Base shifting, Splicing, Deflating on Index Number (P.ELAVARASI,Dr.S.SANGEETHA,P.PRIYA,R.RAMYA) (<u>ramya25071987@gmail.com,sangeethasankar2016@gmailcom</u>) Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous) Perambalur

Abstract: In this paper we are learn with some definitions base shifting index numbers and we are proving some related index problems .

Keywords: Index base number , average number, Clothing prices Introduction:

An index number is a statistical value that measures the change in a variable with respect to time. Index numbers are meant to study changes in the effects of factors which cannot be measured directly .Two variables that are often considered in this analysis are price and quantity. With the aid of index numbers, the average price of several articles in one year may be compound with the average price of the same quantity of the same articles in a number of different years. These are several sources of 'official' statistics that contain index numbers for quantities such as food prices. Clothing prices housing, wages and so on

BASIC DEFINITIONS:

Definition: 1.1

Factor Reversal test is a which holds that the product of price index and the Quantity index should be equal to the corresponding value index.

Symbolically if P_{01} is the price index of the current year and Q_a is the Quantity index of the current year.

P01 Q01 = $\frac{\sum P_1 q_1}{\sum p 0 q 0}$

Definition : 1.2

Circular test is just an extension of the time reversal test. According of this test the index should work in a circular fashion. Another index number is computed for 2 on the base period and soon. The three products should be equal to 1. Symbolically if there are indices P_{01} , P_{12} . P_{23} the circular test will be satisfied if

P01 x P12 x P23 = 1

Definition : 1.3

It is a good for onto evaluate its validity and constancy in the long run. All weighted indices are subject to test and evaluation the following tests are generally initiated by people to know the validity of indicies.

Definition : 1.4

A weighted index is an index where weighted are assigned to the various items constituting the index.

Definition : 1.5

An unweighted index is an index where equal weights are implicitly assigned.

Definition : 1.6

Simple aggregative method is expressing aggresate of price in any year as a percentage of their aggregate in the base year.

Symbolically

$$P_{01} = \frac{\sum P_0}{\sum P_1} x \ 100$$

Where

 $\sum P_1$ = Total of current year prices for various commodities.

 $\sum P_0$ = Total of base year prices for various commodities.

Definition : 1.7

For each commodity or item the price relative ${}^{P_1}/{}_{P_0}$ is found and the average of these relations is obtained using any one of the average. These prices indicies based on arithmetic mean (AM) and Geometric mean (GM) are given by

$$P_{1}(A.M) = \frac{\sum \left(\frac{P_{1}}{P_{0}}x100\right)}{n}$$
$$P_{0}(G.M) = antilog\left[\frac{\sum \log\left(\frac{P_{1}}{P_{0}}x100\right)}{n}\right]$$

Definition : 1.8

Index number (based on new base year) = $\frac{Current year's old index number}{New base year'sold index number} x 100$

Definition : 1.9

Index No. of Current year x old index No. of Spliced

 $\frac{New \ base \ Year}{100}$ **Definition : 1.10**

Real wage = $\frac{Money wage}{Price index} \ge 100$

Problem: 2.1

Reconstruct the following index number numbers by shifting base to (i) 2000 and (ii)

2002.

Solution :

Year	Index Numbers	2000	2002
1995	120		120
1996	150	$\frac{120}{200} x 100 = 60$	$\frac{120}{240} \times 100 = 50$ $\frac{150}{240} \times 100$
1997	160	$\frac{150}{200} x 100 = 75$	= 62.5
1998	180	$ \begin{array}{c} \frac{160}{200} \\ x \ 100 = 80 \\ 180 \end{array} $	$\frac{160}{240} \times 100 = 66.66$
1999	200	$ \boxed{ 200 x 100 = 90 } 200 200 x 100 $	$\frac{180}{240} \times 100 = 75$
2000	200	= 100	$\frac{200}{240} \times 100$
2001	210	$\frac{200}{200} \times 100 = 100$	= 83.33 $\frac{200}{240} \times 100$
2002	240	$\frac{210}{200} \times 100$	= 83.33 210
		= 105	$\frac{210}{240}$ x 100
		$\frac{240}{200} \times 100$	= 87.5 240
		= 120	$\overline{240} x 100$
			= 100

Problem : 2.2

Taking 1997 base the index numbers of wholesale prices of a commodity are given below.

Year 1997 1998 1999 2000 2001 2002 2003

Index nos 100 120 190 200 206 230 300

Construct a new series taking 2000 as base.

Solution :

Construction	of index	number l	by base	shifting
			2	0

Year	Index Number Base (1997 = 100)	Index Number Base (2000 = 200)
1997	100	100
1998	120	$\overline{200} x 100 = 50$ 120
1999	190	$200 x 100 = 60$ $\frac{190}{200} = 100 = 05$
2000	200	$200 x 100 = 95$ $\frac{200}{200} x 100 = 100$
2001	206	$\frac{206}{200} x 100 = 103$
2002	230	$\frac{230}{200} \times 100 = 110$ 300
2002	300	$\frac{300}{200} x 100 = 150$

Problem: 2.3

Two sets of indices one with 1986 as base and the other with 1994 as base are given below.

a)Year Index Numbers	b)Year	Index Numbers
----------------------	--------	---------------

1986	100		
1987	110		
1988	120	1994	100
1989	190	1995	105
1990	300	1996	90
1991	330	1997	95
1992	360	1998	102
1993	390	1999	110
1994	400	2000	96

The index a) with 1986 base was discontinued in 1994 you are required to splice the second index number.

b)With 1994 base to the first index number.

Solution :

Splicing of Index Numbers

Year	Index Numbers	Index Numbers	Index Numbers
	(a)	(b) With	b) Spliced to
	With 1986 as base	1986 as base	a) with 1986 as base
1986	100		

1987	110		
1988	120		
1989	190		
1990	300		
1991	330		
1992	360		400
			100 x 100 400
1993	390		$105 \text{ x} \frac{100}{100}$
			$90 \ge \frac{400}{100}$
1994	400	100	400
			95 x 100 400
1995		105	$102 \text{ x} \frac{400}{100}$
			$110 \ge \frac{400}{100}$
1996		90	400
			$96 \ge 100$ = 400
1997		95	100
			= 420
1998		102	= 360
			222
1999		110	= 380
			= 408
2000		96	= 440
			- 110
			= 384

Problem : 2.4

year	Weekly take – home pay (wages)	Consumer Price Index
1997	109.5	112.8
1998	112.2	118.2
1999	116.4	127.4
2000	125.08	138.2
2001	135.4	143.5
2002	138.1	149.3

Given the following data :

- 1) What was the real average weekly wage for each year.
- 2) In which year did the employee have the greatest buying power?
- 3) What percentage increase in the weekly wages for the year 2002 is required if any to provide the same buying power that the employees enjoyed in the year in which they had the highest real wages?

Solution :

Calculation of Real wages

Year	Weekly take	Consumer	Real wages
	home pay (Rs)	Price Index	
1997	109.5	112.8	109.5
1998	112.2	118.2	$\overline{112.8} \times 100 = 97.07$

1999	116.4	127.4	$\frac{112.2}{118.2} \times 100 = 92.92$ 116.4
2000	125.08	138.2	$\overline{127.4} x 100 = 91.37$ 125.08
2001	135.4	143.5	$138.2 \ x \ 100 = 90.51$ 135.4
2002	138.1	149.8	$ \begin{array}{r} 143.5 \ x \ 100 = 94.36 \\ \underline{138.1} \\ \overline{149.8} \ x \ 100 = 92.19 \end{array} $

1) Real average weekly wage can be obtained by the formula

Real wage = Money wage x 100 Price index

- 2) The employee had the greatest buying power in 1997 as the real wage was maximum in 1997.
- 3) Absolute difference = 97.07 92.19 = +4.88.

Problem : 2.5

The following data relate to the income of the people and the General index number of prices of a certain region.

Calculate : 1) Real income and

Year	Income (Rs)	General Price Index
		Nos.

2) Index numbers of real income with 1996.

1996	800	100
1997	819	105
1998	825	110
1999	876	120
2000	920	125
2001	938	140
2002	924	140

Solution :

Computation of real income index numbers.

Year	Income	Price Index	Real Income	Real Income Index
	(Rs)	Number		Number
1996	800	100		100
1997	819	105	$\frac{800}{100} x 100 = 800$ 819	$\frac{780}{800} \times 100 = 97.5$ $\frac{750}{750}$
1998	825	110	$\overline{105} x 100 = 780$ 825	$\overline{800} x 100 = 93.75$ $\overline{730}$
1999	876	120	$\frac{110 \times 100}{876} = 750$	800 x 100 = 91.25 736 $800 x 100 = 92$
2000	920	125	$\frac{120 x 100 = 730}{920}$ $\frac{920}{120} x 100 = 736$	$\frac{670}{800} x 100 = 83.75$
2001	938	140	$\frac{938}{120} \times 100 = 670$ 924	$\frac{660}{800} \times 100 = 82.5$
2002	924	140	$\frac{524}{120} \times 100 = 660$	

Problem: 2.6

Given below are two sets of indicies, one with 1970 as base and the other with 1973 as base.

 Year
 1970 1971 1972 1973 1974 1975 1976

 Index (old)
 100 130 170 200 - - -

Index (new) - - - - 100 120 115 125

Splice the new series (1973 as bases to old series (1970 base) so as to have a continuous series from 1970 upto data. You are also to prepare a combined series with 1973 as base.

Solution :

New series spliced into old series

Year	Series old	Series B	Spliced Index No.	Combined
	Index No	Now	New spliced to old	series with
		Index No.		1970 as base

1970	100			100
1971	130			130
1972	170		100 x 200	170
1973	200	100	$\frac{100 \times 200}{100} = 200$ 120×200	200
1974	-	120	100 = 240 115×200	240
1975	-	115	$\frac{100}{125 \times 200} = 230$	230
1976	-	125		250

Old series spliced into New Series.

Year	Series old	Series B	Spliced Index No.	Combined
	Index No	Now	New spliced to old	series with
		Index No.		1970 as base

1970	100		$\frac{100 \times 100}{200} - 50$	50
1971	130		$\frac{200}{130 \times 100} = 50$ $\frac{130 \times 100}{200} = 65$	65
1972	170		$\frac{170 \ x \ 100}{200} = 85$ 200 x 100	85
1973	200	100	200 = 100	100
1974	-	120		120
1975	-	115		115
1976	-	125		125

Applications

The main uses of index numbers are given below,

- (i) Index numbers are used in the fields of commerce, metrology, labour industry etc.
- (ii) Index numbers measure fluctuation during intervals of time, group differences of geographical position of degree etc.
- (iii) They are used to compare to total variations in the prices of different commodities in which the unit of measurements differs with time and price.
- (iv) They measure the purchasing power of money.

- (v) They are helpful in fore casting future economic trends.
- (vi) They are used in studying the difference between the comparable catagories of animals, people or items.
- (vii) Index numbers of industrial production are used to measure the change in the level of industrial production in the country.
- (viii) Index numbers of import prices and export prices are used to measure the changes in the trade of a country.

Conclusion:

Throughout this paper conclude that some basis definitions, tests of adequacy were discussed and also sum, base shifting splicing, deflating on index numbers are explained.

References:

- Dr.V.S.Soundara pandian, "Business Statistics" Soundhar Publications, First Edition – 2002.
- Bagavathi. V pillai R.S.N, "Statistics" Rajendra Ravindra printers (pv). Ltd. Seventeenth edition – 1984.
- Navitham.Pa M.sc., M.Phil, "Bussiness Statistics" Jai publishers, Trichy 21.
- 4. Dr.D.Joseph Anbarasu "Bussiness Statistics" Learntech press, Trichy 102.
- S.P.Gupta "Statistical Methods" Twenty Eighth Edition 1997 sultan chand & Sons New Delhi – 2.