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Abstract: We present techniques in musical composition based on subsets of scales, built on theoretical notions, together with
a number of examples. The techniques we describe are for constructing compositions with reference to memory, via similarity.
We begin with some technical elements: after introducing the technique of intersecting accompaniments, we describe similarity
concatenation compositions, which are special compositions constructed via similarity. We then outline a method to solve the
problem of approximating scales with frequency ratios generated by rational numbers with small numerators and denominators,
via equal temperament. As well as the standard solution via 12 tone equal temperament, we present a solution via 31 tone equal
temperament. We then introduce the notion of a connected triheptad, generalising the tonic, subdominant and dominant of the
major scale. We next present some examples of the notions previously introduced. Example 1 features a connected triheptad, and
Example 2 features a connected triheptad, a similarity concatenation composition, and an intersecting accompaniment. There
follows a section on cubist sets, featuring a returning similarity concatenation composition. We then move a conceptual level
higher: we consider the concatenation of similarity concatenation compositions via similarity. This is reminiscent of higher
dimensional algebra, and there follows a formal approach to higher dimensional relations, together with an example in 31 tone
equal temperament using the formalism described earlier. We use the formalism of braids for our higher dimensional relations.
We end with a section on musical applications of paths in graphs, generalising the chromatic scale.
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1. Introduction subset of the set of frequencies on an equally tempered piano;
the notes in a C major triad form a subset of the C major scale;
the Cs form a subset of the notes in a C major triad.

Here we are interested in compositional techniques based
on subsets of scales. We present a number of such techniques,
built on theoretical notions, together with examples. We
specify our interest to compositions that are designed to appeal
to the memory, via similarity (for more on similarity in music,
see [9]). Our methods using specified subsets are designed
to be similar to techniques used in music that is already
reasonably well-known.

Often technical considerations lead us to define a family
of subsets of a given scale, from which we must choose one
or more to make our music. This choice may be somewhat
arbitrary. For example, consider piano music. It is standard
to give the notes of an equally tempered piano the set of

Certain human processes relate to subsets. For example, a
child may be given a naive set A of cards featuring pictures of
animals, and asked to return those featuring a picture of a cat.
The collection of cards returned by the child forms a subset
B of the original set of cards. To give a musical example, a
composer may write a piece, which is the unique constituent
of a one element subset B of the set A of compositions
that can be written with the available notation. Alternatively,
our composer may define a larger subset B of A as their
composition, from which a set of players will choose one
element for a given performance.

Subsets of scales are commonly used to restrict musical
possibilities. For example, the frequencies on an equally
tempered piano form a subset of R; the C major scale forms a
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frequencies {217 — 48 < n < 39} C R, where a =
440. However the musical world would be little altered if we
worked with a different subset of R by setting o = 441 instead.
From now on we write subset in sans-serif font to
emphasise the role of such in our constructions.
There are music files to accompany this paper [15].

2. Sounds

Let us recall the formalism of chromatic combinations (see
[14], Section 2).

Let a,d, f € Ry. Let x; denote the indicator function of
an interval I C R. For a function n : R — R of bounded
support, we call the infimum of the support of 7 the start of n,
and we call the supremum of the support of 7 the end of 7. If
1,7 : R — R and the end of 7 is equal to the start of 1/, we
call n+n’ the concatenation of n and . We define a pure tone
of amplitude a, duration d, and frequency f, to be given by a
function from R to R sending ¢ to ax(o,0+4) Sin(27 ft +¢), for
some o, ¢ € R.

Points on the stave are given by frequencies, with the A
above middle C corresponding to 440 Hz, and the operation of
raising by a semitone corresponding to multiplication by 21z,
Points on the stave are also given by integers, with middle C
corresponding to 0, and the operation of raising by a semitone
corresponding to addition of 1.

Fix a € Ry. We define a chromatic combination of
duration d to be given by a function from R to R sending
t 10 aX(o0td) 2= SIN(2T [t + ¢;), for some o,¢; €
R, and frequencies f; given by points on the stave, j =
1, ...,p. We sometimes abuse notation, and identify chromatic
combinations with identical frequencies f;, amplitude a and
duration d.

Note that the software we have used to turn our
compositions into audio files manipulates our chromatic
combinations somewhat.

We are interested in chromatic combinations because of
their formal similarity to notes played on an equally tempered
piano. This gives a similarity between music made with
chromatic combinations and a body of existing music.

As well as sequences of chromatic combinations, we are
also interested in overlapping sequences of notes given by
decaying sawtooth waves. Let a,d € Ry. Let o € R.
We denote by ¥, ,1q) R — R the function that is
zero outside (0,0 + d), and is given by ¥, ,14)(t) = a —
&(t — o) for t € (0,0 + d). The function thus decays
linearly from a to 0 over the interval (0,0 + d). Given a
sequence f = (f1, f2, ..., fn) of frequencies f; € R, we write

o(f) = Caulf) = >im1 Y ((i—1) 4, (i41) 2y 27, Where Xy,

—

denotes a sawtooth wave with frequency f;. Thus ®(f) is
a function from R to R representing a sequence of sawtooth
notes of duration d, whose frequencies are given by f played
successively with an overlap of duration g

We are interested in sawtooth waves because their
harmonics are integer multiples of a fundamental, like notes

played on a stringed instrument.

3. Intersecting Accompaniments

Suppose we are given a composition A whose notes are
given by points on the stave. We can form a subset X of
points on the stave which intersects the set of notes of that
composition nontrivially, and accompany the composition with
a sequence of notes taken from the set X to form a composition
B. There is then some agreement between the accompaniment
and A. It may be desirable for X to include notes that do not
belong to A, to differentiate B from A.

4. Similarity Concatenation
Compositions

Suppose we are given a set of musical phrases that contains
a phrase of a single note, is closed under concatenation, and is
closed under the action of a set of similarity transformations,
that send phrases to similar phrases; we can then form such
a composition by starting with the note, applying a sequence
of similarity transformations to obtain a sequence of notes,
concatenating these to form a phrase, applying a sequence
of similarity transformations to obtain a sequence of phrases,
concatenating these to form a longer phrase, etc. [13]. We call
a composition generated in this way a similarity concatenation
composition.

We give some examples. Let d € R;. Let S be a set of
sounds of duration d, with a partial ordering. We call such a
set a scale of notes of duration d.

Let [ be a natural number. Let R = Z/IZ. Let S
denote the scale of notes of duration (I — 1)d whose elements
correspond to elements a = (as)ses € RS, and consist of the
superposition of the sounds 7(a, s), where m(a, s) is silence
for (I — 1)d seconds if a; = 0, and silence for (as; — 1)d
seconds, followed by s, followed by silence for (I — 1 — a,)d
seconds if a; # 0. We order R via its identification with the
set {0, 1,2,...,] — 1}. We order S; lexicographically.

Suppose we are given a,v;,vs,...,v; € RS. Consider
the image of the map R* — RS that sends o to a + a.
This determines a set of notes in S; which we order via
the lexicographic ordering on R*, and concatenate to give a
similarity concatenation composition of duration [*(I — 1)d.

We consider the case where the vector spaces R* and R®
above are permutation RG-modules, generated by transitive
G-sets.

Let G be a finite group, and H a subgroup of G. Let G/ H be
the set of left cosets of H in G, and R[G/H| the permutation
RG-module generated by this set. Let r = |G/H|. Suppose
we are given a map ¢ from G/ H to a scale S. We inherit a map
¢ from R[G/H] to §;

Suppose K is a subgroup of G, and z is a
double coset in K\G/H. The canonical isomorphism
Homg(R[G/K],|[G/H]) = R[K\G/H] means that x
determines a G-homomorphism ¢ from R[G/K] to R|G/H].
Composing ¢ with the map ¢ from R[G//H] to S;, we obtain a
map ¢ from R[G/K]to S;.
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Suppose we are given a linear ordering of the set G/ K, and
|G/K| = n. Such an ordering determines an identification
of R|G/K] with R™. The lexicographic ordering on R"™ thus
determines a linear ordering on R[G /K], which restricts to the
linear ordering of G/K. We have a similarity concatenation
composition of duration [ (I—1)d corresponding to the images
of elements of R[G'/K] under ¢, concatenated in this order.

A common compositional technique is to begin and end a
piece in the same key; a key is a subset of the set of notes
which are played during the piece. This technique of beginning
and ending with the same subset can be applied in a similarity
concatenation composition by using similarity transformations
that compose to give the identity. A particularly strong form is
the following:

Begin with a note, apply a sequence of similarity
transformations which compose to the identity to obtain a
sequence of notes, concatenate these to form a phrase, apply
a sequence of similarity transformations which compose to the
identity to obtain a sequence of phrases, concatenate these to
form a longer phrase, etc.. We call a composition generated in
this way a returning similarity concatenation composition. In

such a composition, a special role is played by the one element
subset of the set of notes, consisting of the single note with
which the piece begins and ends. This single note is returned
to repeatedly during the piece.

5. Quasi-relations

Selecting scales in R from which the frequencies of the
notes of a composition are selected is a common practice
(see [3], for example). Here we discuss using approximate
relations between integers, under multiplication, to derive
associated equally tempered scales in R. These are subsets
of R which come with associated endomorphisms, which come
with precise relations between them.

Let p be a prime, and P the set of primes < p. Let § > 0 be
a real number. We define a quasi-relation to be an expression
p=2%23%__p% wherea; € Zfori e P,and1 < p < 1+46.

Suppose we are given quasi-relations p; = 29273937, p%ri,
where 1 < j < |P| — 1. Suppose the vectors (agj, ..., ap;) are
linearly independent, for 1 < j < |P| — 1. Solving the set of
|P| — 1 equations in |P| variables,

A2;T2 + a3;T3 + ... + QpjTp = 0,1<5< |’P| —1,

yields a family of solutions (z2,x3,...,2,) = Ay, where
A runs through elements of Q, and y € Q7 is fixed. There
consequently exist integral solutions, of which we fix one
z = (22,23, ...s Zp)-

Let us assume 25 > 0 and fix ¢ € R. We take an equally
tempered scale &, with frequencies given by 2%, as n runs
through the elements of Z. If we call the interval given by

the frequency ratio 2% a basic interval, this scale has z
basic intervals to an octave. For ¢ € P, thiszscale has an
endomorphism ¢, given by multiplication by 2%, which we
think of as an approximation to multiplication by ¢. In place
of the quasi-relations p; we have the relations r; = 1, where
T = el es® ept for1 < j < |P| — 1.

For example, let us take p = 5 and § = ﬁ. Consider
the quasi-relations 27434571 and 27.573. In Z{Z35} we
have associated linearly independent vectors (—4,4, —1) and
(7,0, —3). The equations

—4.’E2 + 4([,’3 — X5 = 0,
71‘2 — 3175 =0

have an integral solution (12, 19, 28). If we take ¢ = 440 we
recover the equally tempered scale €15 commonly used on a
piano, with 12 basic intervals to an octave.

For another example, let us take p = 7, and § =
8%. Consider the quasi-relations 274.34.571, 2.32.573.7,
and 27°.37157274  In Z{2357 we have associated
linearly independent vectors (—4,4,—1,0), (1,2,—3,1), and

(=5,—1,—-2,4). Applying row reduction to the equations

—4x9 + 43 — x5 = 0,
To + 2x3 — 3x5 + x7 =0,
=519 — x3 — 225 + 427 =0,

we obtain an integral solution (31, 49,72, 87). Taking z to be
this element, and ¢ = 440, we obtain an equally tempered scale
¢31 with 31 basic intervals to an octave, cf. [11].

Let us remark that many relations between the
endomorphisms e, can be exposed, by multiplying the
elements r; together.

6. Connected Triads and Triheptads

Consider the equally tempered scale with 12 basic intervals
to the octave, whose frequencies are given by the product of
440 and a power of 272, We identify this scale with Z so that 0
corresponds to middle C, e, corresponds to addition of 12, eg
corresponds to addition of 19, and e5 corresponds to addition
of 28. It is common practice to identify various subsets of our
scale Z.

Consider subsets of Z of the form {e}(a)ln € Z} for
a € Z; these are the elements of Z/127Z. Consider the subset
of Z given by

{ees(a)fm,n € 2,0 < m < 6},

for a € Z; such a subset is the major scale corresponding to
es(«). Consider the subset of the major scale corresponding
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to e3(«) given by
{nes(a)|n € Z,n € {1,e3,e5}}.

This is the subdominant of the major scale.

Figure 1. The graph A.

Figure 2. The scale A1 and the connected triheptad {0, 1,5},{2,5,6}, {2, 3,4}.

Consider the subset of the major scale corresponding to
es(«) given by

{nesez(a)ln € Z,n € {1,e3,€5}}.

This is the tonic of the major scale. Consider the subset of
the major scale corresponding to es3(«) given by

2. n

{nezey(a)ln € Z,n € {1,e3,e5}}.

This is the dominant of the major scale. The major scale is
the union of the subdominant, the tonic, and the dominant. The
intersection of the subdominant and the tonic is the element of
7Z/127 indexed by e3(). The intersection of the tonic and
the dominant is the element of Z/127Z indexed by €% (). The
intersection of the subdominant and the dominant is empty.

We abstract this situation as follows. Let A denote the graph
depicted in Figure 1. We define a connected triad in A to be
a connected subgraph of A with three vertices. We define
a connected triheptad in A to be a sequence (Li, Lo, L3),
where L; is a connected triad in A for ¢ = 1,2,3, where
|L1 N L2| = |L2 N L3| = 1, and where |L1 N L3| = 0.
Every vertex of A is a vertex of some L;, if (L1, Lo, L3) is
a connected triheptad.

This relates to our subsets of Z, since A can be identified
with the graph whose vertices are elements of Z/127
contained in a given major scale, and whose edges connect
vertices v, w when w = e;(v), i = 3,5. We have a connected
triheptad given by the subdominant, followed by the tonic,
followed by the dominant. However, there are many other

connected triheptads, for example that depicted in Figure 2.

Subdominant, tonic and dominant chords are commonly
used in sequences to structure simple pieces of music. The
internal associations in a connected triheptad (L;, Lo, L3)
mean that such can play a similar role, in case the graph A
arises harmonically. We give two examples.

Example 6.1. In this example, the j** bar contains scale
elements corresponding to elements of L;(;), where i(j) = j
mod 3. We take as Ao the C major scale. We take L, =
{0,1,5}, Ly = {2,5,6}, L3y = {2,3,4}. Our composition
consists of two piano lines, one in the range from the note
an octave below middle C to the B below middle C, and the
other in the range from middle C to the note two octaves above
middle C. For j < 10 the j* bar of the bass line consists of
the triad L;(;) repeated four times as an ascending triplet of
duration 3, with an exception in the 10" bar where the line is
brought to close with the note with which it began. The upper
line meanders within its range, with all notes in the jth bar
taken from the triad L;(;); we have included some repetition
of rhythmic motifs.

Example 6.2.Let « = —10. Consider subsets of Z
of the form {ef(a)ln € Z} for a« € Z; these are the
elements of Z/19Z. Consider the subset of Z given by
Ao = {egred(a)|m,n € Z,0 < m < 6} for a € Z. The
elements Ajg of Z/197Z contained in A1g can be identified
with the vertices of A where edges connect vertices v, w when
w = e;(v), i =2,5. Wetake L1 = {0,1,4}, L, = {1,2,5},
Ls; ={2,3,6}.

Our composition has a piano part, which is a similarity
concatenation composition whose 5 scale elements consist
of 4 bar chord sequences, together with an intersecting
accompaniment of pure tones, each of 8 bars duration. The

duration of each bar is 17‘5. The chord sequences have three

chords, taken from il, [NJQ, fzg respectively, where f)i denotes
the union of the equivalence classes in Z/19Z given by
elements of ;.

Figure 3. The scale A1g and the connected triheptad {0, 1,4},{1,2,5},{2,3,6}.

Let
S1 = {e5 'es(a)},
Sz = {€5(a), e5 'e5(a)},
S3 = {63( )76263(0‘)765 'eg (a)}7
Sy = {es(a), eaes(), e5 "es(a)},
S5 ={a, e2(a)}.
For ¢« = 1,2,3,4,5, let v; denote the scale element
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consisting of the chord S; played for one bar, followed
by the chord e;'ex(S;) played for one bar, followed by
the chord e32e2(S;), played for two bars. We set S =
{v1, v2, V3, vy, v5}. Our similarity concatenation composition
is given by the scale Z/27Z[S], ordered lexicographically and
concatenated.

We take an intersecting accompaniment consisting of an
ascending line of pure tones alternated with a descending
line of pure tones. Each pure tone is eight bars
long. The ascending line is given by the sequence
—16,—13,—11,—-9,—-6,—4,1,3. The descending line is
given by the sequence 17,14,12,9,7,5,2,0. The notes in the
ascending line are chosen not to belong to f/l, f,g, or Zg. All
but the first note of the descending line belong to il, I~/2, or Eg.
The first three notes and the last three notes of the descending
line differ by an octave.

7. A Cubist Example

In this section we construct an example using cubist
techniques [4, 6], generalising previously described methods
([14], Section 4).

Take a strictly increasing map ¢ : Z — Z. This map is given
equivalently by a subset 2 C Z that is unbounded from above
and below, with an element w € ). Indeed, such data emerges
when we write = ((Z) and w = ¢(0).

We recall the formalism of cubist sets [6]. For r a natural
number, letr = {1,...,7}.

Let E = R®” denote Euclidean space, of dimension 7. Let
¢; denote the standard basis element of F, fori € r.

Suppose X C r. Let Fx, = F} X ... X F. C E, where
F;=10,1],ifi € ¥, and F; = {0}, if i ¢ X.

Let Z = Z, denote the polytopal complex, homeomorphic
to I, whose i-dimensional cells are i-cubes in E' of the form
x4+ Fy,x € Z", 3] =1i.

Let H = (1,1,...,1)* € R". Letp : E — H denote
orthogonal projection.

We say a polytopal subcomplex C C Z is cubist if the
projection p : C — H is a homeomorphism.

If C is a cubist complex, we write ¥ = CNZ", and call X a
cubist set in Z". We denote by sy the map from Z" to Z given
by sx(x+ (k,k, ..., k)) = kforx € X,k € Z.

Let X1,...,X,, C Z" be cubist subsets. Let s; =
Sxyy -y Sm = Sx,,. T'hese maps define our scale G indexed
by Z" x D, where (x,d) € 7Z" x D corresponds to a
chromatic combination of duration d whose partials are given
by positions ¢(s1(x)), ..., t(sm(x)) on the stave. Such scales
generalise the scales of chromatic combinations indexed by Z
which arise in case » = 1 and ¢ = 17, and may be played on
certain synthesisers.

Translation by z € Z" defines a transformation of our scale,
as in the » = 1 case. For z € Z" we define 7, to be translation
by z.

For z € Z" and n a positive integer, let A, ,, denote the
transformation of Z" given by dilation by n, centred at z. Thus
A, n(z)=n(z—2)+2forz e Z".

For = € Z" and 1 < ¢ < 1, let r,; denote the
transformation of Z" given by reflection in the hyperplane
through z, perpendicular to ¢;.

We denote by 7T the set of transformations of Z" consisting
of transformations 7., A, ,,, and r, ;. We denote by £z~ the
monoid of transformations of Z" generated by 7. We thus
have an action of £z on Z".

We write £p = R.. Thus £p acts on D by multiplication.

We describe similarity concatenation compositions with
scale G.

Let w be a natural number, and let Ay, ..., A, be natural
numbers. Fori = 1,...,w we take maps t; : \; = T x Ep.
We insist that ¢;(1) is equal to the identity, for¢ = 1, ..., w, but
that ¢;(€) is different from the identity, for £ = 2,...,\; and
1=1,..,w.

Fori =1,...,w we define maps u; : \; — £z~ x Ep, by

Let us fix an element ¢ = (z,d) € Z" x D. Our
composition is obtained by concatenating scale elements
corresponding to elements ({1, ..., &w) of A1 X Ao X ... X Ay,
ordered lexicographically. The element of G corresponding to
(&1, ..y &) s given by uq (€1)uz(&2).. .ty (Ew)g.

Example 7.1. We describe a returning similarity
composition. Let w be given by middle C. Let Q =
{0,2,3,4,5,7,8,9,10,11} 4+ 12Z. We take

X1:OXZ,

(-15,30)
[ ]

Figure 4. The cubist sets and first note of Example 7.1.

Xy = {(0,0), (~1,0), (—=1,1),(—=1,2)} + Z(—1,3),
Xy = {(0,0), (=1,0), (=1,1), (=2,1), (=2,2)} + Z(-2,3),
X, ={(0,0), (—1,0)} + Z(—1,1).

We take ¢ = ((—15,30), =), w = 4.
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We take Ay, = 5 and

= (T(=1,0), 1), t4(3) = (1(0,1), 1),
= (T(l,O)v 1)7t4(5) = (T(O,—l)a 1)
We take A3 = 7 and
t3(2) = 13(3) = t3(4) =
(5> ( (—15,30) 271)?
t3(6) = (A( 15,30),

We take Ay = 5 and

(A(~15,30),2, 1),

1

t2(2) = (r(~15,30),2,27),t2(3) = (7"(—15,30),1,2%)7
t2(4) = (r(~15,30),2, ~1),t5(5) =

We take A\; = 5 and

(7(=15,30),1 27%)-

t1(2) = (7—(0,16)72%)”51(3) ES (7(1670)72%),
t1(4) = (7(07—16)’27%)»’51(5) = (7—(—16,0)727%)

We take an intersecting accompaniment that is given by
an ascending scale with frequencies given by successive
increasing elements of +(Z), beginning with ¢(14). Each note
of the ascending scale accompanies a sequence of A3 x Ay = 35
scale elements.

8. Concatenating Similarity
Concatenation Compositions via
Similarity

We next move up a conceptual level, from the world
of similarity concatenation compositions to the world of
concatenations of similarity concatenation compositions.
Passing to a higher conceptual level is a technique which has
found striking applications in algebra [5, 12].

Suppose €2 denotes a finite set. Let

¢ : 0 — {finite disjoint unions of open intervals in (0, d)},

for some d € R;. Given a map f Q = R, we
have an associated function ¢(f) : R — R that sends ¢ to

Zweﬂ Sin(27rf(w)t)Xc(w) .

If we are given a sequence of functions ¢ and a sequence of

maps f, say ci, ..., ¢, and f1, ..., fn, We can concatenate the
functions
cl(f1)7"'701(fn)762(f1)a"';CQ(fn)’"'?Cm(fl)v"'vcm(fn)

to obtain a composition. If the compositions c¢;(f;) are
similarity concatenation compositions, then this as a sequence
of similarity concatenation compositions, concatenated via
similarity. We can think of the subsets f;(2) of R as the
keys of our composition, which are run through in sequence m
times during the course of the piece.

Example 8.1. In our example m = 3 and n = 4, whilst 2 =
{wo, w1, ws,...,ws} is a seven element set. The composition
thus has three parts, each involving four choices of seven
frequencies.

For i = 1,2, 3,4, the maps f; correspond to maps fi from
) to the set of points on the stave, which we identify with Z.
These maps all send wg to —24, whilst

f1(w1) = f2(w1) = fg(wl) =13 — 24,
Filws) = folws) = falwr) = 20 — 24,
fi(ws) = fa(ws) = falws) = 25 — 24,
folws) = fa(ws) = falws) =29 — 24,
filws) = filw1) + fi(wa) + 24,
fi(ws) = filwr) + filws) + 24,
fi(we) = filws) + filws) + 24,
fori=1,2,3,4.

For the first part ¢y of our composition we specify a scale
of 8 elements, corresponding to the 23 elements of {wy, w4} x
{wa,ws} X {ws,ws}; an element (v, ag, a3) corresponds to
ay followed by oo followed by a3, each played with duration
%. The function ¢; corresponds to these scale elements played
in colexicographic order, followed by wy played with duration
2. Here we assume wy < wa, wy < wy, and ws < wg.

For the second part cp of our composition, we use the
formalism of similarity concatenation compositions derived
from finite groups in section 4. Let [ = 3, let G =
Sym{1,2,3,4}, and let H = Sym{1,2} x Sym{3,4}. Let K
denote the subgroup of GG generated by H and the permutation
(1 3)(24). Then K is isomorphic to Dg. Let = denote the
double coset K (2 3)H

We identify G/H with the set of 2-element subsets of
{1, 2, 3,4}, which we in turn identify with Q\{wo} via

{L2} mw, {13} = w, {1,4} = ws,
{2,3} — W4, {2,4} — Ws, {3,4} — We-
We order the left cosets of K in Gas K < (132)K <
(123)K.

Fori = 1,2, 3, 4, the section ¢5(f;) is given by the similarity
concatenation composmon associated with this data, via the
map fz, with d = 1, followed by wy played with duration 1,
then silence of duratlon %

For the third part c3 of our composition, we use
the formalism and notation of similarity concatenation
compositions of section 4. Let a denote the sequence
consisting of silence, followed by wq, followed by silence,
followed by w-, followed by silence, followed by wo, followed
by silence, followed by w3, followed by silence, followed by
w3, followed by silence, followed by w;, where each element
of this 12 term sequence has duration %. Let v; denote the
sequence consisting of a chord of wy, w1, ws, w3 followed by
three silences, played three times in succession, where each

element of this 12 term sequence has duration %. Let vo denote
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the sequence consisting of two silences followed by a chord of
w1, wae, wy, followed by three silences followed by a chord of
w2, ws, wg followed by three silences, followed by a chord of
w1, ws,ws followed by a silence, where each element of this
12 term sequence has duration é.

Let ] = 2 and § = {a,v1,v2}, identified as a set of
coordinate vectors in (Z/2Z)S. Fori = 1,2,3, 4, the section
cs(f;) is given by the similarity concatenation composition

associated with this data, via the map f;.

9. Higher Dimensional Relations

One technique for constructing a musical piece is to begin
with a note, then take a sequence of successive notes that are
close to form a phrase, then construct a successive sequence
of phrases that are close to form a 2-phrase, then construct a
successive sequence of 2-phrases that are close to form a 3-
phrase, etc. (cf. [1])

Here we give a formalism for such a procedure, and apply
it to form a composition in 31 tone equal temperament €3,
using the relations we derived the scale from. In the process
we identify a subset of the 31 tones which we draw our notes
from.

Let S denote a set. We define a 0-path to be an element of
S. We define the source and target of a 0-path to be o. For
n > 1 we define an n-path P to be a sequence (ag, a1, ..., ay)
of n — 1-paths with the same source and target. The source of
P is a,, and the target of P is ay.

The length of P is I(P) = n. If P and ) are n-paths,
such that the target of P is equal to the source of ), we
denote by QP the concatenation of P and ). We thus have

H(QP) =1(P) + Q).

RN N

e o s

Figure 5. Relation between relations between relations.

a b a b
a U b al bt
a U b a b
a L b A b
a U b a b

Figure 6. Sequence of scale el s D(P) from a 2-path P.

We define an n-arrow « to be a an n-path (ag, a1 ) of length
1. We define the degree of a to be d(a) = l(ag) + l(ay).
Suppose ag and a1 are n — 1-paths both of which have source
and target s and ¢ respectively, and ¢ denotes the n-arrow

(ao, a1). If o is an n— 1-path with target s, and if 8 isann—1-
path with source ¢, then we call (Saga, Ba;«) the idextension
of ¢ by « and 3. We call such an n-arrow an idextension of c.

We derive sequences of elements of .S from our n-paths as
follows: Let t denote an endomorphism of S. Let 2" denotes
the reverse of a sequence x in S. For n = 1, and P an n-path,
let D(P) = P. For n > 2, given an n-path P = (ag, ..., an),
let D(P) denote the concatenation of D(ag), D(a1)™t, D(as),
D(ag)”,...,

The elements of S featuring in D(ao), D(a1)"™! etc. form a
subset of the set of elements of S featuring in D(P).

Example 9.1. Our compositional strategy is to successively
pick, for 2 < n < m, for some m, a set of primitive n-
arrows of low degree, which are generated by primitive n — 1-
arrows. Here we say an arrow is generated by primitive n — 1-
arrows if its source and target are concatenated idextensions of
primitive n — l-arrows. The primitive 1-arrows are given by
the endomorphisms e, of our scale.

Let S = €31, an equally tempered 31 tone scale. Let ¢ = e
be given by multiplication by 2.

As primitive 1-arrows we take (e4(s),s), for s € S and
q€{2,3,5,7}.

Let 0op = 440.27100/31 'We define

P =(o1,e5"€3(00),€3(00),€3(00), e2(00), 00)

P{(o1,e5"e5(00), €3(00), e3(00), 00)

where 0, = e32e3(0g) = ey 'es 'e2(0p). We define Ry =
(P, P).
We define

Py = (02, e3e2(01), e2(01),01)

P = (02, es5e3 "es(01), e5 'es(01), e5(01), 01)

where 0y = eglegeg(ol) = 6;16565165(01). We define
Ry = (P35, Py).
We define

Ps =(03, e5e7 ' €5(02), €7 ' €3(02), €3(02), €5(02), €2(02), 02)
P} =(03,e5 ere; tez ter(02), erey tes ter(0a),

e3es er(02), €5 er(02), e7(02), 02)

where 03 = e; 'eser ted(02) = €5 tes terey tes ter(02). We
define R3 = (P}, Ps3).

The 2-paths Ry, Re, and R3 correspond to the relations
we derived in our 31 note scale from quasi-relations. These
relations are close to the identity in the sense that their degree
is relatively small (compared to the degrees of the possible 2-
arrows generated by primitive 1-arrows). We take these to be
our primitive 2-arrows.

To obtain primitive 3-arrows and a primitive 4-arrow, we
borrow a technique from low-dimensional category theory
[2, 8]. We take as our primitive 3-arrows (R;R;, R;R;), for
i,j € {1,2,3}. We take as our primitive 4-arrow the braid
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relation, whose source and target are
(R1RaR3, R1R3Ro, R3 Ry Ry, R3Ra Ry )

(RiR2Rs3, RoR1R3, RoR3R1, R3RaRy)

respectively (note there are many recent mathematical
applications of braided monoidal categories, eg. [7, 10]).

Figure 7. The 2-paths R1, Ra, and Rs3.

R, R, R, R, R, R,

Figure 8. The braid relation.

Note that here we are abusing notation and writing R;
for an idextension of R;, so that each expression R;R;Ry
appearing in the braid relation is a 2-path whose source is
P3P, P and whose target is P4 PjP{. Our primitive 3-arrows
have relatively small degree (compared to the degrees of the
possible 3-arrows generated by primitive 2-arrows). Our
primitive 4-arrow has relatively small degree (compared to
the degrees of the possible 4-arrows generated by primitive 3-
arrows).

Applying D to our primitive 4-arrow gives us a sequence
of frequencies. Applying ® to this set of frequencies (with
d = 0.5) gives us a composition, which is an overlapping
sequence of decaying sawtooth waves.

10. Paths in Graphs

Let us describe an ascending chromatic scale in a
complicated way. Let ¢ € R. For [ € N, consider the graph I';

\

whose vertices are 0, 1,2, ...., [ and whose edges are the pairs
{i,i + 1}, for 0 < ¢ < | — 1. The geometric realisation
IT';| can be identified with the interval [0,!] so that vertex ¢
corresponds to ¢ € [0,1]. We have a map g(I) : [0,]] — R
given by g(1)(z) = ¢.272. Consider the Hamiltonian path ~y; in
I'; that begins with 0 and ends with [. Under g(1), the vertices
of 4, map to a sequence of frequencies, which upon being
allocated to notes of a fixed duration, define an ascending
chromatic scale. If we wish to emphasise the geometry of |I'1 |,
together with the special role of the subset of vertices of T'y,
we can connect the successive notes of our chromatic scale
with glissandi.

The compositions of this section are obtained by abstracting
the above setup. Let I' denote a graph. Let |T'| denote the
geometric realisation of I'. Let g : |T| — R™ denote a
function, whose m component functions are denoted g;, ¢ =
1,...,m. Let v = (v, ..., v, ) denote a path in I". Let 4 denote
the path from [0, 1] to |T'| that successively, for ¢ = 1,...,n,
moves with velocity 2n along the edge connecting v;_; to v;,
then rests at v; for duration %

Suppose we are given a family {{} rer of functions from
R to R, where ¢ is periodic with frequency f.

Let d € R. The path  determines a function 7 : [0, 2nd] —
R™ given by 7(t) = 32101 &4, 55 (£)-

The function 74 gives a composition generalising our
ascending chromatic scale, but as it stands, it looks too general.
If we wish to create music that sounds similar to music
previously written, and thus appeal to the memory of the
listener, we must be careful in choosing our graph I' and
function g, and in making our choices refer to previous work.
To do this, we use functions that are similar to functions found
on existing musical instruments, and we insist that the images
of the vertices of I" under the functions g; belong to subsets
that have already been found to be musically useful, such as
€1p = {440.273|n € Z} or Q.

Example 10.1. Let E denote Euclidean space of dimension
2, let I' denote the subgraph of the 1-skeleton of Z5 consisting
of all vertices in {0, 1,2, 3}? and all edges between them. Let
G : E — R® be given by G(z1,x2) =

—45+3z1 +1229 —334321 +8z9
12 12

440(2 .2 ,

—26+7z1 +8x9 —2147z1 +4xg —174+12z +4ay
12 12 12

2 ).

Note that the components of G(0,0) are the frequencies
of major chord, the ratios 3,4,7,8,12 all correspond to
consonant intervals, and GG sends the vertices of I" to &;5. The
relation between frequency and distance on a piano keyboard
is approximately given by an exponential function.

\

Figure 9. Hamiltonian cycles in Example 10.1, with an orientation.
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Let g denote the restriction of G to I'. Our path ~ around
I' will be a concatenation of Hamiltonian cycles based at
(0,0). Modulo orientation, there are six such cycles. We fix a
consistent orientation of these six cycles, as in Figure 9.

To include some repetition, we insist our path + contains
more than one Hamiltonian cycle. To limit repetition in
our composition, we forbid the possibility of including two
Hamiltonian cycles in v, both of which feature an identical
consecutive sequence of four vertices. This leaves us with the
possibility that ~ is a concatenation of the two leftmost cycles
of Figure 9. We take the leftmost one first, then the one second
from the left. Upon taking £;(t) = sin(27 ft) and d = 4, we
have defined our composition 7.

Example 10.2. Let E denote Euclidean space of dimension
3, let I" denote the subgraph of the 1-skeleton of Z3 consisting
of all verticesin {0, 1, 2,3,4,5,6} x{0, 1,2, 3,4}x{0,1, 2,3}
and all edges between them. Let G : E — R be given by

7 5 4

G 3) = 30. . . .
($1,$27$3) 7—I1 5—I2 4—$3

Let g denote the restriction of GG to I'. Note that the ratios
g(v)/g(v") for v and v’ vertices of I" are fractions which may
be taken to have small numerator and denominator; as such
sawtooth waves with frequencies given by g(v) and g(v") will
commonly share harmonics of low degrees, for such pairs
of vertices. The relation between frequency and distance on
a violin fingerboard is given by a reciprocal function. Our
path v in I will be a Hamiltonian path, modelled as a higher
dimensional relation. Let S = {(} be a one element set. Let

<7 = (Ca<a<7Ca<a<7C)7
G = (¢7, G, G, G, G,
C4 - (C57C57C5’C5)'

be a 1-path, a 2-path, and a 3-path respectively. The 0-paths
in (7 naturally identify with {0,1,2,3,4,5,6}; the 1-paths
in (5 naturally identify with {0, 1,2, 3,4}; the 2-paths in (4
naturally identify with {0, 1,2, 3}. In this way the 0-paths in {4
naturally identify with the vertices of I". The procedure used to
define the sequence D((7) naturally identifies a sequence of 0-
paths in (7, corresponding to a Hamiltonian path ~ in I". Upon
taking & to be a sawtooth wave of amplitude 1, frequency f,
and phase 0, and d = 0.5, we have defined our composition 7.

Example 10.3. Let E denote Euclidean space of dimension
3. Let I denote the 1-skeleton of Z5. Let G : E — R be given
by G(x1,x9,x3) = 2%13%25%, Let g denote the restriction
of G to I'. Note that for vertices v and v’ of T joined by an
edge, sawtooth waves with frequencies given by g(v) and g(v’)
share harmonics of low degrees. Again, the relation between
frequency and distance on a piano keyboard is approximately
given by an exponential function.

Suppose we are given a quasi-relation p = 292335% . Let
us rearrange this expression in some way as e = ptl =
WpWy_1...wow; where w; € {2F1 3% 5511 We define a

path v in " beginning at (1, 0, 2), whose image under g is

50, w1.50, wowy .50, ..., .50, w1e.50,

wowi€.50, ..., e2.50, w162.50, w2w162.50,

For a given duration d and amplitude a, our path defines an
ostinato given by applying ® to this sequence. The ostinato
repeats with a slight variation each time, due to the fact p # 1.

In this example we play two such ostinati at the same
time, starting simultaneously, derived from the quasi-relations
27434571 and 27.573. One ostinato is given by the
expression e = 2775% and d = 2, and the other given by
the expression e = 5712743% and d = %. We allow four
repetitions of the slower ostinato before termination. This
corresponds to 32 repetitions of the faster ostinato.

11. Conclusion

We have introduced a number of different techniques
involving subsets of scales in compositions constructed via
similarity.  Our constructions of similarity concatenation
compositions involve groups, which is unsurprising since
groups are a standard means of exploring similarity. Our
methods involving graphs, cubist sets, and higher dimensional
relations have a topological and combinatorial flavour. This
too should not be surprising: musical data is often expressed
combinatorially as sequences of integers or real numbers, and
associations are frequently expressed as higher dimensional
relations. It makes sense to explore these ideas in 31 tone equal
temperament, as well as 12 tone equal temperament.
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