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ABSTRACT

Bootstrap Your Own Latent (BYOL) introduced an approach to self-supervised
learning avoiding the contrastive paradigm and subsequently removing the com-
putational burden of negative sampling associated with such methods. However,
we empirically find that the image representations produced under the BYOL’s
self-distillation paradigm are poorly distributed in representation space compared
to contrastive methods. This work empirically demonstrates that feature diver-
sity enforced by contrastive losses is beneficial to image representation uniformity
when employed in BYOL, and as such, provides greater inter-class representa-
tion separability. Additionally, we explore and advocate the use of regularization
methods, specifically the layer-wise minimization of hyperspherical energy (i.e.
maximization of entropy) of network weights to encourage representation unifor-
mity. We show that directly optimizing a measure of uniformity alongside the
standard loss, or regularizing the networks of the BYOL architecture to minimize
the hyperspherical energy of neurons can produce more uniformly distributed and
therefore better performing representations for downstream tasks.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised visual representational learning methods [1,
2] have recently demonstrated performance on downstream
tasks that continues to narrow the gap to supervised pre-
training, excelling specifically in classification and segmen-
tation tasks [3, 4, 5]. This success is largely contributed
to contrastive methods which aim to minimize the dis-
tance of the representations pertaining to two views of
the same image in representations space (‘positive pair’),
whilst maximizing the distance of views from different im-
ages (‘negative pair’) [6]. This ensures that semantically
relevant features encoded by representations of positive
pairs are similar, whilst negative pairs are dissimilar. The
study of contrastive losses has shown that this repulsion
effect between dissimilar views is matching the distribu-
tion of features in representational space to a distribution
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of high entropy [7], in other words, encouraging uniformity
of representations in space [8]. This balancing of attrac-
tion and repulsion is the mechanism that allows contrastive
methods to learn similar semantic features whilst avoiding
collapse in representation space.

More recently, alternative approaches aim to explore
self-supervised learning avoiding the inherent computa-
tional difficulties imposed by contrastive methods reliance
on negative samples [3]. One method in particular, Boot-
strap Your Own Latent (BYOL) [2] falls under the self-
distillation paradigm, where we task an ’online network‘
to predict the image representations produced by a ’tar-
get’ network in a Siamese fashion, where each network is
given a different view of the same image (visually depicted
in Figure 3). Yet this network does away with the nega-
tive views (views originating from different images), and
the subsequent negative term attributed with contrastive
losses. The theoretical understanding of how these net-
works avoid the seemingly inevitable collapsed equilibria,
given no explicit mechanism associated with the negative
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Fig. 1: Visual depiction of BYOL architecture [2].

term of contrastive losses, is still to be investigated [9].
Intrigued by the property of mode collapse and in-

spired by [8], we empirically demonstrate in this work that
BYOL fails to distribute its image representations as uni-
formly in `2-normalized unit space (i.e. surface of a unit-
hypersphere) compared to its contrastive counterparts. As
such, we ask, can BYOL benefit from mechanisms that in-
troduce feature uniformity found in contrastive methods?
To achieve this, we investigate an alternative to the uni-
formity constraint posed by [8] and derived from the con-
trastive loss, aiming to maintain the avoidance of negative
sampling advocated in BYOL. We instead propose to uti-
lize minimum hyperspherical energy (MHE) weight regu-
larization [10] to enforce neuron (i.e. kernel) uniformity
whilst being independent and therefore robust to smaller
batch size (the desirable property of BYOL). We empiri-
cally demonstrate how the use of MHE regularization can
increase uniformity of representation through the concept
of neuron redundancy reduction in the `2-normalized unit
space, and in-turn lead to better learned image representa-
tions. Our contributions are summarized as follows: i) we
empirically show that BYOL distributes its features poorly
in representational space compared to contrastive counter
parts and that distribution constraints like those in con-
strastive losses benefit image representations in BYOL; ii)
we propose to hyperspherically regularize the network to
improve distribution of neurons and subsequently achieve
a greater diversity of representations improving image rep-
resentation separability and performance on downstream
tasks; iii) as a consequence hyperspherically regularized
BYOL networks maintain the benefits of avoiding con-
trastive loss negative terms, resulting in reduced perfor-
mance drops at smaller batch sizes.

2. Related Work

2.1. Unsupervised Representational Learning

The recent popularity of discriminative unsupervised
representational learning, specifically contrastive methods,
has sparked keen interest in the theoretical understanding
of their underpinnings, emerging from their performance
rivaling that of supervised methodologies [1, 11]. As to
why these methods perform so well has only recently be-
gun to be understood, notably [8] prove that optimizing
contrastive loss when under a unit `2-norm constraint (re-
stricting representational space to a unit hypersphere) is
equivalent to optimizing a metric of alignment (distance

between positive pairs) and uniformity (all feature vec-
tors should be roughly uniformly distributed on the unit
hypersphere). Additionally, [7] extends this work propos-
ing a generic form of the contrastive loss, also identifying
the same relations of uniformity to pairwise potential in a
Gaussian kernel, to match representations to a prior dis-
tribution (of high entropy).

Lately, alternatives to contrastive methods [3] have
been proposed alleviating some of the computational draw-
backs associated to contrastive losses, primarily the neces-
sity of large numbers of negative pairs generally requir-
ing increased batch sizes [1] or memory banks [11]. Boot-
strap Your Own Latent (BYOL) avoided the use of neg-
ative pairs via an ‘online’ ‘target’ network approach akin
to Mean Teachers [12], where the ‘online’ network and an
additional ‘predictor’ network aim to predict the repre-
sentations of a slowly updated ‘target’ network of the ‘on-
line’ network. However, it is not clear how these networks
avoid collapsed representations, it has been hypothesized
Batch Normalization (BN) was the critical mechanism pre-
venting collapse in BYOL [13], yet this hypothesis was re-
futed, showing batch-independent normalization schemes
still achieve comparable performance [9, 14].

2.2. Minimal Hyperspherical Energy and Diversity Regu-
larization

Many unsupervised representational methods learn their
representations under the constraint to lie on the surface
of a unit-hypershpere via a `2-norm constrain leading to
desirable traits [15]. As aforementioned [8, 3] prove that
the negative term (repulsion of negative views) in the con-
trastive loss is equivalent to the minimization of hyper-
spherical energy of representations. The minimization of
hyperspherical energy, the Thompson Problem [16], is a
well studied problem in Physics finding the minimal elec-
trostatic potential energy configuration of electrons. Yet
this problem has also found place in providing diversity
regularization of neurons [10, 17], avoiding undesired rep-
resentation redundancy. Our work however, investigates
whether these regularization methodologies, introducing
greater feature diversity and reducing redundancy, can
promote more uniformly distributed image representations
in BYOL.

3. Uniform Distribution of Features

We now define the necessary components of our in-
vestigation, specifically, explicit uniformity constraints on
the representation space derived from the InfoNCE con-
trastive loss [18] and hyperspherical energy redundancy
regularization to enforce representation diversity through
neuron uniformity.

3.1. Contrastive Learning

We begin by defining the contrastive loss, specifically
the InfoNCE loss informally as the softmax cross entropy
loss to identify the positive view among the set of unrelated
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Fig. 2: Visual depiction of the regularization of neurons,
{w1, · · · ,wN ∈ R(d+1)}, to minimum hyperspherical energy,
Es, on the unit hypersphere Sd. [10, 17]

negative views. Formally, we give this in the notation style
of [8], in which the popular case of contrastive loss is con-
sidered where an encoder f : Rn → Sm+1 is trained and
feature vectors are `2-normalized onto the unit-hyperspher
S of m dimensions.

Lcontrastive(f ; τ,M) ,

E
(x,y)∼Ppos

{x−
i }

M
i=1

i.i.d∼ Pdata

[
− log

ef(x)
ᵀf(y)/τ

ef(x)ᵀf(y)/τ + Σief(x
−
i )ᵀf(y)/τ

]
(1)

where Pdata(·) is the distribution of data over Rn, Ppos(·, ·)
is the distribution over positive pairs (augmentations T1,T2
of image X ∼ Pdata) Rn ×Rn, τ > 0 is a temperature hy-
perparameter, and M ∈ Z+ a fixed number of negative
samples, i.e. M = 2B − 1 in [1] where B is the batch
size. Additionally, under the assumption of our `2-norm
constraint f(·) , f(·)/‖f(·)‖2.

3.2. The Link to Uniformity

It has been shown by the authors of [8] that there is
a derivable link to the enforcement of uniformity in con-
trastive losses. From the loss in Eq.1, it is formally shown
in [8] that directly optimizing a metric of alignment (en-
courages positive pair representations to be consistent)
and uniformity (encourages negative pairs to be dissimilar
by uniformity distributing representations) is equivalent
when M is sufficiently large.

The uniformity loss is given by:

Luniformity(f ; t) , log E
x,y

i.i.d∼ Pdata

[
e−t‖f(x)−f(y)‖

2
2

]
, t > 0,

(2)
This derivation, is of our primary interest, where we pon-
der if the explicit constraint on uniformity can improve
representation diversity and subsequently improve perfor-
mance of BYOL.

3.3. BYOL and its Uniformity on the Hypersphere

As previously mentioned, BYOL proposes an alterna-
tive to the contrastive paradigm, in which two networks,
online (fθ), and target (fθ) are each input with a differ-
ent view of the same image (x, y), with the online network

tasked to predict the representations of an identical but
temporally aged version of the online network, the tar-
get network. The BYOL architecture is depicted in Fig.1,
where the prediction is made via a multi-layer perceptron
network qθ(fθ(·)) independent of the target network. For
specifics regarding BYOL architecture please refer to 3.6
or the original work [2].

The important distinction to the contrastive paradigm
regards the loss function Eq.3 in which no negative samples
are draw (i.e. augmentations/views from different source
images). Instead, the loss can be seen as an equivalent
to the alignment loss derived from Eq.1 by [8] (Appendix
A.1), formally the BYOL loss is given as follows,

LBY OL(θ, ξ) , E
x,y∼Ppos

[
‖q̄θ(fθ(x))− f̄ξ(y)‖22

]
, (3)

where q̄θ(fθ(x)) , qθ(fθ(x))/‖qθ(fθ(x))‖2 and f̄ξ(y) ,
fξ(y)/‖fξ(y)‖2 are the normalization terms projecting the
representation onto the unit-hypersphere.

From Eq. 3 we can observe there exists no term that
enforces the separation and therefore diversity of negative
views in space. The phenomena associated with the lack
of diversity of representations pertaining to different input
samples is known as mode collapse, where without such
term, the network will simple learn trivial and constant
representations. The current conjecture as to why BYOL
does not exhibit mode collapse lies in the predictor network
qθ [2, 14] with the derivation and explanation by [2] given
in Appendix A.3.

To explore the distribution of representations and sub-
sequently the effect of the predictor qθ without explicit
diversity constraints, we visualize the uniformity of rep-
resentations produced by the AlexNet [19] encoder when
training on the CIFAR-10 [20] dataset. Fig. 3 depicts
the distribution of the validation set features, with Fig.3c
visualizing the distribution under BYOL procedure. We
can observe that the distribution of image representations
under the BYOL setting, although good and much bet-
ter than random, is vastly less uniform compared to its
contrastive counter-parts.

3.4. Explicit Uniformity Constraint

This observation leads to the question: can BYOL
benefit from mechanisms that introduce feature uniformity
found in contrastive methods? More specifically, can the
uniformity loss, Eq.2, benefit the representations learned
under BYOL. This question had been partly explored in [21]
and indirectly via exploration of negative samples in [2],
yet both of these consider representations produced by
the projector and negatives computed from the target net-
work. Given the intuition of BYOL behavior we instead
minimize Eq.2 of the online projections fθ only and in-
dependent of the predictor qθ. The intuition behind this
procedure is to enforce uniform distribution of features
output by the online network, akin to constrastive, whilst
maintaining the properties of the predictor to enforce vari-
ation via the maximization of information in the uniformly
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(a) Random Initalization (b) Contrastive Learning (c) BYOL (d) BYOL + Uni (e) BYOL + MHE Reg

Fig. 3: Learned representations of the CIFAR-10 validation set normalized on the unit hypersphere S1. The feature distribution
is plotted via Gaussian Kernel Density Estimation (KDE) in R2. The corresponding angles for each (x, y) point in R2 on the unit
hypersphere S1 is achieved using the von Mises-Fisher KDE [8].

distributed online network. The combined loss is as follows

LBY OL+Uni(θ, ξ) = LBY OL(θ, ξ)+

λuni · Luniformity(fθ; t) (4)

where t = 2 and λuni is a hyperparameter controlling
the influence of the uniformity metric.

It can be observed from Fig.3d, the addition of Luniformity
during BYOL training improves the uniformity of repre-
sentations produced by the encoder, distributing akin to
contrastive (Fig.3b), confirming expected behavior.

Although the addition of the contrastive uniformity
term exhibits greater uniformity of representations and
subsequent improvement in performance (Tab. 3), this
term relies on the number of negative samples, M , being
sufficiently large. This is an undesirable computational
necessity which BYOL aimed to remove, therefore intro-
ducing the contrastive uniformity metric contradicts the
advantage of BYOL, the lack of negative samples. Further
analysis of the representations captured and robustness to
smaller batch size are examined in later sections.

3.5. MHE Regularization

It has been shown by [9, 14] that initialization and reg-
ularization of weights by batch normalization are funda-
mental to performant self-supervision. We aim to further
extend the power of regularization of self-supervised learn-
ing to enforce uniformity of neurons and subsequently the
produced representations, whilst avoid the negative sam-
pling constraints imposed by contrastive terms.

We propose the use of hyperspherical regularization [10]
alongside batch normalization to explicitly regularize the
network to reduce hyperspherical energy of neurons (de-
picted in Fig.2) to further improve the diversity of weights
in the network and consequently representation unifor-
mity. Fundamentally, such methods aim to reduce un-
desired representation redundancy occurring through non-
uniform distribution of neurons. This choice is particularly
motivated the findings in [10], where scenarios of class im-
balance where unrepresented classes were shown to be well
separated as a result of more uniformly distributed classi-
fication neurons. Additionally, [10] argues that the power

of neural representations can be characterized by the hy-
perspherical energy of its neurons (i.e. kernels), and as
such a minimal hyperspherical energy configurations can
induce better diversity and improve representation separa-
bility. The hyperspherical energy for N neurons, in R(d+1),
WN = {w1, · · · ,wN ∈ R(d+1)} is defined as:

Es = Es,d(ŵi|Ni=1) =

N∑
i=1

N∑
j=1,j 6=i

rs(‖ŵi − ŵj‖)

=

{∑
i 6=j ‖ŵi − ŵj‖−s, s > 0∑
i 6=j log(‖ŵi − ŵj‖−1), s = 0

(5)

where ŵi = wi
‖wi‖ is the i-th neuron weight projected onto

Sd, and rs(·) is a decreasing real valued function, which
is chosen to be the Riesz s-kernel, rs(z

−s), s > 0 [10].
We therefore aim to minimize the energy Es in Eq.5 by
manipulating the orientation of the neurons WN to solve
minWN

Es, s ≥ 0. When s = 0, the logarithmic energy
minimization problem is undertaken, essentially maximiz-
ing the product of Euclidean distance, where in our case
this is the angle between neurons.

arg min
WN

E0 = arg min
WN

exp(E0) = arg max
WN

∏
i 6=j

‖ŵi − ŵj‖

(6)
As an explicit regularization method, we optimize for the
joint objective function:

L = LBY OL(θ, ε) + λmhe ·
Lθ∑
j=1

1

Nj(Nj − 1)
{Es}j (7)

where λmhe is a hyperparameter to control the weighting
of our regularization, Lθ the number of layers in the online
network fθ and/or predictor qθ, and Nj is the number of
neurons in layer j. A further variant has also been con-
sidered in this work simply extending the hyperspherical
energy based on Euclidean distance in Eq.5 to consider
geodesic distance on a unit hypersphere. We define this
extension in Appendix A.4 For more details and all proofs
we refer to [10].
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Fig. 4: Hyperspherical energy vs. iteration during training
for intermediate representations of the ResNet-18 encoder. We
compute the MHE on the output of each ResNet block [22].

3.5.1. Representation Uniformity Analysis

Demonstrated in Fig.3 is the distribution of image rep-
resentations under MHE regularization following the same
visualization methodology presented in 3.4, we empirically
confirm our hypothesis that improving the diversity of
weights within the network subsequently results in more
diversely distributed representations. Fig.3e show a signif-
icant improvement in representation uniformity compared
to the baseline in Fig.3c. To further confirm these findings,
we plot in Fig.4 the hyperspherical energy of intermediate
layer representations of a ResNet-18 encoder during train-
ing on the CIFAR-10 dataset between standard BYOL and
BYOL with MHE regularization applied. We empirically
show that regularizing the neurons via MHE maintains
lower hyperspherical energy on its activation/representa-
tions throughout the whole network, compared to BYOL
baseline. It is motivating to note that the final output
layer representations demonstrate immediately lower hy-
perspherical energy, and increased uniformity by a mea-
sure of G2 (Appendix A.2), Fig.5, throughout training
by a considerable margin, an important factor for learning
good representations applied to downstream tasks. The
empirical finding in Fig.4 support our hypothesis and ra-
tionale that increasing diversity of weights leads to rep-
resentations that are in-turn more uniformly distributed.
We report performance benchmarks in 4, and ablations in.
5.

3.6. Implementation Details

The implementation follows the procedure presented
in [2] with exception to the addition of the regularization
loss terms. As to correspond with the BYOL procedure,
we employ the same image augmentations as described in
[1, 2]. Similarly, our experimentation primarily focuses on
the use of two different convolutional residual network [22]
configurations for our encoders f , ResNet-18 and ResNet-
50. Following the procedure described in BYOL [2], the
networks replace the standard linear output layer with a

Table 1: ImageNet Linear Classification: encoder trained
for 1000 epochs. We report top-1 accuracy (%) and k-NN ac-
curacy. *=Reproduction, RN50=ResNet-50

Method Arch. Batch Size top-1 k -NN

Supervised RN50 - 79.3 79.3
SimCLR [1] RN50 4096 69.1 60.7
MoCov2 [23] RN50 4096 71.1 61.9
InfoMin [24] RN50 4096 73.0 65.3
BarlowT [25] RN50 4096 73.2 66.0
OBoW [26] RN50 4096 73.8 61.9
SimSiam [14] RN50 256 71.3 –

BYOL [2] RN50 4096 74.3 64.8
BYOL* [2] RN50 4096 74.1 63.7
BYOL-MHE RN50 4096 74.4 64.9

Table 2: ImageNet Linear Classification: ResNet-50 en-
coder trained for 300 epochs. We report top-1 and top-5 Ac-
curacy (%). *=Reproduction

Method Top-1 (%) Top-5 (%)

SimCLR [1] 67.9 88.5
BYOL [2] 72.5 90.8
BYOL* 71.9 89.2
BYOL-MHE 72.4 89.9

Multi-Layer Perceptron (MLP) g, projecting the output
of the final average pooling layer to a smaller space. The
MLP is a two layer linear network the first outputting in
4096 dimensions, followed by a second outputting to 256
dimensions. The first layer only is followed by batch nor-
malization and Rectified Linear Unit (ReLU) non-linearity.
Specifics regarding full augmentation details and optimiza-
tion settings are given in full in Appendix B.

4. Linear Evaluation

To evaluate the quality of representations learned dur-
ing self-supervised training we employ the standard lin-
ear evaluation protocol described in [1, 2]. For context, a
linear classifier is trained taking as input the representa-
tions produced by the encoder fθ which is pre-trained in
a self-supervised manner and then frozen as to not train
in a supervised manner. Tab.1 reports the top-1 accu-
racy in % for the ImageNet ILSVRC-2012 test set trained
with a standard ResNet-50 for 1000 epochs, we show our
reproduction of methods alongside our MHE regularized
variant. We empirically set λuni = 0.125, and λmhe = 1.,
choosing the angular variant of MHE regularization with
power s = 2 applying to all weights in the encoder, pro-
jector and predictor, Appendix C.

We report 74.4 top-1 accuracy with the inclusion of
MHE regularization, a 0.32% improvement over the stan-
dard BYOL baseline, a significant improvement in per-
formance which matches the jump made between other
competing methodologies. Additionally, the improvement
is maintained at lower epoch counts, and smaller batch
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(a) G2 (b) MHE Optimization Value

Fig. 5: Dynamics during training of the STL-10 dataset. (a)
Uniformity measure G2 vs. iteration. (b) MHE regularization
objective value vs. iteration.

Table 3: Top-1 (%) Accuracies of Linear Evaluation on
CIFAR10 and CIFAR100 datasets with ResNet-50 Encoder
trained for 1000 epochs. ∗ = reproduction

Method CIFAR 10 CIFAR 100 STL-10

SimCLR* 93.81 70.98 82.40
BYOL* 94.46 72.10 82.81
BYOL + LUni 94.84 72.62 83.19
BYOL-MHE 94.78 72.56 83.96

sizes, with Tab.2 demonstrating 0.5% improvement at 300
epochs and 1024 batch size. Robustness to hyperparame-
ters is further explore in 5, yet these benchmark results are
a substantial and clear improvement, further validating the
capability of our regularization to provide better represen-
tations with minimal overhead. In addition to top-1, we
report the weighted nearest neighbor classifier, k-NN, as
a measure of representation semantic alignment and sep-
arability with very little variation due to hyperparameter
values. Tab.1 reports a large improvement over baseline
by 1.0%, and similarly Fig.6 mirrors such findings when
training on STL-10.

In the case of CIFAR-10, CIFAR-100 and STL-10 datasets
we see a more substantial improvement, reporting a top-1
accuracy of 94.78%, and 72.56% for CIFAR-10 and CIFAR-
100 respectively. This 0.4% improvement in CIFAR-10 is
comparable to the improvements found between SimCLR
and BYOL, a substantial move towards the supervised
baseline of 95.1% reported in [1]. For the explicit uni-
formity constraint, BYOL + Luniformity, we see on aver-
age 0.1% improvement from the MHE regularized variant.
This improvement is expected, given the more explicit na-
ture of the uniformity constraint on directly optimizing the
representations rather than the implicit MHE regulariza-
tion, and the observed near uniform distribution depicted
in Fig.3d. Interestingly, we find the MHE regularization to
be the best performing setting on the STL-10 dataset, with
a 1.1% improvement over baseline, and 0.8% improvement
over the explicit uniformity constraint. We can conjecture
that the large and diverse nature of the semantic classes
in STL-10 unlabeled set benefit more from the unique rep-
resentation neuron effect that enables unrepresented con-
cepts/classes to be uniquely and evenly assigned [10].

Fig. 6: k-Nearest Neighbor accuracy on the STL-10 validation
set during training.

(a) No BN + No MHE (b) BN + No MHE

(c) No BN + MHE (d) BN + MHE

Fig. 7: Uniformity of representations on S1 under different
regularization configurations plotted with Gaussian KDE.

5. Ablation and Sensitivity Analysis

We analyze the behavior of our BYOL constraints ex-
ploring the impact of hyperparameter and network con-
figurations. We follow the procedure described in 3.6 and
3.6, training a ResNet-18 encoder for 300 epochs.

5.1. Batch Size

One primary advantage BYOL introduced is the ro-
bustness to smaller batch sizes, this emerges from the
avoidance of negative pairs sampled from within the batch
in end-to-end contrastive models. Therefore, with our ad-
dition of Luniformity (Eq.2) being derived from Eq.1, we
expect robustness to batch size to degrade. We test the
performance under different batch size averaging gradients
over N consecutive steps before updating the network pa-
rameters, where N is the factor of batch size reduction
from the baseline [2]. Fig.8 shows that the introduction
of the explicit uniformity loss reduces robustness to batch
size as expected. We see from a baseline of 91.48%, a
-9.06% drop with Luniformity(fθ) compared to BYOL’s
-5.74%. This expected result confirms our reasoning to
find alternative mechanisms to enforce uniformity of image
representations. For MHE regularization, we observe lit-
tle deviation of performance compared to standard BYOL
given the regularization’s independence on batch size.
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Fig. 8: Reduction in CIFAR-10 linear evaluation top-1 % when
decreasing batch size for the proposed variants and repro of
BYOL.

Table 4: Linear Evaluation on CIFAR10 under different regu-
larization configurations, all networks fθ, gθ, qθ, are regularized
when selected.

BN MHE Accuracy (%)

7 7 28.76
3 7 90.74
7 3 45.72
3 3 91.22

5.2. MHE Regularization and Batch Normalization

Following our intuition and empirical findings that MHE
regularization encourages representation uniformity, we fur-
ther investigate the effect of regularization components.
We first explore the uniformity of CIFAR-10 validation
set representations as done in Fig.2. We can see the rep-
resentations in S1 plotted in Fig.7 and their correspond-
ing linear evaluation results in Tab.4. The results em-
pirically show how without batch normalization the net-
work fails to learn whilst poorly distributing representa-
tions in space, resulting in collapsed representations coin-
ciding with [9]. Confirming our previous empirical results,
BYOL with MHE regularized alone produces image rep-
resentations that are distributed far more uniform than
batch norm, Fig.7c. However, the linear evaluation perfor-
mance suffers compared to batch normalization, although
our regularization has a similar effect to batch norm in
avoiding collapse of representations, albeit with less im-
pact. We conclude from these finding that regularization is
a key component to avoid mode collapse in self-distillation
methods, where batch normalization is not a fundamental
necessity rather the diversity of neurons and reduction in
redundancy provided by MHE is enough to encourage vari-
ation in learned representations. This is a promising find-
ing which warrants further investigation in future work.

5.3. MHE Regularization Parameterization

To investigate how varying hyperparameters for the
MHE regularization affects performance, we report results
for network configurations in Tab.5. Additionally, the
weight of the regularization λmhe and powers s are given
in Appendix D.

We report in Tab.5 the linear evaluation performance
under varying configurations of MHE regularization to in-
dividual sub-networks. We show that across all configura-
tions we see an increase in performance, showing that the
improved weight diversity and subsequent representation
diversity improves the quality of representations learned.
Additionally, referring to our previous notion that it is not
preferable to directly enforce uniformity at the predictor of
the BYOL architecture based on the intuition of BYOL’s
behavior [2], we do not see any degradation in performance
when MHE is applied at the predictor level. We conjec-
ture that the improved diversity of features helps assist the
online network in capturing more varied representations.

6. Conclusion

We empirically show that uniformity constrains like
those in contrastive losses can be beneficial in BYOL and
self-distillation methods in general where negative sam-
ples are negated. To maintain the computation benefits
proposed by BYOL we investigate the use of regulariza-
tion methods that minimize the hyperspherical energy be-
tween network neurons. We show that this type of re-
dundancy regularization implicitly improves distribution
uniformity representations learned by the encoder, lead-
ing to improved results in all experimentation over the
baseline whilst remaining robust to changes in batch size,
with minimal additional computational. Empirical explo-
ration demonstrates the degree in which MHE regular-
ization impacts the uniformity of representations during
training throughout the encoder network, validating our
intuition that more diverse neurons result in more diverse
representations.

Performance gains from our regularization are signifi-
cant given no architectural change, nor augmentation change,
common in alternative approaches. We believe further per-
formance improvements can be made with tuning of hy-
perparameters. Yet how the avoidance of fully collapsed
equilibria in the presence of MHE regularization identi-
fied in this work is still yet to be understood, as is how
the maximization of kernel diversity improves activation
diversity. However, from this work we have identified the
importance of regularization in self-supervision and its ef-
fect on learned image representations in space.

6.1. Future Work

This works empirically identifies unexpected training
behavior of the self-supervised, self-distilled method BYOL,
and as such expanding this exploration to alternative meth-
ods is a natural continuation. In addition, the further anal-
ysis of regularization in self-supervision as a whole is an
importance next step to understand the training dynamics.
Furthermore, the identified phenomena shows such regu-
larization impacting uniformity may be enough to solely
avoid mode collapse currently prevented by the predictor
network[14], establishing the hypothesis for future investi-
gations.
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Table 5: Linear Evaluation on CIFAR10 given different network configurations of MHE regularization, ‘3’ denotes that MHE
regularization has been applied to that sub-network. The encoder is ResNet-18 trained for 300 epochs. *= BYOL (repro)

Layer

Encoder fθ,ξ - 3

Projector gθ,ξ - 3 - 3

Predictor qθ - 3 - 3 - 3 - 3

MHE Accuracy (%)

MHE (a2) 90.74* 91.64 91.36 91.46 91.38 91.10 90.96 91.22

BYOL + LUni 91.48
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P. Pérez, Online bag-of-visual-words generation for unsuper-
vised representation learning, arXiv preprint arXiv:2012.11552.

http://www.cirrus.ac.uk
https://www.untitled-ai.com/understanding-self-supervised-contrastive-learning.html
https://www.untitled-ai.com/understanding-self-supervised-contrastive-learning.html


9

Appendix A. Method

Appendix A.1. Alignment Term

The contrastive loss Eq.1 is presented by [8] to be equal
to optimizing two metrics, the first being uniformity Eq.2
and the second, alignment which is given as follows:

Lalign(f ;α) , E
(x,y)∼Ppos

[‖f(x)− f(y)‖α2 ] , α > 0, (A.1)

Alignment encourages positive pair representations to
be consistent as to bring together in unit-space the repre-
sentations pertaining to the same source image. This es-
sentially clusters similar semantic representations together
while uniformity distributes the representations in space as
to avoid trivial and consistent representations.

Appendix A.2. G2 Measure of Hyperspherical Energy

G2 refers to the Gaussian potential kernel (radial basis
function kernel) with the formulation:

Gt(x, y) = e−t‖f(x)−f(y)‖
2
2 , t > 0 (A.2)

This defines the uniformity loss in Eq.2, where we simply
take the logarithm of the average.

Appendix A.3. BYOL Predictor Network Behavior

The current conjecture as to the behavior of BYOL is
presented in [2] hypothesizing that BYOL works as a form
of dynamic system where the target parameters ξ updates
are not in the direction of ∇ξLBY OL(θ, ξ). Generally stat-
ing, there is no loss L(θ, ξ) where BYOL’s dynamics is
a gradient decent on L jointly over θ, ξ (minimization of
both target and online). For full details we refer to the
original hypothesis [2]. More recently work by [14] deter-
mined the stop-gradient operation is fundamental to the
avoidance of mode collapse, where not present degenera-
tive solutions are found.

Appendix A.4. Angular MHE Regularization

The hyperspherical energy defined in Eq.5 is based on
Euclidean distance on a hypersphere, however, [10] pro-
pose an alternative to Euclidean distance measure. The
proposed is a simple extension defining the hyperspherical
energy based on geodesic distance, replacing ‖ŵi − ŵj‖
with arccos(ŵᵀ

i ŵj). The main difference lies in optimiza-
tion dynamics reported in [10]. The extension known as
angular MHE is defined as:

Ea
s = Ea

s,d(ŵi|Ni=1) =

N∑
i=1

N∑
j=1,j 6=i

rs(arccos(ŵᵀ
i ŵj))

=

{∑
i 6=j arccos(ŵᵀ

i ŵj)
−s, s > 0∑

i 6=j log(arccos(ŵᵀ
i ŵj)

−1), s = 0
(A.3)

Appendix B. Implementation Details

We give full details pertaining to architecture, opti-
mization and data augmentations for all experimental set-
tings.

Appendix B.1. Architecture

Our experimentation primarily focuses on the use of
two different convolutional residual network [22] configu-
rations for our encoders fθ and fξ, ResNet-18 and ResNet-
50 each with 18 and 50 layers respectively. For the CI-
FAR datasets we adjust the first layers (i.e. ‘stem’) of
the ResNet architecture, reducing kernel size of the first
convolutional layer to 3 from 7, kernel stride from 2 to 1,
and remove the max-pooling operation to accommodate
the reduced image size. When reporting on MHE regular-
ization, unless stated otherwise, regularization is applied
to the all linear layers in gθ and qθ.

Appendix B.2. Optimization

For all unsupervised training we use the LARS opti-
mizer excluding both batch normalization and bias pa-
rameters, with cosine learning rate decay, and the learning
rate linearly scaled with the batch size (LR = LRbase ×
BatchSize/256). Like similar works, we employ 10 linear
warm-up epochs to assist large batch-size training. The
EMA parameter τ , is increased during training to 1 from
τbase with τ , 1 − (1 − τbase) · (cos(πk/K) + 1)/2 where
k is the current iteration, and K is the total number of
training iterations. For ImageNet we train the ResNet-
50 for 300 epochs with LRbase = 0.3, batch size of 512,
τbase = 0.99, and weight decay of 1 · 10−6. For 1000
epochs LRbase = 0.2, batch size of 4096, τbase = 0.996,
weight decay of 1.5 · 10−6. For CIFAR, 1000 epochs we
increase LRbase = 1.0, τbase = 0.996 and increase the
batch size to 1024, for 300 epochs we further increase the
LRbase = 1.5 and revert τbase back to 0.99. STL-10, 1000
epochs LRbase = 0.45, τbase = 0.996 and maintain the
batch size of 1024. Hyperparameter settings for MHE reg-
ularization are given in the following Appendix C.

Appendix B.3. Dataset Processing

To most appropriately make direct comparison to BYOL,
we share identical dataset processing and augmentation
procedures, [2].

Appendix B.4. Dataset Split

When performing self-supervised pre-training we uti-
lize manually created validation sets to select appropriate
hyperparameters, given both the ImageNet ILSVRC-2012
dataset, STL-10 and CIFAR-10/100 datasets do not con-
tain validation splits (we hold out the validation set for
use as the test set) we manually generate a subset of the
training split for validation.

• ImageNet, we took the last 10009 last images of the
official Tensorflow ImageNet split as in [2].

• CIFAR-10, we take 500 random samples per class
from the train set for validation.

• CIFAR-100, we take 50 random samples per class
from the train set for validation.
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• STL-10, we train on the unlabeled set, taking 50
random samples per class from the la belled train
set for validation.

For all datasets we report the Top-1 accuracy (%),
which is the proportion of correctly classified examples.
For ImageNet we also report the Top-5 accuracy (%), the
proportion of predictions that are within the top 5 best
predictions (the 5 predictions with the highest probabili-
ties).

Appendix B.5. Augmentations

Augmentation procedure is key to the success of self-
supervised learning, therefore to compare our performance
against BYOL, we employ the same image augmentations
reported in [2, 1]. Undertaken sequentially in the following
order:

• random cropping: a random patch of the image is
selected, with an area uniformly sampled between
8%and 100% of that of the original image, and an as-
pect ratio logarithmically sampled between 3/4 and
4/3. This patch is then resized to the target size of
224 × 224 for Imagenet or 32 × 32 for CIFAR using
bicubic interpolation;

• optional left-right flip;

• color jittering: the brightness, contrast, saturation
and hue of the image are shifted by a uniformly ran-
dom offset applied on all the pixels of the same im-
age. The order in which these shifts are performed
is randomly selected for each patch;

• grayscale: an optional conversion to grayscale. When
applied, output intensity for a pixel (r, g, b) corre-
sponds to its luma component, computed as 0.2989r+
0.5870g + 0.1140b;

• Gaussian blurring: for a 224 × 224 image, a square
Gaussian kernel of size 23× 23 is used, with a stan-
dard deviation uniformly sampled over [0.1, 2.0];

• solarization: an optional color transformation x 7→
x · 1{x<0.5} + (1− x) · 1{x≥0.5} for pixels with values
in [0, 1].

Appendix B.5.1. ImageNet

For the ImageNet ILSVRC-2012 dataset [22] we apply
the aforementioned augmentations in the following order:
random crop and resize to 224 × 224; random horizontal
flip; color distortion (random sequence of brightness, con-
trast, saturation, hue augmentations); random greyscale
conversion; Gaussian blur; and color solarization. At eval-
uation, we simplify augmentations, first applying center
crop where in ImageNet images are resized to 256 pix-
els along the shorter side using bicubic resampling, af-
ter which a 224 × 224 center crop is applied. Following

both the training and evaluation augmentations the trans-
formed images are normalized per color channel by sub-
tracting the average color and dividing by the standard
deviation. The average color and standard deviations are
computed per dataset.

Appendix B.5.2. CIFAR-10, CIFAR-100, STL-10

For the CIFAR10 and CIFAR100 datasets, we follow
the same procedure as ImageNet resizing to 32× 32, while
STL-10 resize to 64×64. For all three datasets we omit the
Gaussian blur and solarization as described in [1]. During
evaluation CIFAR images are center cropped at 28 × 28
then resized to 32 × 32, while STL-10 are center cropped
at 56× 56 then resized to 64× 64.

Appendix C. Hyperparameter Analysis: MHE Reg-
ularizer

We briefly report the linear evaluation results on hy-
perparameter search for the CIFAR-10 dataset trained for
300 epochs on ResNet-18 encoder and linearly evaluated
for 80 epochs freezing the encoder weights. The average of
three runs with three seeds are reported as with the all ab-
lation studies. All other hyperparameters remain identical
in both of the following experimentation cases.

Appendix C.1. Regularizer Weight λMHE

Tab.C.6 reports the linear evaluation results of the
BYOL procedure pretrained with differing weighting of the
MHE regularization λMHE in the loss. We maintain the
same hyperparameter range stated in [10] from 10−3 to
102. We report very little difference in performance over
all values for λMHE with 10−3 diminishing back to BYOL
baseline given the small contribution. For all MHE regu-
larization we therefore set λMHE = 10 given our empirical
results.

Weight Accuracy (%)

0.001 90.74
0.01 91.12
1 91.20
10 91.34
100 91.14

Table C.6: Linear Evaluation on CIFAR10 with ResNet-18 En-
coder trained for 300 epochs for MHE s = 2

Appendix C.2. Regularizer Power s
For powers of s, we again observe very little variation

in performance between settings, and at worst seeing a
reasonable improvement of 0.4%. For angular MHE we re-
port that s = a2 performs substantially better on average.
Although more computationally expensive we opt to use
the angular-MHE s = 2 for all experimentation. The out-
lier performance reported at s = a1 was primarily due to
one poor result and as such we report the half difference
between best and worst.
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Method Power Accuracy (%)

BYOL (repro) - 90.74
BYOL-MHE 0 91.12

1 91.24
2 91.34

BYOL-aMHE a0 91.14
a1 90.94 ±0.34
a2 91.64

Table C.7: Linear Evaluation on CIFAR10 with ResNet-18 En-
coder trained for 300 epochs

Appendix C.3. Batch Size Accuracies

Method Batch Size Accuracy (%)

BYOL (repro) 1024 90.74
512 89.10
256 87.50
128 85.00

BYOL + LUni 1024 91.48
512 90.22
256 86.84
128 82.42

BYOL-MHE 1024 91.64
512 90.02
256 88.10
128 85.76

Table C.8: Corresponding top-1% CIFAR-10 for different batch
size

Appendix D. Hyperparameters

# Augmentation P r o b a b i l i t y
−− j i t t e r d =0.5
−− j i t t e r p =0.8
−−blur s igma = [ 0 . 1 , 2 . 0 ]
−−b lur p =0.5
−−grey p =0.2

# Model
−−model=re sne t50
−−h u n i t s =4096
−−o u n i t s =256
−−norm layer=nn . BatchNorm2d
−−opt im i s e r=l a r s
−− l e a r n i n g r a t e =0.2
−−weight decay =1.5e−6
−−b a t c h s i z e =4096

# Training
# BYOL
−−tau =0.996

# MHE Reg
−−p r o j r e g=mhe
−−proj pow=a2
−−pred reg=mhe
−−pred pow=a2
−−r eg we ight=1

# Fine Tune / Linear Eval
−−f t e p o c h s =80
−− f t b a t c h s i z e =100
−− f t l e a r n i n g r a t e =0.2
−−f t w e i g h t d e c a y =0.0
−−f t o p t i m i s e r=sgd
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