.9
erk12 7 8 1 9 1 7 8 5.9

mekk1 7 1 6 1 11 15 8 7.0
shp2 7 8 8 9 6 7 8 7.6
sos1 7 8 8 9 6 7 8 7.6
grb2 7 8 8 9 6 7 8 7.6
raf1 7 8 8 9 6 7 8 7.6
ras 7 8 8 9 6 7 8 7.6

pi34p2 4 6 15 8 12 4 5 7.7
pip3 5 5 14 7 13 5 6 7.9
gab1 6 7 13 6 14 6 7 8.4

p90rsk 7 8 3 9 19 7 8 8.7



Appendix D. Supplementary for Chapter 5 207

TABLE D.9: Top 10 nodes in core of TCIM network ranked by significance. Rows highlighted
in bold correspond to nodes in the identified core positive feedback loop.

Pro-Cancer Anti-Cancer

Metastasis Apoptosis CellCycleArrest Mean Rank

CDH2 1 1 6 2.7
SNAI1 8 1 3 4

TWIST1 1 1 13 5
AKT1 9 9 1 6.3

TGFbeta 1 7 12 6.7
SNAI2 1 5 16 7.3

p73 11 6 5 7.3
AKT2 1 8 14 7.7

GF 17 1 9 9
ZEB2 1 13 16 10
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TABLE D.10: P-values from one-tailed paired t-test of change in expression for the Gastric
cancer dataset Flobak et al., 2015. Targets are given by rows and output nodes are given by
columns. Targets identified by IMPLISig are highlighted in bold. Changes significant at a

0.05 level are highlighted in bold.

Caspase9 TCF cMYC FOXO Caspase8 RSK

DUSP1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00
SOS 0.00E+00 7.61E-43 7.61E-43 7.61E-43 0.00E+00 0.00E+00
MSK 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00
MMP 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

DUSP6 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
LEF 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

MLK3 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
PDK1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 0.00E+00

betaTrCP 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
SFRP1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
GSK3 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
MKK3 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
DKK1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
MEK 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 0.00E+00
GAB 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

MKK7 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
GRB2 1.00E+00 2.84E-27 2.84E-27 0.00E+00 0.00E+00 0.00E+00

GRAP2 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
betacatenin 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rheb 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
TSC2 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

MDM2gene 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
S6K 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

RTPK 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
TAB1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

RTPKgene 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
IKKB 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

MDM2 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
IKKA 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
TAK1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
LRP 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
ERK 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 0.00E+00
Dvl 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Raf 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 0.00E+00

IRS1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
NLK 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
NFkB 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

PTENgene 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Rac 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Fz 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

p38alpha 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
SHP2 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

mTORC1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p53 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

mTORC2 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
DKK1gene 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

MKK4 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
SFRP1gene 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

AKT 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00
pras40 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

MEKK4 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
PTEN 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
JNK1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Egr1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Axin 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
CK1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ras 0.00E+00 2.94E-95 2.94E-95 0.00E+00 0.00E+00 0.00E+00

MAP3K8 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
ASK1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
SHC1 1.00E+00 2.75E-23 2.75E-23 0.00E+00 0.00E+00 0.00E+00
PI3K 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00 0.00E+00
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TABLE D.11: P-values from one-tailed paired t-test of change in expression over attractor
states for seven output TFs of interest for the EGFR-Erbb1 signalling network. Targets are
given by rows and output nodes are given by columns. Targets identified by IMPLISig are

highlighted in bold. Changes significant at a 0.05 level are highlighted in bold.

hsp27 ap1 cmyc pro_apoptotic elk1 creb p70s6_2

p90rskerk12d 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
rasgap 1.00E+00 1.00E+00 1.89E-01 1.00E+00 3.76E-01 7.91E-01 1.00E+00

ccbl 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
rntre 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

erbb13 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
p90rsk 1.00E+00 1.00E+00 1.32E-184 1.00E+00 1.00E+00 1.17E-211 1.00E+00
erbb12 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

shc 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
erk12 1.00E+00 1.00E+00 5.09E-217 1.00E+00 1.30E-243 1.17E-211 1.00E+00
raf1 1.00E+00 1.00E+00 1.39E-106 1.00E+00 1.76E-101 1.17E-211 1.00E+00

endocyt_degrad 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
grb2 1.00E+00 1.00E+00 1.39E-106 1.00E+00 1.76E-101 1.17E-211 1.00E+00
pi3k 0.00E+00 2.27E-290 2.02E-131 0.00E+00 7.75E-114 0.00E+00 2.82E-68
gab1 1.89E-258 1.85E-129 2.88E-78 8.79E-250 3.59E-55 1.43E-247 2.69E-44
rin1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
shp1 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
aktd 1.00E+00 1.00E+00 1.28E-01 1.00E+00 5.00E-01 9.46E-01 1.00E+00
rab5a 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

ras 1.00E+00 1.00E+00 1.39E-106 1.00E+00 1.76E-101 1.17E-211 1.00E+00
pip3 2.22E-289 2.38E-143 2.78E-66 2.22E-289 1.74E-56 1.02E-275 4.98E-37
vav2 0.00E+00 1.50E-250 1.22E-113 0.00E+00 5.93E-102 0.00E+00 3.42E-58

rac_cdc42 0.00E+00 2.27E-290 2.69E-130 0.00E+00 3.23E-116 0.00E+00 2.82E-68
nck 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

sos1_eps8_e3b1 1.00E+00 1.00E+00 5.00E-01 1.00E+00 5.00E-01 5.00E-01 1.00E+00
pi34p2 2.27E-290 7.15E-140 7.25E-66 2.27E-290 7.57E-58 1.21E-276 8.17E-33
mekk1 1.00E+00 2.27E-290 3.20E-123 1.00E+00 1.11E-96 5.09E-39 2.82E-68

akt 1.00E+00 1.00E+00 2.82E-01 1.00E+00 1.59E-01 9.10E-01 2.82E-68
mek12 1.00E+00 1.00E+00 5.09E-217 1.00E+00 1.30E-243 1.17E-211 1.00E+00
pak1 1.00E+00 1.00E+00 1.00E+00 0.00E+00 1.00E+00 1.00E+00 1.00E+00

shp1d 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
erbb14 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

sos1 1.00E+00 1.00E+00 1.39E-106 1.00E+00 1.76E-101 1.17E-211 1.00E+00
shp2 1.00E+00 1.00E+00 1.39E-106 1.00E+00 1.76E-101 1.17E-211 1.00E+00
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TABLE D.12: P-values from one-tailed paired t-test of change in expression for the TCIM net-
work Cohen et al., 2015. Targets are given by rows and output nodes are given by columns.
Targets identified by IMPLISig are highlighted in bold. Changes significant at a 0.05 level

are highlighted in bold.

Apoptosis CellCycleArrest Metastasis

GF 0.00E+00 5.35E-05 1.00E+00
ZEB2 9.87E-01 1.00E+00 0.00E+00
CDH1 1.00E+00 4.64E-96 1.00E+00

p73 7.90E-17 9.61E-54 8.15E-01
AKT2 4.73E-06 1.00E+00 0.00E+00

p53 1.00E+00 0.00E+00 1.00E+00
miR203 1.00E+00 1.00E+00 1.00E+00
TWIST1 0.00E+00 9.97E-01 0.00E+00
SNAI2 5.75E-89 1.00E+00 0.00E+00
CDH2 0.00E+00 1.92E-29 0.00E+00

miR200 1.00E+00 6.06E-08 9.58E-01
AKT1 2.94E-02 0.00E+00 2.05E-18
SNAI1 0.00E+00 2.44E-276 2.88E-29

p63 9.99E-01 1.84E-06 1.00E+00
DKK1 8.41E-01 5.79E-01 1.00E+00
ZEB1 1.00E+00 1.00E+00 9.93E-01

CTNNB1 4.26E-01 1.00E+00 2.27E-02
TGFbeta 5.47E-16 8.41E-01 0.00E+00
miR34 5.62E-01 6.12E-04 8.41E-01
NICD 1.00E+00 1.00E+00 0.00E+00

TABLE D.13: GRN control node identification evaluation metrics. The column Core Nodes
in Control Kernels lists all of the nodes that appear in at least one control kernel identified
in Kim, Park, and Cho, 2013, as well as the largest strongly connected component in the
network. Deepest Feedback Loop(s) details the nodes in the loops at the deepest level of the
hierarchy found by IMPLISig. The measures under Deepest Feedback Loop (F1, Precision
and Recall) show F1, sensitivity and specificity of using the deepest coherent feedback loop
as a predictor of potential control node. Networks: SCCC: Saccharomyces Cerevisae Cell
Cycle; SP: Schizosaccharomyces Pombe; MCD: Mammalian Cortical Development; ATD:

Arabidopsis Thaliana Development; and MMD: Mouse Myeloid Development.

Network Nodes in Control Kernels Deepest Feedback Loop(s) Core Feedback Loop Type(s)
Metrics

F1 Precision Recall

SCCC {Cdh1, MBF, SBF, Sic1} {{Sic1, Clb5_6}} {Negative} 0.333 0.500 0.25
SP {Cdc25, Rum1, Ste9, Wee1} {{Cdc2/13*, Ste9}, {Cdc2/13*, Rum1}} {Negative, Negative} 0.571 0.667 0.5

MCD {Fgf8_g, Emx2_g, Sp8_g, Fgf8_p, Emx2_p, Sp8_p} {{Fgf8_g, Fgf8_p}} {Positive} 0.500 1.000 0.333
ATD {AP1, LFY, SEP} {{AG, AP1}} {Negative} 0.400 0.500 0.333

MMD {GATA_1, EKLF, FLI_1, PU1} {{Fli_1, GATA_1}} {Positive} 0.667 1.000 0.500
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TABLE D.14: Control node identification ranks. Key: k: node degree, kin: in-degree, kout:
out-degree, bc: betweenness centrality, cc: clustering co-efficient and cn: core number. For

IMPLISig, we use depth in feedback loop hierarchy as a predictor of significance.

AUROC SCCC SP MCD ATD MMD Mean Rank

k 5 5 2 3 3 3.6
kin 1 2 6 6 6 4.2
kout 7 7 4 1 3 4.4
bc 2 6 1 5 2 3.2
cc 4 3 7 7 7 5.6
cn 3 3 5 3 5 3.8

IMPLISig 5 1 3 2 1 2.4

AP SCCC SP MCD ATD MMD Mean Rank

k 6 3 2 3 3 3.4
kin 1 1 5 6 7 4
kout 7 7 4 1 4 4.6
bc 2 6 1 4 2 3
cc 3 3 7 7 5 5
cn 4 3 6 5 6 4.8

IMPLISig 4 2 3 2 1 2.4
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