THE DOMINATION OF ZERO DIVISOR GRAPH ON THE LINE GRAPH R.PREMKUMAR ${ }^{1}$, R.RAMYA ${ }^{2}$,Dr.M.KOTHANDARAMAN ${ }^{3}$, ${ }^{\mathbf{N}}$.MALINI ${ }^{4}$
 Department of Mathematics
 Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous)
 Perambalur

1.ABSTRACT:

The directed Zero divisor graph is a graph constructed out of a non-Commutative ring R and its non-zero divisors. In this paper we find various domination parameter for the zero-divisor graph. For all commutative rings provides characterization with unity of total perfect codes. In this paper we study the characterization of eigenvaluesand adjacency matrix. We find the numerical example of non-zero divisor graph.

2.KEYWORDS:

Ring, Zero divisor, Zero-divisor graph, Zero divisor on a matrix.

3.INTRODUCTION:

Here two variances of graph using zero-divisor consistently apply. Theory of perfect Zero-divisors graphs firms anrings interesting pass of graph theory and has connections in group theory, number theory and cryptography. It acted a central role in the fast growing of emrgeometry ring theory. Atbari and Muhammadian improved many renules in ring Zero divisors graphs.

Here, domination graph are obtained. Let zero divisor R be ring with identityand set of all nonzero. Units of R are group of all g and nonzero non units of R is Y

Let g be the group of all units of R and Y is the set of all nonzero, zero divisor of R . The group action on Y by g is given by $\left(y_{1} g_{1}\right) \rightarrow y g_{1}$
form $\mathrm{Y} \times \mathrm{G}$ to Y is called proper regular action then for each $y_{1} \in Y$,
$P_{r}\left(y_{1}\right)=\left\{\varphi\left(y_{1}, g\right)=y_{1} g: \forall g \in G\right\}$ is called right orbit of y_{1}. If $Z(R)^{*}=Y$ then $Z(R)^{*}$ is called finite ring. Let q be a prime number and $=M_{2}\left(X_{q}\right)$. Then for any $\operatorname{M} \in L\left(R^{*}\right) \quad$ the number of orbits under the right regular action on $\mathrm{Z}\left(R^{*}\right)$ by g is $\mathrm{q}-1$ and the number of nonzero nilpotents in R is $q^{2}+1$.

4.DOMINATIONS(ZERO DIVISOR GRAPHS) :

The result of this division provide effective criterion for discussing the dominating sets and the connected dominating sets in zero divisor graph of $M_{2}(X q)$ observed. A dominating $\operatorname{set} g=(v, e)$ is a subset \mathcal{D} of \mathcal{V} is every vertex not in \mathcal{D} such that adjoining to at the minimumone member of \mathcal{D}. The domination numbers $\beta(g)$ is the number of vertices in a smallest dominating set for g .

4.1-EXAMPLE:

Dominating sets

$$
D_{1}=\{1,5,7,6,8\}
$$

$D_{2}=\{3,5,7,6\}$
5.DOMINATION NUMBER (ZERO DIVISOR GRAPHS):

5.1-EXAMPLE:

$\Gamma(Z 16)=\{2,4,6,7,8,10,12,14\}$

5.2-THEOREM:

For ΓZ_{m} if $\mathrm{m}=2 \mathrm{q}$ where q, q is odd number $\mathrm{q}>3$ then the domination number of zero divisor is one.

PROOF:

If for $m=2 q$
here ΓZ_{m} is a graph.
Therefore common vertex is adjacent to any other vertices.
Draw the zero divisor ΓZ_{m}. Now $\mathrm{m}=2 \mathrm{q}$ and Let w_{1} be the ordinary peakof ΓZ_{m}, Every edges end vertex is ΓZ_{m}.

Now w_{1} appears in each vertex of zero divisor is $\left[w_{i}, u_{i}\right] \epsilon L\left(\Gamma Z_{m}\right)$.

Now fix the point $\left[w_{i}, u_{i}\right]$ which is adjoining to recurrentvertices $\mathrm{L}\left(\Gamma Z_{m}\right)$. It'sdesign isfull graphs. The domination number of a zero divisor graph is one.

Therefore, $\mathrm{m}=2 \mathrm{q}$.

5.3-EXAMPLE:

The complete graph is integer modulo m of the ring of the zero divisor graph or complete Bipartite graph.

Therefore zero divisor of $Z_{3} \times Z_{6}$ the only possible zero divisor graph that is tree but not a star.

5.4-THEOREM:

The zero divisor domination graph of the form ΓZ_{m} if $\mathrm{n}=5 \mathrm{q}, \mathrm{q}$ is an different prime number $\mathrm{q}>2$ then the domination sum $=\{2$ if $q<6,4$ if $q \geq 6$

PROOF:

CASE 1:

Let $\mathrm{q}<6$ vertices in two independent set is ΓZ_{m} Then its adjacent to all vertices .Let zero divisor ΓZ_{m} after that $\mathrm{q}+4$ and $\mathrm{q}+2$ are one set and another set vertices in $\mathrm{L}\left(\Gamma Z_{m}\right)$

Assume $\left[u_{11}, v_{11}\right] \&\left[u_{22}, v_{22}\right] \epsilon L\left(\Gamma Z_{m}\right)$ which are not adjacent to each other but [u_{11}, v_{11}]adjacent $\left[u_{22}, v_{22}\right] \epsilon L\left(\Gamma Z_{m}\right)$ enduring the raised process we find that these vertices are associated and $v\left[\left(Z_{n}\right)\right]$ is associated. Hence they compose dominating set.

So domination number $=2$ if $\mathrm{q}<6$.

CASE 2:

Let $\mathrm{m}=6 \mathrm{q}$ where q is number of odd prime $\& \mathrm{q}>6$.

PROOF:

$$
V\left(\Gamma\left(Z_{M}\right)\right)=\{6,12,18, \ldots \ldots .6(q-1), q, 2 q, 3 q, 4 q, 5 q\}
$$

Decompose the vertex set into the following disjoint subsets.
$S_{1}=\{6,12,18, \ldots \ldots \ldots 6(q-1)\} \&$
$M_{1}=\{q, 2 q, 3 q, 4 q, 5 q\}$

Now we draw the $\Gamma 2 n$ such that

$$
\begin{aligned}
V\left(L\left(\Gamma Z_{m}\right)\right)=(q, 6) & (q, 12)(q, 18) \ldots \ldots(q, 6(q-1)), \\
& (2 q, 6)(2 q, 12) \ldots \ldots(2 q, 6(q-1)), \\
& (3 q, 6)(3 q, 12) \ldots \ldots(3 q, 6(q-1)), \\
& (4 q, 6)(4 q, 12) \ldots \ldots \ldots(4 q, 6(q-1)), \\
& (5 q, 6)(5 q, 12) \ldots \ldots \ldots(5 q, 6(q-1))
\end{aligned}
$$

Decompose these vertex into disjoint subsets

$$
\begin{aligned}
& K_{1}=\{(q, 6),(q, 12),(q, 18), \ldots \ldots,(q, 6(q-1))\} \\
& L_{1}=\{(2 q, 6),(2 q, 12),(2 q, 18) \ldots \ldots,(2 q, 6(q-1))\} \\
& M_{1}=\{(3 q, 6),(3 q, 12),(3 q, 18), \ldots \ldots,(3 q, 6(q-1))\} \\
& O_{1}=\{(4 q, 6),(4 q, 12),(4 q, 18), \ldots \ldots,(4 q, 6(q-1))\}
\end{aligned}
$$

Let us accept and introduce with any one of the vertices reciprocal to ($\mathrm{L}\left(\Gamma Z_{m}\right)$)
In this $\{(q, 6),(2 q, 6),(3 q, 6),(4 q, 6),(5 q, 6)\}$ are adjacent and combined. Moreover its correlative is third combined.

Nowdecisioncontroldevelop the dominating set. Therefore domination number $=6$.

6.TYPES OF ZERO DIVISOR GRAPHS:

Heredistinct types of zero divisor graph. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are three difinite primes and following cases appear. A proper prime dominating number of zero divisor graph contains no smaller primes and the $\min \left(\Gamma Z_{m}\right)$ is denoted minimal prime numbers in zero divisor's. Complets zero divisor dominating graphs, denoted by $K\left(\Gamma Z_{m}\right)$.

6.1-THEOREM:

Let $\mathrm{q}, \Gamma Z_{m}$ be prime and Zero-divisor domination graph of $R_{1}=M_{2}\left(Z_{q}\right)$. Then irredundance number of zero divisor domination graph is $\mathrm{q}+1$.

PROOF:

Let $Z\left(R_{1}\right)^{*}=\bigcup_{i=1}^{q} O_{l_{1}}\left(M_{i 1}\right)$ for some $M_{0}, M_{1}, \ldots \ldots \ldots, M_{p} \in Z\left(R_{1}\right)^{*}$
Let $\xi=\left\{V_{11}, V_{12}, \ldots \ldots, . . V_{q 1}\right\}$ where $V_{i 1} \in O_{l_{1}}\left(M_{i 1}\right)$ for $0 \leq i_{1} \leq q_{1}$.
Then $|\xi|=q+1$.

CLAIM:

$V_{i} \cap V_{j}=\emptyset \forall i \neq j$
Suppose $M_{i 1}$ is a nonzero matrix in $V_{i} \cap V_{j}$ for some $i \neq j$
Then $V_{i} O M=V_{j} M=0$
$M \in X_{r} \forall X \in O l_{1}\left(V_{i}\right)$ and
$M \in Y$ for all $Y \in O l_{1}\left(V_{j}\right)$
Since $O_{l_{1}}\left(V_{i}\right) \cap O_{l}\left(V_{j}\right)=\varnothing$
$\operatorname{id}\left(M_{1}\right) \geq 2 q^{2}-2>q^{2}-1$ acontradiction.
Thus $N^{+}\left[V_{i}\right] \rightarrow N^{+}\left[\xi-V_{i}\right] \neq \emptyset$ for all $i, 0 \leq i \leq q$ and so every element in ξ has a private onto neighbours.

Hence ξ is an irredundant set of D_{1} and so $D_{1} \leq q+1$
Suppose ξ_{1}^{\prime} is an irredundant set of D_{1} with $\left|\xi_{1}^{\prime}\right|>q+1$.
Then ξ^{\prime} contains atleast two elements from any one of the orbit of $Z\left(R_{1}\right)^{*}$ with candinality greater than $\mathrm{q}+1$ is not an irredundant set and so ξ is both minimum and maximum cardinality of a maximal irredundant set of D_{1}.

Hence $D_{1}=\operatorname{IR}\left(D_{1}\right)=q+1$.

6.2-LEMMA:

Let D_{1} be the directed zero divisor graph on $R_{1}=M_{2}\left(Z_{q}\right)$ and Let $Z\left(R_{1}\right)^{*}=$ $\bigcup_{i=0}^{q} O l_{1}\left(M_{j}\right)$ for some $M_{1}, M_{2}, \ldots \ldots, M_{q} \in Z\left(R_{1}\right)^{*}$.

Then ξ is an $\left(\beta^{+}\right)$set of D_{1} iff ξ contains exactly one element in $O l_{1}\left(M_{j}\right)$ for each j with $0 \leq j \leq q$.

PROOF:

Suppose ξ contains exactly one element from $O_{l_{1}}\left(M_{j}\right)$ for each $\mathrm{j}, 0 \leq j \leq q$.
Let $\xi=\left\{w_{1}, w_{2}, \ldots \ldots, w_{q}\right\}$ where $w_{j} \in O_{l_{1}}\left(M_{j}\right)$ for $0 \leq j \leq q$.
Then ξ is an set of D.
Conversely, suppose ξ is an set of $\mathrm{D}|\xi|=q+1$.
Suppose $O_{l_{1}}\left(M_{j}\right) \cap \xi=\varnothing$ for some j .
Then ξ contains atleast two vertices β_{1}, β_{2} form $O_{l_{1}}\left(M_{j 1}\right)$ for some $j \neq i$.
Therefore, $B_{11}=B_{12}=M_{j 1}$ both $B_{11} \& B_{12}$ have no private onto neighbour a contradiction.

6.3-PROPOSITION:

Let D_{1} be the directed domination zero divisor graph on $R_{1}=M_{2}\left(Z_{q}\right)$. Then $\beta_{1}(D)=$ $\beta_{2}(D)=\gamma(D)=q+1$.

PROOF:

$Z\left(R_{1}\right)^{*}=\bigcup_{i=1}^{q} O l_{1}\left(A_{j}\right)$
Where $S=\left\{B_{0}, B_{1}, \ldots \ldots . B_{q}\right\}$ is a set of nilpotents in R_{1}.
Let $V_{j}=O l_{1}\left(A_{j}\right)$ for some j .
Then $\left|V_{j} \cap O_{l_{1}}\left(A_{j}\right)\right|=q-1$ and so there exists $V_{j} \in O_{l_{1}}\left(A_{j}\right)$ such that $\left(V_{i}, V_{j}\right) \in B$ for all $j \neq i$.

Let $\Omega=\left\{W_{0}, W_{1}, \ldots \ldots \ldots, W_{q}\right\}$ is a β^{+}set of D .
Also the sub diagraph induced by ξ contains no isolated vertices and the underlying graph is connected. Then ξ is a total as well as weakly connected dominating set of D_{1} and so $\xi\left(D_{1}\right)=\xi\left(D_{2}\right)=q+1$

Let $Y_{j} \in O_{l_{1}}\left(B_{i}\right) \cap\left(A_{j}\right)$ and $X_{j} \in A_{j} \cap O_{l_{1}}\left(A_{j}\right)$ for $i \neq j$.
Then $\left(Y_{i}, Y_{j}\right) \in B$ and $\left(Y_{j}, Y_{i}\right) \in B$

There exists $Y_{k} \in O_{l_{1}}\left(A_{k}\right)$ such that $\left(Y_{j}, Y_{k}\right) \in B$ for each $\mathrm{k}, k \neq i \neq j$.
$\xi=\left\{Y_{0}, Y_{1}, \ldots \ldots \ldots Y_{i}, \ldots \ldots ., Y_{j}, \ldots \ldots \ldots Y_{q}\right\}$ is a β^{+}set of Dominating graph.
Also the sub digraph induced by ξ is connected and by definition ξ is open dominating set D_{1}.

Therefore, $\xi(O)=q+1$.

6.4-COROLLARY:

Let $R_{1}=M_{2}\left(Z_{q}\right) \mathrm{b}$ is domination graph of directed zero divisor D_{1}. Then $\beta(0)=\frac{n}{\Delta}$ and ξ is comprise no nilpotent elements andopen dominating set of D_{1}.

PROOF:

Let ξ is open dominating set of D_{1}
Suppose ξ comprise a nilpotent element say M_{1}. Then by lemma $M_{1}^{2}=0$.
Clearly $M_{1} \in O_{l_{1}}\left(M_{j}\right)$ for some j .
By Lemma $O_{l_{1}}\left(M_{j}\right)=O_{l}\left(M_{j}\right)=M$ and so $\left(D_{1} M_{1}\right) \notin \xi$ for all $D \in \xi-M$.
Which is a contradiction.

6.5-THEOREM:

Let D_{1} is zero divisor graph of $R_{1}=M_{2}\left(Z_{q}\right)$. If ξ be a minimal dominating set of D_{1} then ξ is independent iff $B^{2}=0 \forall B \in \xi$.

PROOF:

Suppose ξ is an independent dominating set of D_{1}.
Then $\Omega=\left\{\beta_{0}, \beta_{1}, \ldots \ldots, \beta_{p}: B_{i} \in O_{l_{1}}\left(M_{j}\right)\right.$ for $0 \leq j \leq q$
Suppose $A_{j}^{2} \neq 0$ for some j .
Without loss of generality one can take that $A_{j}^{2} \neq 0$ for some $\mathrm{j} \& A_{j}^{2} \neq 0$ for some $j \neq i$.
From this we have $A_{j}=q^{2}-2 \& A_{j}=q^{2}-1$
Since ξ is independent.
$A_{k} \notin A_{t}$ for all $k, t \& k \neq t$

Now, $\left|\left[N^{+}(\xi)\right]\right|=\sum_{l=0, l=i}^{q}\left|N^{+}\left[A_{i}\right]\right|+\left|N^{+}\left[A_{i}\right]\right|$

$$
=\left(q^{2}-1\right)(q+1)+1>\left|V_{1}\left(D_{1}\right)\right|
$$

Which is a contradiction.
Conversely, Suppose $B^{2}=0 \forall B \in \xi$
Since ξ is a minimal dominating set and by
$\Omega=\left\{Y_{i}, Y_{i} \in O_{l_{1}}\left(M_{j}\right)\right.$ and $\left.0 \leq j \leq q\right\}$
$X_{j} \notin D\left(X_{j}\right) \forall i \neq j$
The sub graph incited by ξ has no arcs and so ξ has independent dominating set of D .

7.CONCLUSION:

In this article, we explainedingrained domination and evloution in $2\left[\Gamma Z_{m}\right]$. Additionally we discussed theorems and propositions and lemma of zero divisors of dominations. In future this isprotracted ofzero divisor graphs to central graph and total graphs .

8.REFERENCES:

1.Adrianna Guillory, MhelLazo, Laura Mondello, and Thomas Naugle "Realizing Zero Divisor Graphs".
2. Arumugam S., Ramchandran S., "Invitation to Graph Theory", June 2001.
3. K. Budadoddi, "Some studies on domination parameters of eulertotientcayley graphs, Zero divisor graphs and line graph of zero divisor graphs", May 2016.
4. Carlos Lopez, Alonza Terry, and AlainaWickboldt, "Zero divisor graph", 1991 Mathematics Subject Classification.
5. David F. Anderson, Michael C. Axtell, and Joe A. Stickles, Jr, "Zero-divisor graphs in commutative rings", (2011),23-42.
6. David F. Anderson and Philip S. Livingston, "The Zero-Divisor Graph of a Commutative Ring", Journal of Algebra 217,434-447(1999).
7. Jennifer M. Tarr, "Domination in graphs", (2010).
8. Jim Coykendall, Sean Sather - Wagstaff, Laura Sheppardson, and Sandra Spiroff, "On Zero Divisor Graph", Progress in Commutative Algebra 2, 2012.
9. Kaspar.S, Gayathri.B and Kulandaivel.M.P, Towards connected domination in graphs, Int.,J.,of Pure and Applied Mathematics, Volume 117 No. 14 2017, 53-62.
10. Mahadevn.G,.Ahila.A and SelvamAvadayappan, Blast domination number of v-Orbrazom, International Journal of Pure and Applied Mathematics, Volume 118 No. 7 2018, 111-117.

