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ABSTRACT: 

 In this chapter we shall apply the theory of derived functors to the 

important special case where the cochain complex, sequence of abelian,            n 

– cochain, cyclic, Rham cohomology. This will lead cohomology group            

H
n
(X, G). In developing the theory we shall attempt to deduce as much as 

possible form general properties of derived functors. Thus or example we shall 

give a proof of the fact that H
n
(X, G).  
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INTRODUCTION: 

 Homology groups Hn (X) are the result of a two-stage process: First one 

forms a chain complex ….    Cn            Cn-1   …… of singular, 

simplicial, or cellular chains, then one takes the homology groups of this chain 

complex, Ker  𝜕/𝐼𝑚 𝜕 . To obtain the cohomology groups Hn (X, G) we 

interpolate an intermediate step, replacing the chain groups Cn by the dual 

groups Hom (Cn, G) and the boundary maps 𝜕 by their dual maps 𝛿, before 

forming the cohomology groups Ker 𝜕/𝐼𝑚 𝜕. The plan for this section is first to 

sort out the algebra of this dualization process and show that the cohomology 

groups are determined algebraically by the homology groups, though in a 

somewhat subtle way. Then after this algebraic excursion we will define the 

cohomology groups of spaces and show that these satisfy basic properties very 

much like those for homology. The payoff for all this formal work will begin to 

be apparent in subsequent sections.  

INCEPTIONS  

Definition:  
 A topology on a set X is a collection 𝜏 of subsets of X having the 

following properties is called a topological space. 

i) ∅ and X are in 𝜏 

ii) The union of the element of any sub collection of 𝜏 is in 𝜏 

𝜕 



iii) The intersection of the elements of any finite sub collection of 𝜏 in 

in 𝜏. 

Definition:  
 A group G is said to be abelian if 𝑎𝑏 = 𝑏𝑎 for all a, b ∈ G. A group which 

is not abelian is called non - abelian group. 

 

 

Definition:  
 Let B be a subset of an abelian group F. then F is free abelian with basis B 

if the cyclic subgroup < 𝑏 > is infinite cyclic for each 𝑏 ∈ 𝐵 and 𝐹 =
  < 𝑏 >𝑏∈𝐵  (direct sum). 

 A free abelian group is thus a direct sum of copies of Z. A typical element 

X∈ F has a unique expression.  

 X = Σ mbb   

 Where mb∈ Z and almost all mb are zero. 

 

Definition:  
 A homomorphism f: G   G' is a map such that f (x, y) = f (x).f (y) 

for all x, y. 

 It automatically satisfies the equation f (e) = e' and f (x
-1

) = f (x)
-1

 

 Where e and e' are the identities of G and G'.  

Definition: 

 For each 𝑛 ≥ 0 the n
th

 (singular) homology groups of a space X is  

    𝐻𝑛 𝑋 =  
𝑍𝑛  𝑋 

𝐵𝑛  𝑋 
=  

𝐾𝑒𝑟𝜕𝑛

𝑖𝑚  𝜕𝑛+1
 

Definition: 

 The cohomology of x written by H
*
(x) = {H

n
 (X)}𝑛=−∞

𝑛=+∞ to be the 

sequence of modules in c given by 𝐻𝑛 𝑋 =  
𝐾𝑒𝑟  𝜕𝑛

𝑖𝑚  𝜕𝑛−1
 the  𝐾𝑒𝑟 𝜕𝑛 is called a        

n-cocycles and the im 𝜕n-1is called n – coboundaries.  

Definition: 

 A chain complex (A•, d•) is a sequence of abelian group or modules 

…..A0, A1, A2, A3,…….. connected by a homomorphism [called boundary 

operatos or differentials] dn: An           An-1 such that the composition of any two 

d1 d2 d3 



consecutive maps is the zero. Explicitly the differential satisfy dn dn+1 = 0 (or) 

with indices suppressed d
2
 = 0 the complex may be written out as follows.  

….. A0 A1   A2  A3     ….. 

Definition: 

 The cochain complex (A
•
, d

•
) is the dual notation to a chain complex. It 

consists of a sequence of abelian groups or modules ……A
0
, A

1
, A

2
, A

3
….. 

connected by homomorphism d
n
: A

n
   A

n+1
 satisfying d

n+1∘d
n
 = 0. The 

cochain complex may be written out in similar fashion to the chain complex.  

…..             A
0
      A

1
  A

2
 .….. 

Definition: 

A commutative diagram in 𝒞 is a diagram in which each pair of vertices 

and every two paths (Composites) between them are equal as morphisms. Also it 

satisfies the commutative property. That is g∘f = f '∘g'.  

 

 

 

 

 

Definition: 

 An element of H
n
 (X, G) is a cosect 𝜁 + 𝐵n

 (X, G) where 𝜁is an n – 

cocycles it is called a cohomology class and it is denoted by cls 𝜁.  

Definition: 

 A connected open set x in R
n
 thus determines a sequence of 

homomorphism  

0 Ω
o
(X)  Ω

1
 (X)      ……. Ω

n
 (X)          0  

Moreover, there is a straight forward computation showing that dd = 0. In 

other words this sequence is a complex its homology groups are called the de 

Rham cohomology of X. 

Definition: 

 If K is an oriented simplical complex and G is an abelian group then the 

simplical cohomology groups of K with coefficients G are defined by  

d
-1

 d
0
 

 

d
1

1
 

 

d
2

1
 

 

A 

g'

A A' 

B' B 

f' 

g 

f 

 𝑑o 𝑑1 𝑑
n-1 



 H
n
 (K: G) = H

n
(Hom (C* (K), G) 

Lemma: 

 If (S*(X), ∂) is the singular complex of a space X then for every abelian 

group G  

0         Hom (S0(X), G)         Hom (S1 (X), G)          Hom (S2 (X), G)           ... 

is a complex. 

Proof: 

 Given that (S*(X), ∂) is the singular complex of a space X. 

 To prove that (S*(X), ∂) is complex. 

 It is enough to prove that ∂
#
n+1    ∂

#
n = 0 

 Since Sn+1(X) is generated by all (n+1) simplex σ it sufficient to show that       

∂∂σ = 0 by using the definition of boundary.  

Now,  

    ∂∂σ = ∂  (𝑗 -1) 
j 
σ ε𝑗

𝑛+1 

  =  (𝑗 ,𝑘 -1) 
j+k  

σ ε𝑗
𝑛+1ε𝑘

𝑛  

  =  (𝑗 <𝑘 -1) 
j+k  

σ ε𝑗
𝑛+1ε𝑘

𝑛  +  (𝑘<𝑗 -1) 
j+k  

σ ε𝑗
𝑛+1ε𝑘

𝑛  

In the second sum 

 Let P = K, q = j-1 

    ∂∂σ =  (𝑗≤𝑘 -1) 
j+k  

σ ε𝑗
𝑛+1ε𝑘

𝑛  +  (𝑝≤𝑞 -1) 
p+q+1  

σ ε𝑝
𝑛+1ε𝑞

𝑛  

  = (-1)
0+1

 σ ε0
𝑛+1ε1

𝑛  + (-1) 
0+1+1 

σ ε0
𝑛+1ε1

𝑛  

  = -σ ε0
𝑛+1ε1

𝑛  + σ ε0
𝑛+1ε1

𝑛  

∴∂∂σ = 0 

In general, ∂𝑛+1
# ∂𝑛

# = 0 

Thus (S*(X), ∂) is complex. 

Lemma: 

 If  f: X → Y is continuous then for every n≥0 

i) f# (Zn(X)) ⊂ Zn(Y) 

ii) f# (Bn(X)) ⊂ Bn(Y) 

∂1 

#
 

∂2 

#
 



Proof: 

 Given that the map f: X → Y is continuous  

 To prove that: i) f# (Zn(X)) ⊂ Zn(Y) 

ii) f# (Bn(X)) ⊂ Bn(Y) 

i) f# (Zn(X)) ⊂ Zn(Y) 

If ∝ ∈ Zn(X) then ∂ ∝ = 0 

∴   ∂ f# ∝ = f# ∝ 

  = f# (0) = 0 

Which gives  f# ∝ ∈ ker ∂n = Zn (Y) 

   f# ∝ ∈ (Y) 

   f# (Zn (X)) ∈ Zn (Y) 

∴   f# (Zn(X)) ⊂ Zn(Y) 

ii) f# (Bn(X)) ⊂ Bn(Y) 

if  β ∈ Bn(X) then β=∂U 

 For some U ∈ Sn+1 (X) and  

  f# β = f#∂U 

   = ∂ f# U ∈ in ∂n+1 

   = Bn(Y) 

  f# β ∈ Bn(Y) 

 f# (Bn(X)) ∈ Bn (Y) 

∴  f# (Bn(X)) ⊂ Bn(Y) 

Hence proved. 

Theorem: 

 A complex (S*, ∂) is an exact sequence is and only if Hn (S*, ∂) = 0 for 

every n. 

Proof: 

Given that (S*, ∂) is an exact sequence  

To prove that Hn (S*, ∂) = 0 



The 
n
th homology group of this complex is  

 Hn (S*, ∂) = 
Zn (S∗,∂)

Bn (S∗,∂)
 

By definition of exact sequence means im = ker 

That is Zn = Bn 

 Hence  Hn (S*, ∂) = 0    

 

Conversely,  

Assume that Hn (S*, ∂) = 0 

To prove that A complex (S*, ∂) is an exact sequence. 

The n
th 

homology of this complex  

Hn (S*, ∂) = 
Zn (S∗,∂)

Bn (S∗,∂)
  

 By hypothesis Hn (S*, ∂) = 0 

 Thus   Zn = Bn  if and only if    Ker ∂n = im ∂n+1  

 Hence a complex (S*, ∂) is an exact sequence  

CONCLUSION 

 This aim of this is to determine cohomology group in algebraic topology. 

de Rham cohomology, the complex exact sequence theorem for by using 

commutative diagram are present with example we hope this theory will help to 

the analysis and understanding of these topics.  
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