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Abstract

Pulsar Timing Arrays (PTAs) are sensitive to nanohertz gravitational waves (GWs), which a�ect the

pulse travel times between pulsars and the Earth. The most promising sources are super massive black

hole binaries, some of which are expected to be detected as resolvable signals in the not-too-distant

future.

In this work, we develop a Bayesian method for localising these signals using null streams. Null

streams are combinations of data from di�erent detectors in which the GW signal from a particular

direction is cancelled. Applying our method to idealised, simulated data, we assess the localisation

capabilities of current PTAs and show the merit of combining data from di�erent collaborations.

For future multi-messenger astronomy with low frequency GWs and electromagnetic observa-

tions, it is crucial to identify the galaxy that hosts a detected binary. We develop a method that

combines localisation information, a posterior on the signal's amplitude, and galaxy properties to

signi�cantly reduce the number of candidate hosts in a galaxy catalogue.

We extend the null-stream method to data with arbitrary sampling times. Exploiting the null-

stream property that separates dependencies on the source location and on the GW-model parameters,

we construct a likelihood that is independent of the GW model.
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Chapter 1

Introduction to Gravitational Waves

"Don't believe everything you read on the internet."

Albert Einstein
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Over a century ago, the existence of gravitational waves (GWs) travelling at the speed of light

was predicted by Henri Poincaré [14]. This concept was later formalised by Albert Einstein, on the

basis of his theory of general relativity (GR) [15, 16]. Only �ve years ago, the LIGO detectors made

the �rst direct observation of a GW [17]. It was emitted by the coalescence and subsequent merger

of two black holes, each a few tens times the mass of the sun. Now, we have a catalogue of GW

observation from the LIGO and Virgo detectors, including GWs sourced by a binary neutron star

coalescence.

But these observations from ground-based interferometers will hopefully be just the beginning

of GW astronomy. There are plans for a larger scale interferometer, LISA, to be launched into space

in the next decade [18]. Because LISA is much larger then the ground-based detectors (and because

it is undisturbed by noise from the Earth), it will be sensitive to GWs at lower frequencies. This

gives access to new sources such as massive black holes binaries (with component masses around

103 − 107M�) and binary white dwarfs in the Galaxy [18].

Another potential method for GW detection is a Pulsar Timing Array (PTA), which will be the

topic of this thesis. A PTA relies on detecting the imprint of GWs on the time signature of millisecond

pulsars, observed with radio telescopes [19]. The sensitivity of PTAs lies at much lower frequencies

then LIGO+Virgo or LISA, giving access to entirely di�erent sources. It's expected that PTAs will be

able to observe supermassive binary black holes, where the black hole masses are of order 107 times

the mass of the sun or more [e.g. 20].

Before starting on the topic of PTAs as a GW detector, we need an understanding of GWs

themselves, which is the aim of this chapter. This begins with the basics of GR � the language

that Einstein used to make his prediction a hundred years ago � in Sec. 1.1. Then, a mathematical

description of GWs is discussed in Sec. 1.2 before we move onto possible sources in Sec. 1.3. PTAs are

discussed in detail in chapter 2, including a section (2.3) on data analysis speci�cally. This lays the

foundation for the main work of this thesis, which concerns a data analysis method that uses so-called

null streams. Sec. 2.3.3 is devoted to explaining what null streams are.

The following three chapters consist of two published and one unpublished work on PTA data

analysis with null streams. In the �rst, chapter 3, we being developing a method to localise resolvable

PTA signals [2], assuming such signals will be detected in the future (see Sec. 2.2). The second,

Chapter 4, explores how this localisation information could help identify which galaxies are likely to
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1.1. GENERAL RELATIVITY

host the detected source. In these works, several simplifying assumptions are made about PTA data,

allowing to explore the workings of the null stream method in principle. In the third, Chapter 5, the

(untrue) assumption of evenly sampled data is discarded. This causes some practical problems for

null stream analysis, and it is investigated whether Fourier transformations of unevenly sampled data

can provide a solution. We also expand the method from Chapter 3 to localise sources without using

a model for the GW itself.

A note on notation

In the following, many of the usual conventions for index notation are used, and some notation choices

are made. These are:

� ~x is a 3-dimensional (spatial) vector. In index notation, this is written as xa (or xa). Any Latin

index (here, a) goes from 1 to 3 and labels the spatial coordinates.

� x is a 3+1-dimensional vector, or four-vector. This is written as xα in index notation. Any

Greek index (here, α) goes from 0 to 4. The additional value 0 labels the temporal coordinate.

� xα is a 3+1-dimensional covariant vector (covector) in index notation.

� xα1...αn is a tensor of rank n. Speci�cally for matrices (rank-2 tensors), we write X when not

using index notation.

� The Einstein summation convention is that any repeated indices (one upper, one lower index)

are implicitly summed over. For example, xαyα is shorthand for
∑
α(xαyα).

1.1 General relativity

1.1.1 The space-time metric

In general relativity (GR), as opposed to Newtonian physics, gravity is not a force. Instead, the

way objects move is directed by the shape of the space and time around them. This introduces the

concept of space-time: three spatial dimensions and one temporal dimension are combined into a

3+1-dimensional, all-surrounding expanse. An empty, una�ected space-time is �at, and a test particle

would move through it at a constant speed - equivalent to the Newtonian description of no force

being put on the particle. In the classical framework, we can then introduce an object with mass

to exert a gravitational attraction on the particle. This accelerates the particle towards the massive

object, altering its path. In GR, an object with mass changes the shape of the space-time; it introduces

curvature. The test particle follows the curvature, such that the resulting path is the same as predicted
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by classical gravity1.

To quantify the shape of space-time, a 3+1-dimensional tensor called the metric is used. It

is usually written as gµν , where the Greek indices go from 0-3. When using a Cartesian coordinate

system, the indices label the coordinates ct (the speed of light × time), x, y and z (the three spatial

directions). The metric tensor is always symmetric under transposition, i.e. when swapping the

indices, gµν = gνµ. In the special case of a �at space-time, coordinates can be chosen such that the

metric is equal to the Minkowski metric ηµν :

gµν = ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1.1)

On the contrary, a space-time that is intrinsically curved cannot be globally described with the

Minkowski metric. It is hard to imagine curvature in three dimensions (or 3+1), but we can think of

an example for a two-dimensional space embedded in our three-dimensional world. A �at space would

be that of an ant stuck to one side of a piece of paper (even if the paper where bent, this would only

create extrinsic curvature and the space would still be intrinsically �at). On the other hand, an ant

stuck to the surface of a balloon would live in an intrinsically curved space. If the ants were scientists,

they could measure this di�erence in geometry. For example, if both ants add up the angles inside

a triangle, the �rst would get 180◦ exactly, but the second would get more than 180◦. (The balloon

surface has positive curvature; in negative curvature, the triangle corners would total to less than 180◦.)

With the metric from Eq. 1.1, the in�nitesimal path length ds of a particle moving through

space-time is given by:

ds2 = gµνdxµdxν = −c2dt2 + dx2 + dy2 + dz2. (1.2)

The value of ds2 can be positive, negative, or zero. In the last case, the path the particle travels on

is called null. Another name is lightlike, because this characterises the path of a particle travelling

at the speed of light. In a time dt, it would traverse a physical distance (dx2 + dy2 + dz2)1/2 = c dt,

and so −c2dt2 + dx2 + dy2 + dz2 = 0. For a particle travelling at any subluminal speed v < c, the

traversed distance would be (dx2 +dy2 +dz2)1/2 = v dt < c dt, and so ds2 < 0. These paths are called

timelike (the separation in time is greater than the separation in space).

1 ...in the limit of weak gravitational �elds and low velocities compared to the speed of light.
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To make sense of the case where ds2 > 0, consider a space-time interval ∆s, rather then an

in�nitesimal path length ds. If we take Aµ and Bµ to be two events (points in space-time), the interval

between them is ∆s = Aµ −Bµ = (c∆t,∆x,∆y,∆z). As long as they are further separated in space

than in time, ∆s2 = −c∆t2 +∆x2 +∆y2 +∆z2 is larger than zero. Such an interval is called spacelike.

Respecting that no particle can travel faster then the speed of light, spacelike particle paths do not

exist.

1.1.2 The geodesic equation

From the path length element in Eq. 1.2, we can �nd an equation of motion using the principle of

least action: A free-falling particle will take the path along which the action is minimised. The total

action S for a path is given by the integrated path length, i.e. S =
∫

ds, which can be minimised by

solving for dS = 0. This derivation is not given here, but the result is the geodesic equation:

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0. (1.3)

Here, xµ are the coordinates of the particle we are describing. The parameter λ can be any a�ne

parameter of the path. For a massive particle, it is often chosen to be the proper time τ - the time the

particle itself would measure if it was wearing a watch - because it naturally always increases along a

timelike path.

The symbol Γµαβ is the Christo�el symbol (also known as the a�ne connection), which depends

on derivatives of the metric. The partial derivative with respect to the coordinate labelled by α is

written as ∂α (for example, the partial derivative with respect to z would be ∂3). In this notation,

the Christo�el symbol is:

Γµαβ =
1

2
gνµ (∂αgνβ + ∂βgνα − ∂νgαβ) . (1.4)

In a �at space-time, the metric gµν is the Minkowski metric, and so its (partial) derivatives are

all zero. This means the Christo�el symbols are zero and the equation of motion simpli�es to:

d2xµ

dτ2
= 0, (1.5)

analogous to

d2xi

dt2
= 0 (1.6)
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for a free-falling particle in Newtonian mechanics. Actually, an equivalent de�nition of a geodesic is

that a particle's four-velocity, uµ =
dxµ

dt
, does not change along the path (in technical terms, that it is

parallel transported). That statement simpli�es to Eq. 1.6 in �at space, where the path is straight. In

curved space, the path still seems straight from the frame of the particle, but it follows the curvature

of space-time. Take the example of the ant living on a balloon, but imagine it is riding around on

a frictionless bicycle. From the ant's perspective, it keeps going straight without being accelerated2,

even though it follows the curved surface of the balloon.

1.1.3 The Einstein equations

So far, the geodesic equation has provided us with half a description of gravity: It tells us how a particle

moves, given the space-time metric. The other half then, should explain how the shape of space-time

comes to be in the �rst place. In the Newtonian picture, mass is the source of the gravitational force,

so in GR too, mass must be the source of space-time curvature. This is where the Einstein equations

come in. At the core of GR, this expression relates the space-time metric to the mass and energy that

is present in it:

Gµν + Λgµν =
8πG

c4
Tµν . (1.7)

The constants here are c, the speed of light and G, the gravitational constant. Λ is the cosmological

constant, which is needed to explain the accelerating expansion of the universe.

The Einstein tensor

There are two important tensors in these equations (plural because they hold for any choice of the

indices µν). On the left-hand side, there is the Einstein tensorGµν , related to the space-time curvature.

On the right-hand side, there is the stress-energy tensor Tµν , which quanti�es energy and momentum3.

The �rst is de�ned as:

Gµν ≡ Rµν − 1
2Rgµν . (1.8)

The components of this equation are built up from the metric, but there are some de�nitions needed

to get there. Starting from the Christo�el symbol (a function of metric derivatives as in Eq. 1.4), we

2 In our three-dimensional reality, some force (friction) is needed to keep the ant and bicycle stuck to the balloon.
3 The equations 1.7 and 1.8 are given with lower indices, but the same equations with only upper indices are

equivalent.
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have the Riemann curvature tensor:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ, (1.9)

the Ricci tensor, which is a contraction of the Riemann tensor4:

Rαβ = Rραρβ = ∂ρΓ
ρ
βα − ∂βΓρρα + ΓρρλΓλβα − ΓρβλΓλρα, (1.10)

and �nally the Ricci scalar, which is the trace (with respect to the metric) of the Ricci tensor:

R = Rµµ = gµνRµν . (1.11)

Remembering that in �at space-time the Christo�el symbols are always zero, it follows that the

Riemann tensor, Ricci tensor and Ricci scalar are all zero as well. In curved space-time, the Riemann

tensor always has non-zero components. It is however possible for the Ricci tensor to be zero in curved

space-time, resulting in a zero Ricci scalar as well. This turns out to be the case in a vacuum (without

a cosmological constant), where Tµν = 0.

The Stress-Energy Tensor

The stress-energy tensor Tµν , is the second important tensor in Eq. 1.7. It is a GR generalisation of

mass in Newtonian physics, the source of gravity. It turns out that in GR, mass is not the only thing

that curves space-time, but so do energy, momentum, pressure etc. In general, Tµν is derived from

the action associated with a particular state of matter. Here, we provide no such derivation; instead

we follow a physical motivation for the stress-energy tensor of point particles.

A very simple model for a universe �lled with dust is to describe it as a collection of in�nitesi-

mally small point particles that do not interact, extending out in every direction. In their rest frame,

the particles can be described with four-velocity uµ = (c, 0, 0, 0), and a collective density ρ. A suitable

Tµν has to be a tensor of rank 2, which we can create from these quantities by taking the outer

product of uµ with itself. This yields uµuν = diag(c2, 0, 0, 0), a 4×4-matrix.

Tµν needs to be chosen such that the units on the right-hand side in Eq. 1.7 match the units

on the left-hand side. Because the coordinate derivative in the Christo�el symbol (Eq. 1.4) and the

second derivate (or multiplication) in the Riemann tensor (Eq. 1.9) each add a dimension [length]−1,

4 It is unfortunate that both use the letter R in the symbol, but the Riemann tensor always has four indices (it is
rank four), whereas the Ricci tensor always has two (it is rank two).
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the Einstein tensor5 has dimensions [length]−2. Considering that u0u0 = c2 and multiplying with the

constants G/c4, the r.h.s. of Eq. 1.7 currently has dimensions [length]/[mass]. The equation can be

completed by including the density ρ in Tµν , which has the required dimensions [mass]/[length]3. A

more intuitive explanation is that some form of mass or density had to be included, because that is

the source of gravity of the particles in the �rst place.

The resulting stress-energy is Tµν = ρuµuν , which gives the correct result for particles at rest.

It is possible the particles have some non-zero velocity v, or equivalently, that we are observing them

from a di�erent frame than their rest-frame. The value of ρ is a�ected by relativistic length contraction

as ρ = γ2ρ0, where ρ0 is the rest-frame denstiy, and γ is the Lorentz factor:

γ =
1√

1− v2

c2

. (1.12)

However, Tµν has to be invariant under a Lorentz transformation, so instead of the changing ρ, the

unchanging ρ0 should be used to compute it.

It is also possible to write Tµν in terms of energy density, using the equivalence between mass

and energy:

E = mc2 = γm0c2, (1.13)

where m0 is the rest-mass. The (mass) density can be replaced with energy density (ρE , energy per

volume) and a factor 1/c2. The updated stress-energy tensor for dust � which is the correct one � is:

Tµν = ρ0u
µuν =

ρ

γ2
uµuν =

ρE
γ2c2

uµuν . (1.14)

For more complex states of matter, this equation would be extended. For example, if the particles

were charged, the energy of the electric and magnetic �elds would be included. If the particles were

interacting, Tµν would include terms for the pressure p:

Tµν =
(
ρ0 +

p

c2

)
uµuν + gµνp. (1.15)

1.2 The plane wave solution

Einstein realised that it was possible to �nd a wave solution to his equations (Eq. 1.7) [15, 16]. Starting

with a vacuum and a �at space-time, a small perturbation in the metric was found to propagate as a

plane wave at the speed of light: a gravitational wave (GW). In this section, we follow the derivation

of the plane wave solution and obtain the mathematical description of GWs (adapted from [21]).
5 Tensor contractions in Eqs. 1.10 and 1.11 do not change the dimensions.
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1.2. THE PLANE WAVE SOLUTION

1.2.1 Linearised gravity

GWs are assumed to be a small perturbation in an otherwise �at space-time. The background space-

time is described by the Minkowski metric ηµν , and so the perturbed metric is:

gµν = ηµν + hµν , |hµν | � 1, (1.16)

where we have chosen to label the perturbation with hµν . Because the metric is always symmetrical

under an exchange of the indices, so must the perturbation be; hµν = hνµ. Given this assumption,

the non-linear equations from Sec. 1.1 can be rewritten in linearised form; all terms of second order in

|h| and higher can be disregarded. Starting with the Christo�el symbol from Eq. 1.4, which becomes:

Γµαβ =
1

2
(ηµν + hµν)

(
��
��:0

∂αηνβ + ∂βhνα +��
��:0

∂βηνα + ∂βhνα −����:0
∂νηαβ − ∂νhαβ

)
=

1

2
ηµν (∂αhνβ + ∂βhνα − ∂νhαβ) . (1.17)

In the second step, all terms of O(h2) and higher order have been left out. To get the linearised form

of the Riemann tensor from Eq. 1.9, �rst all terms with two Christo�el symbols can disregarded, since

they are all of at least O(h2). From the other terms, the linearised Riemann tensor is:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ +O(h2)

=
1

2
ηλρ∂µ (���∂νhλσ + ∂σhλν − ∂λhνσ)− 1

2
ηλρ∂ν (���∂µhλσ + ∂σhλµ − ∂λhµσ)

=
1

2
ηλρ (∂µσhλν + ∂νλhµσ − ∂µλhνσ − ∂νσhλµ) . (1.18)

The notation ∂µν is used as shorthand for ∂µ∂ν .

In general, the metric tensor is used to raise or lower indices, as in aµ = gµνaν , for any vector

aµ. Under the weak-�eld assumption of Eq. 1.16, raising and lowering indices of small quantities (of

O(h)) can be done with the Minkowski metric only, when working to linear order in h:

hµν = gµρhρν = (ηµρ + hµρ)hρν = ηµρhρν +O(h2). (1.19)

Using this method, the Riemann tensor from Eq. 1.18 can also be written as:

Rρσµν =
1

2

(
∂µσh

ρ
ν + ∂ρνhµσ − ∂ρµhνσ − ∂νσhρµ

)
. (1.20)

From here, a contraction of the �rst and last indices gives the Ricci tensor (Eq. 1.10):

Rσµ = Rρσµρ =
1

2

(
∂µσh

ρ
ρ + ∂ρρhµσ − ∂ρµhρσ − ∂ρσhρµ

)
=

1

2

(
∂µσh+�hµσ − ∂ρµhρσ − ∂ρσhρµ

)
, (1.21)

9



1.2. THE PLANE WAVE SOLUTION

where h = hρρ is the trace of the metric perturbation, and � = ∂ρρ is the d'Alembertian operator. The

contraction of the linearised Ricci tensor gives the linearised Ricci scalar (Eq. 1.11):

R = Rσσ = ησµRσµ =
1

2
(∂σσh+�hσσ − ∂σρhρσ − ∂ρσhρσ)

=
1

2
(�h+�h− ∂σρhρσ − ∂σρhρσ)

= �h− ∂σρhρσ. (1.22)

Then, given the Ricci tensor and scalar, the linearised Einstein tensor (Eq. 1.7) becomes:

Gµν = Rµν −
1

2
Rgµν = Rµν −

1

2
Rηµν +O(h2)

=
1

2

(
�hµν + ∂µνh− ∂νρhρµ − ∂ρµhρν −�h+ ∂σρh

ρσ
)
. (1.23)

To simplify Eq. 1.23 somewhat, it is useful to introduce the trace-reversed metric tensor, which

is de�ned as:

h̄µν ≡ hµν −
1

2
ηµνh. (1.24)

It can be checked that its trace is h̄ = −h (hence the name), and so hµν = h̄µν− 1
2ηµν h̄. By substituting

this in 1.23, and only keeping terms up to linear order in |h|, the resulting Einstein equations are:

1

2

(
�h̄µν − ∂νρh̄ρµ − ∂ρµh̄ρν + ηµν∂σρh̄

ρσ
)

=
8πG

c4
Tµν . (1.25)

We have implicitly assumed in Eq. 1.16 that the background space-time is �at, and so without a

cosmological constant Λ. Hence it is not included in the Einstein equations here.

1.2.2 Gauge freedom

By choosing the Minkowski metric in the form of Eq. 1.1, we have implicitly chosen to work in Cartesian

coordinates in a particular inertial frame. In principle, the weak-�eld assumption of Eq. 1.16 could be

chosen in any coordinates. Regarding the frame, it turns out if the assumption holds in one inertial

frame, it holds in any that are connected by a Lorentz transformation. I.e. if we consider a di�erent

frame that moves with speed v with respect to the original frame, the metric still takes the form of

Eq. 1.16, albeit with a transformed h′µν .

Another coordinate transformation that preserves the form of the metric is any in�nitesimal

change in the coordinates xµ that is of the same order as h (very small):

x′µ = xµ + ξµ(x), |ξµ| � 1. (1.26)

10



1.2. THE PLANE WAVE SOLUTION

From there, the following useful expressions can be derived:

∂x′µ

∂xν
= δµν + ∂νξ

µ (1.27)

∂xµ

∂x′ν
= δµν − ∂νξµ. (1.28)

The second expression holds up to linear order, terms of O(ξ2) = O(h2) are disregarded. The metric,

being a rank 2 tensor, transforms with two copies of Eq. 1.28 (again up to linear order in ξ and h):

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

=
(
δαµ − ∂µξα

) (
δβν − ∂νξβ

)
(ηαβ + hαβ)

= ηµν + hµν − ∂µξν − ∂νξµ

≡ ηµν + h′µν . (1.29)

So the metric tensor still takes the form of Eq. 1.16, with the perturbation now being h′µν . An

alternative perspective to applying a coordinate transformation is that hµν is a tensor �eld for which

we are free to choose an alternative gauge, taking the form of h′µν . This gauge freedom can be exploited

to simplify the problem at hand.

Lorenz gauge

The current form of the Einstein equations are written in terms of the trace-reversed tensor h̄µν , in

Eq. 1.25. Under the coordinate transformation (or gauge change) just discussed, h̄µν transforms as:

h̄′µν = h′µν −
1

2
ηµνh

′

= hµν − ∂µξν − ∂νξµ −
1

2
ηµν (hσσ − ∂σξσ − ∂σξσ)

= h̄µν − ∂µξν − ∂νξµ + ηµν∂σξ
σ. (1.30)

This can be used to set all the terms in the Einstein equation containing ∂ρh̄ρµ to zero. This expression,

after applying the transformation, is:

∂ρh̄
′ρ
µ = ∂ρ

(
h̄ρµ − ∂ρξµ − ∂µξρ + ηρµ∂σξ

σ
)

= ∂ρh̄
ρ
µ −�ξµ. (1.31)

So, by choosing a gauge transformation where �ξµ = ∂ρh̄
ρ
µ, these terms become zero. Adapting this

commonly named Lorenz gauge, the Einstein equations simplify to:

1

2
�h̄µν =

8πG

c4
Tµν . (1.32)
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1.2. THE PLANE WAVE SOLUTION

Here, h̄µν was previously written with a prime (the transformed tensor). From here instead, we assume

that whatever h̄µν is used, it satis�es the Lorenz gauge condition:

∂µh̄
µν = 0, (1.33)

knowing that if it did not, we could always choose to use the transformed h̄′µν that does satisfy it

instead.

1.2.3 Gravitational waves in vacuum

At the start of this section, it was mentioned that GWs were found assuming a small perturbation

on a �at space-time in vacuum. The former leads to the linearised Einstein equations. To implement

the latter, set Tµν = 0, as there is no form of matter, energy or anything present. Now the equations

read:

�h̄µν = 0. (1.34)

This is the form of a wave equation, with a familiar solution:

h̄µν(x) = Aµν exp(ikρx
ρ), (1.35)

where Aµν is the amplitude of the wave (each component of this rank 2 tensor is constant), kρ is the

four-wavevector, and xρ is the space-time coordinate. The four-wavevector has components (ω/c,~k),

where ω is the angular frequency, and ~k is the spatial wavevector in three dimensions. The frequency

ω and the propagation speed v are related via the associated wavenumber |~k| = k = 2π
λ = ω

v .

To verify the GW solution, it is substituted back into the wave equations 1.34. It can be

checked that the solution holds, under the condition that

kαk
α = 0. (1.36)

In other words, the four-wavevector has to be null. From the de�nition of kµ, it follows that the

propagation speed v of GWs has to equal the speed of light. Apart from the Einstein equations, the

Lorenz gauge condition (Eq. 1.33) has to be satis�ed as well. This results in the following additional

constrained on kµ:

kµA
µν = 0. (1.37)
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1.2. THE PLANE WAVE SOLUTION

Any plane wave of the form of Eq. 1.35, provided that the wave vector is null and that it obeys

Eq. 1.37, is a valid solution to the linearised Einstein equations in vacuum. Because the equations are

linear, any superposition of these plane waves is a solution as well.

The transverse-traceless gauge

In order to illuminate the physical properties of GWs, here we investigate the amplitude tensor Aµν

and the constraints on its components. Firstly, the symmetry of the metric tensor and of hµν means

that Aµν = Aνµ must also be symmetric. To simplify the following arguments, consider only a single

plane wave propagating in the z-direction. It's four-wavevector is kµ = (k, 0, 0, k), with wavenumber

k = ω/c. The second constraint on Aµν follows from the Lorenz gauge condition (Eq. 1.37): Aµ0 =

Aµ3.

This still leaves Aµν with six independent components. This number can be further reduced

by introducing another gauge transformation:

x′µ = xµ + ζµ(x), ζµ(x) = εµ exp(ikρx
ρ). (1.38)

This new gauge does not break the previously set gauge conditions: it can be veri�ed that

�ηµ = −kρkρζµ = 0. This does not depend on the choice of εµ (assuming they are constants), so we

are free to specify them. The following choice turns out to greatly simplify the amplitude tensor:

ε0 = − i

4k
(2A00 +A11 +A22),

ε1 = − i
k
A01,

ε2 = − i
k
A02,

ε3 = − i

4k
(2A00 −A11 −A22). (1.39)

The algebra is not shown here, but it results in the additional constraints A′00 = A′01 = A′02 = 0 and

A′11 = −A′22. The collective constraints on A′µν mean that it only has two non-zero, independent

components, which are usually denoted A′11 = h+ and A′12 = h×.

Adopting this transverse-traceless gauge and re-labelling the transformed GW hµνTT, the result

is:

hµνTT = AµνTT exp(i(−kx0 + kx3)) = AµνTT exp(i(kz − ωt)), (1.40)
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1.2. THE PLANE WAVE SOLUTION

where we have de�ned:

AµνTT ≡


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.41)

This wave is transverse: its propagation direction (z) is perpendicular to its amplitude, which acts in

the x and y directions. It is called traceless, because its trace is zero: Tr(hTT) ∝ h+ − h+ = 0.

Two wave polarisations

GWs are a perturbation of spacetime, changing the metric as they pass through. The observable e�ect

this has is a change in physical distance between two objects, lengthening or shortening it. This is

often described as a "stretching and squashing" of space-time. To explore this statement, �rst consider

a single test particle on a geodesic. If it is initially at rest, its four-velocity is:

uµ =
dxµ

dτ
= c(1, 0, 0, 0). (1.42)

Substituting this into the geodesic equation (Eq. 1.3), we have:

duµ

dτ
+ c2Γµ00 = 0. (1.43)

Computing the Christo�el symbol gives Γµ00 = 0, as all components of hTT
µν with at least one zero

index are zero (Eq. 1.41). Therefore, the four-velocity is constant,
duµ

dτ
= 0, and the particle stays at

rest with respect to its coordinates.

Evidently, we need to consider multiple particles to observe any GWs. The following provides

an example using a very simple setup of a Pulsar Timing Array (PTA). Given a ring of completely

regularly spinning pulsars in the xy-plane, around the solar system barycenter (SSB), we measure6

radio pulses from each of them at a constant frequency ν. A GW propagating in the z-direction

passing through does not move the pulsars out of the plane (as was just shown). It does, however,

a�ect the measured pulsar frequencies.

Consider one of the pulsars in the ring, at an angle α from the x-axis and distance R, i.e. at

a position (R cos(α), R sin(α), 0). The photons sent out from this pulsar travel on a geodesic xµ,

parametrised by a�ne parameter λ. The ones that reach the SSB, in the absence of a GW, must have

6 Clearly, we do not have radio telescopes at the SSB. In reality, the pulsars are observed on Earth, and the
observations are corrected for the di�erence in timing between the Earth and SSB.
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1.2. THE PLANE WAVE SOLUTION

a four-momentum in the right direction7:

qµ =
dxµ

dλ
∝ ν (1,− cos(α),− sin(α), 0) . (1.44)

The photons move at the speed of light, and so their four-momentum is null: ηµνq
µqν = 0. By

perturbing the metric with hTT
µν , photons from a slightly di�erent path reach the SSB. The perturbed

four-momentum q′µ = qµ + δqµ has to be null with respect to the perturbed metric:

gµνq
′µq′ν = (ηµν + hTT

µν )(qµ + δqµ)(qν + δqν) = 0. (1.45)

Using the nullity of the unperturbed momentum, and discarding terms with higher than linear order

in |δq| or |h|, the following solution can be found:

q′µ = qµ − 1

2
ηµνhTT

νρ q
ρ (1.46)

∝ ν


1

− cos(α)
(
1− 1

2h
+ cos(φGW)

)
+ sin(α)

(
1
2h
× cos(φGW)

)
− sin(α)

(
1− 1

2h
+ cos(φGW)

)
+ cos(α)

(
1
2h
× cos(φGW)

)
0

 . (1.47)

The explicit form of the second line is obtained by substituting the unperturbed four-momentum

(Eq. 1.44), and hTT
µν from Eq. 1.40 and Eq. 1.41. As we are concerned with an observable e�ect, we

have taken the real part of hTT
µν only. The GW phase is de�ned as φGW ≡ kz − ωt (which is equal to

−ωt in the xy-plane).

The geodesic equation for the four-momentum can be used to derive a relation between the

pulsar frequency ν and the GW components h+ and h×. Its time-component reads8:

dq′0

dλ
+ Γ0

αβq
′αq′β = 0. (1.48)

In the TT-gauge, Γ0
αβ =

1

2

∂

∂t
hTT
αβ . Substituting this and Eq. 1.47 into the geodesic equation yields:

dν

dλ
∝ ν2

(
− 1

2

∂

∂t

(
h+ cos(φGW)

)(
cos(α)2 − sin(α)2

)
+
∂

∂t

(
h× cos(φGW)

)
sin(α) cos(α)

)
. (1.49)

The derivatives with respect to the a�ne parameter λ, and the coordinates t and z, can be related to

7 Because the Doppler shift is a ratio of frequencies, we can use a proportionality rather then �lling in the correct
constants in this equation.

8 The photons travel on a null geodesic, which makes their proper time not well-de�ned. Therefore a generic a�ne
parameter λ has to be used.
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1.2. THE PLANE WAVE SOLUTION

each other with:

d

dλ
=
∂t

∂λ

∂

∂t
+
∂z

∂λ

∂

∂z

= q′0
∂

∂t
+ q′3

∂

∂z

∝ ν ∂
∂t

+ 0. (1.50)

Using this turns Eq. 1.49 into a di�erential equation for the pulsar frequency:

1

ν

dν

dt
∝
(
− 1

2

∂

∂t

(
h+ cos(φGW)

)(
cos(α)2 − sin(α)2

)
+
∂

∂t

(
h× cos(φGW)

)
sin(α) cos(α)

)
. (1.51)

It can be solved by integrating over the time t, from the start time at the pulsar P to the end time at

the SSB:

νSSB

νP
= exp

(
− 1

2
∆h+ cos(φGW)

(
cos(α)2 − sin(α)2

)
+ ∆h× cos(φGW) sin(α) cos(α)

)
, (1.52)

where we have de�ned ∆h+/× = h
+/×
SSB − h

+/×
P . The �nal Doppler shift z can be found by expanding

the exponential to �rst order in |h|:

z ≡ νP − νSSB

νP
=
(1

2
∆h+ cos(φGW)

(
cos(α)2 − sin(α)2

)
−∆h× cos(φGW) sin(α) cos(α)

)
. (1.53)

This Doppler shift can be nicely visualised in the two polarisation states of the GW. A "plus"-

polarised GW has a non-zero h+, and h× = 0. When this passes through the ring PTA, the pulsar

Doppler shifts show up along the legs of the + symbol, as in Fig. 1.1. Conversely a "cross"-polarised

GW has non-zero h× and h+ = 0. It induces a Doppler shift along the legs of the × symbol, rotated

45◦ with respect to the +-polarisation, as in Fig. 1.2. In general, a GW is a superposition of these

two polarisations.
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t = 0.0 t = 0.5 t = 1.0 t = 1.5
+polarization

Figure 1.1: Doppler shifts in the ring PTA (see text) with a +-polarised GW passing through. The
example pulsars are marked with stars, the SSB is at the centre. Red stars are pulsars whose frequency
is redshifted, blue ones are blueshifted, and black ones are una�ected. The four plots show subsequent
snapshots at di�erent points in the GW phase, ωt.

t = 0.0 t = 0.5 t = 1.0 t = 1.5
×polarization

Figure 1.2: Same as Fig. 1.1, but with a ×-polarised GW passing through the ring PTA.

1.3 The gravitational wave universe

1.3.1 Sources of gravitational waves

In the previous section, we have found that a GW is a solution to the linearised Einstein equations in

vacuum (Eq. 1.34). However, in the linear theory, the vacuum only allows the propagation of GWs,

not their generation. To �nd what sources a GW, we need to go a step back to Eq. 1.32, which

includes the stress-energy tensor:

1

2
�h̄µν =

8πG

c4
Tµν . (1.54)

It is not shown here (the derivation uses standard techniques such as a Green's function, see for

example [21]), but a general solution can be found at any point x = (ct, ~x) given a source localised at
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points ~y:

h̄µν(ct, ~x) = −4G

c4

∫
Tµν(ctr, ~y)

|~x− ~y| d3~y. (1.55)

Here, tr = t−|~x−~y|/c is the retarded time, as it takes the information from a point ~y a time |~x−~y|/c
to travel to ~x and have an e�ect. This solution is found in the Lorenz gauge, and so the condition

1.33 has to be satis�ed. It can be checked that this is the case when respecting conservation of the

stress-energy tensor, ∂µTµν = 0.

A powerful tool for dealing with Eq. 1.55, is to expand the distance to the source point |~x− ~y|
in terms of the distance to the origin r ≡ |~x|, which we have chosen at (or in) the source. This leads

to the multipole expansion:

h̄µν(ct, ~x) = −4G

c4

∞∑
l=0

(−1)l

l!
Mµνi1i2...il(ctr) ∂i1∂i2 . . . ∂il(1/r), (1.56)

where the multipole moments of the source are de�ned as:

Mµνi1i2...il(ct) ≡
∫
Tµν(ct, ~y)yi1yi2 . . . yild3~y. (1.57)

This expansion is especially useful if we only consider �eld points x outside the source, and far enough

away such that the distance to the source is relatively large compared to its size, i.e. the source is

compact. In this compact source approximation, only the �rst term of Eq. 1.56 is needed, and we can

use that ctr ≈ ct− r:

h̄µν(ct, ~x) = −4G

c4

1

r

∫
Tµν(ct− r, ~y)d3~y. (1.58)

A physical interpretation can be associated with the components of Tµν in this equation. The

00-term represents the total mass M (and energy) in the source,
∫
T 00d3~y = Mc2. The 0i- and

i0-terms are related to the total momentum P i of the source particles,
∫
T 0id3~y = P ic. Both these

quantities are constant for an isolated source (no mass or momentum can be added or taken away).

The other components ij represent the internal stresses in the source, which can be related to the

quadrupole moment (given in the following). First, changing coordinates to the centre of momentum

frame allows to set P i = 0, so that the �rst components of Eq. 1.58 become:

h̄00 = −4G

c2

1

r
M. (1.59)

h̄0i = h̄i0 = 0. (1.60)
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Some manipulation of the integral over the spatial components allows h̄ij to be expressed in terms of

the quadrupole moment tensor Iij :

h̄ij(ct, ~x) = − 2G

c6r

[d2Iij(ct′)
dt′2

]
r
, (1.61)

Iij(ct) ≡
∫
T 00(ct, ~y)yiyjd3~y. (1.62)

Here the brackets
[
...
]
r
signify that the quantity inside has to be evaluated at the retarded time tr.

The gravitational �eld due to Eq. 1.59 can not explain the generation of GWs, because it stays

constant in time. Therefore, it has to be Eq. 1.61, the quadrupole formula, that is responsible for

them. For a simpli�ed source, with slowly moving particles, the gravitational �eld is mostly due to

its mass density ρ (see Sec. 1.1.3), so that T 00 ≈ ρc2. Then the quadrupole moment tensor is equal

to the quadrupole moment of the matter density:

Iij(ct) = c2

∫
ρ(ct, ~x)xixjd3~x. (1.63)

In other words, a source with only a density monopole (e.g. a stationary mass) or a dipole (e.g. a

mass on a linear trajectory) do not generate any GWs.

1.3.2 Gravitational waves from black hole binaries

A simple example of a matter distribution with a non-zero quadrupole moment is that of two (massive)

particles orbiting each other, which essentially describes the physics of two black holes in orbit. We

can therefore use this example to study binary black holes (BBHs). The resulting GWs can be derived

by modelling the two black holes as point masses m1 and m2, orbiting at radii R1 and R2 around a

common centre of mass. We will assume the black holes (BHs) are far enough apart and move slowly

enough, that any relativistic e�ects on their motion can be neglected (and the Lorentz factor γ = 0).

First, we de�ne the total mass M , the reduced mass µ, and the separation R:

M ≡ m1 +m2, (1.64)

µ ≡ m1m2

M
, (1.65)

R ≡ R1 +R2. (1.66)

Using that the centre of mass is the weighted sum of orbital radii, m1R1 = m2R2, we �nd:

RA =
µ

mA
R, A = 1, 2. (1.67)
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It is useful to choose the coordinate system such that the centre of the binary is at rest at the

origin, and to choose the position of the observer at a distance r along the z-axis, so that later on the

TT-gauge from section 1.2.3 can be used. A completely "face-on" BBH would be in the xy-plane, but

in general, the BBH can be at any inclination angle ι with the xy-plane. The phase of the BBH can

be expressed as ωot, where ωo is the angular orbital frequency. With these conventions, the positions

of the black holes are:

~xA(t) =
µ

mA
R ε̂(t), (1.68)

where we have de�ned the unit vector ε̂ as:

ε̂(t) =
(

cos(ωot), sin(ωot) cos(ι), sin(ι)
)
. (1.69)

Treating the black holes as point particles, the matter density distribution of the binary is given

by two delta functions:

ρ(ct, ~x) = m1δ(~x− ~x1(t)) +m2δ(~x− ~x2(t)). (1.70)

This can be �lled in the equation (1.62) for the quadrupole moment tensor to �nd:

Iij(ct) = c2µR2 ε̂i(t) ε̂j(t). (1.71)

The GWs can be found from the radiative part of the metric perturbation, hij(t) from Eq. 1.61. The

other terms (with µ = 0 or ν = 0) are set to zero. Substituting Eq. 1.68 into Eq. 1.71, taking two

time derivatives, and using some trigonometric identities results in:

h̄µν(ct) =
4

r

GµR2ω2
o

c4


0 0 0 0

0 cos(2ωotr) sin(2ωotr) cos(ι) sin(2ωotr) sin(ι)

0 sin(2ωotr) cos(ι) − cos(2ωotr) cos(ι)2 − cos(2ωotr) cos(ι) sin(ι)

0 sin(2ωotr) sin(ι) − cos(2ωotr) cos(ι) sin(ι) − cos(2ωotr) sin(ι)2

 .

(1.72)

The right-hand-side has to be evaluated at the retarded time tr = t− r/c.

This expression can be simpli�ed by adopting the TT-gauge, applying the gauge transformation

given in Eq. 1.38 and Eq. 1.39. Then, the GW takes the familiar form of the TT-gauge with only

transverse components. In general, the two polarisation amplitudes, h+ and h×, are a mix of the two
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polarisation states, h̄+ and h̄× as de�ned below. The "mixing" can be expressed using the polarisation

angle ψ (0 ≤ ψ < π). This angle quanti�es the rotation of l̂, the normal to the orbital plane of the

binary, about k̂, the GW propagation direction (i.e. the line-of-sight), with respect to the z-axis of

the chosen coordinate system; cosψ = (l̂ × k̂) · (ẑ × k̂). Additionally, the GW includes an arbitrary

phase o�set φ0:

hµνTT(ct) =
4

r

GµR2ω2
o

c4


0 0 0 0

0 h+(tr) h×(tr) 0

0 h×(tr) −h+(tr) 0

0 0 0 0

 , (1.73)

h+ = h̄+ cos 2ψ − h̄× sin 2ψ,

h× = h̄+ sin 2ψ + h̄× cos 2ψ, (1.74)

h̄+ = cos(2ωotr + φ0)
(1

2
+

1

2
cos(ι)2

)
,

h̄× = sin(2ωotr + φ0) cos(ι). (1.75)

In these last equations, the factor 2 in front of ωo means that the GW frequency f (angular frequency

ω) is always double that of the orbital frequency:

f =
ω

2π
=
ωo

π
. (1.76)

This is due to the quadrupolar nature of GWs; having two terms ε̂i and ε̂j in Eq. 1.71 has led to

multiplying two sinusoidal terms (cos(ωotr) and/or sin(ωotr)), which always results in a doubled angle

with trigonometric identities.

In the Newtonian limit, the binary's orbit is given by Kepler's third law (for a circular orbit):

R3ω2
o = GM. (1.77)

Using this to eliminate R from Eq. 1.73, the prefactor, which we can de�ne as the GW amplitude A,

can be rewritten as follows:

A ≡ 4

r

GµR2ω2
o

c4
=

4

r

(
GMc

c2

)5/3 (ωo

c

)2/3

(1.78)

where we have introduced the chirp mass:

Mc ≡
(m1m2)3/5

M1/5
. (1.79)
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So far, we have not taken into account that the orbit can change. Because GWs actually carry

away energy, the orbital energy decreases and the binary shrinks. This in turn increases the orbital

frequency (and thus the GW frequency). As long as this inspiral of the binary is adiabatic, i.e. the

separation shrinks slowly compared to the orbital motion, the change in frequency can be computed

on the basis of the classical binary motion. It is not shown here, but the result of equating the GW

energy to a loss in orbital energy is the following expression for the GW frequency (Eq. 1.76):

f =
1

π

(
GMc

c3

)−5/8(
5

256

1

τ

)3/8

. (1.80)

Here, τ is the time until the presumed end point of the inspiral, where the two black holes collide

(usually chosen to be t = 0). The amplitude from Eq. 1.78 in terms of the time-dependent frequency

is:

A =
4

r

(
GMc

c2

)5/3(
πf(tr)

c

)2/3

(1.81)

The phase of the GW now has to be determined by integrating over the changing frequency, starting

at some reference point t0 with reference phase φ0, so that we replace in Eq. 1.75:

φ = 2ωot+ φ0 →
∫ t

t0

dt′f(t′) + φ0. (1.82)

More accurate approximations of the binary motion and GW phase can be obtained with an iterative

process: taking the resulting GW to compute the orbital energy loss, then the GW frequency, which

in turn results in a more accurate phase etc. However for BBHs far from coalescence, often the

monochromatic wave of Eq. 1.73 is accurate enough to model their GWs.

1.3.3 The gravitational wave spectrum

For a BBH, the frequency of GWs emitted is determined by the chirp mass and separation of the two

objects. Using the classical relation from Eq. 1.77, the GW frequency is:

f =
1

π

√
GM

R3
. (1.83)

Because the mass range of black holes is very wide - from stellar remnants of order 10M� to super

massive black holes (SMBHs) of 105−1010M� - there is a vast spectrum of GWs. Additionally, BBHs

are not the only source of (potentially) observable GWs. Figure 1.3 shows an overview of the GW

spectrum, with the main source categories and sensitivity curves of ground-based, space-based, and

Pulsar Timing Array (PTA) detectors.
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Figure 1.3: The GW spectrum of several di�erent source types (see text). For each source, the
characteristic strain (related to the GW amplitude, see Eq. 17 in [1] for an exact de�nition) is plotted
against frequency as a coloured block. Sensitivity curves (characteristic strain of the noise) of di�erent
detectors are over-plotted as black lines. Figure made with http://gwplotter.com/ [1].

Binary black holes across the spectrum

PTA detectors observe at the lowest frequency end of the GW spectrum, and are therefore used to

search for the most massive sources. With their frequency band of approximately 3× 10−9− 10−6Hz,

PTAs have the potential to observe individual SMBH binaries with masses of at least ∼108M� [20],

and a background signal build up of all SMBH binaries [22] ("supermassive binaries" and "stochastic

background" in Fig. 1.3). PTAs and their potential for detection will be discussed in detail in the

next chapter.

The LISA detector will be sensitive at much higher frequencies than PTAs, around 10−4 −
10−1Hz [18]. As such, it will be observing smaller BBHs with masses around 103 − 107M� ("massive

binaries" in Fig. 1.3). A special case are the extreme mass ratio inspirals (EMRIs) (in Fig. 1.3), where

a stellar mass black hole (10 − 60M�) inspirals around a massive black hole (105 − 106M�). These

highly relativistic systems spend many orbits in the LISA band and as such provide a tool for precise
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measurements of the environment near the central black hole [18].

Some of the BBHs will continue their inspiral and become visible in the LIGO+Virgo sensitivity

band [23], roughly 30−104Hz [24]. Moreover, these detectors can observe (and have already detected)

many "stellar mass" binaries, with frequencies too high for LISA to observe. The mass range of

binaries visible to ground-based detectors can be determined using the concept of an innermost stable

circular orbit (ISCO) of a black hole of mass M :

RISCO =
6GM

c2
. (1.84)

This is the closest a test particle can get to the black hole in a stable orbit. As a rough approximation,

we can use it as the smallest separation possible in a binary of massM . Then the maximum frequency

before merger is found by substituting this R into Eq. 1.83:

fmax =
1

π

c3

63/2GM
. (1.85)

This means that advanced LIGO can (in principle) detect BBH inspirals and mergers from the smallest

stellar mass black holes to massive black holes up to ∼150M�. GW150914 (in Fig. 1.3) was the �rst

detection of GWs with LIGO, generated by two black holes inspiralling, and subsequently merging

into a new black hole of ∼62M� [17].

Other gravitational wave sources

A binary neutron star (BNS) is similar to a BBH, in that it is reasonably approximated by two point

masses orbiting each other. Hence, the generated GWs are comparable, and because neutron stars are

smaller than (stellar mass) black holes, they fall into the sensitivity band of ground-based detectors.

The �rst GW observation of a BNS was made by advanced LIGO and advanced Virgo [25]. Because

black holes and neutron stars are collectively called compact objects, the category in Fig. 1.3 is labelled

as "compact binary inspirals".

As discussed in Sec. 1.3.1, any mass quadrupole can generate GWs. The quadrupole moment

of a spinning sphere or other axisymmetric object is zero, but with additional asymmetry, it becomes

non-zero. It is thought that this scenario may be applicable to neutron stars, which are known to be

spinning. If there is some deformity on the neutron star's surface � possibly due to its magnetic �eld

or stresses in the dense matter � it will emit a continuous gravitational wave at twice its rotational

frequency [26, and references therein]. An exploding star may also have a non-zero quadrupole mo-

ment, so long as the explosion is not spherically symmetric. It may therefore be possible to observe a

24



1.3. THE GRAVITATIONAL WAVE UNIVERSE

burst of GWs when a star that is close enough goes supernova [e.g. 26] (Fig. 1.3 speci�cally includes

a type IA supernova, from an accreting white dwarf).

In theory, it is possible that some GWs could be of cosmic origin. A potential source are

cosmic strings, formed in the early universe. The collective of oscillating string loops could generate

a GW background, which has so far been constrained by PTA observations [27]. GW bursts from

the cusps of string loops are potentially detectable by LIGO and LISA [27]. It is also thought that a

relic background of GWs from the early universe exists, akin to the cosmic microwave background in

electromagnetic radiation. Upper limits on its strength have been placed with PTA observations, but

it is unlikely to be detected in the future [28, and referenced therein].
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Chapter 2

Introduction to Pulsar Timing Arrays

"By the end of my PhD I could swing a sledgehammer."

Jocelyn Bell Burnell
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The term Pulsar Timing Array (PTA) was coined by Foster and Backer in 1989 [29, 30]. Their

idea was to combine timing observations from multiple pulsars to search for e�ects common in all of

them: "perturbations in the Earth's orbit", and "a cosmic background of gravitational radiation".

They also proposed to establish a long-term time standard from pulsar timing . The hunt for GWs

with PTAs is still ongoing, but as sensitivity increases with each added observation, a PTA detection

of GWs is expected in the near future [31, 32].

In this chapter, we �rst describe in detail how PTAs operate in Sec. 2.1, including pulsar timing

observations (Sec. 2.1.1), current PTA collaborations (Sec. 2.1.2) and the response of a PTA to a GW

(Sec. 2.1.3). Second, in Sec. 2.2, the idea of detecting super massive black hole (SMBH) binaries

is argued thoroughly (this was previously mentioned in the discussion about the GW spectrum in

Sec. 1.3.3). We move on to the necessary tools from data analysis needed for the rest of this thesis

in Sec. 2.3. The last Sec. 2.3.3 lays the groundwork for so called null streams, which are the basis for

the methodology developed and described in the rest of this work.

2.1 Pulsars as gravitational wave detectors

2.1.1 Pulsar timing

A pulsar is a rotating neutron star that sends out a beam of radiation from its magnetic poles, pointing

to the Earth at some moment during its orbit. This "lighthouse e�ect" means radio telescopes are able

to see them as a regular pulse of light coming from the pulsar's direction (hence the name). Observing

these objects over extended periods allows the construction of a timing model (TM), a prediction of

the arrival times of future pulses, based on the recorded arrivals of those in the past. Some pulsars,

especially ones with millisecond periods, have very stable frequencies. The most regular ones can be

timed with sub-microsecond precision [33], making them very precise clocks. These clocks, placed

throughout the galaxy, can be used as a reference for any e�ects that may in�uence the pulse travel

time to Earth � such as GWs.

Pulse folding

The previous statement that pulsars are observed through regular radio pulses oversimpli�es the task

somewhat. For most pulsars, the signal is not strong enough to observe individual pulses. It is found

by "folding" the data; overlapping consecutive pulses so that the signals add up. To achieve e�ective

folding, however, one needs to know how long each folded data segment should be so that it contains
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one pulse. In other words, one requires the pulsar period or frequency. To this end, a �rst guess is

made with a Fourier transform of the unfolded data. The measurement is then re�ned in an iterative

process where subsequent stretches of data are folded using an updated pulsar frequency at each step

(sometimes the original data can be re-folded as well) [34].

Another complication to pulsar timing is that the pulses are not instantaneous, but show a

varying luminosity over their short duration. This is called the pulse pro�le (as an example, the

pulses of PSR B1919+21 can be seen in Fig. 2.1). Individual pulse pro�les vary greatly, but when

averaged over a large number of pulses, they tend to be very regular. So for each epoch of observation

(usually of order one hour in length), a pulse pro�le is taken from the folded data. Modelling pulse

pro�les from repeated measurements allows the construction of a "template" pro�le. To pinpoint a

time of arrival (TOA) for each pulse, a reference point in the template pro�le is chosen. After �tting

the observed pro�le to the template, the shift with respect to this reference point is the recorded pulse

TOA for that epoch [34].

Figure 2.1: Artwork by Peter Saville showing the pulse pro�les of PSR B1919+21, horizontally stacked
as if "folded" (the imagine was adapted from a plot by Harold Craft, a radio astronomer working at the
Arecibo Observatory). PSR B1919+21 is the �rst ever observed radio pulsar, discovered by Jocelyn
Bell and Antony Hewish [8] in 1967. The artwork gained fame as the album cover of Unknown
Pleasures by Joy Division, released in 1979.
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Timing model

After obtaining a handful of TOAs, a timing model (TM) can be constructed that �ts the observations.

The discrepancy of the model is measured by the residuals, the di�erences between modelled and

measured TOAs. A TM consisting of only the pulsar frequency is not enough to accurately model

even the most regular millisecond pulsars. First of all, pulsars lose energy through radiation, and

so their rotation slows down over time. After enough TOAs are accumulated, the spin-down can be

included in the TM. It is actually the complete TM, not just the pulsar frequency, that is used in the

iterative process of folding data, obtaining a TOAs, re�tting the model, and so on.

There are plenty other contributions to the TOAs that can be included in the TM for long term

observations. For example, the Earth's motion around the sun means the light travel time between the

pulsar and Earth changes (as long as the pulsar is not directly above or below the ecliptic). Therefore,

precise knowledge of the position of the solar system barycenter (SSB) with respect to the Earth (the

ephemeris) is needed for an accurate TM. Current PTAs have actually become sensitive enough to

measure corrections to the assumed ephemeris [35], as was one of the original ideas of Foster and

Backer [29]. Analogous to the Earth's orbit, should the observed pulsar be part of a binary, its own

orbit will a�ect the TOAs as well. Observing a pulsar in a binary system (or even a binary pulsar [36])

allows precision measurements of the orbital parameters (e.g. the period and companion mass). In

the well-known study by Hulse & Taylor of such a system [37], the observed orbital evolution matched

the predicted energy loss from GW emission precisely, making it the �rst indirect observation of GWs

[38].

Free electrons between the pulsar and Earth, in the interstellar medium (ISM), can delay the

arrival time of the photons. This e�ect scales with the inverse of the photon frequency squared, and

can therefore be measured in multi-frequency observations. The di�erence in delay between high and

low frequency photons is called the dispersion measure (DM), and can be used as a proxy for the

free electron density along the line of sight to the pulsar. The DM is often time-dependent � either

due to the Earth's movement changing the line of sight, or due to ISM particles moving in or out �

and is modelled accordingly in the TM. Pulsar timing is so precise that the di�erences between time

standards used to record TOAs have to be taken into account as well. Generally speaking, a hydrogen

maser is used as a clock at the telescope, after which locally recorded times are converted to UTC

(Coordinated Universal Time) with GPS and published time standard corrections. Even so, there can
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still be a residual clock error of a few nanoseconds that needs to be taken into account [34].

All TOAs will have some amount of added white noise from the radio telescope and back-end

systems. However, often additional non-Gaussian noise is found which is not covered by the TM. This

"timing noise" is not fully understood but may be (in part) intrinsic to the pulsar [39, 40]. In the end,

pulsar timing is very sensitive to an incomplete or incorrect TM, as well as unexplained noise sources,

so there will always be a �nite accuracy to measured TOAs. Because a potential GW has such a

small e�ect on the TOAs compared to the other ingredients described here, it is nigh impossible to

measure it with a single pulsar. The key to �nding GWs with pulsar timing is therefore that the same

GW a�ects the TOAs of many pulsars. Hence PTAs are created to search for a correlated signal in

multiple pulsars.

2.1.2 PTA collaborations

In principle, a PTA is just the combination of pulsar timing observations from multiple pulsars, with

the aim of studying e�ects common in all pulsars. In practice, combining data involves multiple tele-

scopes as well. A telescope's location determines which part of the sky it can access, and thus the set of

pulsars it can observe. Several PTA collaborations exist, which, based on geographical location, carry

out long term observations of di�erent sets of pulsars (some pulsars are observed by more than one

collaboration). These are the European Pulsar Timing Array (EPTA)1, who use �ve radio telescopes

across Europe2 (Westerbork Synthesis Radio Telescope in the Netherlands, E�elsberg Radio Telescope

in Germany, Lovell Telescope at Jodrell Bank Observatory in the UK, Nançay Radio Observatory in

France, and Sardinia Radio Telescope in Italy); the North American Nanohertz Observatory for Grav-

itational Waves (NANOGrav)3, who use the Green Bank telescope in the US and Arecibo in Puerto

Rico; and the Parkes Pulsar Timing Array (PPTA)4, who use the Parkes Observatory in Australia.

These collaborations release their own combined data sets, the most recent (full) ones being EPTA

data release (DR) 1 [42], the NANOGrav 11-year data set [43], and the PPTA DR1 [44] (extended in

[45]). Furthermore, some pulsar timing data sets of one or a few pulsars have been published, usually

in conjunction with a pulsar speci�c study (e.g. testing gravity with J1713+0747 [46], various studies

on B1855+09 and B1937+21 [47], and high precision timing of four PPTA pulsars [48]).

1www.epta.eu.org
2 Six, if we count LEAP (The Large European Array for Pulsars) separately. LEAP is a project in which all EPTA

telescopes are used in conjunction to make one TOA, e�ectively creating a much larger telescope [41].
3http://nanograv.org/
4www.atnf.csiro.au/research/pulsar/ppta/
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The aforementioned PTA collaborations form an umbrella consortium called the International

Pulsar Timing Array (IPTA)5. With the aim of detecting GWs, a greater sensitivity is achieved by

accumulating pulsar TOAs (for pulsars observed by more than one PTA), and by increasing the set of

pulsars. Two combined data sets have been released so far as IPTA DR1 [11] and DR2 [33]. Combining

pulsar timing data from di�erent telescopes and from di�erent collaborations is, however, not trivial.

For example, the EPTA and PPTA collaborations produce one TOA per observing epoch, averaged

over frequency, whereas NANOGrav produces a separate TOA for each frequency sub-band. This

means that when modelling the white noise in the TOAs, a di�erent model is needed for NANOGrav

TOAs [33]. Another complication comes from combining data sets from di�erent observing systems �

either di�erent telescopes or di�erent back-end systems on the same telescope. Because each system

has an unknown delay when processing data, possible time o�sets between the data sets are �tted for

in the TM of the combined data ("JUMPs") [33].

A relatively recent addition to (I)PTA potential is the Five-hundred-meter Aperture Spherical

radio Telescope (FAST), located in Southwest China. This sensitive telescope is expected to play

a major role in future PTA work, both by discovering new pulsars and by making high-precision

observations of already known ones [49]. Furthermore, (I)PTA sensitivity will greatly increase with

the future additions of the Square Kilometre Array (SKA) [50] monitoring the Southern hemisphere

and the next-generation Very Large Array (ngVLA) [51] monitoring the Northern hemisphere.

2.1.3 PTA response to gravitational waves

Previously in Sec. 1.2.3, the h+ and h× GW polarisations were illustrated using a simpli�ed PTA: a

ring of pulsars around the Earth, with a GW travelling straight through it. We derived the induced

Doppler shift in the pulsars' signals to be Eq. 1.53. The same derivation can be done for a pulsar

placed anywhere in the sky, with unit vector p̂i pointing to the pulsar, and a GW travelling in any

direction Ω̂ (see e.g. [52]). The resulting Doppler shift is:

z(t, Ω̂) =
1

2

p̂ip̂j

1 + Ω̂ · p̂
∆hij . (2.1)

Here, ∆hij = hijSSB − hijP is still the di�erence between the GW strain at the SSB and at the pulsar

(the time di�erence between the actual TOA measurement on Earth and the SSB is included in the

TM). Now, hij is any combination of the two polarisation states.

5www.ipta4gw.org/
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As a simpli�cation, sometimes the pulsar term hijP = hij(tP, ~xP) is neglected and only the Earth

term, hijSSB , is considered in the signal model. If the GW signal comes from a (slowly) inspiralling

BBH, its frequency will have increased in the ∼1000 years it takes for the pulsar's light to travel to the

Earth (see Eq. 1.80). As a result, the pulsar and Earth terms have di�erent frequencies. Whether this

di�erence is large enough to distinguish the terms in observations depends on the pulsar distance and

angle to the GW line of sight, and on the evolutionary stage of the binary. Rosado et al. [22] found

this to be the case in about 50% of expected detections6. Either way, because the pulsar distances

vary, only the Earth terms are the same for all pulsars. This makes them more useful for PTA analysis,

and the pulsar terms are often considered noise. In this thesis, we make the simplifying assumption

that the pulsar terms can be ignored, and write hij as a shorthand for hijSSB = hij(tSSB, ~xSSB), which

now replaces ∆hij in Eq. 2.1.

It is convenient to write out the metric perturbation in terms of two polarisation tensors. First

we choose a coordinate system (the same as in [52]), where the �rst basis vector is the GW propagation

direction Ω̂, and the two orthogonal vectors are named m̂ and n̂. Given two sky angles θ ∈ [0, π] and

φ ∈ [0, 2π], these can be expressed as follows:

Ω̂ =
(

sin θ cosφ, sin θ sinφ, cos θ
)

m̂ =
(

sinφ, − cosφ, 0
)

n̂ =
(

cos θ cosφ, cos θ sinφ, − sin θ
)
. (2.2)

Then, two polarisation tensors can be constructed from m̂ and n̂:

e+
ij(Ω̂) = m̂im̂j − n̂in̂j

e×ij(Ω̂) = m̂in̂j + n̂im̂j . (2.3)

These form a basis for any GWs travelling along Ω̂ in the transverse-traceless gauge. The metric

perturbation in terms of the two polarisation amplitudes, h+(t) and h×(t), is:

hij(t) = h+(t)e+
ij + h×(t)e×ij . (2.4)

Now Eq. 2.1 � neglecting the pulsar term � can also be written as:

z(t, Ω̂) =
1

2

p̂ip̂j

1 + Ω̂ · p̂
(e+
ijh

+ + e×ijh
×) ≡ F+(Ω̂)h+ + F×(Ω̂)h×, (2.5)

6 For the stochastic background (SB), a signal at all frequencies (see Sec. 2.2.3), there are always pulsar terms
present; the pulsar term frequency of one binary will overlap with the Earth term frequency of another.
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where we have de�ned the response functions F+ and F×.

In pulsar timing, the Doppler shift can not be measured directly in the pulsar TOAs. Rather, a

shift in TOAs with respect to the TM builds up over time in the residuals. So the actual observable due

to the GW signal is the response to the time-integrated h+ and h×. If we de�ne H+(t) =
∫ t

0
dt′h+(t′)

and analogously H×(t), the response in the residuals is:

r(t, Ω̂) = F+(Ω̂)H+ + F×(Ω̂)H×. (2.6)

Between the di�erent pulsars in the PTA, the response functions change, but the H+ and H× are

held in common.

The pulsar response in Eq. 2.6 only depends on the angle between the pulsar and GW source

locations (via the dot product Ω̂·p̂), and not on their absolute locations. It is minimised when Ω̂·p̂ = 1,

i.e. when the pulsar stands directly opposite the GW source in the sky. The smaller the angle between

pulsar and source, the stronger the GW response. The expression would become problematic when

Ω̂ · p̂ = −1, but this would require the pulsar and GW source to be at the exact same sky location,

which is only a mathematical possibility and not a physical one. When Ω̂ · p̂ gets close to −1, both

the numerator and denominator of the response function become very small, so it is well de�ned in

the limit.

2.2 Sensitivity to super massive black hole binaries

In our discussion of the GW spectrum in Sec. 1.3.3, it was said that PTAs are sensitive to the most

massive BBHs, in the form of individual sources or a stochastic background. In this section, we justify

this statement using the PTA response as derived in the previous section, and the properties of current

PTAs.

2.2.1 Estimating the PTA sensitivity

PTA frequency band

For a GW to be measurable in the PTA residuals, it needs to fall within the PTA frequency band,

which in Sec. 1.3.3 was said to be around 3×10−9−10−6Hz. The minimum frequency is determined by

the time span of observations T , as any signal that �uctuates on a longer time scale is not noticeable.

The longest observed pulsar in the IPTA DR2 is J1713+0747 with 22.5 years, which gives a bound

of fmin =
1

T
≈ 1.4× 10−9Hz. Because an increased sensitivity is obtained by using multiple pulsars,
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a more practical lower bound will be somewhat higher (the minimum of ∼3 × 10−9Hz above is for

T ≈ 10 years).

PTA data is not regularly sampled, as each TOA is determined from observations taken a few

days to weeks apart. This irregular sampling means the usual Nyquist frequency does not apply; the

maximum frequency due to the time in between samples is e�ectively in�nite (see, for example, [53]).

The maximum frequency is however bounded by the integration time ∆T of the observations. Because

each TOA is determined from a stretch of data of about 1 hour long, signal �uctuations on shorter

time scales can not be measured. This gives us an upper bound of fmin =
1

∆T
≈ 2.8 × 10−4Hz. As

will become clear later on in this discussion, PTA sensitivity decreases with increasing frequency, so

that the upper bound is e�ectively lower, usually taken to be ∼10−6Hz. Because the sensitivity is

highest at the lowest frequency, the exact upper bound is not very relevant to the question at hand.

Signal from a single SMBH binary

A GW signal � assuming it falls within the PTA frequency band � can only be detected if its response

in the TOA residuals is distinguishable from the noise. Therefore, the signal strength required is

directly related to the precision with which the TOAs can be measured. Although pulsar timing noise

is complicated, the overall noise level is summarised in the root mean square (rms) of the residuals,

rnoise, which can be compared directly to the GW response rGW. The smallest noise rms reported in

the IPTA DR2 is about 110 ns, for pulsar J0437-4715 [33].

The amplitude of rGW is given by Eq. 2.6. The response functions F+ and F× are geometrical

factors of order unity, which we will neglect for the following order of magnitude argument. The

same holds for the polarisation state mixing (Eq. 1.74), so that rGW∼H̄+/×. For the GW model,

consider the case of a slowly evolving SMBH binary, which is approximately monochromatic on the

PTA observation time scale of O(10) years [20]. The GW polarisations are then given by Eq. 1.75, so

the time-integrated H̄+ and H̄× are of the form:

H̄+(t) =
A

ω

1

2

(
1 + cos(ι)2

)
sin(ωt+ φ0) H̄×(t) = −A

ω
cos ι cos(ωt+ φ0). (2.7)

We consider the amplitude A in the frame of the observer:

A ≡ 4

Dl

(
GMc

c2

)5/3(
πf

c

)2/3

. (2.8)

Hence, f is the observed GW frequency,Mc is the redshifted chirp mass (equal to (1 + z)M(source)
c ),

and the relevant distance is the luminosity distance Dl. However, for this estimate, we do not take into
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account the relatively minor e�ects of the redshift z . 1 on the other quantities. Additionally, we have

absorbed the factor A into the polarisation states from Eq. 1.75 (rather than leaving it as an overall

factor as in Eq. 1.73). At their maximum (for a face-on source), the residuals are rGW∼
A

ω
∝ f−1/3,

which justi�es the earlier statement that PTA sensitivity is highest at the lowest frequencies.

The GW amplitude depends on the source parameters: its distance r, chirp mass Mc, and

GW frequency f = ω/2π. To maximise sensitivity, we can consider f to be the lower bound of the

PTA band, f ≈ 3 × 10−9Hz. If we require a certain amplitude A, there is a degeneracy between the

distance and mass of the source, meaning that a binary could be detected as long as it is close enough,

or equally, as long as it is massive enough. Because a small distance severely constrains the observable

volume (which scales as r3), for now we set out to �nd sources up to z ≈ 1, which corresponds roughly

to a luminosity distance of 6.7Gpc (assuming a standard, �at ΛCDM universe [54]). One can then

ask what the corresponding minimum chirp mass is needed for large enough rGW. For convenience,

we express the chirp mass in multiples of 109M�, so that the residuals scale as:

rGW ≈
A

ω
=

4

r

(
GMc

c2

)5/3 (π
c

)2/3

f−1/3 1

2π

≈ 2.0ns

(
r

6.7Gpc

)−1( Mc

109M�

)5/3(
f

3× 10−9Hz

)−1/3

. (2.9)

Therefore, to get rGW ≥ rnoise, we would needMc ≥ 1.2× 1010M�.

We have not yet taken into account that the GW can be measured with multiple pulsars. The

signal-to-noise ratio (S/N, ρ in Eqs.) of a single pulsar can be approximated (using the overall noise

level) as ρi =
rGW

rnoise
, such that the S/N of all pulsars is given by ρ2 =

∑
i ρ

2
i . As an estimate, assume

that each pulsar contributes the same S/N, such that the total is ρ =
rGW

rnoise
×
√

P, where P is the

number of pulsars. For a sinusoidal signal, the S/N further scales with the number of cycles in the

data, which is given by Ncycles = T × f . As we have chosen our frequency to be the miminum,

fmin =
1

T
, there would be exactly one cycle in the data. It shows, however, that PTA sensitivity

increases over time, even without improving TOA precision or adding more pulsars to the array7.

7 It also means the previously found scaling of rGW ∝ f−1/3 does not hold for the S/N. However, the most massive
sources spend little time at higher frequencies (see TPTA in the next Sec. 2.2.1), so PTA are more likely to detect an
individual SMBH binary at a low frequency (see e.g. [22]).
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Using P = 65 from IPTA DR2, we �nd:

ρ =
rGW

rnoise

√
P

≈ 0.14
( rnoise

110ns

)−1
(

P

65

)1/2(
r

6.7Gpc

)−1( Mc

109M�

)5/3(
f

3× 10−9Hz

)−1/3

. (2.10)

It is not a trivial matter to determined the proper S/N threshold that would constitute a detection.

For this order of magnitude estimate, we choose to consider S/N& 1, keeping in mind that this is

a very low threshold. Using the parameters above, to reach S/N& 1, we require Mc & 3 × 109M�.

Because we used the lowest reported noise level from the IPTA DR2 for all pulsars, this estimate is

a bit too optimistic. On the other hand, looking to the future of IPTA with the additions of FAST,

SKA and ngVLA (see Sec. 2.1.2), it is not unrealistic to expect noise levels to go down as well as the

number of pulsars to go up.

SMBH binary population

Eq. 2.10 has established that a PTA has the potential to detect a binary withMc & 3× 109M� within

z ≈ 1. The question remains whether these sources are astrophysically feasible, and if so, how many

there are at any given time. It is well established that the most massive black holes reside in the

centers of galaxies, and that the comic history is full of galaxies merging. The expectation is that the

two black holes, after the merger of their galactic hosts, both fall to the center of the gravitational

potential of the newly formed galaxy and form a binary. If the binary is close enough for GW emission

to dominate their orbital dynamics, they will inspiral and emit the GW signal from Eq. 1.73 (e.g. [55]).

This last assumption (for which the binary needs to get well below a separation of around 1 pc), is

the most uncertain part of the scenario. It is termed "the last parsec problem" and, potentially, PTA

observations could resolve it. It will be discussed in more detail in Sec. 2.2.2, but for now we will

assume the binaries do indeed get close enough to enter the GW-dominated inspiral regime.

There is known to be a connection between the mass of a SMBH and its host galaxy, from

observational evidence. More massive black holes reside in more massive galaxies, although the exact

relations reported in the literature vary signi�cantly [e.g. 56, 57, 58]. Most often, these relations take

the form:

log10

(
M

M�

)
= α+ βlog10

(
Mb

1011M�

)
, (2.11)

where Mb is the mass of the bulge of the host galaxy, and M is the mass of the black hole. Typical

values for the parameters are α ∼ 8.1 and β ∼ 1.2, with a scatter on the relation of about 0.3 dex
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(see, for example, [10], who have made a compilation of 14M−Mb relations from the literature, which

is also shown in Fig. 4.2). For a given total binary mass, the chirp mass from Eq. 1.79 is maximised

for an equal mass binary (m1 = m2). Assuming this scenario, we can ignore the conversion factor ∼1

between M and Mc, as well as the factor 2 between single black hole mass and total binary mass.

Then, substituting the previous constraint (M ∼ Mc & 3 × 109M�) into Eq. 2.11 using the typical

values for α and β gives Mb & 6× 1011M�. The most massive galaxies are almost all ellipticals [e.g.

59], for which the total (stellar) mass is of the same order of magnitude as the bulge mass, so we will

not distinguish between the two for this argument.

From observational data, the number density of massive elliptical galaxies withM ∼ 6×1011M�

is about ρME ∼ 10−4Mpc−3 (and falls o� steeply at higher masses)[e.g. Fig. 6 in 60]. In the comoving

volume of the Universe within z = 1, there are therefore about

N = ρME V ≈ 10−4Mpc−3 1.6× 1011Mpc3 = 1.6× 107 (2.12)

galaxies that could potentially host a massive enough black hole. However, to host a binary, the

galaxy would have to have undergone a recent enough merger. Because we are assuming roughly

equal mass binaries, the merger needs to be between roughly equal mass galaxies as well, i.e. a

major merger. Using data from the CANDLES survey, [61] �nd the major merger rate of massive

(M > 2× 1010M�) galaxies evolves from ∼0.15Gyr−1 (per galaxy) at z = 1 to ∼0.03Gyr−1 at z = 0

(with a signi�cant spread in results between di�erent observational studies and theoretical predictions).

For this estimate, the average merger rate can be taken to be R ∼ 0.1Gyr−1 per galaxy (meaning a

massive galaxy experiences, on average, ∼1 major merger since z = 1, 7.7Gyr ago).

For the binary to be observable now, the merger needs to have happened recently enough such

that the binary is still inspiralling when observations are taken. This window, TPTA, is the time

a binary spends in the PTA band8. It can be computed with Eq. 1.80, which relates the time to

coalescence τ to the GW frequency f . Rewriting this and di�erentiating to get
dt

df
= −dτ

df
, allows

to compute the time in band as an integral over df , from fmin = 3 × 10−9Hz to fmax∼10−6Hz (the

PTA band as previously determined). Because the binary speeds up during inspiral, the time spend

near the maximum frequency is negligible, and the upper bound of the integral can be replaced with

8 For the fraction of mergers observable now, it does not actually matter how long after merger it takes for the binary
to enter the PTA band, as long as it is signi�cantly below a Hubble time.
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in�nity. The result, �lling in the previously found minimum chirp mass, is:

TPTA = 1.8× 105yr

( Mc

3× 109M�

)−5/3(
fmin

3× 10−9Hz

)−8/3

. (2.13)

Expected number of sources

Taking all of this together, the potential number of PTA sources within z = 1 is

N ×R× TPTA ≈ 1.6× 107 · 1× 10−10yr−1 · 1.8× 105yr ≈ 300. (2.14)

This is quite a large number, but not all of these sources will be resolvable as we used S/N> 1

as a threshold. Instead, the GWs from these sources add up, and form the stochastic background

(SB) (more in Sec. 2.2.3). If one of these binaries is particularly close, say within 1Gpc, it may

be individually detectable (this e�ectively increases the S/N threshold to ∼7, given the scaling in

Eq. 2.10). Scaling the expected number with the fractional volume, we have:

N × V<1Gpc

V<6.7Gpc
≈ 300

(
1

6.7

)3

≈ 1, (2.15)

indicating that there is a very real possibility of observing a resolvable binary with PTA, especially

as pulsar timing precision goes up (keeping in mind that we used the lowest noise rms in the IPTA

DR2 as the standard.)

Studies on the topic, such as [62] and [22], take into account many models for galaxy evolution

and M −Mb relations, and use full distributions rather than ballpark numbers in their computations.

Overall, they �nd it likely the SB will be detected �rst, but there is a signi�cant probability for

detection of one to a few individually resolvable binaries as well. From the predictions in Fig. 6

of [22], if a single binary is detected with current IPTA, it is most likely to be around z ≈ 0.3, with

Mc ≈ 5 × 109M�, and a frequency near the lower bound of the IPTA band (which depends on the

total observation time); so similar to the parameters we used in this estimate. With the additional

sensitivity of SKA, a detected binary is more likely to have a somewhat lower mass, which makes

sense as those sources are more abundant. Given that the most massive sources lie in the tail of the

SMBH mass distribution, whether (or how soon) a detection will be made depends strongly on how

distant the few heaviest binaries around us happen to be 9.

9 It also depends on the sky position of these sources relative to the PTA pulsars, which we would �nd if we were
taking the geometrical response functions from Eq. 2.5 into account.
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2.2.2 The last parsec problem

It is still an open question whether SMBHs, after their host galaxies merge, form a close enough binary

to be observed by PTA. Initially, when two massive galaxies meet, their cores merge under dynamical

friction. The two SMBHs, contained in the galaxy cores, are also a�ected by dynamical friction of

the dense stellar environment of the newly merged core, and gravitate towards the centre. Once they

get close enough, they become gravitationally bound and form a binary [63] (at a separation of many

parsecs [64]). Even in a wide orbit, the binary will emit GWs, but from Eq. 1.83 it is clear that the

frequency would be much too low to observe with PTA (and so would the amplitude). In order for the

binary to shrink, it needs to lose energy and angular momentum. GW radiation does carry these away,

but only does so e�ciently at much smaller separations, below 1 parsec (e.g. [28]). One mechanism

that can shrink the binary is the interaction with stars orbiting near the center of the galaxy. They

take on kinetic energy from the binary and are shot away (a gravitational slingshot) [65]. As these

stars are depleted from the central region of the galaxy however, this process may be insu�cient to

bring the binary into the GW dominated regime. This issue is known as the "last parsec problem"

[28] or "�nal parsec problem" [65].

A possible solution to the last parsec problem is to relax the assumption that the central regions

of the merging galaxies are spherical. This triaxiality means there continue to be stellar orbits that

can interact with the SMBH binary and shrink it down to the GW-dominated stage [e.g. 66]. Another

solution could be to introduce a separate mechanism that can further shrink the binary. For example,

gas in the galactic centre could work similar to stars and carry away energy and angular momentum

[63]. However, [67] recently found that gas accreting onto the binary actually expands it, rather than

shrinking it. Even if gas around the black hole could shrink the binary, it remains an issue that there

would need to be just the right amount of gas to shrink the binary, but not so much that GWs have

no time to take over [28].

It is possible that all � or at least a signi�cant fraction of � SMBH binaries "stall", i.e. do not

merge within a Hubble time. What fraction this is directly a�ects the strength of the SB and the

probability of having a massive and close enough binary to observe by itself. However, even in the

most pessimistic scenario where all binaries stall, [68] found that there will still be a SB signal due to

unequal mass binaries inspiralling from larger separations. This SB will have a signi�cantly reduced

amplitude, but will eventually be observable by PTA as observation time increases and additions such
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as SKA boost sensitivity. Moreover, according to simulations by [69] and [70], subsequent galaxy

mergers will turn some of the stalling binaries into triples, whose dynamical interaction causes them

to merge. The resulting SB would be a factor 2-3 dimmer than one based on the assumption that all

binaries merge by themselves, which is still observable with (future) PTA [69].

2.2.3 Stochastic background from unresolved binaries

As previously mentioned, the many signals from SMBH binaries that are not individually resolvable

add to form a stochastic, sky-wide signal, commonly known as the stochastic background (SB) (or

Gravitational Wave Background, GWB). Assuming all binaries are circular (which is fairly reasonable,

given that the galactic environment tends to circularise the binary e.g. [65]) and only evolve due to

GW emission, the spectrum of the SB is h ∝ f−2/3 [71]. Here, h is the "characteristic strain", or the

amplitude of the GW averaged over all sources. Relaxing these assumptions changes the spectrum

slightly (see [28] and references therein). It is usually assumed there are enough sources contributing

to the SB so that it is isotropic. However, there may be anisotropies at the high frequency end of

the PTA band, as those sources are fainter and thus there are e�ectively fewer that contribute to the

overall signal [72].

Hellings & Downs correlations

The SB is a stochastic process with a red spectrum, as are several types of pulsar timing noise, such

as clock errors or e�ects related to the SSB position (see Sec. 2.1.1). Therefore, to identify the SB,

it is crucial to employ the speci�c PTA response ( Eq. 2.6) due to the quadrupolar nature of GWs,

which is not shared with other stochastic processes in the residuals. A resolvable GW source can be

found by modelling the response directly (or by using the response to construct null streams, but this

is a topic for later on in Sec. 2.3.3). Contrarily for the SB, the exact h+ and h× are unknown, but it

can be modelled through the correlation of the signal between pulsars. This correlation, Cij , is the

expectation value of ri×rj (the product of the residuals from pulsar i and pulsar j). It was calculated

by Hellings & Downs [9] to be:

Cij =
1− cos γij

2
ln

(
1− cos γij

2

)
− 1

6

1− cos γij
2

+
1

3
. (2.16)

Because the response functions from Eq. 2.6 only depend on the angle between the pulsar and GW

propagation direction, this correlation only depends on the angle γij between the pulsar sky positions.
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Eq. 2.16 is visualised in Fig. 2.2, commonly known as the Hellings & Downs curve. The

correlation is maximised when the pulsars are closest to each other. Noticeable is that there are two

zero points in the correlation; for two pulsars ∼49 deg or ∼121 deg apart. This curve is thought to be

the "smoking gun" for PTA GW detection, because it displays the unique quadrupolar correlation for

GWs, distinguishing it from correlated noise (such as noise due to clock or ephemeris errors which are

monopolar and dipolar in nature, respectively [73, 74]). The shape of the curve is better measured

with many PTA pulsar pairs, therefore a PTA with pulsars separated at a range of angles works best

(see e.g. [28]).

0 30 60 90 120 150 180
γij (deg.)

0.0

0.2

0.4

C
ij

Figure 2.2: The Hellings and Downs [9] curve. The correlation between the residuals of pulsar i and
pulsar j due to a GW, as a function of the angle γij between the pulsars' sky locations.

2.2.4 Current upper limits on GWs from SMBH binaries

So far, PTAs have not detected GWs yet. Nevertheless, because both resolvable SMBH binaries and

the SB are continuous sources, absence of a detection and knowledge of the detectors' sensitivity can

be used to place upper limits on the signals' strength. Because PTA pulsars are not evenly distributed

across the sky, and because the PTA response depends on the pulsars' locations, the sensitivity to

resolvable sources varies with sky location. Upper limits are usually given as a sky average amplitude

of the GW, at the most sensitive frequency. Some recent ones are given in Table 2.1 (including one

based on data from a single pulsar). To facilitate a comparison with the expected amplitude in the

residuals from Eq. 2.9, the last column shows A/ω = A/(2πf).

These limits only exclude the most optimistic scenarios in which there happens to exist a very

massive and nearby SMBH binary (for example, [75] excludes any binaries with f . 70 nHz and

Mc > 1010M� within 1 Gpc), but are are still compatible with astrophysical models [75], [77], [78].
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PTA (+ DR) reference + (year) A(f) f (nHz)
A

2πf
(ns)

EPTA DR1 [75] (2016) 9× 10−15 6 ∼240

PPTA [76] (2014) 1.7× 10−14 10 ∼270

NANOGrav (11 yr) [77] (2019) 7.3× 10−15 8 ∼145

single pulsar J1713+0747 [78] (2018) 1.4× 10−14 20 ∼110

Table 2.1: Recent upper limits on resolvable SMBH binaries in PTA data.

Because these limits are getting near the predictions from astrophysical models and PTA sensitivity

increases over time, future PTA observations can inform these models either through detections or

through more constraining limits.

For the SB, upper limits are usually expressed as the characteristic strain (average GW am-

plitude) at a reference frequency of 1/yr ≈ 32nHz. This is assuming the GW follows the standard

power spectrum of h ∝ f−2/3 [71]. (The actual sensitivity at 1/yr is actually very bad, because this is

the frequency at which the Earth's motion a�ects the residuals. Any signal at exactly this frequency

would be absorbed in the TM �t.) Recently reported upper limits are given in Table 2.2. As an

equivalent to the computed residuals amplitude for the resolvable sources, here we give h/(2πf) at

f = 10nHz, where h ∝ f−2/3 is used to scale h. Note that this number is less applicable here, because

the SB is not a monochromatic signal, so if a signal were present, its power would be spread across

the spectrum.

PTA (+ DR) reference + (year) A(f = yr−1)
A(f=10nHz)

2π × 10nHz
(ns)

EPTA DR1 [79] (2015) 3× 10−15 ∼100

PPTA [48] (2015) 1× 10−15 ∼35

NANOGrav (11 yr) [80] (2018) 1.45× 10−15 ∼50

IPTA (DR1) [11] (2016) 1.7× 10−15 ∼60

Table 2.2: Recent upper limits on the stochastic background from SMBH binaries in PTA data.

The upper limit from PPTA [48] is noticeably smaller than subsequent limits from NANOGrav

[80] and IPTA [11]. It was discovered in this NANOGrav analysis that PTA data is sensitive to

small errors in the ephemeris (the position of the SSB). The inclusion of some degrees of freedom of
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the ephemeris in the �t for a SB signal (a method called BayesEphem [35]) a�ects the upper limit

somewhat, which can at least partially explain the di�erence with the PPTA upper limit. The upper

limit from IPTA presented here is from DR1, which includes NANOGrav data up to their 5-year

DR [81]. It is therefore not surprising that the IPTA upper limit is higher than the more recent one

from NANOGrav alone. Because it takes time to combine data, the IPTA DR2 [33] includes the

NANOGrav 9-year DR [82] (as well as EPTA DR1 [42], the extended PPTA DR1 [45] and additional

PPTA data from four pulsars reported in [48]). Results from searching for the SB in IPTA DR2 are

being worked on but, at the time of writing, have not been published yet [83]. As with the resolvable

source upper limits, current limits are compatible with all astrophysical models, but are beginning to

constrain the most optimistic scenarios and will increasingly do so, should no detection occur as PTA

sensitivity increases [10].

2.3 PTA data analysis

In the search for resolvable binaries or the SB in PTA data, both Frequentist and Bayesian methods

are employed. Either approach has its advantages and, in general, PTA science bene�ts from having

multiple analysis methods available (especially to improve con�dence in a future detection). For the

work presented in this thesis, we have opted for a Bayesian framework. The following Sec. 2.3.1

provides an overview of Bayesian statistics. The Gaussian likelihood, which is often employed in both

Bayesian and Frequentist methods, is discussed in Sec. 2.3.2. Lastly, we close the introduction by

beginning the discussion on null streams, providing an outlook on the works presented in the next

three chapters.

2.3.1 Bayesian statistics

The cornerstone of Bayesian statistics is the following formula (Bayes' theorem; the underlying ideas

were developed by Thomas Bayes in the 18th century, the formula was developed later by Pierre-Simon

Laplace):

P(A|B) =
P(B|A)P(A)

P(B)
(2.17)

In this equation, A and B are both events that occur with probabilities P(A) and P(B), respectively.

The other probabilities are conditional, P(A|B) is the probability that event A occurs given that event

B does.
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The formula can be interpreted as a method to update one's prior belief about an event or

statement (A), after learning new information (B). In this context, P(A) is the prior probability of A,

in other words, the belief we have that A is true before we learn anything. B is the new information

we obtain, for example the data from an experiment. It has an associated evidence P(B), which

functions as a normalisation for the formula. P(A|B) is what we want to obtain, our updated belief

about A after learning that B is true, or the posterior probability of A. The crux of Bayes' theorem

is that we can obtain this by instead computing P(B|A), the likelihood.

In data analysis, usually we assume some modelM which has one or more parameters ~θ that

we are trying to measure. Given the data d, Bayes' theorem can be adapted using probability densities

as follows:

p(~θ|d,M) =
p(d|~θ,M)p(~θ|M)

P(d|M)
. (2.18)

TheM after the conditional bar in each probability signi�es that modelM is assumed throughout.

If the values of the parameters ~θ are completely unknown in advance, its priors, p(~θ|M), should be

chosen such that they in�uence the result as little as possible. This usually means they are uniform

("�at") probability distributions within the possible range of the parameters. For some parameters,

it makes sense to choose a non-uniform distribution; for example, when measuring the sky location of

a GW source given by a polar angle 0 < θ < π and azimuthal angle 0 < φ < 2π, one needs to use a

distribution uniform in cos(θ) (so not uniform in θ), to make the prior �at across the sky. The evidence,

or marginalised likelihood, can be computed by integrating the likelihood over the parameters:

P(d|M) =

∫
d~θ p(d|~θ,M) p(~θ|M). (2.19)

If one is only interested in measuring the parameters ~θ (parameter estimation), the evidence is simply

a normalisation for the rhs of Eq. 2.18. In that case, one can limit the computation to the numerator

of Eq. 2.18 and numerically normalise the resulting posterior distributions on ~θ. However, the evidence

also be used to compare di�erent models, sayM1 andM2, in the following way:

P(M1|d)

P(M2|d)
=

P(d|M1)P(M1)

P(d|M2)P(M2)
, (2.20)

where we have applied Eq. 2.17 to both the numerator and denominator in the odds ratio above. It

re�ects the posterior believe in model M1 relative to model M2. This ratio includes the priors on

both models, which are often left out of the computation because there is no reason to favour one over

45



2.3. PTA DATA ANALYSIS

the other. In that case, what is computed is the Bayes factor :

P(d|M1)

P(d|M2)
. (2.21)

2.3.2 Gaussian likelihood

Because the priors are chosen and the evidence can be computed from the likelihood or as a numerical

normalisation, the likelihood is the focus of a Bayesian computation. If we had a perfect modelM that,

given the "correct" parameters would �t the data exactly, and for any other parameters would not,

the likelihood function would be a delta function: L(~θ) = δ(d −M(~θ)). Unfortunately, any realistic

experiment has to deal with noise. We can assume the data is the sum of a signal s and some noise

n. Usually the data will be a series of discrete points over time (such as pulsar timing observations),

but they could also be points in the frequency domain or a set of one or more measurements without

temporal relation. Without loss of generality, we write data, signal and noise as vectors:

~d = ~s+ ~n. (2.22)

Or equivalently, each vector as a set of k points ~d = {di} with i ∈ [1, k]. The signal is modelled by

M, such that si =M(~θ0)i for the "correct" parameters ~θ0. To get a likelihood for this scenario, some

assumptions need to be made about the noise. The usual one is that the noise is Gaussian, i.e. the

points ni are drawn from a multivariate Gaussian distribution:

ni ∼ N (~0,Σ). (2.23)

where Σ is its (k × k) covariance matrix:

Σij = 〈ninj〉. (2.24)

It is a positive de�nite matrix with an inverse Σ−1. The noise distribution has zero mean (if it did

not, we could set it to zero by adding the mean to the signal model instead). With these assumption,

the likelihood is given by a Gaussian probability distribution:

L(~θ) =
1√

(2π)k|Σ|
exp

[
−1

2

(
di −M(~θ)i

)∗ (
Σ−1

)ij (
dj −M(~θ)j

)]
. (2.25)

Here, |Σ| is the determinant of the covariance matrix. The �rst vector term in the exponential is

a complex conjugate (the ∗), which is only needed if the data has complex values. The covariance

matrix is always real. The term in the exponential can be interpreted as the distance between data
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points di and model pointsM(~θ)i, weighted by the covariance matrix Σ; the likelihood is maximised

when this "distance" is minimised.

Noise modelling

In the simplest case, the noise in each measurement is independent. Then, the covariance matrix is

diagonal:

Σij = 〈ninj〉 = σ2
i δij , (2.26)

where σ2
i is the variance for point i (which may or may not be all the same). For example, in a very

simple model of a PTA in which only white noise is considered, i may label the pulsars and σ2
i would

be the noise rms associated with that pulsars.

In reality, pulsar timing noise is an amalgamation of di�erent deterministic and stochastic

processes. Any deterministic contributions to the data that are considered noise (i.e. not part of

the signal one is interested in) should be included in the model. After all, from a mathematical

perspective it is not relevant whether a signal is considered interesting or not. Stochastic processes

can be modelled as well, but are part of the noise n and a�ect the covariance matrix Σ. If these noise

models depend on unknown parameters, they can be treated in the same way as the signal model

parameters. In a typical Bayesian analysis of PTA residuals, (a subset of) noise parameters are �t

for at the same time as TM and GW model parameters (see, for example, the NANOGrav search for

resolvable binaries in their 11 year DR [77]).

2.3.3 Null streams in PTA data analysis

Any data analysis method needs to distinguish between signal and noise, for both detection (for

example using Eq. 2.20) and parameter estimation (for example using Eq. 2.18). The methods that

form the basis of the works presented in this thesis aim to do so by constructing null streams. In a

collection of data streams from detectors that measure a common signal, null streams are combinations

of data streams in which the signal is cancelled ("nulled"). It is possible to do so as long as the number

of detectors is greater than the number of degrees of freedom in the signal, so that it is overconstrained.

For a GW signal, assuming GR is correct, the degrees of freedom are the two polarisations + and

×. In a PTA with P pulsars, each sensitive to the same GW, it is therefore possible to construct

P− 2 independent null streams. This construction (see Sec. 3.1.1 for details) is based on the detector
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response functions, given by Eq. 2.6 for PTAs. Therefore, any form of noise which has a di�erent

response would not be cancelled, providing the distinguishing feature we are looking for.

Uses of null streams in the literature

The null stream formalism is not bound to PTAs, as it can potentially be used whenever a signal is

measured by enough independent detectors. It has previously been applied across the GW spectrum.

For networks of ground-based detectors, the method has been proposed to discriminate between signal

and unmodelled noise [3, 84, 85, 86]. In the context of LISA, the Sagnac con�guration of the detector

provides an example of a null stream; the interferometer channels are combined to cancel out GW sig-

nals, thus serving as detector calibration by assessing the instrumental noise level [87]. More recently,

[88, 89] have adapted those techniques to PTA, and investigated the bene�ts of using null streams to

reconstruct GW signal properties and quantify detection con�dence in a frequentist framework. [90]

constructed an alternative statistic by combining null streams, speci�cally for the purpose of localising

a resolvable source.

Null streams in this work

We again apply the null stream formalism to resolvable PTA sources, but use a Bayesian framework as

described in Sec. 2.3.1. Because the null streams are constructed from response functions that depend

on the GW propagation direction, only the GW signal from a given direction is cancelled. This means

the null streams can be used to localise the source of a signal, if it is present in the data [88, 90]. In

Chapter 3, we take a �rst step to doing so by writing a standard PTA Gaussian likelihood in terms

of the null streams. Although this likelihood is mathematically equivalent to the standard form, its

speci�c sky parameter dependence allows a somewhat di�erent approach to recovering the sky location

of a simulated signal. We use this method to assess the localisation capabilities of di�erent simulated

PTAs, potentially useful for future observation or analysis strategies.

In Chapter 4, we use the localisation pipeline to assess how many potential host galaxies

there would be for a likely future PTA detection of a SMBH binary. To enable multi-messenger

astronomy with GWs, one needs to identify in which galaxy the binary resides. This can be done

using electromagnetic observations, but a short list of candidates signi�cantly reduces the e�ort and

increases the chances of �nding the host. We combine (in a Bayesian way) the information obtained

from the localisation pipeline with galaxy properties � location, mass, and distance � from a mock
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catalogue (developing a method for future use with a real catalogue).

We expand on the work from Chapter 3 in Chapter 5 in two ways. First, we address an issue

that arises from a need to work in the frequency domain (FD) when constructing null streams from

PTA data. Because the data are not evenly sampled, this can not be done using a Fast Fourier

Transform (FFT) and we instead apply an adapted Fourier transform (Sec. 5.1.1). Second, starting

from the likelihood from Chapter 3 (Eq. 3.9), we construct a null stream likelihood that is now fully

independent of the GW model, and investigate its e�ectiveness. The results of each work are presented

and discussed at the end of each chapter, and an overall conclusion is given at the end of this thesis.
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Chapter 3

Paper I: Sky localisation of resolvable

PTA sources using null streams

If you can throw away the need to be certain, and accept (...) that you're just
interested in con�dence and believes instead, that's a really powerful thing.

Hannah Fry on Bayesian statistics
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We aim to create a Bayesian framework in which null streams can be used for parameter

estimation (and perhaps detection) of resolvable sources in PTA data. As a �rst step, we use a null-

stream-based likelihood to localise SMBH binaries. The work presented in this chapter has previously

been published in [2], and most of the text and �gures have been adapted from there (see Declaration

for details.)

Our method is detailed in Sec. 3.1, including the null-stream construction in 3.1.1, and lo-

calisation in 3.1.2. For this work, we use idealised, simulated data, which is converted to the FD

as explained in Sec. 3.1.3. The results detailing the performance of this method are presented and

discussed in Sec. 3.2, speci�cally looking at the scaling of the localisation precision with the number

of pulsars in the (simulated) PTA and the signal-to-noise ratio (S/N, ρ in Eqs.). With simulations

based on the recent PTA data releases (DRs), we investigate the sky-localisation capabilities of current

PTAs. These results, and implications for future PTA strategies, are discussed in Sec. 3.3. The main

�ndings are summarised in Sec. 3.4.

3.1 Method

As previously discussed qualitatively in Sec. 2.3.3, PTA data can be combined into null streams because

the number of pulsars P exceeds the number of GW polarisations (which is 2). The construction

employs the known response of a pulsar, given in Eq. 2.6. It does not include the pulsar term, which

would be worthwhile to add in future work to deal with (almost) monochromatic sources [91] and to

improve localisation in general [89]. The response can be written in the form of a matrix equation as

follows:

~r(t, Ω̂) =



F+
1 F×1

F+
2 F×2
...

...

F+
P F×P


H+(t)

H×(t)

 ≡ F(Ω̂)

H+(t)

H×(t)

 , (3.1)

where we have de�ned the response matrix F(Ω̂) (the response functions in F all depend on the GW

propagation direction Ω̂, but that dependence will be dropped to shorten notation in the following).

It will later be useful to de�ne the columns of F as ~F+ and ~F×. F depends on the location of the

source −Ω̂, but not on the parameters of the speci�c functional form of the polarisations, which makes

the following null-stream construction applicable to any single-source GW.
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3.1.1 Null-stream construction

Figure 3.1: Illustration of spaces involved in the mapping F from GW polarisations to residuals ~r. F
is built from the two column vectors ~F+ and ~F×, which span the column space of F or equivalently,
the GW-polarisation space H. Orthogonally to H lies the null space A, which contains the null streams
~η. This �gure has been adapted from Fig. 2 of [3].

The matrix F can be interpreted as a mapping of the GW polarisations ~H ≡ (H+, H×) in a

two-dimensional space H, to the residuals ~r in a P-dimensional space1. This suggests that at each

point in the domain of F , there exists an additional (P− 2)-dimensional space orthogonal to H. We

call this the null space A, spanned by a set of independent null streams (these spaces are illustrated

in Fig. 3.1). There are di�erent possible sets of null streams and di�erent methods of obtaining them

(e.g. our method di�ers from the one employed in [88, 89]). It is possible to impose the additional

restriction that the null streams are orthogonal to each other (rather than just independent). The

method to do so described here has been adapted from [3] and [86]. In short, we �nd a projection to

the null space A that maps the residuals to null streams.

By inverting the mapping F , the residuals can be reverted to the signal ~H. The matrix F
1 We have dropped the time dependence in the GW polarisations and residuals, as the null-stream construction

applies to any given time stamp of the quantities (or frequency bin when working in the FD).
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is not square, and so clearly not invertible, but it is possible to use the Moore-Penrose inverse or

pseudo-inverse F−1
MP ≡ (F>F)−1F> instead. For data which is a combination of the residuals and

noise given by ~d = ~r+ ~n = F ~H + ~n, the maximum likelihood solution for ~H is given by this inversion

~̂H = F−1
MP

~d [86]. F−1
MP can be seen as a projection of the data (or residuals) onto H, which is the

column space of F . The null streams ~η are found by projecting onto the orthogonal space A instead,

which ensures any component of ~H is nulled (see Fig. 3.1).

Say a basis for this null space is {êi}, with i ∈ {1, 2, ..,P− 2}. Each basis vector is orthogonal

to the column vectors of F , i.e. êi · ~F+ = êi · ~F× = 0. Then a suitable null-space projection matrix is

given by A with rows ê>i , because AF = 0 as per the relation above. Given A, the null streams can

be computed as follows:

A~d = A
(
F ~H + ~n

)
= ~η +A~n. (3.2)

Here the �rst term ~η is a vector of P− 2 zeroes; the null streams. We choose to keep the symbol ~η in

the notation (rather than just using zeros), to specify the null streams constructed in this way, and to

label them as ηi, with i ∈ [1,P− 2]. This construction is also possible for data that does not contain

the residuals response as in Eq. 3.1 � for example, a GW signal from a di�erent direction � in which

case ηi 6= 0.

To �nd the basis {êi}, consider the projection operators P = FF−1
MP, and S = I − P, where I

is the (P× P) identity matrix [3, 86]. P projects onto the column space:

PF = FF−1
MPF = F , (3.3)

and S onto the null space:

SF = (I − P)F = F − F = 0. (3.4)

However, S is a (P×P) matrix whereas the null space only has P−2 dimensions. S can be reduced to

((P− 2)× P) with the QR-decomposition. Computing it2 allows to factorise any real, square matrix

into S = QR, where Q is an orthogonal matrix and R an upper triangular matrix. It is then given

that, if S has rank r, the �rst r columns of Q form an orthonormal basis for the column vectors of S.
Therefore, the �rst P − 2 columns of Q from this decomposition form the basis {êi} that we needed
to construct A.

2 The QR-decomposition is computed in python using the linalg package www.numpy.org/doc/stable/reference/
generated/numpy.linalg.qr
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We can combine the projections F−1
MP and A into one matrix N , by stacking the two rows of

F−1
MP and the P − 2 rows of A on top of each other. The result is a square P × P matrix. It is not

proved here but we can numerically verify that this matrix is invertible (provided the pulsar locations

are all distinct, which we assume to be the case). It projects the data onto the two reconstructed GW

polarisations as well as onto the P− 2 null streams:

N ~d =



(F−1
MP)1

(F−1
MP)1

ê>1
...

ê>P−2


(
F ~H + ~n

)
=



H+

H×

η1

...

ηP−2


+N~n (3.5)

≡ ~ζ +N~n. (3.6)

In the last step, ~ζ is de�ned as the combined vector of (reconstructed) polarisations and null streams.

The inverse null-stream matrix N−1 turns the null-stream vector back into residuals: N−1~ζ = ~r.

3.1.2 GW-source localisation

The null-stream matrix N only nulls a GW from a given direction Ω̂. Under the assumption that

a single-source signal is present in the data, denoted Hsig, the null streams can be used to �nd the

signal's source location: we vary Ω̂ until the null streams are minimised and the reconstructed GW

polarisations match our model for ~H as closely as possible. This can be quanti�ed using Bayes'

theorem (Eq. 2.18) for the posterior probability distribution on the sky location (assuming Hsig):

p(Ω̂|~d,Hsig) =
p(~d|Ω̂,Hsig) p(Ω̂|Hsig)

p(~d)
. (3.7)

The prior on the sky location, p(Ω̂|Hsig), is naturally chosen to be a uniform distribution,

because there is no reason to a priori prefer particular source locations over others (we are not taking

into account the location of the Virgo Cluster, for example). The likelihood can be based on Eq. 2.25,

assuming data given by ~d = N−1(Ω̂) ~H + ~n, with Gaussian noise ~n characterised by a covariance

matrix Σ. We require a model for the GW polarisations, say H+(~λ) and H×(~λ) with parameters ~λ

(it is intentionally left open for now whether data and model are continuous or discrete, time domain

(TD) or FD, a series or single value; so far, the logic applies to any). The log likelihood is given by:

log(L)(Ω̂, ~λ) = −1

2

(
(~d−N−1 ~H)†Σ−1 (~d−N−1 ~H)

)
+ norm. (3.8)
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The normalisation is not explicitly written, as we will end up computing it numerically when needed

later on. Here the null-stream matrix N (Ω̂) depends on the source sky location and ~H(~λ) is now the

GW model which depends on its parameters ~λ (these dependencies are suppressed above to simplify

the notation).

Eq. 3.8 can be rewritten by strategically inserting some identity matrices of the form I =

N−1N , as follows:

log(L)(Ω̂, ~λ) = −1

2

(
(~d−N−1 ~H)† (N−1N )† Σ−1 (N−1N ) (~d−N−1 ~H)

)
+ norm.

= −1

2

(
(N ~d− ~H)†(N−†Σ−1N−1)(N ~d− ~H)

)
+ norm.. (3.9)

This looks like a Gaussian likelihood for data N ~d, which now depends on Ω̂, a model ~H(~λ) and a

transformed covariance matrix:

Z ≡ (NΣN †)−1. (3.10)

It is mathematically equivalent to Eq. 3.8, but will be computed di�erently in practice. To obtain

the posteriors on the source sky location, as we set out to do in Eq. 3.7, the likelihood has to be

marginalised over the GW parameters ~λ:

p(d|Ω̂,Hsig) = L(Ω̂) =

∫
d~λL(Ω̂, ~λ) p(~λ). (3.11)

To exploit the separation of Ω̂ and ~λ dependencies in the null stream-based likelihood, the marginali-

sation is done while keeping Ω̂ constant, such that the terms involving N only need to be computed

once for each Ω̂.

3.1.3 Application to simulated data

SMBH binary signal

The null-stream construction and likelihoods from the previous section are generally applicable to any

single-source GW, if one has a model for H+ and H×. Here, we speci�cally consider resolvable SMBH

binaries in PTA. Assuming the binaries are circularised and e�ectively monochromatic [20, 92], this

model is given by Eq. 2.7 and Eq. 2.8, including the "mixing" of polarisation states as in Eq. 1.74.

Instead of considering all the binary parameters in the GW model, we consider the amplitude A as

an overall scaling factor (there is always a degeneracy between the distance Dl and chirp massMc in

this model anyway). Then the vector of parameters is ~λ = (A, ι, ψ, ω, φ0), the amplitude, inclination

angle, polarisation angle, angular GW frequency and phase o�set, respectively.
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Frequency domain

One drawback of the null-stream construction is that it requires taking linear combinations of data

from di�erent detectors at the same point in time or frequency. In practice, PTA TOAs are not

obtained at the same time, so using TD data would require interpolation at best, and extrapolation

at worst (some pulsars have been observed since much earlier dates than others). A Fourier transform

(FT) may provide a solution, although some form of interpolation is still required for typical unevenly

sampled PTA data. This was addressed, for example, by [88], who used linear interpolation between

data points. Alternatively, Fourier coe�cients for an arbitrary basis of frequencies can be directly

estimated via a likelihood calculation for any type of data, as demonstrated in [93]. In Sec. 5.1.1,

we discuss applying a straightforward FT to unevenly sampled data. In the following, we make

the simplifying assumption that FD data is available. Simulated data is �rst created in the TD by

sampling with constant cadence ∆t, allowing to compute the FD data with the FFT algorithm [13].

Because this study addresses parameter estimation and not detection, we assume a SMBH

binary has already been detected at known frequency f0. The likelihood computation can be sped up

by restricting the data to only the Fourier component at this frequency. The easiest way to achieve

this is by adjusting the cadence to be a multiple of (nf0)−1, where n is the number of sampled points.

Then, the frequency bin with index f0/∆f = f0n∆t fully contains the signal power. If this convenience

of simulated data is not available, the signal power is spread over multiple frequency bins but can still

be recovered.

The GW model from Eq. 2.7 needs to be adapted to the FD. The FT of the sine and cosine

are delta functions, which, integrated over frequency, have a nonzero contribution at f = −f0 and

f = f0. The TD data is real and so the FD data at negative frequencies are the complex conjugate

of the same values at positive frequencies, allowing us to only use the positive ones. The discrete FT

has an additional factor of 1/∆f = T (the signal power is spread over one frequency bin), such that

the model becomes:

˜̄H+(f = f0) = T
A

4ω0
(1 + cos(ι)2) exp(i(3π/2 + φ0))

˜̄H×(f = f0) = T
A

2ω0
cos(ι) exp(i(π + φ0)). (3.12)

The mixing with the polarisation angle ψ from Eq. 1.74 and the amplitude A from Eq. 2.8 are

una�ected.
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Analytical and numerical marginalisation

The null-stream likelihood constructed in Eq. 3.9 for a generic set of data points ~d can be easily

applied to our choice for simpli�ed FD data. Because the only non-zero contribution is at f = f0,

the data vector (before applying N ) can be replaced by a single point d̃(f0) ≡ d̃0. The complete

model for N d̃0 is ζ̃0 = (H̃+
0 , H̃

×
0 , 0, . . . , 0), a vector of length P (the subscript 0 indicates the quantity

is evaluated at f = f0). The model's null-stream entries are zero, as is the expectation for the null

streams constructed using the "correct" sky location. Then the marginalised (see Eq. 3.11) likelihood

is:

L(Ω̂) = norm.

∫
d~λ exp

[
−1

2

(
(N d̃0 − ζ̃0)†Z−1(N d̃0 − ζ̃0)

)]
. (3.13)

There is a trick that can be applied to analytically marginalise over the phase φ (assuming a

uniform prior p(φ0) ∈ [0, 2π]) [e.g. 94]. It applies whenever the model can be written as A0 exp(iφ) for

some A0, which is true for Eq. 3.12 (and trivially true for all zeros in ζ̃0). The marginalised likelihood

(without normalisation), is:

L(Ω̂, A, ι, ψ) =

∫ 2π

0

dφ0 L(Ω̂, A, ι, ψ, φ0) p(φ0)

∝ exp

[
−1

2

(
(N d̃0)†Z−1(N d̃0) +A†0Z

−1A0

)]
× I0

[
(N d̃0)†Z−1A0

] ∣∣∣∣∣
φ0=0

, (3.14)

where I0 is the modi�ed Bessel function of the �rst kind. The other GW parameters � A, ι and ψ �

cannot be marginalised analytically. We therefore integrate the above likelihood numerically with �at

priors for ψ in the range 0− π and A in the range 0− 10−12. The prior for the inclination is uniform

in cos ι, from -1 to 1.

3.2 Results: sky-localisation performance

To investigate the performance of our localisation method, we ran a set of simulations in which a

signal according to the SMBH binary model (Eq. 3.12) is injected into a noise realisation. The

method described in the previous section can, in principle, be used in conjunction with any noise

model by specifying the covariance matrix Σ (in the FD, or by transforming a TD covariance matrix).

Here we do not aim to model realistic noise, and use only white noise simulated in the TD (see also

Eq. 3.15), which remains white in the FD as well.

The marginalised likelihood (as in Eq. 3.13) is then computed at each point in a grid of sky
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locations. This grid consists of 12,288 equal area pixels made using the HEALpix algorithm [12] via

healpy3. Because the likelihood was not normalised to begin with, this is now done numerically

(dividing each pixel value by their total sum). As a measure of localisation precision, we de�ne Ω90 as

the minimum sky area that contains 90% of the posterior on Ω̂ (or 90% of the likelihood, given a �at

prior on the sky position). This quantity can be expressed as a fraction (or percentage), or in square

degrees (since the whole sky is 4π sr. ≈ 4.1× 104 deg2). From the sky grid of likelihood values, Ω90 is

easily computed by ordering the pixels by decreasing likelihood and computing the cumulative sum;

the fraction of pixels needed to reach 90% is Ω90.

Simulations were carried out with a varying number of pulsars P in the simulated PTA, and over

a range of S/N. We chose the values P = 3, 5, 10, 20, 30, 50 and 100. 3 is the very minimum number

of pulsars needed to construct at least one null stream, and 50 is about the number of pulsars in the

IPTA DR1 [11]. However, IPTA pulsars are not all equally good timers and most of the information

is carried by ∼10 pulsars with the smallest noise rms. In this respect, P = 50 is more comparable to

what might be achieved in the future with the addition of SKA [50] and ngVLA [51].

The set of S/N values used is 1 − 10, 15, 20 and 30. This is the cumulative S/N in the PTA,

i.e. summed over the pulsars:

ρ2 =
P∑
p=1

n∑
i=1

r2
i,p

σ2
p

. (3.15)

Here, {ri,p} with i ∈ {1, . . . ,n}, is the time series of n residuals from pulsar p. The noise model

consists of white noise in the residuals with rms σp for each pulsar (which corresponds to
√

n∆tσp in

the FD). Here4, all σp are set to 100 ns. To adjust the S/N to a desired value, the overall amplitude

A of the injected signal is varied.

For each pair of P and S/N values, 10 simulations were performed injecting a source at θ = π/2,

φ = 0, with a frequency of 20nHz, and pulsars at randomised locations (with a uniform prior over

the sky). These random choices are seeded such that for a given P, for each S/N the same 10 PTA

con�gurations are used. The injected signals are for optimally oriented sources with ι = 0 and ψ = π/8.

n = 300 data points were simulated with a cadence of 106 s, such that the data contain 6 full cycles

of the signal.

3healpy.readthedocs.io
4 A more sophisticated noise model could be implemented by using a covariance matrix Σ and taking the product

riΣ
−1
ij rj .
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3.2.1 Scaling with signal-to-noise ratio at �xed P

We investigate the sky localisation as a function of the two main parameters identifying the detection,

namely the S/N and the number of pulsars in the array, P. First, P is �xed while varying S/N, and in

the following Sec. 3.2.2, S/N is �xed while varying P. In Fig. 3.2, the results for P = 3, 10 and 100 are

shown with points indicating the mean Ω90 of 10 simulations for each combination of P and S/N, with

error bars showing the span of results (from minimum to maximum). At low S/N, Ω90 is limited to

90% of the sky, as there is little or no information gained from the data. For 5 < ρ < 10, data become

informative and the sky localisation rapidly improves, eventually converging to a Ω90 ∝ ρ−2 relation

at high S/N. This behaviour is expected; at high S/N the likelihood surface can be approximated by a

multivariate Gaussian around the true value of the source parameters [95]. Parameter determination

then follows the theoretical scaling ∆λ ∝ ρ−1. Sky localisation is given by a combination of the

two angle parameters θ and φ (or equivalently right ascension and declination), such that the scaling

Ω90 ∝ ρ−2 is recovered.

Figure 3.2: Fraction of the sky area containing 90% of the likelihood (Ω90) versus PTA total S/N.
Points show the mean value of a set of 10 simulations with randomly placed pulsars, and error bars
show the total span of values (minimum to maximum). A power law of Ω90 ∝ ρ−2 is �tted to the last
three points in each curve and plotted as a dashed line. For visibility, only P = 3, 10 and 100 pulsars
(green circles, blue triangles and orange diamonds, respectively) are included here; Fig. 3.3 shows all
curves without error bars.

.

In the region around S/N from ∼5 to ∼10, a transition occurs between the two regimes (from

non-informative to informative data). In Fig. 3.3, the means of the 10 runs for all values of P are
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3.2. RESULTS: SKY-LOCALISATION PERFORMANCE

Figure 3.3: Top panel: Fraction of the sky area containing 90% of the likelihood (Ω90) vs PTA total
S/N, as in Fig. 3.2. Bottom panel: The spread in results of 10 simulations, computed as the standard
deviation normalised by the mean. Dashed lines show values obtained with a re-run of 100 realisations
per combination of P and S/N (as veri�cation).

plotted, along with the normalised standard deviation, ∆Ω90, in the bottom panel (normalised meaning

divided by the mean of the corresponding set). During the transition, the mean Ω90 behaves similarly

for all P, but ∆Ω90 stands out as being much larger for larger P. An explanation is that for low P

the sky localisation is still quite poor during the transition; regardless of the pulsar con�guration,

Ω90 contains a signi�cant fraction of the sky. This is illustrated by the example sky maps in Fig. 3.6,

showing Ω90 for all 10 random PTAs with P = 3 and S/N= 7. Conversely, for large P, the information

carried by the data in the transition region strongly depends on the speci�c pulsar locations. This is

exempli�ed by the sky maps with P = 30, S/N= 7 in Fig. 3.7. When some pulsars are placed close

to the source (e.g. the �rst panel), the source sky location is determined to relatively high precision

despite the relatively low S/N= 7. On the other hand, when there are no pulsars located close to the

source (e.g. the third panel), sky localisation is poor and Ω90 can span a signi�cant portion of the

sky.
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3.2. RESULTS: SKY-LOCALISATION PERFORMANCE

3.2.2 Scaling with P at �xed signal-to-noise ratio

The mean Ω90 (from 10 runs) as a function of P is shown in Fig. 3.4 for all S/N. For S/N . 6, data are

not informative and there is little dependence of the sky localisation on P. As data become informative

for S/N & 7, sky localisations appears to bene�t from increasing P. For P & 9, the improvement in

sky localisation precision is well approximated by Ω90 ∝ P−1/2, especially for the few highest S/N

values.
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Figure 3.4: Fraction of the sky area containing 90% of the likelihood (Ω90) vs number of pulsars P in
the simulated PTA. Each point is the mean value of 10 random realisations of a PTA with total S/N
as indicated in the inset label. A power law Ω90 ∝ P−1/2 is �tted to each curve, ignoring the �rst two
points (N = 3, 5).

A possible explanation for this scaling behaviour can be given by the average (over random

PTA realisations) angular distance of the closest pulsars to the source. The expected angular distance

between the line of sight to the source and the closest pulsar scales as P−1/2 (for uniform randomly

distributed pulsars). These closest pulsars contribute most to the sky localisation (the antenna patters

are modulated on the smallest scales close to the pulsar). This conclusion is however not trivial and

would need to be tested with P > 100. First, sky localisation depends on the complex interplay of the

antenna beam patterns of all the pulsars contributing to the array. Second, if the total S/N is kept

constant, not only does the distance to the closest pulsar scale with P−1/2, but the S/N contributed

by each individual pulsar decreases, so that the Ω90 ∝ P−1/2 scaling is not obvious. In any case,
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3.2. RESULTS: SKY-LOCALISATION PERFORMANCE

our systematic study indicates that for foreseeable future detections (involving a realistic number of

pulsars up to 100 and S/N in the range 6-to-30), Ω90 ∝ P−1/2 provides a good empirical �t to the

sky-localisation scaling.

3.2.3 Dependence on source orientation

So far we have considered optimally oriented sources, i.e. face on systems for which the two wave

polarisations equally contribute to the signal (ψ = π/8), resulting in a circularly polarised wave. In

this case the polarisation angle only a�ects the initial phase o�set of the injected signal ( ˜̄H+ and ˜̄H×

from Eq. 3.12 only di�er by a constant phase). Although the sky-localisation scaling obtained in the

previous sections is expected to hold for any source inclination and polarisation, the normalisation

of Ω90 may depend on those quantities. To assess this dependence, we proceed as follows. We �x

a PTA of 10 pulsars and a source location in the sky. We then perform 100 simulations picking

the source parameters from a 10×10 uniform grid in inclination ι and polarisation ψ. The former is

chosen from cos(ι) ∈ [0, 1] ranging from an edge-on to a face-on source, not including the equivalent

orientations facing the other way (cos ι < 0). Similarly, the polarisation is chosen from ψ ∈ [0, π/2),

to avoid degeneracy with φ0 at ψ > π/2 (the closed range means the �nal bin falls at 9π/20). For this

particular experiment, we used noiseless data.

The bottom right panel of Fig. 3.5 shows the resulting Ω90 on each point of the aforementioned

grid. The bottom left and top right panels show Ω90 averaged over the inclination and polarisation

angle, respectively. Firstly, there is essentially no dependence of Ω90 on ι and ψ so long as the former

is smaller than ∼π/3. This includes about 50% of all binaries, assuming a uniform-on-the-sphere

distribution of ι. Secondly, the average sky localisation degrades for ι > π/3. However, compared

to the reference value of Ω90 = 0.028 for the face-on case, the worst ι − ψ combination results in

Ω90 = 0.046, which is a factor 1.6 worse. The average sky localisation of all the orientations with

ι > π/3, is only a factor 1.2 worse than the face-on case. We therefore conclude that the sky-

localisation �gures presented in Sec. 3.2.1 and 3.2.2 are a fair representation of PTA capabilities for

general SMBH binaries.

3.2.4 Comparison with previous results

We compare our results to two previous studies that systematically investigate sky-localisation pre-

cision as a function of the number of pulsars and/or S/N [20, 92]. In [20], Sesana & Vecchio (S&V)
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Figure 3.5: Distribution of sky localisations (Ω90) obtained with varying inclination ι and polarisation
ψ angle of the source. Top left: Normalised histogram of Ω90 of all 100 runs. Top right: Distribution of
Ω90 for varying inclination (averaged over ψ). Bottom left: Distribution of Ω90 for varying polarisation
angle (averaged over ι). Bottom right: All Ω90 shown as a colour plot for the grid of 10×10 polarisation
and inclination values used.

investigated sky localisation of individual sources with PTA using the Fisher Matrix formalism. The

main result is shown in their Fig. 7, where the sky-localisation precision, ∆Ω, is plotted against S/N

and number of pulsars. Although results are overall compatible, there are several di�erences that are

worth highlighting.

First, since they employ the Fisher Matrix formalism, S&V �nd a perfect ρ−2 scaling down to

S/N= 5. Our more realistic approach shows that this scaling kicks in only for S/N& 10, whereas for

lower values, sky-localisation performances are much poorer. For example, at S/N= 5 our simulated

PTAs have essentially no localisation power and even at S/N= 7, typical performances are a factor

of ∼3 worse than the ρ−2 extrapolation predicts. This point is of particular relevance because a

PTA signal builds up slowly over time, which means that the �rst con�dent single-source detection

will necessarily have low S/N. PTAs will therefore have limited capabilities to determine the source

parameters in the early stages of detection.

Second, S&V found that the P−1/2 scaling does not hold in general. Their Fig. 7 shows that the

sky-localisation improvement �attens out for P > 100, even though P−1/2 might provide a reasonable

�t in the 10 ≤ N ≤ 100 range investigated in this work. It is likely that a saturation point is reached

when the average contribution to the S/N of the closest pulsars is of order 1. At that point, the signal
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3.2. RESULTS: SKY-LOCALISATION PERFORMANCE

added in each pulsar (if we keep the total S/N �xed) will be below the typical noise level, and no

information about the source sky localisation can be gained.

Third, the overall normalisation of the sky-localisation performance is di�erent. For P = 100

and S/N= 10, S&V �nd a median ∆Ω ≈ 40deg2, to be compared to our value of about 200deg2.

This is partly due to the di�erent de�nition of ∆Ω, which in their study is the region of the sky with

probability e−1 ≈ 0.63 of hosting the source. For a multivariate Gaussian likelihood surface, this

area is a factor 2.3 smaller than that enclosing the 90% probability that we use. The equivalent 90%

probability region of S&V is therefore ≈100deg2, which is only a factor of two smaller than what we

�nd. Fisher Matrix calculations provide a limit to the obtainable sky-localisation precision. Even for

P = 100 and S/N= 10, we �nd that the likelihood function is highly non-Gaussian, resulting in a

somewhat worse localisation performance compared to the theoretical limit.

In [92], Taylor et al. (THGW) constructed a Bayesian pipeline for detection and parameter

estimation of eccentric binaries and carried out a systematic investigation of parameter errors as a

function of S/N. Although the addition of eccentricity increases the complexity of the problem, we do

not expect this parameter to couple with the sky localisation, and their results should be comparable

with ours. The relevant result for comparison is reported in THGW Fig. 9, which shows ∆Ω as a

function of S/N for a PTA of 18 pulsars. This PTA is based on the properties of the data used for the

NANOGrav 9-year upper limit on the SB [96]. The trend of ∆Ω with S/N is very similar to what we

found, showing an initial 'transition phase' up to about S/N≈ 8, then settling into the ρ−2 behaviour

predicted in the strong signal limit. The overall normalisation of the curve is also comparable. At

S/N= 20, THGW �nd a 95% probability region (Ω95) of ≈500deg2, which is a factor of a few bigger

than Ω90 as shown in our Fig. 3.2 for 10 and 20 pulsars, but comparable to the 5 pulsar case. This

is likely due to the fact that the 18 pulsars THGW use are not randomly distributed in the sky and

have di�erent noise rms, therefore only the few best contribute signi�cantly to the sky localisation.

Overall, we deem our results to be in agreement with those in [92].
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3.2. RESULTS: SKY-LOCALISATION PERFORMANCE

Figure 3.6: Sky maps of 10 di�erent PTA con�gurations with 3 pulsars, at a total S/N of 7. The
injected source is always located in the middle of the map and indicated with a circle marker. The
positions of the pulsars are marked with stars. Pixels not contributing to Ω90 are masked in grey. Ω90

ranges from 0.128 to 0.469 (∆Ω90 = 0.563 dex).
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3.2. RESULTS: SKY-LOCALISATION PERFORMANCE

Figure 3.7: Sky maps of 10 di�erent PTA con�gurations with 30 pulsars, at a total S/N of 7. The
injected source is always located in the middle of the map and indicated with a circle marker. The
positions of the pulsars are marked with stars. Pixels not contributing to Ω90 are masked in grey. Ω90

ranges from 0.0082 to 0.575 (∆Ω90 = 1.84 dex).
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3.3. IMPLICATIONS FOR EXISTING PULSAR TIMING ARRAYS

3.3 Implications for existing Pulsar Timing Arrays

The null-stream formalism developed in this work can be used to assess sky-localisation capabilities

of current PTAs. In the previous section, we demonstrated the bene�cial e�ect on sky localisation of

higher S/N and larger number of pulsars. The obvious way to increase S/N and number of pulsars

is to combine individual PTA data sets under the umbrella of the IPTA. In this section we therefore

focus on the potential gain in individual source localisation by creating IPTA data sets.

With the aforementioned goal in mind, we need to compare the capabilities of an IPTA data

set to those of the individual PTA data sets that went into its production. The only o�cial IPTA DR

to date is IPTA DR1 [11]5. The relevant DRs are therefore:

� EPTA DR1 [42], consisting of 42 millisecond pulsars (MSPs) monitored with radio telescopes at

E�elsberg, Jodrell Bank, Nancay and Westerbork;

� the extended PPTA DR1 [45], consisting of 20 MSPs monitored with the Parkes radio telescope;

� NANOGrav 5-year DR [81], consisting of 17 MSPs, monitored with the Arecibo and Green bank

radio telescopes;

� IPTA DR1 [11], consisting of the combination of the three aforementioned data sets, for a total

of 49 MSPs.

Several MSPs are monitored by multiple regional PTAs, and so the number of MSPs in IPTA does

not correspond to the sum of those in the regional ones. By combining pulsar data sets, however,

IPTA features more high quality pulsars than the regional PTAs. We also stress that the chosen DRs

are the ones that were used to build IPTA DR1, and not necessarily the most recent regional PTA

DRs, which is the meaningful thing to do given our aim to assess the bene�t of combining PTA data

speci�cally.

The current implementation of our technique permits the use of a di�erent noise rms and sky

location for each individual pulsar, but is only applicable to evenly sampled data spanning the same

observation time. The PTA data set properties therefore need to be modi�ed, keeping as close as

possible to the originals. For each PTA we compute an average data set length (observation time) T̄

as

T̄ =
1

P

P∑
p=1

Tp, (3.16)

where the index p runs over all pulsars in the array and Tp is the data set length of the p-th pulsar.

5 At the time of writing of this study. IPTA DR2 was released in late 2019 [33].

68



3.3. IMPLICATIONS FOR EXISTING PULSAR TIMING ARRAYS

PTA P n̄ T̄ [yr] S/N Ω90[deg2] R R̃
EPTA 42 592 12.7 19.4 4492 22.0 3.3
PPTA 20 186 6.3 21.8 949 5.0 2.2

NANOGrav 17 50 4.8 8.0 14172 102.2 18.8
IPTA 49 1401 11.1 28.7 167 � �

Table 3.1: For each PTA, we list the number of pulsars P, the average number of TOAs per pulsar n̄
and the average data set length T̄ . Also listed are the performances of each PTA for a face on source
with A = 10−13.5 averaged over position in the sky: S/N, sky localisation Ω90, and improvement
factors R and R̃ of IPTA compared to regional PTAs (see text for details).

Likewise, we compute an average number of TOAs per pulsar n̄ as

n̄ =
1

N

N∑
p=1

np, (3.17)

where np is the number of TOAs of the p-th pulsar in the array. n̄ is rounded to the next integer.

The values of T̄ and n̄ for each PTA are given in Table 3.1. Individual pulsar locations and noise rms

values are used as reported in [42] (their Table 1 under rms) for EPTA, in [44] (their Table 7 under

Rms res.) for PPTA, in [81] (their Table 2 under rms) for NANOGrav, and in [11] (their Table 4

under Residual rms) for IPTA.

Now that we have speci�ed the properties of the PTAs, we conduct our experiment by consid-

ering a face-on circular SMBH binary producing a monochromatic signal with frequency f = 20nHz

and amplitude A = 10−13.5, well within the reach of all PTAs. We place the source in turn at 48

di�erent points in a grid over the sky and use the null-stream technique described in Sec. 3.1 to com-

pute the Ω90 sky localisation. The resulting map of Ω90 values is an impression of how well the PTA

would perform at localising a source placed across the sky (without taking into account the varying

probability of detecting a source at di�erent sky locations).

Results are presented in Fig. 3.8, where colour maps have been interpolated from the Ω90 values

at 48 grid points. Firstly, the uneven pulsar distribution in the sky results in a very source-position-

dependent sky-localisation precision. This is particularly true for EPTA and NANOGrav that have

localising power mostly in the left side of the map, where all the best pulsars are concentrated, but it

still holds for PPTA and IPTA to a lesser extent.

Secondly, the sky-localisation performance di�ers between PTAs. Due to the limited number

of good pulsars and of the short data span, the NANOGrav 5-year DR performs poorly. EPTA and

PPTA on the other hand have comparable capabilities, although the latter performs better in the right
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Figure 3.8: Ω90 as a function of source sky location for IPTA, EPTA, PPTA and NANOGrav
(f.l.t.r. and f.t.t.b.). The simulated PTAs are approximates of the IPTA DR1 and its constituent
data sets: EPTA DR1, the extended PPTA DR1 and the NANOGrav 5-year DR (see text for de-
tails). The maps are interpolated from 48 pixels for which a value of Ω90 was obtained by placing
a source with a �xed amplitude (1.0 × 10−13.5) in the middle of that pixel. Contours are plotted at
Ω90 = 20, 50, 100, 200, 500 and 1000 deg 2.

half of the map. The IPTA gives the best localisation overall. The injected source can be localised

to better than 20deg2 over a region of the sky of about 3500deg2, whereas a comparable precision is

achieved only by EPTA, on a smaller region of < 1000deg2. Overall, IPTA can locate the source to

better than 500deg2 regardless of its sky location and to better than 200deg2 over two thirds of the

sky. For comparison, PPTA can locate the source to better than 500deg2 in about half of the sky,

and in some regions localisation is worse than 2000deg2. On average, IPTA can localise the source

within 167deg2 whereas the averages for EPTA, PPTA and NANOGrav are 4492deg2 949deg2 and

14172deg2, respectively (see also Table 3.1).

We can de�ne a relative improvement factor of IPTA sky localisation with respect to a regional
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PTA as a function of the source location Ω̂ as

RX(Ω̂) =
Ω90,X(Ω̂)

Ω90,IPTA(Ω̂)
, (3.18)

where X stands for EPTA, PPTA or NANOGrav. This relative improvement is shown in Fig. 3.9.

Compared to the best individual PTA data set (PPTA), sky localisation improves by more than a

factor of two virtually everywhere in the sky, and up to a factor of ten in some regions, con�rming

the superior performance of IPTA.
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Figure 3.9: The top left panel is the same as in Fig. 3.8. The remaining panels show the improvement
factor RX(Ω̂) of IPTA compared to EPTA, PPTA and NANOGrav (see de�nition in the main text
and Eq. 3.18). The maps are interpolated from 48 pixels, as in Fig. 3.8. Contours are plotted at
RX(Ω̂) = 2, 5, 10, 20, 50 and 100.

As shown in Sec. 3.2, the sky localisation naturally improves as ρ−2, but also (although to a

lesser extent) as more pulsars are added to the array, even when keeping the total S/N �xed. We

therefore investigate whether the improvement of IPTA compared to regional PTAs goes beyond the

expected S/N scaling. We de�ne the sky dependent 'S/N-gain-normalised' improvement factor R̃X(Ω̂)
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as

R̃X(Ω̂) = RX(Ω̂)×
(

ρX
ρIPTA

)2

. (3.19)

By normalising R with the square of the S/N ratios, R̃ quanti�es the improvement brought by the

better IPTA sky coverage.

Results are shown in Fig. 3.10 and highlight that IPTA bene�ts indeed go beyond the S/N

increase. The threshold value of R̃ = 1, indicating improvement is exactly as expected from the S/N,

is surpassed by all regional PTAs in most of the sky. Exceptions (which may show that the theoretical

S/N scaling is not yet achieved by these examples in the moderate-S/N regime, or may be due to

numerical inaccuracy) are a fourth, a sixteenth and a forty eighth of the sky for PPTA, EPTA and

NANOGrav, respectively. These are the areas where sky localisation is best for the regional PTAs.

15

20

30

40

40

30

IPTA

10 20 30 40 50
SNR

12

5

10

5
2

10

55

10

EPTA

10 1 100 101 102

improvement / SNR2
ratio

1

1

2

1

2 2

5

10

5

2

PPTA

10 1 100 101 102

improvement / SNR2
ratio

1
2

10
5

5

10

10
5

5

NANOGrav

10 1 100 101 102

improvement / SNR2
ratio

Figure 3.10: The top left panel shows the source S/N as a function of sky location in the IPTA.
The remaining plot show the "S/N-gain-normalised" improvement factor R̃X(Ω̂) of IPTA compared
to EPTA, PPTA and NANOGrav (see de�nition in the main text and Eq. 3.19). The maps are
interpolated from 48 pixels, as in Fig. 3.8. Contours are plotted at a value of R̃X(Ω̂) = 1, 2, 5, 10
and 20.
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In all cases, gain factors of up to 10 are found in parts of the sky, where the bene�cial e�ect

of better sky coverage of IPTA is maximised. Averaged over the sky, R̃ = 3.3, 2.2, 18.8 for EPTA,

PPTA and NANOGrav respectively, certifying the bene�ts of IPTA data combination. We remark

that the great improvements compared to NANOGrav are simply because only their 5-year data set

was included in IPTA DR1. Repeating the analysis for IPTA DR2 [33], which includes the NANOGrav

9-year DR, will allow the veri�cation of the bene�ts of IPTA when combining data sets of more com-

parable quality.

We caution that these results have been obtained by using an average timespan and sampling

rate for all pulsars of each speci�c array. In practice, PTA data are not evenly sampled and the

timespan of observations varies from pulsar to pulsar. Although the methods would certainly be

more complicated, we expect that using more realistic PTA data would only have a minor impact on

our conclusions about the localisation potential of the PTAs. We have considered typical resolvable

sources at a frequency of 20nHz, which is well within the sensitivity band of PTA whether the data is

evenly or unevenly sampled. Furthermore, although the cadence and timespan of individual pulsars

are di�erent, they usually lie within a factor of two of the average values that we assumed in Ta-

ble 3.1, suggesting that by using the actual TOA timestamps of each pulsar we should reach similar

conclusions. Nonetheless, it is important to verify these expectations by employing an algorithm that

can handle the complexity of more realistic data sets, an extension that we plan to explore in future

work.

3.4 Conclusions

In this chapter, we have introduced a general mathematical description for the construction of null

streams from the response to a resolvable PTA signal. This method is general, works both in the TD

and FD and can be applied to any deterministic waveform. We then provided a Bayesian framework to

extract the source parameters by exploring the likelihood given by the comparison of the constructed

null streams and theoretical model. As proof of concept, we applied our method to the special case

of a monochromatic source generated by a circular SMBH binary, considering the Earth term only

in the PTA response function. We used this setup to carry out a systematic investigation of PTA

sky-localisation capabilities as a function of the array parameters using the sky region containing 90%

of the source location likelihood distribution (Ω90) as �gure of merit.
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We found that for S/N & 10, Ω90 scales as ρ−2, as expected from theoretical arguments in the

high S/N limit. However, we �nd that at low S/N this scaling breaks down, and the source cannot

be well-localised. A transition between the two regimes is found for 5 . S/N . 10, in which the Ω90

improvement is much steeper than the theoretical scaling. Ω90 is also found to scale as the inverse

square root of the number of pulsars in the array P−1/2, at least for 10 < P < 100 and S/N & 8.

As a reference point, the median Ω90 for a source observed with S/N = 10 in an array of 100 equal

MSPs randomly distributed in the sky is about 200deg2. These results are generally consistent with

previous �ndings based on Fisher Matrix calculation, although there are signi�cant di�erences in the

5 < S/N < 10 transition region and in the Ω90 normalisation.

We then used our formalism to investigate the sky-localisation capabilities of regional PTAs

compared to IPTA. We found that the bene�ts of combining data in the IPTA DR go beyond the

mere gain in S/N due to the accumulation of a larger amount of data. When normalised by expected

S/N gain, IPTA is found to perform a factor between ∼2 and ∼20 better than regional PTAs. This is

because combining PTA data provides a better sky coverage and increases the number of high quality

pulsars that contribute informative data to the detection. These �ndings demonstrate that combin-

ing regional data under the IPTA umbrella maximises the scienti�c potential of PTAs as GW detectors.

The framework we applied in this study can be improved in several ways and extended to

study a number of problems relevant to PTA data analysis. In particular, our current implementation

requires that data are taken at simultaneous times in all pulsars if working in the TD, or that data can

be reliably transformed to the FD. One of our primary future goals is to develop an implementation

that can handle arbitrary data sets, with unevenly sampled data, gaps, and di�erent time spans, thus

allowing the assembly of a pipeline that can be applied to real data6.

We also considered only the Earth term of the signal which may or may not be appropriate for

the loudest SMBH binaries, as shown in [22]. If the frequency of the pulsar and Earth term cannot be

separated, then, while the Earth terms may still be cancelled by the null-stream method, there will

remain a contribution from the pulsar terms. This could be treated as excess unmodelled noise, or

may be modelled explicitly by introducing an additional amplitude and phase term for each pulsar.

E�cient methods exist to either maximise or marginalise the calculation over these parameters, as

shown for example by [89] and [97], and this is another avenue for improving our method.

6This will be addressed in Chapter 5
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Of great interest is also the expansion of the formalism to treat the cases of multiple determin-

istic sources and stochastic GW backgrounds. Besides the determination of source parameters, the

null-stream formalism provides a powerful tool to validate candidate GW signals and assess detection

signi�cance, a possibility that we want to explore in the context of Bayesian model selection.
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Chapter 4

Paper II: Associating host galaxy

candidates to massive black hole

binaries resolved by Pulsar Timing

Arrays

"Gravitational Wave Astronomers Hit Mother Lode."

Scienti�c American on GW170817
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4.1. MULTI-MESSENGER ASTRONOMY WITH PULSAR TIMING ARRAYS

Having developed a method to localise resolvable PTA signals, it is interesting to look at the

possibility to identify the galaxy that hosts the signal's source. In this chapter, we present a method

to rank candidate host galaxies. This work has previously been published in [4], and most of the text

and �gures have been adapted from there (see Declaration for details.)

4.1 Multi-messenger astronomy with Pulsar Timing Arrays

Multi-messenger astronomy with GWs � speci�cally, observing the same object with both GWs and

electromagnetic (EM) radiation � is a powerful tool for understanding the Universe. The �rst example

of this was the coalescence of a binary neutron star (BNS), observed as GW170817 by LIGO+Virgo

[25] and as a bright EM signal at all wavelengths [98]. These observations con�rmed theoretical models

� the connection between short gamma ray bursts and BNS mergers [99] and the synthesis of heavy

elements through r-processes [100] � and opened up the door for cosmology using BNS mergers as

standard sirens [101, 102, 103]. All of this has been achieved thanks to the sky localisation (∼31deg2)

and distance information provided by LIGO+Virgo, an intense follow-up campaign, and the presence

of a bright EM counterpart that could easily be distinguished from other candidates.

Given the anticipation of detecting individual sources with LISA and PTAs, there is also

potential for multi-messenger astronomy at lower GW frequencies. The main candidate for these

resolvable sources are (super) massive binary black holes, which � unlike a BNS � do not necessarily

have an EM counterpart. It is however possible that a signature could be detected from the gas

that accretes onto the binary during inspiral. Although it is not clear exactly what that signature

would look like [see, e.g. 104], a range of possibilities have been proposed, from periodicity [e.g. 105] to

peculiar features [e.g. 106] and EM chirps [e.g. 107, speci�cally for LISA]. If PTAs observe an individual

SMBH binary in the near future, three main di�erences between this detection and GW170817 will

make �nding the EM counterpart more di�cult: First, the sky localisation is expected to be relatively

poor (of order ∼100deg.2 [20, and Sec. 3.2]). Second, the GW is likely to be monochromatic (on the

timescale of observations) which means there is no measurable chirp to break the degeneracy between

the source mass and distance. Last, the long period of PTA signals (or order years) makes it more

di�cult to identify the host galaxy in relatively short observations [105, 106, 108].

It is therefore crucial to �nd a way to identify the most promising host galaxy candidates

among the millions of objects falling within the source sky location error-box. In this paper, we

develop a Bayesian framework to identify the most likely hosts by matching the information contained
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in a hypothetical PTA detection to candidate galaxy properties. The key point around which our

analysis is built is that individually resolvable sources in the PTA band necessarily have a large strain

amplitude A [22, 109], which can result only from particularly massive and/or nearby binaries (see also

Sec. 2.2.1). This method allows us to exclude most candidate galaxies in the sky error box, providing

a shortlist for further investigation.

To demonstrate our method, we simulate PTA data with an injected GW signal based on the

expected properties of the �rst single source to be detected by PTA, using the procedure from [22].

The null-stream analysis from the previous Chapter 3 is adapted to compute a three-dimensional

likelihood of the signal amplitude A, and source location θ, φ. For the galaxies, we use a mock

catalogue extracted from the synthetic all-sky maps made by [110] from the Millennium Simulation

[111] , which is complete enough so no viable candidates are missed (for details on the mock catalogue,

see Sec. 4.3.3). We then rank these galaxies using our Bayesian framework. If applying our method

with a future detection using real, observational catalogues, completeness may be an issue, but this

does not a�ect the assessment of the method in this work.

The chapter is organised as follows. In Section 4.2 we lay out the mathematical basis of our

experiment, including the construction of a likelihood from null-streams and the Bayesian framework

for the computation of a host galaxy probability. This framework is then applied in Section 4.3 to

a number of representative simulations with results laid out in Section 4.4 and the main conclusions

and outlook presented in Section 4.5.

4.2 Mathematical framework

4.2.1 Signal model and null-stream sky localisation

We consider a signal from a circular, monochromatic-during-observation SMBH binary as in the

previous Chapter (Sec. 3.1.3), with the GW model given by Eqs. 2.7, 2.8 and 1.74. Because the chirp

mass Mc and distance Dl are degenerate, we still consider the amplitude A as a parameter on its

own for the purposes of computing the likelihood. However, to relate it to the galaxies' properties,

the de�nition of A given in Eq. 2.8 becomes important:

A ≡ 4

Dl

(
GMc

c2

)5/3(
πf

c

)2/3

. (4.1)

79



4.2. MATHEMATICAL FRAMEWORK

As in Eq. 2.8, the amplitude is expressed in the frame of the observer. This meansMc is the redshifted

chirp mass, which is related to the intrinsic source component masses, M1 ≥M2, as:

Mc = (1 + z)M(src)
c = (1 + z)

(M1M2)3/5

(M1 +M2)1/5
, (4.2)

and Dl is the luminosity distance:

Dl = (1 + z)DH

∫ z

0

dz′

E(z′)
. (4.3)

In the above, z is the source redshift,DH = c/H0 (the Hubble distance) and E(z) =
√

ΩM(1 + z)3 + ΩΛ,

with ΩM and ΩΛ being the fractional mass and cosmological constant energy content and H0 the Hub-

ble constant. (We assume a standard �at ΛCDMUniverse with ΩM = 0.308 and H0 = 67.8kms−1Mpc−1

from the Planck 2015 results [54]).

To extract information from our simulated data, we use the null-stream-based likelihood con-

structed in the previous chapter, Eq. 3.9. Now marginalising over one fewer parameter yields the

likelihood L(A, θ, φ) (see Sec. 4.3.2 for details on parameter sampling). An example output is given

in Fig. 4.1. The following method for host galaxy selection takes a generic input L(A, θ, φ), and so

could be used in conjunction with any method for sky localisation and obtaining the likelihood for A.
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Figure 4.1: Example of L(A, θ, φ) as output by the null-stream pipeline from Chapter 3. The injected
signal is for our chosen source A, with S/N = 12 (see Section 4.3).
Top: Likelihood marginalised over amplitude A (i.e. L(θ, φ), with an arbitrary normalisation). The
IPTA pulsars are marked with stars, where the size of the star corresponds to the noise level of the
pulsar (with bigger stars for lower noise). The yellow cross indicates the position of the injected
source.
Bottom: L(A|θ, φ) at the source position (θs, φs) (in black) and at some o�set positions (θs, φs + ∆)
(in blue). The likelihoods are normalised only with respect to each other. The red dashed line is
placed at the injected amplitude value.
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4.2.2 Bayesian inference for galaxy host

Our goal is to combine the likelihood information L(A, θ, φ) with individual galaxy properties to

assess the probability of each given galaxy to be the host of the detected GW source. To formalise

the question: given the detection of a signal with 3-D likelihood described by L(A, θ, φ), what is

the probability that a galaxy Gi described by a set of observed parameters ~λ � known with prior

probability p(~λ|Gi) � is the host of the signal source? Answering this requires a theoretical model

that connects the strength and location of a putative GW signal to observable galaxy parameters.

Since SMBH binaries reside in the centres of galaxies, the sky coordinates of each speci�c galaxy

(θG, φG) coincide with the sky coordinates of the putative GW source. We therefore have θG = θ

and φG = φ. Furthermore, we see from Eqs. 4.1 and 4.2 that the GW amplitude A depends on the

source chirp mass M(src)
c and luminosity distance Dl. The latter can be measured from the galaxy

spectroscopic redshift � or with a larger error, from the photometric redshift � by assuming a �ducial

cosmology. M(src)
c can be written in terms of the total binary mass M , and mass ratio q = M2/M1

(with M1 ≥ M2) as: M(src)
c = Mq3/5/(1 + q)6/5. We can assume the total mass to be related to the

bulge mass via an M −Mb-relation of the form [10]

log10

(
M

M�

)
= α+ βlog10

(
Mb

1011M�

)
, (4.4)

which connects the total binary mass to the observable galaxy bulge stellar mass Mb. If we group the

M −Mb constants α and β with the galaxy parameters, the vector of seven parameters

~λ = (Mb, Dl, θ, φ, q, α, β), (4.5)

is su�cient to connect a speci�c galaxy to the GW strain. All of them but q, α and β can be directly

extracted from observations.

Formally the full calculation can be cast in term of Bayes' theorem. Let P (Gi|d) be the

probability of galaxy Gi being the host galaxy, given some data d, then:

P (Gi|d) =
P (Gi)

P (d)
P (d|Gi) =

P (Gi)

P (d)

∫
p(d|~λ)p(~λ|Gi) d~λ, (4.6)

where P (d) =
∑
i P (d|Gi) is the likelihood of the data marginalised over all galaxies (or evidence).

P (Gi) is the prior probability of Gi being the host, which we take to be a constant, having no reason a

priori to prefer any particular galaxy. To compare galaxies, only the shape of the distribution P (Gi|d)
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is needed. The constant prefactor, P (Gi)/P (d), can therefore be disregarded and we are left with

only the likelihood P (d|Gi). The likelihood of a speci�c galaxy Gi to be the host of the GW source

is given by the integral in Eq. 4.6 and is composed of the probability of the data given the source

parameters p(d|~λ), times the prior distribution on these parameters p(~λ|Gi), integrated over all the

relevant variables given in Eq. 4.5.

Now we need to specify how to compute p(d|~λ). First, the amplitude A is independent of θ, φ

and so:

p(d|~λ) = p(d|Mb, Dl, θ, φ, q, α, β) = p(d|A, θ, φ) p(A|Mb, Dl, q, α, β). (4.7)

Second, A is a function of the source chirp massM(src)
c and distance only, we can therefore write

p(A|Mb, Dl, q, α, β) = p(A|M(src)
c , Dl) p(M(src)

c |Mb, q, α, β). (4.8)

Last, M(src)
c is a function of q and M , and the latter is related to Mb by the M −Mb-relation. We

therefore have

p(M(src)
c |Mb, q, α, β) = p(M(src)

c |M, q) p(M |Mb, α, β). (4.9)

Putting the chain together we get:

p(d|Gi) =

∫
p(d|A, θ, φ) p(A|M(src)

c , Dl) p(M(src)
c |M, q) p(M |Mb, α, β)p(Mb, Dl, θ, φ, q, α, β|Gi)

dMb dDl dθ dφ dq dα dβ dM. (4.10)

We can now further specify the individual elements of Eq. 4.10 and address how to compute

them in practice. p(~λ|Gi) = p(Mb, Dl, θ, φ, q, α, β|Gi) describes the prior knowledge of each galaxy

property and the underlying M − Mb constants. We assume that all �ve galaxy parameters � so

excluding α and β � are independent so that the prior can be factorised as p(~λ|Gi) =
∏5
j=1 p(λj |Gi).

In particular:

� Mb in real surveys is generally obtained from the galaxy luminosity via bulge-disk decomposition.

Mb is then computed from the bulge luminosity by assuming a stellar mass function. Typical

uncertainties in this procedure can be up to a factor of two [112]. Nonetheless, as a �rst

approximation, we take Mb to be known exactly, reducing the prior p(Mb) to a delta function

(so the integral over Mb drops out).

� Dl can be computed from the spectroscopic redshift of the galaxy z, via Eq. 4.3. Uncertainties

on the cosmological parameters H0,ΩM,ΩΛ are of the order of a few percent [54] and weak
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lensing is subdominant for the z < 1 galaxies relevant here [113]. We therefore also assume Dl

to be known exactly, reducing the prior p(Dl) to a delta function, and dropping the integration

over Dl from the likelihood marginalisation. The e�ect of including uncertainties on Mb and Dl

is discussed in Sec. 4.4.3.

� θ, φ are generally determined with arcsecond precision, which for any practical purposes can be

treated as delta functions as well.

� q, the binary mass ratio, is essentially undetermined. We therefore use a broad prior, �at in

log(q), with range −2 ≤ log10(q) ≤ 0 (so that 0.01 ≤ q ≤ 1).

The impact of changing the adopted priors in the calculation are discussed in Section 4.4.3.

The term p(d|A, θ, φ) is directly proportional to the likelihood in the amplitude-sky location-

space L(A, θ, φ), which is returned as a numerical function with �nite resolution by our null-stream-

based parameter estimation pipeline (see also Sec. 4.3.2). Given the values of A, θ and φ from the

priors, we select the numerical value from the sky pixel at (θ, φ) and the closest sampled amplitude

to A. The sampling range (10−17�10−14) is big enough to cover the area of interest, so for values of

A outside this range, the likelihood is set to zero.

The GW quadrupole formula determines the factor p(A|Mc, Dl). Given the system chirp mass

and distance, the amplitude is univocally determined by Eq. 4.1. We can thus write

p(A|M(src)
c , Dl) = δ

(
A− 4

(GM(src)
c )5/3(πf)2/3

Dl

)
. (4.11)

Similarly, p(M(src)
c |M, q) is obtained from the de�nition ofM(src)

c in terms of M, q:

p(M(src)
c |M, q) = δ

(
M(src)

c − Mq3/5

(1 + q)6/5

)
. (4.12)

The probability distribution p(M |Mb, α, β) is a core ingredient of the calculation. The possibil-

ity of ranking galaxy hosts stems from the simple fact that extremely massive black holes are hosted

in extremely massive galaxies, a relation that has to be handled with care. Once a speci�c M −Mb

relation of the form given by Eq. 4.4 with intrinsic dispersion ε is given, the BH total mass probability

is described by a log-normal prior

p(M |Mb) =
1√

2πε2
exp

−
[
log M

M�
−
(
α+ βlog Mb

1011M�

)]2
2ε2

 , (4.13)

that we integrate from −3ε to +3ε around the minimum and maximum expectation values of M (the

range of M values being due to the spread in (α, β)).
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Figure 4.2: Prior on theM−Mb constants (α, β) constructed from the compilation ofM−Mb-relations
in [10], see text in Sec. 4.2.2. The prior is binned in a 10 × 10 regular grid with α ∈ [7.63, 8.63] and
β ∈ [0.79, 2.14]. The pixels are normalised such that their sum is one. Some combinations (α, β) have
zero prior weight and are masked in white.

The M −Mb relation is quite uncertain, as demonstrated by its many di�erent �avours found

in the literature. Using the compilation of M −Mb relations of [10] we construct an observationally

motivated prior distribution in (α, β) by the following procedure. We make many random draws of the

pair (α, β) uniformly from the ranges α ∈ [7.63, 8.63] and β ∈ [0.79, 2.14], and consider the pair valid

if the resultingM −Mb line falls within the region enclosed by the compiled sample of relations in the

range 106M� < M < 1010M�. The resulting probability distribution p(α, β) is shown in Fig. 4.2. We

then marginalise over the parameters (α, β) in the computation of p(d|Gi) in Eq. 4.10. We assume

ε = 0.3 throughout, which is the typical relation dispersion value reported in the literature.

Using these assumption, Eq. 4.10 reduces to a four dimensional integral over M , q, α and

β. In the following, we show results where M − Mb is always marginalised over (α, β) and we

discuss the impact of assuming one speci�c scaling relation instead in Sec. 4.4.3. In practice, we

transform variables to log10(M) and log10(q) and perform the numerical integration in log space for

these parameters.
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4.3 Practical implementation

4.3.1 Source selection

We test the candidate host galaxy selection method using simulated data of plausible future PTA

detections. These simulations are based on work by Rosado et al. [22], who have studied large scale

simulations of SMBH binary populations and the resulting GW signals. They constructed 2000 models

(combinations of di�erent observed SMBH mass functions, pair fractions and M −Mb-relations) and

drew several Monte Carlo realisations of each model, to build realistic binary populations. They then

considered the sensitivity of several PTAs as a function of time and used simple detection statistics

to declare detection of either individual binaries or of the SB. Although they �nd that it's more likely

that the background is detected �rst, eventually, individual sources can also be con�dently identi�ed.

For each of the simulations they record the properties of the �rst SMBH binary to be individually

resolved by the PTA under consideration. Therefore, their procedure informs the likely parameters of

the �rst resolvable binary. We use it here to get the parameters for our test injections, as described

in the following.

The signal-to-noise ratio (S/N, ρ in Eqs.) of a circular SMBH binary in an array of P pulsars

can be written as

ρ =

[
P∑
i=1

ρ2
i

]1/2

, (4.14)

where the S/N in the i-th pulsar is

ρ2
i =

A2

4π2f2Si
R(~δ). (4.15)

Here, A is the GW amplitude given by Eq. 4.1 and f is the observed GW frequency. R(~δ) is a factor of

order unity that depends of the geometry of the system � including source sky location and inclination,

wave polarisation angle and pulsar sky location � and on the duration of the PTA observation T ; see

[22] for the full expression. Si is the noise in the i-th pulsar which we consider to be of the form

Si = 2∆tσ2
i + Sh,rest, (4.16)

where the �rst term on the rhs is the rms noise level of the timing residuals and the second term is

the level of confusion noise given by all other sources contributing to the overall GW signal.

To select suitable individual sources, we construct a mock version of the IPTA using the 49

pulsars of IPTA DR1 [33]. The mock IPTA uses the actual sky location and rms noise of each pulsar,
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source M [M�] z f [nHz] A

A 3.18× 109 0.62 7.44 0.96× 10−15

B 5.36× 109 0.57 5.94 2.05× 10−15

C 3.69× 109 0.18 5.18 2.40× 10−15

Table 4.1: Properties of the three test sources selected for this study, modelled after predictions of
future PTA detections.

but simpli�es the observations to be evenly sampled with a cadence of ∆t =2 weeks, and a timespan

of T = 10 years. Next, we generate 50 realisations of a realistic population of circular, GW driven

BBHs, based on one of the models presented in [114]. The number of realisations is chosen to produce a

sample of individually resolvable sources that is large enough to freely pick sources in desired regions

in the sky (see below). We use a fairly optimistic model, resulting in a characteristic GW strain

A(f = yr−1) ≈ 1.3× 1015, which is just at the edge of the most recent PTA limits [11, 48, 79, 80] (see

also Sec. 2.2.4).

In each model realisation, we select the loudest sources one-by-one and use all remaining binaries

to consistently compute Sh,rest from Eq. 4.16. All potentially resolvable GW sources had S/N < 2 in

the adopted setup. This is a good sanity check for our simulation; it is expected that no observable

sources result from this procedure, given that no single SMBH binary has been detected to date with

the real IPTA either. To increase the S/N, we suppress the noise by multiplying each rms residual

σi by a fudge factor η < 1. After decreasing η to 0.2, we observe ∼30 sources (in 50 GW signal

realisations) at S/N& 5. We select three of those sources, which we name A, B and C.

Relevant parameters of the selected sources are listed in Table 4.1 and their location in the sky,

relative to the IPTA pulsars, can be seen in Fig. 4.4. We have intentionally picked three sources in

areas of di�erent IPTA pulsar density. Because the response functions depend on the angular distance

between the pulsar and the GW propagation direction (Eq. 2.5), the localisation behaviour is di�erent

for sources that are close to (good) pulsars than for those in relatively empty regions of the sky (see

also Sec. 4.4.1). Parameters listed in Table 4.1 are consistent with the predictions of Rosado et al.

shown in their Fig. 6 [22]. The �rst resolvable sources are likely to be at low frequencies (few nHz)

and can come from SMBH binaries at moderate redshifts (up to z ≈ 1).
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4.3.2 Source injection and likelihood evaluation

We simulate data from a synthetic PTA, based on the IPTA DR1 [11], as was done before to study

IPTA source localisation in Sec. 3.3. Again, the sky localisation and residuals rms level are the same as

for IPTA DR1, but practical limitations on the localisation method mean the cadence and observation

time have to be the same for each pulsar, so we average over them. After simulating signals for each

of the previously selected sources, we adjust the total observation time and/or reduce the noise in

each pulsar by a constant factor to set the S/N to the desired values 7, 10, 12 and 15 (see Tab. 4.2 for

details). We choose 7 as the smallest S/N value because it ensures a con�dent detection according to

the F statistic adopted by [22]; assuming a typical PTA and a false alarm probability of 0.001, a source

with S/N = 7 has a detection probability of ≈ 0.9. For each setup, a likelihood L(A, θ, φ) is obtained

using three di�erent realisations of random white noise in the null stream pipeline. Summarising, we

run a total of 36 simulations featuring:

� three di�erent sources: A, B, C;

� four values of detection S/N = 7, 10, 12, and 15;

� three independent white noise realisations.

source A B C

S/N
% rms
IPTA

T
(yr)

∆T (s)
×105

T
(yr)

∆T (s)
×105

T
(yr)

∆T (s)
×105

7 100 12.8 2.12 10.7 2.03 12.2 2.76
10 80 21.3 2.71 16.0 2.33 12.2 2.11
12 80 29.8 2.64 26.7 2.69 18.4 2.20
15 70 34.0 2.52 32.0 2.70 24.5 2.54

Table 4.2: Adjustments made to the simulated IPTA-like array in order to �x S/N of the three injected
sources A, B and C. The pulsar locations are kept the same as in IPTA DR1 [11], as are the relative
rms noise levels of each pulsar. For S/N≥ 10, the noise is decreased by a constant factor in all pulsars.
The cadence ∆T and observation time T are averaged over for all pulsars. Then T is adjusted to set
the S/N at speci�c values, keeping ∆T as close to the IPTA DR1 value as the null-stream localisation
method allows.

The likelihood is evaluated on a three-dimensional grid in amplitude (A) and sky location

(θ, φ). A is evenly sampled in log space between 10−17�10−14. The sky location parameters θ (polar

coordinate from 0�π) and φ (azimuthal coordinate from 0�2π) are sampled over grid of equal area
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pixels, constructed with theHEALpix algorithm [12] via healpy1. HEALpix allows the user to de�ne

a grid re�nement parameter n, which results in a number of pixels Npix = 12n2. We choose n = 32,

giving Npix = 12288 pixels of approximately equal area of 3.36 deg2. For the likelihood calculation we

use θ and φ at the mid-point of each pixel. The sky error-box, Ω90, is then determined in the same

way as was done for the previous study (see the start of Sec. 3.2). We repeat the computation of the

likelihood inside Ω90 on a grid with the next level of re�nement (n = 64).

4.3.3 Mock galaxy catalogue for host selection

Having determined L(A, θ, φ), we now need to draw a set of properties of potential hosts from a realistic

galaxy population. We use a mock realisation of the observed sky extracted from the Millennium Run

[111]. The simulation evolves dark matter particles over a volume (500/hMpc)3, reconstructing the

clustering of dark matter halos. Semi-analytic galaxy formation models are then used to populate

halos with galaxies, tracking their star formation, accretion and merger history. Although not 'state of

the art', the large volume of the Millennium Run (683.7 Mpc side [111]), compared to more recent large

scale, fully hydro-dynamical, simulations such as Illustris (105.6 Mpc side [115]) and EAGLE (100

Mpc side [116]), is relevant for our work. It ensures more statistical variation in the resulting galaxies,

and in particular a better sampling of the high mass tail of the distribution, which is where the best

candidate galaxies reside. We use the simulated sky maps from [110] that employ the semi-analytic

model of [117], which has been shown to reproduce a number of observed properties of galaxies,

including luminosity function, morphology and clustering.

The sky maps are �ux-limited to i < 21.0 [see 110, for full details]. This results in galaxy

catalogues that are complete down to stellar masses of ≈ 1011M� at z = 0.5 and ≈ 4 × 1011M� at

z = 1. We will show in Section 4.4 that all credible hosts are above these completeness limits. We

downloaded all galaxies with stellar masses of 5×1010M� and higher at z ≤ 1, which resulted in about

50 million objects. For each galaxy we store the bulge mass Mb, the coordinates in the sky (θ, φ)

and the apparent redshift z. The latter is then converted to Dl by assuming our �ducial cosmology

(�at ΛCDM with h0 = 0.73, ΩM = 0.25). This information, together with a prior on the BBH mass

ratio q and the aforementioned assumptions for the M −Mb-relation, is all we need to perform the

calculation outlined in Section 4.2.2.

To limit data size, only galaxies that fall within Ω90 are considered, which contain most of the

1healpy.readthedocs.io
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relevant information. The simplifying assumption is made that one of the galaxies in Ω90 is the true

source of the PTA signal, but there is � by de�nition � a 10% probability it falls outside the error-box.

For each galaxy, the likelihood of being the GW source host is �nally computed with Eq. 4.10, where

Mb, Dl, θ and φ are �xed by the chosen galaxy and M, q, α and β are integrated over as described in

Sec. 4.2.2.

4.4 Results and discussion

For each of the 36 experimental setups (Sec. 4.3.2), we use the null stream pipeline to obtain L(A, θ, φ)

and determine Ω90, the results of which we discuss here �rst in Section 4.4.1. Then, we perform the

p(d|Gi) calculation as described in Section 4.2.2 for each galaxy within Ω90. From all p(d|Gi), we
obtain a cumulative likelihood distribution. These results are shown in Section 4.4.2.

4.4.1 sky localisation

First consider the behaviour of Ω90 with increasing S/N, shown in Fig. 4.3 for the three selected

sources A, B and C. The expected trend Ω90 ∝ ρ−2 is roughly followed by all sources, albeit not

perfectly, due to the small numbers of performed simulations for each case. An exception is source

A at S/N < 10, which shows a much steeper slope. Although this is consistent with the `transition

zone' identi�ed in the previous study (Sec. 3.2.1) � signalling the S/N at which the data start to be

informative � sources B and C do not behave the same way.

We conjecture that this can be explained fully by the speci�c position of the sources, relative

to the pulsars (see Fig. 4.4). Source A is close to the location of the best pulsars. At the marginal

detection level, the PTA combined S/N (Eq. 4.14) is mostly due to the contribution of these few, good

pulsars (or possibly only one good pulsar). The other pulsars have very low individual S/N (Eq. 4.15).

Therefore, the source is e�ectively only triangulated by one or a few pulsars, making localisation poor.

At higher combined S/N (around 10), more pulsars contribute to the triangulation as their individual

S/N increase. As such, there is a steep improvement in Ω90, marking the transition to the Ω90 ∝ ρ−2

regime. Conversely, sources B and C are relatively far away from the majority of the best pulsars.

Hence a combined S/N= 7 already requires signi�cant contributions from several di�erent pulsars,

making triangulation more e�ective. Sources B and C follow the standard S/N scaling, which source

A joins as well, after the transition (where the shaded areas cross in Fig. 4.3).

Apart from the trend, the overall localisation precision of the three sources vary by a factor of
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Figure 4.3: sky-localisation precision for the selected sources A, B, C at S/N = 7, 10, 12 and 15. Three
markers at each S/N are the results of three runs with di�erent white noise realisations. The dashed
lines give the best �t of Ω90 ∝ ρ−2 to the points at S/N≥ 10.

∼20 between them. This is due to both the inhomogeneous distribution of pulsars in the sky [20] as

well as the di�erent quality (noise level) of the pulsars in the arrays [75], which is expected to cause

a di�erence in localisation. The best localisation, at high S/N, is achieved for source A, sitting in the

`sweet spot' of the array (where most of the pulsars, including the best ones, are). However, there

is not simply a monotonic increase of Ω90 for sources further away, since the furthest source C has a

better localisation than source B. This is also expected; sources that are antipodal to the 'sweet spot'

are better localised than sources at a ∼90 deg angle, due to the shape of the PTA response functions

[e.g. see Fig. 10 in 20].

A further investigation of this is visualised in Fig. 4.4. Here we inject a source with the same

parameters as A at 192 di�erent locations in the sky into white noise, using a synthetic IPTA-like

array. The S/N is set to 12 everywhere, by scaling the amplitude of the GW signal. The map shows

the resulting localisation Ω90 at each point. A dipolar structure of Ω90 is noticeable. Sources near the

`sweet spot' of clustered pulsars, and to a lesser extent, sources near the antipodal point, are localised

better than those in between. This antipodal symmetry in the pulsar response functions is due to the

quadrupolar nature of GWs, as was also shown by [20].
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In any case, the huge scatter in Ω90 warns of a potential risk of an anisotropic sky coverage of

PTA pulsars. Should the loudest resolvable GW sources be positioned at unfavourable locations, their

detection, even at moderate S/N≈ 12, would allow localisation accuracies of about 2000deg2 only (an

area containing ∼2 million galaxies in our catalogue prior to selection). This means 'bad luck' could

easily jeopardise any e�ort to identify a possible EM counterpart.
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Figure 4.4: localisation capability of an IPTA-like array (based on DR1 [11]) for a source at �xed
S/N = 12. This map is interpolated from 192 localisation values obtained by injecting a source at
192 locations forming a grid of equal sky area pixels (a HEALpixgrid with n = 4 [12]). The IPTA
pulsars are marked with stars, where the size of the star corresponds to the noise level of the pulsar
(with bigger stars for lower noise). The circles indicate the positions of our selected sources A (blue,
left), B (orange, middle) and C (red, right).

4.4.2 Host candidate population

Number of credible host candidates

Our main results consist of a set of p(d|Gi) for the galaxies {Gi} within Ω90 for each of the 36

experimental setups (Sec. 4.3). First, we compute the cumulative likelihood distribution from these

p(d|Gi). We then de�ne Nx to be the minimum number of galaxies needed to sum to x% of the total

likelihood
∑
i p(d|Gi). In other words, by checking the �rst Nx best candidates, we expect to �nd

the host galaxy among them x% of the time. Speci�cally, we look at N50 and N90 as proxies for

the expected number of candidate host galaxies. An example cumulative distribution can be seen in
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Fig. 4.5 for source A at S/N = 15 (the �rst random noise realisation). Within Ω90 ≈ 60 deg2, there

are ∼1.2 × 105 galaxies {Gi} in our mock catalogue, which would make detailed follow-ups for host

identi�cation impractical. After applying our technique, we have N90 = 409 and N50 = 34.

Figure 4.5: Cumulative likelihood of p(d|Gi). The likelihood data d is for the IPTA setup (as described
in the text) with source A at S/N = 15 (one of the random noise realisations). Vertical dashed lines
identify the number of galaxies making up 50% (orange) and 90% (blue) of the total likelihood.

The collection of N50 and N90 of all experimental cases for which we obtained results can be

found in Fig. 4.6. We �t two power laws Nx = c(Ω90/Ω
∗
90)p, with parameters c, p (the power) and

Ω∗90, and x being either 50 or 90, by minimising the sum of squared di�erences between the predicted

log values and the log of the data points. The best �tting powers are 0.64 for N50 and 0.65 for N90.

Naively one would expect a linear proportionality between Ω90 and the number of potential hosts,

which we do not have, but there is signi�cant scatter on the relation.

Tighter �ts are obtained by treating the points for di�erent injected sources separately, with

best �t powers as in Table 4.3. These numbers show that �ts to individual source data points are

generally steeper and therefore closer to the expected linear dependence. The shallower global �t

seems to be (partly) caused by the larger N50 and N90 for source A with respect to sources B and C

at sky localisations of ≈ 300deg2, which is not very surprising. Source A has S/N= 10 around this

localisation area, while source B and C have higher S/N = 15. Consequently, N90 and N50 for source

A includes galaxies with a lower bulge mass than for B and C, resulting in a larger N90 and N50.

So while there is clearly a relation between the size of the sky error-box and the number of
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Figure 4.6: Number of candidate galaxies adding up to 50% (N50, circle markers) or 90% (N90, square
markers) of the total likelihood to host the detected source, versus the sky-localisation area Ω90 for
that detection. Results are shown for source A (blue) at S/N = 10, 12 and 15, and sources B (orange)
and C (red) at S/N = 12 and 15. For each S/N three noise realisations give a cluster of points at
similar Ω90 values. Dashed lines show �tted power laws per source (see Table 4.3 for the best-�t
powers). Dot-dashed lines are �ts to N50 for all sources, with power 0.64, and to N90, with power
0.65.

candidate host galaxies, signi�cant scatter is due to the detailed source properties. Nonetheless, as

a rule of thumb, we expect that for a resolvable PTA signal located in the sky with a precision of

≈ 100 deg2, we can identify few hundreds (few tens) galaxies that include the signal host with 90%

(50%) con�dence. Compared to all galaxies with stellar mass > 5 × 1011M� at z < 1 falling in the

error-box, these numbers restrict the pool of realistic hosts by nearly three (four) orders of magnitude,

making realistic detailed follow-up campaigns feasible.

There are two points missing in Fig. 4.6, which are N90 and N50 for source A at S/N= 7. This

case was very poorly localised with Ω90 ≈ 2.8 × 104deg.2 (67% of the sky). The expected number of

source N50 power N90 power
A 0.66 0.80
B 1.15 1.34
C 0.74 0.90
all 0.64 0.65

Table 4.3: Best �t powers for the power law �ts to N50 and N90 as in Fig. 4.6. These are obtained by
minimising the sum of squared errors on the log Nx values.
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candidate hosts becomes very large, and also disobeys the trend discussed above. This is probably

caused by L(θ, φ) not having a single peak in this case, which means the sky location of a potential

host is much less informative and the list of candidates is barely restricted.

Host candidate sky distribution and clustering

Apart from the number of galaxies that make up a signi�cant fraction of the likelihood
∑
i p(d|Gi), we

can also look at the properties of these galaxies. The parameters from the mock galaxy catalogue are

Mb, Dl, θ, φ. First, we look at θ and φ by plotting the sky locations of the galaxies within N50 or N90

for the example case (source A at S/N= 15), in Fig. 4.7. They are shown on top of the sky location

likelihood L(θ, φ) of the injected source. The galaxies necessarily follow the localisation area, because

we only used the galaxies that fall within Ω90. Moreover, there is a relatively high concentration of

N50 galaxies in the highest likelihood pixels. Hence, L(θ, φ) must contribute more to the selection of

candidates than simply what we get from a straightforward cut using Ω90.

Figure 4.7: Locations of the best candidate host galaxies on top of the sky location likelihood for
the injected source A (located at the red cross). The PTA has pulsar locations (pink stars) and
relative noise levels of the IPTA DR1, but is adjusted such that the total S/N = 15 (see text). The
34 best candidates sum to 50% of the likelihood to be the host galaxy (N50 in orange diamonds)
and an additional 375 sum to 90% (N90 in white circles). For this example, the M −Mb-relation is
marginalised over priors obtained from the literature (see text).
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We further investigate this statement considering the clustering of good candidate galaxies �

the N50 galaxies � for all of the experimental cases. Fig. 4.8 simultaneously shows a measure of the

concentration of the localisation likelihood L(θ, φ), and of the concentration of N50 galaxies. The

sky error-box Ω90 consists of a number of pixels Npix that are sorted in descending L(pixi) order.

Starting with an area npix = 1 of one pixel (the best one), we iteratively increase npix by adding the

next best pixel. On the x-axis of the �gure, we plot the size of the included area relative to Ω90,

i.e. npix/Npix. The concentration of L(θ, φ) in each area is also given by the fraction included in npix,

i.e.
∑n
i L(pixi)/

∑N
i L(pixi). Compare this to the concentration of good candidate hosts, similarly

de�ned as the fractional number of N50 galaxies in each area. The distributions are spread out, but

there is no signi�cant di�erence between the L(θ, φ) and N50 concentrations, i.e. the host probability

follows the sky-localisation distribution. This con�rms that it is valuable to include detailed localisa-

tion information when selecting candidate host galaxies, rather than only making a cut based on Ω90

(or on a di�erent localisation criterion).

Host candidate mass and redshift

Second, we consider the other two parameters from the catalogue, the bulge mass Mb and luminosity

distance Dl. Fig. 4.9 shows their distribution among candidate hosts for the example case, where Dl

has been converted into redshift. This �gure best visualises the key idea behind our method. Since

A ∝M5/3/Dl � and there is a proportionality M ∝Mβ
b and an almost linear proportionality between

Dl and z at z < 1 � there is only a stripe in the mass�redshift plane de�ning the region of possible

galaxy hosts. Moreover, since the �rst detection of a resolved PTA source will necessarily involve a

very strong signal from a very massive binary system, this region lies at the highest masses. Due to

the steep decay of the high mass end of the galaxy mass function, only few credible host candidates

can be identi�ed.

In the example shown, galaxies belonging to N50 or N90 are roughly bound by a line of slope

3/(5β) in the logDl(z)− logMb plane (where β is the M −Mb constant marginalised over our prior),

as expected by the GW amplitude scaling (Eq. 4.1). There is, however, a large mixing of galaxies

with di�erent likelihoods in this plane, due to their speci�c sky location. For example, there are a few

very massive galaxies that nonetheless fall into the lowest 10% of the likelihood, which is due to an

unfavoured sky position.

The N50 candidates are found across the whole range of redshifts, which is no surprise as the
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Figure 4.8: Comparison between the concentration of the sky-localisation likelihood and of the loca-
tions of good candidate host galaxies. With the fractional area of Ω90 on the x-axis, the fractional
localisation likelihood in this area on the �rst y-axis (left, solid lines), and the fractional number
of N50 galaxies on the second y-axis (right, dashed lines) (see text for details.) The quantities are
normalised between 0 and 1 so that all experimental cases �t on the same scale. This plot includes
all three injected sources (A in blue, B in orange and C in red), for S/N = 12 and 15.

redshift of the injected source A is 0.62 (Table 4.1). To explore further we look at the redshifts of

candidate host galaxies for all injected sources and S/N values. Fig. 4.10 shows a number of histograms

of z on a logarithmic scale. For each source A, B and C, the results of S/N = 12 and 15 (with three

noise realisations per S/N), are combined. We make a comparison between the redshift distribution

of the candidate galaxies pre-selected within the sky error-box (the �lled histograms), and the N90

candidates selected with our method (the hatched histograms). The N90 candidates generally prefer

lower redshifts. However, for all injected sources, there are a signi�cant number of candidates at

redshifts z > 0.6. Even though the injected redshift for source C (z = 0.18) is much lower than for

sources A and B, the redshift distributions of candidate hosts di�er only slightly, which re�ects the

fact that redshift is degenerate with mass in determining the GW amplitude.

97



4.4. RESULTS AND DISCUSSION

Figure 4.9: Distribution of bulge masses and redshifts of the candidate host galaxies of the example
case; source A with S/N = 15. Blue squares mark galaxies that make up N90 and orange triangles
mark the best candidates, which make up N50. All other galaxies that fall within the sky-localisation
error-box Ω90, but form the lowest 10% of the total likelihood

∑
i p(d|Gi), are marked with (dark)

grey circles. Dashed grey lines are lines of constant GW amplitude (as in Eq. 4.1).

The turnover in the pre-selected number of galaxies seen in Fig. 4.10 at z > 0.5 is due to

the i = 21 �ux limit of the adopted galaxy catalogue, resulting in a severe incompleteness of lower

mass galaxies at higher redshifts. Fig. 4.9 however, shows that typical galaxies belonging to N90 have

Mb & 2 × 1011M� at z ≈ 0.5 and Mb & 3 × 1011 at z ≈ 1. The catalogue is therefore complete

in the relevant mass-redshift range for potential GW host galaxies. Fig. 4.10 also shows that the

distribution of credible galaxy hosts is somewhat peaked around z . 0.2, even though two out of

three of our selected signals (A and B) have z ≈ 0.6. These sources were selected according to their

sky location, so A, B and C are not an unbiased sample and are not necessarily representative of the

actual redshift distribution of the �rst resolved PTA signals. There are several systems at z > 0.5 in

the sample of 30 resolvable sources found in Sec. 4.3, and also [22] found that the peak of the expected

�rst resolved PTA sources is at z ≈ 0.5.
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Figure 4.10: Logarithmic histogram of the redshifts of candidate host galaxies per source. The counts
from the six experimental cases with S/N = 12 and 15, and three noise realisations, are averaged over.
The foreground (hatched) histograms are N90 candidates, and the background (�lled) histograms are
all (i.e. N100) candidates from the selected sky error-box. Injected redshift values for each source are
indicated by a dashed line (see also Table 4.1).

High z sources are more common despite there being fewer potential host galaxies at such

redshifts. This indicates that the likelihood of a galaxy to be a host is not only connected to its sky

location and its position in the M�z plane, which are the factors considered in this work. The other

key parameter is likely to be the absolute galaxy mass (regardless of redshift). There is evidence � both

from observations and from cosmological simulations [see, e.g., results compiled in �gure 1 of 118] � that

the galaxy merger rate at low redshift is a strong function of the galaxy mass, with massive galaxies

merging more often. Since the SMBH binary population simulated in Sec. 4.3 consistently takes this

fact into account, the resulting population is naturally skewed towards high masses. Conversely, our

host selection method only ranks galaxies based on the GW amplitude, determined by the combination

of redshift and bulge mass, and therefore favours relatively more lighter galaxies at lower redshifts.

These lower mass candidates are less likely to have undergone a major merger (and hence to host a

GW source), compared to the few more massive candidates at higher redshifts. This suggests that

combining our method with a (prior) probability of hosting a SMBH binary based on galaxy mass only

[119, 120] can somewhat break the intrinsic mass�redshift degeneracy, further reducing the numbers

of credible galaxy hosts.
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4.4.3 Assumptions and approximations

Although simulations performed in this work are realistic in many aspects, some assumptions and

choices had to be made to make their total runtime manageable.

Related to the galaxy mass

Several assumptions were made in the connection of the chirp mass of the GW source to the bulge

mass of the host galaxy. First, we assumed a log-�at prior on −2 ≤ log10(q) ≤ 0, based on the

broad q distribution of merging binaries found in cosmological simulations [121]. Although this is not

necessarily representative of the q distribution of real SMBH binaries, we tested that di�erent choices

for the prior have only a minor impact on the results [see also 122, 123, 124].

Second, we did not consider errors in the measurements of galaxy Mb and Dl. The latter does

not matter if a precisely measured spectroscopic redshift is available. In that case, estimates of Dl

are only a�ected by galaxy peculiar velocities and uncertainties in the knowledge of the cosmological

parameters, resulting in a negligible few % error. Conversely, there can be a signi�cant uncertainty on

the bulge mass, or on Dl if a photometric redshift measurement is used. This is likely to impact our

results, spreading the host probability distribution and thus returning more host candidates. Some

tests on a limited number of setups found that including an uncertainty of a factor of two on the

galaxy bulge mass results in roughly a factor of two more candidate hosts galaxies.

Last, we marginalised over the uncertainty in theM−Mb-relation. Assuming a speci�cM−Mb-

relation instead can a�ect our results, especially if the relation predicts relatively higher or lower black

hole masses than the marginalised relation. As an example, we ran some test cases assuming the

M −Mb-relation from [56], which associates relatively higher black hole masses with the given galaxy

bulge mass. The number of candidate host galaxies in these cases is increased by a factor ranging

between ∼ 3 and ∼ 8 with respect to the marginalised M −Mb case. Conversely, for a `pessimistic'

M −Mb-relation such as [57] � which predicts relatively lower black hole masses especially for high-

mass galaxies � the number of candidates is a factor ∼2 to ∼4 lower.

Limiting the computational cost

Due to computational limitations, we ran a relatively small number of simulations. Although we

checked robustness of the results against the speci�c noise realisation, we only picked one sky location

for each source. This may make cosmic variance a factor in the determination of the number of galaxy
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hosts. To test this, for a selected GW source, we performed some simulations with rotations of the

Millennium sky, and counted N50 and N90 for each of them. Although numbers vary, the scattering

is consistent with that observed in Fig. 4.6.

An important assumption of our method is that the true host of the detected GW signal is

present in the galaxy catalogue. This is guaranteed only for complete catalogues. Real catalogues

based on observations never are, and the simulated catalogue from [110] re�ects this by selecting

galaxies based on observational criteria. This results in a number of missing galaxies � more towards

higher redshifts. However, for the most part these are the small galaxies (which are more di�cult to

observe), and those are not relevant host candidates. Since at redshifts z . 1 only the most massive

galaxies are selected in N90 (see Fig. 4.9), this is unlikely to a�ect the results for N90 and N50, but it

is still a possible source of error. As there are good candidates up to z = 1, it is also possible there

are a small number of potential N90 galaxies at z > 1 that were not included.

Finally, it should be kept in mind that we selected the 90% sky location credible region. By

selecting N50 and N90 in this region, the actual probability to �nd the true host in these sets is

0.9× 0.5 = 0.45 and 0.9× 0.9 = 0.81, respectively.

4.5 Conclusion

In this chapter, we proposed a novel methodology to select host galaxy candidates of the �rst individual

gravitational wave sources observed by pulsar timing arrays. Since PTA source localisation is expected

to be of several tens of square degrees at best, up to a few million galaxies might end up in the sky

error-box. Classifying the most promising host candidates is therefore paramount to increase the

chances of true host identi�cation via dedicated follow-ups. Our method exploits the GW strength

dependence on chirp mass and distance, together with empirical SMBH mass�host galaxy correlation,

to rank galaxies in the mass�redshift plane. This selection is combined, in a Bayesian way, with the

sky-localisation information which we obtain with the null-stream method from Chapter 3 (but could

work with any method of obtaining the likelihood on the sky position and GW amplitude). Each

galaxy is assigned a probability to be the host of the detected GW signal.

To test our method, we performed realistic simulations by drawing GW sources from detailed

SMBH binary population models based on observed merging galaxies, by employing the actual IPTA

pulsar sky locations and rms values to build the array, and by selecting host candidates based on

formation and evolution models. We considered di�erent GW source sky positions and detection S/N
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and investigated the ensemble of credible host galaxy candidates. In particular, we de�ned N50 and

N90 to be the smallest numbers of galaxies having a collective 50% and 90% chance of being the true

host of the GW source respectively, assuming the true host is among the prior selection of candidates.

Our key results can be summarised as follows:

� N50 and N90 are respectively nearly four and three orders of magnitude smaller than the number

of galaxies obtained with a straightforward cut: stellar mass M∗ > 5× 1010M�, redshift z < 1,

and found in the 90% con�dence sky location region Ω90;

� N50 and N90 should roughly be proportional to Ω90. We �nd a sub-linear proportionality,

although with large scatter;

� despite the large scatter, a useful rule of thumb is that for Ω90 = 100deg2, N50 . 50 and

N90 . 500;

� although the distribution of potential hosts peaks around z < 0.2, it has a long tail that extends

up to z . 1.

Our methodology can therefore e�ectively select the most likely host galaxy candidates, which

might have a major impact on future multi-messenger observations of SMBH binaries. For typical

PTA sky-localisation precision of hundreds of deg2, instead of following up millions of galaxies, we

can choose to accept the risk of missing the true host with 55% (19%) probability and monitor only

the ≈ 100 (1000) most promising ones. There is signi�cant uncertainty on these numbers however,

mainly due to the uncertainty in the M −Mb-relation (see Section 4.4.3).

The applicability of our method obviously relies on the availability of photometric and spec-

troscopic data from all-sky surveys necessary to identify potential galaxy hosts and to estimate their

stellar (and bulge) masses. Since the most credible galaxy candidates are necessarily very massive

(and/or particularly nearby), relatively shallow surveys are su�cient for this scope. Catalogues from

SUSS [125, covering ≈ 1/4 of the sky], Pan-STARRS [126, ≈ 3/4 of the sky], LSST [127, ≈ 1/2 of the

sky] and Gaia [128, all sky] will provide enough imaging, photometric and (possibly) spectroscopic

information for reliable mass estimates via, for example, spectral energy distribution �tting [see e.g.

112, 129].

A positive host identi�cation chance increase of less than a factor of two comes at the expense of

following up a factor of ten more galaxies. The follow-up strategy can therefore be optimised based on

the future number of resolved PTA sources and on available observing facilities. Reducing the number
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of credible hosts is critical mostly because our knowledge of SMBH binary signatures is poor [see, e.g.

104]. One therefore has to collect all possible hints to build up con�dence that the true host has been

found. This might require multiple studies out of, for example, photometric and spectroscopic optical

and IR follow-up of the candidates to unveil any observational hint of an accreting binary; deep-�eld

imaging to look for features such as stellar tails and shells that indicate a recent merger [e.g. 130];

integral �eld spectroscopy to identify the presence of a `dry' SMBH binary via kinematic signatures

in the stellar distribution [131]; deep X-ray observations to unveil the presence of an obscured AGN

and its possible high energy signatures [132]; and many more.

The upcoming ELT [133] and JWST [134] will be particularly suited for the optical and near

infrared follow-ups mentioned above, whereas the X-ray satellite Athena [135] can potentially survey

the 100 most probable hosts within less than 1 day of observation time. Clearly, the fewer the

candidates, the more extensive the follow-up campaign can be, thus enhancing the chances of a positive

detection. Archival data can also be used to identify hints of, e.g, periodic variability matching the

frequency of the GW source. This can be done in the optical and, possibly, in X-ray with LSST and

eROSITA [136] archival data, respectively.

Finally, the mismatch between the credible host redshift distribution identi�ed with our method

and the expected distribution of the �rst PTA sources predicted by [22] indicates that a more e�cient

galaxy host selection can be performed when the mass-dependent galaxy merger probability is folded

into the calculation [see also 120]. By doing so, the mass�redshift degeneracy intrinsic in our method

might be alleviated, further decreasing the number of credible hosts. Our method is suitable for

such an extension, possibly by including the galaxy merger probability as a prior in the Bayesian

computation.
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Chapter 5

Null streams for realistic PTA data

and a model-independent localisation

method

"Given current theoretical models, it is likely that ultra-low frequency GWs
will be detected by pulsar timing experiments within 5-10 yr. "

IPTA scientists in 2010 [137]
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The null-stream localisation method from Chapter 3 needs to be adapted before it can be

used on real PTA data (also discussed in Sec. 3.4). The power of the null-stream transformation to

separate the dependency on the GW model and on the source sky location is also not fully utilised

in the likelihood Eq. 3.9, which is still equivalent to a "standard" likelihood such as Eq. 3.8 (albeit

written in a di�erent basis). In this chapter, we make a start on these outstanding tasks. First, we

address the main problem with creating null streams from real PTA data, which is that it requires

coincident samples from all pulsars. A possible solution is to work in the frequency domain (FD)

instead of the time domain (TD), which is discussed in Sec. 5.1.1. Second, we introduce the null

streams in Sec. 5.2, which requires combining the residuals from all pulsars (Sec. 5.2.1). Finally, in

Sec. 5.2.3, we we construct a GW-model-independent likelihood by marginalising over the null-stream

elements that contain the GW polarisations.

This work is still in progress but some preliminary results show that there is potential for

these methods, although it remains uncertain whether they can function well together. A selection

of interesting results is presented and discussed in Sec. 5.4. Outstanding issues to applying the null-

stream method to real PTA data, as well ideas to improve or expand upon it, are discussed in Sec. 5.5.

5.1 Handling realistic PTA data

To apply the null-stream transformation N from Eq. 3.6, one requires an input data point from all

pulsars observed at the same time, or sampled at the same frequency. Previously in Chapter 3, we

simulated idealised PTA data that was sampled with a constant cadence and at the same times for all

pulsars. This allowed us to easily work in the FD and even use only one data point from each pulsar

(at the frequency of the injected signal). In reality, PTA data is very di�erent. First, observations

are not taken simultaneously for all pulsars (this is not even possible with telescopes that point to a

speci�c region of the sky at a time). Second, sampling is not regular; although there might be some

periods in which a particular pulsar is observed very regularly, there are still days to weeks between

observations, so the cadence is never perfectly constant. Third, some pulsars have been observed

since much earlier dates than others, so the �rst observation date and total span of observations varies

greatly between them. Last, gaps in the data are not uncommon. Observations are sometimes paused,

for example when a telescope is being upgraded or repaired.

To describe a realistic PTA data set, we label the set of residuals from pulsar p as r(p)(tj) ≡ r(p)
j ,
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with j ∈ {1, 2, . . . ,N(p)}1. As described above, the times tj can have varying cadence and the total

number of samples, N(p), can vary between pulsars (an example of simulated sampling times is shown

in Fig. 5.1). We assume that the residuals contain a GW signal s and Gaussian noise n:

r
(p)
j = s

(p)
j + n

(p)
j , (5.1)

where the signal is given by the PTA response from Eq. 2.6:

s
(p)
j = F+

(p)(Ω̂)H+(tj ;~λ) + F×(p)(Ω̂)H×(tj ;~λ). (5.2)

Here, Ω̂ is the GW propagation direction. The time-integrated GW polarisations H+ and H× are

assumed to be given by a model with parameters ~λ. The noise is given by a Gaussian distribution:

~n ∼ N (0,Σ(p)), (5.3)

with covariance matrix Σ(p). Realistic PTA noise modelling does not fall within the scope of this

project; here we simply include only Gaussian noise that is independent in each TD residual, so that

Σ
(p)
jk = 〈n(p)

j n
(p)
k 〉 = σ

(p)
j δjk. (5.4)

The noise level σ(p)
j at time tj is given by the rms of the residuals for pulsar (p). The rms is usually

constant for a short stretch of data, but it can change during the course of PTA observations. For

example, after a telescope upgrade the overall noise level may go down. In our simulations later on,

we use constant rms but the following logic applies in either case. We also assume the noise is not

correlated between pulsars, i.e.:

〈n(p)
j n

(q)
k 〉 = Σ

(p)
jk δpq. (5.5)

Standard likelihood

Before we move onto rewriting the likelihood in the FD and later in terms of null streams in Sec. 5.2,

it is useful to write our "starting point" likelihood in terms of the chosen notation. For a data set

~d which is the collection of all pulsars' residuals r(p)
j as described above, the "standard" log of the

likelihood p(~d|Ω̂, ~λ,Hsig) is:

log(L)(Ω̂, ~λ) =

P∑
p=1

(
−1

2

(
x

(p)
j (Σ−1

(p))jkx
(p)
k

)
− 1

2
N(p) log (2π)− 1

2
log (|Σ(p)|)

)
. (5.6)

1 The label (p) is not a vector index, but a superscript (or subscript, if more convenient in the notation) indicating
a property of r̃, namely, which pulsar r̃ belongs to. To distinguish it from indices such as j, we write (p) in brackets.
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This equation is the equivalent of Eq. 3.8 in Chapter 3, for our extended notation. The quantity ~x

is de�ned as x(p)
j ≡ r

(p)
j − s(p)

j (Ω̂, ~λ). |Σ(p)| is the determinant of the covariance matrix for pulsar

p. Although the GW model that goes into s(p)
j is shared across pulsars, the likelihood computation

treats each of them separately, summing (in log) over the contribution from each pulsar.

5.1.1 Fourier transform

We wish to introduce the null-stream transformation N into the likelihood, analogous to Eq. 3.9 in

Chapter 3. To do so, �rst we need to "line up" the pulsars' data points, as N is always applied to a

vector of samples at equal time or equal frequency from all pulsars. In principle, this could be done

by interpolating the data in the TD. However, this does not deal with unequal start times of gaps

in the pulsar timing data. It is therefore more practical to transform data into the FD. If the same

frequencies are used for each pulsar, the FD data are naturally lined up. Additionally, one can reduce

the number of data points by choosing a set of frequencies that are fewer than the typical number of

residuals (a few hundred).

For unevenly sampled data, the often-used Fast Fourier Transform (FFT) algorithm [13] does

not work. Instead, we can straightforwardly extend the de�nition of the discrete Fourier transform

(DFT) to work with variable cadence, and compute it directly. Given frequencies labelled by α, the

FD residuals r̃(p)
α ≡ r̃(p)(fα) are given by:

r̃α =
∑
j

Fαjr(tj). (5.7)

. The matrix Fαj is de�ned as2:

Fαj = wj exp (−2πifαtj). (5.8)

The weights wj take on the role of the cadence ∆t, but are slightly adjusted to account for the

di�erence in the time step before and after a sample at time tj :

wj =



t2 − t1 if j = 1

tN − tN−1 if j = N

1
2 (tj+1 − tj) + 1

2 (tj − tj−1)

= 1
2 (tj+1 − tj−1) otherwise.

(5.9)

2 This is the same symbol as used previously for the matrix of pulsar response functions used to construct the
null-stream matrix N . Here, F always refers to the Fourier transform matrix as the former is not needed any more.
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If the data are evenly sampled, all weights are equal to ∆t, and this general extended Fourier transform

(EFT) reduces to the standard DFT.

Choice of frequencies

The set of frequencies fα used in the EFT can be chosen freely. However, not every choice results in a

good representation of the information in the TD data. The Nyquist frequency of irregularly sampled

data is not as straightforwardly de�ned as for evenly sampled data. It is determined by the longest

time step dt, such that all observed times can be written as t0 + k dt, where k is an integer. Then

fNy = 1/(2dt) [53, and references therein]. This fNy easily becomes very large if the observed times

are su�ciently random (which is the case for PTA data).

There is another restriction on the highest possibly frequency: One can only measure fre-

quencies up to 1/2tint, where tint is the integration time of one observation [53]. Determining one

pulsar TOA takes about 30 minutes (or around that time scale, at least), which would result in

fmax ≈ 5 × 10−4Hz. This is much higher then the frequency of any expected resolvable PTA signals

[22, especially Fig. 6], therefore, we simply choose an astrophysically motivated fmax = 10−7Hz. This

is also how we can justify using fewer data points in the FD than were available in the TD; we are

excluding samples outside of the frequency range of interest.

The minimum measurable frequency is determined by the total time of the observations. Let

T be the time between the earliest and latest TOA in any of the pulsars, then fmin = 1
T . We choose

the frequencies to be evenly sampled with a step equal to fmin, up to the highest frequency lower than

the cut-o� fmax. (The precise value of the highest frequency should not matter, since we choose fmax

to be higher than any frequencies we expect a signal to be at. If signals get close to fmax, it should

be increased). The same set of Nf frequencies are used for all the pulsars. This is essential to achieve

the coincident data points that are necessary for constructing null streams.

Fourier domain likelihood

Having determined the FD residuals r̃(p)
α above, the likelihood from Eq. 5.6 can be expressed in the

FD as follows (using the Einstein summation convention for repeated indices α and β):

log(L)(Ω̂, ~λ) =
P∑
p=1

(
−
(

(y(p))∗α (Σ̃−1
(p))αβ y

(p)
β

)
−Nf log (2π)− log (|Σ̃(p)|)

)
. (5.10)

109



5.2. NULL STREAM LIKELIHOOD

Here, ~y is the EFT of ~x, i.e. y(p)
α = r̃

(p)
α − s̃(p)

α , and (~y)∗ is its complex conjugate. The FD covariance

matrix Σ̃(p) is obtained by transforming the TD covariance Σ(p):3

〈y(p)
α y

(p)
β 〉 = FαjΣ(p)

jk Fβk ≡ Σ̃
(p)
αβ . (5.11)

There is an implicit sum over the frequencies in the term (y(p))∗α (Σ̃−1
(p))αβ y

(p)
β . Because we have chosen

to only use positive frequencies, the equivalent � because the residuals are real � contribution from

the negative frequencies is not included. This is compensated by a factor of two w.r.t. Eq. 5.6 (which

cancels the factor 1
2 ). The normalisation terms are also doubled, as they should be included once for

the real and once for the imaginary part of the complex variable ~y.

5.2 Null stream likelihood

5.2.1 Concatenating the residuals from all pulsars

Index rule

At this point, it is possible to apply the null-stream transformation to a vector containing one residual

from each pulsar, at a given frequency, as given in Eq. 3.6. Because we previously considered each

pulsars' residuals separately, it is useful to �rst combine them into a single vector. This is done by

concatenating them as follows:

r̃A ≡ cat(r̃(p)
α ) = (r̃

(1)
1 , r̃

(1)
2 , . . . , r̃

(1)
Nf
, r̃

(2)
1 , . . . , r̃

(2)
Nf
, . . . , r̃

(P)
Nf

). (5.12)

A concatenated vector is indicated with a capital index, A = 1, 2, . . . ,PNf . It has the following

conversion rule associated:

A = (p− 1)Nf + α ⇔ p = bA/Nfc+ 1, α = A mod Nf . (5.13)

Concatenation following this rule means all residuals from a single pulsar are grouped together, in

order of increasing frequency. For more compact notation later on, we de�ne the following shorthand

for the indices derived from a concatenated vector index A:

A′ ≡ bA/Nfc+ 1 = p(A) (5.14)

Ā ≡ A mod Nf = α(A). (5.15)

3 If the pulsar noise levels σp
j from Eq. 5.4 are time-dependent, the noise becomes correlated in the FD, i.e. Σ̃ will

not be diagonal.
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FD likelihood in terms of concatenated vectors

Other vectors are concatenated according to the same rule from Eq. 5.13. This also means that the

previously de�ned y(p)
α = r̃

(p)
α − s̃(p)

α translates simply to yA = r̃A − s̃A. Explicitly writing α and (p)

as functions of A allows to �nd the covariance matrix for the concatenated quantity4:

yA = y
(A′)

Ā

=
∑
j

FĀj x(A′)
j , (5.16)

therefore

〈yAyB〉 =
∑
j,k

FĀj 〈x(A′)
j x

(B′)
k 〉 FB̄k

= Σ̃
(A′)

ĀB̄
δA′B′ ≡ ΨAB . (5.17)

Although the expression for ΨAB may seem messy, it is actually quite simply a block-diagonal matrix

built from the individual pulsar Σ̃(p). Its inverse is therefore also block-diagonal, constructed from

Σ̃−1
(p):

Ψ−1
AB =

(
Σ̃−1

(A′)

)
ĀB̄

δA′B′ . (5.18)

We can now write the FD likelihood Eq. 5.10 as follows (with the Einstein summation written explic-

itly):

log(L)(Ω̂, ~λ) =

PNf∑
A,B=1

−
(
y†AΨ−1

AByB

)
− PNf log (2π)− log (|Ψ|). (5.19)

To take the normalisation out of the sum, we have used that |Ψ| = ∏p |Σ̃(p)|.

5.2.2 Introducing the null streams

Null stream from concatenated residuals

The null-stream transformation is given in Eq. 3.6 for a single vector of points from all pulsars. In

our current notation, this means that for a single frequency α, we have:

∑
p

Nkpr̃(p)
α =

∑
p

Nkp(s̃(p)
α + ñ(p)

α ) = ζ(k)
α +Nkpñ(p)

α . (5.20)

4 Because the concatenation-rule expressions are to be interpreted as a single index, they are written in brackets. To
keep consistent with writing pulsar labels in brackets as well, some of these expressions will have double brackets.
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The dependencies on the GW model and propagation direction Ω̂ are not written explicitly here, but

the signal s̃(p)
α depends on both (see Eq. 5.2). The null-stream matrix N is constructed assuming some

Ω̂′. If and only if these are the same Ω̂ = Ω̂′, the vector ζ(k)
α has the familiar null-stream properties

(the label (k) now indicates the null-stream number; as with the pulsar label, there are P in total):

ζ(k)
α =


H̃+
α (~λ) if k = 1

H̃×α (~λ) if k = 2

0 otherwise.

. (5.21)

It will also be useful to de�ne the null-stream-transformed residuals:

ξ(k)
α ≡

∑
p

Nkpr̃(p)
α , (5.22)

and the null-stream equivalent of the "data minus model" quantity y:

χ(k)
α ≡ ξ(k)

α − ζ(k)
α =

∑
p

Nkpy(p)
α . (5.23)

In order to �nd the correct null-stream transformation for the concatenated vectors, we can

use the same trick as in Eq. 5.16 (using the Einstein summation convention here, and in Eq. 5.25):

χA = χ
(A′)

Ā

= NA′B′ y(B′)

B̄
δĀB̄

= NA′B′δĀB̄ yB

≡MAB yB . (5.24)

Although the "big" null-stream matrix M is similarly de�ned to the "big" covariance matrix Ψ, this

one is not block-diagonal. It is actually built from P "small" N matrices in such a way that, had

we chosen the concatenation rule di�erently (with residuals from one frequency of all pulsars grouped

together instead of the other way around), M would have been diagonal and Ψ would not. It is,

however, relatively straightforward to show that the inverse M−1 can be constructed by using N−1

instead of N , similar to Eq. 5.18:

M−1
ABMBC = (N−1)A′B′δĀB̄NB′C′δB̄C̄ = δAC . (5.25)

Null stream likelihood

We wish to write the standard FD likelihood in terms of null streams, analogously to Eq. 3.9 in

Chapter 3. Starting from Eq. 5.19, this can be done by substituting the following expression which
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makes use of Eq. 5.25:

yA = δAByB = M−1
ACMCB yB = M−1

AC χC . (5.26)

The log likelihood, now without the constant normalisation terms, then becomes:

log(L)(Ω̂, ~λ) =
∑
A,B

−
(∑

C

M−1
AC χC

)∗
Ψ−1
AB

(∑
D

M−1
BDχD

)

=
∑

A,B,C,D

−χ∗CM−1
ACΨ−1

ABM
−1
BDχD. (5.27)

We can de�ne

ZCD ≡
∑
A,B

MACΨABMBD, (5.28)

to �nd

log(L)(Ω̂, ~λ) =
∑
C,D

−χ∗CZ−1
CDχD. (5.29)

As a reminder of the dependencies on the GW model ~H(~λ) and propagation direction Ω̂, the likelihood

can also be written more explicitly as:

log(L)(Ω̂, ~λ) =
∑
A,B

−
(
ξA(Ω̂)− ζA(~λ)

)∗
Z−1
AB(Ω̂)

(
ξB(Ω̂)− ζB(~λ)

)
. (5.30)

Both ξA (the null-stream-transformed residuals) and ZAB are constructed using N (Ω̂), which in turn

is constructed using the response functions that depend on Ω̂. The null-stream-transformed model,

ζA, is assumed to be of the form of Eq. 5.21, and is therefore fully determined by ~H(~λ). This means

the dependencies on the source location Ω̂ and the GW parameters ~λ are completely separated. In

the following section, we exploit this separation of dependencies to construct a likelihood that does

not depend on the GW model at all.

5.2.3 GW-model-independent likelihood

To construct the GW-independent likelihood, we can marginalise over the signal components that de-

pend on ~H. Previously, we assumed there was some modelH+(~λ), H×(~λ) (or equivalently, H̃+(~λ), H̃×(~λ)

in the FD). Here, we treat each frequency component H̃+
α , H̃

×
α in Eq. 5.21 as 2Nf independent variables

(actually, 4Nf variables because each entry is a complex number). Then, the marginalised likelihood

can be computed as:

L(Ω̂) =

∫
dNf ~̃H+

∫
dNf ~̃H×L(Ω̂, ~H) p( ~̃H+, ~̃H×). (5.31)
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If we assume �at priors p( ~̃H+, ~̃H×), the result of this integral can be obtained from the standard

integral over a multivariate Gaussian with complex variables, which is:

∫
d~x exp

−1

2
(~x†, ~y†)

 Σxx Σxy

Σ>xy Σyy

−1~x
~y


 = exp

(
−1

2
~y†Σ−1

yy ~y

)
(2π)dim(~x)|Σ|
|Σyy|

. (5.32)

We can designate the �rst 2Nf elements of χA as ~x in the equation above (corresponding to the

elements of ζA that contain H̃+ and H̃×), and the rest as ~y. Then, we de�ne the "cut" variables χ̄

as χ without the �rst 2Nf entries and Z̄ as Z without the �rst 2Nf rows and columns (the latter �lls

the role of Σyy in the equation above). As we are not marginalising over anything that depends on Ω̂,

terms that depend on Ω̂ in Eq. 5.29 can be treated as constants during integration. The marginalised

likelihood, apart from any constant factors, is:

L(Ω̂) = exp

∑
A,B

−χ̄∗AZ̄−1
ABχ̄B

 |Z|
|Z̄| . (5.33)

Note that Z̄−1 6= ¯(Z−1), i.e. we have to compute the inverse of Z̄, not remove the rows and columns

from Z−1.

5.3 Practical implementation with ptacake

To simulate, manage, and analyse realistic PTA data, we created a python package called ptacake

(Pulsar Timing Arrays: Correlations Are KEy). Apart from localisation using null streams, ptacake

is also used to adapt the spherical harmonic analysis from [138] to realistic data. We aim to make

the package publicly available in the future, so these correlation-based techniques can be developed

further and used for analysis of future PTA data sets. Here we focus on the practical implementation

of simulating realistic data, applying the EFT of Sec. 5.1.1 and computing the GW-model-independent

likelihood from Eq. 5.33 in ptacake.

5.3.1 Simulating realistic PTA data

The pulsars in existing PTAs are not uniformly distributed across the sky, as they are more abundant

near the galactic disk (see for example Fig. 3.8). Additionally, radio telescopes cannot observe all

parts of the sky (equally well), due to their �xed location on earth. To emulate this e�ect in our

simulated PTA data, we have constructed a weight map based on the locations of millisecond pulsars

in the ATNF pulsar catalogue as of May 2018 [139] (using the complete set, minus globular cluster
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duplicates). Pulsar locations are then randomly generated across the sky, biased by this weight

map. For our initial test runs, we vary the total number of pulsars by selecting the �rst P from one

preconstructed list. Each pulsar is assigned a noise rms σ(p) from a Gaussian distribution with mean

10−7s and standard deviation 4× 10−8s. Each σp < 10−8s is set to this minimum instead. This is an

optimistic scenario for PTA; the mean rms of 100ns is almost reached by the best pulsar in the IPTA

DR2 [33].

We obtain results from both idealised data, and data with realistic sampling times. In the

idealised case, the data is evenly sampled with a constant cadence of ∆t = 2× 106s (about 23 days).

All pulsars start observing from t = 0 and end at t = 20yr. The realistic data sampling has three

components: First, to introduce uneven sampling, cadences ∆ti are chosen randomly from a Gaussian

distribution with a mean of 2 × 106s and a standard deviation of 105s (about one day). To ensure

no two points are too close, each ∆ti < 105s is set to this minimum instead. Second, a random

start time is assigned to each pulsar, chosen uniformly in the range 0 − 5yr. Finally, another level

of complexity is added by introducing gaps with a chosen "expected gap spacing" ∆gap = 5yr and

"expected gap length" Tgap = 5× 106s. Then for each pulsar, the number of gaps is sampled from a

Poisson distribution with expected value (tend − tstart)/∆gap. Each gap is placed at a random time

during observation, with a length sampled from an exponential distribution with rate parameter Tgap

(overlapping gaps are allowed). All random choices are seeded, such that we are able to vary other

parameters between tests while keeping the actual set of sampling times the same. An example of

the sampling times in the �rst 5 years of simulated data for a PTA with 8 pulsars can be seen in Fig. 5.1

As in the previous chapters, we simulate a signal from a monochromatic, circularised SMBH

binary, given by Eq. 2.7 and Eq. 1.75 (the mixing of polarisation states). The parameters of our test

signal are amplitude A = 10−14, phase o�set φ0 = 0.456, polarisation ψ = π/7, inclination ι = 0.4,

and GW frequency f = 2 × 10−8Hz (all angles are in radians). The pulsar response further depends

on the source location, which we choose to be at (θ = 0.456π, φ = 0.321), where θ ∈ [0, π] is the

polar sky angle and φ ∈ [0, 2π] is the azimuthal sky angle. This choice is mostly random, but it is

intentionally not very close to any of the (�rst 10) pulsars in our preconstructed list, since that would

strongly a�ect sky localisation (as we have previously seen in Chapter 3).

We run tests both with and without noise in the simulation, but in both cases the same noise

model (Eqs. 5.3, 5.4, and 5.5) is assumed. When including noise, we add this to the TD signal, as a
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Figure 5.1: Example of the sampling times for a PTA with 8 pulsars (indicated with di�erent colours).
Only the �rst �ve years of simulated data are shown, so that it is easier to see the uneven cadences,
unequal pulsar start times and data gaps.

randomly sampled value from a Gaussian distribution with zero mean, and variance equal to σ2
(p). For

pulsar p, σ(p) is the pulsars' noise rms which was previously assigned. As an example, the residuals

of three of the pulsars from the PTA of Fig. 5.1 are shown in Fig. 5.2. Although it is possible to

perform all computations with a time-dependent σ(p), they are kept constant here. This means the

TD covariance matrix Σ(p) for each pulsar is simply a N(p) × N(p) diagonal matrix with all diagonal

elements equal to σ2
(p) (it is white noise).

Noise realisations are created using the same random seed, for better comparison between our

test runs. Ideally, tests would be run with many di�erent noise realisations, choices of signal parameters

and PTA con�guration. However, with limited available (computational) time, these preliminary

results are all obtained with controlled variables as describes above. For each run (whether the data

contain noise or not), we compute the (total) S/N in the TD as follows:

ρ2 =
P∑
p=1

(
r

(p)
j Σ

(p)
jk r

(p)
k

)
. (5.34)

Once the TD data are simulated, we determine the set of Fourier frequencies {fmin, 2fmin, . . . ,Nffmin}
to use in our EFT. As discussed in Sec. 5.1.1, fmin = 1/T where T is the longest time between any

two residuals in the data. This will be nearly T = 20yr such that fmin ≈ 1.6 × 10−9Hz. The maxi-
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Figure 5.2: Example of the residuals from the �rst three pulsars of the PTA from Fig. 5.1, with corre-
sponding colours. The residuals include the response to an injected sinusoidal GW signal (indicated
with the solid lines) and Gaussian noise, according to the pulsars' noise levels. These are σ(1) ≈ 53ns
(blue), σ(2) ≈ 124ns (orange), and σ(3) ≈ 42ns (magenta). The rms values are constant which means
the noise is white. For visibility, only the �rst �ve years of simulated data are plotted.

mum frequency is cut o� at fmax = 10−7Hz, so the total number of frequencies is Nf = 63. We then

compute the FD data by applying Eqs. 5.7-5.9. An example of the residuals from unevenly sampled

data (with unequal start times and gaps) in the TD and FD is shown in Fig. 5.3. We have veri�ed

that for evenly sampled data, the result is the same as obtained using an FFT (as long as we choose

the set of frequencies to match the FFT's).

5.3.2 Obtaining sky location posteriors and creating sky maps

The likelihood computation as described in Sec. 5.2 is done in python, making use of linear al-

gebra tools in the numpy package (mainly from numpy.linalg) [140, 141]. We also compute the

"standard" FD likelihood from Eq. 5.19, henceforth LFD, to compare to the null-stream-based, GW-

model-independent likelihood from Eq. 5.33, henceforth LNS. (Actually, we compute the log likelihood

in both cases, which is less prone to numerical errors.) To sample each likelihood and obtain posteriors

on the source sky position (θ, φ), we employ cpnest [142], an implementation of a nested sampling

algorithm [143]. To ensure the prior distribution is uniform on the sky, we sample over cos θ ∈ [−1, 1]

and φ ∈ [0, 2π]. The likelihood LFD also depends on the GW model (we use the same model that

was used to simulate the signal) and its parameters. The posterior samples output by cpnest will
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Figure 5.3: Example of simulated residuals for a PTA with 8 pulsars (indicated with di�erent colours),
with unevenly sampled data, unequal pulsar start times and data gaps. No noise is added to the
injected sinusoidal signal, which has S/N ≈ 11 (computed with the assumed pulsar noise levels). Data
are simulated in the TD (left), and converted to the FD (right) using the EFT from Sec. 5.1.1. The
dashed line indicates the injected signal's frequency (2× 10−8Hz).

include these parameters as well as θ and φ, but they are not used in the comparison with LNS. We

use the following uniform priors (avoiding any degeneracy between the polarisation angle ψ and the

phase o�-set φ0): φ0 ∈ [0, 2π], log(A) ∈ [−16,−12], ψ ∈ [0, π/4], cos(ι) ∈ [−1, 1], and f ∈ [0, 10−7].

The output of cpnest is a list of (θ, φ) samples that follow the posterior distribution. It is useful

to estimate the (normalised) probability density at each point in the sky from these samples, which can

then be used to visualise the posterior and compute a metric for the localisation precision. Because

the sky is not �at, this is not a trivial task. We therefore employ the ligo.skymap software5 [144],

which uses a KDE (kernel density estimation) method to create pixelated maps of the posterior (with

a maximum HEALpix re�nement parameter of n = 64). From these maps, we are able to compute

Ω90, the fraction of the sky that contains 90% of the posterior (we also used this as a measure of

localisation precision in Chapter 3). Additionally, Ω50 and Ω95 are computed for 50% and 95% of the

posterior, respectively. Our hypothesis is that the localisation for LNS is generally poorer than for

LFD, given that some of the data (the �rst two null streams), have not been used. The fraction of

unused data is 2/P, so it is expected that for an increasing number of pulsars P, the posterior from

LNS resembles the one from LFD more closely.

5 git.ligo.org/lscsoft/ligo.skymap
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5.4. PRELIMINARY RESULTS

5.4 Preliminary results

5.4.1 Idealised data without noise

Consider �rst a test run with evenly sampled data, without any noise. The posterior obtained with

the "standard" likelihood LFD, for a PTA with P = 10, is shown in Fig. 5.4. The signal is localised

around the injected source location, within an error-box of Ω90 = 109deg2. This is consistent with

earlier results from Chapter 3; the most comparable runs have P = 10, S/N = 15, and range between

70deg2 . Ω90 . 900deg2 as shown in Fig. 3.3. (There is such a wide range in Ω90 values because

the localisation is strongly a�ected by the pulsar placement). The sky maps for di�erent size PTAs

are not shown here, but the posteriors for P = 3, 5, 8, 20 are all found around the injected source sky

location as well (their localisation areas can be seen in Fig. 5.7).
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Figure 5.4: Posterior on the source sky position from LFD (the "standard" FD likelihood from
Eq. 5.10). Simulated data is for a PTA with 10 pulsars (their positions are marked with stars,
with bigger markers for pulsars with lower noise levels), is evenly sampled, and has no added noise.
The injected source sky location is indicated with a green cross.

Using the same data, the posterior obtained with LNS does not localise the signal at the

correct location, as shown in Fig. 5.5. Upon further investigation, it turns out the exponential term in

Eq. 5.33 is peaked at the injected source location, but the term |Z|/|Z̄| is peaked elsewhere. Because

the second term is bigger, this explains the misplaced posterior. At this time, it is unclear what

causes this behaviour. It could be an error in our derivation of the null-stream likelihood, or in

the computation of Z or Z̄ (or something else entirely). There is no reason to believe that there is

something speci�c about the PTA con�guration used here that could cause the issue.
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Figure 5.5: Posterior on the source sky position from LNS (the null-stream likelihood from Eq. 5.33).
Simulated data and markers are the same as in Fig. 5.4.

To make use of LNS, we de�ne an adjusted likelihood in which we leave out the problematic

|Z|/|Z̄|-term:

LNS2 = exp
(
χ̄AZ̄

−1
ABχ̄B

)
. (5.35)

The posterior obtained with this likelihood (still for evenly sampled data without noise), can be seen

in Fig. 5.6. This time, the posterior is well-localised, and very similar to the LFD one in Fig. 5.4. The

localisation area is Ω90 = 124deg2, which is somewhat larger than in the LFD case. The hypothesis

that the posterior from the null-stream likelihood is always wider than the "standard" one should

apply to LNS2 as well as LNS, as the same fraction of data is unused in both. This result therefore

seems to follow our expectations. However, it is possible that leaving out the |Z|/|Z̄|-term a�ects the

posterior width, thereby contributing to the di�erence in Ω90 between LFD and LNS2.

We can further investigate the di�erence in localisation precision of LFD and LNS2 by comparing

all measures, Ω50, Ω90, and Ω95, for a varying number of pulsars P. These values are all plotted in

the top panel of Fig. 5.7. The bottom panel shows the ratio of each pair of Ωx (x being 50, 90 or 95)

between LNS2 and LFD. The posteriors are all well-localised around the injected source sky location,

although the P = 3 posteriors are both very wide and have multiple peaks, but that is not surprising.

The overall decrease of Ω50, Ω90, and Ω95 with increasing P follows the same trend we found in
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Figure 5.6: Posterior on the source sky position from LNS2 (the adjusted null-stream likelihood from
Eq. 5.35). Simulated data and markers are the same as in Fig. 5.4.

Chapter 3, with a steep increase in the "transition area" � for this PTA con�guration between P = 8

to 10. In most cases, the LNS2 posterior is wider than the LFD one, as expected. However, for P = 5,

Ω90 and Ω95 are smaller for LNS2 (Ω50 is not). This possibly means that the error of the null-stream

likelihood is underestimated, as it should not be possible to have a more precise measurement with

fewer data.

The expectation that the posteriors for LFD and LNS2 resemble each other more for larger P

seems to be true for Ω50, but less so for Ω90 and Ω95, mainly due to the unexpected values at P = 5.

Looking at the bottom panel of Fig. 5.7, perhaps one could conclude that for 5 . P . 8, the peak

of the posterior (Ω50) is narrower for LFD than for LNS2, but that the opposite is true for the larger

contour areas, and that for P & 10 the posteriors behave as expected. However, keeping in mind

that the sky localisation also depends on the speci�c PTA con�guration, we can de�nitely not make

this statement in general. Additionally, the �nite number of samples used to estimate the posterior

density means that the larger contours, Ω90 and Ω95, are measured less accurately than Ω50, because

there are fewer samples near the edges of the distribution. This may especially be important for the

wider posteriors of P = 3 and P = 5.
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Figure 5.7: Top: sky-localisation precision comparing the use of LFD (the standard FD likelihood
from Eq. 5.19, solid lines) and LNS2 (the adjusted null-stream likelihood from Eq. 5.35, dashed lines).
The localisation precision is measured using Ω50 (red), Ω90 (blue), and Ω95 (black), which are the
smallest areas containing 50%, 90% and 95% of the sky posterior, respectively. On the x-axis, the
number of pulsars P in the PTA is varied. The simulated data is evenly sampled and has no noise.
Bottom: Ratio between LNS2 and LFD of each pair of areas in the top panel. The grey dashed line
marks the expected lower limit, which is to say that above the line, the posterior from LNS2 is wider
than the one from LFD.
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5.4.2 Realistic sampling and no noise

The main reason for our computations to be in the FD is so our method can be applied to unevenly

sampled data. Fig. 5.8 shows the skymap made with LFD, using the full suite of data sampling

complexity as described in Sec. 5.3.1: uneven cadences, unequal observation start times and data

gaps. The source is still well-localised, with Ω90 = 125deg2, a somewhat wider posterior than the

evenly sampled case with Ω90 = 109deg2. There is a di�erence in S/N as well; for the idealised data,

S/N = 16.5, and for the realistic data � which has fewer TOAs due to unequal observation start

times and data gaps � S/N = 15.2. The theoretical scaling of Ω90 ∝ ρ−2 almost entirely explains the

di�erence in Ω90, but it is possible there is an additional contribution from information being lost

when applying the EFT to the unevenly sampled data.
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Figure 5.8: Posterior on the source sky position from LFD (the "standard" FD likelihood from
Eq. 5.10). The simulated PTA has 10 pulsars (their positions are marked with stars, with bigger
stars for pulsars with lower noise levels). Data is unevenly sampled, with unequal start dates for the
pulsars and includes gaps, but has no added noise. The injected source sky location is indicated with
a green cross.

We can compare this to the result using LNS2, with the exact same simulated PTA data. The

posterior, as shown in Fig. 5.9, is very similar to the LFD result. The localisation area is Ω90 ≈ 140deg2,

which is somewhat bigger than the LFD one and therefore follows our expectations. As with the evenly

sampled runs, we make a full comparison of localisation precision with varying P, using Ω50, Ω90 and

Ω95. The results are plotted in Fig. 5.10. All posteriors are found around the location of the injected

source (with the P = 3 posteriors being very wide with multiple peaks).
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Figure 5.9: Posterior on the source sky position from LNS2 (the adjusted null-stream likelihood from
Eq. 5.35). Simulated data and markers are the same as in Fig. 5.8.

The same steep transition in localisation precision between P = 8 and 10 is found as in the

evenly sampled case. The ratios of Ω50, Ω90 and Ω95 between LNS2 and LFD, found in the bottom

panel of Fig. 5.10, are very similar to the results in Fig. 5.7. This time, the Ω90 ratio for P = 5 is just

above 1, and the Ω95 ratio is slightly higher as well. As before, the posteriors seem to resemble each

other most for the highest number of pulsars.
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Figure 5.10: Top: sky-localisation precision comparing the use of LFD (the standard FD likelihood
from Eq. 5.19, solid lines) and LNS2 (the adjusted null-stream likelihood from Eq. 5.35, dashed lines).
The localisation precision is measured using Ω50 (red), Ω90 (blue), and Ω95 (black), which are the
smallest areas containing 50%, 90% and 95% of the sky posterior, respectively. On the x-axis, the
number of pulsars P in the PTA is varied. The simulated data has varying cadences, unequal obser-
vation start dates for each pulsar, and includes gaps, but there is no noise added.
Bottom: Ratio of the areas plotted in the top panel. The grey dashed line marks the expected lower
limit of the ratio, meaning that the posterior from LNS2 is wider than the posterior from LFD.
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5.4.3 Runs with noise

If unlimited (computational) time was available, it would be ideal to run tests with many di�erent

noise realisations, and randomly chosen PTA con�gurations and source parameters. This not being

the case, it is still valuable to run few tests with a speci�c noise realisation, to see how much it

a�ects the results. Adding Gaussian noise to the simulated data for our benchmark run (LFD with

P = 10) results in a very similar posterior as the no-noise run, as shown in Fig. 5.11. The peak

of the posterior is slightly shifted compared to the no-noise run, but still very close to the injected

source's sky location. The localisation areas are also comparable with Ω90 ≈ 137deg2 with noise versus

Ω90 ≈ 125deg2 without.
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Figure 5.11: Posterior on the source sky position from LFD. The simulated PTA has 10 pulsars (their
positions are marked with stars, with bigger stars for pulsars with lower noise levels). Data is unevenly
sampled, with unequal start dates for the pulsars, includes gaps and has white noise added according
to the pulsars' noise levels. The injected source sky location is indicated with a green cross.

The posterior obtained using the null-stream likelihood LNS2 however, is somewhat further

shifted from the injected source sky location, as shown in Fig. 5.12. Unfortunately, if we look at the

corresponding run with P = 8, shown in Fig. 5.13, it becomes clear LNS2 is not functioning well at

all, rather than this being a small error (this is also evident from other PTA sizes not shown here).

It is unclear at the moment what causes this issue, but it appears to manifest only when complex

data sampling and noise are combined. In a test with the same PTA con�guration and noise level

as Fig. 5.13, but with evenly sampled data, the source is well-localised again (see the skymap in

Fig. 5.14). More research is required to �nd out when exactly this problem manifests (for example, is
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there a di�erence between data sampled with varying cadences and data with gaps?) and whether it

is avoidable or not. Perhaps it is related to the issue that causes the LNS (the likelihood that includes

the |Z|/|Z̄|-term) posteriors to be misplaced.
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Figure 5.12: Posterior on the source sky position from LNS2. Simulated data and markers are the
same as in Fig. 5.11.
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Figure 5.13: Posterior on the source sky position from LNS2. The simulated PTA has 8 pulsars (their
positions are marked with stars, with bigger stars for pulsars with lower noise levels). Data is unevenly
sampled, with unequal start dates for the pulsars, includes gaps and has white noise added according
to the pulsars' noise levels. The injected source sky location is indicated with a green cross.
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Figure 5.14: Posterior on the source sky position from LNS2. The PTA con�guration and plot markers
are the same as in Fig. 5.13. Simulated data is evenly sampled and has added white noise.
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5.5 Discussion

In this chapter, we have constructed a null-stream likelihood that can be applied to realistic PTA

data with arbitrary sampling times, and is independent of the GW model. We use this likelihood

(Eq. 5.33) in a nested sampling algorithm to recover the sky location of a SMBH binary signal

injected into simulated data. The posterior is found to be misplaced, however, this issue seems to

disappear if we adjust the likelihood to Eq. 5.35. Source sky location posteriors obtained with this

method are compared to those from a "standard" FD likelihood, Eq. 5.19. The expectation is that the

posteriors from the null-stream likelihood are wider, because part of the data is unused. Results are

largely consistent with this hypothesis using evenly sampled data, as well as using realistic data with

irregular cadences, unequal observation start times, and gaps. For some cases however, the null-stream

likelihood results in an overall narrower posterior while the standard likelihood is more peaked.

When adding white noise to the simulated data, another issue manifests: the posteriors from

the null-stream likelihood do not recover the injected source sky location any more. However, for

evenly sampled data, adding noise is not a problem. More tests using di�erent combinations of noise

and data complexity could help uncover under what circumstances the issue occurs. It is currently

unclear what the cause is, and whether it is related to the problem with the originally derived Eq. 5.35.

More research is needed to investigate both issues. A speci�c point of interest is the choice of prior

in the marginalisation of H̃+ and H̃× in Eq. 5.31. Flat priors allowed to analytically compute the

marginalised likelihood with the standard integral from Eq. 5.32, but this may be possible with a

di�erent choice as well. Given that the components of H̃+ and H̃× are complex variables, perhaps a

log �at prior on their amplitude would be appropriate.

If resolving these issues results in a likelihood that consistently localises the source, error

estimation can be further investigated by running many test with randomised source parameters,

PTA con�gurations and noise realisations. As we found that for some of our PTA con�gurations,

the posteriors from the null-stream likelihood were narrower than from the "standard" likelihood, it

is possible the error is underestimated. Creating a "pp-plot" from a large collection of runs would

be a robust test of the error estimation. Repeating these runs with the standard likelihood would

also allow a better assessment of the null-stream likelihood's performance compared to the standard

case. It would be useful to assess what number of pulsars are needed to make the null-stream method

viable.
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5.5.1 Future work

If teething problems with the null-stream likelihood can be resolved, it has great potential for use in

PTA data analysis. A source can be located on the basis of the relation between the responses of

di�erent pulsars alone, without the need to model the GW signal. Complexity in the signal (for exam-

ple, a binary's eccentricity or the e�ect of gas on the orbital evolution) can be modelled, but it would

be useful to also have an unmodelled search available in which no assumptions about the GW signal

have to be made. Furthermore, with the null-stream likelihood, the source location can be measured

without needing to measure any signal parameters at the same time, meaning the dimensionality of

the sampling problem is greatly reduced.

Several simpli�cations in our method have not been addressed yet. First, we have not included

the "pulsar term" in the PTA response (see also Sec. 2.1.3). Because the pulsar terms depend on

the pulsar distances (modulo the GW wavelength), which are largely unknown, including it in the

signal would e�ectively add another 2P independent variables. This means null streams cannot be

constructed in this case. A more plausible approach could be to treat them as a source of noise.

Second, we have greatly simpli�ed the noise in the simulated PTA data for our null-stream analysis.

Noise modelling for PTA is a complex task on its own, but it can potentially be combined with the

null-stream approach without much further e�ort. The construction of the null-stream likelihood

prescribes how to transform a given covariance matrix Σ of the TD residuals (�rst to the FD, then

with the null-stream transformation), and this Σ could be as complex as needed to begin with. Any

parameters of the noise model could be searched over at the same time as the source sky location.

This would incur an additional computational cost; the transformed Σ (Eq. 5.28, and its inverse after

discarding the �rst 2Nf rows and columns) would have to be computed at each point in the sampling

space.

Another prospect for the null-stream likelihood method is to extend it to search for a resolvable

signal, rather than just localise an already detected one. Detection signi�cance in the Bayesian

framework can be addressed by computing the Bayes factor (Eq. 2.21) between a model that assumes

a signal is included in the data and a model that assumes no signal is present. This would require

computing the evidence from the null-stream likelihood, which is only useful if the likelihood is properly

normalised. We have not included normalisation in our computation but it can in principle be done.

One could search for unmodelled resolvable PTA signals, such as burst from cosmic string cusps [27],

or entirely unknown quadrupolar sources in the Universe.
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Conclusion

Pulsar Timing Arrays (PTAs) are expected to detect gravitational waves (GWs) from super

massive black hole (SMBH) binaries in the not-too-distant future. Likely, a stochastic background

built up from unresolved binaries throughout the Universe will be detected �rst, but few signals from

the most massive and nearby binaries could be resolved individually [22]. Localising these signals to

small regions of the sky is crucial to increase the chances of being able to identify the galaxy that hosts

the source, thereby opening up the possibility to observe the source in the electromagnetic spectrum

as well as with GWs.

We have employed the construction of null streams � combinations of data that cancel the

GW signal from a given direction � for source localisation in a Bayesian framework. In Chapter 3,

we have constructed and implemented a null-stream-based likelihood in which the dependency on the

source sky location and on the GW model is separated in di�erent terms. We have then employed

this likelihood to investigate the localisation capacity of di�erent PTA con�gurations, using idealised,

simulated data. We found that the area to which a signal can be localised scales with the signal-to-

noise ratio (S/N, ρ in Eqs.) of the injections as ρ−2, as is expected from theory and also found in [20],

but only for high S/N. Between 5 . ρ . 10, there is a steep transition between very poor localisation

and more precise localisation following the high-S/N scaling. Localisation is also found to be strongly

a�ected by the particular placement of the pulsars in the PTA.

We further used this localisation method to investigate the capabilities of existing PTA experi-

ments and the combined International Pulsar Timing Array (IPTA). There is convincing evidence that

combining data sets improves source localisation, not only through an increased S/N, but through an

improved sky coverage with more pulsars as well.

It is expected that the �rst detected SMBH binaries with PTAs will have relatively poor sky lo-

cation precision (a few 100deg2). This makes identifying the host galaxy challenging. In Chapter 4, we
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have constructed a Bayesian method of combining the limited information on the source sky location,

and the posterior on the signal's amplitude, with the properties of galaxies from a catalogue. This al-

lows us to assign each galaxy a probability of hosting the detected source, and rank them accordingly.

We have demonstrated the method with simulated data and a mock galaxy catalogue, and found that

it greatly decreases the number of candidate galaxies. By accepting a 19% (55%) probability of missing

the true host, our method reduces the number of candidates by nearly three (four) orders of magnitude

compared to a crude cut using a lower limit on the stellar mass of the galaxy, M∗ > 5× 1010M�, and

a redshift limit of z < 1. We also found that, although the redshift distribution of the best candidates

peaks around z . 0.2, it has a long tail that extends up to z . 1, consistent with predictions from [22].

In Chapter 5, we have further developed the null-stream-based likelihood so it can be applied

to more realistic PTA data with arbitrary sampling times, by transforming the data into the frequency

domain (FD). We have then used the separation of the dependence on the source sky location and

on the GW model to marginalise over the null-stream components that depend on the GW, making

the likelihood independent from it. This means a fraction 2/P of the data � where P is the number

of pulsars in the array � is unused. As expected, this generally results in wider posteriors using the

null-stream likelihood compared to posteriors obtained with a "standard" likelihood in the FD.

There are still some issues with this extended null-stream method that need to be addressed in

future work. First, we have had to make an empirical adaption to the derived GW-model-independent

likelihood, which could be due to an error in the derivation or in the implementation. Second, although

the method seems to perform well for realistically sampled data with zero noise, or for evenly sampled

data with added white noise, it does not work when those factors are combined.

Before applying the null-stream likelihood to real PTA data in future work, it would be good

to include the pulsar term in the PTA response. It is also important to address the complexity of PTA

noise. In principle, an arbitrarily complex noise model can be used in conjunction with the null-stream

method, but this has not been tested. Lastly, it would be valuable to adapt our method to detection,

rather than just localisation of already detected sources. This could be done in the Bayesian framework

by computing the Bayes factor, for which one would need to determine the normalisation of the null-

stream likelihood (so far, we have relied on post hoc numerical normalisation of the posteriors).

Succeeding in this e�ort would mean that null streams could be used as an alternative search for

resolvable SMBH binaries, as well as for di�cult to model, or even unmodelled, signals in PTA data.
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