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Abstract—An Ant colony algorithm (ACO) is proposed for 

hybrid renewable energy system size and configuration 

optimisation using continuous search space approach. In the 

proposed algorithm the pheromone distribution across search 

space is determined by gaussian distribution, and the 

probabilistic path selection is performed based on pheromone 

deposit value via roulette wheel principle. The ACO algorithm 

is implemented in the software tool MOHRES and three case 

studies are conducted to optimise the size and configuration of 

standalone hybrid renewable energy system derived from the 

full configuration wind-PV-battery-diesel-FC Electrolyser 

system. To evaluate the performance of the proposed ACO, the 

optimum solutions are compared with the solutions obtained by 

the genetic algorithm (GA) optimisation algorithm implemented 

in MOHRES.   
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I. INTRODUCTION 

Due to technical and economic problems in grid extension 
to isolated locations, fossil fuel-based systems are used to 
generate electricity. These systems contribute to global 
warming problem and impact local air quality. Renewable 
energy sources like solar and wind are alternative solution 
providing that the system used is competitive with the 
conventional systems. Optimised hybrid renewable energy 
systems (HRES) are considered as effective, economic, 
reliable, and environmentally friendly energy systems [1]. 

 HRES size optimisation is classified as a combinatorial 
optimisation problem owing to different electrical 
components involved in the system and the characteristic 
variations of energy sources [2-6]. The level of the complexity 
of the problem depends on how the problem has been 
formulated in terms of the objective, constraints, and the 
nature of design variable involved. As the level of complexity 
of the problem increases, the optimal solution cannot be 
obtained or always guaranteed by classical methods such as 
heuristic algorithms within reasonable amount of time. On the 
other hand, meta-heuristic optimisation techniques are proven 
to be very effective for finding optimal solutions in a 
reasonable time irrespective of the level of the complexity of 
the problem [7, 8]. 

In this article, ant colony-based algorithm is proposed to 
optimised size and configuration of standalone PV-Wind-
Battery-Diesel-Hydrogen system using continues design 
space approach. The proposed search algorithm is 
implemented in MOHRES and tested by conducting three case 
studies. To evaluate the quality of the solution obtained by the 
proposed algorithm, they are compared with MOHRES’s 
genetic algorithm solutions.  

II. PROBLEM FORMULATION  

The There are six electrical components available for the 
size and configuration optimisation of HRES: the primary 
power supplies (wind Turbines and solar PV panels), auxiliary 
power supply (diesel generator), electrical storage system 
(battery), and hydrogen-based energy storage system (Fuel 
cells and water electrolysers). 

The power output of wind turbine can be calculated as the 
following:  

 𝑃𝑊𝑇 =
1

2
𝜋𝜌𝑉𝑤𝑖𝑛𝑑

3𝑅𝑊𝑇
2 𝐶𝑝𝜂𝐸𝐺 () 

where, 𝜌 is the air density, 𝑉𝑤𝑖𝑛𝑑  is the wind velocity, 𝜂𝐸𝐺 is 
the overall efficiency of the electrical components and 
gearbox of the wind turbine, 𝑅𝑊𝑇  is the rotor radius which 
determines the size of wind turbine in (m), and 𝐶𝑝 is the power 

coefficient and calculated using the model proposed in [9]. 

PV panel power output is calculated by the following:  

 𝑃𝑃𝑉 = 𝐼𝐴𝑃𝑉𝜂𝑃𝑉  () 

where, 𝐼 is solar irradiance, 𝐴𝑃𝑉 is the total area of PV panels 
and its size parameter in (m2), and 𝜂𝑃𝑉  is the overall 
efficiency. 

The size of the battery power bank is calculated by the total 
battery capacity in (Ah) with a unit voltage of (24 V). The 
mathematical models of charging and discharging process 
used in this work is presented in [10]. The size of diesel 
generator, fuel cell, and water electrolyser are based on their 
nominal power in (W) [10-12]. 

Therefore, the design vector 𝑋⃗  which contains all size 
parameters of HRES components: wind turbine rotor radius 
(𝑅𝑊𝑇 ), PV panel area (𝐴𝑃𝑉 ,), Battery power bank capacity 
( 𝐶𝐵 ), diesel generator nominal power ( 𝑃𝐷,𝑛𝑜𝑚 ), fuel cell 

nominal power ( 𝑃𝑓𝑐,𝑛𝑜𝑚 ), and water electrolyser nominal 

power ( 𝑃𝑒𝑙𝑒𝑐,,𝑛𝑜𝑚 ). The design vector can be express 

mathematically as the following:  

 𝑋⃗ = {𝑅𝑊𝑇 , 𝐴𝑃𝑉 , 𝐶𝐵 , 𝑃𝐷,𝑛𝑜𝑚, 𝑃𝑓𝑐,𝑛𝑜𝑚, 𝑃𝑒𝑙𝑒𝑐,,𝑛𝑜𝑚}   () 

The candidate HRES is evaluated by some economic (𝑌⃗⃗1), 

technical (𝑌⃗⃗2), and environmental (𝑌⃗⃗3) measures as follows 
using the mathematical models proposed in [9, 10, 13-15]:  

 𝑌⃗⃗1(𝑋⃗) = {𝑇𝐿𝑆𝐶, 𝐿𝐶𝐸} () 



 𝑌⃗⃗2(𝑋⃗) = {𝑈𝑡 , 𝑀𝑇𝐵𝐹, 𝐸𝑒𝑥𝑐𝑒𝑠𝑠} () 

 𝑌⃗⃗3(𝑋⃗) = {𝐶𝑂2, 𝑝} () 

where, 𝑇𝐿𝑆𝐶 , 𝐿𝐶𝐸, and 𝑀𝑇𝐵𝐹  stand for total lifespan cost, 
levelised cost of energy, and mean time between failures 
respectively, 𝑈𝑡  is total unmet load, 𝑃𝑒𝑥𝑐𝑒𝑠𝑠  is net excess 
energy,  𝐶𝑂2  is carbon dioxide emissions, 𝑝  is renewable 
energy penetration rate. 

Now, the optimisation problem can be formulated using 
equations (3) to (6) as the following:  

 𝑚𝑖𝑛/ 𝑚𝑎𝑥 𝑦𝑗 ;  𝑦𝑗 ∈  𝑌⃗⃗ () 

 𝑠. 𝑡.  

 𝑌⃗⃗𝑎 ≤ 𝑌⃗⃗𝑖 ≤ 𝑌⃗⃗𝑏;   𝑌⃗⃗𝑖  ⊆  𝑌⃗⃗ − {𝑌𝑗} () 

 𝑌⃗⃗ = 𝑌⃗⃗1 ∪  𝑌⃗⃗2 ∪ 𝑌⃗⃗3 () 

 𝑋⃗𝑙 ≤ 𝑋⃗ ≤ 𝑋⃗𝑢 () 

where, 𝑌𝑗  is a desired objective of optimization, one of system 

quality parameters of vector 𝑌⃗⃗, subjected to some constraints 

𝑌⃗⃗𝑖, with the design space limits 𝑋⃗𝑢 and 𝑋⃗𝑙 (i.e. the upper and 
lower allowable size of components respectively).  

III. ENERGY DISPATCH STRATEGY 

This section explains the flow of energy model used for 
each candidate system obtained. The components of a 
candidate HRES generated by the algorithm used to utilised 
renewable energy (i.e. solar and /or wind) given by the 
meteorological data, such as the data given in Fig. 1 and Fig. 
2, to satisfies a given demand load (Fig. 3). 

Due to intermittent nature of solar irradiance and wind 
speed, the operation duration can be divided into two 
categories: energy surplus periods and energy deficit periods. 
During energy surplus periods, the excess energy is stored in 
the battery bank till fully charged. Then, hydrogen is 
generated using water electrolyser to full capacity. After that, 
any further excess energy available is dumped to maintain the 
power balance of the system. 

Fig. 1. Hourly averaged wind speed of typical seasonal days. 

When the renewable power produced by the primary 
supply is less than the demand load (energy deficit period), 
energy is drawn from the battery bank first then hydrogen 
storage via fuel cell. If the two storage systems failed to satisfy 
the demand load, diesel generator is dispatched at its nominal 
power where its excess energy whenever available is stored in 
the available storage systems. 

IV. ANT COLONY OPTIMISATION ALGORITHM  

Ant colony algorithm was introduced by Dorigo initially 
to solve the classical optimisation problem (travel salesman 
problem) [16]. While the search method can simply be applied 
to discrete domain optimisation problem, extending the 
algorithm to continuous domain problem is open ended 
approach. 

In this work, the proposed optimisation algorithm used to 
solve the HRES size and configuration optimisation problem 
is based on Gaussian distribution for new solution generation 
and roulette wheel principle for the probabilistic path 
selection. 

Ant colony-based optimisation algorithm do the 
following:  

• Step 1: Generate number of feasible solution equal to 
the number of ants n. The pheromone distribution is 
assumed to be normally distributed in the search space 
(pheromone initiation). 

• Step 2: Calculate the cost of 𝑘 th solution as the 
following: 

 𝐶𝑘 = 𝑓(𝑦𝑗) () 

• Step 3: Calculate the pheromone values of 𝑘th solution 
by the following: 

 𝜏𝑘 = {
𝐶  ; 𝑚𝑎𝑥 𝐶
1

𝐶
 ; 𝑚𝑖𝑛 𝐶

}   () 

• Step 4: Calculate the probability associated to each 
solution by the following:  

 𝑝𝑘 =
𝜏𝑘

∑ 𝜏𝑘
𝑁
𝑘=1

  () 
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Fig. 2. Hourly averaged solar irradiance of typical seasonal days. 

Fig. 3. Hourly averaged demand load of typical seasonal day. 

 

where, 𝑝𝑘 is the probability of choosing 𝑋⃗𝑘. 

• Step 5: Update the heuristic set 𝑆  of the colony as 
follows: 

 

 𝑠𝑘⃗⃗ ⃗⃗ = (𝑋⃗𝑘 , 𝑝𝑘) ; 𝑘 = 1, … . , 𝑁 () 

 𝑆 = [𝑠 ]𝑁𝑥𝑛+1 () 

where, 𝑁 is the number of feasible solution and 𝑛 is 

size of 𝑋⃗. 

• Step 6: If termination condition is met, stop. 

• Step 7: Apply pheromone evaporation: 

 𝜏𝑘 = {
𝜏𝑘   ;  𝜏𝑘 > 𝜏𝑚+1

0  ;  𝜏𝑘 ≤ 𝜏𝑚+1
} ; 𝜏𝑚+1 < 𝜏𝑖  ; 𝑖 = 1, … , 𝑚 () 

 

 

 

• Step 8: Select 𝑠𝑘⃗⃗ ⃗⃗  based on 𝑝𝑘. 

• Step 9: Generate the new solution elements 𝑥𝑖𝑘 for 𝑖 =
1, … , 𝑛 based on Gaussian distribution as following: 

 𝜇𝑖𝑘 = 𝑠𝑖𝑘  () 

 𝜎𝑖𝑘 = √∑ (𝑠𝑖𝑘 −𝜇𝑖𝑘)2𝑁
𝑘=1

𝑁
 () 

 𝑓(𝑥𝑖𝑘 , 𝜇𝑖𝑘 , 𝜎𝑖𝑘) =
1

𝜎𝑖𝑘√2𝜋
𝑒

−(𝑥𝑖𝑘−𝜇𝑖𝑘)2

2𝜎𝑖𝑘
2

 () 

• Step 10: evaluate the new generated solutions 𝑋⃗𝑘  if 
feasible go back to step 2. 

V. CASE STUDIES  

There are three scenarios presented in this section where 
each optimised three times with different number of agents to 
test the sensitivity of the proposed algorithm towards the 
number of agents used.
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Some technical and economic parameters are assumed 
constant during HRES lifespan of 20 years of operation. 
They are explicitly listed below.  

The overall efficiencies of wind turbine, PV panel, fuel 
cell, and electrolyser are fixed at 0.9, 0.14, 0.47, and 0.74, 
respectively. The charging efficiency of the battery is 0.9 
whereas its discharging efficiency is assumed to be higher 
by 0.05. The battery self-discharge rate is 0.002.  

The capital cost of wind turbine used in the economic 
assessment is $480 per meter squared of rotor area, the cost 
of one meter squared of PV panel is $840, and the cost of 40 
Ah battery unit capacity is $1.5. The capital costs of diesel, 
fuel cell, and electrolyser are 0.4, 4.08, and 2 US dollars per 
unit nominal power, respectively. The O&M costs are 
calculated by a fraction of the capital costs where 0.03 is 
assumed for the wind turbine, 0.01 is for the PV panel and 
the battery,0.15 is for the diesel generator, and 0.1 is for the 
fuel cell and the electrolyser. Likewise, the installation costs 
for wind turbine and PV panel, respectively, are equal to 0.2, 
and 0.4 of their capital costs. The rest of the components are 
assumed to be plug and play models (i.e. there are no 
installation costs associated with battery, diesel generator, 
fuel cell, and electrolyser). Also, the replacement costs are 
considered in these case studies. As a matter of fact, the 
replacement costs depend on the nominal life of each 
component in the system. Wind turbine and PV panel 
lifespan are assumed 25 years. The lifespan of the battery is 
4 years at 0.5 DoD. The nominal life of diesel generator, fuel 
cell, and the electrolyser are assumed based on hours of 
operation which are 10000, 5000, 60000 hours, 
respectively. The price of a litre of diesel is $1. The real 

discount rate used in this study is 0.04.  These parameters 
mentioned above are used in all case studies presented in 
this work. 

The first case (CS1) is performed to optimised HRES for 
the local solar irradiance and wind speed profiles given in 
Fig. 1 and Fig. 2 respectively to serve the demand load given 
in Fig. 3. The second scenario (CS2) assumes that the solar 
irradiance is lower than the given values by 50%. This 
assumption tests the response of the optimisation algorithm 
towards the change of input data. In the last case (CS3) more 
constraints are imposed on the optimisation process. The 
three optimisation cases are summarised in TABLE I, 
TABLE II, and TABLE III. 

The results of the optimisation using the proposed ACO 
and MOHRES’s GA are presented in TABLE IV, and 
TABLE V, respectively.  

The optimum configuration for CS1 conditions is PV-
battery providing that the costs of PV system is the lowest 
among all power suppliers. Due to limitations in solar 
energy resources imposed by the designer, hybrid PV-
diesel-battery system is the optimum solution complies with 
the reliability constraint. With two reliability and 
environmental constraints involved, Wind-PV-Diesel-
Battery system is the optimum system configuration. 
Hydrogen-based storage components are most expensive 
components and not expected to be within the optimum 
solutions since the seasonal demand variation is very small 
and battery self-discharge rate is acceptable compared with 
Hydrogen-based storage components’ costs. 

TABLE I.  OPTIMISATION FORMULATION SUMMARY OF CS1. 

Case Study 
Problem 

Formulation a 
Design variables Number of agents  

CS1 

1 
min 𝐿𝐶𝐸 

s. t. 

𝑈𝑡 = 0 

𝑋⃗𝑙 = {0, 0, 0, 0, 0,0} 

𝑋⃗𝑢 = {𝑅𝑊𝑇
𝑢 , 𝐴𝑃𝑉

𝑢 , 𝑛𝐵
𝑢 , 𝑃𝐷,𝑛𝑜𝑚

𝑢 , 𝑃𝐹𝐶,𝑛𝑜𝑚
𝑢 , 𝑃𝐸𝐿,𝑛𝑜𝑚

𝑢 } 

 
* Wind speed, solar irradiance, , and demand load as given in Fig. 1, 

Fig. 2, and Fig. 3, respectively.  

𝑚 = 20 

2 𝑚 = 50 

3 𝑚 = 100 

a. maximum iteration = 100. Termination condition: Cav – Cmin = 0,0001. Maximum size vector is calculated based on demand peak. 

TABLE II.  OPTIMISATION FORMULATION SUMMARY OF CS2. 

Case Study 
Problem 

Formulation b 
Design variables Number of agents  

CS2 

1 

min 𝐿𝐶𝐸 

s. t. 

𝑈𝑡 = 0 

𝑋⃗𝑙 = {0, 0, 0, 0, 0,0} 

𝑋⃗𝑢 = {𝑅𝑊𝑇
𝑢 , 𝐴𝑃𝑉

𝑢 , 𝑛𝐵
𝑢 , 𝑃𝐷,𝑛𝑜𝑚

𝑢 , 𝑃𝐹𝐶,𝑛𝑜𝑚
𝑢 , 𝑃𝐸𝐿,𝑛𝑜𝑚

𝑢 } 

 

*50% less Solar irradiance than given in Fig. 2. 
*Wind speed and demand load as given in Fig. 1 and Fig. 3, 

respectively. 

𝑚 = 20 

2 𝑚 = 50 

3 𝑚 = 100 

b. maximum iteration = 100. Termination condition: Cav – Cmin = 0,0001. Maximum size vector is calculated based on demand peak. 

TABLE III.  OPTIMISATION FORMULATION SUMMARY OF CS3. 

Case Study 
Problem 

Formulation c 
Design variables Number of agents  

CS3 

1 
min 𝐿𝐶𝐸 

s. t. 

𝑈𝑡 = 0 

𝐶𝑂2 ≤ 1000 kg 

𝑋⃗𝑙 = {0, 0, 0, 0, 0,0} 

𝑋⃗𝑢 = {𝑅𝑊𝑇
𝑢 , 𝐴𝑃𝑉

𝑢 , 𝑛𝐵
𝑢 , 𝑃𝐷,𝑛𝑜𝑚

𝑢 , 𝑃𝐹𝐶,𝑛𝑜𝑚
𝑢 , 𝑃𝐸𝐿,𝑛𝑜𝑚

𝑢 } 

 

*50% less Solar irradiance than given in Fig. 2. 

*Wind speed and demand load as given in Fig. 1 and Fig. 3, 
respectively. 

𝑚 = 20 

2 𝑚 = 50 

3 𝑚 = 100 

c. maximum iteration = 100. Termination condition: Cav – Cmin = 0,0001. Maximum size vector is calculated based on demand peak. 



TABLE IV.  OPTIMISATION RESULTS FOR CASE STUDY CS1, CS2, AND CS3 USING ACO. 

 

TABLE V.  OPTIMISATION RESULTS FOR CASE STUDY CS1, CS2, AND CS3 USING GA*. 

8 The crossover and mutation parameters are 0,3 and 0,9 respectively Population size = 100.  Number of generations = 100.

 

Fig. 4. Search performance of proposed ant colony algorithm of (a) 

CS1.1, (b) CS2.1, and (c) CS3.1. 

 

The small variation in the size of the system is due to the 
stochastic nature of search process and round up process 
involved in the simulation. However, these variances are not 
significant with respect to the objective function. The search 
performance of the proposed algorithm is shown in Fig.4. 

VI. DISCUSSION 

For the first case study scenario (CS1), the algorithm 
converges to the optimum solution before reaching the 
maximum iteration with no change with respect to number 
of agents increase. This is expected since PV system is 
considered the most economic system among all available 
power supply systems in this optimisation. In CS2, the 
maximum number of PV panels is insufficient to produce 
enough energy, the optimum solution is in another area in 
the design space where hybrid PV-Diesel system 
configuration exists. This is true since diesel generator is 
considered the second cheapest system. Due to CO2 
emissions constraint in CS3, wind energy is utilised due to 
insufficient PV power and limitations in diesel generator 
power. 

Although the algorithm is able to converge to the 
optimum configuration, it is not necessarily that it finds the 
optimum size of the system since the termination is caused 
by reaching maximum iteration allowable by the designer 
(see Fig. 4.b and Fig. 4.c) which does not guarantee that the 
algorithm convergence is mature. In other words, although 
the algorithm is less sensitive to number of agent (m), a 
greater number of iterations are required as the optimisation 
problem complexity increases.   

Comparing the results with those obtained by GA one 
may argue that better solutions can be obtained by GA by 
tuning the search parameters population size, number of 
generations, and crossover and mutation probabilities. 
While true, the results show that the performance of ACO 
algorithm is at least comparable with that of GA with less 
user intervention and burden of tuning search parameters.    

 𝑿⃗⃗⃗ 𝒀⃗⃗⃗ 

Case 

Study 

𝑹𝑾𝑻 

(𝒎) 

𝑨𝑷𝑽 

(𝒎𝟐) 

𝑪𝑩 

(𝑨𝒉) 

𝑷𝑫,𝒏𝒐𝒎 

(𝑾) 

𝑷𝑭𝑪,𝒏𝒐𝒎 

(𝑾) 

𝑷𝑬𝑳,𝒏𝒐𝒎 

(𝑾) 

𝑻𝑳𝑺𝑪  
($) 

𝑳𝑪𝑬 

(₵/𝒌𝑾𝒉) 

𝑼𝒕 

(𝒌𝑾) 

𝑴𝑻𝑩𝑭  
(𝒉) 

𝑬𝒆𝒙𝒄𝒆𝒔𝒔  
(𝒌𝑾𝒉) 

𝑪𝑶𝟐  
(𝒌𝒈) 

𝒑 

(%) 

CS1.1 0 281 8320 0 0 0 174740 22.77 0 8760.0 13829 0 138.17 

CS1.2 0 280 8320 0 0 0 174360 22.72 0 8760.0 13608 0 137.68 

CS1.3 0 280 8320 0 0 0 174360 22.72 0 8760.0 13608 0 137.68 

CS2.1 0 443 8160 7800 0 0 278720 36.32 0 8760.0 3163 3135 108.92 

CS2.2 0 448 8160 6800 0 0 276390 36.02 0 8760.0 3586 2733 110.15 

CS2.3 0 444 8400 3600 0 0 267760 34.89 0 8760.0 3041 2028 109.16 

CS3.1 3.0 448 6880 3100 0 0 308890 40.25 0 8760.0 11581 750 127.99 

CS3.2 2.8 448 6960 5000 0 0 307590 40.08 0 8760.0 10169 807 125.54 

CS3.3 3.1 448 6800 3500 0 0 311700 40.62 0 8760.0 12384 565 129.29 

 𝑿⃗⃗⃗ 𝒀⃗⃗⃗ 

Case 

Study 

𝑹𝑾𝑻 

(𝒎) 

𝑨𝑷𝑽 

(𝒎𝟐) 

𝑪𝑩 

(𝑨𝒉) 

𝑷𝑫,𝒏𝒐𝒎 

(𝑾) 

𝑷𝑭𝑪,𝒏𝒐𝒎 

(𝑾) 

𝑷𝑬𝑳,𝒏𝒐𝒎 

(𝑾) 

𝑻𝑳𝑺𝑪  
($) 

𝑳𝑪𝑬 

(₵/𝒌𝑾𝒉) 

𝑼𝒕 

(𝒌𝑾) 

𝑴𝑻𝑩𝑭  
(𝒉) 

𝑬𝒆𝒙𝒄𝒆𝒔𝒔  
(𝒌𝑾) 

𝑪𝑶𝟐  
(𝒌𝒈) 

𝒑 

(%) 

CS1.3 0 284 11360 0 0 0 183090 23.85 0 8760.0 13587 0 139.0 

CS2.3 0 447 9360 7100 0 0 282900 36.87 0 8760.0 1871 2292 109.90 

CS3.3 3.5 439 6400 4900 0 0 324240 42.25 0 8760.0 14641 791 132.80 

 (a)  

 (b)  

 (c)  



VII. CONCLUSION 

Optimum size and configuration of HRES are obtained 
by the proposed ACO algorithm. The sensitivity towards the 
number of agents used in the optimisation is insignificant. 
The search performance of the proposed algorithm shows 
promising results with minimal user intervention. 
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