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INTRODUCTION

Hypoglycemic drugs are extremely effective in relieving 
and controlling hyperglycemia, but unfortunately, recent 
data showed serious side effects after their administration [1]. 
Under normal physiological conditions, the balance be-
tween self-renewal and apoptosis maintains the β-cell mass 
at the familiar level. Whatever perturbance to this balance re-
sults in unfavorable outcomes. Diabetes mellitus usually aris-
es on the background of metabolic syndrome that nowadays 
exponentially increases with the COVID-19 pandemic, espe-
cially in the caloric rich intake populations [2, 3]. Shred evi-
dence that dipeptidyl peptidase 4 (DPP4) can be a potential 
receptor for COVID-19 entrance, but administration of DPP4 
inhibitors was not related to decreasing COVID-19 morbidi-
ty incidence [4]. Besides, the primary receptor for COVID-19, 
the angiotensin-converting enzyme receptor, is also ex-
pressed on pancreatic beta cells, therefore, COVID-19 has ad-
ditional potential for beta-cell destruction and ketosis-prone 
diabetes developing [5].  Three main kinds of autophagy dis-
tinguished; macroautophagy, microauophagy, and chaperon 
mediated autophagy (we use autophagy term to describe 
macroautophagy in this paper). The paper aimed to analyze 
data from the present literature datadase (Scopus and Med-
line) on the effect of problem of the hypoglycemic drug’s ef-
fect on β-cell and their role in future therapeutic strategies. 
We searched both databases using keywords: «hypoglycemic 
drugs», «beta cell», «Metformin, Sulfonylureas», «Thiazoli-
dinediones», «Sodium–glucose cotransporter 2 inhibitors», 
«Autophagy». 54 results in Scopus and 68 results in Medline. 
Excluding duplicates and not related titles to our paper by ti-
tle remained 90 papers. Then we read the abstract of these 
papers, and only 47 papers related to our topic.  After that, 
we read the full text of these 47 papers. The study of the ef-
fects of hypoglycemic drugs on β-cells has become an urgent 
problem in recent decades, as the number of candidates and 
affected individuals has increased dramatically.

REGULATION OF Β-CELLS DIVISION AND MATURATION 
UNDER DIABETES

The β-cells division is strictly controlled by variable fac-
tors in norm and pathology. A recent clinical study approved 
in vitro that β-cells can be differentiated into glucagon-pro-
ducing cells through specific regulatory transcription fac-
tors [6]. Physiologically, the β-cell has a FOXO1 transcription 
factor (TF) in addition to the NKX6.1 transcription factor 
in the nucleus and cytoplasm [7, 8]. The depletion of FOXO1 
leads to the inability to retain NKX6.1 in the nucleus and 
consequently the deprivation of β-cells. At the same time, 
the β-cells have shown a capacity to transfer into progen-
itor-like state that have transcription factor Neurogenin3 
that can give rise to any type of islets of Langerhans cells 
of similarity such as α and δ like cells in human type 2 di-
abetes [7, 9, 10]. Surprisingly, the study concluded that 
insulin secretion is inversely correlated with the degree 
of dedifferentiation, defined as the ratio of Syn-positive/
hormone-negative cells to Syn-positive cells. On the other 
hand, β-cell differentiation does not depend on the age, 
weight or duration of diabetes [7]. Scientists believe that 
β-cells differentiation of -cells in type 2 diabetes is to protect 
them from apoptosis and immune system attack. Thereaf-
ter, when will be favorable metabolic conditions, the dif-
ferentiated β-cells return into active β-cells. Proinflamma-
tory cytokines such as IL-1β and IFN-γ were recently been 
shown to stimulate early phases of autophagy through ER 
stress-dependent activation of adenosine 5′monophos-
phate-activated protein kinase and the formation of reac-
tive oxygen species formation [11]. In addition to inhibiting 
β-cell autophagic flux of cells due to impaired lysosomal 
function, which contributed to β-cell apoptosis [12]. Con-
trary, interleukin 22 (IL-22) and IL-6 have a cytoprotective 
effect on β-cells by stimulating autophagy and protecting 
β-cells from tumor necrosis factor-α, IL-1β, and interferon-γ 
induced apoptosis [13, 14].
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REGULATION OF β-CELL FUNCTION 

In the few past years, researchers had amplified the role 
of apoptosis, autophagy, oxidative stress, and nutrient over-
load in the regulation of insulin-producing cell activity and 
quantity [15, 16]. Where Autophagy appears to play a signifi-
cant role in the regulation of insulin homeostasis in addition 
to its role in β-cell survival [11, 17]. Moreover, autophagy sup-
ports the proper differentiation of β-cells during development 
and contributing to β-cell function [18, 19]. Studies in vitro have 
shown that autophagy protects the β-cells from apoptosis in-
duced solely by fatty acids such as palmitate and cholesterol 
through activation of the Nuclear factor E2-related factor 2 
(Nrf2) [20, 21]. The Atg7 gene was found as an important regu-
lator in autophagy deriving while Atg7 depletion results in beta 
mass decreasing, and glucose tolerance impairment, defective 
insulin secretion, and increased apoptosis when combined 
with high-fat and high-glucose diet, indicating Atg7 depletion 
impairs autophagy stimulation [22]. In contrast, autophagy can 
be stimulated by specific dietary components, GLP-1, and cyto-
kines [17]. Excess lipid level plays a huge regulatory role in auto-
phagy controlling too [20, 21]. On the other hand, few data sug-
gested that starvation and amino acid deprivation can inhibit 
autophagy and promote crinophagy via direct fusing of insulin 
granules with the lysosomes [17, 23]. A single study published 
in Medicine journal indicated the role of microbiota in the regu-
lation of homeostasis and eventually insulin receptors sensitiv-
ity that can be associated with type 2 diabetes mellitus appear-
ance [24].   On the cellular level of regulation, the misbalance 
between fuel production by the mitochondria and its expen-
diture can be a positive stimulus to initiate insulin receptor re-
sistance and accordingly type 2 diabetes mellitus [25]. Finally, 
autophagy plays a key role in driving the pancreatic stem cells 
(PSC) differentiation, animal models, into insulin-producing 
cells via an ambiguous mechanism suspected to be through 
the Wnt/B-catenin signaling pathway [19, 26]. 

Autophagy maintains beta cell homeostasis through 
redistribution of energy sources within the cell to preserve 
the most vital organelles from failure and later degradation 
[27]. Maintaining the anatomical structure of the beta cell 
requires autophagy, where the depletion of Atg7 in the beta 
cells results in impaired transmission activity of LC3-I to LC3-II 
transmission activity as well as accumulation of p62 and 
polyubiquitin in the beta cell cytoplasm, which is usually 
seen in diabetic patients [28]. Moreover, pathoanatomical 
changes were observed in Atg7 deficient beta cells such as 
cyst-like formation sized 15–20  mm that were associated 
with caspase-3-positive apoptotic cells. 

PATHOGENESIS OF Β-CELLS DYSFUNCTION 

Diabetes mellitus can arise under various pathological 
mechanisms that, in turn, culminate in the diminish of β-cell 
activity. Therefore, there should be different pathophysiolog-
ical pathways for the development of the condition. Many 
of these mechanisms have been shown to have a genetic pre-
disposition, including; Proopiomelanocortin gene mutation, 
Melanocortin receptor mutations, brain-derived neurotroph-
ic factor and receptor mutations, glucose kinase mutations, 
hepatocyte nuclear factor mutations, mitochondrial DNA 
mutations, Insulin receptor mutations, viral oncogene homo-
log 2 (AKT2), v-akt murine thymoma and even lipodystrophy 

can alter the normal function of β-cell [29–33]. Apoptosis 
appears to be the leading cause of β-cell destruction in both 
types of diabetes mellitus through activation of interleukin 
(IL)-1β, nuclear factor (NF)-κB, and Fas pathways, through 
a process, known as insulitis [34]. The β-cells are highly sensi-
tive to destructive pathogenic factors such as environmental 
regulated by physical activity, diet and intestinal microbio-
ta [32].  High serum free fatty acid (FFA) and hyperglycemia 
are the primary cause of β-cells dysfunction  via ER stress. 
And this in turn trigger  NF-κB–dependent mechanism that 
culminates in caspase-3 activation for cytokines and an NF-
κB–independent mechanism for nutrients “glucose hyper-
sensitization” consequently apoptosis of β-cells [8, 34, 35]. 
In addition to decreasing in glucose-induced insulin secretion 
by β-cell due to failure of β-cell sensitivity to hyperglycemia 
and loss of the first phase with a decrease in the second phase 
of insulin secretion [36].  In most patients who suffer from 
type 2 diabetes, it is not so crucial the depletion in the mass 
of β-cells through dyslipidemia and hyperglycemia, via apop-
tosis [37, 38]. Several studies stress the neurohormonal role 
in the pathogenesis of type 2 diabetes mellitus through 
the dysregulation of leptin hormone that leads to hyperpha-
gia and obesity and accordingly insulin resistance [29]. IL-17 
showed a piece of shred evidence in the pathophysiology 
of type 2 diabetes mellitus through enhancement of the in-
flammatory processes and insulin resistance where admin-
istration of IL-17 antagonist decreased the risk of type 2 di-
abetes mellitus emergence [39].  Recently, a study done by 
Anne Raimondo and her colleagues demonstrated that Pep-
tidylglycine Alpha-amidating Monooxygenase (PAM) contrib-
ute to the development of type 2 diabetes mellitus [33]. 

Beta-cell dysfunction involved autophagy disturbance, 
where several studies reported that Atg7 knockdown cells suf-
fered from impaired insulin secretion. Impaired autophagy in-
duces the transdifferentiation of beta cells into alpha cells and 
non functional islet cells as well as impairs proliferation [40]. 

HYPOGLYCEMIC DRUGS EFFECT ON β-CELL AUTOPHAGY 
(EXPERIMENTAL TRIALS) 

Many factors contribute to β-cell co-working ability such 
as hypoglycemic drugs. Therefore, various effects can be re-
vealed on the administration of antihyperglycemic drugs 
depending on their mechanism of action. The drugs admin-
istered most frequently to control hyperglycemia are met-
formin and GLP-1 mimetics such as GLP-1 analogs and GLP-
1-like molecules, exendin-4/exenatide, and its derivative such 
as lixisenatide  [41]. Although all these drugs have shown 
a favorable effect on β-cells and reserving their mass and 
function. The clinical findings have shown that metformin 
promotes β-cells autophagy and poses an anti-inflammatory 
effect that enhances even immune response against viral in-
fection when combined with the seasonal influenza vaccine 
[42–44].  Both groups of GLP-1 mimetics, GLP-1 receptor ago-
nists and DPP-IV inhibitors, have been shown to induce auto-
phagy in diabetic patients and enhance the insulin gene tran-
scription and biosynthesis through the reduction in β-arrestin 
recruitment and faster agonist dissociation rates [45–47]. In-
deed these two groups of medications have various effects 
on β-cells since they serve differently from each other [41]. 
The administration of GLP-1 agonists to normal and diabetic 
rodents has stimulated β-cells proliferation, neogenesis, and 

doi: https://doi.org/10.14341/omet12778Ожирение и метаболизм. – 2021. – Т. 18. – №4. – С. 465-470 Obesity and metabolism. 2021;18(4):465-470



 Ожирение и метаболизм / Obesity and metabolism | 467REVIEW

protects against apoptosis and inflammation [48–50]. While 
GLP-1 agonists long prescribing ended with  inducing β–cell 
mass through the activation of multiple signaling pathways 
such as PKA, PI3-kinase, and ERK1/2 [51–53]. In particular, 
the liraglutide and exenatide administration in animal mod-
els promoted the first- and second-phase insulin secretion 
via restoring the beta-cell sensitivity to glucose, besides, 
the liraglutide and exenatide induced beta cell proliferation/
regeneration and mass of beta cells through the protection 
from apoptosis [53, 54]. In vivo, few findings have shown that 
GLP-1R signaling exerts a vigorous effect on β-cell survival 
compared with DPP4 inhibition [55, 56]. The prolonged ad-
ministration of DPP4 inhibitors induced beta cells mass and 
regeneration capacity in addition to the anti-inflammatory 
response [57, 58]. The inhibition of the mammalian target 
of rapamycin complex 1 (mTORC 1) has shown a stimulatory 
effect on the autophagy of β-cell, an example of such drugs is 
rapamycin [59, 60]. In many clinical studies, this immunosup-
pressant and anti-neoplastic drug has lowered the glucose 
level and decreased weight gain in addition to insulin resis-
tance [61–65].  However, unfortunately, several studies have 
shown that Rapamycin has impaired glucose tolerance and 
elevated insulin resistance even the appearance of frank dia-
betes in vivo in addition to a decrease in β-cell autophagy and 
function [62, 66–70]. 

Sodium–glucose cotransporter 2 inhibitors (SGLT2) have 
beneficial effects on beta cells by inducing autophagy through 
the overexpression of adenosine monophosphate-activat-
ed protein kinase, sirtuin-1, and/or hypoxia-inducible fac-
tors-1α/2α. In vivo, SGLT2 has induced beta-cell proliferation 
and improved insulin secretion in response to hyperglycemia 
in addition to ameliorating lipotoxicity [71, 72]. 

Sulfonylureas (SUs) is a common class of antihyperglycemic 
drug used in type 2 diabetes mellitus. Glibenclamide, second 
generation in this group of medications, induces beta cell au-
tophagy by activating the AMPK pathway instead of the mTOR 
pathway However, the effects of autophagy depend on the state 
of the beta cells, if it is sensitive to hyperglycemia, thus enhanc-
ing autophagy induces insulin secretion. However, in altered 
beta cell sensitivity to high glucose levels, autophagy induction 
reduces insulin secretion. Also, it is well known that insulin over 
secretion induces endoplasmic reticulum stress and oxidative 
stress. Furthermore, over-induction of autophagy alters insu-
lin storage granules and results in their degradation. studies 
on Min-6 cells suggested that Glibenclamide induces insulin 
secretion but its inhibition was accompanied by significant up-
regulation of insulin secretion [73]. 

Thiazolidinediones are another class of antihyperglyce-
mic medication. Rosiglitazone belongs to this class of med-
ications, which is reported to be a well inducer for beta cell 
autophagy through activation of the AMPK pathway in INS-1 
cells. Beta cell autophagy maintains beta cells mass and pre-
vent transdifferentiation (cell linage reprogramming) as well 
as improves proliferation.  

To decrease the speed of β-cell destruction, it’s now rec-
ommended the early diagnosis of type 2 diabetes mellitus 
and prefers to not use insulin secretagogues such as sulfony-
lureas since they impair the β-cell function and leads to their 
apoptosis [66]. 

Finally, it seems that prolonged use of incretin-based 
therapies, particularly sitagliptin, for more than 2.4 years 
may promote the development of acute pancreatitis, espe-
cially when there is a tripling in the level of pancreatic amy-
lase and lipase enzymes level [1, 74]. (Figure 1) 

Figure 1. Autophagy’s role in maintaining Beta-cell mass and function through resolving the oxidative stress, endoplasmic reticulum (ER) stress, and 
reducing pro-insulin degradation (these functions indicated by asterisks). 

Note. GLP-1 group of anti-diabetic medications in addition to other factors can affect autophagy. Oxidative stress and endoplasmic reticulum stress are 
critical for maintaining autophagy and beta cell mass from apoptosis and cell death, which are necessary to maintain blood glucose levels. Abbreviations: 
ATP  — adenosine triphosphate, IL — interleukin, GLP-1 — glucagon-like peptide-1, ROS — reactive oxygen species, hIAPP — human islet amyloid 
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CONCLUSION

Therefore, the observed data have shown the possibil-
ity of β-cell mass maintaining in diabetic patients by pro-
moting autophagy promotion via selective hypoglycemic 
drugs, including DDP-IV inhibitors and GLP-1 mimetics. 
Several preclinical trials have been performed in the course 
of stimulating β-cell proliferation by using hypoglycemic 
drugs. Most were promising and culminated in the possi-
bility of β-cell to maintain self-renewal and protect them-
selves from transdifferentiation into pathological nonbeta 
cells. But, this process indirectly occurs, firstly hypoglyce-
mic drugs induce autophagy, then autophagy promoted 
beta-cell proliferation, therefore there is no direct in vitro 
or in vivo study shown this, and we in this paper connected 
the missing parts to complete the chain [7, 17, 19, 42, 43, 
73, 75–77]. 

In preclinical studies, the majority of hypoglycemic drugs 
possessed therapeutic effects on the beta cell during their 
administration including; enhance autophagy and insulin 
biosynthesis, possessing anti-inflammatory effects, protect-
ing against apoptosis and beta cell destruction, as well as 
enhance β-cell survival. Beta-cell mass can be affected by 
differentiation from progenitors and de-differentiation as 
well as self-renewal and apoptosis.

Interestingly, recent investigated data have emphasized 
the role of transdifferentiation in beta cell regeneration 
by recruiting endoderm-derived cells by applying specific 

niche factors, including transcription factors [78–80]. But, 
the following question is still ambiguous and needs more 
research and clinical study; Do neo transdifferentiated 
beta cells persist or terminate with stop of the administra-
tion of the inducing factor administration?  While this can 
be of use in triggering other cells of islets  of  Langerhans 
to transfer into β-cells and start producing insulin. This re-
quires more research and clinical studies to prove the clinical 
importance of the hypoglycemic drugs on β-cells metabo-
lism. We suggest inducing beta cells autophagy in diabetic 
patients through targeting autophagy signaling pathways 
ameliorates hyperglycemia. Hypoglycemic drags are well 
inducers for beta-cells autophagy and can be recruited and 
modified to be suitable for this purpose.  
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