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Abstract: Parkinson’s disease (PD) is a neurological disorder that mainly affects the motor system.
Among other symptoms, hypomimia is considered one of the clinical hallmarks of the disease.
Despite its great impact on patients’ quality of life, it remains still under-investigated. The aim of
this work is to provide a quantitative index for hypomimia that can distinguish pathological and
healthy subjects and that can be used in the classification of emotions. A face tracking algorithm
was implemented based on the Facial Action Coding System. A new easy-to-interpret metric (face
mobility index, FMI) was defined considering distances between pairs of geometric features and a
classification based on this metric was proposed. Comparison was also provided between healthy
controls and PD patients. Results of the study suggest that this index can quantify the degree of
impairment in PD and can be used in the classification of emotions. Statistically significant differences
were observed for all emotions when distances were taken into account, and for happiness and anger
when FMI was considered. The best classification results were obtained with Random Forest and
kNN according to the AUC metric.

Keywords: Parkinson’s disease; facial expression; Facial Action Coding System; feature tracking;
emotions; classification; face; hypomimia

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor
symptoms such as tremor, rigidity, bradykinesia, and gait and balance problems. There is
also a plethora of non-motor symptoms that are experienced by PD individuals and that
have a strong impact on patients’ and their care-partners’ quality of life [1]. Emotional
processing is impaired at different levels in PD [2] including facial expressivity and facial
emotion recognition. Hypomimia/amimia is a term used to describe reduced facial ex-
pression in PD, which is one of the most typical features of the disease [3]. Despite being
clinically well recognized, its significance, pathophysiology, and correlation with motor
and non-motor symptoms is still poorly explored [4,5]. This is partially due to the scarcity
of objective and validated measures of facial expression [6].

Face expressions are an important natural means of communicating, and have been
the objective of several studies since the beginning of the 20th century [7] in healthy and
different clinical populations. Hjortsjo [8] provided an anatomic description of muscular
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movements during facial expressions and their subdivision depending on the displayed
emotions. Around the same period, other authors approached a subdivision of the mean-
ing of the expressions by their inherent emotionality. This can be found in the work of
Ekman and Friesen [9], who defined a precise small universal discretization of the six basic
emotions according to Darwin [10] as follows: fear, anger, disgust, happiness, sadness,
and surprise. Furthermore, the Facial Action Coding System (FACS) [9] was developed
that describes facial expressions by means of action units (AUs). Of 44 defined FACS AUs,
30 AUs are anatomically related to the activation of specific facial muscles, and they can
occur either individually or in combination. Through this encoding system, more than 7000
different AU combinations have been observed [9]. This system is still used in manifold
fields and applications.

The analysis of facial expressions has advanced in many domains, such as face de-
tection, tracking, pattern recognition, and image processing. In recent years, different
algorithms and architectures have been proposed in Facial Expression Recognition (FER)
systems. In order to extract relevant information for face and facial expression analysis
they generally follow three main steps:

(a) Face landmark detection: Identification of landmarks is based on specific face features
positions (i.e., eyes, mouth, nose, eyebrows, etc.). Usually, after landmarks have
been detected, a step of normalization is performed by aligning each face to a local
coordinate framework in order to reduce the large variation introduced by different
faces and poses [11].

(b) Feature extraction: Feature construction and/or selection is usually based on the
coordinates obtained from (a), and either an appearance or a geometric approach can
be used. The former employs the texture of the skin and facial wrinkles, whereas the
latter employs the shape, i.e., distances and angles of facial components [12].

(c) Classification: The last step concerns the classification of different emotions or ex-
pressions. Different methods are applied in the literature depending on the previous
phases. The most-used classification algorithms in conventional FER approaches
include Support Vector Machines, Adaboost, and Random Forest [13].

At present, algorithms for automatic facial analysis employing these kinds of method-
ologies are gaining increasing interest. The aims of these systems are facial comparison
and/or recognition (e.g., OpenFace software [14]), in addition to the identification and
classification of different emotions (e.g., EmoVu, FaceReader [15], FACET, and Affectiva
Affdex [16]). Regards the latter objective, it is crucial to note that these algorithms usually
adopt machine or deep learning (DL) techniques that exploit enormous databases of healthy
subjects’ images. When using these methods to assess impairments in face mobility in a
given pathology (e.g., PD, depression, obsessive-compulsive disorder [17]), the evaluation
of the symptom is based on the measurement of the deviation of the acquired expressions
from the corresponding ones in healthy individuals. Despite the growing interest in the
application of FER algorithms to hypomimia, in particular to PD [4,18,19], there is still
a paucity of work regarding the quantitative assessment of the degree of impairment in
these individuals.

Emerging literature points towards the quantification of hypomimia as a potential
marker for diagnosis and disease progression in PD, and some attempts in this area have
been recently made. Bandini et al. [20] evaluated hypomimia in a cohort of PD subjects.
They estimated a quantitative measure from the neutral expression in a subset of basic
emotions (happiness, anger, disgust, and sadness), considering both the actuated and the
imitated ones. Grammatikopoulou and colleagues [21] proposed an innovative evaluation
of this symptom in PD based on images captured by smartphones. Two different indexes of
hypomimia were developed without discriminating among different emotions. A review of
automatic techniques for detecting emotions in PD was recently carried out by Sonawane
and Sharma [22]; they investigated both machine and DL algorithms used in the classifica-
tion of emotions in PD subjects with hypomimia. Moreover, they addressed the problem of
expression quantification and related pending issues. In 2020, Gomez and colleagues [19]
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proposed a DL approach to model hypomimia in PD exploring different domains. The
main issue they encountered when using such techniques was the lack of large databases
of PD subjects’ videos and/or images to be exploited in this approach. In summary, the
current state-of-the-art hypomimia evaluation proposes methodologies that aim, first, to
distinguish PD and healthy control subjects, and second to develop quantitative metrics.
The indexes available to date still have some limitations, such as the assessment of the
symptom without considering the specific face muscles involved or the disregard of the
basic emotions in the analysis [5]. The objective of the present study is to provide a quanti-
tative measure of hypomimia that tries to overcome some of these limitations and is both
able to differentiate between pathological and physiological states and classify the basic
emotions.

In particular, the main contributions of this work are:

• the design of a new index based on facial features to quantify the degree of hypomimia
in PD and link it to the different emotions;

• the definition of a stand-alone metric able to quantify the degree of hypomimia in each
subject independently from the comparison with healthy subjects’ databases, thus
enabling tracking of disease progression over the time;

• a spatial characterization in face regions strictly related to the movement of specific
muscles, thus enabling targeting specific rehabilitation treatments.

2. Materials and Methods
2.1. Participants

A total of 50 PD subjects and 20 healthy control (HC) subjects were enrolled for the
study. Power analysis for sample size estimation was applied [23] (p = 0.05, power =
80%, values from [24], Appendix A). People with idiopathic PD were recruited from the
Department of Casa di Cura “Villa Margherita” in Vicenza, and healthy controls were
recruited from hospital personnel. This study was approved by the local ethics committee
(ARS_PD1/100-PROT). A written informed consent was obtained from all participants.
Data from 3 healthy subjects were discarded from the analysis due to artifacts in the video
sequences. Table 1 reports the demographic data of the participants. For PD individuals,
data on disease duration and Unified Parkinson’s Disease Rating Scale (UPDRS) Part III in
the ON medication status were collected.

Table 1. Demographic data of participants (PD = subjects with Parkinson’s disease; HC = healthy
control subjects).

PD (n = 50) HC (n = 17)

Gender 21 F 10 F
Age (years) 69.4 ± 7.79 66.56 ± 7.16

Disease duration (years) 8.28 ± 5.21 -
UPDRS (Part III) 36.19 ± 16.37 -

Inclusion and Exclusion Criteria

Patients were eligible for inclusion if they were diagnosed with Parkinson’s disease
according to UK Brain Bank criteria. The diagnosis was reviewed by a movement disorders
neurologist. Exclusion criteria were: presence of clinically significant depression (according
to Diagnostic and Statistical Manual of Mental Disorders-V (DSM-V) criteria and Beck’s
depression inventory (BDI-II) score >17); presence of dementia (according to DSM-V criteria
and MMSE score < 24); presence of deep brain stimulation surgery.

2.2. Pipeline

A schematic representation of the processing pipeline is reported in Figure 1. Data
acquisition, processing, and statistics are described in Sections 2.2.1–2.2.3 respectively. Data
were imported into MATLAB (R2017a) and custom code was developed to perform the
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analysis. Moreover, unsupervised classification was implemented in Orange data mining
toolbox [25], as described in Section 2.2.4.
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Figure 1. Data processing pipeline: (a) FMI definition from raw data to normalized distances and FMI
calculation; (b) emotion classification with the normalized distances and FMI datasets. The outputs of
pipeline (a), FMI and normalized distances datasets, are used as inputs for the classification pipeline (b).

2.2.1. Data Acquisition

Frontal face videos of the participants were recorded while they were instructed by
the researcher to perform, in random order, the six basic facial emotions: anger, disgust,
fear, happiness, sadness, and surprise. The neutral face expression was also acquired either
at the beginning or at the end of the video session while the participant was invited to
remain silent and look at the video camera while resting. Subjects were comfortably seated
in front of a commercial camera (GoPro Hero 3, 1920 × 1080 pixels, 30 fps) placed at eye
level. A neutral background was located behind them [5].

2.2.2. Data Processing

For each of the six emotions and the neutral expression, four frames were extracted
from the acquired videos; these were selected as the frames immediately following the
instruction given by the clinician. Based on the FACS encoding system, a set of facial
landmarks was defined. This corresponds to forty points in the 2D space-image; Figure 2
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describes the different landmarks. Following Cootes et al. [26], 3 types of facial feature points
were adopted: points labeling parts of the face with application-dependent significance,
such as the eyebrows and the lip contour (see Figure 2, feature numbers 1, 2, 3, 4 and 33,
34, 35); points labeling application-independent elements, such as curvature extrema (the
highest point along the bridge of the nose, see feature numbers 18 on Figure 2); and points
interpolated from the previous two types, such as feature numbers 19 and 23 (Figure 2).
Each point was tracked with TrackOnField (BBSoF S.r.l. [27]). From the coordinates of these
landmarks, forty Euclidean distances were computed (Figure 3) per frame.
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Each obtained value was then averaged over the extracted frames, obtaining a single
value per each distance. Then, each distance was normalized to the corresponding value in
the neutral expression (Equation (1)).

ratioi =
di
(
emotionj

)
di(neutral)

i = 1 . . . 40, j = 1 . . . 6 (1)

Values outside the interquartile range were excluded from the analysis. Lastly, a total
FMI was defined and calculated as follows:

FMIj =
∑n_dist

i=1 |1− ratioi|·100%
n_dist

j = 1 . . . 6 (2)

For each emotion (j = 1...6), the FMI was determined as the summation of the per-
centage deviation from the neutral expression (|1− ratioi|·100%) of all the distances; the
FMI was then normalized to the number of available distances (n_dist). Overall, FMI rep-
resented an intuitive description of the mobility of face muscles in the different emotions
with respect to the neutral expression.

Moreover, three indexes per face region were computed. The same formula as before
was applied (Equation (2)) but distances were grouped according to Figure 3a–c. A space
characterization was performed in the upper (FMI_up), middle (FMI_mid), and lower
(FMI_low) parts of the face, respectively.

Finally, a further FMI was computed by considering only the statistically significant
distances for each emotion (Appendix B).
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2.2.3. Statistics

Statistical analysis was performed in order to compare, first, the normalized distances,
and then the different FMIs. Non-parametric tests were applied to the two cohorts of sub-
jects and to each emotion. The Kruskal–Wallis test (p < 0.05) was implemented to compare
the normalized distances (ratio in Equation (1)). The Wilcoxon rank sum test (p < 0.05) was
used to compare the different FMIs (FMI, FMI_up, FMI_mid, FMI_low) between healthy and
PD individuals.

Finally, a correlation analysis was performed between FMIs and values of UPDRS
III, age, disease duration, and gender per each emotion in the PD cohort of subjects only.
Pearson correlation coefficients (r) were computed for all the quantities, except for gender,
which, being a binomial variable, required the use of the Point-biserial correlation coefficient
(rPB) [28].
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2.2.4. Supervised Classification

Different supervised classification algorithms were applied. The following models
were evaluated: k-Nearest Neighbors (kNN), Tree, Random Forest, Neural Network, Naïve
Bayes, and CN2 rule inducer. Algorithms were applied to both normalized distances and
the FMI of the two cohorts with the aim to discriminate the different emotions. The distances
dataset only was preprocessed with a principal component analysis (PCA, 10 components,
81% explained variance) due to the presence of a high correlation among the data. Given
the reduced dimension of the training datasets, test phases of the classification were
performed with a leave-one-out cross validation in both datasets. In order to evaluate the
best classification technique, the following standard performance metrics were calculated:
area under the curve (AUC), F1 score, precision, and recall [29].

3. Results
3.1. Results of the Statistical Analysis of Distances and FMIs

In reference to Figure 3 (column N) each normalized distance (Equation (1)) was
characterized by a number. Figure 4 reports the normalized distances (ratio) per each
emotion in the three face regions: upper, middle, and lower. Values greater than 100%
represented an increase from the neutral expression in the specific distance and, conversely,
while considering values lower than 100%. Therefore, the closer the distance to 100%
the less the variation from the neutral expression. When comparing the two cohorts of
subjects, statistically significant differences (p < 0.05) between corresponding distances
were highlighted per each emotion (Figure 4 and Table 2). Results of the analysis for
the FMI computed by considering only the distances reported in Table 2 can be found in
Appendix B.
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Figure 4. Values of normalized distances per each emotion in the three face regions: upper, middle,
and lower. The x-axis represents the distance number, y-axis the values of ratios expressed in % from
the neutral expression. Darker colors correspond to the HC population whereas lighter ones to PD.
Red * highlights statistically significant differences at the 0.05 confidence level.

When combining all the distances in the FMI, the comparison between the two pop-
ulations of subjects (see Figure 5) revealed statistically significant differences only in the
happiness emotion (p < 0.05), even though HC subjects displayed a higher absolute value
for almost all the emotions.
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Table 2. Statistically significant ratios obtained per each emotion and face region. ns = non-significant.

Emotion Upper Face Middle Face Lower Face

Fear 36 17, 19, 21, 22 39
Anger 2, 3, 4, 5 ns ns

Disgust 2, 12 ns 35
Happiness 2, 3, 6, 7 14, 17, 20, 29 15, 32, 33, 34, 35

Sadness ns 19, 24, 25 32, 34
Surprise 1, 2, 3, 4, 36 ns 9, 10, 11, 35
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Figure 5. Boxplot of the total FMI per emotion. The x-axis represents the different emotions; the y-axis
reports the value of FMI. HC and PD subjects are described in blue and red, respectively. Greater
values of FMI represent greater deviation from the neutral expression. Red * highlights statistically
significant differences at the 0.05 confidence level. FMI1 is dimensionless.

When considering the FMI associated with the three face regions (Figure 6d), it can
be noted that the lower (Figure 6c) part index was the only one that displayed statistically
significant differences between the two populations of subjects in both anger and happiness
emotions (p < 0.05).

In Table 3, the correlation coefficients between FMIs and clinical and demographic
variables (UPDRS III, duration of the disease, age, gender) per each emotion are reported.
The analysis was performed on the PD cohort of subjects only and values of FMI were
employed. No statistically significant correlations (p < 0.05) were highlighted between the
different quantities.

Table 3. Correlation coefficients between UPDRS III, duration, age, and gender values and FMI
of each emotion. r = Pearson correlation coefficient, rPB = Point-biserial correlation coefficient,
p = p value (p < 0.05).

(UPDRS III; FMI) (Duration; FMI) (Age; FMI) (Gender; FMI)

Emotion r p r p r p rPB p

Fear 0.012 0.933 0.144 0.335 0.038 0.796 0.155 0.278
Anger 0.015 0.920 0.114 0.447 0.085 0.555 0.031 0.827

Disgust 0.041 0.783 0.252 0.087 0.167 0.246 0.167 0.241
Happiness 0.005 0.970 0.070 0.639 0.068 0.640 0.030 0.833

Sadness 0.015 0.921 0.242 0.101 0.214 0.136 0.078 0.587
Surprise 0.099 0.503 0.017 0.909 0.212 0.139 0.080 0.578
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Figure 6. FMI per face region. (a) Distances grouped by face region; orange: upper face, green: middle
face, blue: lower face; (b) FMI_up; (c) FMI_mid; (d) FMI_low. Darker colors refer to HC subjects,
lighter colors to the PD cohort of subjects. Bar plot of the FMI values are reported as mean ± SD
per cohort. Red * highlights statistically significant differences at the 0.05 confidence level. FMI1 is
dimensionless.

3.2. Classification Results

Results of the classification step are reported in Table 4 in terms of AUC and F1
score values, whereas results referring to the other metrics are included in Appendix C.
Classification of the distances database was performed as a validation phase to assess the
feasibility of classifying through the FMI database. The Random Forest algorithm showed
the best score on the distances databases both in HC and PD cohorts, obtaining AUC
values ranging between 94.3 and 91.6, and F1 scores between 76.2 and 71.5, respectively.
By comparison, kNN was found to be the optimal technique in the classification with
FMI; AUC values ranging between 88.9 and 88.4 and F1 scores between 70.1 and 73 were
respectively obtained in the HC and PD datasets.

Table 4. Results of supervised classification. AUC and F1 values are reported for the different
classification methods. Dist_HC and Dist_PD refer to the dataset of normalized distances with the
preprocessing step of PCA, whereas FMI_HC and FMI_PD refer to the FMI dataset.

AUC [%] F1 Score [%]

Dist_HC Dist_PD FMI_HC FMI_PD Dist_HC Dist_PD FMI_HC FMI_PD

kNN 91.4 (±7.11) 89.4 (±4.03) 88.9 (±6.18) 88.4 (±3.75) 75.7 (±15.2) 71.2 (±5.77) 70.1 (±13.2) 73.0 (±1.7)
Tree 83.6 (±6.29) 83.3 (±5.80) 77.5 (±10.83) 82.0 (±3.10) 61.6 (±18.9) 67.6 (±7.84) 40.1 (±28.5) 59.2 (±8.7)

Random Forest 94.3 (±9.37) 91.6 (±3.39) 81.6 (±8.88) 82.5 (±4.94) 76.2 (±10.1) 71.5 (±5.88) 46.2 (±18.7) 62.9 (±6.9)
Neural Network 90.8 (±6.40) 89.0 (±5.79) 42.4 (±10.40) 60.5 (±10.95) 71.0 (±14.4) 63.5 (±12.8) 21.0 (±13.2) 25.1 (±23.9)

Naive Bayes 87.2 (±8.60) 80.7 (±7.01) 44.2 (±11.84) 52.0 (±10.86) 61.7 (±12.5) 43.4 (±19.6) 15.9 (±13.2) 30.3 (±11.1)
CN2 rule inducer 85.1 (±9.55) 85.0 (±3.86) 66.9 (±8.07) 71.4 (±5.58) 69.5 (±6.1) 73.4 (±4.89) 30.8 (±21.8) 44.5 (±12.8)

4. Discussion

Developing an automatic system for AU recognition is challenging due to the dynamic
nature of facial expressions. Emotions are communicated by subtle changes in one or a few
facial features occurring in the area of the lips, nose, chin, or eyebrows [30]. To capture
these changes, different numbers of facial features have been previously proposed and,
irrespective of their number, these landmarks cover the areas that carry the most important
information, such as eyes, nose, and mouth [31]. Although more points provide richer
information, they require more time to be detected. In order to quantify the involvement
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of each muscle with regard to each specific emotion, a face mobility index was developed
based on distances between points of insertion of each muscle (see Figures 2 and 3) coupled
with significant facial features. A total index (FMI) was defined in order to summarize the
overall face muscles involvement.

Based on these metrics, a population of PD subjects was compared with a group
of healthy controls matched by age and gender. Through the distances analysis, a fine
spatial characterization of movements related to muscle activity was obtained. Statistically
significant differences were found among emotions between the two cohorts of subjects.
According to [30], each emotion can be described by a specific set of AUs and this dataset
highlighted impairments related to specific AUs and related muscles. A notable example
of this involves the happiness emotion. Statistically significant differences were found
in distances number 15, 32, 33, 34, and 35 in the lower part of the face; these quantities
represent the movement of the combination of AUs 12 and 25, which are the characteristic
AUs for happiness. Because AUs and face muscles are strictly related (see Appendix D), it
can be noted that PD people displayed impairments in the Zygomatic Major and Depressor
Labii muscles, and this finds agreement with [32]. Another example, considering the upper
face, is the surprise emotion, described by AUs 1 and 2. Values greater than the neutral
expression were found in both HC and PD people, but the latter displayed less mobility
associated with those AUs corresponding to the Frontalis Muscle [33]. The anger and
sadness emotions had statistically significant differences in the distances of the upper and
lower face regions, respectively, showing deficits in the characteristic AUs 4 and 7 in anger,
and AU 15 in sadness. It can be concluded that the corresponding muscles, Orbicularis
Oculi and Triangularis, showed impairments in PD subjects. Fear displayed statistically
significant differences in the upper region (distance number 36) associated with AUs 1
and 4 (Frontalis, Pars Medialis, and Corrugator Muscles), in the middle region associated
with AU 20 (Risorius), and in the lower region associated with AU 25 (Orbicularis Oris).
Finally, disgust revealed statistically significant differences in the upper region related to
the activity of the Orbicularis Oculi muscle, and in the lower region in those distances
associated with AU 17, in accordance with [34].

When considering face mobility in the overall metric, as expected, FMI reported
general higher values in HC with respect to PD individuals even though only the happiness
emotion revealed statistically significant differences. Whereas, when comparing the three
FMIs in the upper, middle, and lower regions, it can be noted that happiness was still
the most impaired in the middle and lower parts of the face. Furthermore, anger also
showed statistically significant differences in the lower part between the two cohorts of
subjects (Figure 6d), showing in PD people greater impairments in the related AU 24 and
consequent Orbicularis Oris muscle.

Regarding the analysis of the correlation between the different demographic and
clinical data, and the FMI values in the PD subjects, surprisingly, no significant correlations
emerged. This may be interpreted as the ability of the proposed metric to measure different
aspects of the symptom, which could be considered to be complementary to the standard
clinical scales. In this regard, it is worth mentioning that UPDRS III primarily assesses
patients’ appendicular function [35].

The classification algorithms showed good results in the preliminary analysis with
the normalized distances databases. As expected, the AUC and F1 scores calculated on the
HC individuals were higher than those of the PD cohort of subjects, despite the differences
in the size of the datasets (17 vs. 50 subjects). These outcomes validated the possibility
of using the new developed FMI index to perform classification and demonstrated the
differences in expressivity in the two cohorts of subjects. The second step of classification
involved the FMI datasets. Encouraging results were achieved even if performance values
were inferior to those obtained with the former analysis. The kNN algorithm outperformed
the other techniques in both HC and PD datasets.

Some limitations in the present study must be highlighted. Firstly, emotions were
performed according to indications given by clinicians. This consideration can be overcome
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by naturally inducing the emotion by other stimuli (e.g., videos or movies); however, the
downside of this approach is the uncertainty in the specific emotion that is elicited in the
subject. Secondly, it is worth mentioning that the total UPDRS III score was employed in
the correlation analysis. Furthermore, images were analyzed in the 2D image space, leading
to a reduced accuracy in the measured quantities. The authors are aware of this limit, but
this type of method was employed in order to simplify the setup, thus avoiding multiple
camera acquisition and calibrations. In terms of classification, it is important to note that
all the analyses were validated with the leave-one-out cross validation technique in order
to cope with the limited sample of subjects. Finally, straightforward conventional machine
learning techniques were employed rather than DL methods, which may be considered the
most emerging approaches in this domain. However, due to its limited dataset, this study
can be considered a feasibility analysis to assess whether this new index (FMI) may be an
effective metric.

Future analysis could involve more advanced techniques, such as DL, increasing
the number of subjects with relative FMIs. This approach will enable the introduction
of automatic metric computation and real-time applications with possible time evolution
analyses. Overall, the final aim of the proposed study could be the combination of all the
proposed methods into a single easy-to-use tool to be adopted in clinical and research
applications able to track disease progression, tailor targeted therapies, and evaluate their
efficacy. Comparison among different rehabilitation interventions for hypomimia could be
performed by assessing the new developed metric in the pre- and post-treatment conditions.
Moreover, spontaneous emotion expressiveness could also be evaluated since this research
includes emotions triggered by external instructions.

Nevertheless, other future investigations could be carried out in order to link the
standard clinical assessment (UPDRS III items specifically related to hypomimia, i.e., facial
expression and speech) with the proposed metrics.

Finally, by considering the relationship between face anatomical landmarks and muscle
functions, future developments could also consider including the simultaneous acquisition
of muscle activity through surface electromyography, as in [32,34], for validation purposes.

5. Conclusions

Although copious research has been undertaken on PD, hypomimia remains substan-
tially under-investigated. The state-of-the-art research suggests evaluation of the symptom
should be undertaken by means of clinical scales (UPDRS III item 3.2), which suffer from
poor inter-rater repeatability, thus justifying the need to provide a more objective measure
of facial expressiveness and recognition [5]. The present contribution showed the possibility
of quantitatively characterizing the degree of hypomimia in the PD population. Moreover,
through the proposed methodology, face muscles associated with a specific emotion (i.e.,
AU [9]) can be identified, thus providing a tool for planning target interventions. The
overall metric represents a stand-alone methodology for measuring the degree of impair-
ment without the need to be supported by the comparison with a database of healthy
subjects [20]. Nevertheless, the application of the same methodology to the control group
showed the ability to better highlight the specific impairment associated with PD, thus
also supporting the adoption of such an index for classification purposes. Finally, both the
proposed normalized distances and FMI can be considered a comprehensive description
of face mobility that can become a powerful tool to quantitatively measure the degree of
hypomimia associated with specific emotions in PD subjects.
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The following abbreviations are used in the manuscript:

PD Parkinson’s Disease
FMI Face Mobility Index
FACS Facial Action Coding System
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FER Facial Expression Recognition
DL Deep learning
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UPDRS Unified Parkinson’s Disease Rate Scale
DSM Diagnostic and Statistical Manual of Mental Disorders
MMSE Mini Mental State Evaluation
kNN k-Nearest Neighbors
PCA Principal Components Analysis
AUC Area Under the ROC Curve
ns Non-Significant

Appendix A

Power analysis for sample size estimation was applied according to [23] following
equation (5) for unequal sized group. Chosen values of p value and power were p = 0.05
and power = 80% respectively. Values of FMI metric for happiness emotion were used
from [24].

First, N was computed assuming that the groups were equal sized according to [23]
Equation (2):

N =
2
d2 cp,power

where N is the required number of subjects in each group, d is the standardized difference
(target difference/standard difference) and cp,power is a constant defined by the values
chosen for the p value and power. In this case cp,power = 7.9 and according to [24]:

mean FMI HC = 14.458; mean FMI PD = 11.295; SD = 3.5
d = 14.458−11.295

3.5 = 0.9037

Then N is adjusted according to the actual ratio of the two groups (k) with the revised
total sample size N′:

N′ = N(1 + k)2

4k
In this case k = 50/17=2.94.
Finally, the two individual sample sizes in each of the two groups are: N′/(1 + k) and

kN′/(1 + k) resulting in:
NHC = 38.12 subjects
NPD = 12.96 subjects
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Appendix B

FMI computed on statistically significant distances according to Equation (2) and dis-
tances presented in Table 2 is reported in Figure A1. No statistically significant differences
were highlighted. Figure A2 represents FMI computed on the same quantities grouped by
face regions. Statistically significant differences (p < 0.05) were found in surprise in FMI_up.
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Appendix C

Classification results for precision and recall metrics for the different classification
techniques are reported in Tables A1 and A2, respectively.
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Table A1. Precision. Dist_HC and Dist_PD refer to the dataset of normalized distances with the
preprocessing step of PCA whereas FMI_HC and FMI_PD refer to the FMI dataset.

Precision

Dist_HC Dist_PD FMI_HC FMI_PD

kNN 0.768 0.716 0.704 0.732
Tree 0.631 0.683 0.391 0.598

Random Forest 0.769 0.718 0.467 0.630
Neural Network 0.719 0.633 0.176 0.255

Naive Bayes 0.635 0.425 0.139 0.258
CN2 rule
inducer 0.703 0.737 0.289 0.449

Table A2. Recall. Dist_HC and Dist_PD refer to the dataset of normalized distances with the
preprocessing step of PCA whereas FMI_HC and FMI_PD refer to the FMI dataset.

Recall

Dist_HC Dist_PD FMI_HC FMI_PD

kNN 0.765 0.710 0.706 0.730
Tree 0.618 0.673 0.422 0.590

Random Forest 0.765 0.717 0.461 0.630
Neural Network 0.706 0.640 0.275 0.320

Naive Bayes 0.608 0.450 0.196 0.367
CN2 rule
inducer 0.696 0.733 0.343 0.457

Appendix D

Table A3 describs AUs, related names according to FACS [9] and corresponding
muscles. Table A4 represents the basic emotions described by AUs according to [30].

Table A3. Description of the 44 AUs defined by Ekman and Friesen with their name and, when
specified, corresponding muscles associated.

AU Number FACS Name Muscular Basis

1 Inner brow raiser Frontalis, pars medialis
2 Outer brow raiser Frontalis, pars lateralis
4 Brow lowerer Depressor glabellae; depressor

supercilli; corrugator
5 Upper lid raiser Levator palpebrae superioris
6 Cheek raiser Orbicularis oculi, pars orbitalis
7 Lid tightener Orbicularis oculi, pars palebralis
9 Nose wrinkler Levator labii superioris, alaeque nasi
10 Upper lid raiser Levator labii superioris, caput

infraorbitalis
11 Nasolabial fold deepener Zygomatic minor
12 Lip corner puller Zygomatic major
13 Cheek puffer Caninus
14 Dimpler Buccinator
15 Lip corner depresor Triangularis
16 Lower lip depressor Depressor labii
17 Chin raiser Mentalis
18 Lip puckerer Incisivii labii superioris; incisive labii

inferioris
20 Lip stretcher Risorius
22 Lip funneler Orbicularis oris
23 Lip tightner Orbicularis oris
24 Lip pressor Orbicularis oris
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Table A3. Cont.

AU Number FACS Name Muscular Basis

25 Lips part Depressor labii, or relaxation of
mentalis or orbicularis oris

26 Jaw drop Masetter; temporal and internal
pterygoid relaxed

27 Mouth stretch Pterygoids; digastric
28 Lip suck Oribicularis oris
19 Tongue out
21 Neck tightener
29 Jaw thrust
30 Jaw sideways
31 Jaw clencher
32 Lip bite
33 Cheek blow
34 Cheek puff
35 Cheek suck
36 Tongue bulge
37 Lip wipe
38 Nostril dilator Nasalis, Pars Alaris
39 Nostril compressor Nasalis, Pars Transversa and

Depressor Septi Nasi
41 Lid droop Relaxation of Levator Palpebrare

Superioris
42 Slit Orbicularis Oculi
43 Eyes closed Relaxation of Levator Palpebrae

Superioris
44 Squint Orbicularis Oculi, Pars Palpebralis
45 Blink Relaxation of Levator Palpebrae and

Contraction of Orbicularis Oculi, Pars
Palpebralis

46 Wink Orbicularis Oculi

Table A4. Specific AUs involved in the basic emotions according to [30].

Emotion AUs

Anger 4, 7, 24
Disgust 9, 10, 17

Fear 1, 4, 20, 25
Happiness 12, 25

Sadness 4, 15
Surprise 1, 2, 25, 26
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