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ABSTRACT Gait is a unique non-invasive biometric form that can be utilized to effectively recognize
persons, even when they prove to be uncooperative. Computer-aided gait recognition systems usually use
image sequences without considering covariates like clothing and possessions of carrier bags whilst on
the move. Similarly, in gait recognition, there may exist unknown covariate conditions that may affect
the training and testing conditions for a given individual. Consequently, common techniques for gait
recognition and measurement require a degree of intervention leading to the introduction of unknown
covariate conditions, and hence this significantly limits the practical use of the present gait recognition and
analysis systems. To overcome these key issues, we propose a method of gait analysis accounting for both
known and unknown covariate conditions. For this purpose, we propose two methods, i.e., a Convolutional
Neural Network (CNN) based gait recognition and a discriminative features-based classification method
for unknown covariate conditions. The first method can handle known covariate conditions efficiently
while the second method focuses on identifying and selecting unique covariate invariant features from the
gallery and probe sequences. The feature set utilized here includes Local Binary Patterns (LBP), Histogram
of Oriented Gradients (HOG), and Haralick texture features. Furthermore, we utilize the Fisher Linear
Discriminant Analysis for dimensionality reduction and selecting the most discriminant features. Three
classifiers, namely Random Forest, Support Vector Machine (SVM), and Multilayer Perceptron are used
for gait recognition under strict unknown covariate conditions. We evaluated our results using CASIA and
OUR-ISIR datasets for both clothing and speed variations. As a result, we report that on average we obtain an
accuracy of 90.32% for the CASIA dataset with unknown covariates and similarly performed excellently on
the ISIR dataset. Therefore, our proposed method outperforms existing methods for gait recognition under
known and unknown covariate conditions.

INDEX TERMS Gait recognition, covariate conditions, discriminative feature learning, FLDA.

I. INTRODUCTION
Gait is a biometric trait that depicts and measures how people
move. Over the decades, gait analysis has been successfully
used in different domains, including biometrics and posture
analysis for healthcare applications. It has also been used
in human psychology where gait analysis using point lights
employed for recognition of emotional patterns. The same
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idea was extended and ultimately resulted in the development
of gait signatures through which the identification of individ-
uals can be performed [1]. Borrowing from this, computer
vision-based approaches have also used motion analysis and
human movement modeling for person identification [2].
In the early days of gait recognition, the focus was to iden-
tify and classify the different movement patterns such as
walking, jogging, and climbing. Gradually, the focus shifted
towards human identification and has become an active area
of research. As compared to other biometric traits such as
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FIGURE 1. The Samples GEI Sequences from CASIA and ISIR Dataset, the first row corresponds to CASIA GEI and
the second row corresponds to ISIR.

fingerprint and iris, gait recognition can work without the
cooperation of a person. Moreover, it can work without inter-
fering with a person’s activity. This makes gait more suitable
for different real-time applications like surveillance and long-
distance security [3], [4].

Existing techniques employed for gait analysis are divided
intomodel-based and appearance-basedmethods. The former
requires high-resolution videos whereas the latter can deal
with low-resolution imagery. Model-based approaches use
the parameters of the body, appearance-based approaches on
the other hand employ the features extracted directly from
image sequences of gait. The simplicity of appearance-based
methods and their robustness against noise make them more
suitable for real-world scenarios. Appearance-based methods
rely on silhouettes extracted from a gait sequence. Silhouettes
contain important information about the stance and shape of
the human body.

Gait representations used in appearance-based approaches
include frequency-domain features, chrono-gait images, fea-
tures extracted from silhouettes (Gait Energy Image (GEI)),
and Gabor GEIs [5]. GEI is popular and creates a single
grayscale image from the normalized binary frames over
a complete gait cycle and is not susceptible to segmenta-
tion errors [6]. It is reported that, in the absence of covari-
ates, direct matching with GEI templates exhibits excellent
results [7]. However, in a real-world scenario, the absence
of covariates is not always feasible, which makes gait recog-
nition a challenging task. A covariate is a condition when a
person appears with a carrying condition, i.e. bag or clothing
condition like a coat or long coat, and the system is trained
with only normal walk data. To handle this issue, various
techniques are used to capture discriminant information from
GEIs. One such scheme is proposed in [6], which uses Prin-
cipal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) for feature extraction. A similar approach is
adopted in () [8] where Discriminant Locally Linear Embed-
ding (DLLE) based framework is used for preserving the local
structure. However, the main drawback of appearance-based
approaches is that they are sensitive to covariate conditions.

The success of gait as a biometric is largely affected
due to covariate factors. Some of these factors are clothing,
camera viewpoint, carrying conditions, walking style, shoe
wear, and walking surface. Some of the examples of clothing

and carrying covariate conditions are shown in Figure 1.
Currently, most of the gait analysis applications use gait
sequences under normal conditions in the training phase and
must deal with gait sequences under variable covariate con-
ditions in the testing phase. Owing to this, the performance
of these methods for gait recognition under covariate con-
ditions remains unsatisfactory in real-world conditions. The
unsatisfactory performance is related to the changes in the
underlying representation caused by these conditions. It is
evident from Figure. 1 that major changes are seen in portions
of the representation that belong to non-moving regions. This
leads to the observation that dynamic information is more
important as compared to the static part of the representation.
When models are trained with covariate conditions and test-
ing is performed on similar covariate conditions, it is known
as known covariates. While on the other hand, when models
are trained only with simple GEI of a normal walk and tested
on different covariate conditions, it is known as unknown
covariate conditions.

GEI is a compact representation of a gait sequence rep-
resenting it in a single image. It is considered a good can-
didate to extract gait features. Under real-world conditions,
the covariate conditions are unknown for the gallery and
probe set. However, the known covariate conditions are rela-
tively easy to handle. From this line of research, we propose
two methods for gait recognition- one for known covariate
conditions and the second for unknown covariate conditions.
The first method only takes GEI as input and CNN is used
for gait recognition. The second method uses a unique set
of features extracted from the ROIs extracted from GEI,
which excludes clothing or carrying conditions. The feature
set includes Local Binary Patterns (LBP), Histogram of Ori-
ented Gradients (HOG), and Haralick texture features. Fisher
Linear Discriminant Analysis is used for dimensionality
reduction and selecting the most discriminant features. Three
classifiers- Random Forest, SVM, and Multilayer Perceptron
are used for gait recognition. The objective of this proposed
work is to extract discriminative features for unknown covari-
ate conditions. The two standard datasets CASIA and OUR-
ISIR are used to evaluate the performance of the proposed
work. There are different and complex covariate conditions
available in both these datasets, which include clothing and
speed variations. The experiments include an extensive set of
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covariate possibilities for both clothing and speed variation
to show the performance of the proposed work under diffi-
cult conditions. The results for both these datasets are good
and outperforms existing published literature on covariate-
based gait recognition. The proposed work has the following
contributions:

• A CNN based method to efficiently handle known
covariate conditions using only simple GEI

• A discriminative feature learning-based method to han-
dle unknown covariate conditions

• The extraction and selection of discriminative features
from ROIs to identify and select unique covariate invari-
ant features from the gallery and probe sequences

The rest of the paper is organized as follows. In Section 2 we
explain the related work, Section 3 presents the proposed
methodology, Section 4 presents the experiments and results
which is followed by a conclusion.

II. LITERATURE REVIEW
A. SPATIAL METRIC LEARNING BASED APPROACHES
These approaches learn a feature space from the origi-
nal appearance features, which provides resistance against
covariates and proves to be more robust. Methods in this
category can be further subdivided into whole-based and
part-based approaches [9]. In the whole-based approach,
to counter against covariates, holistic appearance features are
calculated in a discriminative space, an example of this is [5]
where LDA is applied on synthesized as well as real GEI
templates for the reduction in interclass variation to some
extent. The use of a similar approach was advocated in [10]
where an RSM framework is proposed to combine inductive
biases.

Part-based approaches on the other hand try to divide the
holistic appearance-based features into different body parts
to enhance features important for gait recognition. This is
an important aspect because variation in clothes and carry-
ing status affects only certain parts of a gait representation
leaving some of the other parts unaffected. The affected
parts are the reason for reduced accuracy. In [11] anatomical
knowledge is used, and the body is divided into eight sections.
To counter the effects of variations, different weights are
assigned to the unaffected and affected sections. A similar
strategy is proposed in [12] where the representation of the
human body is divided into equal parts and weights are
assigned to each part based on similar features extracted from
the gait.

B. INTENSITY TRANSFORMATION BASED APPROACHES
As the name suggests, intensity transformation changes the
value of the intensity of the gait feature so that it pro-
vides resilience against covariate conditions by providing
more discriminate values. This approach is exploited in [11]
where GEnI is calculated, by using the Shannon entropy
method, of the foreground probability of each pixel. GEnI is
used for encoding the randomness of each pixel in the gait

image within a complete gait cycle. This provides important
motion information, instead of the static information, about
the change in clothing and change in carrying status. Another
such approach known asMasked GEI is proposed in [12]. It is
yet another intensity transformation approach that by adopt-
ing a certain threshold value keeps the motion information at
its original value but it zero-pads the static information (most
background and foreground parts). Similarly [13] proposes
a so-called gait energy response function that changes the
intensities of the pixel thus eliminating the need for native
transformation. The concept of joint intensity transformation
is extended to include a pair of images instead of one image
in [14]. In this approach, a linear SVM based framework is
used to learn the intensitymetric alongwith the spatial metric.
The main issue with intensity transformation methods is the
use of linear optimization for independent transformations.

C. DEEP LEARNING APPROACHES
Deep learning-based approaches have gained popularity in
many applications including gait recognition [15]. A Convo-
lutional Neural Network (CNN) takes input from raw silhou-
ettes in each gait sequence. Temporal information along with
skeleton data is obtained from the silhouettes with the help
of deep graph learning in [16]. Another deep learning-based
method is the GEINet which is an eight-layer CNN obtained
through average silhouettes (GEI) [17]. They handled the gait
recognition as a person classification problem from the same
gaits. Similarly, [18] proposes multiple networks with pairs
of images (query and enrollment images) which compares
images at the start of the input layer. A comparison of input
and output architectures for gait recognition using CNN is
discussed in [19].

The proposed network compares two input images (GEIs)
and determines whether the images are of the same person or
not. To counter against multiple covariates an autoencoder is
proposed [20] which removes invariant gait features. Gener-
ative Adversarial Networks (GAN) have also been used for
handling variable covariate conditions in gait. GaitGAN [21]
is an adversarial network that is used to generate feature maps
removing covariates. The generation of motion features such
as optical flow is proposed in [22]. A deep neural network
is proposed which provides gait based gender identification
aided by clothing and carrying status [23].

III. PROPOSED METHODOLOGY
There are two different methods for cooperative (known
covariates) gait recognition and gait recognition under the
unknown covariate condition presented in Figure 2 and
Figure 3 respectively.

A. GAIT RECOGNITION WITH KNOWN COVARIATE
CONDITIONS
1) GATE ENERGY IMAGE (GEI)
By using the method proposed in [12] human silhouettes are
extracted from the given gait sequence.
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FIGURE 2. The overview of the proposed CNN based gait recognition under normal conditions.

FIGURE 3. The overview of the proposed gait recognition under covariate conditions.

All the images are processed by applying size normaliza-
tion and horizontal alignment. This is followed by estimation
of gait cycle segmentation done by estimation of gait fre-
quency and maximum entropy estimation technique. Finally,
Gait Energy Image (GEI) is computed as shown as samples
in Figure 1 through the following Equation 1,

GEI = G(x, y) =
1
T

∑T

t=1
I(x, y, t) (1)

where T is the total number of frames per gait cycle shown
in Figure 2, x and y are the pixel coordinate of the silhouette
image I shown in Figure 2 and t correspond to frame num-
ber in a gait cycle. High-intensity areas provide information
about the shape of the body and stance. Whereas the lower
intensity areas describe the movement while walking [12].

The higher intensity areas are known as static areas and lower
intensity ones are dynamic areas of a GEI. The dynamic
parts have the most important information of a GEI as they
are not susceptible to the change of human appearance by
clothing and carrying condition. Which is generally the com-
mon covariate conditions. Thus, the dynamic areas are most
important for human identification in the presence of variable
covariate conditions. The static area also provides useful
information for human identification (such as hairstyle, body
structure). However, they are susceptible to change in covari-
ate conditions.

2) CONVOLUTIONAL NEURAL NETWORKS (CNNS)
The grayscale GEI is given as an input with a 240∗240∗1
dimension to the first input layer as shown in Figure 4.
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FIGURE 4. The CNN architecture used for cooperative gait recognition process.

We have utilized a total of 10 layers of CNN model with four
convolutional layers. The weights of the convolutional filters
are initialized through ‘‘Xavier Initialization’’.

The default weight initialization method used in our net-
work is Glorot uniform initialization or ‘‘Xavier initializa-
tion’’ and these weights are optimized by the optimizer to best
classify the GEI of every subject. In our CNN architecture
shown in Figure 4, the filters are generated from the uniform
distribution of [-limit, limit], where the limit is,

Limit =

√
6

(fanin + fanout)
(2)

where fanin is the number of inputs to layer and fanout is the
number of outputs to layer as shown in Figure 4. Therefore,

W = [low = limit, high = limit, size = (fanin, fanout)].

The weights of the network are updated every iteration using
an input batch size of 4. The optimization algorithm for
optimizing weights is ‘‘Adam’’. Thus, the feature maps of
these 1-4 convo layers are 16, 32, 64, and 124, respectively.
These feature maps have resulted after a filter or kernel is
applied to convolve an image. In each of the convolutional
operation, a filter or kernel of size 3∗3 is applied with no zero
paddings. We have used the Leaky ReLU activation function
in our whole architecture shown in Figure 4, which is defined
as per equation, F (x) {x if x > 0 otherwise 0.01x.
In this proposed study, we use 0.05x instead of 0.01x.

To decrease spatial measurements of the input, we utilized the
max-pool with a 2×2 window size. The fully connected layer
essentially takes an info volume and outputs an n-dimensional
vector where n is the number of classes that the program
needs to browse. The last output equivalent to class labels
generated by these FC layers. The fundamental convo layer
implements filtration to the info images of 240 x 240 x 1.
As shown in Figure 4, the output is taken from the 1st convo
layer with all the filtration from the pooling layers sent to the
2nd convo layer as info and separated with 119 × 119 × 16
measurements. Essentially, the convolutional yield from the
subsequent layer is decreased through the pooling layer and
is associated with the bit size 58× 58× 32 in the 3rd convo
layer. The 4th convo layer includes 124 number of feature
maps of 28 × 28 × 64 dimensions. Besides with SoftMax

activation function, there are a total of 1024 neurons in this
FC layer. The final layer is the classification layer. This layer
uses SoftMax layers returned probabilities to each input to
authorize any of the manually privileged classes and calculate
the loss. The learning rate for CNN is 0.0001, the number of
epochs is 30, and the kernel size is 3∗3. The complete details
of network architecture are provided in Figure 4.

B. GAIT RECOGNITION UNDER UNKNOWN
COVARIATE CONDITION
1) REGION OF INTEREST (ROI) EXTRACTION
The covariate conditions are difficult to handle which makes
strict testing for gait recognition under unknown covari-
ate conditions extremely difficult. To handle this issue,
we extracted 2 ROIs from each GEI image to remove the
regions with covariate (bags, coats, etc.) as shown in Figure 3,
eachGEI image has twoROIs. The reason to choose twoROIs
is based on the regions that are least affected by clothing and
carrying conditions. The part of the human body which is
occluded by clothing or bag is removed in order to choose
only the discriminative features.

2) FEATURE EXTRACTION
As shown in Figure 3 after extraction of ROIs, features are
extracted using three different methods that are LBP, HOG,
and Haralick Texture. The features returned by all these three
methods from both ROIs are concatenated to a single feature
vector of a GEI image.

a: LOCAL BINARY PATTERNS (LBP)
The overall texture information of the image including the
spatial distribution is important, but the local texture may
contain important information that is extracted using LBP.
The technique is widely used and considered an efficient
technique for denoting local patterns. LBP tags the pixels so
that it can identify eight neighborhood pixels with respect to
the center value of the image window. Based on the threshold
value these pixels are assigned a binary number. In our case,
the central pixel of each ROI of GEI image is compared with
the neighboring pixels by using the following LBP equation
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as shown in Figure 3,

LBP(P,R) =
∑p−1

p=0
S
(
gp − gc

)
2p. (3)

In the above S(z) is the thresholding function, gc and gp are
the grey level values of the center and its neighbor’s pixels
respectively. P is the total number of neighbors whereas R is
the radius of the neighborhood.

b: HISTOGRAM OF ORIENTED GRADIENTS
It is observed recently that the performance of appearance-
based methods for gait recognition techniques can be
improved by applyingHOG.HOG is a technique that portrays
the direction of intensity gradients and it provides global
descriptors. The following equation is used to compute the
1st order of gradients which are applied to extract horizontal
and vertical magnitudes for each ROI of GEI image as shown
in Figure 3,

F_xdir = [-1 0 1] f _y dir [-1 0 1]T . (4)

The combination of these horizontal and vertical gradient
images is used to obtain gradient magnitude and orientation.
Based on pixel intensity in the gradient orientation, a bin
is selected, whereas the pixel intensity in gradient magni-
tude serves as the basis of the vote. This vote is cast by
every pixel of the ROI to compose HOG. A histogram of
gradients’ direction is calculated for every pixel for an ROI.
Their overall concentration is denoted as the HOG descriptor.
To account for illumination and contrast the values of each
ROI are normalized locally. This way the HOG descriptors
are created for every ROI. This research work used HOG
descriptors to characterize the shape and appearance of the
subjects based on the distribution of local intensity gradients
and directions.

c: HARALICK TEXTURE DESCRIPTOR
Haralick features consist of 14 statistical entities that are used
for indicating certain texture properties from P. These are
extracted and calculated at four directions by computing at
0o, 45o, 90o, and 135o using the GLCM based method [24].
The following equation is used for the calculation of px(g)
and py(v) where x and y are the columns and row coordinates
respectively of an entry in the co-occurrence matrix for each
ROI of GEI image as shown in Figure 3.

P =
p(g, v)∑Ng

g=1
∑Ng

v=1 p(g, v)
(5)

Px(g) =
∑Ng

v=1
p(g, v) and Py(v) =

∑Ng

g=1
p(g, v) (6)

Moreover, Px+y(i) which is the probability of co-occurrence
matrix coordinates sum to x+y is done through the following
equation in the Haralick feature extraction method shown
in Figure 3.

Px+y(r) =
∑Ng

g=1

∑Ng

v=1
p (g, v), where

r = g+ v with r = 2, 3.....2Ng (7)

We have considered only sum variance (fsv) in this research
work. For calculation of fsv, one needs to compute (fsa) which
is the sum average Haralick texture descriptor. This sum
average of each ROI is computed by the following equation
as shown in Figure 3.

fsa =
∑2Ng

r=2
rpx+y(r). (8)

Finally, the sum variance is calculated as,

fsv =
∑2Ng

r=2
(r − fsa)2px+y(r). (9)

3) FEATURE REDUCTION USING FISHER LINEAR
DISCRIMINANT ANALYSIS
The process of selecting the most discriminant features is
known as feature selection. The success of any machine
learning method is dependent on the selection of the most
discriminant features. We have incorporated the dimension-
ality reduction method for this purpose. Therefore, the single
feature vector of a very higher dimension of each GEI image
is passed through for feature reduction. This dimensionality
technique not only selects the most discriminant features it
also reduces the dimensions of feature space. In the proposed
approach we have incorporated FLDA for dimensionality
reduction. FLDA is a supervised dimensionality reduction
algorithm that uses class labels for the identification of
most discriminant features. On the contrary, the unsupervised
dimensionality reduction techniques such as PCA selects
only those features which suit class labels. The goal of FLDA
is a conversion from high dimension data to lower dimension
data through the calculation of scattered matrices between
and within-class labels. A transform matrix FLDA for the
reduction of features of each subject can be obtained through
the following Equation,

FLDA = argmaxw
|W T SBW |

|W T SWW |
. (10)

4) CLASSIFICATION
After feature extraction from each GEI image, three different
classifiers; Random Forest, Support Vector Machine, and
Multilayer Perceptron were used for gait recognition under
covariate conditions as shown in Figure 4 [25].

a: RANDOM FOREST
Random forest is one of the popular and supervised algo-
rithms used for both classification and regression purposes.
Its performance is very good as compared with other machine
learning classifiers. It uses the ensemble technique by creat-
ing many decision trees on different data samples and finds
the best solution by getting predictions of each decision tree.
For classification purposes, it uses two popular techniques,
Bagging, and random feature selection. In bagging, it takes
bootstrap samples from the training data and then builds the
trees. For each random tree, a process of top-down induction
is followed to favor the diverseness of the ensemble process,
and then by majority voting, a prediction is made. A part of
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the original features is taken to design each tree i-e n�N
where n is the subset of the complete feature set with size N.
Later on, a tree is built by splitting these features randomly at
each node. Each tree is of full-depth or the depth as required
by the problem, and once the tree is built then no pruning
process is followed. Then, in the end, a classification is made
by doing voting among predictions of different trees. So,
after the extraction of subject features from three different
methods is given to a random forest for classification as
shown in Figure 4. This proposed work uses default settings
for this paper.

b: MULTILAYER PERCEPTRON
Artificial neural networks are machine learning classifiers
that are designed to mimic the human brain. They have
a wider range of applications such as pattern recognition,
classification, and forecasting. Its architecture is formed by
making connections among different artificial neurons called
units or nodes. Each neuron carries some information in
the network. An artificial neuron model receives a vector of
X = (x1, x2 . . . , xn) of I input signals from an environment,
or any other artificial neurons followed by some computation
and activation functions to produce the results. They are
categorized into a single layer and multilayer perceptron.

A single-layer perceptron has only input that is connected
directly to the output layer while a multilayer perceptron has
input, output, and one or more hidden layers. A multi-layer
perceptron is a supervised machine learning algorithm, and it
learns by adjusting the connection weights after calculating
the error between model output and the expected result. The
training procedure of the classifier continues until there exists
a difference between an expected output and model output
and it stops when the error rate between model output and the
desired output is minimum or zero. This minimal difference
shows that models learn a good mapping between input and
desired output. Further, they are data-driven self-adaptive
methods and can model any real-world problem. In our pro-
posed work, we used a multi-layer perceptron-based ANN,
as a classifier to classify different subjects from the perspec-
tive of gait recognition as shown in Figure 4. The learning
rate used here is 0.0001, 2 hidden layers with 50 epochs.

c: SUPPORT VECTOR MACHINE (SVM)
Support vector machines are one of the other popular algo-
rithms used for both classification and regression challenges.
However, in most cases, it is used for classification purposes.
The classification of data points in the dataset is done by
finding a hyperplane in an N-dimensional space where N
is the number of features. The SVM focuses on finding a
hyperplane (an optimal hyperplane) that maximize the mar-
gins defined by support vectors where the margin is simply
the distance between support vectors. Support vectors are
essential training tuples that influence the orientation and
position of the hyperplane. The equation for hyperplane as

the set of points x satisfying for separating each subject,

f (x) = w.x + b = 0. (11)

Here W = {w1,w2 . . .wn} is a weight vector and b are a
scaler (bias). SVM can easily work with the input space of
high dimensional. For a non-linear dataset, in which the data
points are not linearly separable, the SVM needs a kernel
function to map the original data to a higher dimension so
that it can be linearly separable. There are many kernel func-
tions with each have different performance on different types
of data which includes linear, polynomial, Gaussian kernel.
In our proposedwork, for the feature vector X of every subject
in the dataset, a linear kernel which is K (xi, xj) = xiTxj is
used. It involves mapping of the form,

8 : x→ ϕ (x), (12)

where ϕ(x) is x itself andK denotes the linear kernel function.
Furthermore, in multi-class classification, it uses one-vs-all
and one-vs-one strategy. In this proposed work, we used an
SVM algorithm with a linear kernel function and a one-vs-
one strategy to get our required results on gait recognition as
shown in Figure 4. Here we used a linear kernel with a value
of C = 1.0.

IV. EXPERIMENTAL SETUP AND RESULTS
A. DATASET
We consider the two datasets CASIA and OU-ISIR dataset in
this research. The CASIA Gait Dataset [26] is provided by
the Chinese Academy of Sciences (CASIA). It is divided into
three parts, CASIA-A Gait Dataset, CASIA-B Gait Dataset,
and CASIA-C. Similarly, OU-ISIR Treadmill Dataset [27]
is an indoor gait dataset divided into two parts one part is
focusing on speed variation called Treadmill dataset A-speed
variation, and the other is part focuses on clothing variations
called Treadmill Dataset B. For simple clothing and carry-
ing conditions we consider, CASIA-B Gait Dataset consists
of 124 subjects. Each subject has 6 normal walk sequences,
two sequences with a bag, and two sequences with a coat. So,
a total there are 10 sequences are available for each person.
The other dataset is the OU-ISIR Treadmill dataset B consists
of 68 subjects from a side view with 32 clothing variations.
The list of clothing combinations is shown in Table 1. For
speed invariant gait recognition, we consider CASIA-C Gait
Dataset consists of 153 subjects.

TABLE 1. Clothing variations taken from OUR-ISIR dataset
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Each subject has 4 normal speed walk sequences, 2 slow
walk sequences, 2 fast walk sequences, and 2 normal speed
walk sequences with Bag. So, there are 10 sequences are
available for each subject. All these videos are captured
at night by the infrared (thermal) camera. All subjects are
walking from left to right. The other dataset is OU-ISIR
Treadmill dataset A consists of 34 subjects with 9 different
speed variations varying between 2km/h and 10km/h with a
1Km/h interval. The subjects are walked between 2km/h to
7km/h and ran (or jogged) between 8km/h to 10km/h.

B. RESULTS AND DISCUSSION
All the experiments were carried out with Python on AMD
processor A8-7410 APU with AMD Radeon R5 Graphics
with 8GB RAM. We have used accuracy as an evaluation
metric in this research work [25], [28]–[31]. The proposed
methods are evaluated over 2 datasets under different cooper-
ative and strict covariate conditions. The results are presented
in two sections: gait recognition for cooperative persons and
gait recognition under strict covariate conditions.

1) GAIT RECOGNITION RESULTS FOR KNOWN
COOVARIATE CONDITIONS
This section presents results for gait recognition with coop-
erative persons (known covariates) which means no covariate
conditions are used. In this research, the covariate conditions
are only those where the gallery set is different than probe
sets. The results presented in Table 2 show the gallery and
probe set and either gallery set is the same as the probe set or
the probe set is also a part of the gallery set. Table 2 shows
the results for clothing and speed cooperative conditions from
CASIA datasets. It is important here to mention that speed
is not considered as a covariate condition and only bags and
clothing variations are considered as strict covariates. This
is because the shape of humans is not much changed due to
speed variations.

TABLE 2. Results for CASIA dataset gait recognition under normal
conditions

The GEI images are directly given to the CNN algorithm
and very good accuracies are achieved. This shows if no
strict covariate conditions are considered then simple CNN
is powerful enough to give satisfactory performance. This
strengthens the argument that GEI performs well for gait
recognition under normal conditions. However, the perfor-
mance drop for covariate conditions is too high as it has been
widely reported. Table 3 presents the results for the ISIR
dataset for speed variations.

TABLE 3. Results for ISIR dataset gait recognition under normal
conditions

The experiment used just a part of the full dataset shows
the effect of CNN when the covariate is not strictly followed.
Here it is pertinent to mention that number of samples for
clothing variations present in the ISIR dataset is low which
makes it difficult to use it for training as well as for test-
ing. Therefore, some experiments are only carried out for
speed variations. The gallery set has different variations of
speed present, but the probe set is also a part of the gallery
set which makes it an unknown covariate experiment. The
results are extremely good from experiment 1 to 10. The next
6 experiments are to make the experimental setup consistent
with Table 2 where the gallery and probe sets are different
for speed. The results show that overall results are very good
here too.

Table 4 shows a comparative analysis of our proposed
method with existing literature under no covariate conditions.
The results prove that our method performs better than exist-
ing work and the important conclusion can be made that
simple GEI with deep learning is enough to handle non-
covariate conditions.

2) RESULTS FOR GAIT RECOGNITION FOR UNKNOWN
COVARIATE CONDITIONS
This section presents results for covariate conditions where it
is strictly maintained that the gallery and probe sets are not
overlapped. The simplest approach is adopted to overcome
the covariate condition problems which is to extract only the
relevant and important ROIs from the GEI. This enables us
to only focus on the common parts of the GEI of both gallery
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TABLE 4. A comparative analysis of the proposed Deep learning Method with existing work under no covariate conditions

TABLE 5. Experimental setup for covariate gait recognition

TABLE 6. The highest values of each feature against both experimental conditions from casia for all classifiers

FIGURE 5. The feature-wise accuracy for CASIA Dataset under Covariate Conditions (Coats and Bags) using RF, SVM and MLP.

and probe sets. The details of the experiment are presented
in Table 5. Table 5 shows that for the CASIA dataset, training
is only performed on Normal GEIs while testing is carried out
on the bag and coat GEIs separately. For the ISIR dataset,
Type09 and Type C are used for training while testing is
performed on Type A, Type B, and Type 02 separately. This
experimental setup is used to ensure strict unknown covariate
conditions.

Three classifiers were used to evaluate the performance
of the features extracted. These classifiers include Random
Forest, Multilayer Perceptron, and SVM. These classifiers

are used because of their generalizability to different high
dimensional data. The number of extracted features from
ROIs is too high. Therefore, we applied Fisher linear discrim-
inant analysis to then only used 120 features for the CASIA
dataset and 60 features for ISIR experiments. In CASIA
experiments, the classifiers were trained over the ROIs of
normal persons and tested under covariate conditions of bags
and coats. In the first experiment, where normal sequences are
used for training and sequences with a person wearing a coat
is presented in Figure 5. All three classifiers are trained and
tested for 120 features and results show the MLP and SVM
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TABLE 7. The highest values of each feature against all experimental conditions from ISIR for all classifiers

FIGURE 6. The feature-wise accuracy for ISIR Dataset Covariate Experiments 1,2 and 3 (from left to right and top to bottom) using RF, SVM and MLP.

perform better than RF and show an almost similar pattern
for all number features. The results for the highest values of
individual features against each experiment for all classifiers
are presented in Table 6. This shows that the performance of
the individual features is not that good as compared to when
these features are combined.

The highest accuracy achieved for the experiment when
a combined feature vector is used is 92% with 120 features
using MLP which is very good considering the training was
only done on normal ROI sequences. The second experiment
was carried out for persons carrying bags. Here, again the
normal GEI’s ROIs were used for the training. An almost
similar pattern of results was produced where MLP and SVM
performed better than RF. The best results were achieved by
81% with MLP with 80 features as shown in Figure 5.

In our next experiment, we evaluated the performance of
our proposed ROI based feature extraction technique with

covariate conditions as shown in Table 6. The method was
trained over Type 09 and Type C gallery set for all exper-
iments and Type A, Type B, and Type 02 is used as probe
set separately. The results for the highest values of individual
features against each experiment for all classifiers are pre-
sented in Table 7. This shows that the performance of the
individual features is not that good as compared to when these
features are combined. Then three classifiers are used for
training and testing over 60 combined features and accuracies
are reported in Figure 6. The experiments show that SVM and
MLP performed better than RF.

The highest accuracies achieved are 86%, 91.2%, and 69%
for experiments 1, 2, and 3, respectively. The first two best
accuracies were achieved by SVM and MLP performed best
for experiment 3. We have compared our results with the
methods designed for strict covariate conditions. The point
we want to establish here is that if the gallery set includes
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TABLE 8. Comparative analysis with state of the art work under covariate conditions

any of the prob set samples like a bag or coat sequence then
good results can be easily achieved.We proved this in our first
experiment, where we only used GEI with CNN and achieved
very good results.

Furthermore, the comparison is carried out with techniques
that only use the available data without using augmentation
data to improve the results. It is evident from Table 8 that
we were able to achieve very good mean results as compared
to the latest and classical methods. The results show that we
have achieved the best average results for unknown covari-
ates. The comparison is carried only for strict unknow covari-
ate conditions and with a single view (90o). Furthermore,
the comparison is only carried out for the CASIA dataset
because this is usually considered as a benchmark dataset for
covariate conditions.

In addition to this, we performed a limited number of
experiments on the ISIR dataset just to show the performance
of the proposed method. Therefore, the comparative analysis
is not carried out for ISIR with existing work. However,
the proposed method can be extended to apply to all exper-
iments. This approach is efficient as compared to the sce-
narios where full GEI or its variants are directly provided to
deep learning architectures to handle the covariate conditions.
In that case, the relevant patterns (bags, jackets, hats, etc.)
are also used by the deep learning architectures and become
difficult for it to handle efficiently. In our proposed case, the
proposed scenario is more realistic where unique covariate
invariant features are selected and passed to CNN for learning
which makes it easier to handle covariate conditions. The
proposed architecture can be extended for real-time systems.

V. CONCLUSION
Gait recognition without the subject’s cooperation remains
one of the most challenging research areas in the field. The
covariate conditions, including clothing and speed variations,
are still difficult to handle in realistic experimental setups.
The existing solutions perform poorly when subject coop-
eration is not possible, and there are changes in covariate
conditions, making them unsuitable to deploy for practical

purposes. The emergence of deep learning approaches has
made computer vision tasks easier. However, there are cer-
tain scenarios where pre-processed data can further improve
the performance of these deep learning methods. In this
work, we have developed a gait recognition method that
extracts features from ROIs of the gallery and probe gait
GEI sequences. The unique covariate condition invariant
feature-based gait sequences used with RF, SVM, and MLP
performed very well for covariate conditions. The results
demonstrate the overall superiority of our approach over
the existing approaches. It is pertinent to mention that the
feature selection method deals only with changes in different
covariate conditions and has no effect on gait itself.

The proposed method handles covariate conditions by
selecting the discriminative covariate invariant features and
removes the occluded part of the body. The aim is to remove
the body part, which is affected by covariate conditions, espe-
cially for bags and coats. The same technique can be used on
other datasets with similar covariate conditions. The proposed
method can be used to handle dynamic covariates like putting
on a coat and taking out a coat as the occluded and affected
part of the body remains the same for these conditions. The
ROIs can still be used for unique covariate invariant features.
In future, the ROI selection process can be improved for
automatic candidate selection. The algorithm can be extended
to design zero-shot learning-based algorithms to work in real-
time data. The latest zero-shot training-based algorithms and
proposed discriminative feature learning can be combined to
handle covariate conditions in real-time.

ACKNOWLEDGMENT
(Maryam Bukhari and Khalid Bashir Bajwa are co-first
authors.)

REFERENCES
[1] J. P. Singh, S. Jain, S. Arora, and U. P. Singh, ‘‘A survey of behav-

ioral biometric gait recognition: Current success and future perspectives,’’
Arch. Comput. Methods Eng., to be published, doi: 10.1007/s11831-019-
09375-3.

[2] H. M. Alawar, H. Ugail, and M. Kamala, ‘‘The relationship between 2D
static features and 2D dynamic features used in gait recognition,’’ Proc.
SPIE, vol. 8712, May 2013, Art. no. 87120I.

VOLUME 9, 2021 6475

http://dx.doi.org/10.1007/s11831-019-09375-3
http://dx.doi.org/10.1007/s11831-019-09375-3


M. Bukhari et al.: Efficient Gait Recognition Method for Known and Unknown Covariate Conditions

[3] N. Lynnerup and P. K. Larsen, ‘‘Gait as evidence,’’ IET Biometrics, vol. 3,
no. 2, pp. 47–54, Jun. 2014.

[4] H. Iwama, D. Muramatsu, and Y. Makihara, ‘‘Gait verification system for
criminal investigation,’’ Inf. Media Technol., vol. 8, no. 4, pp. 1187–1199,
2013.

[5] X. Li, Y. Makihara, C. Xu, Y. Yagi, and M. Ren, ‘‘Joint intensity
transformer network for gait recognition robust against clothing and
carrying status,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 12,
pp. 3102–3115, Dec. 2019.

[6] J. Han and B. Bhanu, ‘‘Individual recognition using gait energy image,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 316–322,
Feb. 2006.

[7] H. Iwama, M. Okumura, Y. Makihara, and Y. Yagi, ‘‘The OU-ISIR gait
database comprising the large population dataset and performance evalua-
tion of gait recognition,’’ IEEE Trans. Inf. Forensics Security, vol. 7, no. 5,
pp. 1511–1521, Oct. 2012.

[8] X. Li, S. Lin, S. Yan, and D. Xu, ‘‘Discriminant locally linear embed-
ding with high-order tensor data,’’ IEEE Trans. Syst., Man, Cybern., B
(Cybern.), vol. 38, no. 2, pp. 342–352, Apr. 2008.

[9] N. V. Boulgouris and Z. X. Chi, ‘‘Human gait recognition based on match-
ing of body components,’’Pattern Recognit., vol. 40, no. 6, pp. 1763–1770,
Jun. 2007.

[10] Y. Guan, C.-T. Li, and F. Roli, ‘‘On reducing the effect of covariate factors
in gait recognition: A classifier ensemble method,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 7, pp. 1521–1528, Jul. 2015.

[11] K. Bashir and T. S. X. Gong, ‘‘Gait recognition using gait entropy
image,’’ in Proc. 3rd Int. Conf. Imag. Crime Detection Prevention.
London, U.K.: IET, 2009, pp. 1–6. [Online]. Available: https://digital-
library.theiet.org/content/conferences/10.1049/ic.2009.0230

[12] K. Bashir, T. Xiang, and S. Gong, ‘‘Gait recognition without subject
cooperation,’’Pattern Recognit. Lett., vol. 31, no. 13, pp. 2052–2060, 2010.

[13] X. Li, Y. Makihara, C. Xu, D. Muramatsu, and Y. Yagi, ‘‘Gait energy
response function for clothing-invariant gait recognition,’’ in Proc. Asian
Conf. Comput. Vis. Taipei, Taiwan: Springer, 2016, pp. 257–272.

[14] Y.Makihara, A. Suzuki, D. Muramatsu, X. Li, and Y. Yagi, ‘‘Joint intensity
and spatial metric learning for robust gait recognition,’’ inProc. IEEEConf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5705–5715.

[15] K. Sundararajan and D. L. Woodard, ‘‘Deep learning for biometrics: A
survey,’’ ACM Comput. Surv., vol. 51, no. 3, pp. 1–34, 2018.

[16] F. Battistone and A. Petrosino, ‘‘TGLSTM: A time based graph deep
learning approach to gait recognition,’’ Pattern Recognit. Lett., vol. 126,
pp. 132–138, Sep. 2019.

[17] K. Shiraga, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, ‘‘GEINet:
View-invariant gait recognition using a convolutional neural network,’’ in
Proc. Int. Conf. Biometrics (ICB), Jun. 2016, pp. 1–8.

[18] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, ‘‘A comprehensive study
on cross-view gait based human identification with deep CNNs,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 2, pp. 209–226, Feb. 2017.

[19] N. Takemura, Y. Makihara, D. Muramatsu, T. Echigo, and Y. Yagi, ‘‘On
input/output architectures for convolutional neural network-based cross-
view gait recognition,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 29,
no. 9, pp. 2708–2719, Sep. 2019.

[20] S. Yu et al., ‘‘Invariant feature extraction for gait recognition using only
one uniform model,’’ Neurocomputing, vol. 239, pp. 81–93, 2017.

[21] S. Yu, H. Chen, E. B. G. Reyes, and N. Poh, ‘‘GaitGAN: Invariant gait
feature extraction using generative adversarial networks,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017,
pp. 30–37.

[22] F. M. Castro, M. J. Marín-Jiménez, N. G. Mata, and R. Muñoz-Salinas,
‘‘Fisher motion descriptor for multiview gait recognition,’’ Int. J. Pattern
Recognit. Artif. Intell., vol. 31, no. 1, Jan. 2017, Art. no. 1756002.

[23] T. Liu, X. Ye, and B. Sun, ‘‘Clothing and carrying invariant gait-based
gender recognition,’’ Proc. SPIE, vol. 10836, Oct. 2018, Art. no. 108360X.

[24] R. Anusha and C. Jaidhar, ‘‘Human gait recognition based on histogram
of oriented gradients and Haralick texture descriptor,’’ Multimedia Tools
Appl., vol. 79, pp. 8213–8234, Jan. 2020.

[25] A. Kalsoom, M. Maqsood, M. A. Ghazanfar, and F. Aadil, ‘‘A dimen-
sionality reduction-based efficient software fault prediction using Fisher
linear discriminant analysis (FLDA),’’ J. Supercomput., vol. 74, no. 9,
pp. 4568–4602, 2018.

[26] S. Yu, D. Tan, and T. Tan, ‘‘A framework for evaluating the effect of view
angle, clothing and carrying condition on gait recognition,’’ in Proc. 18th
Int. Conf. Pattern Recognit. (ICPR), Aug. 2006, pp. 441–444.

[27] Y. Makihara, H. Mannami, A. Tsuji, M. A. Hossain, K. Sugiura,
A. Mori, and Y. Yagi, ‘‘The OU-ISIR gait database comprising the tread-
mill dataset,’’ IPSJ Trans. Comput. Vis. Appl., vol. 4, pp. 53–62, 2012.

[28] H. Maqsood, I. Mehmood, M. Maqsood, M. Yasir, S. Afzal, F. Aadil,
M. M. Selim, and K. Muhammad, ‘‘A local and global event sentiment
based efficient stock exchange forecasting using deep learning,’’ Int. J. Inf.
Manage., vol. 50, pp. 432–451, Feb. 2020.

[29] M. Yasir, M. Y. Durrani, S. Afzal, M. Maqsood, F. Aadil, I. Mehmood, and
S. Rho, ‘‘An intelligent Event-Sentiment-Based daily foreign exchange rate
forecasting system,’’ Appl. Sci., vol. 9, no. 15, p. 2980, Jul. 2019.

[30] F. Jabeen, M. Maqsood, M. A. Ghazanfar, F. Aadil, S. Khan,
M. F. Khan, and I.Mehmood, ‘‘An IoT based efficient hybrid recommender
system for cardiovascular disease,’’ Peer–Peer Netw. Appl., vol. 12, no. 5,
pp. 1263–1276, Sep. 2019.

[31] S. Afzal, M. Maqsood, F. Nazir, U. Khan, and F. Aadil, ‘‘A data
augmentation-based framework to handle class imbalance problem for
Alzheimer’s stage detection,’’ IEEE Access, vol. 7, pp. 115528–115539,
2019.

[32] A. R. Hawas et al., ‘‘Gait identification by convolutional neural net-
works and optical flow,’’ Multimedia Tools Appl., vol. 78, no. 18,
pp. 25873–25888, 2019.

[33] R. Liao, S. Yu, W. An, and Y. Huang, ‘‘A model-based gait recognition
method with body pose and human prior knowledge,’’ Pattern Recognit.,
vol. 98, Feb. 2020, Art. no. 107069.

[34] M. Alotaibi and A. Mahmood, ‘‘Improved gait recognition based on spe-
cialized deep convolutional neural network,’’ Comput. Vis. Image Under-
stand., vol. 164, pp. 103–110, Nov. 2017.

[35] X. Wu, T. Yang, and Z. Xia, ‘‘Gait recognition based on densenet transfer
learning,’’ Int. J. Sci., Environ., vol. 9, no. 1, pp. 1–14, 2020.

[36] M. Rokanujjaman et al., ‘‘Effective part-based gait identification using
frequency-domain gait entropy features,’’Multimedia Tools Appl., vol. 74,
no. 9, pp. 3099–3120, 2015.

[37] S. K. Gupta, G. M. Sultaniya, and P. Chattopadhyay, ‘‘An efficient descrip-
tor for gait recognition using spatio-temporal cues,’’ in Emerging Technol-
ogy in Modelling and Graphics. Singapore: Springer, 2020, pp. 85–97.

[38] L. Yao et al., ‘‘Robust gait recognition using hybrid descriptors based
on skeleton gait energy image,’’ Pattern Recognit. Lett., 2019, doi:
10.1016/j.patrec.2019.05.012.

[39] J. Su, Y. Zhao, and X. Li, ‘‘Deep metric learning based on center-ranked
loss for gait recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2020, pp. 4077–4081.

[40] G. Huang et al., ‘‘Flexible gait recognition based on flow regulation of local
features between key frames,’’ IEEE Access, vol. 8, pp. 75381–75392,
2020.

MARYAM BUKHARI is currently pursuing
the bachelor’s degree with COMSATS Univer-
sity Islamabad–Attock, Pakistan. Her research
interests include machine learning and image
processing.

KHALID BASHIR BAJWA received the B.Eng.
degree in computer engineering from the National
University of Engineering and Technology,
Pakistan, in 2002, and the M.S. and Ph.D. degrees
in computer science from the Queen Mary Univer-
sity of London, U.K., in 2007 and 2011, respec-
tively. He has been an Active Researcher and an
Associate Professor with the Faculty of Computer
and Information Systems, Islamic University of
Madinah. His research interests include computer

vision, machine learning, and deep learning.

6476 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.patrec.2019.05.012


M. Bukhari et al.: Efficient Gait Recognition Method for Known and Unknown Covariate Conditions

SAIRA GILLANI received the Ph.D. degree in
information sciences from the Corvinus University
of Budapest, Hungary. She joined the COMSATS
Institute of Information Technology, Islamabad,
Pakistan, in 2016. She has served as an Assistant
Professor for Saudi Electronic University, Jeddah,
Saudi Arabia. She is currently serving as a Senior
Assistant Professor for Bahria University–Lahore,
Pakistan. Previously, she worked as a Research
Scholar with Corvinno, Technology Transfer Cen-

ter of Information Technology and Services in Budapest, Hungary, and also
worked as a Research Associate with the Center of Research in Networks
and Telecom (CoReNet), CUST, Pakistan. Her research interests include data
sciences, text mining, data mining, machine learning, vehicular networks,
mobile edge computing, and the Internet of Things.

MUAZZAM MAQSOOD received the Ph.D.
degree from UET Taxila, in 2017. He is cur-
rently serving as an Assistant Professor for COM-
SATS University Islamabad–Attock, Pakistan. His
research interests include machine learning, rec-
ommender systems, and image processing.

MEHR YAHYA DURRANI graduated in informa-
tion technology. He received the master’s degree
in computer science. He is currently pursuing the
Ph.D. degree in pattern recognition. He is also
serving as an Assistant Professor for COMSATS
University Islamabad–Attock, Pakistan.

IRFAN MEHMOOD (Member, IEEE) is cur-
rently serving as a Senior Lecturer for the
University of Bradford, U.K. His sustained
contribution at various research and industry-
collaborative projects gives him an extra edge to
meet the current challenges faced in the field of
multimedia analytics. Specifically, he has made
significant contribution in the areas of video
summarization, medical image analysis, visual
surveillance, information mining, deep learning in

industrial applications, and data encryption.

HASSAN UGAIL (Member, IEEE) received the
B.Sc. degree (Hons.) in mathematics from King’s
College London, and the Ph.D. degree in geo-
metric design from the School of Mathematics,
University of Leeds. He is currently the Direc-
tor of the Center for Visual Computing, Fac-
ulty of Engineering & Informatics, University
of Bradford, U.K. His research interests include
computer-based geometric and functional design,
imaging, and machine learning.

SEUNGMIN RHO received the B.Sc. degree in
computer science from Ajou University, South
Korea, in 2001, and theM.Sc. and Ph.D. degrees in
information and communication technology from
the Graduate School of Information and Com-
munication, Ajou University, in 2003 and 2008,
respectively. Before, he joined the Computer Sci-
ences Department, Ajou University, he spent two
years in the industry. He visited the Multimedia
Systems and Networking Laboratory, The Univer-

sity of Texas at Dallas, from 2003 to 2004. From 2008 to 2009, he was
a Postdoctoral Research Fellow with the Computer Music Lab, School
of Computer Science, Carnegie Mellon University. From 2009 to 2011,
he was a Research Professor with the School of Electrical Engineering,
Korea University. In 2012, he was an Assistant Professor with the Division
of Information and Communication, Baekseok University. From 2013 to
2018, he was an Assistant Professor with the Department of Media Soft-
ware, Sungkyul University. He is currently a Faculty of the Department of
Software, Sejong University, South Korea. His current research interests
include database, big data analysis, music retrieval, multimedia systems,
machine learning, knowledge management, and computational intelligence.
He has published more than 180 articles in refereed journals and conference
proceedings in these areas. He has been involved inmore than 20 conferences
and workshops as various chairs and more than 30 conferences/workshops
as a program committee member.

VOLUME 9, 2021 6477


