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ABSTRACT 

In this paper we introduced what is meant by a permutation on a given set and 

showed how they form a group. We discussed the cycle notation of permutation 

and how it is useful in determining various properties of permutation groups. In fact 

it is shown that a permutation can be decomposed into disjoint cycles uniquely 

and that order of the permutation is the l.c.m of the lengths of the cycle in a 

decomposition of disjoint cycles.   

INTRODUCTION 

In this paper we started the study of groups by considering planar isometrics. 

We learnt that finite groups of planar isometrics can only be cyclic or dihedral 

groups. Furthermore, all the groups we've seen thus far are, up to 

isomorphisms, either cyclic or dihedral groups! It is thus natural to ponder 

whether there are finite groups out there which can't be interpreted as 

isometrics of the plane. Permutations are usually studied as combinatorial 

objects, we'll see during this chapter that they need a natural group structure, 

and actually , there's a deep connection between finite groups and 

permutations! We know intuitively what's a permutation: we've some objects 

from a group , and that we exchange their positions. However, to figure more 

precisely, we'd like a proper definition of what's a permutation. 

PERMUTATION GROUP 

Definition: 1.1  



A non-empty G together with the binary operation *. (i.e.) (G,*) is named a 

gaggle if * satisfies the subsequent  

Closure : For every a, b €G, a*b €G. 

i) Associative :For every a, b, c €G,  

a*(b*c) = (a*b)*c 

ii) Identity :For exist an element e €G called  

The identity element such that  

a *e=e*a=a for all a €G. 

iii) Inverse : For exist an element a
-1

€G called the inverse of ‘a’ such 

that      a*a
-1

=a
-1

*a=e for all a €G. 

Definition: 1.2  

Let (G,*) be a group and HCG (H≠ϕ) is said to be a subgroup (H,*) of (G,*) 

i) e €H, where e is the identity of G. 

ii) For any a €H, a
-1

€H 

iii) For a, b €H, a*b €H 

Definition:1.3 

Let A ={a1,a2,…,an} be a finite set such that |A|=n. A bijective mapping or one-to-

one and onto mapping p: A→A is defined as a permutation. 

The sets of permutations which form a group under this operation are formed as 

permutation groups. 

Definition: 1.4 

A group (G,*) is said to be cyclic if there exists a €G such that any x €G can be 

written as either x=an or x= n a, where n is some integer. 

Here the element ‘a’ is called the ‘generator’ of the cyclic group G. That is the 

cyclic group generated by ‘a’ and we denote if by G= (a). 

Example:1 

Find the generator in the group (A, *) where * is defined as: 



* a b c d 

a a b c d 

b b a d c 

c c d b a 

d d c a b 

 

Solution: 

Using the table for the * operation, it is readily observed that 

  a * a = a, b * b = a, 

  c * c = c
2
 = b, c

3
 = d, c

4
 = ac 

  d * d = d
2
= b, d

3
 = c, c

4
 = a. 

Therefore (A, *) is generated by c or d and (A, *) is cyclic. 

Theorem: 2 

Every cyclic group is abelian. 

Proof: 

A cyclic group is abelian since for any p, q  A, p = a
m 

and q = a
n
 for some m, n Z 

and p * q = a
m
 * a

n
 = a

m+n
= a

n-m
 = a

n
* a

m
 = q * p. Thus A is abelian. 

Theorem: 3 

Let a  A be the generator of a finite cyclic group (A, *). Then the order of the 

cyclic group is same as the order of its generator. 

Proof: 

Case (i): 

Let the order of the generator a be finite and equals n. Therefore a
n
 = e. 

Therefore A comprises the n elements e, a, a
2
, …, a

n-1
. If any two elements in it are 

equal, say 

  a
i
 = a

j
, with i > j, 



Then a
i-j

 = e. Since 0 < i – j <n –1 < n, we find that a
i-j

 = e and i - j < n. This is a 

contradiction and thus no two elements can be equal to each other in A. 

In other words all elements are distinct and A consists of at least n elements. 

Let x A. We may write x = a
m
 for some m Z. 

Since m = nq + r for 0 < r < n, 

 a
m
 = a

nq+r
 = (a

n
)

q
 * a

r
 = e * a

r
 = a

r
, 

We find that x = a
r
, 0 <r < n. Therefore A consists of only n elements. 

Case (ii): 

The order of a is infinite. In this case it is possible to show that no two powers of 

the generator can be equal. 

If it is so then a
n
 = a

m
 and n < m. 

This implies that a
n-m

 = e. In other words it is possible to find a positive integer n – 

m such that a
n-m

 = e i.e., the order of a is finite, a contradiction. 

 Hence no two powers of the generator a could be same. Therefore A has the same 

order as its generator a. 

Theorem: 4 

A nonempty subset H of a group (A, *) is a subgroup iff, 

(i)   a,b   H, a * b   H and 

(ii) (ii) a  H ⇒ a
-1  H. 

Proof: 

Let H be subgroup of A. Then H must be closed under  

* Operation in A i.e.,   a, b  H, a * b   H. 

Next let a   H and a
-1

 be the inverse 

i.e., a   H ⇒ a
-1  H. 

 

Theorem: 5 



A nonempty subset H of a group (A, *) is a subgroup iff for any pair a, b   H, a * 

b
-1  H. 

Proof: 

Let H be a subgroup. 

Therefore for a, b   H, b
-1  H and a * b

-1  H.Next  

To prove the converse, let a, b  H and a * b
-1  H.  

Taking b = a, we find that a * a
-1

 = e   H. 

Since e, a, b   H, we have e * a
-1

 = a
-1  H. 

Similarly b
-1  H. Finally because a, b

-1
 are in H, 

We have a * (b
-1

)
-1  H or a * b   H. 

Theorem: 6 

The direct product of two or more groups is again a gaggle . 

Proof: 

Let (G, *) and (H, ) be two groups with identities e1 and e2. The direct 

product of G and H is defined by G x H = {(a1, b1)/ a1  G and b1  H}. 

Now define the binary operation ° on G x H by 

(a1, b1) ° (a2, b2) = (a1*a2, b1 b2), 

For all (a1, b1), (a2, b2)   G x H 

Associative: If (a1, b1), (a2, b2), (a3, b3)   G x H, 

(a1, b1)° ((a2, b2) ° (a3, b3) = (a1, b1) ° (a2*a3, b2 b3) 

    = [a1*(a2*a3), b1 (b2 b3)] 

    = [(a1*a2) * a3, (b1 b2)  b3] 

    = [(a1* a2), (b1 b2)] ° (a3, b3) 

    = [(a1, b1) ° (a2, b2)] ° (a3, b3) 

Identity: 

Let e1 be the identity of G and e2 be the identity of H and e= (e1, e2) 



Now (a1, b1) ° e = (a1, b1) ° (e1, e2) 

   = (a1*e1, b1 e2) 

   = (a1, b1) 

Similarly, e ° (a1, b1) = (a1, b1) 

Inverse: Let (a1, b1)
-1

 = (a1
-1

, b1
-1

) 

 (a1, b1)° (a1, b1)
-1

 = (a1, b1) ° (a1-1, b1-1) 

    = (a1*a1
-1

, b1 b2
-1

) 

    = (e1, e2) = e 

Similarly (a1, b1)
-1

 ° (a1, b1) = e 

      (G x H, °) is a group. 

Theorem: 7 

The Kernel of a homomorphism f from (A, *) to (b, #) is a subgroup of (A, *). 

Proof: 

We know that f (eA) = eB, and eA  ker (f). 

For a, b  ker (f), we find that f (a) = f (b) = eB and thus f (a*b) = f (a) # f (b) 

= eB # eB = eB. 

This implies that a * b  ker (f). 

Further if a  ker (f), f(a
-1

) = [f(a)]
-1

 = eB
-1

 = eB. 

Thus a
-1 ker (f) and so Ker (f) is a group. 

 A group homomorphism f is called monomorphism if it is one-to-one. 

If it is onto then it termed as epimorphism and if it is both one-to-one and 

onto then it is termed as isomorphism.  

A homomorphism from (A, *) to (A, *) is termed as endomorphism. 

Lagrange’s Theorem: 

If A is a finite group and H is a subgroup of A then O (H) divides O (A). 

Proof: 

Let n be the order of the group A. 



It is known that for each element in A, a right cosset of H can be defined in A and 

the number of distinct right cossets of H in A is less than or equal to n. 

We may therefore write, 

A = H   Ha1  …   Ham-1 

Where m is the number of distinct right cossets of H in A. Note that the order of 

each cosset is the order of H or O (H). 

Thus,          O (A) = O (H) + O (Ha1) + … + O (Ham-1) 

   = O (H) + O (H) + … + O (H).      

  [Sum taken m-times] 

   = mk 

Where O (H) = k. Therefore m =
    

    
. 

Example: 8 

The subset H = {[0], [2]} is a subgroup of 

(A4, +4). 

Solution: 

Following table defines the +4 operation: 

+4 [0] [1] [2] [4] 

[0] [0] [1] [2] [3] 

[1] [1] [2] [3] [0] 

[2] [2] [3] [0] [1] 

[3] [3] [0] [1] [2] 

The distinct left cossets are respectively 

{[0] [2]} and {[1], [3]} which partition Z4. 

Example: 9 

* p1 p2 p3 p4 p5 p6 



p1 p1 p2 p3 p4 p5 p6 

p2 p2 p1 p5 p6 p3 p4 

p3 p3 p6 p1 p5 p4 p2 

p4 p4 p5 p6 p1 p2 p3 

p5 p5 p4 p2 p3 p6 p1 

p6 p6 p2 p4 p2 p1 p5 

If H = {p1, p2}, find all left cossets of H in S? Also find iA (H). 

Solution: 

It is easy to see that 

p1H = {p1, p2} = p2H = H; 

p3H = {p3, p6} = p6H; 

p4H = {p4, p5} = p5H. 

Thus number of partitions is iA (H) = 
    

    
 = 3, as expected. 

CONCLUSION 

In this paper we have learnt that modern algebra is a study of sets with 

operations defined on them. As the main example we've started a 

scientific study of groups. Group theory is one among the foremost important 

areas of up to date mathematics, with applications starting from physics and 

chemistry to coding and cryptography. Further study of groups can be 

undertaken in the appropriate honors modules. 
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