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Transformations of differential equations to other equivalent equations play a central role in many routines for solving intricate
equations. A class of differential equations that are particularly amenable to solution techniques based on such transformations is
the class of linearisable second-order ordinary differential equations (ODEs). )ere are various characterisations of such ODEs.
We exploit a particular characterisation and the expanded Lie group method to construct a generic solution for all linearisable
second-order ODEs. )e general solution of any given equation from this class is then easily obtainable from the generic solution
through a point transformation constructed using only two suitably chosen symmetries of the equation. We illustrate the
approach with three examples.

1. Introduction

Nonlinear ODEs arise in many different contexts, including
as mathematical models of real-world phenomena. Ana-
lytical solutions of many such equations are often hard to
find, which is why a whole range of methods have been
proposed for investigating different types of nonlinear
ODEs. )ese methods include Painlevé singularity analysis,
Lie symmetry analysis, Darboux method, and the Jacobi last
multiplier method (see [1] and the references therein). )e
Lie symmetry method, which is based on the invariance of a
differential equation under a continuous group of point
transformations, is widely used. Given a differential equa-
tion, Lie point symmetries of the equation can be used to
perform many things on the equation including con-
structing explicit transformations that reduce the equation
to a simpler one, when this is possible. When the simpler
“target” equation is a linear equation, the problem is called
the linearisation problem.)e pioneering work on this, with
regard to second-order ODEs, is attributed to Sophus Lie
(see [2] and the references there in). Lie proved that, to be

linearisable, a second-order ODE must be at most cubically
semilinear, and the coefficients in it must satisfy an over-
determined system of conditions [3, 4]. A considerable
amount of research has since been conducted on the line-
arisation problem [2, 3, 5–7] leading, in particular, to a
variety of ways of characterising linearisable second-order
ODEs (see, e.g., )eorem 8 of [3]). A scaled-down version of
)eorem 8 of [3] is presented here.

Theorem 1. Let us consider a scalar second-order ODE in the
form

y′′ � f x, y, y′( 􏼁. (1)

)e following statements are equivalent [3]:

(1) A scalar second-order equation (1) is linearisable via
a point transformation.

(2) Equation (1) has the maximum eight-dimensional
symmetry Lie algebra.

(3) Equation (1) has the cubic in derivative form

Hindawi
Journal of Mathematics
Volume 2020, Article ID 2406961, 5 pages
https://doi.org/10.1155/2020/2406961

mailto:sinkalaw@gmail.com
https://orcid.org/0000-0002-2263-7286
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2406961


y′′ � A(x, y)y′
3

+ B(x, y)y′
2

+ C(x, y)y′ + D(x, y),

(2)

with the coefficients A to D satisfying the two in-
variant conditions

3Axx + 3AxC − 3AyD + 3ACx + Cyy

− 6ADy + BCy − 2BBx − 2Bxy � 0,

6AxD − 3ByD + 3ADx + Bxx − 2Cxy

− 3BDy + 3Dyy + 2CCy − CBx � 0.

(3)

(4) Equation (1) has two noncommuting symmetries X1
and X2 in a suitable basis with

X1, X2􏼂 􏼃 � X1, X1 ≠ ρ(x, y)X2, (4)

for any nonconstant function ρ such that a point
change of variables X � X(x, y), Y � Y(x, y) which
brings X1 and X2 to their canonical form

X1 �
z

zY
,

X2 � X
z

zX
+ Y

z

zY
,

(5)

reduces equation (1) to

XY′′ �
b

3a
+

b3

27a2 + 1 +
b2

3a
􏼠 􏼡Y′ + bY′

2
+ aY′

3
, (6)

where a(≠ 0) and b are constants.

In this paper, we take advantage of representation (6)
to construct a proxy solution for all linearisable second-
order ODEs. We start by using the expanded Lie group
method to simplify equation (6) significantly. We then
construct two point transformations and use them to
recover the general solution of equation (6) from the
solution of the simplest second-order ODE, the free
particle equation Y′′ � 0. )e solution of any given lin-
earisable second-order ODE can now be recovered from
the solution of equation (6) in a routine fashion via a
point transformation constructed from only two sym-
metries of the equation. We illustrate the solution routine
through three examples.

)e rest of the paper is organised as follows. In Section
2, we use the expanded Lie group method to construct a
point transformation that reduces equation (6) to a
simpler equation. In Section 3, we perform further re-
duction and map equation (6) to the free particle
equation. We subsequently deduce a generic solution of
all linearisable second-order ODEs. In Section 4, we il-
lustrate through three examples how the general solution
of any linearisable second-order ODE may be deduced
from the constructed generic solution. We give con-
cluding remarks in Section 5.

2. Reduction of Equation (6) via the Expanded
Lie Group Method

)e Lie symmetry method for studying differential equa-
tions, initiated by Sophus Lie in the latter part of the
nineteenth century, is based on continuous groups of
transformations that map solutions of a given differential
equation into other solutions of the same equation. )e
method extends and harmonises various specialised
methods for solving ODEs. )ere is extensive literature on
the Lie symmetry method, to which we refer the interested
reader to see, for example, [4, 8–13].

When we consider a continuous group of transforma-
tions acting on the expanded space of variables, which in-
cludes the equation parameters in addition to independent
and dependent variables, we obtain an expanded Lie group
transformation of the equation [14]. Such a group of
transformations represents a particular case of the equiva-
lence group that preserves the class of equations under study.

Let us take the parameter b in equation (6) as a second
independent variable. Now, consider a one-parameter (ε) Lie
group of point transformations in (X, Y, b),

􏽥X � f(X, Y, b, ε),
􏽥Y � g(X, Y, b, ε),
􏽥b � h(b, ε),

(7)

for some functions f, g, and h, with an infinitesimal gen-
erator of the form

X � ξ(X, Y, b)zX + τ(X, Y, b)zY + β(b)zb, (8)

which leaves equation (6) invariant. Equation (6) admits (7)
if X satisfies the invariance requirement:

X
[2] b

3a
+

b3

27a2 + 1 +
b2

3a
􏼠 􏼡Y′ + bY′

2
+ aY′

3
− XY′′􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(6)

� 0,

(9)

where X[2] is the second extension of X. We obtain, as a
particular solution of (9), that

ξ �
1 + X2

2X
,

τ � Y
1 + X2

4X
+
1
2

1 −
1 + X2

2X2􏼠 􏼡􏼢 􏼣 −
b

6aX
−

X

3a
,

β � 1.

(10)

)e corresponding one-parameter (ε) Lie group of
transformations is

􏽥X �
������������
eε 1 + X2( ) − 1

􏽰
, (11)

􏽥Y �
e(ε/2)(3aY + bX) − (b + ε)

������������
eε 1 + X2( ) − 1

􏽰

3a
, (12)

􏽥b � b + ε, (13)
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so that, under this transformation, equation (6) necessarily
becomes

􏽥X􏽥Y′′ �
􏽥b

3a
+

􏽥b
3

27a2 + 1 +
􏽥b
2

3a
⎛⎝ ⎞⎠􏽥Y′ + 􏽥b􏽥Y′

2
+ a􏽥Y′

3
. (14)

If we now set ε � − b in transformations (11)–(13), 􏽥b

equals zero, and equation (14) reduces to

􏽥X􏽥Y′′ � 􏽥Y′ + a􏽥Y′
3
. (15)

Clearly, equation (15) is mapped back to equation (6) via
point transformations (11)–(13) with ε � − b, i.e.,

􏽥X �

�������������

e− b 1 + X2( ) − 1
􏽱

,

􏽥Y � e
(− b/2)

Y +
b

3a
X􏼠 􏼡.

(16)

)is means that a solution of equation (15) is mapped to
a solution of equation (6) via transformation (16).

3. Reduction of (15) to the Free
Particle Equation

We seek an invertible point transformation between
equation (15), which we restate here in the original vari-
ables X and Y,

XY′′ � Y′ + aY′
3
, (17)

and the free particle equation

W′′ � 0, W � W(Z). (18)

We exploit the equivalence of the symmetry Lie algebras
of the two equations to construct the point transformation.

Lie point symmetries admitted by equations (17) and
(18) are

Φ1 �
1
X

􏼒 􏼓zX,Φ2 �
− 2a2Y3

X
􏼠 􏼡zX + 3aY

2
+ X

2
􏼐 􏼑zY,

Φ3 �
aY2

X
+ X􏼠 􏼡zX,Φ4 �

aY2

X
􏼠 􏼡zX − YzY,

Φ5 �
X4 − a2Y4

2X
􏼠 􏼡zX + Y aY

2
+ X

2
􏼐 􏼑zY,

Φ6 �
Y

X
􏼒 􏼓zX,Φ7 �

2aY

X
􏼒 􏼓zX − zY,

Φ8 � YX −
aY3

X
􏼠 􏼡zX + 2Y

2
zY,

(19)

Ω1 � zZ,Ω2 � zW,Ω3 � ZzZ,Ω4 � ZzW,Ω5 � WzW

Ω6 � WzZ,Ω7 � ZWzZ + W
2
zW,Ω8 � Z

2
zZ − ZWzW,

(20)

respectively. )e Lie algebras arising from (19) and (20) are
equivalent, which means an isomorphism leading to the
same commutator table for the two Lie algebras can be
found. We may rearrange operators (19) to form a new basis
Γ1, . . . , Γ8􏼈 􏼉 such that

Γi, Γj􏽨 􏽩 � C
k
ijΓk,

Ωi,Ωj􏽨 􏽩 � C
k
ijΩk,

(21)

with the same structure constants Ck
ij􏽮 􏽯. )e following

rearrangements provide the desired new basis for the
symmetry Lie algebra arising from (19):

Γ1 � cΦ6,

Γ2 � cλΦ8,

Γ3 �
1
2
Φ3,

Γ4 � λΦ4,

Γ5 � −
Φ3
2

+Φ4 + cδΦ8,

Γ6 � −
Φ1
2λ

+
δcΦ6
λ

,

Γ7 � −
δΦ3
2λ

+
2δΦ4
λ

+
aΦ6
2cλ

−
Φ7
2cλ

+
cδ2Φ8

λ
,

Γ8 � −
Φ2
2c

+ δΦ5 +
aΦ8
2c

,

(22)

where c, λ, and δ are arbitrary constants with λc≠ 0.We now
seek a point transformation that maps equation (17) to
equation (18) of the form

Z � α(X, Y),

W � β(X, Y),

(23)

for functions α and β. According to Chapter 6 of [9], the
functions α and β must be such that the conditions

ΩiZ � Γiα(X, Y),

ΩiW � Γiβ(X, Y), i � 1, . . . , 8,
(24)
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are satisfied. )e equations in (24) translate into an over-
determined system of sixteen elementary linear PDEs that
define the functions α and β. )e equations are easily solved,
and we obtain

Z � α(X, Y) �
aY2 + X2

2cY
,

W � β(X, Y) �
δ
λ

−
1

2cλY
.

(25)

)e solution of (17) is now recovered from the solution
of (18),

W � mZ + c, (26)

through point transformation (25). We obtain

δ
λ

−
1

2cλY
� m

aY2 + X2

2cY
􏼠 􏼡 + c, (27)

or, equivalently,

aY
2

+ AY + X
2

+ B � 0, (28)

where

A �
2c

m
c −

δ
λ

􏼠 􏼡,

B �
1
λm

.

(29)

)e solution of generic equation (6) now follows from
point transformation (16) and equation (28), stated in terms
of the variables 􏽥X and 􏽥Y of equation (15). It is

aY
2

+
2b

3
XY + 1 +

b2

9a
􏼠 􏼡X

2
+ J2 Y +

b

3a
X􏼠 􏼡 + J1 � 0,

(30)

where

J1 � e
b
(B − 1) + 1,

J2 � Ae
(b/2)

.
(31)

Equation (30) represents a convenient solution of every
linearisable second-order ordinary differential equation; in
that, the general solution of every such equation is realisable
from equation (30) via a point transformation constructed
using only two suitably chosen symmetries of the equation
according to )eorem 1.

4. Illustrative Examples

Example 1. )e ODE

y′′ + 3yy′ + y
3

� 0, (32)
called the modified Emdem equation, which arises in a
variety of contexts [1], admits the maximal 8 symmetries.
Among the admitted symmetries are two noncommuting
symmetry generators

X1 � zx,

X2 � xzx − yzy,
(33)

which satisfy condition (4) of )eorem 1. Symmetries (33)
are reduced to their canonical form (5) via the point
transformation

X � k1/y( 􏼁,

Y � x + k2/y( 􏼁,
(34)

where k1(≠ 0) and k2 are arbitrary constants (also, see [3]).
Under this, point transformation equation (32) is reduced to
equation (6) with a � − k2

1 and b � 3k1(k2 + 1), and the
solution in (30) is transformed into

y �
2k21x − J2

k2
1x

2 − J2x − J1
, (35)

which is the desired general solution of (32).

Example 2. Consider ODE No. 6.180 of Kamke [15]:

y′′(y − 1)
2
x
2

− 2y′
2
x
2

− y′(y − 1)x − 2y(y − 1)
2

� 0.

(36)

)is equation satisfies the conditions in Item 3 of
)eorem 1 and therefore admits the maximal 8 Lie point
symmetries, two of which are

X1 �
y − 2
y − 1

􏼠 􏼡zx +
2y

x
zy.

X2 � xzx.

(37)

)ese infinitesimal symmetries satisfy condition (4)
from)eorem 1 and are reduceable to their canonical forms
(5) via the point transformation

X �
k2x

�����
1 − y

􏽰

y
,

Y �
k1

�����
1 − y

􏽰

y
+ 1 −

1
y

􏼠 􏼡x,

(38)

where k1 and k2(≠ 0) are arbitrary constants. Under this,
transformation equation (36) is reduced to equation (6),
with a � − k2

2 and b � 3k1k2.)e general solution of (36) now
follows easily from equation (30) written in terms of x and y

via point transformation (38), with a and b set to − k2
2 and

3k1k2, respectively. We obtain

y �
x k2

2x − J2( 􏼁

k2
2x

2 − J2x − J1
. (39)

Example 3. Consider the linearisable equation in p.100 of
[11]:
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xy′′ � 2 y′( 􏼁
2

+ y′ + y
2
. (40)

)e symmetries

X1 � 1 −
1

xy
􏼠 􏼡zx +

y

x
zy,

X2 � x
2

−
x

y
􏼠 􏼡zx +(2 − 3xy)zy,

(41)

are admitted by (40) and satisfy condition (14). )e point
transformation that maps symmetries (41) to their canonical
form (5) is

X �

����������
2xy − 1

y2 − 1

􏽳

,

Y �
xy − 1

y
.

(42)

)is transformation also reduces equation (40) to
equation (6), with a � 1 and b � 0. Writing solution (31) in
terms of x and y via point transformation (42) and setting
a � 1 and b � 0, we obtain the solution to (40):

y �
J2

x2 + J2x + J1 − 1
. (43)

5. Concluding Remarks

)ere are many characterisations of linearisable second-
order ODEs. One important characterisation is that every
such equation is reduceable to a generic second-order
ODE, equation (6), via a point transformation constructed
from two suitably chosen symmetries. We have used the
expanded Lie group approach to simplify equation (6)
significantly via a point transformation constructed to set
the parameter b in equation (6) to zero. )e reduced
equation is subsequently mapped to the free particle
equation, y′′ � 0, via another invertible point transfor-
mation constructed by “aligning” the respective symme-
tries of the two equations. )e constructed point
transformations are used in succession to obtain the
general solution to equation (6), which is the desired proxy
solution for all linearisable second-order differential
equations. )is allows construction of solutions of all
equations in this class algorithmically using only two
suitably chosen symmetries of the equation. We have il-
lustrated the solution routine with three examples.
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