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1  |  INTRODUC TION

The food we eat consists of three macronutrients: protein, fat, and 
carbohydrates. Understanding the different impacts of these macro-
nutrients on health, metabolism, and aging are key goals. Absorbed 

food is first processed by the liver, which is accordingly an important 
regulator of several metabolic processes including lipid, glucose, and 
amino acid metabolism. Liver lipid content can be affected by dietary 
macronutrient composition via effects on hepatic lipogenesis, fatty 
acid oxidation, and triglyceride synthesis (Postic & Girard, 2008; de 
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Abstract
Dietary macronutrient composition influences both hepatic function and aging. 
Previous work suggested that longevity and hepatic gene expression levels were 
highly responsive to dietary protein, but almost unaffected by other macronutrients. 
In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice 
were significantly associated with changes in dietary protein (5%–30%), fat (20%–
60%), and carbohydrate (10%–75%), respectively. More genes in aging-related path-
ways (notably mTOR, IGF-1, and NF-kappaB) had significant correlations with dietary 
fat intake than protein and carbohydrate intake, and the pattern of gene expression 
changes in relation to dietary fat intake was in the opposite direction to the effect 
of graded levels of caloric restriction consistent with dietary fat having a negative 
impact on aging. We found 732, 808, and 995 serum metabolites were significantly 
correlated with dietary protein (5%–30%), fat (8.3%–80%), and carbohydrate (10%–
80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine-
1-phosphate signaling was the significantly affected pathway by dietary fat content 
which has also been identified as significant changed metabolic pathway in the pre-
vious caloric restriction study. Our results suggest dietary fat has major impact on 
aging-related gene and metabolic pathways compared with other macronutrients.
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Wit et al., 2012). Diets high in fat result in increased hepatic lipids 
and may result in fatty liver disease in both rodents and humans 
(Patsouris et al., 2006; Westerbacka et al., 2005). In contrast, high 
protein diets have been suggested to prevent hepatic lipid accumu-
lation (Lacroix et al., 2004; Shertzer et al., 2011). Despite these po-
tentially protective effects against hepatic steatosis, several studies 
have suggested that high protein diets are linked to increases in all 
caused mortality (Díaz-Rúa et al., 2017). The negative effects of high 
protein diets have been indicated to be potentially associated with 
metabolites produced in different stages of amino acid metabolism 
(Díaz-Rúa et al., 2017). Moreover, increased dietary protein to car-
bohydrate ratios lead to upregulation of genes involved in amino acid 
uptake and fatty acid synthesis, reflecting increased triacylglycerol 
content and increased health risk (Díaz-Rúa et al., 2017). In contrast, 
several studies which explored amino acid restriction or protein 
restriction effects on metabolism of mice, including, for example, 
leucine deprivation and methionine restriction, showed downregu-
lation of liver lipogenic genes (Anthony et al., 2013; Guo & Cavener, 
2007; Laeger et al., 2014).

Several recent studies indicated that fibroblast growth factor 
21 (FGF21) was upregulated when feeding on a low protein diet. 
This led to speculation that FGF21 is an endocrine signal of protein 
restriction and the beneficial effects of protein restriction on met-
abolic health might be dependent on FGF21 (Laeger et al., 2014, 
2016). Apart from comparisons of high versus low protein diets, 
recent work has investigated gene expression levels in mice fed a 
matrix of diets varying in their protein, carbohydrate, and fat content 
(Gokarn et al., 2018). This revealed that dietary protein intake had a 
powerful effect on hepatic gene expression compared with dietary 
carbohydrate and fat content, and also showed that dietary protein 
mostly affected mitochondrial function and amino acid metabolism 
pathways, simultaneous to upregulation of Fgf21 at lower protein in-
takes (Gokarn et al., 2018). In contrast, the impacts of dietary fat and 
carbohydrate on hepatic gene expression were negligible (Gokarn 
et al., 2018).

Dietary macronutrient composition also has profound effects 
on aging (Gokarn et al., 2018). Several studies indicated that low 
protein high carbohydrate diets increase rodent lifespan (Lee et al., 
2008). Consistent with these lifespan impacts of lowered protein, 
in the most comprehensive long-term study of different dietary 
macronutrient composition effects on liver gene expression pat-
terns, it was found that dietary protein intake affected several major 
nutrient sensing pathways linked to aging, including adenosine-
5-monophosphate-activated protein kinase (AMPK), mammalian 
target of rapamycin (mTOR), insulin-like growth factor (IGF-1), and 
FGF21  signaling (Gokarn et al., 2018). The liver shows relatively 
fewer significant changes with age compared to other organs 
(Schmucker & Sanchez, 2011); however, the number of mitochon-
dria per hepatocyte decreases with age in both rodents and humans 
(de la Cruz et al., 1990; Herbener, 1976). A study of mitochondrial 
dysfunction in the obese rat suggested that mitochondrial changes 
consequent of fat intake may be the cause of aging and age-related 
disorders in obesity (Rector et al., 2010).

Apart from protein restriction, the most frequently studied nu-
tritional impact on aging is caloric restriction. It has been shown that 
caloric restriction increases lifespan and decreases age-related dis-
eases in many species (Ingram & de Cabo, 2017; Mercken et al., 2012). 
In mice and other organisms, several nutrient sensing pathways 
have been implicated to mediate the beneficial caloric restriction 
effect on aging. These pathways include decreased IGF-1 signaling 
(Argentino et al., 2005; Breese et al., 1991), reduced mTOR signaling 
(Johnson et al., 2013), and reduced nuclear factor-kappa beta (NF-
kB) signaling (Tilstra et al., 2011). All three pathways were modified 
in relation to the level of restriction in a way that indicated improved 
aging in the livers of mice (Derous et al., 2017). Caloric restriction 
protocols however often reduce all the macronutrients at the same 
time. Hence the contribution of specific macronutrient reductions 
to these changes is not clear. It has been suggested that much of the 
effect of CR might be mediated not by lowered calorie intake but by 
lowered protein intake (Solon-Biet et al., 2014, 2019), but this claim 
is disputed (Speakman et al., 2016).

In the present study, we investigated the effects on mouse he-
patic gene expression (by RNA-seq) of ad libitum intake of six differ-
ent levels of dietary protein (5%–30%) combined with both high-fat 
(60%) and low-fat (20%) conditions, leading to 12 different levels of 
dietary carbohydrate (10%–75%). In addition, we explored the im-
pacts of 24 different diets (varying from 5% to 30% protein, 8.3% to 
80% fat, and 10% to 80% carbohydrate) on serum metabolite levels 
by untargeted metabolomics.

2  |  RESULTS

2.1  |  Impact of dietary macronutrient composition 
on hepatic gene expression

Pearson correlation analysis indicated that expression of 4005 genes 
was significantly correlated with dietary protein content (2748 
negative correlation and 1257 positive correlation) and 4232 genes 
(1142 negative correlation and 3090 positive correlation) were sig-
nificantly associated with dietary fat content, whereas expression 
of 4292 genes (2759 negative correlation 1533 positive correlation) 
was associated with dietary carbohydrate levels (Figure 1a). We 
analyzed data on hepatic gene expression using generalized linear 
modeling (GLM) with gene expression of each gene as the depend-
ent variable and dietary levels of fat, protein, and carbohydrate con-
tent, and the interactions of the macronutrients as the independent 
predictors. We found five key genes involved in fatty acid synthesis 
pyruvate dehydrogenase kinase 1 (Pdk1), stearoyl-CoA desaturase 1 
(Scd1), acetyl-CoA carboxylase beta (Acacb), ELOVL family member 
6 (Elovl6), and Sterol regulatory element-binding transcription fac-
tor 1 (Srebf1) were all significantly upregulated in relation to the in-
crease of dietary protein (p = 0.005, p = 2.4 × 10−5, p = 2.3 × 10−5, 
p = 0.006, p = 0.002, respectively), but for other genes involved in 
fatty acid synthesis pyruvate dehydrogenase kinase 4 (Pdk4), ATP 
citrate lyase (Acly), acetyl-CoA carboxylase alpha (Acaca), fatty 
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acid synthase (Fasn), there were no significant associations with di-
etary protein contents (p  >  0.05) (Figure 1c, d and Figure S1a, b). 
The triglyceride synthesis-related gene 1-acylglycerol-3-phosphate 
O-acyltransferase 1 (Agpat1) was also significantly positively 

associated with the dietary protein (p  =  0.002), but glycerol-3-
phosphate dehydrogenase 2 (Gpd2) and 1-acylglycerol-3-phosphate 
O-acyltransferase 9 (Agpat9) were not significantly associated 
(Figure 1e and Figure S1c).

F I G U R E  1 Diagram showing genes correlated with dietary protein, fat, and carbohydrate contents and gene expression patterns in 
several metabolic pathways. (a) The total number of genes significantly correlated, respectively, with dietary protein, fat, and carbohydrate 
contents. (b) Overlapped and independent correlated genes with dietary protein, fat, and carbohydrate contents. (c and d) Fatty acid 
synthesis metabolism, (e) triglyceride synthesis metabolism, (f, g) amino acid metabolism, (h) amino acid transport metabolism, (i) TCA cycle, 
(j) gluconeogenesis metabolism, and (k) regulation of protein intake-related genes (n = 5–6). Generalized linear modeling was performed to 
analyze the dietary protein effect on specific gene expression. * p < 0.05, ** p < 0.01, *** p < 0.001, ns p > 0.05. Values are represented as 
mean ±SD
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Expression of many genes related to amino acid metabolism 
was also strongly altered in relation to dietary protein levels, for 
example, adenosylhomocysteinase (Ahcy), glutaminase 2 (Gls2), 
glutamic-oxaloacetic transaminase (Got1), glutamic-pyruvic trans-
aminase (Gpt), glutamic-pyruvic transaminase 2 (GPt2), proline 
dehydrogenase (Prodh), serine dehydratase (Sds), and tyrosine 
aminotransferase (Tat), was all significantly upregulated with in-
creases in dietary protein content (Figure 1f,g and Figure S1d,e, 
p values in Table S10). Further amino acid transport genes solute 
carrier family (Slc) 38  member 3 (Slc38a3), Slc43a1 and Slc7a2 
were also strongly positively related to the dietary protein con-
tents, but not Slc38a2 (Figure 1h and Figure S1f, p values in Table 
S10). Gene expression levels in TCA cycle genes aconitase 2 (Aco2) 
(p  =  1.82  ×  10−8) and isocitrate dehydrogenase 3 alpha (Idh3a) 
(p = 0.001) were both positively associated with the dietary pro-
tein content (Figure 1i and Figure S1g). Moreover, genes involved in 
gluconeogenesis such as glucose-6-phosphatase (G6pc) (p = 0.04), 
phosphoenolpyruvate carboxykinase 1 (Pck1) (p  =  0.005), and 
fructose-bisphosphatase 1 (Fbp1) (p = 0.007) were all significantly 
increased as dietary protein increased (Figure 1j and Figure S1h). 
Apart from these changes in the fatty acid and amino acid metab-
olism pathways, Fgf21 was significantly decreased with increased 
dietary protein (p = 0.001) (Figure 1k and Figure S1i). Surprisingly, 
no significant correlations were observed between dietary pro-
tein content and other protein “sensing” genes such as Mtor and 
activating transcription factor 4 (Atf4) (p  >  0.05) (Figure 1k and 
Figure S1i).

We explored the relationships between gene expression at 
different protein levels and body fat content and serum hormone 
levels. The fatty acid metabolism genes Scd1 and Elovl6 were signifi-
cantly positively correlated with the total body fat, and with serum 
leptin and insulin levels (Figure S2a–S2f). The amino acid metabolism 
gene Gpt was also significantly positively related to the body fat con-
tent, serum leptin, and insulin concentration (Figure S2g–S2i). Fgf21 
in contrast was not correlated with body fat or serum hormone con-
centrations (Figure S2j–S2l).

GLM analysis of liver gene expression changes indicated eukary-
otic translation initiation factor 2 (EIF2) signaling (p = 8.11 × 10−22), 
the unfolded protein response (p = 8.47 × 10−8), regulation of eIF4 
and ribosomal protein S6 kinase (p70S6K) signaling (p = 1.91 × 10−7), 
transfer RNA (tRNA) charging (p = 1.64 × 10−8), amino acid metabo-
lism (p = 8.99 × 10−6), protein synthesis (p = 5.58 × 10−5), and nucleic 
acid metabolism pathways (p  =  9.4  ×  10−5) were the most signifi-
cantly affected pathways with the increasing of dietary protein con-
tents under both 60% fat and 20% fat conditions (Figure 2a,c,d,e,f) 
(Table S1).

There were 99/205 significant changes in gene expression in the 
EIF2  signaling pathway (Figure S4a), most of these genes (94/99) 
were negatively correlated with the dietary protein content. In the 
regulation of eIF4 and p70S6K signaling pathway, 57/157  genes 
showed significant expression changes with the elevation of dietary 
protein contents and also most of the altered genes (50/57 genes) 
were downregulated (Figure S3a). The tRNA charging pathway in the 

liver was also significantly affected by dietary protein content, in-
cluding 23/38 genes that were significantly changed in this pathway, 
and all of which (23/23) were negatively correlated with the protein 
content in the diet. Changes of unfolded protein response pathway 
also reflect the end of the protein translation process, and there 
were 28/55  genes significantly changed in this pathway, of which 
26/28 genes had negative correlations with dietary protein contents 
(Figure S3b). Pearson correlation results showed that 4005 genes 
were significantly correlated with protein level in the diet, and the 
following pathway analysis results revealed that EIF2a signaling 
(p = 5.09 × 10−17), TCA cycle (p = 1.48 × 10−7), the unfolded protein 
response (p = 2.13 × 10−7), regulation of eIF4 and p70S6K signaling 
(p = 6.82 × 10−8), protein ubiquitination pathway (p = 3.29 × 10−10), 
tRNA charging (p = 3.33 × 10−8), colonic acid building blocks bio-
synthesis pathway (p = 1.68 × 10−7), and the mTOR signaling path-
way (p = 3.53 × 10−6) were the most significantly changed pathways 
(Figure 2a) (Table S1). Of the 4005 genes, only 1886 genes were in-
dependently correlated with protein content in the diet (1614 genes 
were correlated both with protein and carbohydrate levels and 
1280 genes were associated with protein and fat content in the diet) 
(Figure 1b). IPA pathway analysis of these 1886 genes showed that 
sirtuin signaling (p = 0.001), tRNA charging (p = 0.002), DNA meth-
ylation and transcriptional repression signaling (p = 0.002), and the 
super-pathway of serine and glycine biosynthesis (p = 0.003) were 
the most significantly affected pathways independently related to 
dietary protein content (Figure 2b) (Table S1).

There were 4232 genes significantly correlated with the increas-
ing dietary fat level (3309 genes were correlated both with fat and 
carbohydrate levels and 1280 genes were associated with protein 
and fat content in the diet, 546 genes were independently related to 
the dietary fat content) (Figure 1a, b). Liver gene expression changes 
with different fat content diets (using all 4232 genes correlated with 
dietary fat) indicated the lipid metabolism (p = 6.32 × 10−22), nuclear 
factor, erythroid 2 like 2 (Nrf2)-mediated oxidative stress response 
pathway (p = 2.83 × 10−15), EIF2a signaling (p = 3.24 × 10−14), li-
popolysaccharide/interleukin-1 (LPS/IL-1)-mediated inhibition of 
retinoid X receptors (RXR) function (p = 7.5 × 10−12), xenobiotic 
metabolism (p = 7.59 × 10−13), cell morphology (p = 1.74 × 10−12), 
and the mTOR signaling pathway (p = 5.62 × 10−11) were the most 
significantly changed pathways (Figure 3a). There were 82/179 sig-
nificant changes in gene expression in the Nrf2-mediated oxidative 
stress response pathway (Figure 3), most of these genes (74/82) 
were positively correlated with the dietary fat contents (Figure 3c) 
(Table S2). In the LPS/IL-1 mediated inhibition of RXR function and 
mTOR signaling pathway, 83/205 and 79/198 genes showed signif-
icant expression changes with the elevation of dietary fat contents, 
respectively (Figure S4b). Furthermore, the pathway analysis of 
the independent significantly changed genes (546 genes) with the 
increasing of dietary fat content indicated that IL-15 signaling (p = 
0.01), communication between innate and adaptive immune cells (p 
= 0.02), ERK/MAPK signaling pathway (p = 0.03) were the signifi-
cantly affected pathways separately correlated with the fat content 
in the diet (Figure 3b) (Table S2).
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F I G U R E  2 Significantly changed gene pathways with the increase of dietary protein content. (a) Significantly changed pathways related 
to the increasing dietary protein content. (b) Significantly changed pathways correlated independently with the increasing protein level. 
Gene expression patterns in different protein content groups in (c) EIF2a signaling pathway, (d) unfolded protein response, (e) regulation of 
eIF4 and p70S6K signaling, (f) tRNA charging pathway, blue indicates lower and red indicates higher expression. Generalized linear modeling 
and Pearson correlation analysis were performed to analyze the dietary protein effect on gene expression patterns
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F I G U R E  3 Significantly changed gene pathways with the increase of dietary fat content. (a) Significantly changed gene pathways related 
to the increasing dietary fat content. (b) Significantly changed gene pathways correlated independently with the increasing fat level. (c) Nrf2-
mediated oxidative stress response, red indicates positive and blue indicates the negative regression with the fat content in the diet, gray 
indicates no significance. Pearson correlation was performed to analyze the dietary fat effect on gene expression patterns
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There were 4292 genes significantly correlated with increasing 
dietary carbohydrate content, and following pathway analysis re-
sults showed that EIF2 signaling (p = 4.14 × 10−23), xenobiotic me-
tabolism signaling (p = 3.52 × 10−13), LPS/IL-1 mediated inhibition of 
RXR function (p = 1.08 × 10−12), NRF-2-mediated oxidative stress 
response (p = 2.97 × 10−10), and mTOR signaling pathway (p = 3.18 
× 10−9) were the most significantly changed pathways (Figure S5a,c 
and Table S3). These pathways overlapped with pathways affected 
by dietary protein and fat content because most of these 4292 genes 
were also correlated both with dietary protein (1614 genes) and fat 
(3309 genes) contents (Figure 1a, b). Therefore, we selected genes 
separately correlated with carbohydrate content (272  genes) and 
performed pathway analysis on these genes. We found methionine 
degradation (p = 0.001), cysteine biosynthesis (p = 0.002), BEX2 sig-
naling (p = 0.003), and Wnt/-catenin signaling (p = 0.005) were the 
most significantly changed pathways with increasing carbohydrate 
content (Figure S5b and Table S3).

Insulin/IGF-1, mTOR, and NF-kB signaling are three important 
pathways involved in aging (Derous et al., 2017). In the insulin/
IGF-1 signaling pathway, there were 4/46 genes significantly posi-
tively and also 4/46 genes negatively correlated with protein intake, 
2/46 genes were significantly negatively and 13/46 genes were pos-
itively associated with the fat intake, whereas 8/46 genes were neg-
atively and 3/46 genes positively correlated with the carbohydrate 
intake (Figure 4a) (Table S4). Igf1 was only significantly positively 
correlated with protein intake (p = 0.0003, r = 0.427) with no sig-
nificant correlations with carbohydrate and fat intakes (Table S4). 
In the mTOR signaling pathway, there were more genes correlated 
negatively with protein intake (4/24 negative associated genes and 
1/24 positive associated gene), whereas 2/24 genes had significant 
negative and 8/24  genes had positive correlation with fat intake 
(Figure 4b). Also relatively few genes in this pathway had a nega-
tive correlation with the carbohydrate intake (1/24 negative associ-
ated genes and 3/24 positive associated gene) (Figure 4b) (Table S5). 
Expression of Mtor itself was only significantly positively associated 
with the dietary fat intake (p = 0.003, r = 0.357) (Table S5). In the 
NF-kB signaling pathway, almost half of the genes that changed had 
positive and another half had negative relationships with dietary 
protein intake (3/43 negative correlated genes and 5/43 positive 
correlated genes), whereas slightly more genes correlated with fat 
intake (0/43 negative correlated genes and 10/43 positive correlated 
genes) and carbohydrate intake (9/43 negative correlated genes and 
1/43 positive correlated genes) (Figure 4c) (Table S6). Overall, there 
were almost the same number of genes had both positive and neg-
ative correlations with dietary protein intakes in IGF-1 and NF-kB 
pathway. Expression of more genes was negatively correlated in the 
mTOR pathway with dietary protein intakes. In contrast, more genes 
had negative relationships with carbohydrate intake in both IGF-1 
and NF-kB signaling pathway, whereas in all three aging pathways, 
there were many more genes that had positive associations with di-
etary fat intake. These latter changes were in the opposite direc-
tion to the previously established effect of graded levels of caloric 
restriction on the same pathways (Derous et al., 2017). Apart from 

these aging gene expression patterns, in five nutrient sensing genes 
Mtor, Fgf21, Igf1, sirtuin 1 (Sitr1), protein kinase AMP-activated non-
catalytic subunit beta 2 (Prkab2) that were indicated to link nutri-
ent intake with aging in previous studies, only Igf1 (p = 0.0003, r = 
0.427) and Prkab2 (p = 0.036, r = −0.254) were significantly asso-
ciated with dietary protein intake and no genes were significantly 
associated with carbohydrate intake, whereas Mtor (p = 0.003, r = 
0.357) and Prkab2 (p = 0.003, r = 0.358) had significant positive cor-
relations with fat intake (Figure 4d).

We also performed Pearson correlation analysis between liver 
weight, hormone levels, and dietary macronutrient composition. 
There was no significant correlation between liver weight (both 
wet and dry weight) and dietary protein content, whereas dry liver 
weight had significant negative correlation with dietary fat content 
(p = 1 × 10−4, r = −0.44) (Figures S6a-c). The liver triglyceride con-
centration had significant positive correlation with dietary fat level 
(p = 0.03, r = 0.47), but had no significant relationship with dietary 
protein content (Figures S6d-f). In contrast, the glycogen concen-
tration was significantly correlated with dietary protein content in 
the lowfat group (p = 0.003, r = −0.62). Dietary fat content had no 
significant impact on glycogen concentration (Figures S6g-i). Among 
genes (Scd1, Srebf1, Mttp, Ppara, Eif4ebp1, Acsl1, Gck, Tat, Pck1, 
Angptl4) have been indicated to be involved in the regulation of tri-
glyceride (Li et al., 2020; Nishikawa et al., 2012; Toyoshima et al., 
2020) and glycogen concentration (Præstholm et al., 2021; Ruiz 
et al., 2014), Acsl1 and Gck (p = 0.038, r = 0.32 and p = 0.001, r 
= −0.48) had significant correlations with triglyceride and glycogen 
concentrations respectively.

2.2  |  Impact of dietary macronutrient composition 
on transcription factors

To identify the key transcription factors that were over or under-
represented in terms of their binding sites in regulatory regions of 
significantly correlated genes with dietary protein, fat, or carbohy-
drate when compared to background genes (had no significant cor-
relations), we performed enrichment analysis by using the CiiiDER 
software. The analysis revealed that nuclear factor I X (NFIX) and 
distal-less homeobox 2 (Dlx2) were mostly enriched in the promot-
ers of genes significantly correlated both with dietary protein and 
carbohydrate (p = 5.51 × 10−12, p = 6.25 × 10−11 for protein and p 
= 5.34 × 10−14, p = 4.56 × 10−7 for carbohydrate), whereas E74 like 
ETS transcription factor 4 (ELF4) and Dlx2 were recognized as most 
enriched transcription factors of genes that had significant associa-
tions with dietary fat content (p = 1.19 × 10−11, p = 6.78 × 10−11) 
(Figure S6j. k). We also performed Pearson correlation analysis 
between significantly enriched transcription factors and gene ex-
pression levels in significantly affected gene pathways by different 
dietary macronutrients. There were 17/99 genes significantly corre-
lated with NFIX in the EIF2a signaling pathway (significantly affected 
pathway by dietary protein content). 14/82  genes had significant 
correlations with ELF4 transcription factor in the Nfr2  signaling 
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F I G U R E  4 Relationship between aging-related genes and macronutrient intakes. (a-c) The relationship between gene expression levels 
in aging pathways (a) insulin/IGF-1 pathway, (b) mTOR pathway, (c) NF-kB pathway and protein intake (PI), fat intake (FI), and carbohydrate 
intake (CHI). (d) The correlations between macronutrient intakes (PI, FI, CHI) and nutrient sensing genes. Pearson correlation method was 
used for statistical analysis, the color key is the correlation coefficients of Pearson correlation analysis between gene expression levels and 
macronutrient intakes
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pathway (significantly affected pathway by dietary fat content). The 
key transcription factors peroxisome proliferator-activated recep-
tors (PPARs) (PPARα, PPARγ, PPARδ in this study) that have been 
shown to respond to dietary macronutrients (Kersten et al., 1999) 
were only significantly enriched in the promoter regions of genes 
correlated with dietary fat content but not with dietary protein or 
carbohydrate content.

2.3  |  Impact of dietary macronutrient composition 
on circulating metabolites

Circulating levels of 732  metabolites were significantly correlated 
with dietary protein content (399 negative and 333 positive correla-
tions), 808 metabolites (437 negative and 371 positive correlations) 
were significantly correlated with dietary fat content, and 995 me-
tabolites (477 negative and 518 positive correlations) were corre-
lated with dietary carbohydrate levels (Figure 5a).

We performed GLM analysis for amino acids with dietary protein 
content as a covariate and fat content of the diet (2 levels) as a factor. 
Serum alanine (p = 0.003), methionine (p = 0.013), valine (p = 0.019), 
serine (p = 0.023), arginine (p < 0.001), lysine (p = 1.95 × 10−5), 
leucine (p < 0.001), and histidine (p = 7.68 × 10−5) amino acid lev-
els were all significantly negatively correlated with dietary protein 
content (Figure 5e-5l). However, the concentrations of other amino 
acids (phenylalanine, proline, aspartic acid, cysteine, glycine, tyro-
sine, tryptophan, glutamate, and threonine) were not significantly 
associated with the dietary protein levels (Figure S7b, c). To further 
explore correlations between significantly changed metabolites and 
some important physiological traits, we also correlated the metab-
olites (Pearson's correlation) with body fat, serum hormones, and 
macronutrient intakes. We found all the amino acids that decreased 
significantly with protein content were significantly negatively cor-
related with the body fat levels and serum leptin concentrations 
(Figure S7a) (p and r values in Table S10). Several of them (lysine, ar-
ginine, histidine, and leucine) had strong associations with the serum 
insulin concentration (Figure S7a) (p and r values in Table S10).

In addition to looking at the relationships between metabolites 
and the dietary macronutrient contents (above), we also sought re-
lationships between them and actual intakes. Alanine, methionine, 
valine, serine, arginine, lysine, leucine, and histidine were all signifi-
cantly decreased with increasing dietary protein intake, whereas 
they increased with the elevation of dietary carbohydrate intakes 
(Figure S7a) (p and r values in Table S10). As for the correlation with 
fat intake, only arginine concentration was significantly related to 
the dietary fat intake (p = 0.02) (Figure S7a).

To explore the significantly affected metabolite pathways we 
also performed the GLM analysis for all metabolites and then se-
lected metabolites significantly correlated with dietary protein con-
tent (p < 0.05) for upload into the Ingenuity pathway analysis (IPA) 
software. The most affected pathways included tRNA charging (p = 
1.7 × 10−5), arginine degradation (p = 1.1 × 10−4), alanine degradation 
(p = 8.05 × 10−4), and citrulline biosynthesis (p = 0.001) (Figure 5c) 

(Table S7). Pearson correlation analysis with dietary protein levels 
across all metabolites (732 metabolites), respectively, in the 60% fat 
group and 20% fat group also indicated the most affected pathways 
were tRNA charging (p = 0.001 for high-fat group, p = 1.71 × 10−6 for 
low-fat group), arginine degradation (p = 3.45 × 10−5), alanine degra-
dation (p = 4.49 × 10−4), and citrulline biosynthesis (p = 4.44 × 10−4) 
(Figure 5c). Additionally, lysine degradation (p = 0.006), methylgly-
oxal degradation (p = 0.007), acetone degradation (p = 0.007), and 
histidine degradation (p = 0.02) pathways were also recognized as 
significantly changed pathways (Figure 5c) (Table S7). Furthermore, 
in 732 metabolites, 305 metabolites were correlated both with di-
etary protein and carbohydrate content and 226 metabolites were 
associated both with protein and fat content in the diet (Figure 5b). 
There were 362  metabolites related only with the dietary protein 
content, and the following pathway analysis of these 362 metabo-
lites indicated that glycine degradation (p = 0.005), catecholamine 
biosynthesis (p = 0.009), histamine degradation (p = 0.01), and dopa-
chrome biosynthesis (p = 0.04) were significantly changed path-
ways with increasing dietary protein content (Figure 5d) (Table S7). 
Overall, the most significantly changed metabolites and metabolic 
pathways related to increasing dietary protein levels were mainly re-
lated to the amino acid metabolism.

To further explore the significantly affected metabolite pathways 
under different fat content diets, we also performed the GLM anal-
ysis for all metabolites and then selected metabolites significantly 
correlated with dietary fat levels (p < 0.05) for analysis using the IPA 
software. Lysine degradation (p = 0.009), alanine biosynthesis (p = 
0.02), tryptophan degradation (p = 0.03), and the IL-10 signaling path-
way (p = 0.04) were the pathways most affected by the dietary fat 
(Figure 6a) (Table S8). There were 2/14 and 2/25 metabolites signifi-
cantly changed in lysine degradation pathway and tryptophan deg-
radation pathway, respectively. Whereas only 1 metabolite showed 
significant differential expression in alanine biosynthesis (1/2) and 
IL-10 signaling (1/4) pathway, respectively. Apart from these signifi-
cantly changed metabolic pathways, Pearson correlation with dietary 
fat content respectively under 10% protein and 25% protein condi-
tions (808 metabolites) also showed ceramide signaling (p = 0.036), 
sphingosine-1-phosphate signaling (S1P) (p = 0.036), PDGF signaling 
(p = 0.042) in 25% protein group and linolenate biosynthesis (p = 
0.04), phenylalanine degradation (p = 0.043) pathway under 10% 
protein condition were all significantly affected pathways with the 
elevation of dietary fat level (Figure 6a) (Table S8). Of 808 metabo-
lites, 613 metabolites were correlated both with dietary fat and car-
bohydrate content and 226 metabolites were associated both with 
protein and fat content in the diet (Figure 5a, b). There were 130 me-
tabolites had independent significant correlations with dietary fat 
content, and the following pathway analysis of these 130 metabo-
lites indicated that 4-hydroxyphenylpyruvate biosynthesis (p = 0.02), 
tyrosine degradation (p = 0.03), and 4-hydroxybenzoate biosynthe-
sis pathway (p = 0.04) were significantly changed pathways with in-
creasing dietary fat content (Figure 6b). We also performed Pearson 
correlation between metabolites in significantly affected pathways 
by dietary fat and physiological traits. We found lysine, bilirubin, 
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sphingosine-1-phosphate, linoleic acid all had significant negative 
correlations with body fat mass (Figure 6c-6f), whereas only lysine, 
sphingosine-1-phosphate, and bilirubin were significantly related to 
the serum leptin concentration (Figure 6g-6i) (p and r values in Table 
S10). There were no metabolites in significantly altered metabolic 
pathways that had significant correlation with serum insulin level.

There were 995 metabolites significantly correlated with dietary 
carbohydrate content under Pearson correlation (Figure 5a). The 
most affected pathways by carbohydrate level included lysine deg-
radation (p = 0.02), tRNA charging (p = 0.03), alanine biosynthesis (p 
= 0.03), and iNOS signaling pathway (p = 0.04) (Table S9).

2.4  |  Relationships between circulating 
metabolites and hepatic gene expression

We performed correlations between metabolites in significantly 
changed metabolic pathways with the increase of dietary protein 
content and genes involved in amino acid, fatty acid metabolism, and 
gluconeogenesis. The amino acid metabolism gene Got1 and amino 
acid transport gene Slc43a1 were significantly negatively related to 
circulating levels of several amino acids (Figure S7d, S7e) (p and r val-
ues in Table S11). Genes involved in gluconeogenesis G6pc and Pck1 
were negatively associated with alanine, arginine, histidine, leucine, 
lysine, and serine (Figure S7f) (p and r values in Table S11). Ornithine, 
involved in the citrulline biosynthesis pathway, had significant posi-
tive associations with amino acid metabolism and transport genes 
Gpt (p = 0.024), Prodh (p = 0.006), Slc43a1 (p = 0.02), Slc7a2 (p = 
0.036) and gluconeogenesis gene Pck1 (p = 0.02) (Figure S7d-f).

2.5  |  Discussion

The current data on changes in hepatic gene expression in response to 
changes in dietary composition, where we detected changes in more 
than 4000 genes in response to each dietary component, contrasts 
enormously with a previous study which involved C57BL/6  mice 
exposed to 25 different diets and which indicated dietary protein 
intake was most powerful driver of hepatic gene expression (leading 
to correlated changes in 1279  genes), and that there were only 8 
and 3 genes significantly correlated with changes in dietary carbo-
hydrate and fat intake, respectively (Gokarn et al., 2018). There are 
several potential reasons for the differences between our work and 
this previous study. We used the Illumina NextSeq 500 sequencer 

for RNA-sequencing whereas the previous study measured the gene 
expression by using less sensitive Affymetrix arrays. Further, the 
previous study analyzed livers of 46 mice fed one of 25 diets which 
means some diets were represented by a sample of just one mouse. 
In contrast with 68 samples across 12 diets, most of the diets in our 
study were represented by 4 independent replicates. This differ-
ence leads us to have greater power to detect differences in gene 
expression. That power could translate to an increase in the number 
of genes detected as significant for fat and carbohydrate, but not 
protein, if the effect sizes of such genes were greater, or if there was 
greater individual variability in response to fat and carbohydrates 
in the diet than there is to dietary protein. In addition, the age of 
onset and makeup of the other dietary components were also differ-
ent. Perhaps most importantly the mice in the previous study were 
still growing which may have placed a premium on changes related 
to protein intake, while in the present study the mice were already 
mature at the onset of dietary manipulation and 8 months old when 
measured (Gokarn et al., 2018).

We detected specific gene expression patterns in key metabolic 
pathways. Several fatty acid synthesis genes were upregulated in the 
liver with the increase of dietary protein content both in high-fat and 
low-fat groups. In addition, most of the amino acid metabolism and 
transport genes also had higher expressions in the higher dietary 
protein intake group, but very few of these genes were correlated 
with serum insulin, leptin concentration, and dietary fat intake. A 
previous study also indicated that a high protein diet (45% of energy) 
induced higher expression of several amino acid metabolism and up-
take genes, of which Got1, Gpt, and Slc43a1 were also indicated in 
our study. They also found fatty acid synthesis gene Gnpat was up-
regulated in the high protein group although there was no body fat 
gain (Díaz-Rúa et al., 2017). In another study, the liver glutaminase 
gene Gls2 was one of the most affected gene by the dietary protein 
intake, but was unaffected by dietary carbohydrate and fat intake 
(Gokarn et al., 2018; Miller et al., 2018; Okun et al., 2021). In con-
trast in our study, Gls2 expression was significantly changed both by 
dietary protein and carbohydrate intakes.

Several recent studies showed Fgf21 was upregulated by a low 
protein diet (Laeger et al., 2014, 2016). It has been indicated that 
Fgf21  had highest expression under combination of low protein 
and high carbohydrate intakes (Solon-Biet et al., 2016). However, 
in our study, there was no significant correlation between Fgf21 
expression and dietary carbohydrate intake. Though the Fgf21 
expression was differentially expressed between different pro-
tein content groups (5% protein had significant higher expression 

F I G U R E  5 Diagram showing metabolites correlated with dietary protein, fat, and carbohydrate contents and significantly changed 
metabolic pathways and metabolites in the serum of mice fed different protein content diets. (a) The total number of metabolites 
significantly correlated, respectively, with dietary protein, fat, and carbohydrate contents. (b) Overlapped and independent correlated 
metabolites with dietary protein, fat, and carbohydrate contents. (c) Significantly changed metabolic pathways related to the increasing 
dietary protein content. (d) Significantly changed metabolic pathways correlated independently with the increasing protein level. (e-l) Log-
transformed concentration of alanine, methionine, valine, serine, arginine, lysine, leucine, and histidine in different protein content diet 
treatment groups, respectively. Generalized linear modeling and Pearson correlation were performed to analyze the dietary protein effect 
on gene expression patterns



12 of 18  |     WU et al.

compared to the 25% protein group both 60% fat and 20% fat con-
ditions), there was no significant differential expression between 
35% carbohydrate (60% fat) and 75% carbohydrate (20% fat) group 
under 5% protein. That is, Fgf21 expression was not dependent on 
the dietary carbohydrate level or intake. The difference between 
these two studies may related to the dietary component, we fixed 
fat levels when we investigated the carbohydrate impact on gene 

expression, whereas in the previous study they did not fix any of 
the macronutrients.

Circulating levels of several amino acids were decreased as 
the dietary protein content increased. We also found that several 
amino acid-tRNA ligase gene expressions were also decreased in the 
higher dietary protein groups. This suggests amino acids were po-
tentially being utilized in lipid synthesis and glucose synthesis, and 

F I G U R E  6 Significantly changed metabolic pathways and metabolites in the serum of mice fed different fat content diets. (a) Significantly 
changed metabolic pathways related to the increasing dietary fat content. (b) Significantly changed metabolic pathways correlated 
independently with the increasing fat level. (c-i) The relationship between body fat, serum leptin concentration and S1P, linoleic acid, lysine, 
bilirubin, concentrations, respectively. Pearson correlation analysis was performed to analyze the correlation between serum metabolite 
expression levels and body fat, serum hormone concentrations
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as expected from this hypothesis, genes for the gluconeogenesis 
enzymes G6pc and Pck1 were both upregulated with the increase of 
dietary protein levels. This is consistent with a previous study which 
indicated that during short-term fasting female mice used amino 
acids to synthesize glucose and lipids (Della Torre et al., 2018).

Apart from the tRNA charging pathway, the EIF2  signaling 
pathway, p70S6K signaling pathway, and mTOR signaling pathways 
were significantly altered with the increase of dietary protein level. 
It has been previously suggested that the expression level of Mtor 
was increased in lower protein intake, whereas in our study Mtor 
itself (as opposed to the whole pathway) had no significant correla-
tion with both protein and carbohydrate intake, this may linked to 
the differences between two studies mentioned in the first para-
graph. EIF2 is a highly conserved signal regulating cell responses 
to a variety of stresses, so the dysregulation of this pathway has 
been linked to many human diseases. EIF2 signaling has also been 
identified as a low protein or low amino acid sensing pathway, and 
previous studies have shown it was activated by low dietary pro-
tein (Guo & Cavener, 2007; Laeger et al., 2016; Maida et al., 2016; 
Wu et al., 2021). This effect was consistent with our data. The im-
portant downstream molecule Atf4 had higher expression in 5% low 
protein group through Atf4 was not significantly correlated with the 
dietary protein level and protein intake if plotted with the 6 different 
levels of protein. Nevertheless, most of the genes (84/95) in EIF2a 
pathway were negatively correlated with the dietary protein intake. 
The unfolded protein response (UPR) is a cellular stress response 
related to the endoplasmic reticulum, dysregulation of this process 
has been implicated in many diseases such as type II diabetes and 
cancer (Jovaisaite et al., 2014; Walter & Ron, 2011), and this pathway 
was also one of the most significantly affected pathways with the in-
creasing of dietary protein contents. The transcription factors NFIX 
and Sox13 that were mostly enriched in the promoters of genes sig-
nificantly correlated with dietary macronutrient have been indicated 
to be involved in the regulation of oxidative stress and glycolysis, 
respectively (Cui et al., 2020; Liu et al., 2020; Saleem et al., 2020).

In most affected serum metabolic pathways, apart from tRNA 
charging and amino acid degradation pathways, citrulline biosynthe-
sis, methylglyoxal degradation, and acetone degradation pathway 
were also significantly changed. Arginase metabolizes the hydrolysis 
of arginine into ornithine and urea, whereas NOS can degrade argi-
nine into citrulline (Husson et al., 2003; Jobgen et al., 2006; Luiking 
et al., 2010; Sailer et al., 2013). This process might lead to vascular 
endothelial dysfunction in the early stage of obesity (Ito et al., 2018), 
so arginine degradation with the increase of dietary protein content 
in our study may be one of the mechanisms of slight increase in body 
fat, but this mechanism needs further investigation. Methylglyoxal 
degradation and acetone degradation pathways were likely the re-
sult of methylglyoxal degraded into acetone. Early studies showed 
that methylglyoxal caused type II diabetes and oxidative stress, and 
so methylglyoxal was identified as a major therapeutic target for 
type II diabetes (Dornadula et al., 2015; Hanssen et al., 2019; Yılmaz 
et al., 2017), whereas in our results methylglyoxal was negatively 
related to the body fat gain.

Several metabolic pathways were significantly changed in re-
sponse to varying contents of fat. A previous study indicated that 
oral alanine administration improved glucose tolerance in both chow 
diet and high-fat diet-treated mice (Adachi et al., 2018). In our study, 
alanine was also significantly decreased as dietary fat content in-
creased. It will be interesting to investigate alanine effects on other 
metabolic parameters under different nutritional environments. IL-
10  signaling and linoleic acid signaling were also identified as the 
significantly changed pathways in response to dietary fat. In a recent 
study, it has been showed that ablation of IL-10 improved insulin sen-
sitivity and inhibited diet-induced obesity (Rajbhandari et al., 2018), 
also in another study, IL-10 was indicated to be decreased in child-
hood obesity (Liu et al., 2018). Consistent with many previous stud-
ies, activity of the linoleic acid pathway was decreased as dietary fat 
content increased (Caligiuri et al., 2013; Cedernaes et al., 2013). It 
has been indicated in another study that linoleic acid regulation of 
glucose homeostasis in obesity was dependent on the sex difference 
(Kowalski et al., 2013; Zhuang et al., 2018).

As for the S1P metabolic pathway, there has been controversy 
about how S1P signaling was changed under different nutritional 
states. It was indicated in one study that plasma S1P is elevated 
in obesity (Kowalski et al., 2013), and sphingosine kinase 2 knock-
out mice were protected from obesity and insulin resistance 
(Ravichandran et al., 2019). However, there were several studies in-
dicating that S1P was associated with beneficial effects of caloric 
restriction in male Wistar rats and C57BL/6 mice and lifespan regu-
lation in mammals (Babenko & Shakhova, 2014; Collino et al., 2013; 
Lightle et al., 2000). In the present study, we found that S1P signaling 
was decreased with the elevation of fat content, which is opposite 
the effect of graded levels of caloric restriction which showed S1P 
was upregulated as the caloric restriction level increased (Green 
et al., 2017). As S1P was identified as significantly changed metabo-
lite in both graded levels of caloric restriction and different fat con-
tent diet treatment studies, it seems to be a strong potential target 
linking nutrition and aging. The significantly changed gene pathway 
in response to varying contents of fat, Nrf2 signaling pathway was 
indicated in several studies that related to the oxidative stress and 
aging (Tyshkovskiy et al., 2019; Zhang et al., 2015).

Dietary restriction extends lifespan across multiple species 
(Ingram & de Cabo, 2017; Mercken et al., 2012). Previous work 
showed that hepatic gene expression levels in major aging-related 
pathways (IGF-1, NF-kB, and mTOR) were altered under restric-
tion in a manner consistent with increased lifespan (Derous et al., 
2017). In the insulin/IGF-1  signaling pathway, Igf1 and Insr were 
negatively correlated with the caloric restriction level, and also in-
creased with the increase of protein intake in the present study, but 
acly that had strong negative correlation with the level of caloric 
restriction had almost no correlation with protein intake. In the 
NF-KB signaling pathway, NF-kB/ReIB complex also had almost no 
correlation with protein intake but its expression was increased 
with the increase of caloric restriction level. In the mTOR signaling 
pathway, the number of genes that significantly correlated with 
dietary protein, fat, and carbohydrate intake were 5, 10, and 4, 
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respectively. Overall, many more aging-related genes had signifi-
cant correlations with dietary fat intake than protein and carbo-
hydrate intake. Moreover, the pattern of gene expression changes 
in relation to dietary fat intake was in the opposite direction to 
the effect of graded levels of caloric restriction. Compared to a 
recent study that indicated five key nutrient sensing genes linked 
nutrient with aging (Mtor, Fgf21, Igf1, Sitr1, Prkab2), only one of 
these genes (Prkab2) was significantly correlated both with chang-
ing levels of dietary protein and fat content. In conclusion, intake 
of fat appeared to have more significant effect on aging-related 
gene expression as more genes in aging-related pathways (notably 
mTOR, IGF-1, and NF-KB) had significant correlations with dietary 
fat intake than protein and carbohydrate intake.

2.6  |  Limitations of the study

One strength of this work is that the mice were exposed to the dif-
ferent diets for a protracted period, meaning they had a long time 
to respond to the intervention. However, in a sense that strength 
can also be a weakness because the impacts may not only be direct 
effects of the diets but downstream impacts of the diets on other 
features such as adiposity. At the moment, we cannot separate these 
possibilities.

3  |  E XPERIMENTAL PROCEDURES

3.1  |  Ethical statement

All animal procedures were reviewed and approved by the Institute 
of Genetics and Developmental Biology Chinese Academy of 
Sciences.

3.2  |  Mice and experimental diet

Data in the current paper pertain to mice involved in a large dietary 
manipulation experiment, some aspects of which have already been 
published. These previous publications have included patterns of body 
weight, adiposity, and hypothalamic gene expression (Hu et al., 2018, 
2020b) and glucose homeostasis (Hu et al., 2020a). All procedures in 
this study were reviewed and approved by the Institutional Review 
Board, Institute of Genetics and Developmental Biology, Chinese 
Academy of Sciences. We previously exposed C57BL/6 mice to a total 
of 29 different diets varying from 8.3 to 80% fat, 10 to 80% carbo-
hydrate, 5 to 30% protein, 5 to 30% sucrose content and found only 
increased dietary fat content was associated with elevated energy 
intake and adiposity but not the protein or carbohydrate content. 
Whereas in the current study, we investigated the effects on mouse 
hepatic gene expression (by RNA-seq) of ad libitum intake of six differ-
ent levels of dietary protein (5 to 30%) combined with both high-fat 

(60%) and low-fat (20%) conditions, leading to 12 different levels of 
dietary carbohydrate (10% to75%). In addition, we explored the im-
pacts of 24 different diets (varying from 5% to 30% protein, 8.3% to 
80% fat, and 10% to 80% carbohydrate) on serum metabolite levels 
by untargeted metabolomics. Full details of diets are in supplemen-
tary Table S12–15). During the whole experimental period, mice were 
singly housed under controlled 22–24 ℃ temperature and 12:12 light 
dark cycle conditions. Mice were killed by rising concentrations of CO2 
for the collection of tissues and serum, which were quickly snap fro-
zen in liquid nitrogen and then stored in a −80℃ freezer until analysis. 
More information about procedures and experimental designs can be 
found in our previous papers (Hu et al., 2018, 2020b).

3.3  |  Liver RNA extraction and 
transcriptome analysis

The RNA of 68 individual mice (n = 5–6  mice per group) was ex-
tracted from liver tissues and sent to Beijing Genomic Institute (BGI) 
for RNA-sequencing. Liver tissues were put in Trizol (Invitrogen) 
reagent and homogenized by Bead Ruptor (OMNI), then total RNA 
were extracted by chloroform/isoamyl alcohol/RNA precipitation 
solution (1.2 M NaCl & 0.8 M disodium hydrogen citrate sesquihy-
drate) step by step and purified by 75% ethanol. Each sample was 
sequenced by 75 bp long reads from paired ends. The raw data of 
RNA-seq were analyzed using the method described in the previous 
study (Wu et al., 2021). Normalized counts were used to express 
the specific gene expression level, to explore significantly corre-
lated pathways, respectively, under 60% fat and 20% fat conditions, 
Pearson correlation analysis was used for normalized counts of all 
genes by using correlation method in R-3.5.3, and then significantly 
correlated genes (p < 0.05), respectively, under 60% fat and 20% 
fat condition were analyzed by IPA (www.ingen​uity.com) software to 
obtain significantly affected pathways (p < 0.05), p-values for each 
correlation were adjusted using the Benjamini–Hochberg procedure 
using a false discovery rate of 5%.

3.4  |  Serum metabolite measurement and analysis

From each diet group, 12  serum samples from 12 individual mice 
were collected. Six samples were pooled together as one sam-
ple, resulting in 2 pooled samples in each diet group (n = 48 sam-
ples across 24 diets). Serum metabolites were extracted by mixing 
Chloroform: Methanol: Serum in 1:3:1 ratio and following centri-
fuged at 1,3000 rpm for 3 minutes, supernatant was collected and 
did LC-MS using an OrbitrapTM ExactiveTM mass spectrometer at 
the Glasgow Polyomics facility. Each metabolite was expressed by 
raw peak intensities at last, and then, these peaks were analyzed 
step by step using R packages according to the method described 
in the previous study (Wu et al., 2021). Generalized linear modeling 
and Pearson correlation were performed for normalized intensities 

http://www.ingenuity.com
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of each metabolite across the different protein level and selected 
the significantly correlated metabolites (p < 0.05) into the IPA soft-
ware to get the most affected pathways.

3.5  |  Hormone measurements

Liver triglyceride and glycogen concentrations were measured by 
using glycogen assay kit (#KA0861, Abnova) and general triglycer-
ide ELISA Kit (EK3875, SAB), respectively. All procedures were per-
formed according to the manufacturers’ instruction.

3.6  |  CiiiDER analysis

CiiiDER software was downloaded from CiiiDEr.org with the M. 
musculus GRCm38.94  genome files. Transcription factor analysis 
was performed on promoter regions spanning +1500 to −500  bp 
from the predicted transcription start site (Gearing et al., 2019). The 
background gene lists were the genes had no significant correlations 
with dietary macronutrient composition.

3.7  |  Correlation analysis with physiological traits

Mean body fat, macronutrient intakes, and serum hormones meas-
ured in the last week of dietary manipulation were correlated 
(Pearson's correlation) with gene normalized counts and normalized 
metabolite intensities for each sample. All Pearson correlations (P-
values) in this study were adjusted using the Benjamini–Hochberg 
procedure using a false discovery rate of 5%.

3.8  |  Generalized linear model

We analyzed data on specific hepatic gene expression and serum me-
tabolite using generalized linear modeling (GLM) with gene expres-
sion as the dependent variables and dietary levels of fat and protein, 
and the interactions of the two macronutrients as the independent 
predictors. To explore the significantly affected gene and metabo-
lite pathways, we also performed the GLM analysis for all genes and 
metabolites then selected genes and metabolites significantly corre-
lated with dietary protein or fat content (p < 0.05) into the Ingenuity 
pathway analysis (IPA) software.
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