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Abstract: Spaceborne detection and measurements of high-temperature thermal anomalies enable
monitoring and forecasts of lava flow propagation. The accuracy of such thermal estimates relies
on the knowledge of input parameters, such as emissivity, which notably affects computation of
temperature, radiant heat flux, and subsequent analyses (e.g., effusion rate and lava flow distance
to run) that rely on the accuracy of observations. To address the deficit of field and laboratory-
based emissivity data for inverse and forward modelling, we measured the emissivity of ‘a’a lava
samples from the 2001 Mt. Etna eruption, over the wide range of temperatures (773 to 1373 K) and
wavelengths (2.17 to 21.0 µm). The results show that emissivity is not only wavelength dependent,
but it also increases non-linearly with cooling, revealing considerably lower values than those
typically assumed for basalts. This new evidence showed the largest and smallest increase in average
emissivity during cooling in the MIR and TIR regions (~30% and ~8% respectively), whereas the
shorter wavelengths of the SWIR region showed a moderate increase (~15%). These results applied
to spaceborne data confirm that the variable emissivity-derived radiant heat flux is greater than
the constant emissivity assumption. For the differences between the radiant heat flux in the case
of variable and constant emissivity, we found the median value is 0.06, whereas the 25th and the
75th percentiles are 0.014 and 0.161, respectively. This new evidence has significant impacts on the
modelling of lava flow simulations, causing a dissimilarity between the two emissivity approaches
of ~16% in the final area and ~7% in the maximum thickness. The multicomponent emissivity
input provides means for ‘best practice’ scenario when accurate data required. The novel approach
developed here can be used to test an improved version of existing multi-platform, multi-payload
volcano monitoring systems.

Keywords: emissivity; FTIR; remote sensing; lava flow modelling; volcano monitoring; Mount Etna

1. Introduction

A variety of approaches are used to derive apparent surface temperatures from space-
borne infrared (IR) data [1,2]. Land surface temperature (LST) and land surface emissivity
(LSE) are two key parameters used as model input parameters, because they are closely
linked to the Earth’s surface energy balance [3]. However, emissivity (ε) has not previously
been measured across the full range of lava temperatures and relevant compositions; rather
it is generally assumed to have a constant value between 1 and 0.8 for basaltic lava [1].

To address this deficit, emissivity experiments on ‘a’a lava samples from the 2001
Mt. Etna (Italy) eruption were performed to establish the implications that emissivity, as a
model input parameter, has for deriving lava surface temperatures and radiant heat flux.
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Additionally, this study aimed to provide a physical basis for avoiding assumptions when
exploiting remote sensing and modelling data for emergency management and hazard
forecasting purposes.

Mt Etna is one of the most active and hazardous volcanoes in the world, well known
for frequent lava flow-forming eruptions from vents situated on the volcano flanks and for
its summit activity, which has been almost persistent since January 2011 [4–6]. We chose
the 2001 lava flow because it has not been covered by successive lava flows. Lava flows
produced during recent short-lived events (e.g., 2011), lasting from a few hours to several
days, overlap, thus making spaceborne identification and/or field lava sampling difficult.
Additionally, the 2001 eruption is one of the major flank eruptions that has occurred at
Etna in the last two decades, and was well observed by several multispectral sensors,
including the Enhanced Thematic Mapper + (ETM+) and the Moderate-resolution Imaging
Spectrometer (MODIS). The 2001 eruption produced seven different fast-developing lava
flows (Figure 1) in only 23 days with a total bulk volume of about 40 million m3 [7].
We focused on the individual flow that emanated from the southern flank at 2100 m above
sea level (LFS1), which has not been covered by successive lava flows, where we collected
different lava samples (Figure 1) during a field campaign in 2017.

Figure 1. (left) Study area indicated on ETM+ TIR (Band 6) image, used here for visual presentation
purposes alone, showing a high temperature thermal anomaly image of the 2001 Mt. Etna eruption,
acquired on 5 August 2001; (right) the areal extent of the individual lava flow, LFS1 [7], analysed
in this study, is highlighted in yellow and superimposed on a Digital Elevation Model (DEM) of
Mt. Etna. Empty red circles indicate an approximate location of collected samples.

Emissivity is not well quantified for molten materials and hot volcanic rocks. Most
authors adopt a constant value based on the rare, published laboratory measurements
to perform thermal infrared (TIR) emissivity–temperature separation [3], underlying the
Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Emissivity
Database (ASTER GED), among others [8]. The emissivity of a target such as that considered
here (Mt. Etna) can be extracted from existing global spaceborne libraries such as the ASTER
GED. However, this represents only a ‘static’ mean emissivity value [9]. For example, the
ASTER GED 100-m pixel value is a nine-year average (2000–2008), which would integrate
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(background) values outside the dimensions of the target investigated (active lava flow)
due to its coarse spatial resolution. These constant emissivity values, if applied uniformly,
independent of the pixel size and presence of hot material (i.e., independent of the nominal
scale of observations) will produce variations in computed apparent surface temperatures
and would not account for the range of temperatures (and emissivities) found in an active
lava flow.

Using different emissivities (e.g., not assuming unity) acknowledges that Etnean
trachy-basalts emit a percentage of radiance incident upon them. This percentage would
be denoted by the wavelength-average emissivity term, and despite previously never
being proven to be temperature dependent, its behaviour with temperature has been
questioned [10]. Several studies of silicate glasses and basaltic lavas [11–15] suggest that
the emissivity of molten material is significantly lower than that of the same material in
solid state and argued to be lower than the assumed >0.80 [12,16].

In this study, laboratory measured emissivity–temperature trends provide the means
of computing more accurate lava surface temperatures, which would account for both
variation in emissivity with wavelength and include the range of temperatures found in an
active lava flow (e.g., ≤1360 K for Mt. Etna). Satellite instruments employed in this study
are MODIS, onboard NASA’s Terra and Aqua satellites, and ETM+, onboard NASA/USGS’s
Landsat-7 satellite. Additionally, smaller ETM+ pixels will saturate more readily than
larger MODIS pixels when acquiring data over an active flow (high-temperature thermal
anomaly). For this reason, we used a night-time image acquired by ETM+ on 5 August
2001, as it contains only the thermally emitted ground component, which is compared with
MODIS data acquired between 15 July and 30 August 2001. Please note that computation
of radiant heat flux in this study, using ETM+ data, involves two SWIR bands (Band 5 and
Band 7), whereas the ETM+ Band 6 (TIR) image (Figure 1) was used for visual presentation
purposes alone.

A multi-sensor data approach, integrating IR observation from different spaceborne
platforms, including SWIR data, has been suggested to improve information for an individ-
ual target [17] and detection of a set of targets [18]. Nonetheless, due to the low revisit rates
(at least five days), and despite previous proposals [18,19], it appears that no operational
system is currently actively using decametric resolution SWIR data to complement radiant
heat fluxes computed in large pixels.

The ETM+ data can still provide useful ‘snap-shots’, indicative of the instantaneous
state of activity, to compute relatively accurate radiant (and mass) flux [9]. Nonetheless,
its data are based on a limited number of infrequent observations (i.e., one scene), due
to the instruments’ temporal resolution and meteorological conditions. Therefore, it may
not reflect the significant peak discharge rate or dynamic flow regimes that are known
to change frequently [20,21]. Thus, it was used here in tandem with moderate resolution
MODIS data to complement computed radiant heat flux range for the period analysed.

2. Materials and Methods

We performed laboratory-based FTIR analyses on solidified volcanic rock samples from
the 2001 eruption of Mt Etna, to derive emissivity at a range of temperatures (773–1373 K)
and wavelengths (2.17–21.25 µm).

2.1. Emissivity from Radiance Spectra

Thermal emission spectra were collected in the Image Visualization and Infrared
Spectroscopy (IVIS) Laboratory, at the University of Pittsburgh, Pennsylvania, U.S.A. The
experimental setup (Figure 2) to measure absolute emissivity at very high temperatures
uses a Nicolet Nexus 870 FTIR spectrometer, equipped with a potassium bromide (KBr)
beam splitter, and a mercury cadmium telluride (MCT-B) detector (cooled with liquid
nitrogen) with a spectral range of 4601–470 cm−1 (2.17–21 µm). Emission spectra were
collected over 8 scans (~10 s total), at a spectral resolution of 2 cm−1 (2065 bands) and
averaged to improve the signal to noise.
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Figure 2. Experimental high-temperature (773–1373 K) setup to measure emissivity at IVIS Laboratory,
University of Pittsburgh (USA). Shown is the power controller unit and Nicolet Nexus 870 FTIR
spectrometer, adjacent to the experiment chamber (top right), which is continuously purged of CO2

and H2O. The experiment chamber contains the furnace and sample measuring apparatus (right).
The sample before and after measurement is also shown (bottom left), and the calibration material
(alumina) used as the blackbody source.

An experiment chamber adjacent to the spectrometer contains a custom-made furnace
sample measuring apparatus [15]. The temperature and humidity of the spectrometer and
experiment chamber are monitored continuously. Both the spectrometer and the attached
experiment chamber are purged with dry air to limit spectral obscuration by H2O and
CO2. All samples were crushed and sieved into ~100–350 µm size fractions. Approximately
1 g of sample is poured into a 3.0 cm diameter platinum cup (to ~3 mm depth), which is
manually placed into the furnace and covered with a furnace lid (with viewing opening)
and kept there for the duration of the experiment to maintain constant conditions.

In emission spectrometry, the spectrometer measures the energy emitted from the
heated sample to subsequently determine the radiance emitted from the sample surface.
Sample measurement steps from 773 to 1373 K were set at 50 K intervals (e.g., 773, 823,
873, 923 K) using a power controller (Figure 2). A four-minute dwell time was applied at
each temperature step, to allow equilibration prior to the collection of the spectra, which is
essential for attaining accurate emissivity spectra.

Prior to any sample analysis, spectra were acquired from a blackbody calibration
target with the same furnace-viewing geometry (Figure 2). Based on a well-established
methodology [22], the calibration spectra were acquired at 50 K higher and lower than the
expected sample temperature measurements (e.g., at 350 and 450 K for a sample tempera-
ture of 400 K). The spectra of the blackbody calibration targets allow for the instrument and
environmental emission to be quantified and removed using a well-established method [22].
The use of an alumina disk as the blackbody calibration source has not been compared to
a recognised national standard. However, the calibration process follows long-standing
emissivity protocols [22]. The emissivity of the alumina calibration disk was measured
using a Thermo Scientific iN10 FTIR microscope (µ− FTIR) collecting bi-directional re-
flectance spectra and converted to emissivity using Kirchhoff’s law [23]. This resulted
in emissivity of 0.91 across the samples spectral range with a total error of 2% [15]. The
chamber temperature was monitored using a thermocouple and was recorded and applied
for each temperature step. Calibration and conversion of raw data to absolute emissivity is
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described in previous studies [15,22]. The experimental error and uncertainty associated
with the data acquired using the FTIR spectrometer with the furnace at the University of
Pittsburgh’s IVIS laboratory are reported to be <2% and <4%, respectively [15].

2.2. FTIR Data Analysis and Creation of a ‘Dynamic Emissivity–Temperature Rule’

For each sample, emissivity was acquired at a range of wavelength and temperatures.
Emissivity was acquired during both heating and cooling of the sample. We used the
cooling data in the analysis because it more accurately represents the natural process being
investigated. We aimed to derive an experimentally deduced emissivity–temperature
relation in this study. The spectral radiance emitted in a wavelength interval (λmin, λmax)
by a graybody at temperature (T) is:∫ λmax

λmin

ε(λ, T)Bλ(λ, T)dλ (1)

where Bλ(λ, T) is Planck’s law (in wavelength). By the mean value theorem, the (spectrum-
integrated) mean emissivity is:

ε [λmin,λmax](T) =

∫ λmax
λmin

ε(λ, T)Bλ(λ, T)dλ∫ λmax
λmin

Bλ (λ, T)dλ
(2)

and it is such that the graybody spectral radiance (in the given wavelength interval) can be
computed from the blackbody spectral radiance

∫ λmax
λmin

Bλ(λ, T)dλ by multiplying by the
mean emissivity ε [λmin,λmax](T).

Due to the discrete sampling, the information we have about ε(λ, T) is not continuous
(in λ), so for the integral we use a piecewise linear interpolation between each pair of data
points, an approximation justified by the fine granularity of the wavenumber sampling
in the data. A higher-order reconstruction is possible, but the results obtained provide an
uncertainty of the same order as the measurement error.

For the application of satellite remote sensing, the mean emissivity was computed
over the bandwidth of specific sensor channels: for MODIS, the Middle Infrared (MIR)
channels 21 and 22 (3.929–3.989 µm) and the TIR channels 31 (10.780–11.280 µm) and
32 (11.770–12.270 µm); for Landsat-7, the SWIR Channel 7 (2.09–2.35 µm). Using Equation (2),
we obtain one mean emissivity value per channel and per temperature, from which we
derive per-channel relationships between emissivity and temperature by fitting second-
degree polynomials to the computed mean emissivity values. We verify the approximation
by checking that the discrepancy between the fitted values and the data is not larger than
the instrument error (i.e., lower than 4%). For lava flow modelling, we are interested in
the full spectrum mean emissivity (i.e., the mean emissivity across the entire spectrum).
Because the data available are limited to the 2.17 to 21 µm range, we approximate the
full spectrum mean emissivity by the mean emissivity over the available data range, after
verifying that the mean emissivity is sufficiently ‘stable’ within the range. This is similar to
a previous study based on multispectral ground-based TIR data [16].

2.3. Radiant Heat Flux from Spaceborne Data

To accurately compute the emission of energy actually leaving a surface and the ra-
diant heat flux [24], the radiant signal is corrected for the influence of the atmospheric
transfer function [25] and the emissivity of that radiating surface [1]. Here, we assessed
the role of emissivity from multiplatform spaceborne data, using a multicomponent
approach, instead of fixed value estimates. To achieve this, we applied a novel tech-
nique, where the computation of radiant heat fluxes from spaceborne data is based on
FTIR laboratory measured data. The multicomponent emissivities are integrated by ob-
served emissivity–temperature behaviours and synthesised in an experimentally deduced
emissivity–temperature–wavelength relation.
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To consider the measured emissivity–temperature trend, the HOTSAT system [26–28]
was modified by designing and implementing a routine for MODIS data. The HOTSAT
system locates the thermal anomalies in a defined volcanic area. The pixels detected as
thermally anomalous, the ‘hotspot’ pixels, are non-isothermal, but they will be a mixture of
many different thermal components [1]. To provide an estimation of the radiant heat flux
associated with the thermally mixed pixels, they need to be ‘un-mixed’. There are different
ways to solve these problems (e.g., [29]), but in this case, to consider the emissivity varia-
tions with temperature, we use a dual band model [30]. Three components are considered
for each pixel, including a portion of melt at the highest temperature, a portion invaded by
crusted lava, and a background (i.e., no active lava) [1]. Each of these components is solved
using the emissivity–temperature relation:

BλMIR(λMIR,Tint) = pb ε(λMIR,Tb) BλMIR(λMIR, Tb) + pc ε(λMIR,Tc) BλMIR(λMIR, Tc) + ph ε(λMIR,Th) BλMIR(λMIR, Th) (3)

(λTIR,Th) BλTIR(λTIR, Th) (4)

pb + pc + ph = 1 (5)

where pc, ph, and pb are the pixel portions at the Tc (temperature of crusted lava), and
Th and Tb are the temperatures of melt lava and background, respectively. Tint is the
integrated temperature for the whole pixel. In solving the system of three equations
in five unknowns (Th, Tc, Tb, pb and pc), we used the ‘fsolve’ function implemented in
MATLAB. We considered band 21 as the MIR band and 31 as the TIR band corresponding
to the 3.959 and 11.03 µm central wavelengths, respectively. We assumed Th was equal
to 1373 K [31], and Tb was retrieved from neighbouring pixels not affected by thermal
anomalies. Thus, the system of equations was solved for Tc, pb and pc.

Additionally, Landsat ETM+ data and its preliminary results were used in this study
for comparison purposes, which followed the specific approach [9,32] to compute radiant
heat fluxes during the 2001 Mt. Etna eruption, using two ETM+ SWIR bands. This is a
systemised variant of the sub-pixel resolution approaches [30,33] and their application to
high-temperature volcanic features [24,34,35]. Using a ‘thresholding’ approach, linking
a specific emissivity value to recorded radiance (Figure 3) allows the relative size and
temperature of these thermal components to be resolved, following solutions, which
depend on data availability (saturation) in each band [36,37]. Here, the Landsat-7 (ETM+)
night-time image distributed by the Global Visualization (GloVis) Viewer [38], acquired
during the 2001 Mt. Etna eruption was analysed to produce radiant heat flux values for
5 August 2001. Because emissivity also varies as a function of wavelength, the absence of
laboratory FTIR data at 1.65 µm (due to instrument limitations), and the close proximity of
SWIR bands, similar behavior is anticipated based on the previous research [10].

Figure 3. A flowchart illustrating methods (steps 1–8) to derive radiant heat flux using high-spatial
resolution data (ETM+) in two SWIR bands.
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3. Results
3.1. Laboratory-Based FTIR Results

FTIR emissivity was derived at a variety of sample temperatures for two trachytic
basalts (NRE.4 Series) collected from lava flows emplaced during the 2001 Mt. Etna
eruption. Generally, the emissivity increased as the sample temperature decreased (cooling)
and a glassy crust formed. The sample temperature decreased from 1373 to 773 K, causing
the average emissivity to increase from 0.7054 to 0.8647 (~23%) between 2.17 and 15 µm.
The greatest and smallest increases in average emissivity were observed in the MIR region
(~30%) and TIR region (~8%), respectively, with the SWIR region having a moderate
increase (~15%).

Basalts have a SiO2 content of 45–52% and hence have spectra that are dominated by
absorption features associated with SiO2 bonds (vibrations and bending) [11,39]. The strong
absorption feature at ~4.0 µm (Figure 4) is a result of silica overtone vibrations, whereas
the smaller feature at ~7.5 µm (Figure 4) is associated with Al-O bond vibrations. The
main Si-O-Si bond vibration and bending result in the broad absorption feature between
8.0 and 12.0 µm. The increase in emissivity observed during cooling and crust formation of
these samples is a consequence of the decrease in temperature. This consequently reduces
SiO2 bond vibrational and bending energy, reducing energy absorption by the sample.
Additionally, there is a small absorption feature at ~15 µm caused by Al-OH and Si-OH
bond bending; however, this is not strongly dependent on temperature fluctuations in
basalts. The increase in emissivity during cooling is a result of the reduction in vibrational
and bending energy of the crystal lattice within the samples. Overall, the spectral results
and morphologies are dominated by the SiO2 content of the basalt samples, [11,15].

Figure 4. (Top panel) Emissivity spectra of basaltic samples, acquired using FTIR emission spec-
troscopy at a range of sample temperatures from 1373 to 773 K; (bottom panel) indicating emissivity–
temperature trends in the region(s) of interest (SWIR, MIR and TIR). The samples are trachy-basaltic
lavas belonging to the individual lava flow (Figure 1) emplaced between 18 July to 9 August 2001 [7].
Overall, the average emissivity increases as the temperature of the samples decreases in a nonlinear
inverse relationship.
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3.1.1. Mean Integrated Emissivity for Remote Sensing Applications

For remote sensing applications, we derive experimentally deduced emissivity–
temperature relations using quadratic polynomial fitting. We do this for the SWIR Channel
7 (2.09–2.35 µm) of Landsat 7, the MODIS’ MIR channels 21 and 22 (both with bandwidth
3.929–3.989 µm), and TIR channels 31 (10.780–11.280 µm) and 32 (11.770–12.270 µm).

For the Landsat 7 SWIR channel 7 (Figure 5a), the fitted quadratic polynomial is:

εSWIR(T) = 0.30725 + 0.00113 T − 6.0904 · 10−7 T2 (6)

with a maximum relative error of 0.07%, median 0.02%, and standard deviation 0.02%. For
the MODIS MIR channels (Figure 5b), the fitted quadratic polynomial is:

εMIR(T) = 0.8559 + 0.00007 T − 2.5241 · 10−7 T2 (7)

with a maximum relative error of 0.04%, median 0.01%, and standard deviation 0.009%.
For the TIR channels (Figure 5c,d), the fitted polynomials are:

εTIR31(T) = 1.0346− 0.00007 T − 1.2899 · 10−8 T2 (8)

with a maximum relative error of 0.007%, median 0.003%, and standard deviation 0.002%, and:

εTIR32(T) = 1.0275− 0.00004 T − 2.6096 · 10−8 T2 (9)

with a maximum relative error of 0.005%, median 0.001%, and standard deviation 0.001%.
These are similar TIR trends as observed by a recent study [16] using field data. The fitting
parameters with the associated standard error and 95% confidence intervals are reported in
Table 1.

3.1.2. Mean Emissivity for Lava Flow Modelling

For lava flow simulations, a full spectrum mean emissivity must be computed. Since
the available data only span the range from 2.17 to 21 µm, we can compute the mean
emissivity in this part of the spectrum, which is assumed to be a sufficient approximation
of the full spectrum emissivity for our applications. This assumption is qualitatively
corroborated by the fact that, as the subset of the spectrum taken into consideration grows,
the value of the mean emissivity integrated over that section of the spectrum changes less
(Figure 6). To show this, consider for a given, fixed temperature T, the mean emissivity over
two ranges, where one of the extrema is fixed (respectively at 2.17 and 21 µm) and the other
is free to change. The resulting ‘lower’ and ‘upper’ functions εT,−(λ) = ε [2.17,λ](T) and
εT,+(λ) = ε [λ,21](T) are such that εT,−(21) = ε [2.17,21](T) = εT,+(2.17). This shows that a
small change in the range results in a small change in the mean emissivity, i.e., that εT,−(λ)
has values close to εT,−(21) for λ→ 21 , and that εT,+(λ) has values close to εT,+(λ)(2.17)
for λ→ 2.17 .

Mathematically, this can be verified by looking at the magnitude of the derivatives
of the two functions at the extremum of the corresponding interval (21 µm for εT,−(λ)
and 2.17 µm for εT,+(λ)). Since the functions are computed numerically from the sampled
values, we cannot compute an analytical derivative. The derivatives are computed as the
ratio between the change in the function values between two consecutive samples and
the difference in the wavelengths. For the derivative of εT,−(λ) at 21 µm, we take the
21 µm sample and the one before it, whereas for the derivative of εT,+(λ) at 2.17 µm, we
use the 2.17 µm sample and the one after it. For εT,−(λ) we find that, across all sampling
temperatures, the maximum derivative magnitude is 1.6 · 10−4 µm−1, whereas for εT,+(λ)
the magnitude is 4.8 · 10−2 µm−1. This suggests that the mean emissivity is very stable
around λ = 21 µm. Around λ = 2.17 µm, the mean emissivity is less stable, but given
the range of temperatures that can be expected from the lava and the magnitude of the
derivative, we can expect an approximate change of less than 5%.
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Figure 5. Emissivity–temperature trends at a range of temperatures (773–1373 K) in spaceborne
(a) SWIR (ETM+) and (b–d) MIR-TIR (MODIS) bands.



Remote Sens. 2022, 14, 1641 10 of 21

Table 1. Fitting parameters with associated standard error and confidence intervals.

WAVELENGTH ESTIMATE STANDARD
ERROR CONFIDENCE INTERVAL

SWIR 1 3.07 × 10−1 1.97 × 10−1 {−3.17 × 10−1, 9.32 × 10−1}
T 1.13 × 10−3 3.75 × 10−4 {−5.57 × 10−5, 2.32 × 10−3}
T2 −6.09 × 10−7 1.74 × 10−7 {−1.16 × 10−6, −5.67 × 10−8}

MIR 1 8.56 × 10−1 9.86 × 10−2 {5.44 × 10−1, 1.17}
T 7.07 × 10−5 1.88 × 10−4 {−5.24 × 10−4, 6.65 × 10−4}
T2 −2.52 × 10−7 8.71 × 10−8 {−5.29 × 10−7, 2.38 × 10−8}

TIR_31 1 1.03 1.98 × 10−2 {9.72 × 10−1, 1.10}
T −7.33 × 10−5 3.77 × 10−5 {−1.93 × 10−4, 4.63 × 10−5}
T2 −1.29 × 10−8 1.75 × 10−8 {−6.85 × 10−8, 4.27 × 10−8}

TIR_32 1 1.03 1.61 × 10−2 {9.76 × 10−1, 1.08}
T −4.62 × 10−5 3.07 × 10−5 {−1.44 × 10−4, 5.12 × 10−5}
T2 −2.61 × 10−8 1.43 × 10−8 {−7.13 × 10−8, 1.91 × 10−8}

Figure 6. Behaviour of the upper and lower mean emissivity functions εT,−(λ), εT,+(λ) as their range
approaches the full available spectrum. The flattening of the curves indicates that the mean emissivity
stabilises enough to allow us to approximate the full spectrum mean emissivity with the limiting
value for each given temperature.

With this qualitative analysis supporting our assumptions, we approximate the full
spectrum mean emissivity with it, and fit a quadratic polynomial for the available samples
(Figure 7), giving us the mean emissivity of lava as a function of temperature as:

ε(T) ' ε [2.17,21](T) = 0.97672 + 0.00004 T − 1.95062 · 10−7 T2 (10)
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Figure 7. Emissivity–temperature trend at a range of temperatures (773–1373 K) for the full spectrum,
with uncertainty <4%, as reported.

Similar to the single channel emissivity functions, the effective trend is shown in
Figure 7.

3.2. Spaceborne Data Results: Computation of Radiant Heat Flux
3.2.1. Landsat 7-ETM+ Data

The spaceborne scene acquired during the 2001 Mt. Etna eruption (Figure 8) was
used to isolate thermally anomalous pixels, corresponding to recorded radiances in the
two ETM+ SWIR bands (Band 5 and 7), which were used to compute the radiant heat flux,
following the method detailed in Section 2.3. Measured emissivity–temperature data in
the SWIR (2.17–2.35 µm) region were used as input parameters (Table 2), which allocate
specific emissivity in computation of radiant heat flux from ETM+ spaceborne data, using a
‘thresholding’ approach (Section 2.3). Considering that emissivity at SWIR 1 (1.55–1.75 µm)
wavelengths was not measured due to the FTIR instrument limitations (expected to behave
similarly to SWIR 2), assumed (extrapolated) maximum emissivity values (εmax) for SWIR
1 were allocated for each temperature step (Table 2).

A total of 958 radiant pixels, extracted from the Landsat-7 scene are analysed here,
using multicomponent emissivity-based allocation of specific emissivity values (Table 2)
based on recorded spectral radiance (W m−2sr−1µm−1) thresholds indicated in Figure 8
(bottom right). Here, emissivity of 0.84 was applied to 420 pixels, 0.83 to 370 pixels, and
0.82 to 168 pixels, whereas an emissivity of 0.81 and 0.80 was applied to none, as the highest
recorded radiance in Band 7 for this scene was 16.5 W m−2sr−1µm−1. Computation of
radiant heat flux using the multicomponent emissivity approach for the scene on 5 August
2001 produced a value of 2.03 gigawatts (GW).

3.2.2. MODIS Data

MODIS scenes acquired by Terra satellite over Mt Etna from 1 July to 30 August 2001
were processed to evaluate the contribution of the temperature-dependent emissivity
to the estimation of the satellite-derived effusion rate. Thus, we solved the system of
Equations (3)–(5) considering that the emissivity is a function of temperature and wave-
length, according to Equations (7) and (8). In order to evaluate the per-pixel expected
difference in the related radiant heat flux, i.e., the quantity we usually derive from satellite
data to obtain an estimation of the effusion rate, we first solved the system by considering
both a variable and a constant emissivity for a number of synthetic pixels. To build the
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synthetic pixels, we assumed for pc a range of variation from 0.0001 to 0.1, for pb between
0.8 and 0.99, and Tc between 400 and 800 K, fixed Tb equal to 300 K and Th to 1373 K, and
computed the integrated radiance. We then selected about 4000 pixels giving admissible
values (e.g., ph = 1− pb− pc > 0), solved the system of equations (Equations (3)–(5)),
and computed the difference between the radiant heat flux associated with the variable
emissivity against that associated with a constant emissivity of 0.9. In computing the
radiant heat flux, Equation (10) was applied to derive the emissivity.

Figure 8. (left) Study area (LFS1) [7] indicated on ETM+ TIR (Band 6) image, used here for visual
presentation purposes alone; (right) ETM+ scene, Band 7, acquired on 5 August 2001, showing all
radiant pixels, within the high-temperature thermal anomaly, used for computation of radiant heat
flux in this study (both SWIR Bands 5 and 7), using a multicomponent emissivity approach. The
spectral radiance (W m−2sr−1µm−1) ‘thresholding’ values used are shown in the table below the
inset on the right.

Table 2. Emissivity in SWIR Bands at a range of temperatures (773–1373 K).

Temperature (K) 773 823 873 923 973 1023 1073 1123 1173 1223 1273 1323 1373

εmax SWIR 1 0.805 0.804 0.837 0.867 0.857 0.846 0.825 0.805 0.825 0.791 0.736 0.755 0.753
εmeasured SWIR 2 0.805 0.804 0.837 0.867 0.857 0.846 0.825 0.805 0.825 0.791 0.736 0.755 0.753

Error (Series) 0.012 0.047 0.012 0.016 0.004 0.007 0.010 0.021 0.025 0.020 0.022 0.029 0.032
Radiance SWIR1 2.14 4.50 8.10 14.3 23.0 34.8 50.96 70.71 101.4 131.1 161.8 214.6 267.3
Radiance SWIR2 4.30 7.60 11.4 17.5 25.4 33.4 44.8 56.3 75.8 90.5 104.4 130.8 151.3
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Figure 9 shows the histogram of the relative error between the variable emissivity
and the constant pixels’ radiant heat flux or radiative power (RP). The relative error is
computed as:

∆RP = 2
(

RP εvariable − RP εconstant

RP εvariable + RP εconstant

)
(11)

Figure 9. Histogram of the difference between the radiant heat flux for variable emissivity and
constant emissivity computed for ~4000 theoretical pixels. The median value is 0.15 and the standard
deviation is 0.13.

Generally, the variable emissivity produces greater radiant heat flux. The median
value for the relative error is 0.15, whereas 0.08 is the 25th percentile and 0.23 the 75th
percentile. Thus, for the range of values taken into account, we found the relative error is
below 23% for 75% of the simulated pixels.

Regarding the real case study (i.e., the 2001 Mt. Etna eruption), we applied the HOT-
SAT hotspot detection algorithm [40] and solved the system of equations (Equations (3)–(5)).
Figure 10 shows the radiant heat flux values found for each thermally anomalous pixel,
from 15 July to 30 August 2001. Results confirm the behaviour found for theoretical pix-
els, with the radiant heat flux derived using variable emissivity usually greater than the
constant emissivity assumption. In this case, however, computing the same statistics on
the difference between the radiant heat flux in case of variable emissivity and the case
of constant emissivity, we found the median value is 0.06, whereas the 25th and the 75th
percentiles are 0.014 and 0.161, respectively.

3.3. Lava Flow Modelling Results

Numerical modelling was performed using GPUFLOW [41,42], a physics-based model
for the spatiotemporal evolution of lava flows, based on the Cellular Automaton paradigm,
whose numerical stability, reliability, and accuracy has been assessed in previous sensitiv-
ity analyses [43,44]. The model has been successfully used to forecast different eruptive
scenarios in various volcanic areas worldwide [5,45–48], and to assess lava flow haz-
ards [48–50] and mitigate the associated risk [51–53].
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Figure 10. (Top)—Per pixel radiant heat flux for variable emissivity (orange) and constant emis-
sivity (blue). (Bottom)—Relative error (grey squares) computed for MODIS images during
15 July–30 August 2001 at Mt. Etna.

To estimate the influence that the variation of emissivity has on the lava flow emplace-
ment, we performed two synthetic lava flow simulations, both starting from a single vent
located on a 20-degree inclined plane (i.e., the DEM, having a horizontal resolution of 5 m).
For the rheological properties, we used the typical parameters of Etnean lava (i.e., 1360 and
1143 K as extrusion and solidification temperatures, respectively, 2600 kg m−3 as density,
and 0.02 wt% as water content).

The only input parameter that differs in the two synthetic simulations (‘Simulation 1’
and ‘Simulation 2’), is the emissivity. In ‘Simulation 1’, GPUFLOW was executed using
a constant emissivity of 0.90, which is a typical value for basaltic surfaces, such as pol-
ished and rough basalts at 0.90 and 0.95, respectively [1], whereas ‘Simulation 2’ uses the
temperature–dependent emissivity equation (Equation (10)). The radiant heat flux values
obtained for the 2001 Etna eruption using a constant and multicomponent emissivity were
converted in the two TADRs reported in Figure 11. The TADR with constant emissivity,
termed ‘TADR 1’ here, shows a peak on 21 July at 21:50 GMT of 34.0 m3s−1, whereas ‘TADR
2’ has a higher peak of 38.0 m3s−1. The cumulated volume calculated from ‘TADR 2’ is
slightly higher than that of ‘TADR 1’ (26.4 and 23.4 million m3 respectively).
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Figure 11. MODIS-derived TADR using a constant (‘TADR 1’, red triangles) and the multicomponent
emissivity (‘TADR 2’, blue squares). The cumulative volumes are also reported (red curve for
‘TADR 1’, blue curve for ‘TADR 2’).

The final simulations are presented in Figure 12. The maximum length reached by the
lava flow of ‘Simulation 1’ is 5.87 km, whereas for ‘Simulation 2’ it is 6.53 km. The differences
are also evident in the maximum width (550 versus 570 m, respectively), in the area (2.09 versus
2.43 km2, respectively), and in the maximum thickness (30 versus 28 m respectively).

Figure 12. Final lava flow emplacements simulated by GPUFLOW on a 20-degree inclined DEM
using (a) constant emissivity of 0.9 and (b) temperature-dependent emissivity. Colours represent
the thickness of lava in meters, as reported in the legends. The white point indicates the flow start
position, whereas the black lines represent the contours of altitude (500 m intervals, from 2000 m to
0 m).

4. Discussion

Spectral signatures (Figure 4) are consistent and relatively comparable with previous
laboratory-based research of basaltic rocks in TIR (8.0–15.0 µm) at a low (~353 K) tempera-
ture [23]. However, our findings involve additional a high-to-very-high temperature range
(773–1373 K) and shorter wavelengths (2.17–8.0 µm), which demonstrate and confirm that
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emissivity of geological materials is not only dependent on the wavelength, but also the
temperature [14,16,54].

Observed trends in the upper SWIR (2.17–2.35 µm) and MIR (3.0–5.50 µm) show a
marked difference and more complex spectral shapes (i.e., lower emissivity and different
shape signature), compared to the previous study of the same eruption (and same samples),
in which reflectance data approach was employed [9].

Therefore, the FTIR results presented here (Figure 4) suggest that it is essential to
assess the role and significance of emissivity, not only as a ‘static’ and uniform value
relating to the solidified (cooled) surface, across all wavelengths and temperatures, but also
taking account of its response to thermal gradient and the emissivity–temperature link,
which were previously explored only at much lower temperatures and limited spectral
resolution [9,13,16,23]. This approach allowed us to determine the emissivity variation
with temperature change, in addition to the sensitivity of numerical lava flow modelling to
the emissivity parameter. This also provoked further investigation into the role and impact
of emissivity in lava flow dynamic modelling and hazard mitigation using spaceborne data,
as demonstrated in this study.

In order to make emissivity a standard input parameter, and to develop a procedure
for both spaceborne and modelling applications for Mt. Etna, the very-high temperature
laboratory data we used, as presented here, appears to be most complete available. It cov-
ers the most appropriate temperature range for Mt. Etna (≤1360 K) and nearly the full
wavelength range used in remote sensing (i.e., SWIR, MIR, TIR).

The impact of the dependency of emissivity on temperature in applications is currently
within the margin of errors introduced by the processing of the remote sensing data (e.g., the
radiant heat flux curve usually has an uncertainty of±30%, [29]), and by the approximations
in the modelling tools [43,44]. A more significant impact of the temperature-dependent
emissivity can instead be expected in the development of more sophisticated and complete
models for lava flow simulations, and in the development of more sophisticated remote
sensing techniques.

In remote sensing, an area of interest that deserves a more in-depth study is the
interaction between the emissivity (and its variability) and the TADR conversion constant.
We can follow the argument that the conversion is affected by the viscosity of lava because
lower viscosity leads to greater surface areas for the same mass flux rates [55]. On the other
hand, the viscosity of lava has a strong dependency on temperature, with variations of
two orders of magnitude between effusion and solidus temperature [31], where emissivity
affects the surface heat loss, and lower emissivity leads to higher temperatures being
maintained for a longer time, corresponding to lower viscosities. Therefore, with a ‘dynamic
experimentally deduced emissivity–temperature relation’, it may be necessary to develop
temperature-dependent TADR conversion functions that take into account how variable
emissivity affects the change in viscosity during the flow.

To study the relationship between variable emissivity and the evolution of viscosity
during the flow, the temperature-dependent emissivity relation (Equation (10)) may be inte-
grated in more sophisticated physical–mathematical models for lava flow simulations, such
as GPUSPH [56–58]. Running several simulations in GPUSPH, in controlled conditions,
it will be possible to study both how the reduced heat loss affects the change in viscosity
during the eruption, and the influence this has on the surface extension and ultimately the
heat map, as it would be perceived by remote sensing instruments.

We found that the satellite-retrieved radiant heat flux, considering a temperature
varying emissivity, is lower than what most studies used previously. In the case of the
2001 Mt. Etna eruption, most of the differences are below 16%, even if for some pixels this
difference can be more than 90%. Results for theoretical pixels show a bigger discrepancy,
with the relative error below 23% for the 75% of the simulated pixels.

The novel technique presented here, in which multicomponent emissivity is applied to
SWIR ETM+ data, chosen for spaceborne analysis, provides a useful ‘snap-shot’, indicative
of the current (instantaneous) state of activity, and cannot be used as a stand-alone approach.
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Therefore, we use it here in tandem with MODIS data to complement the computed radiant
heat flux range for the eruption and period analysed.

Furthermore, the computed radiant heat flux acquired on 5 August 2001, from two
markedly different platforms, showed values of 2.03 GW for ETM+ (20:35 UTM) and
2.56 ± 1.09 GW MODIS (21:10 UTM) if we consider the hotspot MODIS overlapping the
LSF1 flow (Figure 13). Despite spatial and temporal differences, the result produced by
two different platforms agree and can be used to constrain the radiant heat flux range
and uncertainty by combining available data and using the multicomponent emissivity
approach. Moreover, the laboratory work reported here should be extended to include
the lower SWIR wavelengths (e.g., 1.55–1.75 µm) for more accurate and complete radiant
heat flux estimates. The effect of considering the variability in emissivity on Mt. Etna has
a moderate but measurable impact on the forecasting of the emplacement (in the order
of 10%, and up to 15% if considering different inclinations of the DEM [41,42]). This is
partially due to the range of temperatures and viscosities of the lava on Mt. Etna. We expect
the impact to be more significant in volcanoes where lava reaches higher temperatures
and has lower viscosity (e.g., Kilauea, Hawaii; Fogo, Cape Verde; Fagradalsfjall, Iceland;
Nyiragongo, DR Congo), due to the combined effect of higher emissivity variation and the
higher distances covered with the resulting reduced cooling rate [16].

Figure 13. (left) Study area (LFS1) [7] indicated on a ETM+ TIR (Band 6) image, used here for visual
presentation purposes alone; (right) hotspot pixels derived from MODIS data, acquired on 5 August
at 21:10 UTC, superimposed on the Landsat 7, Band 7 data acquired on 5 August at 20:34 UTC, as
SWIR Bands (5 and 7) were used for ETM+ computation of radiant heat flux. MODIS pixel colours
are related to the value of radiant heat flux (e.g., bright red—high values, pale red—low values). The
dashed green line indicates the extent of LFS1 study area, whereas the solid green border line marks
MODIS pixels relating to ETM+ radiant pixel area in Band 7.
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The conversion of the two radiant heat flux results (using a constant and multicompo-
nent emissivity) produced two TADR curves for the lava flow simulations, with peaks that
differ by 4.0 m3s−1, determining a deficit of ~14% in the total DRE volume obtained using
a constant emissivity (Figure 11). This has a direct consequence in the lava flow modelling,
as demonstrated by the two synthetic GPUFLOW simulations (Figure 12). Indeed, the dis-
tribution of ‘Simulation 1’ is more ‘compact’ than that of ‘Simulation 2’, having a narrower
width (~4% less) and a shorter length (~11% less). This is mainly due to the difference
in the TADR peaks. The length change (~11%) is similar to that of a recent study that
investigated the impact of multicomponent emissivity on lava flow modelling (~7%) [16].
Conversely, the difference in volume has more impact in the area and thickness of the
two simulated lava flows, causing a dissimilarity of ~16% in the final area and of ~7% in
the maximum thickness.

5. Conclusions

Volcanologists and modellers have for many years relied on coarse spatial resolution
(≥1 km) spaceborne data in MIR and TIR, overlooking the impact that input parameters,
such as emissivity, can have on monitoring active volcanoes. This may be driven both by a
lack of reliable information on emissivity’s behaviour with temperature and by the dynamic
nature of volcanic hazards, favouring a higher repeat interval (temporal resolution) over
the greater detail (spatial resolution).

Current operational satellite-based volcano monitoring approaches, using moderate-to-
high temporal resolution data alone, would benefit from combining high-spatial resolution
data (e.g., Landsat series and/or MSI for Sentinel 2), where available. This would improve
the accuracy of operational and tactical volcanic crises management. In addition to this,
using appropriate input parameters, such as emissivity values that reflect variation with
temperature (multicomponent emissivity), would provide improved information to con-
strain thermal phenomena, such as lava flow lengths, and estimates related to volcanic
radiant heat flux, in addition to modelling applications [12].

Solitary, high-spatial resolution image data, with FTIR emissivity data in the upper
SWIR region, were used in this study to assess potential uncertainty in the radiant heat flux
calculated from moderate-to-high temporal resolution image data (MODIS). It is, however,
beneficial to exploit the enormous amount of currently available high-temporal resolution
baseline data to quantify the natural variability of the volcanic systems under investigation,
as solitary ‘snap-shot’ data alone cannot produce the temporal detail needed to track hourly
changes in activity at individual ongoing eruptions.

The impact that temperature-dependent emissivity has in the modelling and simula-
tion of lava flow dynamics in a digital 3D environment is twofold. First, for a given mass
flux rate, the lower emissivity at higher temperature can lead to emplacement differences
with respect to simulations with a constant emissivity, due to the temperature-dependent
viscosity of lava. Second, particularly in nowcasting applications, variable emissivity
affects the mass flux rate estimation itself. The combined effect of these aspects can lead
to differences in space of between 10% and 20% in the emplacement of the flow. A more
detailed analysis of the direct and indirect impact of the influence of the variable emissivity,
with more sophisticated physical models (e.g., GPUSPH), may shed further insights on the
relative importance of the relation between emissivity and temperature, both for remote
sensing and modelling applications.

The results in this study show that emissivity is both temperature and wavelength
dependent. Measured emissivity increases non-linearly with temperature decrease (cool-
ing), exhibiting significant variations above 900 K with values considerably lower than the
typically assumed 0.95 (especially in MIR). This new evidence has a measurable impact on
the computation of radiant heat flux from spaceborne data, and on modelling of lava flow
‘distance-to-run’ simulations. Furnished with improved input parameters (multicomponent
emissivity), the novel approach developed here can improve the reliability of results. This
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will lead to more complex and realistic spaceborne multi-platform, multi-payload volcano
monitoring systems for hazard assessment.
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