THE SEIFERT-VAN KAMPEN THEOREM (P.PRIYA,P.ELAVARASI,R.RAMYA,Dr.S.SANGEETHA) (<u>ramya25071987@gmail.com,sangeethasankar2016@gmailcom</u>) Department of Mathematics Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous) Perambalur

ABSTRACT:

Seifert & van Kampen introduced the problem of describing the fundamental group of a space X in terms of the fundamental groups of the constituents x_i of an open coveringIn mathematics, the Seifert-van Kampen theorem of Algebraic topology, sometimes it is called as van Kampen's theorem. It expresses the structure of the fundamental group.

KEYWORDS:

Trivial topology ,Topological space, open set, discrete topology, subspace topology.

INTRODUCTION:

In mathematics, the Seifert-van Kampen theorem of Algebraic topology, sometimes it is called as van Kempen's theorem. It expresses the structure of the fundamental group of a topological space X in terms of the fundamental groups of two open, path connected subspaces u and v that covers X. One can use van Kampan's theorem to calculate fundamental groups for topological spaces that can be decomposed into simpler spaces.

DEFINITION:

A topology on a set X is a collection τ of subsets of X having the following properties:

(1) \emptyset and X are in τ .

(2) The union of the elements of any subcollection of

 τ is in τ .

(3) The intersection of the elements of any finite subcollection of τ is in τ .

A set X for which a topology τ has been specified is called a topological space.

EXAMPLE:

Let $X = \{a, b, c\}$. Then this set has 2^3 elements. Then, $\tau = \{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$

To verify that τ is a topology on X or not.

Axioms:1

Øand X are in τ .

Axioms:2

$$\emptyset \cup \{a\} = \{a\} \in \tau$$

 $\emptyset \cup \{b\} = \{b\} \in \tau$
 $\emptyset \cup \{c\} = \{c\} \in \tau$
 $\{a\} \cup \{a, b\} = \{a, b\} \in$

 $\emptyset \cup X = X \in \tau$

Axioms:3

 $\emptyset \cap \{a\} = \emptyset \in \tau$ $\emptyset \cap \{b\} = \emptyset \in \tau$ $\emptyset \cap \{c\} = \emptyset \in \tau$ $\{a\} \cap \{a, b\} = \{a\} \in \tau$

All the three axioms are satisfied.

Therefore τ is a topology.

DEFINITION:

If a set contains only one element it is calleda singleton set.

Example:

 $A=\{0\}$, $B=\{0\}$ and the set of all even primes are all singleton sets.

DEFINITION:

A set B is called a subset of A if every element of B is

in A.

Example:

The set of all vowels is a subset of the set of all letters in English alphabet.

DEFINITION:

If X is any set, the collection of all subsets of X is a topology on X; it is called the discrete topology. The collection consisting of X and \emptyset only is also a topology on X; we shall call it the indiscrete topology or the trivial topology.

THEOREM:

Given a family of abelian groups $\{G_{\alpha}\}_{\alpha} \Box J$, there exists an abelian group G and a family of monomorphisms

 $i_{\alpha}:G_{\alpha} \rightarrow G$ Such that G is the direct sum of the groups

 $i_{\alpha}(G_{\alpha}).$

Proof:

Consider first the cartesian product $\Box G \Box;$

it is an abelian group if we add two J-tuples by adding them coordinatewise.

Let G denote the subgroup of the cartesian product consisting of those tuples $(x_{\alpha})_{\alpha} \square J$ such that $x_{\alpha} = 0_{\alpha}$, the identity element of G_{α} , for all but finitely many values of α . Given an index β , define $i\beta: G\beta \rightarrow G$ by letting $i\beta(x)$

be the tuple that has x as its β th coordinate and 0_{α} as its α th coordinate for all $\alpha \neq \beta$. It is immediate that $i\beta$ is a monomorphism. It is also immediate that since each element x of G has only finitely many nonzero coordinates, x can be written uniquely as a finite sum of elements from the group ($G\beta$).

LEMMA:

Let $\{G_{\alpha}\}_{\alpha} \Box J$ be an indexed family of abelian groups; let G be an abelian group; let i_{α} : $G_{\alpha} \rightarrow G$ be a family of homomorphisms. If each i_{α} is a monomorphism and G is the direct sum of the groups (G_{α}) , then G satisfies the following extension condition:

Given any abelian group H and any family of(*) homomorphisms $h_{\alpha}: G_{\alpha} \rightarrow H$, there exists a homomorphism h : G \rightarrow H such that $h \circ i_{\alpha} = h_{\alpha}$ for each α .

Furthermore, h is unique. Conversely, suppose the groups

 (G_{α}) generate G and the extension condition (*) holds. Then each i_{α} is a monomorphism, and G is the direct sum of the groups (G_{α}) .

Proof:

The only part that requires proof is the statement that if the extension condition holds, then each i_{α} is a monomorphism. That is proved as follows. Given an index β , set H = G_{β} and let h_{α} : $G_{\alpha} \rightarrow H$ be the identity homomorphism if $\alpha = \beta$, and the trivial homomorphism if $\alpha \neq \beta$.

Let $h: G \to H$ be the hypothesized extension. Then in particular, $h \circ i\beta = h\beta$; it follows that $i\beta$ is injective.

The Seifert-van Kampen Theorem

THEOREM:

Suppose $X = U \cup V$, where U and V are open sets of X. Suppose $U \cap V$ is path connected, and that $x_0 \in U \cap V$. Let i and j be the inclusion mappings of U and V, respectively, into X. Then the images of the induced homomorphism

$$i_*: \pi_1(U, x_0) \to \pi_1(X, x_0) \text{ and } j_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$$

generate $\pi_1(X,x_0)$.

Proof:

This theorem states that, given any loop f in X based at x_0 , it is path homomorphic to a product of the form $(g_1*(g_2*(...*g_n)))$, where each g_i is a loop in X based at x_0 that lies either in U or inV.

Step 1:

We show there is a subdivision $a_0 < a_1 < \cdots < a_n$ of the unit interval such that $f(a_i) \in U \cap V$ and $f([a_{i-1},a_i])$ is contained either in U or in V, for each i.

To begin, choose a subdivision $b_0, ..., b_m$ of [0,1] such that for each i, the set $f([b_{i-1}, b_i])$ is contained in either U or

If $f(b_i)$ belongs to U \cap V for each i, we are finished. If not, let i be an index such that $f(b_i) \notin U \cap V$. Each of thesets

 $f([b_{i-1},b_i])$ and $f([b_i,b_{i+1}])$ lies either in U or in V. If $f(b_i) \in U$, then both of these sets must lie in U; and if $f(b_i) \in V$, both or then must lie in V. In either case, we may delete b_i , obtaining a new subdivision $c_0,...,c_{m-1}$ that still satisfies the condition that $f([c_{i-1},c_i])$ is contained either in U or in V, for each i.

A finite number of repetitions of this process leads to the desired subdivision.

Step 2:

We prove the theorem. Given f, let $a_0,...,a_n$ be the subdivision in Step 1. Define f_i to be the path in X that equals the positive linear map of [0,1] onto $[a_{i-1},a_i]$ followed by f. Then f_i is a path that lies either in U or in V,and

$$[f] = [f_1] * [f_2] * \cdots * [f_n].$$

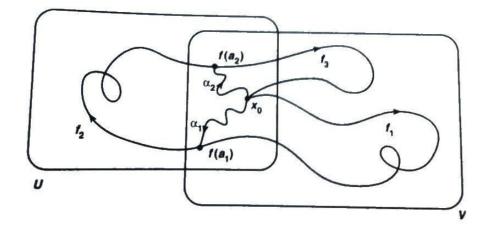
For each i, choose a path α_i in U \cap V from x_0 to $f(a_i)$. (Here we use fact that U \cap V is path connected.) Since $f(a_0) = f(a_n) = x_0$, we can choose α_0 and α_n to be the constant path at x_0 .

Now we set

$$g_i = (\alpha_i - 1 * f_i) * \overline{q}$$

for each i. Then g_i is a loop in X based at x_0 whose image lies either in U or in V. Direct computation shows that

 $[g_1]*[g_2]*\cdots*[g_n] = [f_1]*[f_2]*\cdots*[f_n].$



CONCLUSION:

A Seifert-van Kampen theorem is apparently applied to describe the Kumerian fundamental group of a semistable curve as the fundamental group of a graph of groups

BIBLIOGRAPHY:

- James R.Munkres, Massachusetts Institute of Technology, Topology 2nd edition, prentice Hall of India (P) Ltd, New Delhi – 110001,2003.
- 2) Allen Hatcher, Cornell university, Algebraic topology, Cambridge universityPress,2002.
- 3) Luther I.S, Passi I.B.S, Algebra volume 1: groups, Narosa publishing house New Delhi – 110017,1999.