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Abstract
Seeking efficient solutions to nonlinear boundary value problems is a crucial challenge in the mathematical modelling of
many physical phenomena. A well-known example of this is solving the Biharmonic equation relating to numerous problems
in fluid and solid mechanics. One must note that, in general, it is challenging to solve such boundary value problems due to
the higher-order partial derivatives in the differential operators. An artificial neural network is thought to be an intelligent
system that learns by example. Therefore, a well-posed mathematical problem can be solved using such a system. This paper
describes a mesh free method based on a suitably crafted deep neural network architecture to solve a class of well-posed
nonlinear boundary value problems. We show how a suitable deep neural network architecture can be constructed and trained
to satisfy the associated differential operators and the boundary conditions of the nonlinear problem. To show the accuracy
of our method, we have tested the solutions arising from our method against known solutions of selected boundary value
problems, e.g., comparison of the solution of Biharmonic equation arising from our convolutional neural network subject
to the chosen boundary conditions with the corresponding analytical/numerical solutions. Furthermore, we demonstrate the
accuracy, efficiency, and applicability of our method by solving the well known thin plate problem and the Navier-Stokes
equation.

Keywords Artificial neural networks · Biharmonic equation · Boundary value problems · Von-Kármán equation ·
Navier-Stokes equation · Mesh free solutions

1 Introduction

Artificial neural networks (ANNs) can be utilised to create
suitable tools to solve large-scale computational problems
[2, 37]. ANNs involve the computational inference of simu-
lated neuronal units, where every neuron has a real-valued
input. Multiplying these units results in the corresponding
neuronal coefficients. Then, using the results, a bias term
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is calculated. Finally, an investigating function, known as
the activation function, is needed to determine a real-valued
output.

Applications of ANNs are found in almost every field of
computer science and engineering [31]. Networks can learn
and store complex mapping relations of the input-output
models, which are highly useful. Applications of ANNs, for
example, appear to be numerous in the domain of health-
care. These include automated diagnosis of congestive heart
failure using ECG signals [2], generating quantitative com-
puted tomography reports for the diagnosis of pulmonary
tuberculosis [25] and finding minute mammographic differ-
ences for the diagnosis of certain types of cancers [16].

Similarly, ANN architectures enhanced with backprop-
agation have recently been prevalent in solving problems
that have been considered very challenging in the past. For
example, Jha et al. [20] have proposed a deep learning
model for designing a visual question answering system.
This qualitative study shows how one might train a sin-
gle but fast convolutional neural network (CNN) model by
modifying weights in the parameter prediction layers. In
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[29], the authors discuss a study related to the sclera recog-
nition system using CNNs. This CNN framework is formed
using four major convolutional units linked with the corre-
sponding convolutional layers. This is a self-learning model
where the output of the first layer is fed to the next so that
the model is better trained to provide efficient results. Sim-
ilarly, a multi-layer feedforward neural network for internet
traffic classification was proposed in [30]. They have used
a model with four hidden layers for handling large amounts
of imbalanced data.

Thus, recently, ANNs have shown great promise in
solving many challenging problems in applied mathematics
and computing. In this sense, several ways to solve partial
differential equations (PDEs) using feedforward neural
networks by substituting approximate solutions into the
corresponding differential operator [22, 38] have been
proposed. For example, Abdeljaber et al. [1] studied
an interesting active vibration problem of cantilevered
beam induced by a pulse concentrated load using an
ANN architecture. Consequently, they proposed a novel
methodology for the active control of flexible cantilever
plates using piezoelectric sensor/actuator pairs. Similarly,
Jafari et al. [18] solved a fuzzy differential equation using
a feedforward neural network with three hidden layers.
Various other differential equations have been solved using
the ANN architectures, e.g., [10, 11, 34, 35]. However,
much of these recent problems solved in the area of PDEs
and boundary value problems are of first order belonging to
the linear domain. Thus, the resulting optimisation problem
solved within the ANN architecture is constrained, making
the application domain rather limited.

The challenge we address in this paper is that we
propose a general ANN architecture for solving a broad
range of nonlinear boundary value problems. For this
purpose, we utilise a deep neural network that can
learn patterns from the data [27] using trial solutions
as input during the learning phase. Here, we solve an
unconstrained minimisation problem instead of solving the
traditional forms of constrained minimisation problems
[14]. Moreover, the method proposed here is free from
meshes, which is a considerable advantage since meshes
can be infeasible and costly when solving PDES in higher
dimensions [26]. Here, the convolutional neural network
replaces the mesh formulation where trial solutions help
to train the network. The first part of the sample data
is the necessary boundary conditions of the PDES, while
the second part consists of a feedforward neural system
containing flexible parameters or weights, giving rise to
the solution [9, 23]. Thus, the approximate trial solution
provides precision-controlled coefficients without the need
for domain discretisation.

The work we describe here is novel in that we
demonstrate that an ANN-based nonlinear machine learning
model is used to solve general nonlinear boundary value
problems. To our knowledge, this is the first time a
general ANN-based solution is proposed for such boundary
value problems with diverse applications in mathematics,
physics and engineering. Specifically, in this work, we
show that neural networks can learn accurately about
the solution of PDEs, such as the Poisson’s equation
and the Biharmonic equation, even when such equations
are solved in complicated domains. Notably, one can
utilise this approach to solve PDEs arising from boundary
value problems without worrying about creating and
manipulating complex numerical meshes. We demonstrate
the efficiency and superiority of the proposed ANN-
based method over commonly utilised numerical methods
such as the finite difference and the finite element
methods.

The remainder of the paper is structured as follows. In
Section 2, we introduce the proposed ANN architecture
for solving nonlinear boundary value problems. Subse-
quently, in that section, we discuss the methodology and
provide experimental validation of the proposed method. In
Section 3, we provide examples showing the application of
the proposed method. More specifically, we solve the Von-
Kármán and the Navier-Stokes equation subject to given
boundary conditions. Finally, in Section 4, we summarise
and conclude the paper.

2 The proposed network architecture

The neural network architecture we have propose for
obtaining mesh free solutions of nonlinear boundary
value problems is inspired by deep and fully connected
feedforward neural networks [6]. The ANN is a map
between the input and output of the system, which can be
linear or nonlinear [17]. The resulting output is a linear
activation. Thus, the ANN defines a map such that Rn →
Rn. The system forming the initial/boundary value problem
describes this map. In some cases, the learning process
of the multi-layer network can be time-consuming and ill-
conditioned. An increasing number of input parameters and
proper error minimisation techniques can be useful to cope
with such difficulties. The ANN we consider here consists
of n + 1 layers with 0 ≤ li ≤ l where layer 0 is the input
layer and layer l is the output. The activation functions in
the hidden layers can be of general form [36], e.g., sigmoids,
rectified linear units, or hyperbolic tangents. For this work,
unless otherwise stated, we use sigmoids in the hidden
layers.
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2.1 A general formulation for solving boundary
value problems

A general form of the nonlinear boundary value problem
considered here can be formulated such that:

F(x, u(x),�u(x),�2u(x), ..,�mu(x)) = g̃(x), x ∈ D,

(1)

subject to certain boundary conditions, where x =
(x1, x2, .., xn) ∈ Rn is an independent variable vector over
the domain, D ⊂ Rn, m = {1, 2, ..., n} is the order of
boundary value problem, g̃(x) is the source term and u(x)
is an unknown solution. The function F is considered as
non-singular, and all the partial derivatives and higher order
derivatives in terms of {x, u,�u} are assumed to be well
defined. The finite domain in the n-dimensional space for
the independent variables is discretised with a unit h such
that:

xla = xl0 + a(l)h, xla ∈ D, (2)

where a(l) = a, l = {1, 2, .., n} is the discrete index
vector with each of the components representing the
discrete coordinate for the individual variables xl and
xl0 representing the initial values. Hence, the discretised
boundary value problem becomes:

Fla(xla, u(xla),�u(xla),�2u(xla), ..,�mu(xla)) = g̃(xla).

(3)

To obtain a numerical solution of the boundary value
problem, the following method is adopted, which assumes
the grid discretisation of the domain D and the boundary
value problem is defined as described in (2) and (3),
respectively. The unknown function u is a two variable
entity, u = u(x), such that it is defined over a two-
dimensional domain D with the following trial solution:

uT (x) = A(x) + B(x)N(x, p), (4)

where the weights need to be learned by the neural network
N(x, p) to approximate the solution with A(x) along with
the boundary conditions and B(x) satisfying B(x)|δD ≡ 0.
Note that the choice of A and B are not restricted. There
are several ways to construct a solution and in [4] one could
find further details on how to approach it. The main problem
here is how to transform the differential equation into a
minimisation problem. Let us explain this further by way of
an example as follows.

2.2 Solving poisson’s equation

Let us consider the general form of Poisson’s equation to be
solved as:

F(x, u(x),�u(x),�2u(x)) = g̃(x), x ∈ D. (5)

Then, the minimisation problem will look like:

min
p

∑

x∈ D

F(x, u(x, p),�u(x,p),�2u(x,p)). (6)

At this stage, the problem is changed from a constrained to
an unconstrained optimisation problem since the boundary
conditions are satisfied by a trial solution already, which
makes it easier to handle. Now, the minimised error xla are
points in D such that:

E(p) =
∑

i

{
Δu(xia) − g̃(xia)

}2

.

Let us consider a multilayer perceptron with mp input units,
the hidden layer with ha activation function units (which is
a sigmoid in our case) and an output unit. For a given input
vector x, the output of the network is:

N =
ha∑

i=1

viσ (zi), zi =
mp∑

j=1

wijxj + hi,

where wij is the weight of the input unit, (j), vi is the weight
of the hidden unit, σ(z) is the sigmoid transfer function and
hi is the hidden unit i. Then it is straightforward to see that:

δkN

δxk
j

=
ha∑

i=1

viw
k
ij σ (zi)

(k),

where σ(zi)
(k) denotes the kth order derivative of the

sigmoid.
It is worth mentioning that when we compute our loss

function, various high order derivatives can be picked into
a collection, forming a single unknown function. This
collection of unknown functions can include the PDE
analytic solution and its derivatives up to the third order, or
it can also include only the PDE solution and its second-
order derivatives. However, in this case, the loss function is
written in the least square sense, bearing a resemblance to
the well known least square finite element method [21]. In
constructing the architecture, it is important to bear in mind
that the PDE solution and its derivatives share nearly the
same deep neural network. The structure of the model can be
seen in Fig. 1, where we need to update our boundary/trial
solution network before updating the main part of the neural
network.

2.3 Enabling learning in the neural network

The major challenge with multi-layer perceptron neural
networks is the difficulty in measuring the efficiency of
the weights within the hidden layers, whereby the aim is
to obtain the lowest performance error. Unfortunately, there
is no straightforward mechanism to measure the degree of
error within the hidden layers during the training. Hence, we
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Fig. 1 A structural diagram
showing the proposed
feedforward neural network. It
consists of an input layer, two or
more hidden layers, and an
output layer containing one or
more artificial neurons

propose the following backpropagation learning procedure
to be applied during the training phase. It includes:

– the set of sample/domain data points {xla},
– the value for the learning rate α and the criteria to

terminate the algorithm,
– and the methodology for updating weights and initial

values of the weights.

Note, here, to start with, we take random initial weights
lying between −0.5 to 0.5. There are n input nodes that
will become n + 1 total input nodes after including an extra
bias node. A single hidden layer consists of hn nodes with
sigmoid as the activation function. The single scalar output
from the previous information is then given by:

N(x, v, W̃ ) = vtσ (W̃ x̃), (7)

where v ∈ Rhn and W̃ ∈ Rhn×{n+1} are the specific neural
network parameters that replaces the general parameter p.
The input variable is x̃ = [xT , 1]T . The function σ : Rhn →
Rhn represents a component-wise activation function that
operates on the hidden layer. The overall task here is to
choose the discretised setting given in (2) and various
hidden nodes hn in a layer, and then optimise the (5) to get
an approximation of ut (x, p̃).

As shown in Fig. 1, a feed-forward neural network
comprises of an input layer, one or more hidden layers
and an output layer. Parameters are propagated from the
input layer to the output layer through the hidden layers.
The number of nodes in the hidden layer is determined
by the degree of polynomial considered. If an nth degree
polynomial is used, the number of nodes in the hidden layer
would be n + 1. The coefficients of the polynomial can be
used as initial weights from the input to the hidden layers
and from the hidden layers to the output layer. The number
of hidden layers, the number of neurons per layer and the
choice of activation functions are essential considerations
we have put in place while designing our neural network.

As the number of hidden layers increases, the network can
be thought of as an adaptive nonlinear dynamical system
composed of numerous neurons connected by various
attributes and capable of approximating a wide range of
complex functions. This is a key feature of the network
we have proposed here. Thus, since an ANN can be used
to accurately approximate very complicated functions, it
can be regarded as a learnable entity which in our case is
regarded as the solution of the PDE in question.

It is important to bear in mind that the number of network
parameters, including the weights of internode links and
biases associated with hidden and output nodes, should be
less than the size of the training set. Otherwise, the network
will be susceptible to over-fitting, which means that the
predictions on the training set will improve while the power
of generalisation will deteriorate. Regularisation methods
are used to control over-fitting. This is also a feature which
is inherent in the ANN proposed here.

Another feature we have taken onboard is the consider-
ation given in selecting the bias terms. Each neuron in the
ANN is supplied with a bias, including the output neurons
but excluding the input neurons. The connections between
neurons in subsequent layers are represented by matrices of
weights. We let bl

i denote the bias of neuron i in layer l.
The weight between neuron k in the layer l1 and neuron i in
the layer l is denoted by wl

ik . The activation function in the
layer l is denoted by σl , regardless of the type of activation.
We assume for simplicity that a single activation function is
used for each layer. The output from neuron i in the layer l

is denoted by yl
i .

Drawing parallels with a given numerical method for
the accuracy of the solution p̃ obtained, we assume the
grid and the hidden layer as the dominant choices in the
solution parameter space. Thus, conceptually, the accuracy
of the solution is expected to improve with a finer grid
and a larger hidden layer. However, this comes with a high
computational cost and also with the undesirable effect
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of potential over-fitting. Note, the aim here to achieve an
estimate of the solution with sufficient accuracy. Whilst we
do that, we must bear in mind to minimise the computational
cost and complexity of the problem itself. We explain our
ANN formulation further by way of another example, as
discussed below.

2.4 Solving the biharmonic equation

The Biharmonic operator or bi-Laplacian operator is used in
various formulations such as solving the airy stress problem,
incompressible fluid mechanics, and elasticity problems [5].
This operator also has applications in geometric design, e.g.,
[4, 19]. Here, we solve the two dimensional Biharmonic
equation in a rectangular domain together with mixed
boundary conditions using the method proposed in the
previous section. Consider the equation:

�4Φ(x) =
(

δ4

δx4
+ δ4

δx2δy2
+ δ4

δy4

)
�(x) = g̃(x),

Φ(x) = ψ1(x), x ∈ δΩ,

δΦ

δn
(x) = ψ2(x), x ∈ δΩ, (8)

where 
 = [a, b] × [c, d], � is a four times continuously
differentiable function and f, ψi, {i = 1, 2} are known
functions. In our case, δ

δn
refers to the normal derivative

where n is a unit vector orthogonal to the surface. In other
words, if n is the unit vector providing the direction, then
the derivative is given as,

δ�

δn
≡ �� · n.

If n = (1, 0), i.e., in the direction of x-axis, then we
just get �x , which is the standard partial derivative in the
direction of the x-axis. Similarly, if n = (0, 1)T , then we
get �y .

To find the appropriate trial solution, first, we write all
the boundary conditions as follows:

�(a, y) = ψ1(a, y) ,
δ�

δn
(a, y) = −ψ2(a, y),

�(b, y) = ψ1(b, y) ,
δ�

δn
(b, y) = ψ2(b, y),

�(x, c) = ψ1(x, c) ,
δ�

δn
(x, c) = −ψ2(x, c),

�(x, d) = ψ1(x, d) ,
δ�

δn
(x, d) = ψ2(x, d). (9)

The trial solution is written in a similar way as proposed
in the previous section such that:

�t(x, p) = φ1(x) + φ2(x, N(x, p)), (10)

where,

φ1(x) = �4
i=1Aix

i + �4
i=1Biy

i, (11)

and

φ2(x, N) = (x −a)2(x −b)2(y −c)2(y −d)2N(x, p), (12)

where φ2 vanishes on the boundary. Now, after substituting
(11) and (12) in (10) and then in (9), we can find the
unknown constants Ai and Bi , for i = {1, 2, 3, 4}. In
practice, we can generate a feasible trial solution satisfying
the boundary conditions since the determinant of the
coefficient matrix for the defined system is not identically
zero. Hence, the minimum error is written as:

E(p) =
∑

i

∑

j

{
|�4�(xla) − g̃(xla)|P

}1/P

,

i ∈ 1, 2, .., n, j ∈ 1, 2, .., m,

where xla are points in 
.

The formulation is further described in Algorithm 1.
To explain this further, we take a specific case of the
Biharmonic equation. We solve it and compare the solution
of our proposed neural network based solution with other
existing numerical methods such as finite element method
(FEM) and finite difference method (FDM) for (14) as
shown in Table 1. We consider the following nonlinear
Biharmonic equation with non-zero boundary conditions
such that:

Ψxxxx + 2�xxyy + �yyyy + �xx + 2�xy + �yy +
Ψx + �y + �2 = g̃(x, y), (13)
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Table 1 Comparison between standard numerical methods and our proposed method for the Biharmonic example

Method Finite Difference Method (FDM) Finite Element Method (FEM) Proposed Method (ANN)

Implementation Centred on the Taylor series Centred on the equivalent Centred on the trial solution

approximation of the DE with a governing integral relationship approximation of DE

uniformly distanced node grid using finite segments/elements satisfying BCs

Advantages • Mesh less • Easier for complex • Mesh less

• Easy to apply and irregular geometries • Less computational complexity

• No numerical integration • Symmetrical and sparse • Requires very low memory space

involved matrices • No numerical integration

• Low memory requirements • Accurate • Detection of complex nonlinear

relationships between dependent

and independent variables implicitly

Disadvantages • Not suitable for complex geometries • Large memory requirements • Gradient calculation

• Requires a very fine grid for for storage of the stiffness matrix • Training can be extensive

accuracy • Greater number of calculations • Requires trial solutions

• Time consuming • Mesh requirement

• Not suitable for infinite • Require complicated integral

problems relations

Computational 2.0421 sec 1.9204 sec 0.9615 sec

time for the (25×25 grid) (289 nodes and 512 triangular (25×25 grid)

Example meshgrid)

Computer i7-7600U CPU, 2.80 GHz i7-7600U CPU, 2.80 GHz i7-7600U CPU, 2.80 GHz

specifications 64 bit OS, 16 GB (RAM) 64 bit OS, 16 GB (RAM) 64 bit OS, 16 GB (RAM)

Program used MATLAB MATLAB Python (Jupyter)

where,

g̃(x) = ex(2π4 − 2π2 + 3) sin(πy) + e2x

−e2x cos(πy)2 + 3exπ cos(πy), (14)

with boundary conditions as follows,

�(x) = ex sin(πy), ∀ (x) ∈ [0, 1] × [0, 1],
δ�

δx
(x) = ex sin(πy), x = 0, 1,

δ�

δy
(x) = πex cos(πy), y = 0, 1.

Using the boundary conditions, the trial function is
constructed as:

�t(x) = ex sin(πy) + x2y2(x − 1)2(y − 1)2N(x, p)

The ANN solution and the analytical solution for the
chosen Biharmonic problem are shown in Figs. 2 and 3,
respectively. Figure 4 shows a detailed comparison of our
proposed approach with the FEM and FDM through the use
of L2 error. This error is calculated for different grid sizes
starting from 5 × 5 to 30 × 30.

For further comparison of the errors between various
methods compared here, we have also utilised the root-
mean-square (RMS) error:

Error =
√∑N

i=1(Ti − Ri)2

N
,

where N is the total number of nodes, Ti is the exact
solution, and Ri is the numerical solution at the particular

Fig. 2 The ANN solution for the example Biharmonic problem
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Fig. 3 The exact solution for the example Biharmonic problem

node i. The error values for the Biharmonic example is
shown in Table 2.

2.5 Effects of the hidden layers

An optimum number of hidden layers is an important and
critical requirement when deciding to create a chosen ANN
framework. The key idea is to efficiently calculate the
number of hidden units needed in a multi-layer network
to obtain a particular approximation. For this purpose, we
work out the number of independent variables that should
be modified to create an arbitrary smooth function for a
given order of approximation. At the same time, we also
work out the number of values that will be changed based on
the overall number of parameters in the network. Figure 5
shows the effect of the hidden layers as we change the
discretisation in the x and y directions.

Our experiments, for this example and for a number
of other examples, show that the use of 10 hidden layers
results in good agreement of the ANN-based solution when
compared with the exact and the numerical solutions. The
important point to be noted here is that as we increase the
number of hidden layers and discretisation across both axes,
the training time increases. Therefore, we suggest using the
number of hidden layers between 5 and 10, depending on
the training data and the complexity of the problem.

Fig. 4 L2 errors in the solutions of the example Biharmonic problem

Table 2 Comparison of the RMS error values in the solution of the
Biharmonic example

Hidden Layers FEM (RMS error) FDM (RMS error) ANN error

5 5e-08 2e-07 3e-08

10 5e-08 2e-07 7e-09

3 Examples

So far, we have discussed how the ANN for solving
the chosen boundary value can be setup. We have also
shown how the method can be utilised to solve simpler yet
general problems such as the Poisson’s and the Biharmonic
equation. In this section, we show how the ANN framework
discussed above can be used to solve two further boundary
value problems namely, the the Von-Kármán equation and
the Naiver-Stokes Equation. Both these problems are of
complex nature and of practical importance.

3.1 Solving the Von-Kármán equation

The analysis of large square and rectangular plate deflec-
tions is one of the most studied architectural problems. The
applications of this problem include the design of aviation
structures, ship hulls, bridges and spacecraft. For example,
the lateral loads on an aircraft are subjected to the thin plate
effects in the pressure cabin or lift and bending on the wings.

The generic Kirchhoff linear plate bending theory is
appropriate only for minor deflections that neglect mid-
surface strains and subsequent in-plane stresses. With
a relatively strong lateral deflection, the external force
increases. Both the plate’s central surface and the membrane
forces play a major role in moving the side loads. Initially,
the Von-Kármán’s extension to large deformations was
assisted through the pioneering work of Leitao [24]. In
film relationships, we must account for the nonlinear terms
for the sake of large flow. Consequently, we obtain two
nonlinear fourth-order cross-displacement equations for
which there is no analytic solution.

Consequently, to solve this problem, one has to resort to
numerical procedures. For example, the FDM technique was
used in [7] to examine large deflections of rectangular plates
subject to lateral pressure and edge loading combination.
In [12], the authors discuss some of the earlier final
component implementations for large deformations. In [33],
the stress-based finite element approach was introduced.
In [32], a boundary element method helps to analyse the
static, dynamic and buckling behaviour of thin plates.
These numerical methods can solve the Von-Kármán plate
equations and are more versatile than the rival semi-
analytical methods. However, they all come with high
computational costs.
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Fig. 5 The effect of the hidden
layers compared to levels of
domain discretisation

3.1.1 Problem formulation

Let us define a side-by-side general plate system composed
of non-homogeneous elastoplastic plates with varying
physical properties in the domain 
 ∈ R2 such that:


 = ∪k
i=1
i = {x | ak−1 ≤ x ≤ ak, 0 ≤ y ≤ b, a0 = 0},

where k > 0 is the number of plates that form the
system. The problem of bending of the system with the
discontinuous coefficient is written as:

Di

[
δ4�

δx4
+νi

δ4�

δy4
+ δ4�

δy4
+ νi

δ4�

δx4
+ 2(1 − νi)

δ4�

δx2δy2

]

= F(x), (15)

where � is the bending of the beam corresponding to

the vertically applied force F , Di = Eih
3

12(1−ν2
i )

are the

cylindrical stiffness coefficients of the plates of the system,
E, μ and h represents Young’s modulus, Poisson’s constant,
and the thickness of the beam (assumed to be uniform
throughout). Due to the plate boundaries, the boundary
conditions for the equilibrium condition are defined to be
the physical conditions such that it is assumed that the
clamped boundary and the boundary condition are simply
assisted. Though the plates in the system have different
cylindrical stiffness coefficients of Di , the coefficients of
(15) lead to discontinuity at the common bounds of the
system. Let us consider two plates with different properties,
i.e., i = 2 in a rectangular domain, 
 = {x =
(x, y) | − l1 ≤ x ≤ l1, 0 ≤ y ≤ w1}, as shown
in Fig. 6. The case considered is with the boundary at
x = 0. With that, the following functions can be easily
seen to satisfy the simply supported boundary condition,
the clamped boundary condition of 
 and the common
boundary, respectively, such that:

�t1(x) = − sin πx sin πy + x2y2(x + l1)
2(y − w1)

2N(x,p),

�t2(x) = −(1− cos 2πx)(1− cos 2πy)+x2y2(x−l2)
2(y−w1)

2N(x,p).

(16)

The function �(x) = {�t1 ∪ �t2} is geometrically
equivalent such that the plates are connected with an ideal
hinge on the common boundary points, and there is absolute
rigid support under the hinge. The function �(x) also
corresponds to the bending along the common boundary.
This means that the plates are composed of welding, and
there is absolute rigid support under the hinge.

To examine the effect of the Young’s modulus on the
bending of the system, we solve the problem using condi-
tions whereby E1 = 5000 kn/cm2, E2 = 3000 kn/cm2 and
E1 = 3000 kn/cm2andE2 = 5000 kn/cm2 and shown in
Fig. 7. The ANN-based solution is derived using 6 hidden
layers. A comparison is carried out with the FEM, which
shows an L2 error of 1.3413e − 08. The error between the
ANN solution and the analytical solution is 1.066e − 11,
with 7 hidden layers and a grid size of 20 × 20.

3.2 Solving the naiver-stokes equation

Here we present an efficient deep learning technique relying
on the ANN for the model reduction of the Navier-Stokes
Equation [3] for incompressible flow. Consider a two
dimensional Navier-Stokes Equation with the continuity and

Fig. 6 Plate system of two beams with load F
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Fig. 7 Numerical solution with E1 = 5000 and E2 = 3000 in the
top figure, E1 = 3000 and E2 = 5000 in the bottom figure, and
νi = 0.3, i = 1, 2

momentum elements describing an incompressible laminar
flow in the non-dimensional form such that:

−ν	v + (v · 	)v + �p = f (momentum equation),

� · (v) = 0 (continuity equation),

(17)

where 
 = {(x, y) = [a, b]× [c, d]} ∈ R2, v is the velocity
vector, p is pressure, ν is the viscosity, and f represents
body forces. We also introduce a stream function �(x, y)

such that it satisfies the continuity equation:

u = δ�(x, y)

δy
and v = −δ�(x, y)

δx
. (18)

Using the stream function from the (18), we can rewrite
the equation after eliminating the pressure term from the
momentum equations, leading to the vorticity transport
equation with two boundary conditions such that:

1

Re
	2� − δ�

δy
	δ�

δx
+ δ�

δy
	δ�

δy
= δf1

δy
− δf2

δx
. (19)

For this problem, we define the trial solution as:

�t(x) = (x(x−1)y(y−1))2+x2y2(x−1)2(y−1)2N(x, p).

In this example, we have divided the domain space [0, 1]2

to a 16 × 16 grid. Figure 8 shows the ANN solution of
the defined Naiver-stokes problem. The L2 error between

Fig. 8 Numerical velocity u and v, respectively

the FEM and the analytical solution is 1.213e − 07, and
that for the ANN solution (using 7 hidden layers) and the
corresponding analytic solution is 1.560e − 11.

4 Conclusions

In this paper, we discuss a method of solving nonlinear
boundary value problems. Our proposed approach relies on
the function approximation capabilities of the feedforward
neural networks. Thus, we have designed and trained
an ANN framework capable of solving general nonlinear
boundary value problems whereby the resulting solutions
are mesh free.

We can use the proposed method to solve general nonlin-
ear boundary value problems whose analytic solutions are
not readily available. That is a significant advantage of this
method. Other benefits of this method include its general-
isability for solving higher-order and nonlinear problems.
For example, in this paper, we have described how the ANN
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framework proposed can be utilised for solving the Navier–
Stokes equation [13, 15, 28] and the Von-Kármán equation
[8].

Generating numerical solutions of nonlinear boundary
value problems, especially for higher-order PDEs, is a
challenging task. However, the method proposed here
appears to be feasible to address such critical problems with
good agreement with the corresponding analytic solutions
and state of the art techniques for obtaining numerical
solutions. We show how it is feasible to set up the ANN
framework to incorporate the necessary initial/boundary
conditions for the chosen problem and optimise the chosen
ANN parameters as well as weights using trial functions.
The use of trial functions in the training process helps to
provide precision-controlled coefficients without the need
for complex domain discretisation. We have also examined
the performance of the network subject to different numbers
of hidden layers on the chosen ANN. According to our
studies, the number of hidden layers between 5 and 10
provides the optimum results.

From the studies we have described here, one can
conclude that there is great potential for the ANN
framework presented in this paper to be further studied
and extended. It will be useful to experiment with various
optimisation techniques to reduce the number of parameters
in the network. That will help in further optimising the
training process and computation of the solutions. It will
also be helpful to combine the proposed ANN framework
with other existing and pre-trained deep learning models so
that solving more complex boundary value problems can
be carried out accurately and efficiently. Finally, it will be
useful to extend the proposed ANN framework to solve
PDEs in very high dimensions, e.g., dimensions > 100.
Solving very high dimensional boundary value problems is
a highly challenging problem using the present state of the
art FEM and FDM based techniques.
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37. Tkáč M, Verner R (2016) Artificial neural networks in business:
two decades of research. Appl Soft Comput 38:788–804

38. Winovich N, Ramani K, Lin G (2019) Convpde-uq: convolutional
neural networks with quantified uncertainty for heterogeneous
elliptic partial differential equations on varied domains. J Comput
Phys 394:263–279

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Riya Aggarwal is a research
scholar at the University of
Newcastle, Australia. Her
research interests include the
development of algorithms for
the strain field reconstruction
measures using neutrons,
machine learning and data
analysis. She received her
BSc. (Mathematics) and Mas-
ters (Applied Mathematics)
from India in the year 2014
and 2016, respectively.

Hassan Ugail is the direc-
tor of the Centre for Visual
Computing in the Faculty of
Engineering and Informatics
at the University of Bradford,
UK. He has a first class BSc
Honours degree in Mathemat-
ics from King’s College Lon-
don and a PhD in the field
of geometric design from the
School of Mathematics at the
University of Leeds. Professor
Ugail’s research interests in-
clude computer based geomet-
ric and functional design, imag-
ing and machine learning.

Ravi Kumar Jha is a project
scientist at the Indian National
Centre for Ocean Information
Services (INCOIS), Hyder-
abad, India. His research
includes data analysis and
management, quality control
and visualisation. He works
in various fields of Applied
science and Applied Mathe-
matics. He has bachelors in
Mathematical Science and
a masters degree in Applied
Mathematics.

926


	A deep artificial neural network architecture...
	Abstract
	Introduction
	The proposed network architecture
	A general formulation for solving boundary value problems
	Solving poisson's equation
	Enabling learning in the neural network
	Solving the biharmonic equation
	Effects of the hidden layers

	Examples
	Solving the Von-Kármán equation
	Problem formulation

	Solving the naiver-stokes equation

	Conclusions
	Declarations
	References


