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“The true delight is in the finding out rather than in the knowing.”

Isaac Asimov
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Abstract

The subject of this thesis is the estimation of an object’s inertial parameters by a
robotic arm, and the exploitation of those parameters in the design of efficient manip-
ulation criteria. The inertial parameters of objects describe the resistance of the object
to an applied force, and dictate its motion. Research has shown that humans intu-
itively exploit them for their everyday manipulations. As humans are very capable
of performing efficient manipulations, it is natural that robots should use the inertial
parameters as well. Additionally, as the inertial parameters are not straightforward
to calculate, there is the need for development of methods that can estimate them on-
line. This thesis focuses on two directions, developing novel methods so that robots
can accurately estimate the inertial parameters of an object, as well as developing
manipulation criteria that can make robot task completion more efficient. The rele-
vant literature is gathered, categorised and analytically described, and the innovation
gaps are identified. The thesis offers novel research solutions on the problem of es-
timation of the inertial parameters with minimal robot interaction. The paradigm is
shifted from the existing literature, and a data-driven estimation algorithm is intro-
duced, that achieves accurate results with both simulated and real data. Additionally,
the presented research is offering novel manipulation criteria that are affected by the
object’s inertial parameters. The results suggest that knowledge of the inertial param-
eters can make the robot tasks more power-efficient and safe to their surroundings.
The core methodology is shown to be versatile to the robotic platform. Though most
experiments are performed on a terrestrial robot, a numerical example is also shown
for a space robot. The results of the thesis suggest that the developed methods can be
used in various environments, with the most suitable being extreme environments
where accuracy, efficiency and autonomy is required.
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1.1 Robots are used more and more in extreme environments for inspec-
tion of areas where humans can not enter. A typical example are robots
in nuclear plants. (a) Sunfish-inspired robot for submerged reactor
core inspection. (b) Scorpion robot developed for inspection of the
plant’s radioactive interior. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Among the challenges of extreme environments, accurate object ma-
nipulation is one of the most important. It enables the robot to ac-
cess obstructed areas, retrieve samples and objects of interest, and help
people. (a) A mobile manipulator designed for access in disaster situa-
tions, shown opening a door. (b) A robot developed for manipulation
of heavier objects inside the Fukushima plant. . . . . . . . . . . . . . . 4

1.3 Examples of object visual perception in robotics. (a) Visual perception
using RGB images. The robot is able to detect potential handle-like
grasping points on objects. Image by Lenz et al., 2015. (b) SIFT fea-
tures detected on an object, used for motion tracking. The features are
extracted by filter processing of the acquired images, and can be de-
tected from different views of the same object. Image by Delponte et
al., 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Examples of tactile sensors. (a) A tactile array sensor on a robot fin-
ger. The tactile array elements can be capacitive, piezoelectric, resist-
ing etc., and when the robot touches an object they transform the mea-
sured property in a sensed force signal. Image from http://bdml.stanford.edu.
(b) A flexible skin tactile sensing element. Flexible skin is a more ad-
vanced tactile sensing element that can be stretched to cover any part
of the robot surface. They are capable of measure normal and sliding
forces, as well as object vibration. Image from http://www.washington.edu/ 7

2.1 Numerous studies have shown how humans reason about the inertial
properties of objects and how they involuntarily use them for percep-
tion. (a) Using complex scenes like the pictured, Hamrick et al., 2016
demonstrated that humans are capable of inferring masses of objects
by playing a mental simulation of the expected scene outcome, if given
sufficient prior information. The inferences have been shown to be
quite accurate. (b) A tensor object, is a set of cylinder handles with ad-
justable ring weights. As the rings’ positions are adjusted, the object’s
inertia tensor changes. Studies have used such objects to demonstrate
that a persons perception of an object’s properties such as length, ori-
entation in space, and grasping point on it, are a function of the object’s
inertia tensor (Amazeen et al., 1996; Pagano et al., 1994; Pagano et al.,
1992). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.2 Mass estimation using purely visual features. When a physical con-
nection between visual input (such as size, volume and shape) and
mass exists between the object, the problem reduces to visual detec-
tion of features. (a) Extraction of visual features in video sequences,
that correspond to the shape of the fish (Lines et al., 2001). (b) When
the extracted features are matched with measured masses, regression
methods can be used to estimate the mass of new fish. A compari-
son of the estimated and the actual mass of the fish demonstrates the
accuracy of such methods. (c) A state-of-the-art learning network for
estimating an object’s mass from a 2D image (Standley et al., 2017).
Two different network modules calculate the two elements needed for
mass calculation: volume and density. They get as input an RGB im-
age of the object, a thickness map and a bounding box. The network is
able to calculate the object’s mass almost as accurately as human per-
ception. Novel learning approaches like this can be used to solve the
ill-posed problem of estimating the inertial parameters from visual cues. 17

2.3 Examples of exploratory methods. By applying a simple action on the
robot and observing its motion, the inertial parameters can be calcu-
lated. (a) The mass, CoM position and mass distribution can be calcu-
lated by striking an object, measuring the applied force, and tracking
its rotational motion profile. Image by Artashes et al., 2013. (b) Simi-
larly, the object can be pushed by a robot and the inertial parameters
can be estimated by planar motion laws. Image by Yu et al., 2005. . . . 22

2.4 Examples of load dynamics identification. The load is grasped or oth-
erwise attached to the robot and it is moved in the workspace. Motion,
force, torque and and robot joint measurements are taken, and the pa-
rameters are estimated by using the equations of object motion and the
robot dynamics, usually in a least squares way. (a) For industrial appli-
cations, the load is fixed on the manipulator. The robot executes spe-
cific excitation motions that provide more informative measurements.
By measuring the joint angles, positions, accelerations and torques, as
well as wrist forces and torques, the load parameters are estimated
from the total dynamic model. Image by Atkeson et al., 1985. (b) Sim-
ilar approaches are followed in aerial manipulation, where the trans-
ferred load is firmly grasped and moved by an unmanned aerial vehi-
cle and measurements are taken. Image by Mellinger et al., 2011. (c) In
the case of human-robot collaborative transportation, the robot mimics
the human motion and at the same time estimates the parameters by
measuring wrist forces and torques and using the object’s equations of
motions. Image by Cehajic et al., 2017. . . . . . . . . . . . . . . . . . . . 24

2.5 Recent estimation methods use large amounts of data to model dy-
namic interactions between objects. They then learn the mapping be-
tween video frames and motion, and use this mapping to infer the
object’s mass and friction coefficient. The Galileo system shown in the
figure is able to infer the relative mass of two objects from a video of
their collision and a comparison with a collision from simulation. Im-
age by Wu et al., 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.6 The inertial parameters of objects are used as a property that makes
robot grasping and manipulation algorithms more efficient. (a) Some
grasp synthesis algorithms use the object’s inertial parameters to gen-
erate stable and minimum-disturbance grasps. Image by Lippiello et
al., 2013 (b) The inertial parameters are also incorporated in the dy-
namic model of the robot for designing controllers. In this image, the
slippage of the object is a function of the inertial parameters, and an
accurate controller is designed. Image by Viña et al., 2015. . . . . . . . 27

3.1 The inertial object dataset has five object categories: (a) The Primi-
tives category includes primitive objects that can be used separately or
combined in many experiment types; (b) The Tools category includes
heavier objects that suited for tool manipulation experiments; (c) The
Home category includes common objects that are easy to find, exper-
iment and compare with real objects; (d) The Toys category includes
sports equipment and animal figures with complex shapes, suitable for
grasp generation experiments; (e) The Pushing category includes ob-
jects that are ideal for pushing experiments due to their flat and elon-
gated shapes. This dataset includes 57 objects and contains 3D mesh
models and inertial information for each object. The object dimensions
and masses were selected so that the dataset objects are physically sim-
ilar to real world objects. The mass, CoM and inertia tensor have been
calculated with Meshlab. The variety of object categories allows gen-
eration of objects to be used in learning algorithms, both for training
and evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Top view of geometric configuration for a pushing experiment: a robot
pushes a rectangular object (purple) on a table (white) with its end
effector (red). The coordinate frames denoted with Ow, Ocm and Ocp
are the world frame and coordinate frames attached to the center of
mass of the object and to the contact point of the robot end effector and
object surface, respectively. xcp is normal to the contact surface. The
vector connecting the contact point and the center of mass is denoted
by r. The friction cone is shown with thin lines on the contact point,
and has an angle of θ f r. All the z coordinates are normal to the page. . 35

3.3 Robot setup for cube pushing in Gazebo simulation: (a),(b) and (c)
show the side, back and front view of a Schunk LWA4D robot setup in
the Gazebo simulator, with a pushing tip (shown in blue) and force/torque
sensor. A set of 30 cubes with different masses, dimensions, friction
coefficients and rotational inertias is created. For each cube, the robot
executes 10 open-loop pushes along the front edge of the cube with a
predefined velocity, and measures the applied force and torque as well
as the translational and rotational displacement of the cube. This leads
to 300 measurement sets, that are used to train a random forest that
estimates the mass and inertia of a new object by pushing it only once.
Figures in (d) are instances of a push. . . . . . . . . . . . . . . . . . . . 36
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3.4 Example measurement signals for a single push. The shown sizes are
measured for each push. The mean and variance of each signal are
extracted. By representing each signal to its statistical values, a 12-
dimensional feature vector is built, which is used as input for the re-
gression model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Error images for all the pushes applied to the cubes in the test set. The
plots show the errors of estimation for each cube, and for each push
at different points along the cube edge. It can be seen that in general,
pushing closer to the middle of the cube provides a better estimate of
mass, and the pushes closer to the edges yield smaller error of inertia
estimate. (a) Mass error (b) Inertia error. . . . . . . . . . . . . . . . . . . 42

3.6 The average of the testing set error values (shown in Fig. 3.5): (a) The
average errors of the inertia (red line) and mass (blue line) estimation
across all the pushes for each cube. Cube No. 3 yields the smallest
error of mass and relatively small error for inertia. (b) The average
errors of the inertia (red line) and mass (blue line) estimation across all
the cubes for each push. Pushing points closer to the side of the cube,
namely No. 3, 8 and 9, yields the smallest error of mass and inertia
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Box plots of mass and inertia error in the second set of cubes. The plots
show how the cube size, mass and friction coefficient correlate with
the mass and inertia estimation errors for a single push. (a) The mass
estimation error stays less than 20% for all changed parameters where
the median of the obtained errors illustrates that one can always expect
almost 12% error. Changes in cube mass lead to large variations in
estimated error of mass, but the overall error values are still relatively
low. (b) The inertia estimation error is highly affected by changes in
the cube size, with a relatively high value of error median. Changes
in mass and friction coefficient lead to a low value of errors with small
variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 The set of objects generated for evaluating the generalisation capabil-
ity of the proposed method: at the third evaluation stage, 6 new ob-
jects from the inertial dataset are selected and the push experiment is
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3.9 Mass and inertia estimation errors for the unknown object simulation.
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4.1 Simulation experiment. The Baxter robot grasps a non-uniform, disk-
like object, (a). The robot uses its two-finger parallel-jaw gripper to
vertically grasp (from above) the tall, thin, cylindrical “handle” at-
tached to the centre of the disk, (b). Two cylindrical weights are at-
tached to the disk, which cause the mass and inertia of this object to
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4.7 Oddly shaped disk object, with attached cylindrical weights and verti-
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5.8 Effective mass values, computed along a post-grasp trajectory, for three
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Chapter 1

Introduction

1.1 Robotic manipulation across various environments

One of the first robots to perform manipulation tasks was the Unimate manipulator
by Unimation. It was a 6-axis programmable arm, with a metallic gripper as end-
effector. It was installed firstly in an assembly line of a General Motors plant. It could
be pre-programmed to execute a number of pick-and-place and welding tasks. The
Unimate robot did not have capabilities for autonomous and intelligent operations,
and the purpose for its first installation was to automate the stacking of metallic casts.

Ever since this first introduction of such a system to an assembly line, the intel-
ligence and autonomy capabilities of robots have increased dramatically. Instead of
merely being programmed to execute pre-calculated motions, robots can perceive
their environment and surroundings though various sensing modalities, make de-
cisions, plan for actions, and execute them efficiently. Industrial production has
skyrocketed with the incorporation of more intelligent robotic manipulators in as-
sembly lines. While industrial plants still remain the most prominent environments
for robotic operations, autonomous systems are gradually more and more employed
for all sorts of applications. And while the main purpose of a robot was to handle
known objects or parts coming on an assembly line and executing pre-designed tasks
and trajectories with them, the deployment of robots in uncontrolled environments
requires intelligent manipulation of objects with various geometries.

Health care robots are increasingly incorporated in hospitals and care homes.
The increasing amount of ageing populations and the rising life expectancy in many
countries worldwide are a crucial factor for introduction of robots to hospitals, care
homes, and other healthcare facilities. Some examples are telemanipulators and mo-
bile rehabilitation robots that assist with everyday patient care. To do so, healthcare
robots have to manipulate trays with food, medication, and other supplies, as well as
handle care equipment for the patients they treat.

The fast pace of modern life, and the increased amounts of stress and loneliness
humans tend to feel during their lives have left large amounts of population in need
of care in their homes. Robots are bound to be more and more prevalent in household
environments, for assisting with everyday household tasks, as well as companions
and carers hoe elderly and disabled people. Such a robot is expected to manipulate
all types of objects existing in a household environment, such as dishes for stacking
a dishwasher, clothes for ironing, and food and supplies for fetching to a human.

With the rise of the world population, and the dietary choices of many people
shifting towards vegetarian options, robots are starting to be deployed in crop fields
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and agricultural sites in an attempt to increase production and minimise costs. Typ-
ical tasks of robots in agriculture are inspection of crop state and data gathering,
fertiliser spraying, and the picking up of fruit and other produce. Such robots need
to perform both dexterous and delicate manipulations to handle produce, as well as
more brute manipulations to handle equipment.

Search-and-rescue scenarios more and more require the presence of robots for
related tasks. Natural disasters can happen in any place on Earth, and they leave
injured people and wreckage behind them. Offering help to injured people in such
conditions can be sped up significantly by employing robots for area observation
and identification, terrain traversing, and debris manipulation. Similar cases include
accident sites, and war zones, where robots can aid in offering assistance with debris
clearance, area surveillance and bomb diffusal.

Finally, extreme environments are the prime candidate for future deployment of
robots (Fig. 1.1). Underwater and offshore exploration and asset inspection require
also the use of robotic systems due to their inaccessibility from humans. Robots can
offer a way of conducting teleoperated inspection and maintenance, and manipulate
underwater cables and valve handles. Additionally, the majority of the oceans on
Earth, as well as a large number of lakes and rivers have not been explored, aside
from sonar measurements. Employing robots on oceanic and lake environments can
reveal a lot about their geological structure and oceanographic data, as well as re-
trieving objects of interest, such as salvage or archaeological objects. Robots are also
becoming prevalent in nuclear plants (Fig. 1.2). Since the beginning of the Atomic
age, many countries have been stockpiling the residual nuclear waste in landfills
and warehouses. The waste containers are sometimes very old, and need to be cut,
opened and their contents sorted and segregated, so as to ensure optimal storage
conditions and free as much storage space as possible. Since the waste materials are
of various types, forms and contamination levels, it is very dangerous for humans
to execute such operations. As a result, robots need to be employed for that matter,
and novel navigation, perception, manipulation and autonomy algorithms need to
be developed. Finally, robots are being studied for and utilised in space applications,
such as planetary exploration, on-orbit servicing, modular telescope assembly, active
debris removal, and assistance of astronauts on board the International Space Station.
Space robots have the additional challenge of manipulating large and heavy objects
in zero-gravity environments, so their manipulation algorithms need to be adapted
to work in such conditions.

It is clear that in this era of increased presence of robotic systems in various envi-
ronments, robots will have to intelligently manipulate objects and adapt to uncertain-
ties and new conditions. As a result, the study of robotic grasping and manipulation
is one of the most rich and prominent robotics fields, with lots of challenges to over-
come.

1.2 Challenges in object grasping and manipulation

The challenges that a deployed robot may meet are unique and dependent on the
environment. Nonetheless, there exist specific common requirements that a robot
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(a) (b)

Figure 1.1: Robots are used more and more in extreme environments for inspec-
tion of areas where humans can not enter. A typical example are robots in nuclear
plants. (a) Sunfish-inspired robot for submerged reactor core inspection. (b) Scor-
pion robot developed for inspection of the plant’s radioactive interior.

system must meet in order to ensure efficient and continuous operations.

1.2.1 Autonomy requirements

In many environments, robots need to perform a lot of operations for prolonged times
with limited teleoperation, or no teleoperation at all. For example, robots on the Mar-
tian surface suffer from large latency of the radio-transmitted commands, as it takes
several minutes for the communication signals to cross the Earth-Mars distance. An-
other example includes robots in deep mines or nuclear plants, where thick plant
walls or underground caves may prohibit sending commands to the robot. It is evi-
dent that in such conditions, the robot needs to have the ability to make autonomous
decisions to fulfill the assigned tasks. As a result, the robot needs to have adequate
capability of perceiving the surroundings with various sensors, intelligent decision
making ability, and planning and execution capabilities for actions within the per-
ceived environment. The information about the surroundings need to be as rich as
possible, for better planning and decision making.

1.2.2 Reliable teleoperation

In some cases, a communication channel needs to be established between the robot
and a human user. The robot is then teleoperated and there is limited need for au-
tonomous operations. Challenges for teleoperated robots include real-time sensor
processing and control capabilities, unobstructed and minimum-latency communi-
cation between the controlling user and the robot platform, as well as rich and con-
tinuous sensor information for the user to evaluate. A typical example would be the
robots in healthcare, working in spaces with patients that suffer from highly conta-
gious diseases.
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(a) (b)

Figure 1.2: Among the challenges of extreme environments, accurate object ma-
nipulation is one of the most important. It enables the robot to access obstructed
areas, retrieve samples and objects of interest, and help people. (a) A mobile ma-
nipulator designed for access in disaster situations, shown opening a door. (b) A
robot developed for manipulation of heavier objects inside the Fukushima plant.

1.2.3 Shared autonomy

A paradigm that receives increasing attention is that of shared control, tele-autonomy
or human-supervised autonomy. A robot is operating autonomously under close su-
pervision by a human. The human sets a few higher level tasks (e.g. grasp the object,
or move to a target position) to the robot, and the robot takes care of the underlying
low-level perception, decision making, action and control to solve the task. The hu-
man can gain full control of the robot instantly at any time. A prominent example of
shared autonomy operation are self-driving cars. After given a destination, the robot
drives on its own, but with a human operator ready to regain full control if needed.
Since shared autonomy operations include a level of decision-making by the robot,
information acquisition about the environment is very important, as it increases ef-
ficiency and reduces execution time, thus minimizing the mental workload of the
human user.

1.2.4 Power efficiency

As most robots need to continuously perform operations, power consumption and
efficiency are important design factors. Robots with no recharging capability have
limited lifespan, but even when the robot is capable of recharging, the power sys-
tems can only withstand a fixed number of charge-discharge cycles before they stop
working. As a result, the actuation and motions of the robot need to be designed
and executed with minimum power consumption. An autonomous robot can use
information from the environment to make a minimum-power decision, e.g. by mea-
suring the ground slope along the field of view, it can select the minimum-distance
way to overcome a terrain bump, thus reducing the wheel operation time.

1.2.5 Resilient design

In many cases, the structural design and the components of the robot need to be
designed to cope with harsh conditions and wear. A nuclear robot may need to be
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radiation and temperature resistant (depending on the environment of deployment
and the dose rate of radiological materials that are present). Similarly, a robot in agri-
culture needs to be resistant to dust, rain, sunlight, heat and insects. The challenge of
building resilient robot depends on the situation in which it will be used.

1.3 Object perception in robotics

One of the main properties of robots is the ability to perceive and handle objects.
These objects can be useful in numerous ways e.g. a target object to be examined
and manipulated, a tool to be used, or an obstacle to be avoided. The purpose of
object perception is to extract unique properties of the object, that separate it from
its surroundings, and use these properties in grasping and manipulation reasoning,
planning, execution, and quality evaluation. Robots have numerous ways of perceiv-
ing their surroundings, using various types of sensors. This section provides some
typical object information the robot can gather through the perception process, as
well as methods of obtaining this information.

1.3.1 Visual information

Perhaps the most common method of object perception in robotics is by using visual
sensors. Examples of such sensors are RGB mono and stereo cameras, structured
light sensors and event-driven cameras. The robot can visually perceive objects and
surroundings by collecting raw data such as RGB or grayscale images, depth maps,
infrared maps and point clouds. Information collected from these raw data leads to
understanding about the object geometry and local shape, texture, and motion. This
information can be used for numerous purposes such as feature motion tracking,
grasp and motion planning, visual affordance learning etc. Examples are shown in
Fig. 1.3.

1.3.2 Tactile information

Robots can perceive and learn a lot about objects by touching them. The way they
extract information through touching is by using tactile sensors. A tactile sensor is
sophisticated piece of hardware that can translate a physical contact with a touched
object to a force measurement. Examples include resisting, magnetic and piezoelec-
tric tactile sensors. A classic way of tactile sensing is using tactile arrays on robot
fingers, that can generate a grid of force signals when an object is touched. More
novel approaches include tactile skin sensors that can be worn on any part of the
robot. By using tactile sensing, a robot can understand object geometries and gener-
ate partial 3D object models, infer the object’s texture by inspecting the object surface,
as well as predict stable grasps. Examples of tactile sensors are shown in Fig. 1.4.

1.4 Inertial parameters of objects

The main argument of this thesis is that, additionally to obtaining information on
geometric and texture properties of an object, the robot can use visual and contact
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(a)

(b)

Figure 1.3: Examples of object visual perception in robotics. (a) Visual percep-
tion using RGB images. The robot is able to detect potential handle-like grasping
points on objects. Image by Lenz et al., 2015. (b) SIFT features detected on an
object, used for motion tracking. The features are extracted by filter processing of
the acquired images, and can be detected from different views of the same object.
Image by Delponte et al., 2006.

stimuli to estimate and use the inertial parameters of a rigid object for more efficient
grasping and manipulation. With the term Inertial Parameters of the object, we refer
to the object’s mass m, moment of inertia tensor I and centre of mass (CoM) pcm.
The mass contains information of the object’s heaviness, and so the robot can under-
stand how easy it is to lift or move it. The inertia tensor contains information of the
object’s mass distribution, and can be used to find what parts of an object are heav-
ier than others. The CoM of the object is the 3-dimensional point around which the
mass of the body is equally distributed. It offers an approximation of the object’s
mass distribution as a single point, which is useful for kinemodynamic modelling
and visualisation.

Let Ow be a 3D fixed coordinate frame used as reference. Assuming our object is
modelled as a rigid body with continuous volume, let V be the object’s total volume,
dV an elementary volume in a point with distance r = (x, y, z) from Ow, and ρ(r) the
object’s density at that point. If the density is uniform along the body volume, then
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(a) (b)

Figure 1.4: Examples of tactile sensors. (a) A tactile array sensor on a robot
finger. The tactile array elements can be capacitive, piezoelectric, resisting etc.,
and when the robot touches an object they transform the measured property in
a sensed force signal. Image from http://bdml.stanford.edu. (b) A flexible skin
tactile sensing element. Flexible skin is a more advanced tactile sensing element
that can be stretched to cover any part of the robot surface. They are capable
of measure normal and sliding forces, as well as object vibration. Image from
http://www.washington.edu/

ρ(r) is a constant. The inertial properties of the whole body are then given by:

m =
∫

V
ρ(r)dV (1.1)

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz


=


∫

V ρ(r)(y2 + z2)dV
∫

V ρ(r)(−xy)dV
∫

V ρ(r)(−xz)dV∫
V ρ(r)(−yx)dV

∫
V ρ(r)(x2 + z2)dV

∫
V ρ(r)(−yz)dV∫

V ρ(r)(−zx)dV
∫

V ρ(r)(−zy)dV
∫

V ρ(r)(y2 + x2)dV

 (1.2)

pcm =
1
m

∫
V

ρ(r)rdV (1.3)

The mass m of the object is a positive real number. The inertia tensor I is symmet-
ric and positive definite. The diagonal elements are named moments of inertia and the
off diagonal elements products of inertia. The inertia tensor is always expressed w.r.t.
a coordinate frame. To switch between different frames, the parallel axis theorem and
rotation theorem are used. For a 3D body and any point in space, it is always possible
to find a coordinate frame for which the product of inertia elements are zero, and the
inertia tensor diagonal. The axes of this coordinate system are called principal axes of
the object, and they can be found by solving the eigenvalue problem of the inertia
tensor. The CoM may or may not lie inside the body.

In this thesis, we use the mass m, diagonal inertia tensor w.r.t. pcm, and CoM
pcm. When the tensor needs to be expressed in a different frame, the parallel axis and
rotation theorems are used.
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1.5 Problem statement

Taking the previous analysis into consideration, the research question of this thesis is
formed as follows:

How can a robot in an unknown environment estimate the inertial parameters (mass,
CoM, inertia tensor) of an object, and how can these parameters be used to improve task-
relevant grasping and manipulation?

As a consequence, the main research question can be broken down into two sub-
problems, namely estimation of the inertial parameters and their usage in task-relevant
grasping and manipulation. The thesis is inspired by the need for robots to manipu-
late heavy objects or objects with peculiar mass distributions, and as such, many of
the problem configurations and evaluation criteria are inspired by such conditions.

1.5.1 Estimation of inertial parameters

The first problem that this thesis examines is the estimation of the inertial param-
eters of an object. Objects examined are rigid bodies, without any deformable or
moving parts. For simplicity, the objects are assumed to have unknown but uniform
density. Such an assumption is logical in some environments such as nuclear or in-
dustrial plants, many of the used components tend to be made of uniform materials
(e.g. wooden pallets, metal tools and components, debris pieces, bricks etc.). The re-
sults of the presented experiments could be extended to non-uniform distribution ob-
jects, however this extension may not be straightforward. Since this thesis provides a
paradigm shift in the estimation procedure, assumptions about simplicity were pre-
ferred. Finally, this thesis examines minimum interaction estimation methods. As
will be presented analytically in the next Chapter, minimum interactions estimations
are methods that extract as much information from the object as possible, and at the
same time offer increased safety for unknown environments.

1.5.2 Usage in robot tasks

The second problem that is examined is the usage of the object’s inertial parameters
in robot task execution. While the term “robot tasks” is very broad, robots usually
need to handle objects in order to examine them, place them in containers, or gener-
ally move around while grasping them. Such operations are conducted continuously,
and as a result, efficiency is a key property. Intuitively, when a robot manipulates
heavy objects or objects with peculiar mass distribution it applies more effort, and
thus torque and power requirements increase. As a result, in this thesis the focus
is on how the estimated dynamics of the object are combined with the dynamics of
robots in typical motion tasks, such as pick-and-place, and how to make manipu-
lation of objects more efficient by creating metrics for grasp selection and trajectory
generation.
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1.6 Contributions of the thesis and published papers

The relevant literature in the field of objects’ inertial properties, and exploitation of
these properties in robotics, is scarce and not interconnected. This thesis provides in-
sight on these subjects, and connects them to provide fundamental and solid research
on the topic.

1.6.1 Thesis novelties

The contributions of the thesis can be summarised as follows:

• Establishes the role of the inertial parameters of objects, as a valuable resource
that robots should attempt to estimate in order to make robot operations more
efficient and safe.

• Shifts the estimation procedure paradigm from analytical, model based ap-
proaches, to methods that make estimations based on large amounts of data
and machine learning algorithms. Analytical approaches for inertial estimation
usually require a lot of assumptions, knowledge of uncertainties, and control
over the environment. By employing large amount of collected data, and ap-
proximating real motion models with learning algorithms, the methods in this
thesis are able to generalise for different objects and estimate parameters in
more uncertain environments.

• Provides novel methods for the estimation of an object’s inertial parameters in
robotics. The methods are using modern machine learning approaches, and are
capable of correcting for environmental or execution uncertainties and noise.
Their performance is evaluated and the results show accurate estimation. They
rely on raw data that can be collected with highly used commercial sensors,
making them versatile and usable in different robot systems.

• Identifies benchmarking challenges in the estimation procedure and in robot
pushing operations. Since the thesis introduces new concepts in the inertial es-
timation based on large amounts of data and learning methods, the need for
novel datasets and benchmarking protocols between different learning meth-
ods and datasets arises and is highlighted.

• Further advances a novel, recently established research field of robot manipu-
lation, task-relevant robot grasping, while showing how the inertial parameters
can be used for such purpose.

• Provides simple but fundamental methodologies for new manipulation criteria.
These criteria do require knowledge of the robot and object dynamics, increas-
ing the motivation for the presented estimation methods. A robot’s dynamics
are usually known up to a specific complexity, and the object dynamics can be
found with the methods described in the thesis. Thus, the thesis introduces ma-
nipulation criteria that can be incorporated to many different robot setups and
environments.
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• Demonstrates the validity of the approaches in various robot systems. Since
they employ fundamental object and robot properties, the theoretical results
from the presented research can be used in home, industrial and other environ-
ments. Furthermore, the methods presented in the thesis are not dependent on
specialised hardware or software, enabling their use in a more system-agnostic
way.

1.6.2 Publications resulting from this thesis

The research conducted in this thesis has led to a number of scientific paper submis-
sions in conferences and journals. The papers published as part of the thesis are the
following:

1. N. Mavrakis, A. M. Ghalamzan. E., and R. Stolkin, "Estimating An Object’s Iner-
tial Parameters By Robotic Pushing: A Data-Driven Approach", in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2020.

2. N. Mavrakis and R. Stolkin, "Estimation and exploitation of objects’ inertial param-
eters in robotic grasping and manipulation: A survey.", Robotics and Autonomous
Systems 124, p. 103374, 2020.

3. N. Mavrakis, A. M. Ghalamzan. E., and R. Stolkin, "Minimum Object Internal
Force Trajectory Optimization For On-Orbit Dual-Arm Space Robots", appeared in
International Symposium on Artificial Intelligence, Robotics and Automation
in Space, 2018.

4. A. M. Ghalamzan E., N. Mavrakis and R. Stolkin, “Grasp that optimises objectives
along post-grasp trajectories”, in IEEE/RSI International Conference on Robotics
and Mechatronics, pp. 51-56, 2017.

5. N. Mavrakis, A. M. Ghalamzan. E., and R. Stolkin, "Safe Robotic Grasping :
Minimum Impact-Force Grasp Selection", in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4034-4041, 2017.

6. N. Mavrakis, A. M. Ghalamzan. E., R. Stolkin, L. Baronti, M. Kopicki, and
M. Castellani, "Analysis of the inertia and dynamics of grasped objects, for choosing
optimal grasps to enable torque-efficient post-grasp manipulations", in IEEE-RAS In-
ternational Conference on Humanoid Robots, pp. 171-178, 2016. (Finalist for
Best Interactive Paper Award).

1.7 Thesis structure

The remainder of the thesis is structured as follows:

• Chapter 2 provides a literature review for inertial parameters estimation and
their usage in robotics. The motivation for the research is explained from psy-
chophysics papers that describe the uses of objects’ inertial parameters in hu-
man manipulation. The existing robotics work on inertial parameter estimation
is provided and categorised, with emphasis on both classical approaches and
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state-of-the-art methods. A brief overview of inertial parameter usage is also
provided.

• Chapter 3 introduces initial approaches to estimating the inertial parameters of
objects in simulation, by using machine learning algorithms. For data collec-
tion and testing, a dataset of simulated objects along with physically-realistic
inertial parameters is created and presented. The Chapter also touches the field
of big-data estimation, by employing a more thorough and sophisticated data
collection method, larger amounts of data, different training procedures, and
testing on a dataset of real objects.

• Chapter 4 examines the use of the inertial parameters, along with the robot dy-
namics, to make manipulation tasks more energy-efficient, by minimising the
required joint torques to execute manipulations of grasped objects. The work
in this chapter represents a novel contribution in the emerging research area
of task-relevant grasp selection, i.e. selecting a robotic grasp on an object that
makes post-grasp manipulation more efficient. Simulations and experiments
with real robots are presented.

• Chapter 5 continues the work in this field, this time by selecting the best grasp
for making the post-grasp manipulation safer in case of the robot colliding with
the environment. A number of simulations and evaluations with a real robot
are presented.

• Chapter 6 combines the post-grasp metrics of the previous chapters with other
metrics in the literature, in order to demonstrate the possibility of conflict be-
tween the best grasps for different metrics, and the need for a proper task-
relevant optimisation method. Simulation experiments are presented.

• Chapter 7 offers a different test case for the inertial parameters of an object, that
of an in-orbit space robot which must handle a captured object. The dynamics
of the space robot are combined with those of the captured object to ensure
manipulation that induces minimum forces on the object. Since this work offers
an extension of ideas presented in earlier chapters to a novel application task,
only a numerical evaluation is executed.

• Chapter 8 presents a discussion on the thesis, closing remarks, and suggests
possible ways of extending the presented work in inventive ways.
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Chapter 2

Literature Review

2.1 Introduction

In literature from mechanical engineering, there are numerous existing methodolo-
gies on how to estimate the inertial parameters of objects, and they are presented by
Schedlinski et al., 2001. Usually, these methods require special hardware and execu-
tion (e.g. vibrating tables to measure the oscillation modes), and are ideal to use in
more controlled environments, such as some industrial plants. As a result, they can
be difficult to transfer in robot environments, as such hardware may not be available.
While some basic principles are shared between the two fields, estimation in robotics
is usually conducted by approximating the physical laws and relations that include
the inertial properties (e.g. accelerating motion) and inference.

The main goal of this Chapter, is to present and categorise methods for estimating
the inertial parameters of objects in robotics fields, and showcase their usage in robot
grasping and manipulation. The focus lies only on rigid objects, and without any
moving or configurable parts. In addition, the chapter does not examine methods
of how the robots estimate their own inertial parameters, i.e. the dynamics of their
mechanical links, but instead the interest is in estimation methods of other objects. The
presented studies are organised in categories based on the estimation methods and
the environments that they are suitable for. The Chapter describes how the estimation
is traditionally conducted in analytical, model-based ways, and how state-of-the-art
methods are incorporating novel data-driven algorithms. It should also be noted that
the focus lies on terrestrial applications, and methods related to space or underwater
environments were omitted for brevity.

The chapter is structured as follows: a brief report of how humans estimate and
use the inertial parameters is given, followed by an extensive categorisation of the
estimation methods. Then, a wide range of usages of the inertial parameters are
presented for different tasks.

2.2 Human perception and usage of inertial parameters

Motivation for the use of inertial parameters in robotics comes from the correspond-
ing human perception of object’s inertial parameters and heaviness. While there is a
large variety of psychophysics works that study this domain, some prominent ones
are mentioned to provide some context behind the robotics works.

Humans tend to feel that larger objects are heavier than smaller objects of equal
mass. This phenomenon is called the size-weight illusion, and has been studied for
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over a century (Murray et al., 1999, Pick Jr et al., 1967, Amazeen et al., 1996, Flanagan
et al., 2000). The illusion is multi-modal (ibid.), and it has been confirmed to appear
even when a human has some prior knowledge of the object’s size, be it visual or
tactile cues (Ellis et al., 1993). While it is difficult to exactly pinpoint the origin of
the illusion, the mass and inertia tensor of the object have been shown to influence it
(Amazeen et al., 1996, Plaisier et al., 2012).

Mass in nature is realised in two ways: gravitational (static) mass and inertial
(dynamic) mass. Gravitational mass is felt when an object lies on a person’s hand,
and inertial mass is felt when the person alters the motion state of the body. Humans
perceive mass in one of the two ways, or a combination (ibid.). The two masses are
equivalent in physical sense. Nevertheless, Tiest et al., 2010 showed that inertial mass
perception of humans is highly affected by the motion type (acceleration or deceler-
ation) and magnitude, and that the dynamic mass perception result can be two times
lower than the static. These results are in accordance to previous experiments done
in weightless environments (Ross et al., 1982). In a recent approach (Schmidtler et al.,
2018), the inertial mass perception of humans that push a trolley was studied, and
a linear mixed model was generated from a large number of reference stimuli. This
linear mixed model can be transferred to power amplifying systems (such as robotic
devices) to assist in human-robot collaboration tasks. Even without interaction, peo-
ple are able to accurately infer relations between masses of objects in a scene through
a mental simulation of the objects’ interactions (Hamrick et al., 2016). Bingham et
al., 1993 demonstrated that the estimation of a planar object’s CoM from a pinching
grasp, varies with the object’s shape, size, symmetry and orientation.

Finally, there are numerous studies that show how humans feel properties of held
objects by using their mass distribution (i.e. elements of the inertia tensor) through
a stimulation mechanism of their muscular and tendon system, called dynamic touch.
Through dynamic touch, people are able to estimate properties such as object orien-
tation (Pagano et al., 1992), position of a grasp relative to the object (Pagano et al.,
1994), and object length (Kingma et al., 2002).

Since humans are good at grasping and manipulating objects, it is natural that the
study of the perception and role of the inertial parameters in human manipulation,
has led to applications in the robotics field. The next sections describe an extensive
list of works that showcase how robots can estimate and use the inertial properties of
objects.

2.3 Estimation of inertial parameters

In this section, the estimation methods are categorised based on the amount and
method of interaction with the object. In total, three categories are presented, Purely
Visual, Exploratory, and Fixed-Object. In this thesis, the focus is on Exploratory meth-
ods for the parameter estimation process, and specifically robotic pushing of objects.
The Fixed-Object category is also highly related to the thesis methodology, because
during the parameter exploitation process the robot securely grasps the object and
uses manipulation models that are frequently described in this category. Methods
that fall within the Purely Visual category are not examined in this thesis, however
they are also described both for completeness and to give to provide the overall pic-
ture in parameter estimation methods.
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(a)

(b)

Figure 2.1: Numerous studies have shown how humans reason about the iner-
tial properties of objects and how they involuntarily use them for perception. (a)
Using complex scenes like the pictured, Hamrick et al., 2016 demonstrated that
humans are capable of inferring masses of objects by playing a mental simulation
of the expected scene outcome, if given sufficient prior information. The infer-
ences have been shown to be quite accurate. (b) A tensor object, is a set of cylinder
handles with adjustable ring weights. As the rings’ positions are adjusted, the ob-
ject’s inertia tensor changes. Studies have used such objects to demonstrate that a
persons perception of an object’s properties such as length, orientation in space,
and grasping point on it, are a function of the object’s inertia tensor (Amazeen
et al., 1996; Pagano et al., 1994; Pagano et al., 1992).
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Table 2.1: Overview of the inertial parameter estimation methods

Method Type Description Pros/Cons Estimated Parameters
Purely Visual Use of only visual

information (ob-
ject geometry, RGB
images, depth
images, point
clouds, video seg-
ments etc.) and
possibly existing
relationships be-
tween visual and
inertial properties
(density, size-
mass formulas in
organic objects
etc.)

+ Require little
hardware
+ Easier to imple-
ment
+ Require easily
obtainable raw
data
- Require a lot of
prior knowledge
about the object
- Training can be
time consuming
and require large
datasets

Mass, 3D inertial
parameters (under
assumptions)

Exploratory Require basic in-
teraction with the
object. The applied
forces and object
motion are mea-
sured and the pa-
rameters are esti-
mated from physi-
cal laws, or learn-
ing models.

+ Accurate estima-
tion
+ Ideal for most
autonomous
robotics scenarios
- Estimation based
mostly on analyt-
ical models that
require controlled
environment

2D inertial param-
eters, 3D inertial
parameters by ob-
ject tilting

Fixed-Object The object is fixed
on the robot’s end-
effector. As it
moves along a tra-
jectory, the end-
effector wrenches
and joint motions
are measured and
the parameters are
estimated from the
dynamic equations
in the least squares
way.

+ Very accurate es-
timation
+ Portability
through various
robots
- Require grasping
or fixing of the
object, which may
not be always pos-
sible

3D inertial param-
eters

2.3.1 Visual methods

The inertial parameters of an object are a function of their volume, volumetric dis-
tribution, and density. While the volume of the object is relatively easy to measure
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from visual cues, the density distribution throughout the volume is a property that is
usually not known, or very difficult to determinate. Furthermore, it can be variable
along the volume of the object. As a result, estimating the inertial parameters purely
from visual elements seems like an ill-posed problem.

To solve this problem, the first attempts to estimate the inertial parameters had
to assume known and uniform object density. Many objects satisfy this assumption,
like most natural resources (e.g. wooden trunks, rocks), industrial components (e.g.
wooden pallets, metal components, debris), and some household objects (e.g. dishes,
chairs). Such an assumption simplifies the problem, and reduces it to extraction of
volumetric properties. Chien et al., 1986 calculate the inertia tensor of voxel repre-
sentation of objects, assuming known and equal mass and size for each block, thus
uniform density over the object. The inertia matrix and principal axes are calculated,
and the octree/quadtree representation is projected on the axes to be used for recog-
nition of 3D object models. One of the most famous approaches is by Mirtich, 1996,
where the author separated a rigid body into polyhedra of uniform density, calcu-
lated the mass, CoM, and inertia tensor for each polyhedron, and combined them to
get the inertial parameters of the total object. The calculation of parameters was con-
ducted by projecting the 3D volume integrals necessary for the identification of the
inertial parameters as 2D surface integrals, and then as 1D line integrals using the
divergence, projection and Green’s theorem respectively. The author achieved fast
computation times, and this method has been widely used in computer graphics.

In the first studies, density was used not as a property to be calculated but merely
as a relationship that connects visual and inertial properties. As computing capa-
bilities and image processing techniques improved, the relation between visual and
inertial properties could be built from real data and statistical modelling. This is
typical when the object is of organic nature, an animal, or an industrial component.
Lines et al., 2001 used a stereo camera pair to detect the geometric outline and truss
measurements of swimming fish. These measurements have been proven to relate
linearly with the fish mass, thus transforming the problem to shape detection. They
were able to build a regression model that captures these linear relations, and tested
the method with new fish populations with accurate results. Relative results were
drawn by Omid et al., 2010, where image processing techniques were used to cal-
culate the volume of citrus fruits and a regression model was fit in their respective
masses, and also by Vivek Venkatesh et al., 2015, this time using axis-symmetry of
fruits for better image processing. Similar techniques have been employed for esti-
mating the weight of livestock animals such as pigs (Yang et al., 2007) and chicken
(Amraei et al., 2017) for monitoring, and an analytical review on weight estimation of
livestock animals has been given by Tscharke et al., 2013. In another approach, Bailey
et al., 2004 estimated the weight of cup produce objects by extracting their volume
in high-speed images, sampling and weighing some items in the produce, and using
the measured weights to build a model to connect volume and weight.

The last decade has seen a sharp increase in computing capabilities, as well as
sharp growth of big-data learning techniques. In the field of visual estimation of iner-
tial parameters, there has been a shift in the research interest towards using big-data
techniques for estimation. A notable case is presentedby Standley et al., 2017. The au-
thors used a large dataset of images taken from objects sold in Amazon.com, as well
as the corresponding masses. They also generated a test set of household objects.
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(a)

(b) (c)

Figure 2.2: Mass estimation using purely visual features. When a physical con-
nection between visual input (such as size, volume and shape) and mass exists
between the object, the problem reduces to visual detection of features. (a) Ex-
traction of visual features in video sequences, that correspond to the shape of the
fish (Lines et al., 2001). (b) When the extracted features are matched with mea-
sured masses, regression methods can be used to estimate the mass of new fish. A
comparison of the estimated and the actual mass of the fish demonstrates the ac-
curacy of such methods. (c) A state-of-the-art learning network for estimating an
object’s mass from a 2D image (Standley et al., 2017). Two different network mod-
ules calculate the two elements needed for mass calculation: volume and density.
They get as input an RGB image of the object, a thickness map and a bounding
box. The network is able to calculate the object’s mass almost as accurately as
human perception. Novel learning approaches like this can be used to solve the
ill-posed problem of estimating the inertial parameters from visual cues.

They proposed a network architecture where the density of the object is calculated
using an RGB image and a thickness mask, and the volume of the object is calculated
from the object’s bounding box and its’ occupancy percentage. The two values were
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combined, and the mass estimate was provided. They compared the network perfor-
mance with classical learning algorithms, as well as mass predictions from people in
a human experiment. The result was minimum estimation error among other learn-
ing algorithms, and close performance to human intuition.

Another recent direction is using big-data for learning the underlying mecha-
nisms of object interactions from visual data, and inferring the mass or relative heav-
iness of the objects in the scene. Such methods are typically trained by video se-
quences in simulation, and deployed on real sequences. Learning and modelling
the interactions between objects is a very new and rapidly expanding field, and thus
documenting all the related work is out of the scope of the thesis. Instead, a num-
ber of prominent works is given, mostly related to learning interaction dynamics and
include objects’ inertial parameters in the procedure. The idea of describing object in-
teractions as learning models originated by Diuk et al., 2008, where an Object Oriented
Markov Decision Process was presented as a representation of object states and object
interaction relations. Scholz et al., 2014 extend this notion, by introducing Physics-
Based Reinforcement Learning, where the state dynamics and transitions are described
to closely represent state-space Newton Euler dynamics. The uncertainties in object
inertial and other parameters are modelled as belief over prior distributions. One of
the most prominent studies is the one presented by Wu et al., 2015. In this paper, the
authors presented Galileo, a learning model that is able to perceive physical proper-
ties of objects from video segments. It consists of a generative model that employs a
physics engine to simulate object collisions, with an object-based hypothesis space.
The generative model labels real video data by calculating the likelihood between the
object velocity measurement in the real video and measurements from the physics-
based videos. The labelled data are used to train a deep learning network, that can
then estimate relative masses between the two objects, as well as other interaction
outcomes. This work was further extended (Wu et al., 2016), where the authors em-
ployed physical laws to learn more object properties from unlabelled videos.

Chang et al., 2016 the authors introduced the concept of Neural Physics Engine.
It also uses object-based representations of a scene, namely state vectors with each
object’s mass, friction and motion variables. A system comprised of an encoder, an
interaction neighbourhood mask and a decoder are then able to predict the velocity
of an object from previous states. The system was tested in inferring the object’s mass
based on a prior, and outperformed other well-known prediction methods.

2.3.2 Exploratory methods

As discussed above, a relation between visual and inertial properties (either density
or other) is essential for purely visual identification of the inertial parameters. In
autonomous robotics scenarios this information is usually not available, as an object
of the environment may have non-uniform density, or be composed of objects with
different density distributions. In this case, the robot needs to interact with the object
in order to extract measurements useful for the estimation process. This category
includes the works that require an amount of basic interaction with the object for the
estimation, such as poking, pushing or tilting.

The inertial parameters of objects dictate their physical motion under the appli-
cation of a force, through analytical physical laws. As a result, a classic approach for
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identifying the inertial parameters is by applying some simple way of contact on the
object (pushing, poking, tilting, etc.), measuring the object’s motion (velocity, applied
force etc.) and calculating the inertial parameters from physical law equations. The
first studies in the domain relied heavily on estimating the results through analytical
laws of motion, and so required strong assumptions about the robot environment as
well as complete control over the interaction procedure. For example, when a robot
pushes an object on a surface and measures the motion, it needs to know the friction
coefficient between the object and surface, the friction coefficient between the push-
ing finger and the object, as well as prevent the finger from sliding on the object’s
surface. A great deal of studies have been conducted for similar estimations, some
with strict assumptions and some with more relaxed.
Yoshikawa et al., 1991 determined the centre of friction of an object lying on a sur-
face, by pushing with a mobile manipulator. They assumed the object’s supporting
surface to be a 2D square grid, and estimated the centre of friction and friction dis-
tribution over the grid using applied force and torque measurements. The pushing
mechanics that were analysed by Mason, 1986, Goyal et al., 1991a, and Goyal et al.,
1991b, suggest that when the surface friction is uniform and isotropic, and the pres-
sure distribution of the object’s weight on the surface symmetric, then the centre of
friction coincides with the 2D projection of the object’s CoM on the surface. As a
result, the work by Yoshikawa et al., 1991 can be considered as an estimator of CoM
under special circumstances. Krotkov, 1995 presented a series of methods of estimat-
ing material properties of objects with robot interaction. Among others, one of the
presented methods suggested applying a quick strike on the object, measuring the
applied force and its duration, and observing its velocity through a high speed cam-
era. Then, through the impulse equation, the mass of the object can be determined.
As the paper mostly described robot perception of material type through striking
and listening to the resulting sound, no results were provided for the mass estima-
tion method. Nevertheless, such an approach is plausible, especially nowadays with
the existence of high rate force sensors and motion trackers. Fukuda et al., 1999 were
able to determine the mass and CoM of large (graspless) objects under limited knowl-
edge of their shape. The object was high enough to be able to tilt. When the object
was tilted, a Gravity Equi-Effect plane was defined as a plane between the CoM and the
contact axis between object and surface. They proposed that since different planes in-
tersect at the CoM, if three gravity planes are found, then the CoM can be estimated.
By tilting the object, computing the planes from the object’s geometry, and using the
distance between finger and gravity plane, they were able to calculate the mass and
3D CoM of the object. They extended this method for the case of round-edged objects
(Yu et al., 2004), with similar results.

Tanaka et al., 2003 and Tanaka et al., 2004 estimated the mass of symmetric objects
on a table. They applied a force on the visual centroid of the object, that started
with low values and increased slowly. By detecting the force value that made the
object move and comparing it with the normal force (that is a function of the static
friction coefficient and the object’s mass), they were able to calculate the object’s mass.
This work is one of the pioneering in inertial property estimation from pushing, and
it required a lot of assumptions (symmetric object, known friction coefficient, non-
sliding contact). Nevertheless, the estimation results were very accurate. In a similar
configuration, Yu et al., 2005 used a 2-fingered robot manipulator with force sensors
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to estimate a rectangular object’s mass, 2D CoM and rotational inertia, as well as
the motion friction coefficient. They applied a set of pushes on different sides of the
object, and they measured the finger forces, as well as the motion of the fingers and
object. The measurements were used to estimate the inertial parameters of the objects
from planar Newton laws in a least squares approach.

The paper by Methil et al., 2006 estimates the mass and rotational inertia of a
pushed wheelchair. The authors use a simplified model of the pushchair’s motion,
and a special 2-fingered steering mechanism with 8 degrees of freedom. While push-
ing, the steering of the wheelchair was managed by an adaptive controller, that was
able to provide stable measurements of the wheelchair’s mass and rotational inertia
after almost a minute of pushing.

Similarly to the Purely Visual category, the advances of image processing and sta-
tistical modelling, along with increased computing capabilities enabled the relaxation
of the assumptions for complete control over the environment and interaction. The
interaction could be studied as an action that carries noise and uncertainty. Artashes
et al., 2013 estimated the CoM and mass distribution of an object, by applying a quick
strike on pre-calculated candidate points. The object’s point cloud and geometry, as
well as the tumbling motion profile were used for the estimation of CoM, rotational
inertia and mass distribution.

Franchi et al., 2014 proposed a decentralised approach, that uses a number of mo-
bile robots pushing the object. Each robot pushes on a specific point on the object, and
by using the applied forces and geometry of the pushing points that is communicated
from each robot through a consensus algorithm, the authors are able to calculate the
rotational velocity of the object, and thus the rotational inertia, 2D CoM, and mass.
This approach is extended further (Franchi et al., 2015), where the authors measure
only the noisy velocity signals of each robot’s end-effector. Fazeli et al., 2017a con-
ducted an identifiability analysis for the inertial parameters of objects with known
geometry, when the objects are under sticking or sliding contact with a rigid surface.
By expressing the motion equation of an object with contact and friction constraints
as a complementarity problem, they demonstrated that with the object motion track-
able, when the contact forces are unknown the identifiable inertial parameter is the
mass-to-rotational-inertia ratio, and under known contact forces both mass and iner-
tia can be identified. They confirmed this hypothesis in a series of experiment where
they let objects with known geometry slide in a 2D plane and hit a surface. The for-
mulation of this work was extended thoroughly by Fazeli et al., 2017b, with more
objects.

Murooka et al., 2017 estimated the inertial parameters of a large heavy object by
applying a set of handling operations recursively (pushing, lifting, tilting), measuring
the contact wrench and position as well as the object’s pose, and calculating the like-
lihood in a grid-based Bayesian estimation scheme. An example from tele-operation
is shown by Ni et al., 2018, where the authors estimated the dynamic parameters of
an object (mass and friction coefficients), to reconstruct a VR simulation useful for
teleoperation. They did so by identifying three phases of the push depending on the
object’s motion, the static, critical and sliding phase. By modelling the contact forces
as a mass-damper-spring, using different models for the frictional force in each phase,
and measuring the object’s motion, they were able to estimate the object’s mass and
build an accurate point-cloud-based VR environment that describes the scene.
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Again, the cutting-edge techniques profit from the advancing of big-data and in-
teraction learning techniques of the last decade. In these techniques, the physical
laws are not used directly in the calculation, and instead they are translated as learn-
ing models that result from a large number of robot-object interactions. The Physics-
Based Reinforcement Learning of Scholz et al., 2014 was further augmented by Scholz
et al., 2015. The authors used a mobile robot that pushes objects and measures the
applied wrench and object motion. By maximising the log likelihood of the motion
over given prior distributions and introducing a penalty term for object’s ending
state, the authors were able to estimate the mass and other physical parameters of
the object. Other examples are the works by Zhu et al., 2016 and Zhu et al., 2017. In
these two works, the authors generated objects with different dynamic parameters
(mass and friction coefficient) in the Bullet physics engine, as well as motion pro-
files when a force is applied on them. When they applied a force on a real object,
they used Bayesian optimisation and Entropy Search to identify the simulated object
whose motion closely matched the real object’s motion. They then used the motion
of the resulting simulated model to predict the motion of the real object, with high
accuracy. While the authors primarily focused on the prediction part and did not
provide results for the mass estimation part, their work is one of the first to employ
big-data methods on the inertial parameter estimation problem. Finally, Novin et al.,
2018 used a Bayesian Regression Model to learn the inertial parameters of a hospi-
tal walker, by tracking the motion of a real robot pushing the walker in 39 trials.
They used the learned model for manipulation planning, prediction and control of
the walker motion, achieving low errors.

2.3.3 Fixed-object methods

The third estimation category includes the methods where there is a fixed connection
between the robot system and an unknown load. This connection manifests in many
forms, i.e. a robot that rigidly grasps the object, or has it otherwise attached at the
end-effector. Studies in this category are inspired from classical dynamic model iden-
tification techniques in robotics, where a robotic arm executes excitation trajectories
and gets torque measurements from the joints and force measurements from wrist
sensors. The model can then be identified by rearranging the dynamic equations and
solving them in a least squares way. Examples of such work include the works by
Khosla et al., 1985, Swevers et al., 2007, Gautier, 1997, and a survey paper in Wu
et al., 2010. Only a couple of these studies are mentioned, as the main focus is the
determination and usage of the inertial parameters of other objects and not the robot
itself, but the techniques are similar in both cases.

Unlike the other categories, in this category all the 3D inertial parameters of the
object are usually calculated, due to the capability of object motion in 3D space. Tra-
ditionally, these methods were preferred and optimised for robots operating in in-
dustrial environments. One of the first works in this category was the study by Olsen
et al., 1985, where the authors proposed the equations for estimating the dynamics
of a robot with rotary joints as well as the dynamics of the load, by using measure-
ments of joint angles, velocities, accelerations, torques, and force and torque applied
on the load. They proposed test motions of only one joint at a time, and proposed
the equations for estimation, without conducting an experiment. Atkeson et al., 1985
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Figure 2.3: Examples of exploratory methods. By applying a simple action on the
robot and observing its motion, the inertial parameters can be calculated. (a) The
mass, CoM position and mass distribution can be calculated by striking an object,
measuring the applied force, and tracking its rotational motion profile. Image by
Artashes et al., 2013. (b) Similarly, the object can be pushed by a robot and the
inertial parameters can be estimated by planar motion laws. Image by Yu et al.,
2005.

provided a method for estimating the parameters by using only measurements of
force and torque on a wrist, as well as linear and angular position, velocity and ac-
celeration of the sensing frame. They conducted two experiments with two different
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manipulators, and concluded that the estimation is more accurate when the measure-
ment signals are less noisy. Dutkiewicz et al., 1993 identified the inertial and frictional
parameters of both the robot and the load by employing integral dynamic model,
which is a function of only the joint and load positions and velocities, and not accel-
erations. The identification was done by measuring force and torque on the wrist, as
well as joint positions, velocities and torques, and applying a least squares estima-
tor between measured and calculated dynamics. A similar approach was taken by
Swevers et al., 2002, where the authors determined the 3D dynamics of a load using
a maximum likelihood method, after getting noisy joint torque measurements and
noise-free joint motion measurements. In addition, they were able to identify uncer-
tainties in the robot dynamics, such as motor and transmission losses. They tested
the model in an industrial manipulator with accurate results. Kubus et al., 2008 used
force and torque measurements from a sensor on the wrist of an industrial robot, as
well as measurements of angular velocity, and linear and angular accelerations, to
estimate the inertial parameters of the load. They used excitation trajectories and ap-
plied a Total Least Squares method for the estimation, which enabled them to make
on-line predictions on the parameters. The method was able to provide an accurate
estimation in as little as 1.5 seconds. Chinthaka et al., 2017 developed a system of
estimating an object’s mass and rotational inertia, while held by a robot and being
moved in a pendulum-type oscillation way. Dong et al., 2018 developed a method
similar to the ones by Atkeson et al., 1985 and Kubus et al., 2008, with the difference
that they used the torque difference between motion based on the calculated dynam-
ics without the load and actual motion. To separate the effect of the mass, CoM and
inertia tensor on the motion, the authors used 3 different excitation trajectories. Fi-
nally, Farsoni et al., 2018 used an Extended Kalman Filter to calculate the motion
accelerations of an industrial robot with a load, and a Recursive Total Least Squares
method combined with wrist force and torque measurements for the identification of
the load parameters.

Recently, here has been a trend of taking robots out of the factory cages and oper-
ating them in close proximity of humans, as well as in outdoor environments. In ad-
dition, unmanned aerial vehicle (UAVs) manipulation is an emerging research field.
These trends have shifted the focus of fixed-object inertial estimation from a single in-
dustrial arm, to UAVs, multiple robots, or even human-robot interactions. The core of
the estimation process remains the same i.e. measurements of motion and force sig-
nals and model-based estimation of the parameters. Mellinger et al., 2011 designed
an unmanned aerial vehicle (UAV) with two customised grippers, and provided the
Euler equations of motion for the UAV holding an object. They estimated the mass,
inertia and CoM during both undisturbed hover and motion with disturbances. Simi-
larly, Lee et al., 2016 described the combined dynamic equations of a hexacopter with
a 2-DOF arm. They demonstrated how the inertial parameters of an unknown load
are incorporated in the total system dynamics, and how the the inertial parameters of
the object can be found from the known dynamics of the robot, and the motion of the
hexacopter. They built an adaptive controller that can control the arm’s end-effector
on a desired trajectory, while estimating and compensating for the unknown load.
A different approach was taken by Corah et al., 2017, where the authors created an
algorithm for the estimation of an object’s mass and 2D CoM, by deploying a number
of UAVs to lift the object. After iteratively deploying UAVs on the object and taking
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Figure 2.4: Examples of load dynamics identification. The load is grasped or oth-
erwise attached to the robot and it is moved in the workspace. Motion, force,
torque and and robot joint measurements are taken, and the parameters are esti-
mated by using the equations of object motion and the robot dynamics, usually
in a least squares way. (a) For industrial applications, the load is fixed on the
manipulator. The robot executes specific excitation motions that provide more
informative measurements. By measuring the joint angles, positions, accelera-
tions and torques, as well as wrist forces and torques, the load parameters are
estimated from the total dynamic model. Image by Atkeson et al., 1985. (b) Sim-
ilar approaches are followed in aerial manipulation, where the transferred load
is firmly grasped and moved by an unmanned aerial vehicle and measurements
are taken. Image by Mellinger et al., 2011. (c) In the case of human-robot collab-
orative transportation, the robot mimics the human motion and at the same time
estimates the parameters by measuring wrist forces and torques and using the
object’s equations of motions. Image by Cehajic et al., 2017.

taking force measurements, an estimate was given by maximising the divergence be-
tween the force measurements and the parameters that produce the measurement.
Marino et al., 2017 used three mobile robots applying coordinated wrenches on an
object, to estimate the mass, CoM, and inertia tensor of the object. They applied coor-
dinated motions that resulted in pure translations or pure rotations on the object, and
calculated the parameters with the grasping and motion equations of the composite
system. The result was used to manipulate the object with minimum squeezing force.
Estimation with coordinated transferring was also the subject of Cehajic et al., 2017.
The authors estimated the inertial parameters of an object being handled by a robot
and a human, by expressing the inertial parameters as a function of the robot and
object motion. They then projected the robot motion used for identification in the
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Figure 2.5: Recent estimation methods use large amounts of data to model dy-
namic interactions between objects. They then learn the mapping between video
frames and motion, and use this mapping to infer the object’s mass and friction
coefficient. The Galileo system shown in the figure is able to infer the relative
mass of two objects from a video of their collision and a comparison with a colli-
sion from simulation. Image by Wu et al., 2015

null space of the grasp configuration around the object. This way, they were able
to control the robot to match the desired human motion, and calculated the inertial
parameters without disturbing the human task.

Finally, machine learning has not been used extensively for this category, mostly
due to the increased accuracy and efficiency of the model-based methods. In one of
the first approaches to include robot learning in the procedure of load estimation,
Petkos et al., 2007 simulated a 3-DOF manipulator to follow sinusoidal trajectories.
They measured the joint positions, velocities, and accelerations, and used Locally
Weighted Projection Regression to learn a dynamic model. By repeating this process
with a number of simulated manipulators with reference loads attached, they were
able to estimate the dynamics of new loads. Angel et al., 2016 conducted a simula-
tion to map changes in a held payload’s mass, to variances in the joint torques. After
simulating for different masses and motions, a set of clustering algorithms were com-
pared to separate the payload variations into classes. These classes can then be used
to distinguish between different masses that are fixed on the robot arm.

2.4 Exploitation of inertial parameters

In the last sections we described how state-of-the-art learning methods attempt to
directly learn dynamic models from object motions generated by physics engines.
This eliminates the need to estimate the object’s inertial parameters, as the models
that dictate the dynamic motion can be learned and represented in an intelligent way
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(e.g. a neural network or a statistical representation), and applied to many different
objects without retraining. However, there are many cases where the value of the
inertial parameters need to be determined numerically.

As discussed in previous sections, humans both intuitively and actively use the
inertial parameters of objects to perceive their other properties, generate fixed and
stable grasps on the object surface and facilitate manipulation tasks. For example,
when a person encounters a heavy box, they realise that they must use both arms
to lift it and transfer it. By nature, the person will place their hands on the object in
an antipodal way, to provide support and stability, as well as put less strain on their
arm muscles. When they transfer the object, they will keep their posture upright to
minimise back strain. In this case, the person has conducted grasp and manipulation
planning influenced by the object’s inertial parameters. As humans are very effective
in manipulating objects, it is natural that this ability to exploit the objects’ inertial
parameters should be transferred to robots as well.

This section presents a large number of papers that demonstrate how the inertial
parameters of objects are incorporated in algorithms to make robot grasping and ma-
nipulation more efficient. It is not easy to categorise these papers, as disproportionate
amounts of work exist for different manipulation tasks. Many works from the fields
of grasp planning, manipulation planning, and controller design are mentioned. The
goal of this section is to show how the inertial parameters can be used in different
grasping and manipulation tasks, and so justifying the need to estimate them in the
first place.

The object’s inertial properties can be used to augment the dynamic model of a
robot. Indeed, when a robot rigidly holds an object, the dynamic model changes ac-
cording to the dynamics of the object and the grasping point on the object. One of
the first works to provide analytical formulations for this property was by Khatib,
1987. The author projected the dynamics of the object and the dynamics of the robot
on a specific point in space, called operational point, and showed that the total dy-
namics can result from a simple addition of dynamic matrices. The formulation was
also provided for the case of multiple manipulators handling an object. The results
were extended by Khatib, 1995, where the dynamics of robots and objects were used
to formulate other manipulation criteria such as reflected load on a manipulator, ef-
fective mass and inertia in manipulation movements and dynamic consistency. In
addition, the augmented object model was used by Chang et al., 2000 for branching
configurations in which two robots with two arms each manipulated an object.

Most grasping algorithms in the literature exploit the geometry of objects to plan
for and execute grasps. Nevertheless, the inertial parameters are essential in the an-
alytic formulation of grasping, as both the grasp force mapping and the closed-form
equations of motion require the dynamics of the object (Murray et al., 1994). As a
result, a lot of studies have used the inertial parameters of objects to solve problems
in robot grasp synthesis, planning and quality evaluation. Montana, 1992 provided a
grasp stability analysis that incorporates both spatial and contact stability. By includ-
ing the inertial parameters of the object, the author developed a matrix, the eigenval-
ues of which are a metric for the grasp stability. In a similar manner, Bruyninckx et
al., 1998 developed a stability grasp metric by dividing the grasp stiffness matrix and
the object’s inertial matrix. Again, the eigenvalues of the division were related to the
stability of the grasp. Borst et al., 2004 developed a grasp quality metric by using the



Chapter 2. Literature Review 27

(a) (b)

Figure 2.6: The inertial parameters of objects are used as a property that makes
robot grasping and manipulation algorithms more efficient. (a) Some grasp
synthesis algorithms use the object’s inertial parameters to generate stable and
minimum-disturbance grasps. Image by Lippiello et al., 2013 (b) The inertial pa-
rameters are also incorporated in the dynamic model of the robot for designing
controllers. In this image, the slippage of the object is a function of the inertial
parameters, and an accurate controller is designed. Image by Viña et al., 2015.

Grasp Wrench Space, namely the set of wrenches a grasp can counterbalance, and the
Object Wrench Space, namely the set of wrenches an object will produce while moved
for a task. For a given grasp, the scaling between the two spaces acts as a grasp
quality measure. To construct the Object Wrench Space, the mass and CoM of the
object are required. Lopez-Damian et al., 2005 generated antipodal 3-contact grasps
on an object, by using the CoM, principal axis of inertia, and local object geometry.
They argued that this type of antipodal grasp, where a grasping axis is aligned with
one of the object’s principal axis of inertia is intuitively more robust to gravity and
accelerating forces. Similarly, Lippiello et al., 2013 generated grasps on object mod-
els, by identifying minimum inertia regions on the object. These regions were defined
as those where the contact point friction cones contained the object’s CoM. By also
exploiting the object’s surface properties and the finger area the authors produced
force-closed grasps. These results were also extended by Lippiello, 2015, where the
author selected the minimum inertia regions that were anthropomorphic, i.e. the
finger contact normals were opposing or triangular-shaped. Buchholz et al., 2014
created an efficient algorithm for the bin-picking problem for estimating the object’s
pose after it has been grasped, and the pose was determined by the on-line estima-
tion of the objects principal axis of inertia and CoM. Masuta et al., 2015, Masuta et al.,
2016b and Masuta et al., 2016a described the sensation of grasping of a robot, as a fuzzy
inference method of the object’s approximate size based on the object’s principal axes
of inertia. The sensation of grasping was used for an integrated robotic perception
system that clears a table. Kanoulas et al., 2018 used a robot that grasps an elongated
object from a graspable position close to the object’s visual centroid by slightly lifting
the object and measuring the torque signal on the robot’s wrist, they were able to
iteratively adapt the grasp towards the inertial CoM of the object.

Finally, other examples of inertial parameters exploitation include works by Kubus
et al., 2007, where the authors used the inertial parameters in a bin-picking problem,
to recognise objects and their poses for selecting good grasps, and Murooka et al.,
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2014, where the authors used the inertial parameters of heavy objects to define a
strategy decision system for different manipulation types (push, lift etc.).

The inertial parameters of objects are included in in-hand dexterous manipulation
and control studies. Example applications include object re-grasping, re-orientation
and control of finger slippage. Cole et al., 1988 and Cole et al., 1992 provided the
kinemodynamic modelling and controller design of a robot grasp on an object with
rolling and sliding contacts respectively. For modelling and control they assumed
knowledge of the object’s inertial parameters. Viña et al., 2015 and Viña et al., 2016
further use gravitational torque and visual tracking with known object’s inertia, to
control the in-hand planar motion of an object while grasped by a pinch grasp. Chavan-
Dafle et al., 2015 and Kolbert et al., 2016 examined the problem of using the envi-
ronment contacts to manipulate an already grasped object, defined the dynamics of
different prehensile pushing primitives by using the object’s inertial parameters, and
conducted experiments using simple objects. Shi et al., 2017 described a finger mo-
tion planning scheme for in-hand manipulation of objects. They also used the inertial
parameters of the object incorporated in the planning equations.

Finally, the inertial parameters of objects are necessary to develop algorithms for
motion and control of dual or more manipulator robot systems. In parallel with the
robot finger grasping case, the object’s inertial parameters are incorporated in the
dynamics of the robots to generate closed-loop models. The closed-loop models are
used for solving manipulation problems such as control, trajectory generation, and
others (Hayati, 1986), (Walker et al., 1991), (Schneider et al., 1992), (Yoshikawa et al.,
1993), (Ren et al., 2016). Referring to all literature that uses multiple arms and object
models is out of the scope of the thesis, and an extensive survey has been conducted
by Smith et al., 2012.

2.5 Discussion

The separation of estimation methods in different categories was conducted based
on the nature and amount of robot-object interaction. Each type of robot-object inter-
action requires different data types for measurements. As a result, each estimation
category is best suitable for specific environments.

Purely visual methods work best assuming some prior object knowledge. That
makes them ideal in environments such as industrial plants, where components of
known materials need to be inspected. By using only the object’s geometry acquired
by cameras or depth sensors, the system can extract the inertial parameters of the
component and forward them to the next in line production steps. From there, the
components can be handled (packed, transported etc.) more efficiently. Another pos-
sible use would be in robotic exploration, e.g. planetary, where the material compo-
sition of surrounding obstacles in a planetary body may be determined from spectral
measurements, and the inertial parameters from geometry. The purely visual meth-
ods are, under strong assumptions, able to calculate all the inertial parameters of
the object. They also require only visual data (images,depth maps etc) and limited
equipment to operate. Nevertheless, they lose accuracy in case the object’s density
distribution is unknown.
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Exploratory methods are suitable for autonomous robotics, where a robot does
not have any information about the environment and surrounding objects. The es-
timation methods offer minimum levels of interaction and this makes them ideal to
use in dangerous environments such as nuclear plants and disaster sites. A short-
coming of most methods in this category is the limitation of estimating only the 2D
inertia parameters of an object. The equations of motion show that the object needs
to be moved along all 3 coordinate axis to estimate its inertia tensor. By tilting along
one axis or pushing on a planar surface, it it impossible to extract all the inertial pa-
rameters without prior knowledge. Nevertheless, mass and rotational inertia can be
estimated and used as prior knowledge for uniform-density objects.

Fixed-object methods are often used in industrial plants to calculate the inertial
parameters of heavier payloads. They require firm grasping or otherwise fixing of the
object, which makes them ideal for controlled environments. They are quite accurate
and able to estimate all the inertial parameters. Usually they require force sensors on
the robot joints or the wrist.

As shown, the usage of the inertial parameters has been fundamental over robotics
research in analytical robot grasping and manipulation. The algorithms presented
need numerical values of the inertial parameters in order to work. This means that,
despite the tremendous progress of the presented motion prediction and interaction
learning models that learn dynamical models without explicitly estimating them,
there is still a need for methods that can calculate the exact values of the inertial
parameters.



30

Chapter 3

Data-Driven Simulated Estimation by
Robot Pushing

3.1 Introduction

As stated in the previous chapter, estimating the values of an object’s inertial param-
eters is very important because it leads to design of more effective manipulation and
grasping algorithms. The methods of estimation are also highly dependent on the
environment, equipment, and prior object knowledge. Since in this thesis the ob-
jective is to develop algorithms that operate in unknown and potentially hazardous
environments, the focus was placed into exploratory methods that naturally assume
little or no knowledge over the handled object, and interact with it carefully and ef-
fectively. In particular, the preferred method of estimation is applying a small push
on the object and observing its rotational motion. The applied forces and motion
of the object are measured, and the estimated parameters result from a model that
correlates the applied action with the resulting motion.

According to the analysis of the previous chapter, analytical methods of estima-
tion provide very accurate results, but tend to rely heavily on strict assumptions
about the object and environment, as well as control over the uncertainties in robot
motion and object interaction. Such methods employ models based on physical laws
and relationships between measured sizes to perform the estimation. The main issue
with these models is that they tend to not incorporate uncertainties in the pushing
procedure. Examples of these uncertainties include sliding of the robotic pusher on
the pushed object’s surface, sliding and sticking of the objects bottom part on the
underlying surface, uncertainties over the object-surface and pusher-object friction
coefficients, and measurement noise in the force sensing and motion tracking sen-
sors. For this reasons, they have limited robustness along various environments and
robotic setups, as well as limited portability on estimating the properties of objects
of different geometries. In other sub fields of robotic grasping such as grasp synthe-
sis, the inability of analytical based methods to cope with all these uncertainties has
been tackled with the introduction of statistical and machine learning methods, i.e.
data driven methods. These algorithms gather large amounts of data in the form of
action-observation pairs. They then train a learning model on part of the data and
test it on the rest of the data. Their performance over the dataset can be checked
according to a pre-defined metric. The generalisation over new data can also be ex-
amined. Data-driven methods tend to result in slightly higher errors, but higher
generalisation capability. They deal with uncertainties by largely introducing them
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in the model during the learning procedure.
The robot algorithms developed in this thesis are operating in unknown environ-

ments with objects of various geometries, and so there is a need for sufficient overall
performance and generalisation to novel objects. As a result, the focus of this thesis is
in developing data-driven algorithms, that estimate the inertial parameters of objects
by robot pushing. As stated, data-driven exploratory estimation methods have only
been recently studied, and a number of challenges need to be addressed compared
to more classic, analytical approaches. This further showcases the novelties of the
thesis, and enables it to fill newfound gaps in the literature.

The main contribution of the chapter is to describe all the stages of a data-driven
pushing method, from beginning to end. The stages consist of the testing object
datasets, the data collection methods, the features that are extracted, the learning al-
gorithms and the evaluating measures. The goal is to provide an interpretation of the
selected approaches, as well as describe the lessons learned during their application
and related experiments.

3.2 Simulated object dataset

In robotics research, machine learning algorithms require large amounts of data to
train the robot and assess its performance. In order to extract large amounts of data
for the algorithms, as well as provide testbeds for evaluation, many recent studies
have created datasets of different objects. These datasets are increasingly common
in robot grasping and manipulation research, and they serve as comparison bases
across different studies. Such works for object recognition and manipulation include
the ones by Calli et al., 2015; Kasper et al., 2012; Wohlkinger et al., 2012 and Pokorny
et al., 2017. A dataset that is related to robot pushing is the one in Yu et al., 2016.
It includes a small number of objects with basic shapes and masses together with a
large number of planar pushing and interaction profiles applied to those objects.

In order to be able to develop algorithms for estimation and usage of objects’ iner-
tial properties, there is a need for an object dataset with various ranges of masses and
mass distributions. However, it is very difficult to create such a dataset using real
objects, because their inertial parameters may be hard to calculate of find experimen-
tally. Instead, a good starting point would be to use simulated objects, for which the
parameters can be easily calculated. In this Chapter, a dataset of simulated objects is
provided. It includes 57 different realistic objects in 5 categories together with their
3D meshes, mass, inertia tensor and centre of mass. The 3D models were uploaded
in Meshlab, where the inertial parameters were calculated. Meshlab calculates the
parameters by applying the algorithm described in Mirtich, 1996, assuming uniform
density equal to 1, that is the mass of the object is considered equal to its volume. To
assign desired inertial parameters to an object, a desired mass must first be defined.
The inertia tensor elements are then multiplied by the division of the new mass to
the object volume. The CoM remains equal to the volumetric centroid, as the density
remains uniform. The object models can be scaled and combined to generate new
objects with new inertial parameters. The dataset is suitable for running simulations
of pushing, manipulation, and grasping experiments. In general any interaction be-
tween the robot and the objects could be simulated. A thorough literature review in



Chapter 3. Data-Driven Simulated Estimation by Robot Pushing 32

(a) (b)

(c) (d)

(e)

Figure 3.1: The inertial object dataset has five object categories: (a) The Primi-
tives category includes primitive objects that can be used separately or combined
in many experiment types; (b) The Tools category includes heavier objects that
suited for tool manipulation experiments; (c) The Home category includes com-
mon objects that are easy to find, experiment and compare with real objects; (d)
The Toys category includes sports equipment and animal figures with complex
shapes, suitable for grasp generation experiments; (e) The Pushing category in-
cludes objects that are ideal for pushing experiments due to their flat and elon-
gated shapes. This dataset includes 57 objects and contains 3D mesh models and
inertial information for each object. The object dimensions and masses were se-
lected so that the dataset objects are physically similar to real world objects. The
mass, CoM and inertia tensor have been calculated with Meshlab. The variety of
object categories allows generation of objects to be used in learning algorithms,
both for training and evaluation.

robotics-related object datasets showed that this is the first object dataset suitable for
inertia-based manipulation, grasping and pushing benchmarking.

The presented inertial dataset is tested in Gazebo 2.2 and ROS Indigo. It can be
used with any other physics simulator supporting URDF1, such as V-REP and Mu-
JoCo. The dataset includes 3D models of 57 objects together with their mass, CoM,

1The Universal Robotic Description Format (URDF) is an XML file format describing the kinematics
and dynamics of all the elements of an object, mechanical structure, or chain of objects.
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and inertia tensor expressed in a frame attached to the CoM. The parameters of each
object (size, mass, friction and the inertia tensor) are adjustable, and changing them
is useful for combining different object models and creating new objects of various
complexity. The inertial properties of every component in a combined object can be
determined numerically, thus forming an object with non-homogeneous mass dis-
tribution. Thorough description of the dataset form and object categories is given
below.

3.2.1 Technical characteristics

Each object is represented as a URDF file, that defines the geometry (3D mesh), colli-
sion shape, inertia tensor, mass, CoM and friction coefficient. The inertial properties
were calculated in Meshlab, which makes use of the algorithm proposed by Mirtich,
1996 to estimate the inertial properties of a mesh using uniform and unit density
d = 1. The volume and mass values are identical for this calculation. However, the
inertial properties of a non unit density object can be easily computed by scaling the
obtained parameters from Meshlab by the desired density, allowing the creation of
many models and shapes.

3.2.2 Object categories

The object categories are described in this section and example uses of each category
are given (Fig. 3.1). It should be noted that these uses are indicative, and objects from
each category can be used in other types of experiments as well.

• Primitives: Includes models of primitive shapes, such as sphere, cube, cylinder
etc. These objects can be used in big-data experiments similar to e.g. Wu et al.,
2015, as they are easy to use, scale and combine. Their inertial properties are
also more straightforward to scale.

• Tools: Includes tools that allow a robot to learn manipulations of such an object
in a realistic experiment. They have medium to large mass values. Their mass
distribution and handles makes them ideal for manipulation and tool usage
simulations.

• Home: Includes everyday objects found in homes such as mugs, bottles and
books. They have mostly lower mass values, and can be used in grasping,
recognition and manipulation experiments. Since they are common and easy
to find in the real world, the simulations conducted using these models can be
easily verified in real-robot experiments.

• Toys: Includes toy figure objects and basic sports equipment, such as toy cars,
animal figures and balls. They also have mostly medium masses. They are de-
signed to have peculiar geometries, so that they can be used in grasp generation
and grasp evaluation experiments, e.g similar to Lopez-Damian et al., 2005.

• Pushing: Includes models that are suitable for pushing experiment on a table
because of their flat and elongated shapes. The frictional properties can be eas-
ily changed in the URDF file, so that different materials can be simulated for
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more physically-realistic pushing. The models are designed to be placed with
their larger surfaces down (or the wheels in the case of the car), and any face
can be used for pushing.

3.3 Data-driven estimation of mass and inertia

A first attempt to approach the pushing estimation problem is described in this sec-
tion. The simulated dataset is used for that matter, demonstrating its usefulness and
possibility for generalisation. Overall, the section describes a simulated method for
a controlled robot push, that results in estimations of mass and inertia (Izz) of an ob-
ject. A set of input-output pairs are generated that represent push and corresponding
motion outcomes. Then, a non-parametric regression method is used to estimate the
mass and rotational inertia of objects. The regression model is fed with a feature vec-
tor v from measurement signals, namely force, torque and object displacement and
define a corresponding output vector d = [m, Icm]. The regression model is trained
from the acquired data to correlate pairs of observed features and the inertial prop-
erties {v, d}.

3.3.1 Problem formulation

For modelling the push environment, three coordinate frames are considered: (i)
Ocp ∈ SE(2) attached to the end effector of the robot pushing an object, (ii) Ocm
attached to the center of mass of the object (CoM) and (iii) Ow ∈ SE(2) as a refer-
ence frame where SE(2) = R2 × SO(2). Fig. 3.2 shows a robot pushing a rectangular
object (purple) on a table (white) with its end effector (red). The object mass and ro-
tational inertia w.r.t. Ocm are m and Icm, respectively. The friction coefficient between
the surface of the object and the table is µ. For simplicity, the static and sliding fric-
tion coefficients are assumed equal. In addition, the friction coefficient between the
point contact between the end effector and the object surface is noted with µc, where
xcp is normal to the contact surface. The robot applies a force F ∈ R2 at the contact
point Ocp having a scalar projection onto xcp and its normal for a total duration of T.
At each time instance t ∈ [0, T], the equations of motion of the object moving on the
table are written as follows:

F − µmg sgn(u) = mα (3.1)
F × r− µmg sgn(ω) = Icmγw,z (3.2)

where u and α are linear velocity and acceleration vector expressed in Ow, ω and γw,z
are angular velocity and acceleration expressed in Ocm, r is a vector connecting the
contact point to CoM and g is the gravitational constant. The contact is fixed if F lies
inside the contact friction cone with angle θ f r = tan−1(µc).

If Fy ≤ µcFx, the robot end effector does not slide along the object surface and r
will not vary during the push. Accordingly, Eq. (3.1) and (3.2) can be directly used
to estimate the object mass and inertia. Nonetheless, in a real planar pushing exper-
iment, the robot end effector may slide on the surface of the object due to imperfect
contact surface, low contact friction and an uncertainty in the force direction. That
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Figure 3.2: Top view of geometric configuration for a pushing experiment: a robot
pushes a rectangular object (purple) on a table (white) with its end effector (red).
The coordinate frames denoted with Ow, Ocm and Ocp are the world frame and
coordinate frames attached to the center of mass of the object and to the contact
point of the robot end effector and object surface, respectively. xcp is normal to the
contact surface. The vector connecting the contact point and the center of mass is
denoted by r. The friction cone is shown with thin lines on the contact point, and
has an angle of θ f r. All the z coordinates are normal to the page.

is very common in the case of open-loop pushing, i.e. when the pushing direction
and force are not closed-loop controlled. Although Eq. (3.1) and (3.2) are still valid,
they cannot be easily implemented as the change in r and applied force direction
may not be immediately and precisely measurable. As a result, it is very difficult
to build a robust deterministic model of the relationship between force and linear
acceleration as well as torque and rotational acceleration. Machine learning regres-
sion approaches (Borchani et al., 2015) have been proposed to deal with such issues
by building an approximate model of a linear or nonlinear behavior from a set of
measured input-output data (training dataset).
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(a) (b) (c)

(d)

Figure 3.3: Robot setup for cube pushing in Gazebo simulation: (a),(b) and (c)
show the side, back and front view of a Schunk LWA4D robot setup in the Gazebo
simulator, with a pushing tip (shown in blue) and force/torque sensor. A set of
30 cubes with different masses, dimensions, friction coefficients and rotational in-
ertias is created. For each cube, the robot executes 10 open-loop pushes along the
front edge of the cube with a predefined velocity, and measures the applied force
and torque as well as the translational and rotational displacement of the cube.
This leads to 300 measurement sets, that are used to train a random forest that
estimates the mass and inertia of a new object by pushing it only once. Figures in
(d) are instances of a push.

3.3.2 Data collection

The pushing object set was created in the Gazebo simulator and consists of 30 simu-
lated cubes with different edge lengths (15 ≤ a ≤ 30 cm), masses (0.1 ≤ m ≤ 1.5 kg),
friction coefficients (0.15 ≤ µ ≤ 0.6) and rotational inertias (5.983× 10−4 ≤ Izz ≤
171× 10−4 kgm2). The parameter ranges are selected so that the resulting objects can
be physically realistic. For example, the range of friction coefficient is selected by
simulating various types of material contacts, such as wood-on-wood, or wood-on-
plastic. After selecting the mass values, edge lengths, and friction coefficients from
the specified ranges above, 30 random mass-edge-friction combinations were created
to yield 30 different cubes. The inertia of each cube was then calculated from the mass
and edge length, assuming uniform but unknown density. The parameters of each
cube are shown in Table 3.1.

The world reference frame ( Ow) and the frame attached to the cube CoM ( Ocm)
are shown in Fig. 3.3a and Fig. 3.3c. A simulated Schunk LWA4D robot manipula-
tor with an attached stick is used to push every cube generated from the dataset, as
shown in Fig. 3.3b. The robot applies 10 open-loop pushes to every cube, i.e. there is
no closed-loop control of applied force and object position, velocity and movement
direction. The 10 pushes are applied at points uniformly distributed across the front
edge of the cube in [−a

2 , a
2 ] (as shown in Fig. 3.3(b)). The robot pushes the cube

relatively low on the pushing face side, in order to prevent tilting the cube and de-
generate its smooth motion.

The arm is equipped with a force/torque sensor at the end effector. The simu-
lation environment is set up so that the robot always starts moving from an initial
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Table 3.1: Simulated cube parameters

Cube No Mass (kg) Inertia ( kg
m2 ) Edge length (m) Friction coeff

1 0.147 0.00103 0.205 0.46
2 0.475 0.0053 0.236 0.15
3 0.81 0.0115 0.292 0.57
4 0.857 0.0103 0.268 0.43
5 0.24 0.0025 0.252 0.22
6 0.478 0.0039 0.221 0.31
7 0.52 0.0034 0.197 0.24
8 0.66 0.01 0.3 0.44
9 0.62 0.0083 0.284 0.37
10 0.1 0.0005 0.189 0.6
11 0.336 0.0025 0.213 0.26
12 0.76 0.0038 0.173 0.25
13 0.43 0.0048 0.26 0.4
14 0.71 0.0071 0.244 0.39
15 0.384 0.0048 0.276 0.32
16 1 0.0037 0.15 0.58
17 0.952 0.0043 0.165 0.42
18 0.289 0.0015 0.181 0.33
19 0.194 0.0017 0.2289 0.21
20 0.9 0.0037 0.157 0.2
21 1.278 0.0046 0.15 0.28
22 1.444 0.0171 0.267 0.54
23 1.056 0.0141 0.283 0.52
24 1.222 0.0057 0.167 0.53
25 1.333 0.0089 0.2 0.3
26 1.167 0.0091 0.2170 0.35
27 1.389 0.0126 0.233 0.37
28 1.5 0.084 0.183 0.49
29 1 0.0104 0.25 0.5
30 1.111 0.0167 0.3 0.56
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Figure 3.4: Example measurement signals for a single push. The shown sizes are
measured for each push. The mean and variance of each signal are extracted. By
representing each signal to its statistical values, a 12-dimensional feature vector
is built, which is used as input for the regression model.

configuration shown in Fig. 3.3d, and different cubes are positioned on the table as
shown in Fig. 3.3c. The robot’s end effector moves in the direction of the x-axis of Ow
(the red axis in Fig. 3.3a) for 50 cm where it touches the instance cube after almost
20 cm. It starts moving from zero velocity with acceleration of 0.2 m/s2 taking less
than 16 cm to reach the predefined maximum speed of 0.25 m/s. Hence, the end
effector pushes all the instances with the speed of 0.25 m/s. The object position and
orientation, as well as the force and torque measured by the force/torque sensor are
collected at 80 Hz resulting in 6 measurement signals.

It should be noted that two rounds of data were collected in total, using the ODE
and Bullet physics engines. The goal was to check whether the final result was af-
fected by the selection of physics engine. Initial data collection and preliminary
training showed regression performance was similar in both cases (less than 0.1%
error difference was observed in mass and inertia). This happens because the push-
ing motions were relatively slow, making inertial and contact forces easier to process
by the engine, leading to measurements of nearly similar quality. The Bullet engine
performed faster and the motions were smoother in the simulator, and for this reason
the Bullet dataset results are presented henceforth.

3.3.3 Multi-output regression random forests

To perform the multi-output regression a Multi-Output Regression Random Forest
(MORRF) was selected. This section provides a brief description on how MORRFs
operate and conduct predictions. A more detailed description of Random Forests is
given in Breiman, 2001, and their multi-output counterparts in Borchani et al., 2015.
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Decision trees for regression

Random Forests are based on Classification and Regression Decision Trees (CARTs)
Duda et al., 2012. A CART is a non-parametric prediction model that has a structures
tree-like form. It works by partitioning the feature space in hypercubes (in the case
where the feature vector has dimension larger than 3). Each node of the tree contains
a condition for one of the feature space variables, and the tree is split according to
the outcome of the condition. A Regression Tree (RT) splits the node by searching
all variables of the feature vector to find the split that minimises the impurity, or the
mean-squared error of the target in the data set resulting from the split. In the case of
single-output regression, the MSE at a node N is defined as:

MSE =
1
nt

nt

∑
i=1

(yi − ȳ)2 (3.3)

where nt is the number of remaining data points at the node, yi the target variable of
each data point, and ȳ the mean of the target variables. In the case of multi-output
regression, the split rule is similar, but is is calculated for the multi-variate target:

MSE =
1
nt

d

∑
l=1

(
n

∑
i=1

(y(l)i − ȳ)2 (3.4)

where d is the dimension of the target vector. Starting from the first node, the sets are
split iteratively until a pre-defined termination criterion applies, and a leaf node is
reached. The prediction value of the target is then the average of the leaf space. The
number of splits at each node is variable, although it is typically 2 and the tree is then
a binary tree. The training algorithm of a binary multi-output regression tree is given
below:

• Let Str the training set, with Str = (X1, Y1)...(Xn, Yn), where X ∈ Rnx , Y ∈
Rny , n, nx, ny > 0

• Let xi ∈ X, i = 1 . . . nx be a feature in the input space, and Vi, i = 1 . . . nx the
set of its real values found within the training set

• 1. Set S = Str

2. For each xi and v ∈ Vi

(a) Split S in two datasets S< and S>, corresponding to the sets where
xi ≤ v and xi > v

(b) Estimate the MSE from Eq. (3.4) for both datasets, MSE< and MSE>

(c) Select the split that minimises MSE< + MSE>

(d) Recurse with S = S< and S = S>

(e) Terminate when termination criteria are met (only one data point on
each leaf, desired tree depth reached e.a.)

Random forests

CARTs are a very intuitive and simple model for prediction. Their main disadvan-
tage is that their method of operation divide the input space with a "sum of squares"
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surface, and so they tend to overfit to the data, especially when the tree depth is large.
A way to solve this problem and reduce prediction variance is by applying bagging
(bootstrap-aggregating). When bootstraping with CARTs, new trees are trained in new
datasets resulting from sampling with replacement in the original dataset. By aggre-
gating the prediction of all such trees, this set of trees provides low-variance predic-
tions. However, trees created by fitting bagged datasets tend to have similar structure
due to the fact that the all the input features are used for the prediction. A Random
Forest (RF) further decreases variance by using subsets of the input feature space and
training on bagged datasets. This results in a large number of trees (forest) with vary-
ing structure. The averaging of all the trees is the prediction result. The number and
depth of trees, the feature space partitioning, and the bootstrap sampling method are
some of the training hyperparameters affect the fitting and prediction result. Since
in this thesis the regression has more than one target variables, the learning methods
are Multi-Output-Regression Random Forests (MORRFs).

While technically any regression algorithm could be modified to accommodate a
multi-objective case, Random Forests were selected for a variety of reasons. The us-
age of multiple trees on bagged datasets reduces the error variance across the testing
set, as the prediction on a new input is passed through a large number of weaker
estimators (CARTs), and the results of all estimators are averaged. This also makes
RFs resistant to noise on the input feature. Typically, increasing the number of trees
reduces the variance, but after a specific number, further increase of the tree num-
ber does not induce significant reduction in variance. To achieve this robust perfor-
mance, RFs require large amounts of data, typically in a range of thousands. As will
be shown in the next sections, large amounts of data were required for inertial pa-
rameters estimation with pushing, and so RFs were preferred. Finally, RFs operate
by subdividing the input space into sums of "hyper-rectangles", meaning that the de-
cision surfaces around each tree are rectangular in the dimension of the input space.
Because of this property, RFs tend to perform well when the input is within the range
of the input limits used for the training process, but not well when the input is out
of range, limiting the generalisation capabilities. The data gathered in this Chapter
come from a large range of inertial parameters, and RFs are used to train on this
range. By gathering data from such a large range and using an RF, the need for gen-
eralisation is not required, as generalisation would mean that the robot is estimating
the parameters of a very light, or very heavy (upushable) object.

3.3.4 Estimation on pushes

The data collected by pushing the cubes (input) together with the know n inertial
data (output) of the instance cubes are used for training a multi-output regression
model. A MORRF is used for the estimation, which is robust to noise and outliers,
as shown by Borchani et al., 2015. This is critical as the experiments include both
uncertainties and measurement noise. (Fig. 3.4).

The data collected during pushing are split in training and testing sets. The train-
ing set includes data from 22 cubes and the testing set from the remaining 8 cubes.
The cubes were selected at random for the training and testing sets. All measure-
ments are expressed in the Ow frame. To tackle the measurement noise and pushing
uncertainties, the measurement signals are considered to be random. A useful way
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to extract information from the noisy signals is to represent them with their statistical
properties. As such, the mean and variance of each measurement signal are calcu-
lated and are concatenated to be fed as feature vector to the random forest. Thus, the
input feature vector v̄ for each push consists of 12 scalars. The output vector con-
sists of the mass and rotational inertia of each cube, i.e. 2 scalars. The random forest
maps a 12D space to a 2D space. To optimise the hyperparameters of RF (number of
trees, depth and feature space partition) a combined grid search with 10-fold cross-
validation was performed. The cross-validation sets included all the pushes from 3
cubes, i.e. 30 pushes. The optimal number of parameters was 1000 trees of depth
equal to 7. The feature space was partitioned to 75% , i.e. at every tree of the forest 9
out of 12 features were used for training.

3.4 Experimental results and discussion

Large ranges of cube sizes, masses and frictions are included in the training set. The
performance of the algorithm is measured by the relative error of the ground truth
mgt, Igt and estimated mest, Iest values for mass and inertia. This leads to the following
2 error metrics, i.e.

em =
|mest −mgt|

mgt
∗ 100 , eI =

|Iest − Igt|
Igt

∗ 100. (3.5)

These error metrics represent the difference between the real value and the esti-
mated value as a percentage of the real value. The use of percentage enables an error
description that is does not depend on the magnitude of the real value. Consequently,
the performance can be measured along different masses and lead to more descrip-
tive conclusions. The errors can also be averaged to give an overall performance on
the testing set. The ground truth for each cube is calculated as follows: Each cube
has a mass and an edge value assigned, and assuming uniform density, the inertia is
calculated from the formula Igt =

1
6 ms2, where m is the mass in kg and s is the edge

in meters.
The results of estimating the mass and inertia of the 8 testing cubes are shown

in Figs. 3.5a and 3.5b. It can be seen that in general, pushes in the middle of the
cube have lower mass errors than pushes on the sides of the cube. In contrast, the
pushes on the sides yield lower errors for the inertia. In fact, when the robot pushes
close to the middle, the object does not rotate and the rotational acceleration is not
observed; hence, the inertial modality of the system is not excited by the applied
input (as per Eq. (3.1)) and an imprecise estimation of the inertia is expected. On
the other hand, the pushes applied to the point close to the side of the cube yield
larger angular velocity (and smaller liner velocity) for the object resulting in a better
estimation of inertia (as per Eq. (3.2)). The overall error performance for each cube is
shown by averaging the rows for each error image. The results are shown in Fig. 3.6a,
and suggest that each cube has varying estimates both in mass and inertia. This
is attributed to every cube having varying combinations of size, mass and friction
coefficient, factors that affect the pushing and the estimate. Likewise, averaging the
columns of each image results in a metric for the performance of every pushing side,
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Figure 3.5: Error images for all the pushes applied to the cubes in the test set. The
plots show the errors of estimation for each cube, and for each push at different
points along the cube edge. It can be seen that in general, pushing closer to the
middle of the cube provides a better estimate of mass, and the pushes closer to
the edges yield smaller error of inertia estimate. (a) Mass error (b) Inertia error.

as shown in Fig. 3.6b. In general, pushing close to the sides of the cube leads in better
estimate of inertia and slightly worse estimate of mass.

Apart from the estimation accuracy, the influence of each parameter of a cube on
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(a)

(b)

Figure 3.6: The average of the testing set error values (shown in Fig. 3.5): (a)
The average errors of the inertia (red line) and mass (blue line) estimation across
all the pushes for each cube. Cube No. 3 yields the smallest error of mass and
relatively small error for inertia. (b) The average errors of the inertia (red line)
and mass (blue line) estimation across all the cubes for each push. Pushing points
closer to the side of the cube, namely No. 3, 8 and 9, yields the smallest error of
mass and inertia estimation.

the performance of the approach is evaluated. To do so, the cube associated with
the minimum estimation error of mass and inertia is selected, i.e. the cube No. 3 in
Fig. 3.6a. From this cube, a second set of cubes is generated by using its parameters
as nominal: the size denoted by ā, the mass denoted by m̄ and the friction coefficient
denoted by µ̄. While the two parameters are kept constant, the third is changed
in a range of -30% to +30% of the nominal value. For each parameter 6 uniformly
distributed variations of the nominal values are taken, leading to 18 new cubes in
total. This time, a single push is applied at each obtained cube, at a location with a
relatively low error for both mass and inertia based on the results showed in Fig. 3.6b.
The obtained results are shown in Fig. 3.7.

Fig. 3.7a shows that different sizes of the cube and friction coefficients yield error
of mass equal to almost 12% with very small variation. Likewise, different masses of
the cube and friction coefficients yield almost an error of inertia of 15% with small



Chapter 3. Data-Driven Simulated Estimation by Robot Pushing 44

Size Mass µ

5

10

15

20

Mass error %

(a)

Size Mass µ

0

20

40

60

80

Inertia error %

(b)

Figure 3.7: Box plots of mass and inertia error in the second set of cubes. The plots
show how the cube size, mass and friction coefficient correlate with the mass and
inertia estimation errors for a single push. (a) The mass estimation error stays less
than 20% for all changed parameters where the median of the obtained errors
illustrates that one can always expect almost 12% error. Changes in cube mass
lead to large variations in estimated error of mass, but the overall error values are
still relatively low. (b) The inertia estimation error is highly affected by changes
in the cube size, with a relatively high value of error median. Changes in mass
and friction coefficient lead to a low value of errors with small variations.

variations. In contrast, changing the size of the cube results in a large value of inertia
estimation error with a large variation. Similarly, changing the mass of the cube
yields a reasonably small error of mass estimation with a relatively large variation.
Since inertia is proportional to square of length and the cube length is changed, it can
be reasonable to see a significantly large inertia estimation error as per the change of
size. For all the other parameters the observed errors are small.

3.4.1 Simulation with novel objects

Finally, the generalisation capability of the random forest is evaluated by estimating
the mass and inertia of unseen objects, which belong to a completely dissimilar object

Table 3.2: Inertial properties of objects shown in Fig. 3.8 for final testing.

Object Mass [kg] Inertia [kgm2 × 10−4]
Ellipse 1 80.982
Hexagon 1 41.700
Triangle 1 41.214
Saucepan 0.8 70.381
Tank 0.5 13.947
Rock 2.5 77.723
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: The set of objects generated for evaluating the generalisation capabil-
ity of the proposed method: at the third evaluation stage, 6 new objects from the
inertial dataset are selected and the push experiment is performed. These objects
include: an ellipse primitive (a), a hexagon primitive (b), a triangle primitive (c),
a saucepan (d), a toy tank (e) and a sample rock (f).

class. This property could be crucial to estimate the mass and inertia of a real world
object utilising the model trained in simulation. First, set of objects from the inertial
dataset is used. The set includes an ellipse, a hexagon, a triangle, a saucepan, a
toy tank and a rock, with assigned masses and friction coefficients. The inertias are
calculated in Meshlab and scaled to match the assigned mass. The objects are shown
in Fig. 3.8a-3.8f, and their inertial parameters in Table 3.2. Again, a single push is
applied at a point close to each object’s edge. The regression model trained by the
cube data is used for estimating the mass and inertia values of the unseen objects.
The resulting mass and inertia estimation error are shown in Fig. 3.9. These results
suggest that the model performs better with objects that have size and mass within
the range of those used in the training. Indeed, the mass errors are lower in the
ellipse,hexagon and toy tank. The objects with parameters significantly out of the
range used for training, namely the rock and the saucepan, show larger error values.
In the case of inertia, heavier objects yield smaller error where lighter object results
in significantly large errors. The estimation error represented as the error does not
imply an absolute error value. For instance, the estimated value of the mass of the
rock is 1.28 kg resulting in almost 50% mass estimation error of the rock weighing
2.5 kg. While the estimation has low accuracy, the results suggest that by making the
training dataset bigger and even more diverse, the performance of the approach for
estimating the mass and inertia of unseen objects and object classes will improve.

3.5 Large-dataset estimation

The conducted experiments were a good starting point in the designing of a data-
driven estimation system. The final results brought forward a number of shortcom-
ings of the method, that needed to be addressed for further improvement. The results
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Figure 3.9: Mass and inertia estimation errors for the unknown object simulation.
The plots show the error for every object, with only one push applied. (a) The
mass error is lower for objects that resemble the training cubes in similar shape
and mass values. Heavier objects (rock) or objects with peculiar shape (saucepan)
have higher error values. (a) The inertia error is again lower for objects that are
similar to the training ones in shape, as well as larger objects. The errors are small
for heavier object, namely for the rock.

demonstrated that the MORRF method offers a more accurate prediction on target
values that were part of the training phase. The limited generalisation capabilities
manifested with larger error values on unseen objects. In combination with the rela-
tively small number of cubes and pushes that composed the training set, this means
that there is a need for larger, more diverse datasets for training and testing.

Furthermore, the feature extraction process generated motion-based features suit-
able for data-driven learning, but not representative of the physical laws that charac-
terise the pushing motion. A more careful feature extraction and selection process is
needed, where the features represent quantities that appear in the well-defined laws
of pushing motion. The inspiration behind this is found in earlier works on pushing
and inertial parameter estimation, where the authors used measurements applied di-
rectly in physical motion laws and generated the prediction. Notable examples are
Tanaka et al., 2004 and Yu et al., 2005 where the authors measured the applied forces
and tracked the object’s motion, and estimated the inertial parameters from Newton’s
Laws of Motion. By enriching the Random Forest method with physically meaning-
ful input, one can achieve the meta-modelling of the pushing process, i.e. expressing a
mathematical model under another model. In the robot pushing case, the analytical
models of motion are re-expressed with a data-driven method.

Another shortcoming of the method described previously is the lack of testing
with data extracted from a real-robot pushing scene. Such testing would add extra
fidelity to the method, and show how it can cope with real issues, such as sensor
noise and pushing uncertainties.

To address all these shortcomings a new solution was designed, so that its input
features stem from the analytic laws of quasi-static pushing of objects. This way,
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the pushing law are expressed with a data-driven model, leading to more accurate
estimations. For training and testing, two datasets are used: one extracted from sim-
ulated pushing, and the MCube Lab pushing dataset (Yu et al., 2016). The simulated
dataset has an extensive range of object dynamics, and the M-Cube dataset consists
of pushes on real objects. Using these two datasets leads to higher fidelity of the esti-
mation process. The results suggest that in both cases one can achieve low-error and
low-variance estimations, with only a single push on an object.

3.6 Quasi-static robot pushing mechanics

Let an object lying on a surface and a robot applying a push at one of its edges (Fig. 2).
The coordinate frames of the world, finger-object contact and object’s centre of mass
are noted with W,CP and CM respectively. The distance vector between CP and CM
is noted with r. The direction of all z axes are towards the reader. When the robot
applies a push, the object motion falls into one of three categories: rest, quasi-static
and accelerating.

During rest, the robot applies an infinitesimal amount of force that can not over-
come the static friction, and the object stays still. In accelerating motion, the robot
applies enough force for the object to overcome the static friction, and start accelerat-
ing. The accelerating motion is characterised by the inertial parameters of the object,
the applied force, and the friction coefficient between the pusher and the object, as
well as the object and the surface. In this section, the interest is in in quasi-static
pushing, where the robot applies just enough force for the object to match the fric-
tional force. The object moves with low and constant velocity, and is not accelerating.
The quasi-static pushing mechanics have been analysed in depth in a series of works
Mason, 1986 Goyal et al., 1991a Goyal et al., 1991b, Lynch et al., 1991, Yu et al., 2015.
A brief description of the necessary notions is provided.

When the object is in contact with an underlying surface, a frictional load ( fx, fy, m)
is applied on the support surface, and the object’s bottom side. The principle of
maximal dissipation indicates that the frictional load depends on the sliding direction
and angle. The set of all frictional loads that can be applied on an object form a convex
set in the 3D space, called limit surface.

To find an analytical expression for the limit surface, let dA be an infinitesimal
surface patch on the bottom side of the object, that lies in ra distance from a fixed
reference frame. When the object is sliding, it rotates around an instantaneous centre of
rotation rc. If the motion is purely rotational, rc is located in the centre of friction in the
the support surface. If the motion is a pure translation, rc lies at infinity. The surface
patch dA moves with instantaneous velocity ua, and the friction coefficient is µ. The
frictional load applied on the whole surface A, is given by Mason, 1986:

f = ( fx, fy) =
∫

A
−µ

ua

|ua|
p(ra) dA

m =
∫

A
−µ(ra − rc)×

ua

|ua|
p(ra) dA

(3.6)
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(a)

(b)

Figure 3.10: Extraction of the simulated dataset. 7 Schunk LWA4D robots are
set in the V-REP simulator, with pushing tips and F/T sensors. The pushed
cubes have different masses, dimensions, friction coefficients and rotational in-
ertias. For each cube, the robot executes an open-loop push along the cube sur-
face with given velocity, and measures the force and torque applied as well as
the pusher and cube linear and rotational velocities. In total, the dataset includes
48000 pushes for a large variety of inertial parameters and friction coefficients.
(a) The robot models used for pushing. (b) The robots pushing a spawned set of
cubes. For each push, they measure the applied force and moment, the pusher
velocities, and the object velocities.

where p(·) is the object’s pressure distribution on the plane. In practice, it is very
difficult to calculate the limit surface, because the pressure distribution, centre of
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Figure 3.11: Limit surface approximation as an ellipsoid. The exact calculation of
the limit surface may not be possible, and by approximating it as an ellipsoid the
velocity. Points on the limit surface represent the total frictional load applied on
the object. Due to the principle of maximum dissipation and the smoothness of
the limit surface, the velocity of each point on the surface q̇ = (ux, uy, ω) must be
orthogonal to it. Image from [27].

rotation, and supporting surface can be unknown or even varying during motion. In
Lee et al., 1991, it is suggested to approximate the limit surface as an ellipsoid (Fig.
3.11). The ellipsoid semi-principal axes and equation are found as follows:

• The maximum force that can be applied by the surface is fmax = µMg. This
force is applied in the case of pure translation.

• The maximum moment that can be applied by the surface is mmax =
∫

A−µ|ra|p(ra) dA.
This moment is applied in the case of pure rotation by the projection of the
object’s CoM on the support surface, which is considered the moment refer-
ence point. The fraction of maximum torque to maximum force is noted with
c = mmax

fmax
.

• The limit surface equation is ellipsoid (Fig. 3.11):

L( fx, fy, m) = (
fx

fmax
)2 + (

fy

fmax
)2 + (

m
mmax

)2 = 1 (3.7)

Due to the principle of maximum dissipation and the smoothness of the limit sur-
face, for a given frictional load on the limit surface, the object velocity q̇ = (ux, uy, ω)
must be orthogonal to it Goyal et al., 1991a. The orthogonality is imposed, by making
q̇ parallel to ∇L( fx, fy, m). This leads to the following relationships between applied
forces and object velocity:

ux

ω
= c2 fx

m
uy

ω
= c2 fy

m

(3.8)
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The next step after Eq. (3.8) is to express the motion of the object as a function of
the motion of the robot pusher. This is done by introducing the motion cone Mason,
1986. The motion cone spans the object velocity, the same way the friction cone spans
the applied force. The left and right limit forces of the friction cone result in the
generalised object velocities q̇l = [ulx, uly, ωl] and q̇r = [urx, ury, ωr]. The contact
velocities from this motion are the limits of the motion cone and are given by vl =
[ulx − ωlry, uly + ωlrx] and vr = [urx − ωrry, ury + ωrrx]. If one notes with up the
velocity of the contact point on the pusher, and uo the velocity of the contact point,
the motion of the object is dictated by whether up lies within the motion cone.

If the pusher velocity is within the motion cone, then the contact is sticking and uo
= up holds. The pusher velocity up and the object velocity are related by:

ux −ωrx = upx

uy −ωry = upy
(3.9)

The moment applied by the pusher is m = r × f = rx fy − ry fx. This equation,
along with Eqs. (3.9) and (3.8) give the velocity of the object as a function of the
pusher velocity:

ux =
(c2 + rx

2)upx + rxryupy

c2 + r2
x + r2

y

uy =
(c2 + ry

2)upy + rxryupx

c2 + r2
x + r2

y

ω =
rxuy − ryux

c2

(3.10)

If the pusher velocity is not within the motion cone, then the contact is sliding
and uo is on one of the two boundaries of the motion cone ub. A part of the pusher
velocity is lost due to slippage, and the rest contributes to the object motion. The
fraction that is transferred is uo = kub, with k =

upn
ubn , and n the contact normal. The

object velocity is given by substituting the new uo to Eq. (3.10), as if the object was
pushed by a sticking pusher with reduced velocity. It is clear that in all cases, Eqs.
(3.9) and (3.10) are crucial to fully characterise the object’s motion from the pusher
data.

3.6.1 Simulated dataset extraction

For the simulated data extraction, a robot pushing scene is set up using the V-REP
simulator. Again, the Bullet physics engine was used without significant change
in the estimation result. The scene includes 7 Schunk LWA4D robot manipulators
with force sensors and pushing sticks attached. The scene is shown in Fig. 3.10b.
The robots are pushing cubes that appear in front of them. The cubes have variable
masses, edge size, inertias and coefficients of friction with the supporting surface. For
the cube parameters 20 evenly-sampled masses are selected from a range of [0.5, 5]kg,
6 friction coefficients from a range of [0.2, 0.6] and 3 cube edge sizes from [0.1, 0.2]m.
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The rotational inertia for each cube is calculated according to the size and mass of the
cubes, with the assumption of uniform density. The CoM of each cube is located in
its geometric centroid, and the 2D distance vector is extracted from the first contact
point to the cube’s CoM (the r vector in Fig. 3.10b). Since the CoM needs a reference
point, this 2D vector is used as CoM prediction in the training and testing phases of
the algorithm. This way, the robot learns to provide an estimate of the object’s CoM
w.r.t. the first contact point, enabling predictions for various mass distributions. Rea-
sons for selecting cube objects to form the dataset are their easiness of modelling,
their planar contact surface with the supporting surface, and because their straight
edges can be pushed without breaking contact. The choices for the mass are made
to simulate objects that are heavy enough to produce measurable force signals above
potential noise, but not extremely heavy to prevent smooth pushing. The friction
coefficients are selected to simulate a range of every day contacts (e.g. wood to plas-
tic, wood to wood, metal on plastic e.t.c) but not extreme cases such as icy terrains
or very sticky contacts. The cube edge sizes are selected to generate variety in the
inertia values.

Each cube is pushed under a different pushing profile. The profile consists of an
initial and final point on the horizontal (y) axis along the cube edge (that can be inter-
preted as a pushing angle w.r.t. the cube’s horizontal edge) and a constant pushing
velocity. Each push has a length of about 0.15m. 5 initial and 5 final points are selected
along the horizontal edge of the cube and 4 pushing velocities 0.01, 0.02, 0.04, 0.06m/s.
The pushing velocities were selected to be low and constant, in accordance with the
described quasi-static modelling. The robot applies a push for every combination of
cube parameters, velocities and pushing angles to get 48000 pushes in total, in about
30 hours of simulation.

For each of the 48000 pushes, the applied forces are measured from the pushing
stick to the cube for the duration of the push, as well as the cube’s linear and angular
positions and velocities.Each sample of every measured size was infused with arti-
ficial Gaussian noise of zero mean and σ = 0.05/3 ∗ sample value to achieve a ±5%
spread around the sample value. Different values of spread were also tested, up to
12%, but they were found to pose negligible difference in the final experimental re-
sults. This noise addition makes the estimation procedure more applicable to a real
world scenario, since in real pushing there exist many different sources of uncertainty
such as unknown object pressure distribution, stiction, tracking and measurement er-
rors etc.

3.6.2 Real object dataset

To evaluate the method with data from real robot pushing, the high fidelity pushing
dataset presented in Yu et al., 2016 is used, and for clarity is is noted as the M-dataset
throughout the Chapter. The M-dataset consists of a large number (over 200K) of
straight pushes, executed by a real robot manipulator on a set of objects. It contains
different combinations of pushing velocities, angles, and pushing points on the ob-
jects, and their execution is consistent with the quasi-static analysis mentioned earlier.
The pushed objects are 11 in total, and are shown in Fig. 3.12 along with their prop-
erties. The inertial properties of the objects vary, although the mass range is lower
compared to the simulated dataset. Four different surfaces are used for the pushing,
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(a)

(b)

Figure 3.12: The M-dataset objects. Images from Yu et al., 2016 © 2016 IEEE. (a)
The 11 objects in the M-dataset have variable shapes. These objects are pushed in
the training and testing phases of the estimation method. (b) The inertial proper-
ties and corresponding size of the M-dataset objects.

resulting in different friction coefficients. For more information on the M-dataset, the
reader is encouraged to study Yu et al., 2016.

3.6.3 Feature extraction and training

The next step after acquiring the data, is to extract meaningful features for training.
The parameter estimation process is essentially a regression problem. After acquiring
the pushing dataset, the next step is to extract features from the dataset measurement
signals that are fed into a regression algorithm and provide a value for the inertial
parameters.

As per the quasi-static analysis, there exists a non linear relationship between
applied forces and moment by the robot, object velocities, and the c parameter. The c
parameter is the division of the fmax and mmax. In the division, the friction coefficient
is removed, and the type of surface does not have any effect on the motion. So, c
includes information about the object’s mass and pressure distribution. The moment
of inertia Izz intuitively manifests itself through the pressure distribution from the
object to the underlying. The pressure distribution is affected, among others, by the
weight distribution of the object on the surface. Since g the gravitational is constant,
the distribution of mass along the object’s horizontal surface (i.e. moment of inertia)
affects the pressure distribution, and so the overall motion even though the model
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is quasi-static. From the non-linear equations described before it can be seen that
an closed-form expression between inertial parameters, applied forces and moment,
and object velocities is tough to obtain. It is instead modelled it as a non-parametric
regression problem as:

θ = F( fx, fy, m, ux, uy, ω, upx, upy) (3.11)

with θ = [M, Izz, rx, ry] the inertial parameter vector. For each the 8 quantities in the
right part of Eq. (3.11) a signal is extracted, and treated as random signal. This
is because the signal shape in time depends on the pushing profile. Each signal
is split in 3 windows, to catch possible significant variations in time. The window
size resulted from hyperparameter tuning. Larger window sizes resulted in higher
feature dimensions and more complex learning models, and smaller window were
not able to capture the variations in the measurement signal waveforms. The mean,
standard deviation, and RMS value of each window are extracted, which leads to a
8× 3× 3 = 72-dimensional feature vector for each push.

The feature vectors extracted from the datasets are used to train a Multi-Output
Regression Random Forest (MORRF). The MORRF was selected because it performs
well with larger amounts of data and have reduced variance along the predictions.
Additionally, the mass range for the simulated data is within the operational limits
of many arms. Items above 5 kg can be difficult to push and manipulate, and items
below 0.5 kg are very light. Selecting a learning algorithm that could generalise well
beyond these limits would be unnecessary. A Random Forest can fit well the range
of the target variable during the training phase, even with poor generalisation.

3.7 Experimental results

To test the approach two estimation experiments are set up, one with each dataset. In
all experiments, the effectiveness of the algorithm is measured using the Average Per-
cent Difference eapd of each predicted value dpred and its corresponding ground truth
dgt:

erpd =
2(dgt − dpred)

|dgt|+ |dpred|
∗ 100% (3.12)

This metric expresses the difference of two values as a percentage of their abso-
lute magnitude. This metric is chosen over the more well known Relative Percent
Difference, because in this case dividing by the ground truth can skyrocket the er-
ror value. This happen s when the ground truth is close to zero, as it is the case
with small inertias and CoM distances, corrupting the evaluation process. With the
average difference, the error is bounded to ±200%. Over the testing set, the mean
and standard deviation of the error is calculated. The use of a percentage instead
of absolute quantities enables the mean and standard deviation to characterise the
performance within the whole range of the target values with the same fidelity.
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Table 3.3: Prediction results on the simulated testing set

Parameter Error Mean % Error Standard Deviation %

Mass 7.59 11.04
Inertia 13.49 10.20
Com x 12.59 8.62
Com y 20.61 8.12

3.7.1 Simulated dataset estimation

In the simulated dataset, the feature vector described above is used to train the
MORRF. The predictor is the feature vector and the target vector is θ. The dataset
is split in training and testing sets. The testing set is 10% of the dataset size, namely
4800 samples. The 48000 samples are sorted by mass size. The next step is to ex-
tract 1% of the lowest, 1% of the second lowest and 1% of the third lowest masses,
0.5, 0.736, 0.973kg respectively, and do the same with the higher masses (4.526, 4.763, 5kg),
for a total of 6%. The rest 4% came from evenly sampling the rest of the masses.
In the end, this gives us a 10% testing set, that over-represents the two limit cases
(heavy and light objects). The remaining samples are the training size. The model
then trains mostly in medium-range masses and tests mostly in limit-range masses.
Again, a combined grid-search hyperparameter optimisation was conducted, with a
10-fold cross-validation. The validation split was 10% on the training set. The op-
timal number of parameters was 1500 trees of depth equal to 5. The feature space
was partitioned to 75%. The training time is about 212 secs, on a Intel Core i7-8750H
CPU @ 2.20GHz and 16 GB RAM laptop. The results are shown in Table 3.3, and an
instance of a resulting tree is shown in Fig. 3.13.

It is evident that the presented training method achieves low error means and
relatively low error standard deviations. The low standard deviation is inherent in
ensemble algorithms, and the low error means are achieved by increasing the depth
of the Random Forest. These properties further justify the selection of a MORRF as a
learning algorithm in the presented setup. An exception would be the y-dimension
of the CoM, where the mean appears slightly increased. Despite the selection of error
metric limiting the error value to ±200%, the low values of the denominators in the
error metric can still lead to frequent occurrences of the limit values, affecting the
overall performance.

In Section II, it was mentioned that the surface type does not play a role in quasi-
static motion, because the c2 parameter consists of a fraction that deletes the friction
coefficients. To test whether the model follows this principle the performance mean
and standard deviation was calculated for each of the four friction coefficients in the
dataset. The results are shown in Fig. 3.14. It can be seen that the performance
remains quite robust to the changes in the friction coefficient, with some minor vari-
ations of the error mean occurring. As expected, the method also shows better per-
formance towards the middle of the mass range, because the middle masses were
more represented in the training set. The variations of the error standard deviation
are almost negligent. The presented method was also proven quite resistant to noise.
The final performance was not significantly affected by the added Gaussian noise, as
error variations of about 0.2% at most were observed.
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Figure 3.13: An example tree of the MORRF for large simulated data training.



Chapter 3. Data-Driven Simulated Estimation by Robot Pushing 56

(a) (b)

Figure 3.14: Mean performance of the proposed learning algorithm in the simu-
lated dataset, plotted over the friction coefficient and mass range. It is in accor-
dance with the overall performance in Table 3.3. (a) Mean performance across
varying surface friction coefficients. The error means are noted with the bars, and
the standard deviation with the vertical lines. (b) Mean performance across the
mass range of the test set. The standard deviations are omitted for clarity.

Table 3.4: Prediction results on the M-datset testing set

Parameter Error Mean % Error Standard Deviation %

Mass 10.05 7.09
Inertia 12.44 7.38
Com x 12.90 15.05
Com y 13.32 15.31

3.7.2 M-dataset estimation

For the M-cube dataset, objects rect3, hex, butter, tri3 and ellip3 were left out for
testing. Training and validation was conducted with all the pushes for the remaining
objects. A MORRF is trained with same testing and validation percentages, 10-fold
cross-validation, on the same laptop. Due to the larger size of the M-Dataset, the
training time was about 1236 secs. The results are shown in Table 3.4. Again, the
system can estimate the object’s inertial parameters with low error, due to the low
mean and relatively low standard deviation of the average percent difference. The
performance is again checked for every one of the four different surfaces provided
in the M-dataset. The results are shown in Fig. 3.15. Again, a smooth and robust
performance is observed along varying surface materials and mass ranges, indicative
that the learning model can properly describe the quasi-static pushing mechanics.
Even though the middle range masses are again more represented in the training,
the large number of samples in the dataset mean that the robot will be trained with
enough samples from each range to warrant robust performance.
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(a) (b)

Figure 3.15: Mean performance of the proposed learning algorithm in the M-
Cube dataset, plotted over the surface type and mass range. It is in accordance
with the overall performance in Table 3.4. (a) Mean performance across varying
surface types. The error means are noted with the bars, and the standard devi-
ation with the vertical lines. (b) Mean performance across the mass range of the
test set. The standard deviations are omitted for clarity.

3.7.3 Comparison with an analytical method

To further validate the usefulness of the data-driven estimation method, an exper-
iment showing a comparison with an analytical method was set up. More specif-
ically, the MORRF method is compared with the analytical approach presented in
Yu et al., 2005. The reason for selecting the method in ibid. of comparing, is that it
demonstrates an algorithm for estimating all the 2D inertial parameters (mass, 2D
CoM, rotational inertia) of a pushed object using analytical laws of motion and least
squares error reduction. Model-based methods are known to be very accurate, but
with limited generalisation to new objects. The goal is to compare the estimation
errors and demonstrate the ability of generalisation of the MORRF-based method
against a model-based one. The work in ibid. is heavily dependent in the scene con-
figuration, object type, and robotic hardware used. In it, the authors conducted a real
robot experiment using a customised end-effector with two force sensing fingers,
They estimated the parameters of a single cuboid object by applying a number of
pushes, substituting tracked motion parameters to physical motion laws, and using
least-squares estimation for estimating each parameter. As the exact hardware and
overall experimental configuration were not easy to replicate, a V-REP simulation
was instead set up. In it, a 2-fingered mechanism with force sensors at each fingertip
was created. The distance between the two fingers was set to 10 cm, as described
in the experimental part of ibid. The mechanism was mounted on a Schunk LWA4D
robot model. The setup is shown in Fig. 3.16.

The testing set for the comparison consists of a set of simulated cuboids to be
pushed. The cuboids have two possible sizes, small and large, with dimensions
0.15 × 0.2 × 0.15 cm and 0.2 × 0.3 × 0.2 cm respectively. The mass values for the
cuboids are 1, 2.5 and 4 kg, and the friction coefficient values are 0.6 and 0.5, in or-
der to simulate typical values of friction between wooden and plastic surfaces. This
results in 2*3*2 = 12 cubes in total for testing. The cuboids are shown in Fig. 2., and
their properties in Table 1.
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Figure 3.16: The 2-fingered mechanism mounted on the Scunk LWA4D arm, in
the V-REP simulation. Each finger has force sensing capabilities. The distance
between the fingers is 10 cm, as in Yu et al., 2005.

Figure 3.17: In total, 12 cuboids with different size, mass and material were used
to test the method in Yu et al., 2005.

The method in Yu et al., 2005 requires a minimum number of 12 pushes for es-
timation, 4 for the mass, 4 for the CoM, and 4 for the inertia. In the original paper
the authors conducted their experiment with 8 pushes of different accelerations for
each size to be estimated. In the presented V-REP simulation 4 pushes were applied
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Table 3.5: Properties of the 12 simulated cuboids for testing.

Cuboid index Mass (kg) Inertia (kg×m2) Size Friction coeff
1 1 0.01083 large 0.3
2 1 0.005208 small 0.3
3 1 0.01083 large 0.5
4 1 0.005208 small 0.5
5 2 0.02708 large 0.3
6 2 0.01302 small 0.3
7 2 0.02708 large 0.5
8 2 0.01302 small 0.5
9 4.5 0.04333 large 0.3

10 4.5 0.02083 small 0.3
11 4.5 0.04333 large 0.5
12 4.5 0.02083 small 0.5

for each size. For the mass estimation, 4 straight pushes are applied near the centre
of long edge of each cuboid. For the CoM, 4 straight pushes are applied at the long
edge of the cuboids, and 4 at the short side, both near the edge centre. For the in-
ertia, 4 pushes are applied at the right side of the long edge, rotating slowly to 30o.
Each set of 4 pushes includes accelerations of 0.2, 0.4, 0.6 and 0.8 m/s2. The collected
data consist of measured finger forces, finger positions and linear velocities, as well
as object position, linear velocity and angular velocity, on a 20 Hz sampling rate. The
accelerations needed in Yu et al., 2005 were calculated from the measured velocities
and simulation timestamp (50 ms).

For the data-driven part, the MORRF trained with the simulated cubes of Sub-
section 3.7.1 was used. The robot pushed every cube 5 times, two at ±0.04m from
the object’s centre along the object’s face, two at ±0.08m and one on the centre (Fig.
3.18 ). The pushing distance is 10cm and the pushing velocity 0.02m/s. The extracted
measurements are processed as described in Subsection 3.6.3 and fed to the MORRF.
The prediction estimate is the average of the 5 pushes.

The results for mass, inertia, CoM x dimension and CoM Y dimension are shown
in Figs. 3.19, 3.20, 3.21 and 3.22, both for the analytical method and the MORRF. It
can be seen that the analytical method has lower error means over the whole dataset
in the estimation of mass and y dimension of CoM. The proposed MORRF algo-
rithm yields lower estimation means for the inertia and the x dimension of CoM.
The MORRF also yields high standard deviation on inertia, suggesting that more
pushes may be required for a better estimation result. The analytical method results
in high error in the inertia estimation, because in the V-REP simulation the 2-fingered
end-effector can not sufficiently rotate the object so as to get a richer measurement for
prolonged time without losing contact on one finger. Overall, the comparison exper-
iment shows the difficulty of replicating the controlled environment that analytical
methods require, and the resulting lack of versatility. The MORRF method can reach
overall performance comparable to the analytical method, while being trained on a
different dataset of cubes. The data-driven approach in inertial parameter estimation
shows overall promising results for future extensions.
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Figure 3.18: The robot pushing a cube for the comparison experiment.

Figure 3.19: Estimation errors for the mass of the 12 simulated cuboids.

3.8 Discussion

This chapter presented a first attempt to formalise and conduct an experiment in
data-driven estimation of inertial parameters by robot pushing. Such method is at-
tempted for the first time in literature. The inertial dataset is introduced as a testbed
for data extraction and evaluation. A set of 30 simulated cubes with different physical
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Figure 3.20: Estimation errors for the inertia of the 12 simulated cuboids.

Figure 3.21: Estimation errors for the x CoM dimension of the 12 simulated
cuboids.

properties was created, and 10 pushes at each cube were performed. The measured
applied wrenches and cube displacements were used to train a random forest for re-
gression. The results show that the performance is better on objects that match the
training set characteristics.
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Figure 3.22: Estimation errors for the y CoM dimension of the 12 simulated
cuboids.

The presented experiment suggest that the data-driven pushing estimation is pos-
sible if the methodology is carefully designed, as it is the case with all learning ap-
proaches. The data collection process needs to include large ranges of object proper-
ties, and larger amounts of data need to be collected. The features from the measure-
ments need to be descriptive and characteristic of the size they represent. Different
learning algorithms can be implemented on the data, and the training and testing
process need to be refined. These issues were addressed in the large-dataset experi-
ments that followed.

The results from the experiments in both large-datasets suggest that the learning
method can accurately describe the quasi-static motion of an object while pushed by
a robot finger. The MORRF can accurately capture the non-linearities of Eqs. (3.8)
and (3.10), leading to quite accurate predictions of the inertial parameters.

The simulated dataset was extracted because it enables easier testing on a larger
variety of objects with large range of inertial properties. The number of pushes the
M-Dataset contains is enough for training and testing, however the objects provided
have low ranges on their inertial parameters, and generation of extra objects was
necessary.

One of the main advantages of the presented method is the robust performance
under variations of the surface friction coefficient. In real conditions, achieving exact
quasi-static motion can be very difficult. It requires constant application of a crucial
velocity, just enough to break the object’s rest but not actively accelerate it. A good
approximation of ideal quasi-static motion can be achieved for most objects by apply-
ing a very low pushing velocity. Even then, the motion of the object can be jittery, due
to the object momentarily sticking on the surface and being pushed again. For this
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reason the measured sensor signals were divided in 3 windows, and the mean, stan-
dard deviation and RMS value of each window were extracted as features. This leads
to a smoothing on the signal jitter, reducing the uncertainty in quasi-static motion.

An obvious step when using two datasets is cross-testing, i.e. training on one
dataset and testing on the other. The preferred option would be to train on the simu-
lated dataset and test on the M-Dataset. An initial attempt resulted in model perfor-
mance with error rates of 40-60%. The reasons for the poor performance are inherent
to sim-to-real approaches. The frictional loads applied on the object from the surface
can be controlled and measured in simulation, but they are inaccurate. On the other
hand, in a real dataset frictional loads are physically accurate but difficult to measure.
The control over the cross-dataset friction coefficients and the pressure distribution
is also another parameter that makes sim-to-real testing difficult. The experimen-
tal conditions, such as pushing starting and ending points and sensor frequencies
also affect the performance and are difficult to replicate. The goal for this Chapter
is to prove and test that the quasi-static pushing mechanics can be incorporated in a
data-driven estimation model and not to provide a complete fit-for-all system. For
that reason, the cross-testing analysis is left out of the Chapter’s scope. Solving the
cross-testing problem would open new frontiers in sim-to-real estimation and enable
a system to be trained in simulation and deployed in the real world.

Finally, a comparison simulation was set up between the analytical method in
Yu et al., 2005 and the large-dataset MORRF. The comparison suggests that both ap-
proaches have strengths and drawbacks and yield comparable results, which further
solidifies the goal of the Chapter to establish a data-driven estimation method with
similar performance with existing analytical ones.
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Chapter 4

Exploitation of Objects’ Inertial
Parameters in Efficient Robot
Manipulation

4.1 Introduction

In Chapter 2, it was established that there is a need for estimation algorithms to pro-
vide accurate values of the inertial parameters, so that they can be used as a resource
in autonomous robotics. Numerous works were presented, that use the inertial pa-
rameters in different tasks, such as generating robot grasps for unknown objects, as
well as incorporating them in dynamic models for more accurate control. In addition,
many different approaches have been proposed for achieving autonomous grasping,
based on various properties of the object to be grasped. The majority of the grasping
literature focuses on the object’s geometry or visual appearance, typically derived
from 2D RGB camera images or 3D point cloud images, e.g. Kopicki et al., 2015;
Saxena et al., 2008.

In this thesis the focus was placed in a novel research area between grasping and
manipulation, namely task-informed grasping. Task-informed grasping is the pro-
cess of evaluating a set of given robot grasps on an object, and selecting the grasps
that minimise a manipulation criterion, under a known task to be executed.This
chapter explores the use of the object’s mass distribution and inertia tensor, in or-
der to help choose an appropriate location on the object for grasping. Unlike the vast
majority of the previous grasping literature, this addresses the problem of choosing
grasps which improve the robot’s ability to move the object along a desired path after
a successful grasp has been achieved. Specifically, the availability of a state-of-the-art
grasp planner such as the one in Kopicki et al., 2015 is assumed, which uses a ma-
chine learning approach to output a number of different possible grasps, based on
observed 3D geometry of the object, coupled with prior knowledge of the surface ge-
ometries that are suitable for grasping by a particular robot hand. Given a variety of
grasps proposed by such geometry-based planners, this chapter shows how to select
one of those grasps which will minimise the motor torques, needed for the robot arm
to move the object along its post-grasp trajectory.

Dexterous grasping and manipulation are one of the interesting characteristics
which distinguish primates (especially humans) from most other species. Humans
are inherently capable of learning sophisticated grasping and manipulation skills
(Castiello, 2005), and as described in Chapter 2, they are able to intuitively exploit
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(a) (b)

Figure 4.1: Simulation experiment. The Baxter robot grasps a non-uniform, disk-
like object, (a). The robot uses its two-finger parallel-jaw gripper to vertically
grasp (from above) the tall, thin, cylindrical “handle” attached to the centre of the
disk, (b). Two cylindrical weights are attached to the disk, which cause the mass
and inertia of this object to exert different torques on the robot, when it is grasped
in different orientations. The local coordinate frame is attached to the grasped
object’s CoM.

the inertial parameters of objects in their everyday manipulations. They do this for a
number of tasks, such as grasping and perception of geometrical properties.

Despite the extensive use by humans (and presumably other animal species also)
of mass and inertia information for grasping, comparatively little robotics literature
explores grasp planning based on the inertial properties of the grasped object. In
contrast, this chapter exploits information about the mass and inertia of the object,
to choose the grasp that is best in terms of minimising the joint-torques needed for
the robot to move the object along a desired post-grasp trajectory. To do so, it is
shown how an augmented dynamic model (Khatib, 1987) can be used to combine
the dynamics of both the robot and the grasped object within an operational space
formulation. This augmented dynamics model is used to estimate the joint torques
needed to move the object along a desired post-grasp trajectory. Based on these pre-
dicted joint torques, the robot can choose one out of many (geometrically) possible
grasps, for achieving post-grasp trajectories with minimal effort by the robot arm’s
motors.

4.2 Operational space trajectory of a task

Let the point gcx ∈ SE(3) as the operational point, attached to the end-effector, which
will come into contact with the grasped object, once a successful grasp is achieved.
SE(3) denotes the group of 3D poses (3D position and 3D orientation). Operational
space trajectory gcζ refers to a vector of successive poses, of a frame attached to this
point, defining a desired trajectory for the object. The world reference frame is noted
with by rX = {rO, rx, ry, rz}. A trajectory to be followed by the manipulated object
implies that the local frame cX, attached to the CoM of the object, follows a sequence
of poses:

cζ = cx(t)
0 ≤ t ≤ T

(4.1)



Chapter 4. Exploitation of Objects’ Inertial Parameters in Efficient Robot
Manipulation 66

gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1gcxt1

gczt1

gcyt1

cxt1

cyt1

czt1

cxtN

cytN

cztN

rx

ry
rz

cζ

gcxtN

gcztN

gcytN

Figure 4.2: An object in the global coordinate frame rx = {rO, rx, ry, rz}, shown
in black. A local coordinate frame cx = {cO, cxcy, cz} is attached to the center of
mass of the object, shown in red color. This frame follows a trajectory cζ during
manipulation. cxt1 = {cOt1 , cxt1 , cyt1 , czt1} and cxtn = {cOtn , cxtn , cytn , cztn} denote
this frame at the initial and terminal point of the manipulation trajectory with
the corresponding frame of grasp candidate gcxt1 = {gcOt1 , gcxt1 , gcyt1 , gczt1} and
gcxtn = {gcOtn , gcxtn , gcytn , gcztn} shown with blue color.

where t denotes a particular time during the motion, and T is the total time that the
robot needs to complete the desired manipulation task1. cx(t) determines a complete
pose of the grasped object at time t. Although there is a variety of different pos-
sible representations of orientation, for the sake of simplicity here the conventional
transformation matrix is used.

Consider a local frame cx = {cO, cx, cy, cz}. This frame can be described by a
transformation matrix2 from the global reference frame {rO, rx, ry, rz} into the local
frame {cO, cx, cy, cz}:

cx(t) = c
rT(t)

c
rT(t) =

[
R3×3(t) d3×1(t)

01×3 1

]
.

(4.2)

Given a vector of times, {t1, ..., tn}, a discrete-time trajectory, corresponding with
Eq. (4.1) is represented by a sequence of homogeneous transformations:

cζ = {c
rT1, c

rT2, ..., c
rTn} (4.3)

1Throughout this chapter, Y(t) denotes a continuous function of time, where Yi is a corresponding
value of Y(t) at time ti ∀ i = 1, ..., n, where t1 = 0, tn = T and 0 ≤ ti ≤ T denotes discrete sampling
time. Yt is also used as a shorthand of Y(t) where necessary. ∗ζ(t) and ∗ζ(t) are continuous and
discrete trajectory of poses of a frame attached to point ∗ of object in Figs. 4.2 and 4.3.

2In general, (..)
(.) T ∈ R4×4 denotes a transformation matrix from local frame (.) into local frame (..).
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Figure 4.3: Top: a non-deformable object is shown in the global frame. At
time t, cx(t) = {co(t), cx(t), cy(t), cz(t)} is attached to the centre of mass of
the object to be manipulated. At every time, a frame attached to the object
gcx(t) = {gco(t), gcx(t), gcy(t), gcz(t)} can always be expressed by a single ho-
mogeneous transformation gc

c T from c~x(t) into gcx(t). Note that gc
c T is not a func-

tion of time t. Transformation from gcx = {gco, gcx, gcy, gcz} fixed on a point of
the object to be manipulated into cx = {co, cx, cy, cz} and a transformation from
cx = {co, cx, cy, cz} into reference frame rx = {ro, rx, ry, rz}; Bottom: a total trans-
formation from rx = {ro, rx, ry, rz} into gcx = {gco, gcx, gcy, gcz}.

where, c
rTi is the transformation matrix at time ti, with corresponding rotation Ri =

R(ti) and translation di = d(ti). The corresponding local frames are cXi =
cx(ti) ∀ i =

1, ..., n, where, t1 = 0, tn = T. It should be again noted that the object is considered
rigid. Consider also a local frame attached to the robot end-effector, which is the
“operational point”, by gcx = {gcO, gcx, gcy, gcz}. Because the object is rigid, any can-
didate robot end-effector pose can be expressed by a fixed transformation matrix gc

c T
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from cx into gcx, as in Fig. 4.3:
gcx =

gc
c Tcx,

∀ igcx ∈ gcX ,
igc = 1, ..., ngc

(4.4)

where gcX is a set of candidate wrist poses. Such poses can be computed by a variety
of well known grasp planning algorithms (e.g. Ding et al., 2001; Ferrari et al., 1992;
Kopicki et al., 2015; Miller et al., 2004; Saxena et al., 2008, or other grasp-planners
as the user prefers). The current state-of-the-art grasp planners, typically generate
a set of various possible stable grasp configurations. In the works by Kopicki et al.,
2015; Saxena et al., 2008 these are based on learned relationships, between features
of the object’s surface geometry and appropriate configurations of various parts of
the robot hand. Alternatively, a set of potential stable grasps can be computed using
grasp simulation software (Miller et al., 2004), force-closure analysis (Ferrari et al.,
1992), or form closure (Ding et al., 2001).

Using cζ in Eq. (4.1), the trajectory of poses followed by cx, and Eq. (4.4), the
trajectory of gcX is written as follows:

gcζ = {igc
c Tcx1,

igc
c Tcx2, ...,

igc
c Tcxn}

gcζ =
igc
c Tcζ,

(4.5)

Consider gcζ ∈ gcZ , where gcZ denotes a group of trajectories corresponding with
both the task of manipulating the object O in Fig. 4.2 and different grasp candidates
∀ gcx ∈ gcX in Fig. 4.3. Given a grasp candidate gcx and object’s CoM cx, one can
readily compute gc

c T. Therefore, gcZ can be compactly represented by:

gcZ =
gc
c T cζ (4.6)

where, gc
c T is a group of transformation matrices from cx into gcX .

4.3 Manipulator dynamics under load

To keep the notation simple, from this section onwards the grasping point gcx will
be simply noted as x. In this chapter the dynamic model of the robot is assumed
known in advance, and it is expressed in the robot joint space. Here, the interest lies
in choosing one of many grasp candidates, which will result in minimum post-grasp
effort of the robot when executing the desired post-grasp trajectory. To find a grasp
which results in minimal effort, an augmented equation of motion is computed, i.e. a
combined equation of motion for both the robot and its grasped object, in the robot’s
joint space.

Murray et al., 1994 define the joint space dynamic model of an n-degree-of-freedom
(DOF) manipulator:

M(θ)θ̈+ C(θ̇, θ) + N(θ) = τ (4.7)
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where θ ∈ Rn and τ ∈ Rn are the vectors of joint positions and joint torques, respec-
tively, and M(θ) is the manipulator inertia matrix.

Cij(θ̇, θ) =
1
2

n

∑
k=1

(
∂Mij

∂θk
+

∂Mik
∂θj
−

∂Mkj

∂θi

)
θ̇k (4.8)

represents the Coriolis and centrifugal force terms.

N(θ, θ̇) =
∂V
∂θ

(4.9)

defines a gravitational force term, where V(θ) is potential energy due to gravity.
The governing equation of motion in operational space is well studied in pioneer-
ing work (Khatib, 1995). The operational point is defined as a point of interest in
which the inertia properties are evaluated. The operational coordinate x is a vector
defining the 6-DOF pose of the robot’s end-effector. The dynamics of the robot in
operational space are represented using this operational coordinate x as follows:

Λ(θ)ẍ(t) + µ(θ̇, θ)ẋ(t) + π(θ) = F(t) (4.10)

where:
Λ = J−T(θ)M(θ)J−1(θ), (4.11)

F = J−T(θ)τ, µ(θ, θ̇), π(θ̇) are the applied end-effector force caused by the robot
actuating torques, the gravitational and Coriolis terms in operational space, and J(θ)
is the robot’s Jacobian. For further details refer to the classic work of ibid.

The joint space dynamic equation of motion of the robot needs to be determined,
“augmented” by incorporating the dynamics of the grasped object. Let Mg denote
the generalised inertia matrix of an object.

Mg =

(
mI3x3 0

0 ICoM

)
(4.12)

where m and ICoM denote the object’s mass and inertia tensor w.r.t. the CoM. This
inertia tensor can be expressed in a frame attached to the end-effector of the robot as
follows:

Mo(x) = E−T(x)MgE−1(x) (4.13)

where E(x) is the matrix transforming the linear and angular velocities of the object’s
CoM to generalised velocities in the frame attached to the end-effector. A trajectory
of the operational point attached to the end-effector is:

ζ = x(t) (4.14)

while the object’s CoM follows cζ. The augmented dynamics in the end-effector space
are:

Λtot(θ) = Λ(θ) + Mo(x) (4.15)
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and when projected to the joint space:

Mtot(θ) = JT(θ)Λtot(x)J(θ) = JT(θ)Λ(θ)J(θ) + JT(θ)Mo(x)J(θ) = M(θ) + M̃o
(4.16)

where M̃o(θ) is the grasped object’s inertia tensor representation in the joint space.
The resulting inertia matrices represent the dynamic behaviour of the robot (both in
joint space and operational space), augmented with the dynamics (inertia matrix) of
the object that has been grasped by the robot.

Next to be computed is the Coriolis term of the augmented robot’s dynamic equa-
tion of the motion in the joint space in Eq. (4.7). From Eq. (4.8), (4.13) and (4.15) the
following holds:

Ctot(θ, θ̇) =
1
2

n

∑
k=1

(
∂Mtot,ij

∂θk
+

∂Mtot,ik

∂θj
−

∂Mtot,kj

∂θi

)
θ̇ (4.17)

Finally, the gravitational term of the dynamics of the grasped object in the robot’s
joint space can be defined using Eq. (4.9).

Ntot(θ, θ̇) =
∂Vo

∂θ
(4.18)

where Vtot = (m + mrobot)gho and ho can be computed using the forward kinematics
of the robot and the transformation matrix, from a frame attached to the end-effector
to a frame attached to the CoM, represented by gc

c T(t) in Fig. 4.3. mrobot is the total
mass of the robot arm.

4.4 Joint torque minimisation along the post-grasp tra-
jectory

The joint values, velocities and corresponding dynamics terms, including inertia,
Coriolis and gravity (Eq. (4.7)) of the robot, can be measured while the robot is per-
forming a task. These signals, along with knowledge of the grasped object’s mass
distribution, (Eq. (4.15)) can be used to compute dynamics terms corresponding to
the object inertia as per Eq. (4.13), object Coriolis term as per Eq. (4.17) and object
gravity term as per Eq. (4.18)) in the manipulator joint space. The torques, needed at
every joint to perform the desired manipulative motion, can be computed using the
governing equation of motion of the robot and the grasped object:

Mtot(θ)θ̈+ Ctot(θ̇, θ) + Ntot(θ) = τtot(t) (4.19)

where Mtot can be computed using Eq. (4.16).
At every time step, the L2 norm of the applied torques is computed. Given a

particular object, and a desired manipulation task, the “effort” of a manipulative task
is defined as a cost function for characterising the suitability of any candidate grasp
for the post-grasp motion. This “effort” metric is computed in terms of the L2 norm
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of the joint torques, as follows:

Ê(x) =

√
nT

∑
i=0
|τ(ti)|2 (4.20)

where τ(ti) is a torque at time ti computed using Eq. (4.19), where 0 ≤ ti < T, ti is the
ith sampling time, and nT is the number of samples in the time domain. If ∆t is the
sampling time and T is the overall time to complete the task, then nt =

T
∆t . Ê repre-

sents the overall effort, in terms of the torques which a robot uses to move the grasped
object along a commanded post-grasp manipulation trajectory, corresponding with a
candidate grasp x. The goal is to find the grasp that minimises the manipulation effort
along the executed task. To sum up, each grasp candidate with known transforma-
tion E(x) yields different yields different object dynamics (Eqs. (4.13)), which in turn
yield different combined dynamics (Eqs. (4.16)-(4.17)-(4.18)) and corresponding joint
torques (Eq. (4.19)). The torques of the combined model are calculated for each point
in the known end-effector trajectory, and the effort metric (Eq. (4.20)) is calculated
for the whole trajectory. The grasp with the minimum effort metric is selected as the
best grasp for the task.

4.5 Experimental results

This section presents the results of experiments using a 7-DOF redundant manip-
ulator, grasping objects of different shapes. Firstly, both simulations and empirical
measurements on a real robot are presented, which show that different grasp posi-
tions on the same object do indeed lead to significantly different amounts of effort
to move that object along a post-grasp trajectory. Secondly, the accuracy of the aug-
mented dynamics formulation combined with a physics simulator is evaluated, re-
garding its ability to predict post-grasp joint torques, by comparing predicted torques
against torques measured empirically during task execution on a real robot. The re-
sults show that, even though predicted and measured torques are not identical, they
are sufficiently well correlated to enable correct selection of the best grasp to enable
the least-effort post-grasp motion. Finally, the grasp selection strategy on objects of
two different shapes is demonstrated, and it is shown that the method successfully
chooses the best grasp in both cases.

In all experiments, a Rethink Robotics Baxter® robot is used. Baxter includes a
torso, and two 7-DOF arms. Each arm has seven rotational joints and eight links (in-
cluding the base). The Baxter Software Development Kit (SDK) is used along with
Python Kinematic Dynamic Library (PyKDL) and Gazebo simulation. The experi-
ments were executed in the Gazebo simulation environment, as well as on the real
robot. The aim of these experiments is to analyse different grasps for objects with
known inertial properties, and compute which, out of a set of possible candidate
grasps, would result in the minimum torque effort when moving the grasped ob-
ject along a desired post-grasp manipulation trajectory. The shown examples consist
of choosing grasps for two different objects with very different shapes and inertial
properties. For each candidate grasp on each object, a post-grasp trajectory of poses
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(a) (b)

(c)

Figure 4.4: The experimental setup: (a) The robot is approaching the object; (b)
The robot performs a primitive rotation movement about x axis; (c) Several pos-
sible grasp poses on a book object. The robot is tasked with choosing one of these
potential grasps, which minimises the effort of the robot arm’s motors when exe-
cuting a desired post-grasp trajectory.

is computed as per Eq. (4.5) such that the object’s CoM follows the corresponding de-
sired movement as per Eq. (4.2), in accordance with discussion presented in section
4.2.



Chapter 4. Exploitation of Objects’ Inertial Parameters in Efficient Robot
Manipulation 73

0 0.25 T 0.5 T 0.75 T T
2.5

3

3.5

4

Time

’N
o
rm

a
lis

e
d
 e

ff
o
rt

 (
N

m
)’

(a)

0 0.25 T 0.5 T 0.75 T T
1.5

2

2.5

3

3.5

4

4.5

Time

’N
o
rm

a
lis

e
d
 e

ff
o
rt

 (
N

m
)’

(b)

Figure 4.5: Example of total torque signals for the task of rotation about y axis,
computed using the augmented dynamic model of object and manipulator. Red,
green and blue lines represent the overall torque at each time-step for: (a) First,
second and third grasp poses (b) Forth, fifth, sixth grasp poses shown in Fig. 4.4c.

4.5.1 Variation of post-grasp effort with choice of grasp and choice
of post-grasp trajectory

This experiment is designed to confirm that different choices of grasp pose, on the
same object, will result in significantly different amounts of torque effort being re-
quired to perform a post-grasp manipulation. In this experiment, the robot’s left arm
is used to pick up a 22× 15× 1.5 cm hardcover book, weighing 0.34 kg. The book
is initially balanced along its long edge, on top of a table in front of Baxter, and six
possible candidate grasps are considered on the book, as shown in Fig. 4.4c. Each
candidate grasp is associated with a different inertia tensor of the object, and is also
associated with a different initial robot pose at the beginning of the post-grasp ma-
nipulation. For each choice of grasp, the results of performing six different post-grasp
movements were measured . After grasping the book, the robot initially lifts it 10cm
above the table, and then performs one of six experimental post-grasp movement
primitives. These experimental motion primitives consist of three translations (10cm
along each Cartesian axis) and three rotations (20 about each Cartesian axis).

Fig. 4.5 shows the evolution of overall torques at each time-step along a single
post-grasp object trajectory (rotation about y axis), given each of the six candidate
grasps on the book object. These torque evolutions were estimated using the aug-
mented dynamic model, Eq.(4.19). These results confirm the proposed argument
that different choices of grasp lead to significantly different torque efforts required
to move the object along a desired post-grasp trajectory.

Fig. 4.6 shows each of the six experimental post-grasp motions. Red, green and
blue lines denote translation movements (Fig. 4.6a) and rotation movements (Fig. 4.6b)
with respect to x, y, z Cartesian axes respectively. For each motion, Fig. 4.6 plots the
overall torque “effort” integrated along the entire trajectory (according to Eq. (4.20)).
Solid lines denote effort predicted by the augmented dynamic model, whereas dashed
lines denote effort measured directly from the robot’s joints during experiments on
the real Baxter robot. Note that it is not strictly correct to perform the linear interpo-
lation between each candidate grasp, as shown in Fig. 4.6, however in many cases it
is reasonable to expect that a new grasp, placed somewhere between two measured
candidate grasps, might yield a torque effort lying somewhere between the efforts
needed for each of the measured grasps.
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Note that the effort predicted by the augmented dynamic model, does not exactly
match the effort reported by querying the real robot during task execution. From
these preliminary experiments, it is not clear whether this discrepancy arises as a re-
sult of: errors in the torque estimation by the real robot; failure of the dynamics equa-
tions to completely model reality; or a combination of both kinds of error. The Baxter
robot is provided with Series Elastic Actuators (SEAs), which use position of each
joint, along with knowledge of the spring stiffness, to indirectly estimate the torque
at each joint. It is possible that some industrial-type robots, which directly measure
torques using torque sensors at each joint, might yield different results, shedding
light on the above questions. Nevertheless, despite these discrepancies, the predicted
effort and effort reported by the robot are still very highly correlated, and are suffi-
ciently similar that it is still possible to use the predicted effort to correctly choose the
best (minimum effort) out of a set of possible grasp candidates.

As an example of how the proposed method can be applied, note that the forth
grasp pose results in minimum effort of the manipulator while it grasps and trans-
lates the book along the three Cartesian axes (Fig. 4.6a). In contrast, the second grasp
pose results in minimum effort for post-grasp manipulations that involve rotating
the book about the x and z axes, while the sixth grasp is best for achieving post-grasp
rotation of the book about the y axis. Clearly, the proposed method can be usefully
employed to choose the best grasp, from a set of grasp candidates, in order to execute
a particular desired motion of the object after it has been grasped, with minimum ef-
fort.

4.5.2 Using the augmented dynamics model to choose an optimal
grasp for an oddly shaped object

This section describes the results of an additional experiment performed in simula-
tion. In the simulation, the object to be manipulated is a disk with radius 15cm, and
height 5cm, shown in Fig. 4.7. Four (short and fat) cylindrical weights are attached
to the disk, two on the top surface and two on the bottom surface (one of the bottom
cylinders is just visible in Fig. 4.7b). Each of these cylindrical weights has radius 5cm
and height 3cm. The disk also has a (tall thin) vertical cylindrical handle attached to
its centre, with a radius of 2cm and a height of 20cm. The total structure weighs 0.3kg.

The robot gripper approaches the handle from above, aligned with the z-axis
shown in blue in Fig. 4.7. By rotating the gripper in increments of 20o about the
z-axis (from 10o to 170o) the robot is able to generate a uniformly sampled space of
nine initial grasping poses. Each such candidate grasp corresponds to a different ro-
tation of the object’s inertia tensor with respect to the robot, leading to changes in
torque loading and overall augmented dynamics of the robot and its grasped object.
Four different post-grasp manipulation tasks were defined. The first task comprises a
series of translation motions of the grasped object. The robot first lifts the object 10cm
in the z direction. Next it translates the object 10cm along the y direction. Finally, it
translates the object by 10cm along both x and y axes simultaneously. The remaining
three post-grasp motion tasks comprise primitive rotations about each of the x, y, z
Cartesian axes (after first lifting the object through 10cm in the z direction). Fig. 4.8
shows the torque effort required to perform the first (piecewise translation) task, for
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Figure 4.6: Total torque effort, integrated along each of six experimental post-
grasp motion trajectories for the book object, for each of six candidate grasps.
Vertical axis denotes effort, while horizontal axis denotes the space of possible
grasps. Red, green and blue denote translation (a) and rotation (b) with respect
to x, y, z Cartesian axes respectively. Solid lines denote efforts estimated by the
augmented dynamics model, whereas dashed lines denote efforts measured by
querying the real robot’s joint sensors during task execution.

each grasp candidate. For this task, the grasp oriented at 50o about the z-axis will
result in minimal post-grasp effort.

Fig. 4.9 shows the effort required to perform primitive rotation tasks about each
Cartesian axis. The 10o grasp is best for x rotation, the 110o grasp for y rotation and
the 150o grasp for z rotation.
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(a) (b)

Figure 4.7: Oddly shaped disk object, with attached cylindrical weights and ver-
tical handle. The object is shown in its initial pose prior to manipulation. (a)
Birds-eye view from above. (b) Perspective view from the side. The robot gripper
approaches the handle from above, aligned with the z-axis shown in blue. The
robot samples nine possible candidate grasps, by rotating the gripper in 20o in-
crements about the z-axis (from 10o to 170o). The robot is tasked with deciding
which of these nine grasps will result in the minimum torque effort needed to
move the object along a desired post-grasp trajectory.
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Figure 4.8: Overall torque effort that each grasp causes during first post-grasp
manipulation task (piece-wise translation), for the oddly shaped object shown in
Fig. 4.7. Vertical axis denotes overall effort during the post-grasp motion. Hori-
zontal axis denotes the grasp space, with successive grasp candidates separated
by 20o increments

4.6 Discussion

Both simulation data and empirical measurements on a real robot, confirm that dif-
ferent stable grasp positions on an object do indeed lead to significantly different
amounts of effort to move that object along a post-grasp trajectory. In addition,
these results suggest that the augmented dynamics representation of the robot and
its grasped object, combined with a physics simulator, do not exactly predict the re-
sulting joint torques (as measured empirically using torque readings from the real
robot’s sensors), Fig. 4.6. However, predicted torques and real torques do correlate
sufficiently well that these predictions are able to correctly choose the best grasp for
minimising post-grasp robot effort. Where a grasp planner, such as Kopicki et al.,
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Figure 4.9: Torque effort needed to achieve post-grasp rotations of the grasped
object about x, y and z axes, denoted by red, green and blue lines respectively.
Vertical axis denotes effort. Horizontal axis represents the space of candidate
grasps.

2015, outputs many geometrically feasible grasps, the presented torque-based cost
function can be used to plot an “effort map” over the surface of the object.

The results have offered several intuitive and easy to understand examples, in or-
der to illustrate the potential applications of the proposed method. For the rotation
about the x-axis task, Fig. 4.9, the best grasp candidate is the one with a 100 rotation
angle, while the grasp candidate that gives maximum effort is located near the 90o

neighbourhood. Since the heavy cylinders of the object are located along the x-axis,
Fig. 4.7a, the robot must exert a greater effort to rotate them about the x-axis when
grasping from the 90o grasp, and minimal effort when grasping from the 0o angle. For
the post-grasp translation tasks, Fig. 4.8, the best grasp candidate for y-axis transla-
tion is the 90o grasp. For the z-axis translation task, the minimal post-grasp effort
is achieved by selecting a grasp close to the 0o angle, because this angle places the
end-effector closer to the disk weights, making the rotation easier. It is evident that
the proposed method chooses grasps which minimise post-grasp effort in intuitively
sensible and physically plausible ways.

The Baxter robot has two 7-DOF arms. Hence, to perform a task in a 6-DOF Carte-
sian workspace, the robot has a redundant degree of freedom. Although there are
always more than one joint trajectories corresponding with an end-effector trajectory,
this effect was not studied in the experiments and it can be an interesting future work.

The results of these experiments suggest that different choices of grasp pose, rel-
ative to the object frame, do indeed result in significantly different efforts from the
robot’s motors in executing desired post-grasp object trajectories. In addition, the
augmented dynamics model, of the robot and its grasped object, can predict post-
grasp joint efforts sufficiently well to enable optimal grasp selection. Finally, the
grasps selected by this proposed method are useful in an intuitively meaningful and
physically plausible manner. The method could provide a useful way to evaluate
raw grasps resulting from grasp planners such as Kopicki et al., 2015.
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Chapter 5

Exploitation of Objects’ Inertial
Parameters in Safe Robot
Manipulation

5.1 Introduction

The idea that different grasping points on an object contribute to alterations of the
total dynamics under a given task, is a novel idea that has been introduced in this
thesis. These alterations are primarily dependent on the inertial parameters of the
object, which further solidifies the main research of the thesis. The core idea of the de-
pendence of the total dynamics on the grasping point and inertial parameters, leads
to new possibilities in the field of grasp evaluation and selection, and novel manipu-
lation metrics.

The research presented in the previous chapter showcased how the inertial pa-
rameters of an object are combined with the dynamics of the robot, and how this
combination depends on the location of a specific grasping point on the object. As a
result, a robot can reduce the amount of effort it requires for a given task, thus reduc-
ing its power requirements. In order to continue the orientation of this thesis towards
manipulation in extreme environments, this chapter presents a variation of the grasp
selection idea that increases the robot’s safety towards its surroundings.

More specifically, this chapter extends previous ideas on “task-informed grasp
selection”, by proposing a method for choosing grasps that maximise safety during
post-grasp manipulations. Such method can be used in dynamic and uncertain envi-
ronments where collisions are both likely and also safety-critical. Motivating applica-
tions include human-robot collaborative working, or remote manipulation in highly
cluttered and high-consequence environments such as nuclear decommissioning and
robotic surgery (Alambeigi et al., 2011; Wilkening et al., 2017).

Making robotic manipulation safer for humans and surroundings is a domain that
is receiving increasing attention. Many approaches have been proposed to tackle this
problem. For example, Ikuta et al., 2003 define three categories of robot safety mea-
sures, namely collision avoidance, impact minimisation and post-impact suppression
methods. A large proportion of the research literature has been devoted to the colli-
sion avoidance category, e.g. Flacco et al., 2012 and Beetz et al., 2015. In contrast, in
this chapter the focus is on the category of impact minimisation.

Early work on impact minimisation was by Walker, 1990, where the authors de-
scribed the impact force delivered by the robot’s end-effector, as a function of its
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(a)

(b)

(c)

(d)

Figure 5.1: Pick-and-place experiment with a real robot. The robot is tasked with
grasping and then moving the book (which has same dimensions and mass as
used in simulation experiments described later in this chapter). During the post-
grasp manipulation, a collision occurs between the grasped object and an ob-
stacle (the water bottle) and force values in the end-effector are measured. The
main idea of this Chapter with enabling the robot to choose from several feasi-
ble grasps, to minimise impact forces during such post-grasp collisions. In this
experiment, the impact forces are measured for each possible grasp on the book.
(a) Overall experimental configuration. (b) First grasp choice. (c) Second grasp
choice. (d) Third grasp choice.

velocity, type of impact, direction of impact and manipulator posture. They use the
manipulator’s redundancy to alter its posture in order to minimise the impact force.
Impact force minimisation is also studied by Lin et al., 1995, where the authors de-
signed a compliance controller to minimise impact and reduce post-collision bounc-
ing effects. Walker, 1994 and Barcio et al., 1994 defined the impact ellipsoid of a
manipulator as the variation of the end-effector impact force w.r.t. variations in the
joint velocities. Kim et al., 2000 extended those notations and proposed new impact
force measures related to the robot’s directional velocity. Furthermore, Heinzmann
et al., 2003 defined impact potential as a quantification of the maximum impact force a
robot can exert in a collision with a stationary object. They implemented controllers
to directly control the impact potential. Hu et al., 2016 expressed the impact ellipsoid
as a series of inertia quasi-ellipsoids for a space robot and object model, and a pre-
impact configuration is designed to inflict minimum impact forces before grasping
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an object. The ideas of Hu et al., 2016 are related to the work presented in this chap-
ter, in the sense that ibid. use an object’s inertial properties to minimise impact before
grasping. However, this chapter is concerned with understanding inertial properties
to minimise impact after grasping.

Khatib, 1995 analysed the inertial properties of robotic manipulators and intro-
duced the terms effective mass and inertia. These terms were used to describe the mass
and inertia felt by the environment during a collision with the robot’s end-effector.
Kang et al., 2010 minimised the effective mass for the case of a mobile manipulator,
by using both the mobile platform’s and the manipulator’s kinematic redundancies.
Haddadin et al., 2012 used variable effective mass, inertia, and robot velocity to ap-
proximate collision with human tissues. They generated a database that describes
the effects of different collision configurations on human tissue, embedding injury
knowledge in the robot’s motion planning and control systems. Petersen et al., 2014
and Petersen et al., 2016 used the redundancy of a surgery robot to follow a minimum
effective mass and inertia trajectory while under the surgeons control. Another strat-
egy in impact minimisation was presented by Rossi et al., 2015, where the authors
designed a robot path controller to constrain the dissipated energy in case of inelastic
collision. Finally, Ragaglia et al., 2014 proposed an integrating approach that com-
bined visual and sensory input, as well as minimisation of reflected mass and robot
velocity regulation to estimate a severity index when a person is nearby.

While all of the above-mentioned approaches explore ways of making the robot
motion safer, they do not consider the safety of the manipulator while it is holding
an object. Nonetheless, robots are intended to manipulate objects. Holding an object
alters the dynamics of the manipulator and consequently affects the impact forces
experienced in a collision. The impact forces on the end-effector will change when
holding the same object with different grasp poses, because each grasping pose cor-
responds to a different transformation of the object’s inertia tensor with respect to the
grasp frame.

Although there have been many studies on robotic safety during manipulation,
they consider the problem of safety during manipulative motion only. In contrast,
this work is different in that safety is considered prior to grasping, and incorporates
notions of post-grasp safety into the grasp selection process. The effects of different
grasp pose choices on post-grasp impact force and robot safety have not previously
been studied, and previous grasping methods have not incorporated metrics of post-
grasp safety into the grasp planning process.

The main contributions of this Chapter are as follows: Extending the results of the
previous Chapter, this Chapter provides an analysis of the effect of different object
grasping poses on the augmented robot-object dynamics, but now evaluating their
performance in the case of post-grasp collisions. A simple but fundamental method-
ology is developed in an under-explored aspect of robotic safety. A novel grasp se-
lection criterion is proposed and evaluated, that enables a robot to choose a grasp
which minimises the resulting impact force in the event of a post-grasp collision with
the robot’s end-effector.

To show the effectiveness of this approach, a series of empirical experiments using
both simulated and real robots are conducted and their results are presented, which
evaluate and illustrate how the impact force is related to both the object’s inertial
properties and the robot’s choice of grasp.
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Figure 5.2: End-effector trajectory example. The desired trajectory, which the
robot is commanded to follow post-grasp, is considered known prior to grasping.
The robot needs to move from an initial 6D pose to a target 6D pose, x(0) and
x(t f ) respectively, within a finite amount of time t f = 2 sec. A quintic function
is selected to represent this trajectory in continuous time. A sampling rate ∆t =
0.04 sec is selected and the end-effector’s trajectory is sampled to get a total of
N =

t f
∆t = 50 in-between poses. The effective mass of the robot holding the object

is evaluated for each of these N poses.

5.2 Problem formulation

Let x(t) ∈ SE(3) be a pose of the end-effector at time t where [0 ≤ t ≤ t f ], SE(3) =
R3 × SO(3) and SO(3) denotes the group of rotations in three dimensions:

SO(3) = {R ∈ R3×3 : RRT = I, det(R) = ±1}.

It is assumed that an initial and a target pose of the object to be manipulated are
given (e.g. recognised by a computer vision algorithm). Consequently, the poses
of the robot’s end-effector trajectory corresponding to those of the object are com-
puted. A rigid object and a fixed grasp are considered, so that the transformation
from the object’s centre of mass (CoM) to the end-effector is unique for every point
of the object’s trajectory. For simplicity, all the analysis is conducted directly in the
end-effector space. As by Ramos et al., 2013, a polynomial function is used to gen-
erate a trajectory of end-effector poses necessary to move the object from the initial
to the target pose. For example consider the pick-and-place task of the book shown
in Fig. 5.1 which is desired to be placed on the other side of the bottle. The initial
and final poses are represented with x(0) and x(t f ), where x(t) is a 6D pose vector
consisting of Cartesian coordinates for translation and Euler angles for rotation. A
quintic polynomial is used to generate the end-effector’s trajectory. This polynomial
has enough free parameters to ensure that the boundary conditions of position, ve-
locity and acceleration are satisfied while the trajectory and its first and second order
derivatives are continuous. An example of a trajectory is shown in Fig. 5.2.

x(t) = x0 + x1t + x2t2 + x3t3 + x4t4 + x5t5

x(0) = x0, x(t f ) = xt f

ẋ(0) = ẋ(t f ) = ẍ(0) = ẍ(t f ) = 0

(5.1)
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The augmented object model, as proposed by Khatib, 1987 is used. The augmented
object model describes the dynamics of a manipulator while holding an object. In the
previous chapter, this augmented model was used to select grasps which minimised
the post-grasp torque effort.

Consider the dynamic model of a robotic manipulator in the operational space
expressed in Eq. (4.10). While the analytical dynamics may not be known with large
detail in real applications, it is reasonable to assume that an approximation of the
robot’s dynamic model can be identified or known in advance.

Λ(x)ẍ + µ(x, ẋ) + p(x) = F (5.2)

where Λ(x), µ(x, ẋ) and p(x) are the mass matrix, Coriolis matrix and gravity force
vector respectively, all expressed in the operational space. F is the generalised force
in the operation space including external wrench of force and torques applied to the
manipulator from the environment.

While one can compute the force at every point of interest of the manipulator by
writing the corresponding operational space equation, the kinetic energy matrix Λ(x)
can be used to compute the impact force during a collision without the need to solve
the second order differential equation in Eq. (5.2). However, this only represents the
effect of the manipulator’s dynamics on the impact force. According to previous
studies in human-robot collaboration and safety, the impact force, as perceived by
a human during collision with a manipulator, can be represented by the “effective
mass”, defined by Khatib, 1995 as:

me f f =
1

vTΛ−1
u (x)v

(5.3)

where v is a unit vector in the direction of motion and Λu is the kinetic energy corre-
sponding with translation only.

The aim is to quantify the impact force of the manipulator while it is moving an
object with known inertial properties. Hence, the augmented object model is again
used. Consider the kinetic energy matrix of the object, in the object’s CoM coordinate
frame, denoted by Fcom, given by:

ΛOcom =

(
mI3x3 0

0 ICoM

)
(5.4)

where m and ICoM are the object’s mass and inertia tensor and I is the unit matrix. This
kinetic energy can be also expressed in the frame attached to the end-effector at a de-
sired grasping pose, denoted by Fgp by using a transformation T, which transforms
linear and angular velocities from Fcom to Fgp. Let r be the vector that connects Fgp
to Fcom and r̂ the cross-product operator for r, then T is given by:

T =

(
I r̂
0 I

)
(5.5)

The kinetic energy matrix ΛOgp expressed in Fgp is thus given by:

ΛOgp = TTΛOcom T (5.6)
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ΛOgp needs to be transformed to an appropriate operational space coordinate rep-
resentation. This is achieved by using a matrix E(x) which relates operational gen-
eralised velocities to linear and angular velocities notation. E(x) is only dependent
on the choice of the variables to represent position and orientation in Fgp e.g, Carte-
sian position and Euler angles Khatib, 1995. The kinetic energy matrix of the object,
expressed in the end-effector frames and in operational coordinates representation is
given by:

Λo(x) = ET(x)ΛOgp E−T(x) (5.7)

As the kinetic energy matrices Λo(x) and Λ(x) are now represented in the same
coordinate frame and operational coordinate representation, the kinetic energy of the
whole system comes from the addition of the two matrices:

Λtot(x) = Λobj(x) + Λ(x) (5.8)

A more detailed explanation of the augmented model can be found by Khatib,
1987. Eq. (5.8) shows that the total kinetic energy matrix is simply the addition of the
manipulator and the object energies expressed in Fgp. As Λtot(x) has the same form
and meaning as for the manipulator, namely Λ(x), its inverse always exists and it has
the following form:

Λtot(x)−1 =

(
Λ−1

utot
(x) Λuwtot(x)

ΛT
uwtot

(x) Λ−1
wtot

(x)

)
(5.9)

where Λutot(x) represents the inertial properties of the augmented model associated
with translation, Λwtot(x) is the inertial properties associated with rotation, and Λuwtot(x)
represents a measure of coupling between angular and linear parts.

As mentioned in the introduction, the aim is to select a grasp that produces min-
imum impact force in case of a collision, as compared to other possible grasps. It is
assumes that a set of possible grasps for the object have been generated by a grasp
synthesizer, e.g. Kopicki et al., 2015 or several other recently proposed methods.
Since the object’s CoM is known, every synthesized grasp represents a pose transfor-
mation between the CoM frame and the robot’s end-effector frame.

It has been shown that a manipulator during a collision is perceived according
to its effective mass (Eq. (5.3)). In analogy, the effective mass of the total system is
defined as

me f f ,tot =
1

vTΛ−1
utot(x)v

(5.10)

The total effective mass is dependent on the object’s inertia tensor w.r.t Fgp. This
means that grasping from different poses results in different kinetic energy values
of the corresponding augmented models. Hence, there may exist one grasp choice
which could result in an impact force lower than that for all other possible grasps.
In the next section it is shown that grasp poses have a significant effect on a safety
measure of effective mass in the context of human-robot collaboration.
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Figure 5.3: The tensor object. The caps of the cylinders have negligible mass.
The black and blue weighted rings are able to move along the cylinders and latch
when needed. By changing a ring’s position, the inertia tensor of the object and
the perceived inertia tensor at the contact point are changing. The ring on the x
axis (handle) is coloured blue so that it can be distinguished easily.

5.3 Experimental results

This section presents the results of several experiments including two experiments in
simulation environments and one experiment using a real robot. The experiments are
designed such that the alteration of the robot’s dynamics with each grasping point is
illustrated. In particular, the pre-calculated effective mass along a given trajectory for
each grasp, and the impact force that the grasp will produce in a collision scenario,
are discussed in the following to show the effectiveness of our approach.

Again, the 7-DOF Baxter® robot by Rethink Robotics is used for both simulation
and real robot experiments. Programming is done in Baxter Software Development
Kit (SDK), the Python Kinematic Dynamic Library (PyKDL) and the Gazebo simula-
tion environment which supports object and sensor generation and built-in physics
engines.

The continuous end-effector trajectory is sampled with a sampling rate of ∆t =

0.04 sec, to collect a total number of N =
t f
∆t intermediate end-effector poses xi, i =

1, ..., N in Cartesian space. The poses xi are used to calculate the dynamic properties
of the manipulator during the trajectory.

5.3.1 Simulation with tensor object

In the first simulation, a “tensor object” is used. Tensor objects are widely used in
experimental psychology, to demonstrate how changes in an object’s inertia tensor
affect its perceived properties by a human who is manipulating it (Amazeen et al.,
1996). A tensor object consists of five cylinders in the form of a 3D coordinate frame,
as shown in Fig. 5.3. One of the cylinders is chosen as the handle for grasping.
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Toroidal weights (shown as black and blue coloured rings in Fig. 5.3) are located
on each cylinder and can slide along it. The total mass of the tensor object is 0.43 kg.
By changing each weight’s position along its respective cylinder, the object’s inertia
tensor w.r.t. the CoM can be modified. Subsequently, the perceived inertia tensor at
Fgp changes.

The tensor object for this experiment, shown in Fig. 5.3, is designed such that
the robot pose expressed by Fgp relative to the Fcom is kept invariant over different
grasps, whereas the inertia tensor of the object can be changed. The velocity and
type of collision are kept invariant over all experiments. This allows studying the
effect of just one variable (inertia tensor of the object being manipulated) on the im-
pact force during a post-grasp collision, while keeping all other conditions invariant
throughout the experiment.

20 different grasps were generated by altering the position of the rings on the
tensor object. For each grasp a collision scenario is conducted to measure the impact
force that is delivered by the robot end-effector. The robot picks and moves the object
to its right side according to the task trajectory described in the previous section.
The initial and final 3D positions of the end-effector were set to p0 = (1, 0, 0.03)
and p f = (1.1, −0.38, 0.16) respectively, where distances are measured in meters.
For simplicity the orientation is unchanged during the trajectory, although possible
changes in orientation would result in the same form of trajectory polynomial. The
trajectory total duration is 2 seconds, leading to 50 trajectory samples. After a brief
time, the end-effector collides with the force sensor on the vertical pillar (Fig. 5.4).

The proposed approach in the previous section is used to pre-calculate the ef-
fective mass of the augmented model corresponding to each grasp, and the results
are shown in Fig. 5.5. The results show that the value of effective mass significantly
varies between different grasps. This figure indicates the safest grasp with the mini-
mum effective mass. It should be noted that the effective mass is a function of the ma-
nipulator’s trajectory, which slightly changes when the robot reaches different grasps
on a static objects. The effect of this trajectory change in the total effective mass was
negligible compared to the change attributed to the object dynamics.

To further validate the proposed hypothesis, that grasps with different effective
mass produce significantly different impact forces, a collision was simulated while
recording the impact forces for various different grasps.

Fig. 5.6 plots the impact forces resulting from three different grasps: the grasp
with maximum effective mass in Fig. 5.5; the grasp with minimum effective mass;
and a grasp with moderate effective mass. The robot is commanded to cease its ef-
fort 2 seconds after the collision, so that the peak impact force and the steady state
contact force values can be easily evaluated. Because the collision happens roughly
1.5 seconds after the start of the trajectory, the total measurement time was roughly
3.5 seconds as shown in Fig. 5.6 . The impact forces are clearly visible in Fig. 5.6 as
the large peak in the force signals at the collision time. It can be seen that the val-
ues of these peak forces are in accordance with the computed effective mass, i.e. the
greater the effective mass, the greater the peak value of the impact force. These mea-
surements validate the presented hypothesis (Fig. 5.5) and suggest that the proposed
approach can make a useful contribution to improving robot safety.
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(a)

(b)

(c)

Figure 5.4: The Baxter robot and tensor object simulation configuration. An object
with variable inertia tensor is used to demonstrate the effect of different grasping
positions on the severity of collisions with the environment. The executed ex-
periments consist of the robot approaching the object, and grasping it as shown.
The robot then lifts the object and transports it along the task trajectory. At some
point along this trajectory, a rigid pillar equipped with a virtual force sensor is
intentionally introduced, shown here as the red button. The robot’s end-effector
then collides with the force sensor. The purpose is to measure the exerted force
on the sensor along the trajectory direction. (a) The simulation configuration.
(b) The starting point of the end-effector trajectory. The grasping point identifies
with the starting point of the end-effector trajectory. (c) The collision point of the
end-effector trajectory.

5.3.2 Simulated grasping and moving of book object

The method is then applied to a more realistic example in which several different
grasp locations on an object are generated and, consequently, the robot’s configura-
tions and post-grasp trajectories become altered for each new grasp (in contrast to
the previous experiment, in which the specially designed tensor object enabled iden-
tical robot motions over all experimental runs). The handled object is a book-shaped
object with dimensions 22x15x1.5 cm and mass of 0.34 kg (to align with real robot ex-
periments with a real book, described in the next section). This book object is initially
positioned in front of the robot on a table. The robot performs three different grasps,
on three different parts of the book, as shown in Fig. 5.7. The task setup is similar
to the previous experiment, i.e. after grasping the book, the robot collides forcefully
with a rigid pillar containing a virtual force sensor. The grasp points are at −0.1m,
0m and 0.1m, where these are grasp positions along the spine of the book, which is
aligned with the y axis (shown in Fig.5.7a as the green arrow). The pre-calculated ef-
fective masses along the post-grasp trajectory, for each of the three grasps, are shown
in Fig. 5.8. For each grasp, the force sensor is used to model the resulting impact
forces, which are plotted in Fig. 5.9. Again, higher impact forces result from grasps
which yield higher effective masses along the post-grasp trajectory, suggesting that
computation of effective mass is a useful predictor of collision safety. Furthermore,
it is clear that significantly different effective mass, and significantly different impact
forces, result from different choices of grasp.
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Figure 5.5: Map of the effective mass along the trajectory for all grasps of the
tensor object. The vertical axis denotes each of the 20 example grasps, and the
horizontal axis denotes time, throughout the duration of the post-grasp trajec-
tory. Colour denotes the magnitude of the effective mass for each grasp at each
time step. Each horizontal segment, starting from left to right, plots the magni-
tude of the effective mass that each grasp produces over the entire time duration
of the task trajectory. It can be seen that different grasps can indeed generate dif-
ferent effective masses along the duration of the task trajectory, with significant
variations in the effective mass magnitude. The result of these variations is that
the methodology can discriminate safer from less safe grasps.

5.3.3 Experiment using a real robot

To further test the method, the simulated book experiment is repeated using a real
Baxter robot. The experimental set-up is consistent with that of the simulation exper-
iment, i.e. identical grasp positions and post-grasp trajectories. The real book, shown
in Fig. 5.1, has exactly the same mass and dimensions as the virtual book object in
the simulation experiment, so that the effective mass computation, Fig. 5.8, is identi-
cally valid for our experiment with the real Baxter robot and the real book. To avoid
damaging expensive equipment, the robot is made to collide with a plastic bottle full
of water, instead of a completely rigid pillar as used in the simulation experiment.
During the post-grasp trajectory, the robot collides with the bottle for a brief period
of time, knocking it over.
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Figure 5.6: Impact force profiles for three different grasps of the tensor object.
Red colour corresponds to the minimum effective mass grasp, green to the maxi-
mum effective mass grasp, and blue to a grasp with an intermediary value, sam-
pled from the 20 grasps shown in Fig. 5.5. The impact forces are visible as the
large initial force peak, and it is clear that the magnitudes of these impact forces
vary between the grasps. Since the task trajectory is the same for all grasps and
the collision type and geometry remain the same, these variations in the impact
forces depend only on the choice of grasp. The relatively high magnitudes are at-
tributed to the fact that the robot collides with a simulated, rigid pillar that has a
virtual force sensor. As the robot keeps pushing, the recoil generates oscillations
(especially in the spring-loaded series-elastic-actuators of the Baxter robot) which
eventually converge to a steady state contact force.

In the simulation experiments, a virtual force sensor was created to measure im-
pact forces. In future work, a high-precision, force-torque sensor can be used for ac-
curately measuring these forces in experiments with real robots. Since such a sensor
was unavailable at the time of writing, the Baxter robot’s (rather noisy) force esti-
mation system was used, based on a model of its series-elastic actuators combined
with joint rotation sensors, to approximately measure the forces experienced by its
end-effector. The results are shown in Fig. 5.10.

The time of collision can be clearly seen in Fig. 5.10 as a large peak in the contact
force, shortly before 0.5 seconds after motion begins. From Fig. 5.10 it can be seen
that the maximum force during impact is different for each grasp, with around 30%
difference between safest grasp and least safe grasp. This is consistent with the sim-
ulation experiment, where the minimum impact force (safest grasp) is around 100N,
while the maximum impact force (least safe grasp) is around 130N.

Note that, in the simulation experiment, the overall magnitude of contact forces
was higher, because the robot was colliding with a completely rigid and static obsta-
cle. In contrast, in the real robot experiment, the robot collides with a light-weight,
deformable obstacle (full water bottle), which topples over after impact. Neverthe-
less, the differences in impact force between the safest and least safe grasps were
similar in both real and simulation experiments, with approximately 30% difference
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(a)

(b) (c) (d)

Figure 5.7: Simulated grasping and moving of a book. The robot was given three
grasping points on a book with dimensions 22x15x1.5 cm and mass of 0.34 kg.
After grasping the book, the robot hits the force sensor shown on the black pillar,
and the impact forces are measured. (a) Experimental setup. The book coordinate
frame is visible. (b) First grasp. (c) Second grasp. (d) Third grasp.
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Figure 5.8: Effective mass values, computed along a post-grasp trajectory, for
three different grasping points on the book object. It can be seen that different
grasps result in different effective masses. Computing effective mass along the
desired post-grasp trajectory, can be used to predict the safety of each grasp w.r.t.
collisions.

in both cases. In both real and simulation experiments, the grasp with minimum ef-
fective mass results in minimum impact force. In both experiments, the most safe
grasp was located on the right side of the book (Fig. 5.1d) and the least safe grasp
was on the left side (Fig. 5.1b).

5.4 Discussion

The results acquired from all experiments support the proposed methodology. As
demonstrated, selection of an optimal grasp can reduce the impact in case of a colli-
sion. Grasps that minimise the computed effective mass along a desired post-grasp
trajectory, are an effective predictor of grasps that maximise safety with respect to
post-grasp collisions. This Chapter has proposed a way of pre-calculating this opti-
mality, by using the effective mass of the augmented dynamics, integrated over the
desired post-grasp trajectory. As seen in Fig. 5.5 and Fig. 5.8, the difference between
effective mass values can vary significantly between different grasp choices. Fur-
thermore, effective mass differences, between different grasps, result in significantly
different impact forces in post-grasp collisions. In all cases, the experimental results
consistently support that selection of grasp location can make a robot significantly
safer, and pre-calculations of the effective mass, along a desired post-grasp trajec-
tory, are a useful way of identifying the grasp choices that minimise the severity of
post-grasp collisions.

The experiments were designed to be simple and able to isolate and measure the
effect of each grasp at the instance of collision. As the interest is primarily in min-
imising the impact force, there was not any optimisation, or further investigation, of
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Figure 5.9: Simulated impact force evolutions, between the robot’s end-effector
and a virtual force sensor, for three different choices of grasp. Similar to the tensor
object experiment, the three different grasps on the book object yield significantly
different impact force values during the same collision profile. The forces for the
first, second and third grasp are shown in red, green and blue respectively. The
robot continues pushing after colliding, and the inherent elasticity of the Baxter
actuators leads to oscillations which then decay to a steady state contact force.
Note that the different timings of the initial impact in each case, are because the
robot’s wrist begins its motion at three different positions, corresponding to three
different grasps on the spine of the book.

post-impact phenomena such as manipulator stability after impact or steady-state re-
sponse of the contact force. The connection of these phenomena to post-grasp manip-
ulation and the grasped object’s inertial properties can serve as an interesting topic
for future research. Other ways of potentially enhancing the proposed method in the
future include further minimisation of the force by redundancy control, or evaluating
how changes in the object’s inertia tensor during the task execution, due to e.g. grasp
slippage, would perform.

It should also be noted that the dynamics of the robot may not always be avail-
able in analytical form, and may need to be identified. The same can be said for the
inertial properties of grasped objects, where only approximations can be given, with
some margin of error, in many real-world applications. Nevertheless, the proposed
methodology is suitable for providing safe grasps, even when using such approxi-
mations.
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Figure 5.10: Impact force evolutions for three different grasps, performed with a
real robot colliding with an obstacle (water-filled bottle). The point of collision is
clearly visible on the plots, in the form of a sharp peak in the force measurements.
Once again, different grasps lead to different impact forces (observed in the first
large peak in contact force, just before 0.5 seconds), consistent with the simulation
experiments. The magnitude of the peak collision forces varies from 13N (safest
grasp) to 17N (most dangerous grasp), i.e. roughly 30% difference in safety for
even this very simple case, with seemingly modest changes in the choice of grasp
pose. Note that the contact force fluctuations, after the collision, are most likely
attributable to gravity torque compensation behaviour of the real Baxter robot,
combined with minor inertial effects (note that the bottle obstacle has toppled
over at this point, so no obstacle exists to account for this post-impact fluctuation
behaviour). (a) First grasp. (b) Second grasp. (c) Third grasp.
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Chapter 6

Generating Manipulation Criteria
From the Inertial Parameters

6.1 Introduction

The lessons learnt from the previous chapters suggest that a robot can use the com-
bined arm-object dynamics to generate manipulation criteria for a given task. Since
the task to be executed has common mathematical formulation for all manipulation
metrics, it comes as following that the aforementioned criteria can be used on top of
each other along the task. However, since the criteria are calculated independently
from each other, a serious question is posed: is there a possibility that task-relevant
objectives conflict? Is there a chance that e.g. a grasp with lower torque leads to a
grasp with potentially higher impact force?

The answer to this question is not straightforward to give, and depends on the
specific manipulation task and application. The main theme of this chapter is to
demonstrate how the values of task-oriented criteria vary under a different selection
of grasp poses, even though they are a function of the object’s inertial parameters.

6.2 Trajectory definition and post-grasp objectives

In this Chapter, the notation of Section 5.2 is followed for the definition of a task in the
object’s CoM space, robot’s end-effector space, as well as the relative transformations
between the object’s CoM and the grasping points. Three different post-grasp criteria
are considered. On top with the already presented manipulation effort and impact
force minimising criteria, the maximisation of the robot’s manipulability is consid-
ered. It is shown that these objective values are functions of the inertial parameters
of the object, the selected grasp pose and a post-grasp trajectory.

6.2.1 Task oriented kinematic velocity manipulability (TOV)

Ghalamzan E et al., 2016 introduced a Task Oriented Kinematic Velocity Manipu-
lability cost function (TOV) to address the problem of jointly planning both grasps
and subsequent manipulative actions. This cost function was also used in a mixed
initiative, shared control for master-slave grasping and manipulation (Ghalamzan et
al., 2017). It was shown that maximising TOV results in significantly reduced joint
velocities.
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Figure 6.1: Simulation setup with a Baxter robot in Gazebo simulator. The robot
is tasked with grasping and then moving the object. The robot manipulates a
cuboid object with dimensions 0.5x0.15x0.2m3 and mass of 0.4kg. The coordinate
axes of the object’s centroid are shown, where red, green and blue correspond to
x,y and z axes, respectively. The inertia tensor of the object is known in advance.
10 different grasps are generated for evaluation. Three different Pick-and-Place
tasks are provided for the robot to execute, and for each task and grasp, the ef-
fective mass, the joint effort and the manipulability along the task trajectory are
pre-calculated. The aim is to investigate the performance of each grasping point
according to the calculated metrics.

Let θ ∈ Rn be the joint vector of the considered manipulator arm, and

u =

[(
vg
ωg

)]
= J(θ)θ̇ (6.1)

be the geometric Jacobian relating joint velocities to the end-effector linear/angular
velocities u = (vg, ωg) ∈ R6 in the end-effector frame Fg (for ease of notation, the
superscript g is dropped for the quantities in Eq. (6.1). The kinematic velocity ma-
nipulability ellipsoid is defined by

uT(J(θ)J(θ)T)−1u = 1 (6.2)

and it represents the capability of the robot manipulator in generating task space
velocities for a given norm of joint velocities, which is a metric of the robot’s dexter-
ity. In this Chapter the interest is in in maximising (in an integral sense) a particular
task-oriented manipulability measure derived from Eq. (6.2): the radius of the manip-
ulability ellipsoid along the tangent vector to the desired path in task space. This is
meant to ease as much as possible the execution of the desired trajectory by the robot
arm, with the smallest norm of the joint velocities.
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Consider θ(t) being the trajectory in joint space associated to the end-effector
trajectory, and generated by the robot inverse kinematics, where u(t) is the corre-
sponding linear/angular end-effector velocity at each time. u(t) is decomposed as
u(t) = a(t) ¯u(t), with a(t) representing the norm of u(t) and ¯u(t) its (unit-norm)
direction. From Eq. 6.2 it follows that, along the planned path,

a2(t)ūT(t)(J(θ(t))JT(θ(t)))−1 ¯u(t) = 1. (6.3)

It is easy to verify that the quantity a(t) solution of Eq. (6.3) represents the length
of the ellipsoid radius along the direction ¯u(t). The aim is to maximise the quantity
a(t) along the whole path as defined in the following integral cost function:

HTOV(
rxg) =

∫
ζaα2(rxg, s)ds =

∫
ζa

1
ūT(J(θ)J−T(θ))ū

(6.4)

where 0 ≤ s ≤ 1, s is a parametrisation of the path, s = 0 indicates t = 0, s = 1 shows
t = t f and t f is the time to completion. Let ū = ū(rxg, s), θ = θ(rxg, s). Ghalamzan
et al., 2017, called HTOV Task-Oriented Velocity Manipulability (TOV).

6.2.2 Manipulator dynamics under load

In this section, it is again assumed that the dynamic model of the robot is known,
as well as the corresponding governing equation of motion of the manipulator in
the joint space. Here, the interest lies in computing the total energy consumption of
the robot when executing the desired post-grasp trajectory. Hence, the augmented
dynamic model as presented in Chapter 5 is again used. Following the notation of
Chapter 5, Eq. (4.19) is used:

Mtot(θ)θ̈+ Ctot(θ̇, θ) + Ntot(θ) = τtot(t) (6.5)

Manipulation energy consumption

Mtot is used to compute the corresponding torque of augmented model of object and
manipulator. The energy consumption of the robot to manipulate the object along
path ζo is defined as:

HTME(
rxg) =

∫
ζo

~τtot
2ds (6.6)

Effective mass definition

While one can compute the force at every point of interest of the manipulator by
writing the corresponding operational space equation, one can project the kinetic
energy matrix Mtot to the end-effector frame as per the analysis of Chapter 6, and
extract the end-effector total kinetic energy matrix Λtot. This matrix is related to the
impact force during a collision with a robot’s end-effector.

It has been shown in the previous Chapter that during collision, a manipulator
is perceived according to its effective mass (Eq. 6.7), denoted by me f f . As in the
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(a) (b) (c)

Figure 6.2: In the first task, the robot needs to pick up the object (blue cuboid),
which is located on the table, move it 20 cm in line with the negative y-axis and
10 cm in line with positive x-axis and place it on the table. The x and y axes are
shown with red and green arrows in Fig. 6.1. All 10 grasping poses are equally
distributed on the top edge of the cuboid. Three example grasps on the object are
shown where (a), (b) and (c) show the first, fifth and tenth grasping pose.

previous Chapter, the effective mass of the total system is defined as

me(
rxg, s) =

1
ūTΛ−1

u,tot(x)ū
(6.7)

and the minimisation criterion along the task trajectory is:

HTEM(rxg) =
∫

ζo
meds (6.8)

Ideally, a high value of HTOV (or low value of 1
HTOV

) and low values of HTEM and
HTME are desired. Although a native approach to minimise all can be achieved by an
affine combination of all objectives, this chapter shows that this approach is not so-
phisticated and the solution must be obtained through a multi objective optimisation
approach.

6.3 Experimental results

A series of experiments is conducted with a Baxter robot manipulating an object with
a given task using the Gazebo simulator. The set-up is shown in Fig. 6.1. The task
is to pick a cuboid object and place it at different poses. The object has dimensions
0.5 × 0.15 × 0.2m3 and uniform mass distribution with a mass value of 0.4kg. 10
different grasping poses are considered on the object surface. The contact locations of
the grasping poses are uniformly distributed on the top edge of the cuboid. Three of
the generated grasp poses are shown in Fig. 6.2. The first grasp is located at −0.22cm
and the last one is at 0.22cm along the y-axis. The robot approaches the contact points
of each grasping pose on the top edge of the object from predefined approach points
located 15cm above each grasping pose.

In total, the robot performs three Pick-and-Place tasks: the robot lifts up the object
10cm from its initial position along the z axis and:

1. translates it in a combined motion −20cm along the y axis and 10cm along the
x axis and finally puts it down −10cm along the z axis;



Chapter 6. Generating Manipulation Criteria From the Inertial Parameters 97

10 20 30 40 50

Trajectory waypoint

1

2

3

4

5

6

7

8

9

10

G
ra

s
p
 i
n
d
e
x

1

1.5

2

2.5

3

3.5

4

4.5

E
ff
e
c
ti
v
e
 m

a
s
s
 (

k
g
)

Figure 6.3: Heat map of the computed effective mass for the third task. The
horizontal axis represents the waypoints along the task trajectory and the vertical
axis shows the grasp poses considered on the top edge of the object. This figure
shows that the metric value of effective mass correlates with the waypoint of the
pick-and-place trajectory and the selected grasp pose.

2. translates −0.35cm along the y axis and finally puts it down on the table;

3. translates−35cm along the y axis and−10cm along the x axis and finally places
it on the table.

By using the Baxter PyKDL library, the Jacobian and the dynamic model for each
point of a trajectory are computed, allowing for the calculation of the metrics as per
Eq. 6.4, 6.6, 6.8. An example of the effective mass for every initial grasping pose
versus sample points of the third task trajectory is presented in Fig. 6.3.

The integrals presented in Eq. 6.3, 6.6 and 6.8 are computed for every task. For
better visualisation, the values of 1

HTOV
, HTEM and HTME are normalised against their

corresponding maximum; that is,

HTOV =
HTOV

max (HTOV)
,

HTEM =
HTEM

max (HTEM)
,

HTME =
HTME

max (HTME)
.

These normalised metrics are shown in Fig. 6.4a, 6.4b and 6.4c for the first, second
and third task.

A characteristic example is the first task (Fig. 6.4a), where it is clear that the grasp
No. 1 is the optimal yielding minimum effective mass, minimum joint effort and
maximum manipulability. Furthermore, Fig. 6.4a shows the manipulability, effort
and effective mass significantly changing with the choice of grasp poses. This enables
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Figure 6.4: The final scalar metric values (namely TOV shown in green line, joint
effort shown in blue line and effective mass shown in red line) for (a) task 1 (b)
task 2, and (c) task 3. The L2 norm of a metric along post-grasp trajectory yields a
scalar value for each grasp pose. These values represent the manipulation quality
of the grasp and are directly related to the task to be executed. As a result, the
robot can choose a grasp that has low effective mass, low effort and higher manip-
ulability. For instance, grasp number 1 in the first task, top figure, has maximum
manipulability and minimum effective mass and effort.

the use of the presented methodology in choosing the grasp that is safe, yields the
least effort and provides high manipulability for executing the task.

In contrast, the results yielded for the second task (Fig. 6.4b) show that the ob-
jectives do not agree on the optimal grasping pose, i.e. while the effective mass and
joint effort are implying that grasp number 1 is optimal, TOV manipulability sug-
gests that grasp number 6 is optimal. Likewise, the indices obtained for the task
number 3 (Fig. 6.4c) show that they conflict, i.e. grasping pose number 2 yields min-
imum joint effort, whereas grasping pose number 1 is the best in terms of both TOV
manipulability and effective mass.

6.4 Discussion

The results presented in this Chapter illustrate that the grasping pose selection for
predefined manipulative actions is a complex multi-objective optimisation problem,
where the manipulability metric needs to be maximised, and the effective mass and
joint effort metrics need to be minimised. Although one may consider an affine com-
bination of these objectives for grasp selection, a more clever approach of multi-
objective optimisation for grasp selection would be necessary in any case-study to
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be solved. The optimisation problem is is tightly related to the specific user-case
and the performance requirements and limits of the robot during the executed task.
The definition of the cost function, as well as the optimisation algorithm is also case-
dependent. In the case of highly non-linear or multi-modal problems, metaheuristic
optimisation algorithms such as Genetic Algorithms could perform well. When solv-
ing a multi-objective optimisation problem the optimal solution, or Pareto solution,
is the solution where further optimisation of an objective leads to degradation of any
other objective. The main goal of the Chapter is to showcase how different solutions
(grasps) would affect the performance of each objective individually. To examine
this, the presented setup required only a small number of grasps, which is sufficient
for "brute-force" examination of each grasp individually. As a result, applying an
optimisation technique was left out of the scope of the Chapter. A natural next step
for future work is to use the criteria defined in Chapters 4,5,6 along with a grasp
synthesis method capable of extracting a large number of grasps and an optimisation
method, fine-tuned in a realistic user-case.
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Chapter 7

A Different Case Study: Using a
Captured Object’s Inertial Parameters
in Space Robotics

7.1 Introduction

All the previous Chapters demonstrated various fundamental elements of combin-
ing an object’s inertial parameters with the robot dynamics to generate post-grasp
manipulation criteria. The presented methodology and results demonstrated the im-
portance of using the augmented dynamics, and the variety of post-grasp criteria to
be generated. The methodology was mathematically simple and fundamental, and
for that reason it can be extended for use in different robot environments.

In this Chapter a more specialised case study is presented. The application exam-
ined is a robotic spacecraft in orbit that manipulates a captured object with known
inertial parameters. Contrary to the previous Chapters where the inertial parameters
were exploited for task-informed grasp selection, this Chapter focuses on utilising the
inertial parameters for generating motion trajectories to execute the task after having
it grasped. The aims of this chapter are to demonstrate that the exploitation of the
inertial parameters can be additionally applied in the post-grasp-selection process, as
well as to provide a more targeted-use case scenario than the previous Chapters as an
example. What further connects it to the theme of the previous Chapters is the usage
of the combined object-robot dynamics to minimise a newly-defined criterion. The
case of an in-orbit space robot is examined. The usage of the inertial parameters of
a captured space object for orbital operations has also not been studied extensively,
and such a study fits the main theme of this thesis. While they are not used here, the
criteria that were developed in the previous sections can help make the manipulation
more power-efficient, and this is crucial in this type of environment.

Modern space robot applications are more and more related to operations where
a robot needs to handle objects while on-orbit. Such operations include satellite ser-
vicing, where the robot must handle tools and satellite parts, space debris removal,
where the robot needs to carefully grasp debris pieces, and asteroid interaction mis-
sions. Examples of missions where a robotic spacecraft would need to interact with
objects are Reed et al., 2016, Castronuovo, 2011 and Mazanek et al., 2015.

A common characteristic of such missions is the need to plan for joint or end-
effector trajectories to be followed by the space manipulator in order to complete
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the given task. The trajectory generation problem for a robotic spacecraft is a com-
plex problem, due to the coupling between the movement of the manipulator and
the movement of the base, as well as the dependence of the spacecraft’s kinematic
equations from the mass distribution of the whole system. There is a large amount of
works providing solutions to the trajectory generation problem for a space robot us-
ing various kinemo-dynamic models. Some prominent approaches are briefly men-
tioned. In the work by Umetani et al., 1989, the authors introduced the concept of
Generalised Jacobian, allowing for a mapping between the arm joint values and end-
effector coordinates that incorporates the reaction effects between the arm and base
movements. They demonstrated a resolved motion control scheme that uses the Gen-
eralised Jacobian. Nakamura et al., 1991 demonstrated the non-holonomic nature of
a 6-DOF space robot, and used a bi-directional method to ensure motion planning
away from the system’s null-space. Papadopoulos et al., 2005 used polynomial func-
tions for path planning on a free-flying space robot, subject to non-holonomic con-
straints. They were able to plan for both a manipulator trajectory and a spacecraft
base attitude change, by only actuating the arm joints. Finally, Dubowsky et al., 1991
introduced the Enhanced Disturbance Map, a map of the robot’s joint space that en-
ables finding joint trajectories by following the direction on the map that minimises
the base disturbance.

The problem becomes increasingly difficult when the robot is holding a captured
object, as the addition of a payload at the end-effector alters the spacecraft kinemo-
dynamics. The estimation of an object’s inertial parameters in orbital environments
is different than the methods presented in Chapter 2, due to the alterations in the
motion equations. As a result, it was deemed out of the scope of this thesis. Never-
theless, there exist a number of works that provide methods to estimate the inertial
parameters of the captured object (Chu et al., 2017; Murotsu et al., 1994; Pesce et
al., 2017). As it is the case with terrestrial robots, these inertial parameters can then
be incorporated into the spacecraft dynamics to yield a new dynamic model, and a
trajectory can be planned using these combined dynamics.

It is clear that planning a trajectory for a space robot is not a trivial task due to
the mathematical complexity of the problem with all the existing constraints. More-
over, a trajectory needs to be planned in a way that many more than one objectives
have to met, increasing the complexity even more. For example a trajectory needs to
avoid singular configurations of the manipulator, while at the same time restrict the
coupled movement of the base and minimise consumed power. To further echo the
comments of the previous Chapter, it is obvious that optimisation methods need to
be used for satisfaction of the criteria. However, a multi-objective solution under all
these constraints may be difficult and time-demanding to find with model-based op-
timisation techniques. As a result, multi-objective meta-heuristic optimisation meth-
ods have been used in literature to find a best solution in finite time. Some methods
are presented here. Xu et al., 2008 used Particle Swarm Optimisation (PSO) in order
to plan a Cartesian path for a free-floating space robot. They generated a joint tra-
jectory by differential integration of the end-effector velocity, and used the accuracy
in both end-effector and joint spaces as objectives to be minimised. Wang et al., 2015
used PSO to generate a joint trajectory of a redundant single-arm free-floating robot,
that satisfies manipulability, base disturbance, and goal reaching constraints. This
work was extended by Wang et al., 2018 for a dual-arm case. Finally, Liu et al., 2015
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Figure 7.1: A 2D free-floating dual-arm space robot grasping an object. ΣI , Σb, Σob
note the inertial , base and object coordinate frames. Σ1r, Σ2r, Σ3r, Σ1l , Σ2l , Σ3l , Σel ,
Σer note the frames of the links and end-effector of each arm. rcm, rb, rcm,b note the
vectors from the inertial frame to the system barycenter C.M., the inertial frame
to the base frame, and from the base frame to the C.M. frame. r1r, r2r, r3r, r1l , r2l ,
r3l note the vectors from the inertial frame to each link, and rob is the vector from
the inertial frame to the object. rbr and rbl are the vectors from the base to the first
joint of each arm. The arm joints are noted with q1r, q2r, q3r, q1l , q2l , q3l . The object
needs to be transferred to a target location, shown in red.

used PSO to minimise dynamics and efficiency related objectives, for the case of a
single-arm free-floating robot that handles a heavy payload.

The aforementioned literature solves the problem primarily by generating opti-
misation criteria that are related to the efficiency of the conducted operations. In
the same time, an on-orbit robot needs to ensure the safety of the handled object. For
example, a generated trajectory may induce increased stress on a handled piece of de-
bris, increasing the risk of breaking it. The core idea of this chapter is a multi-objective
trajectory generation methodology for a free-floating dual-arm space robot, that aims
to primarily reduce the induced stress on the captured object during handling. For
that matter, the combined dynamics of the object and spacecraft are employed, to cal-
culate the internal stress forces created in the object while being handled, and min-
imise them with a Genetic Algorithm along other classical criteria. Minimising the
internal forces of a captured object in a multi-objective way is a novel key aspect of
this Chapter that has not been studied.
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7.2 Methodology

The followed methodology is described in this section.

7.2.1 Spacecraft and object dynamics

The joint-space dynamics of a planar, dual-arm Free Floating Space Manipulator
(FFSM) shown in Fig. 7.1 are found by expressing the kinetic energy of the space-
craft and arms as function of the joint angles, and using the Lagrange-d’Alembert
equation. They are given by:

Hb Hr
bm Hl

bm

HrT
bm Hr

m 0

HlT
bm 0 Hl

m

 =


ẍb

q̈r

q̈l

+


cb

cr
m

cl
m

 =


fb

τr

τl

 (7.1)

where xb is the vector of linear and angular base position and orientation w.r.t.
the inertial frame, qr,ql are the vectors of joint coordinates for the right and left arm,
Hb,Hr

m,Hl
m the inertia matrices of the base and manipulators, Hr

bm and Hl
bm the dy-

namic coupling matrices between base and arms, cb,cl
m,cr

m the Coriolis vectors for the
base and arms, fb the actuating force on the base, and τr and τl the actuating torques
on the arms.

Since the system is free-floating, it is assumed that fb = 0, and thus the motion
of the base is only affected by the coupling of the manipulators’ motions. The con-
servation law of linear and angular momentum Po and Lo for the system is given
by: (

Po

Lo

)
=
(

Hb ẋb + Hr
bmq̇r + Hl

bmq̇l

)
(7.2)

It is assumed that the robot stabilises after grasping the object, through thruster
actuation. In this case Po = Lo = 0. The spacecraft base motion is given by:

ẋb =
(
−H−1

b Hr
bm − H−1

b Hl
bm

) (q̇r
q̇l

)
= Jaq̇ (7.3)

The differential kinematics of the end-effectors are a function of both base and
joint motion: (

ẋr
e

ẋl
e

)
=

(
Jr
b ẋb + Jr

e q̇r
Jl
b ẋb + Jl

eq̇l

)
(7.4)

where Jr
b, Jl

b are the Jacobians of the base towards each arm, and Jr
e , Jl

e the Jacobians
from the start of each arm to its end-effector. Substituting Eq. (7.3) to Eq. (7.4), the
result is a mapping from the arm joints to the end-effector velocities:(

ẋr
e

ẋl
e

)
=

(
[Jr

e − Jr
bH−1

b Hr
bm][−Jr

bH−1
b Hl

bm]
[−Jl

bH−1
b Hr

bm Jl
e][−Jl

bH−1
b Hl

bm]

)
= Jgq̇ (7.5)
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The matrix Jg is known as the Generalized Jacobian Matrix of the system (Umetani
et al., 1989).

The next step is to eliminate xb from Eq. (7.1) to get:

Hel q̈ + cel = τ (7.6)

with

Hel =

(
[−HrT

bmH−1
b Hr

bm + Hr
m] [−H−1

b Hl
bm]

[−H−1
b Hr

bm] [−HlT
bmH−1

b Hl
bm + Hl

m]

)
(7.7)

and

cel =

(
cr

m − H−1
b bb

cl
m − H−1

b bb

)
(7.8)

The dynamics of the system are then projected to the captured object frame. This
provides an expression for the applied wrench Ftot in the object coordinates. To do
so, one can use use the Generalized Jacobian Jg to project from joint coordinates to
end-effector frame as well as the grasp map G to project from end-effector frame to
object frame. Moreover, the inertia and Coriolis matrices of the captured object Λob
and µob are added. As mentioned, the dynamics of the object are assumed known,
and this could be achieved by one of the methods in the existing literature (Chu et al.,
2017; Murotsu et al., 1994; Pesce et al., 2017). More details about the projection and
the use of Generalized Jacobian can be found by Murray et al., 1994,Russakow et al.,
1995,and Abiko et al., 2008.

The total dynamic model expressed in the object frames is (Murray et al., 1994):

Λtot ẍ + µtot = Ftot (7.9)

with

Λtot = GJ−T
g Hel J−1

g GT + Λob (7.10)

µtot = GJ−T
g (cel J−1

g GT + Λtot
d
dt
(Jg)

−1GT) + µob (7.11)

To express the object coordinates ẍ as function of joints, one can use the grasp
constraint Jgq̇ = GT ẋ (ibid.). It is clear that the result is a formula that maps the joint
configuration to the total applied wrench. The next step is to find the joint trajectory
that minimises the applied wrench.

7.2.2 Trajectory formulation

The joint trajectory to be executed by the robot needs to be smooth in order to avoid
sudden jumps in motion. A way to design smooth robot joint trajectories is to formu-
late them as n-degree polynomials. As the polynomial degree increases, the smooth-
ness of higher derivatives (velocity, acceleration etc) of the joint position is ensured.
In order to ensure smoothness up to the joint acceleration, a 7-degree polynomial
is used. The joint trajectories, velocities and accelerations in time t are defined as
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follows:

q(t) = L1sin(
7

∑
i=0

λiti) + L2 (7.12)

q̇(t) = L1cos(
7

∑
i=0

λiti)(
7

∑
i=1

iλiti−1)2 (7.13)

q̈(t) = −L1sin(
7

∑
i=0

λiti)(
7

∑
i=1

iλiti−1)2+ (7.14)

L1cos(
7

∑
i=0

λiti)(
7

∑
i=2

i(i− 1)λiti−2)

The variables L1 = (qmax − qmin)/2 and L2 = (qmax + qmin)/2 are used along with
the sinusoid to constrain the joint values in their allowed limits, qmax and qmin. The
λi coefficients need to be determined for each joint.

In this case, it is assumed that each joint starts from an initial value qinit. As the
captured object needs to be transferred to a target location (e.g. a storing compart-
ment on the spacecraft), this will lead to a final value q f in. The q f in configuration for
each joint will be the result of the inverse kinematics planner.

It is also assumed that the arm starts the trajectory from rest after grasping the
object, and that the arm stops as soon as it reaches the desired configuration. Thus,
for each joint q̇init = q̇ f in = q̈init = q̈ f in = 0. The total motion is executed from t0 = 0
sec, to t f sec. By substituting these assumptions in Eqs. (7.12-7.14), it follows for each
joint:

λ0 = arcsin(
qinit − L2

L1
)

λ1 = λ2 = 0

λ3 = −
(3λ7t7

f + λ6t6
f − 10L3 − 10L4)

t3
f

λ4 =
(8λ7t7

f + 3λ6t6
f − 15L3 − 15L4)

t4
f

λ5 = −
(6λ7t7

f + 3λ6t6
f − 6L3 − 6L4)

t5
f

L3 = arcsin(
q f in − L2

L1
)

L4 = λ0

(7.15)

This leaves each joint’s λ6 and λ7 coefficients to be determined by minimising the
objectives. Thus, the outcome of the optimization process is a 12x1 coefficient vector
λ .
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7.2.3 Definition of objective functions

A space robot operation typically requires a lot of objectives to be considered, in-
creasing the problem complexity. In this case, the selected objectives are based on the
careful handling of the object, as well as the accuracy of the motion. For simplicity, 3
objectives were selected for minimisation, but more can be included.

Minimisation of object stress

The basic property to be minimised is the stress applied on the object during motion.
This reduces the risk of the object breaking apart during the motion. The forces ap-
plied on the object by the grasping arms, can be decomposed in motion-generating
and internal forces. This decomposition happens by using the pseudoinverse G† and
projecting the forces in the null-space of the grasp map G (Murray et al., 1994).

F = G†
tot + (I − G†G)k (7.16)

In this case Ftot is the wrench that results in object motion, and is equal to the
projected dynamics of the spacecraft and arms in the object frame. k can be any real
vector. To generate a minimum-internal force objective, the analysis by Nakamura et
al., 1991 is followed. Let the captured object to be rigid, with a massless elastic layer
on top. The elastic layer has spring-like behaviour. Starting from these assumptions,
and assuming rigid object grasping from the arms, ibid. concluded that the optimal
applied wrench that minimises the induced stress on the object, while under a fixed
grasp, is proportional to Ftot. Consequently, it is proportional to the projected dy-
namics on the object frame. As a result, the first three objective functions are selected
as the norm of each component of the calculated Ftot signal during motion:

C f1 = || ftotx ||
C f2 = || ftoty ||
C f3 = ||ntot||

(7.17)

The norm along the total trajectory was selected to obtain an overall indication of
the applied wrench over the whole motion. Another interesting minimisation crite-
rion would be to restrict the applied wrench under some threshold values for each
motion instance.

Minimisation of base disturbance

The base disturbance along the motion can be minimised by integration of Eq. (7.3)
along the trajectory time (Wang et al., 2018). Starting from a given spacecraft base
pose xbinit , and resulting in a final pose xb f in

, the base disturbance is given by :

xb f in
− xbinit = xdistb

=
∫ t f

t0

Jaq̇dt (7.18)

For limited disturbance, the final pose needs to be the same as the initial. As
a result, one can generate the objective functions for the base disturbance as the 3
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components of the above integral xdistb
:

C f4 = ||xdistbx
||

C f5 = ||xdistby
||

C f6 = ||xdistbθ
||

(7.19)

Minimisation of end-effector disturbance

The accuracy of the task models how close the space robot has brought the captured
object to a desired pose. It is he difference of the initial to the final pose of the end-
effectors (Wang et al., 2018):

xe f in = xeinit +
∫ t f

t0

Jgq̇dt (7.20)

This means that for a desired target end-effector pose xedes , one needs to to min-
imise the difference between the final and desired poses. The task accuracy objective
functions are defined as follows:

C f7 = ||(xe f in − xedes)x||
C f8 = ||(xe f in − xedes)y||
C f9 = ||(xe f in − xedes)θ||

(7.21)

7.2.4 Genetic algorithm for multi-objective optimisation

The definition of the multi-objective optimisation problem is:

Minimize
λ

C f (λ) = (C f1(λ), C f2(λ), ..., C f9(λ))

subject to λ ∈ [λmin, λmax]
(7.22)

Many approaches have been developed for solving such type of problems. An-
alytical methods can be very complex and time consuming, and as such a meta-
heuristic method was chosen, to achieve an optimal solution for all objectives and
constraints in finite time. Specifically, a variation of a Genetic Algorithm is used,
the Multi-Objective Evolutionary Algorithm with Decomposition (MOEAD). The followed
approach is briefly described below. A comprehensive description of the method can
be found by Zhang et al., 2007.

In an evolutionary algorithm, an initial population of randomly generated solu-
tions, is examined according to the objective (or fitness) function. The best solutions
are then selected as parents that produce an offspring according to a set of genetic oper-
ations, such as crossover or mutation. These operators result in new offspring popula-
tions with better fitness, and the process repeats. The algorithm termination criteria
include achieving a specified fitness value, or stopping after a finite execution time
among others.

In a MOEAD framework, the problem is decomposed in different optimisation
sub-problems, each one solved simultaneously. The solutions of the sub-problems
can be combined, increasing efficiency and allowing better convergence to a global



Chapter 7. A Different Case Study: Using a Captured Object’s Inertial Parameters
in Space Robotics 108

Table 7.1: Properties of the simulated spacecraft and objects

Link Mass (kg) Inertia (kg × m2)
Base 300 200

1r 5 0.1
2r 4 0.08
3r 3 0.06
1l 5 0.1
2l 4 0.08
3l 3 0.06

Object 10 0.64

solution. By splitting into sub-problems, one is able to keep a solution that satisfies
a sub-problem, and check the solution’s neighbourhood. If for example, the algo-
rithm manages to minimise the applied wrench, the other solutions for the other
sub-problems are checked around the wrench-minimising solution. The solutions
eventually form a Pareto frontier, namely a frontier in which it is impossible to de-
crease the value of an objective, without increasing the value of another. After all
sub-problems have terminated, a the solution in the Pareto frontier that minimises
all the objectives is returned as a global solution.

7.3 Numerical evaluation

To test the method, a numerical simulation for a dual-arm free-flying space robot was
set up. For simplicity, each arm has 3DOF and executes a 2D planar motion, as shown
in Fig. 7.1. The spacecraft is assumed to hold a captured object in a fixed grasp G.
The object needs to be moved to a given target position. The inertial properties of the
spacecraft are shown in Table 1. The base is modelled as a cube with side length of
2m, and the links are modelled as cylinders with radius of 0.2m, and lengths of 1.2m,
1.1m and 1m for the first, second and third link of each arm. The object is modelled
as a solid sphere with radius of 0.4m, with uniform density.

The spacecraft is assumed to have grasped the object from joint configuration qinit,
and after the motion, it reaches a predefined configuration q f in. The corresponding
xedes is calculated from the inverse kinematics of the system, to be used in the end-
effector criterion.Zero initial and final velocities and accelerations are assumed, as
well as motion time of t f = 50 sec. The joint trajectories are sampled with a timestep
δt = 0.01 sec.

The aim is to formulate the necessary trajectories, as per Eqs. (7.12-7.14). As a
result, the population vector is random variations of the 12x1 vector
λ = (λ61r, λ71r, ..., λ63l, λ73l). Each element of the population vector is constrained in
the [−10, 10] value range.

For each population element λi, the following steps are executed:

1. Substitute the element λi and t f in Eqs. (7.12-7.14) to get trajectories for the joint
positions, velocities and accelerations for every timestep
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Figure 7.2: Pareto frontiers for each of the 3 optimisation sub-problems. The first
sub-problem (left) consists of minimising the applied wrench objectives C f 1 to
C f 3. The second sub-problem (middle) consists of minimising the base distur-
bance objectives C f 3 to C f 6, and the third (right) of minimising the end-effector
disturbance objectives C f 7 to C f 9. The results show that in all sub-problems, the
algorithm is able to gradually minimise the given objectives, especially in the dis-
turbances sub-problems, where the objective approaches zero. It is also evident
from the results that indeed, the joint trajectory affects the applied wrench on the
object, and that a minimum-force trajectory can be found.

2. Calculate the applied wrench, base disturbance, and end-effector disturbance
using the joint trajectories

3. Calculate the fitness functions in Eqs. (7.17),(7.19),(7.21)

4. Select the best population individuals as parents and apply the mutation oper-
ator

After 5000 iterations, the algorithm terminates.
In total, 3 decomposed problems are chosen for the MOEAD framework, namely

minimisation of applied wrenches, base disturbance and end-effector disturbance.
The Pareto results are shown in Fig. 7.2, for each sub-problem. The results indicate
that indeed the algorithm has found a set of polynomial coefficients that minimise all
the objectives. As it can be seen, the selected coefficients produce polynomials with
minimum applied wrenches on the object. In addition, both the base translation and
rotation disturbances are very low, and the end-effectors reach the target with high
accuracy.

Fig. 7.3 shows the trajectories for the optimal individual. It is clear that the trajec-
tories are indeed smooth, minimising the risk for jumps during the motion.

It is evident that the algorithm succeeds in finding a solution that minimises all
the objectives, with reasonable accuracy. The selected trajectory is a zero-jerk trajec-
tory which has also intuitive meaning, as jerky motions on the joints would induce
jerk on the end-effectors and vibrations on the object. The algorithm can be extended
to include different starting and final joint values. This enables the evolutionary al-
gorithm to find minimum objectives given any initial grasping configuration and any
target position for the captured object. Additionally to the selected objectives, more
fitness criteria can be generated, such as minimum-power and collision-avoiding cri-
teria, and the Pareto-optimal solution can be found.
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Figure 7.3: Joint trajectories for the optimal solution. The trajectories for the joint
positions (up), velocities (middle) and accelerations (down) are smooth, avoiding
possible jumps and jitters during the motion that would induce extra applied
stress to the captured object.

7.4 Discussion

In this chapter, a multi-objective minimisation method was provided for an on-orbit
dual-arm free-floating space robot, that seeks to find the trajectory to bring a captured
object to the target point under minimum object strain and maximum task accuracy.
The method was tested using a numerical simulation in a 2D robot, and the results
showed that indeed, a minimum-force, accurate trajectory can be found. The analysis
can be extended in a more complex a 3D case. Nevertheless, projecting the dynamics
of a 3D redundant space robot in the object coordinate frame, may be a computa-
tionally intensive task. As a result, a possible extension for future work, would be to
formulate the spacecraft dynamics and applied wrenches on the object using the less
intensive Newton-Euler formulation. For simplicity, objectives related to motion effi-
ciency (manipulability maximisation, power conservation etc) or collision avoidance
for the generated trajectories were not examined.

In future work more objectives can be added, related to the oned developped in
the previous Chapters. In addition, the method can be tested in a robot simulator,
to further validate and compare different trajectories according to the applied forces.
Finally, it would be interesting to verify the method using real manipulators, objects,
and force sensors, ideally on an emulating dual-arm space robot testbed.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis addressed the two related problems of: firstly, estimating the inertial pa-
rameters of objects through exploratory and learning methods; and, secondly, using
these parameters in manipulation tasks, to make robot actions safer, and more effi-
cient. Additionally, the thesis provided a structured literature survey of classic works
and current trends in both domains.

For the first part, the aim was to introduce a paradigm shift in the estimation
procedure, that is data-driven using machine learning approaches. Initially, a large
simulation dataset of 3D models along with their inertial parameters was created, in
order to collect a relatively small amount of pushing data and evaluate the estimating
method’s performance. A random forest was trained to predict the mass and inertia
of simulated cubes, and it was tested in other dataset objects. The performance was
mixed, with the algorithm showing larger errors for objects that were not similar to
those in the training data-set. To improve the performance and further investigate
the problem by also estimating the CoM, a large and more diverse dataset of pushes
was generated in simulation, and a learning algorithm was trained with richer fea-
tures. This new algorithm was tested on both a part of the simulated data, as well
as real data taken from the MCube pushing dataset. The results were greatly im-
proved, demonstrating high accuracy, even with a single push. In general, the exper-
iments conducted, demonstrated that the inertial parameters can be estimated using
data-driven methods, achieving satisfactory performance with a variety of different
objects.

For the second part, the aim was to demonstrate novel applications of manip-
ulation tasks that exploit knowledge of the inertial parameters. For focus was the
promising domain of task-informed grasping, i.e. selecting from a number of pos-
sible stable grasps, in order to optimise the post-grasp manipulative task of moving
the object. The thesis provided several new metrics for choosing grasps, based on the
requirements of the post-grasp manipulation task. The metrics were calculated from
the inertial parameters of the grasped objects. The first metric introduced was the
manipulation effort during the task execution. The effort was defined as the norm
of the manipulation torque of all the joints. As the torque is connected to the con-
sumed energy, this metric enables the robot to become power-efficient. The second
metric was related to manipulation safety. The object’s inertial parameters were used
to create a metric that minimises the total effective mass of the combined manipula-
tor and object. As the effective mass is related to the impact force, this metric is able



Chapter 8. Conclusions and Future Work 112

to minimise the force in case the end effector collides with its surroundings, making
manipulation safer for the robot and its environment or nearby humans. These met-
rics were then combined, along with manipulability metrics that show how far the
robot is from singular configurations, to showcase the need of an multi-objective op-
timisation framework that depends on the task to be executed. Finally, a post-grasp
manipulation metric was proposed, to minimise the internal forces of the object dur-
ing manipulation and ensure the safety of the manipulated object. To demonstrate
the usefulness of the research in different fields, an application in space robotics was
examined.

8.2 Future work

The work presented in this thesis comprises a variety of novel methods, metrics and
paradigms, supported by simple but demonstrative experiments. As a result, it can
be extended in numerous ways. Some interesting topics for future work are described
here.

• The inertial dataset described could be modified to include 3D models and iner-
tial parameters of real objects. The 3D models can be extracted using techniques
similar to those mentioned by Pokorny et al., 2017, and the inertial parame-
ters with one of the fixed-object methods mentioned in Chapter 2. The dataset
could then be used as a real-object benchmark for estimation and usage algo-
rithms that offers additional credibility to the tested methods, as they would
have been tested in real objects.

• The estimation methods presented in this thesis can be further augmented to
include visual data, for the calculation of all 3D parameters. Under the assump-
tion of uniform density, the problem of estimating the 3D inertial parameters,
reduces to estimation of mass and volumetric distribution, as shown by Mirtich,
1996. In this case, A robot could calculate a 3D model from visual information
(e.g. several point-cloud views of the object), use them to generate the volume
distribution integrals, and calculate the mass from a single push as described
in this thesis. In this case, the robot would have generated the full 3D inertial
parameters from only a single push and visual info. This would be a break-
through result that would have applications in different fields of autonomous
robotics, and would enable the direct calculation of the manipulation metrics
described in the thesis, for executing tasks. The inertial dataset could be used
for testing and evaluation on different objects.

• The volumetric and mass distribution of an object is defined by using continu-
ous integrals. An approximation is usually made by discretising the continuous
3D space into small segments, resulting in estimates of the volume and mass
distributions which are defined as sums. In computer vision, some object rep-
resentations that take advantage of this segmentation of 3D space are octrees
and voxel grids. By expressing the object as a voxel grid or octree, the volume
distribution is easier to calculate. Now, if a small mass could be assigned to
every voxel, this would result in a "mass distribution voxel grid", related to
those presented by Chien et al., 1986. This mass-weighted voxel grid would
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be a novel object representation that could be used for inertial estimation and
object recognition.

• The manipulation criteria presented in this thesis, require perfect knowledge
of the robot’s dynamic model as well as the grasped object’s inertial parame-
ters. An interesting continuation would be to show how these criteria perform
under the existence of uncertainties, either in the robot dynamics, the object’s
parameters or both. A novel criterion that takes uncertainties into considera-
tion, could compensate for estimation errors, and could have extra applications
in more realistic scenarios, where noise usually comes from multiple sources.

• Finally, additional manipulation criteria can be generated, related to grasp sta-
bility and force closure. As these two properties are a function of the grasp
location relative to the CoM, and the object’s mass, the inertial properties can
be used to generate and select grasps that are maximally stable with respect to
force-closure.
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