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Abstract

Research in global change ecology relies heavily on global climatic grids derived from 
estimates of air temperature in open areas at around 2 m above the ground. These cli-
matic grids do not reflect conditions below vegetation canopies and near the ground 
surface, where critical ecosystem functions occur and most terrestrial species reside. 
Here, we provide global maps of soil temperature and bioclimatic variables at a 1- km2 

resolution for 0– 5 and 5– 15 cm soil depth. These maps were created by calculating 
the difference (i.e. offset) between in situ soil temperature measurements, based on 
time series from over 1200 1- km2 pixels (summarized from 8519 unique tempera-
ture sensors) across all the world's major terrestrial biomes, and coarse- grained air 
temperature estimates from ERA5- Land (an atmospheric reanalysis by the European 
Centre for Medium- Range Weather Forecasts). We show that mean annual soil tem-
perature differs markedly from the corresponding gridded air temperature, by up to 
10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over 
the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than 
gridded air temperature, whereas soils in warm and humid environments are on aver-
age slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome- specific offsets 
emphasize that the projected impacts of climate and climate change on near- surface 
biodiversity and ecosystem functioning are inaccurately assessed when air rather 
than soil temperature is used, especially in cold environments. The global soil- related 

Correspondence

Jonas J. Lembrechts, Research Group 
PLECO (Plants and Ecosystems), 
University of Antwerp, 2610 Wilrijk, 
Belgium.
Email: jonas.lembrechts@uantwerpen.be

Jonathan Lenoir, UMR 7058 CNRS 
‘Ecologie et Dynamique des Systèmes 
Anthropisés’ (EDYSAN), Univ. de Picardie 
Jules Verne, Amiens, France.
Email: jonathan.lenoir@u-picardie.fr

Funding information

Fonds Wetenschappelijk Onderzoek, 
Grant/Award Number: 12P1819N, and 
G018919N, W001919N; for full list of 
funders see acknowledgements



    |  11LEMBRECHTS ET aL.

1  |  INTRODUC TION

With the rapidly increasing availability of big data on species dis-
tributions, functional traits and ecosystem functioning (Bond- 
Lamberty & Thomson, 2018; Bruelheide et al., 2018; Kattge et al., 
2019; Kissling et al., 2018; Lenoir et al., 2020), we can now study 
biodiversity and ecosystem responses to global changes in unprec-
edented detail (Antão et al., 2020; van den Hoogen et al., 2019; 
Senior et al., 2019; Steidinger et al., 2019). However, despite this 
increasing availability of ecological data, most spatially explicit 
studies of ecological, biophysical and biogeochemical processes 
still have to rely on the same global gridded temperature data (Du 
et al., 2020; van den Hoogen et al., 2019; Soudzilovskaia et al., 
2015). Thus far, these global gridded products are based on mea-
surements from standard meteorological stations that record free- 
air temperature inside well- ventilated protective shields placed up 
to 2 m above- ground in open, shade- free habitats, where abiotic 
conditions may differ substantially from those actually experienced 
by most organisms (Lembrechts et al., 2020; World Meteorological 
Organization, 2008).

Ecological patterns and processes often relate more directly 
to below- canopy soil temperature rather than to well- ventilated 
air temperature inside a weather station. Near- surface, rather 
than air, temperature better predicts ecosystem functions like 
biogeochemical cycling (e.g. organic matter decomposition, soil 
respiration and other aspects of the global carbon balance) (Davis 
et al., 2020; Gottschall et al., 2019; Hursh et al., 2017; Jian et al., 
2021; Perera- Castro et al., 2020; Pleim & Gilliam, 2009; Portillo- 
Estrada et al., 2016; Schimel et al., 2004). Similarly, the use of soil 
temperature in correlative analyses or predictive models may im-
prove predictions of climate impacts on organismal physiology 
and behaviour, as well as on population and community dynam-
ics and species distributions (Ashcroft et al., 2008; Berner et al., 
2020; Kearney et al., 2009; Körner & Paulsen, 2004; Opedal et al., 
2015; Scherrer et al., 2011; Schimel et al., 2004; Zellweger et al., 
2020). Given the key role of soil- related processes for both abo-
veground and belowground parts of the ecosystem and their 
feedbacks to the atmosphere (Crowther et al., 2016), adequate 
soil temperature data are critical for a broad range of fields of 
study, such as ecology, biogeography, biogeochemistry, agronomy, 

soil science and climate system dynamics. Nevertheless, existing 
global soil temperature products such as those from ERA5- Land 
(Copernicus Climate Change Service (C3S), 2019), with a resolu-
tion of 0.08 × 0.08 degrees (≈9 × 9 km at the equator) remain too 
coarse for most ecological applications.

The direction and magnitude of the difference or offset between 

in situ soil temperature and coarse- gridded air temperature prod-
ucts result from a combination of two factors: (i) the (vertical) mi-
croclimatic difference between air and soil temperature and (ii) the 
(horizontal) mesoclimatic difference between air temperature in flat, 
cleared areas (i.e. where meteorological stations are located) and air 
temperature within different vegetation types (e.g. below a dense 
canopy of trees) or topographies (e.g. within a ravine or on a ridge) 
(De Frenne et al., 2021; Lembrechts et al., 2020). In essence, the 
offset is thus the combination of both the vertical and horizontal dif-
ferences that result from factors affecting the energy budget at the 
Earth's surface, principally radiative energy: the ground absorbs ra-
diative energy, which is transferred to the air by convective heat ex-
change, evaporation and spatial variation in net radiation, and lower 
convective conductance near the Earth's surface results in horizon-
tal and vertical variation in temperature (Geiger, 1950; Richardson, 
1922). Both these vertical and horizontal differences in temperature 
vary significantly across the globe and in time as a result of environ-
mental conditions affecting the radiation budget (e.g. as a result of 
topographic orientation, canopy cover or surface albedo), convec-
tive heat exchange and evaporation (e.g. foliage density, variation in 
the degree of wind shear caused by surface friction) and the capacity 
for the soil to store and conduct heat (e.g. water content and soil 
structure and texture) (De Frenne et al., 2019; Geiger, 1950; Way & 
Lewkowicz, 2018; Zhang et al., 2008).

Although the physics of soil temperatures have long been well 
understood (Geiger, 1950; Richardson, 1922), the creation of high- 
resolution global gridded soil temperature products has not been 
feasible before, partially due to the absence of detailed global 
in situ soil temperature measurements (Lembrechts et al., 2020; 
Lembrechts & Lenoir, 2019). Recently, however, the call for mi-
croclimate temperature data representative of in situ conditions 
(i.e. microhabitat) as experienced by organisms living close to the 
ground surface or in the soil has become more urgent (Bramer 
et al., 2018). In this paper, we address this issue by generating 

bioclimatic variables provided here are an important step forward for any application 
in ecology and related disciplines. Nevertheless, we highlight the need to fill remain-
ing geographic gaps by collecting more in situ measurements of microclimate con-
ditions to further enhance the spatiotemporal resolution of global soil temperature 
products for ecological applications.

K E Y W O R D S

bioclimatic variables, global maps, microclimate, near- surface temperatures, soil- dwelling 
organisms, soil temperature, temperature offset, weather stations
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global gridded maps of below- canopy and near- surface soil tem-
perature at 1- km² resolution (in line with most existing global air 
temperature products). These maps are more representative of 
the habitat conditions as experienced by organisms living under 
vegetation canopies, in the topsoil or near the soil surface. They 
were created using the abovementioned offset between gridded 
air temperature data and in situ soil temperature measurements. 
We expect these soil temperature maps to be substantially more 
representative of actual microclimatic conditions than existing 
products as they capture relevant near- surface and belowground 
abiotic conditions where ecosystem functions and processes 
operate (Bramer et al., 2018; Daly, 2006; Körner & Hiltbrunner, 
2018). Indeed, the offset between free- air (macroclimate) and soil 
(microclimate) temperature, and between cleared areas and other 
habitats, can easily reach up to ±10°C annually, even at the 1- km2 

spatial resolution used here (Lembrechts et al., 2019; Wild et al., 
2019; Zhang et al., 2018).

To create the global gridded soil temperature maps introduced 
above, we used over 8500 time series of soil temperature mea-
sured in situ across the world's major terrestrial biomes, which are 
compiled and stored in the SoilTemp database (Lembrechts et al., 
2020) (Figure 1a, Figure S1) and averaged into 1200 (or 1000 for 
the second soil layer) unique 1- km2 pixels. First, to illustrate the 
magnitude of the studied effect, we visualized the global and 
biome- specific patterns in the mean annual offset between in situ 
soil temperature (0– 5 cm and 5– 15 cm depth) and coarse- scale 
interpolated air temperature from ERA5- Land using the average 
within 1 × 1 km grid cells. Hereafter, we refer to this difference 
between soil temperature and air temperature as the temperature 

offset (or offset), sensu (De Frenne et al., 2021); elsewhere called 
the surface offset (Smith & Riseborough, 1996, 2002). Secondly, we 
used a machine learning approach with 31 environmental predictor 
variables (including macroclimate, soil, topography, reflectance, 
vegetation and anthropogenic variables) to model the spatial vari-
ation in monthly temperature offsets at a 1 × 1 km resolution for 
all continents except Antarctica (as not covered by many of the 
used predictor variable layers). Using these offsets, we then cal-
culated relevant soil- related bioclimatic variables (SBIO), mirroring 
the existing global bioclimatic variables for air temperature. Finally, 
we compared the modelled mean annual temperature (SBIO1, top-
soil layer) with a similar product based on monthly ERA5L topsoil 
(0–7 cm) temperature with a spatial resolution of 0.08 × 0.08 de-
grees (≈9 × 9 km at the equator).

2  |  METHODS

2.1  |  Data acquisition

Analyses are based on SoilTemp, a global database of microclimate 
time series (Lembrechts et al., 2020). We compiled soil temperature 
measurements from 9362 unique sensors (mean duration 2.9 years, 
median duration 1.0 year, ranging from 1 month to 41 years) from 
60 countries, using both published and unpublished data sources 
(Figure 1, Figure S1). Each sensor corresponds to one independent 
time series.

We used time series spanning a minimum of 1 month, with a tem-
poral resolution of 4 h or less. Sensors of any type were included 
(Table S1), as long as they measured in situ. Sensors in experimen-
tally manipulated plots, that is, plots in which microclimate has been 
manipulated, such as in open top chambers, were excluded. Most 
data (>90%) came from low- cost rugged microclimate loggers such 
as iButtons (Maxim Integrated, USA) or TMS4- sensors (Wild et al., 
2019), with measurement errors of around 0.5– 1°C (note that we are 
using degree Celsius over Kelvin throughout, for ease of understand-
ing), while in a minority of cases sensors with higher meteorological 
specifications such as industrial or scientific- grade thermocouples 
and thermistors (measurement errors of less than 0.5°C) were used. 
Contributing data sets mostly consisted of short- term regional net-
works of microclimate measurements, yet also included a set (<5%) 
of soil temperature sensors from long- term research networks 
equipped with weather stations (e.g. Pastorello et al., 2017). By 
combining these two types of data, a much higher spatial density of 
sensors and broader distribution of microhabitats could be obtained 
than by using weather station data only.

About 68% of sensors were deployed between 2010 and 2020 
and 93% between 2000 and 2020; we, thus, focus on the latter 
period in our analyses. Additionally, given the relatively short time 
frame covered by most individual sensors and thus the lack of spa-
tially unbiased long- term time series, we were not able to test for 
systematic differences in the temperature offset between old and 
recent data sets, and thus we did not correct for this in our models. 
We strongly urge future studies to assess such temporal dynamics in 
the offset once long- term microclimate data have become sufficient 
and more available.

For each of the individual 9362 time series, we calculated 
monthly mean, minimum (5% percentile of all monthly values) and 
maximum (95% percentile) temperature, after checking all time series 

F I G U R E  1  Temperature offsets between soil and air temperature differed significantly among biomes. (a) Distribution of in situ 
measurement locations across the globe, coloured by the mean annual temperature offset (in °C) between in situ measured soil temperature 
(topsoil, 0– 5 cm depth) and gridded air temperature (ERA5- Land). Offsets were averaged per hexagon, each with a size of approximately 
70,000 km². Mollweide projection. (b) Mean annual temperature offsets per Whittaker biome (adapted from Whittaker 1970, based on 
geographic location of sensors averaged at 1 km2; 0– 5 cm depth), ordered by mean temperature offset and coloured by mean annual 
precipitation. (c– d) Distribution of sensors in 2D climate space for the topsoil (c, 0– 5 cm depth, N = 4530) and the second layer (d, 5– 15 cm 
depth, N = 3989). Colours of hexagons indicate the number of sensors at each climatic location, with a resolution of 1.2°C (x- axis) and 100 
mm (y- axis). Grey dots in the background represent the global variation in climatic space (obtained by sampling 1,000,000 random locations 
from the CHELSA world maps). Overlay with grey lines depicts a delineation of Whittaker biomes



    |  13LEMBRECHTS ET aL.

for plausibility and erroneous data. These monthly values, while per-
haps not fully intercomparable between the Northern and Southern 
Hemisphere, are those that have traditionally been used to calculate 
bioclimatic variables (Fick & Hijmans, 2017). Months with more than 

1 day of missing data, either at the beginning or end of the measure-
ment period, or due to logger malfunctioning during measurement, 
were excluded, resulting in a final subset of 380,676 months of soil 
temperature time series that were used for further analyses. For 
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each sensor with more than 12 months of data, we calculated mov-
ing averages of annual mean temperature, using each consecutive 
month as a starting month and calculating the mean temperature 
including the next 11 months. We used these moving averages to 
make maximal use of the full temporal extent covered by each sen-
sor because each time series spanned a different time period, often 
including parts of calendar years only.

The selected data set contained sensors installed strictly below-
ground, measuring temperature at depths between 0 and 200 cm 
below the ground surface. Sensors recording several measurements 
at the same site but located at different (vertical) depths were in-
cluded separately (the 9362 unique sensors thus came from 7251 
unique loggers).

Sensors were grouped in different soil depth categories (0– 5, 5– 
15, 15– 30, 30– 60, 60– 100, 100– 200 cm, Table S2) to incorporate the 
effects of soil temperature dampening associated with vertical stratifi-
cation. We limited our analyses to the topsoil (0– 5 cm) and the second 
soil layer (5– 15 cm), as we currently lack sufficient global coverage to 
make accurate models at deeper soil depths (8519 time series, about 
91%, came from the two upper depth layers). Due to uncertainty in the 
identification of these soil depths between studies (e.g. due to litter 
layers), no finer categorization is used.

We tested for potential bias in temporal resolution (i.e. mea-
surement interval) by calculating mean, minimum and maximum 
temperature for a selection of 2000 months for data measured 
every 15 min, and the same data aggregated to 30, 60, 90, 120 and 
240 min. Monthly mean, minimum and maximum temperature cal-
culated with any of the aggregated data sets differed on average 
less than 0.2°C from the ones with the highest temporal resolution. 
We were, thus, confident that pooling data with different temporal 
resolutions of 4 h or finer would not significantly affect our results.

2.2  |  Temperature offset calculation

For each monthly value at each sensor location (see Table S3 for 
number of data points per month), we extracted the correspond-
ing monthly means of the 2 m air temperature from the European 
Centre for Medium- Range Weather (ECMWF) Forecast's 5th reanal-
ysis (ERA5) (from 1979 to 1981) and ERA5- Land from 1981 to 2020 
(Copernicus Climate Change Service (C3S), 2019), hereafter called 
ERA5L. The latter data set models the global climate with a spatial 
resolution of 0.08 × 0.08 degrees (≈9 × 9 km at the equator) with an 
hourly resolution, converted into monthly means using daily means 
for the whole month. Similarly, monthly minima and maxima were 
obtained from TerraClimate (Abatzoglou et al., 2018) for the period 
2000 to 2020 at a 0.04 × 0.04 degrees (≈4 × 4 km at the equa-
tor) resolution. Monthly means for TerraClimate were not available, 
and we therefore estimated them by averaging the monthly minima 
and maxima. Finally, we also obtained monthly mean temperatures 
from CHELSA (Karger et al., 2017a, 2017b) for the period 2000 to 
2013 at a 30 × 30 arc second (≈1 × 1 km at the equator) resolu-
tion. In our modelling exercises (see section 2.5 Modelling below), 

we opted to use the mean temperature offsets as calculated based 
on ERA5L rather than on CHELSA. While CHELSA’s higher spatial 
resolution is definitely an advantage, its time period (stopping in 
2013) insufficiently overlapped with the time period covered by our 
in situ measurements (2000– 2020), soil temperature offsets based 
on the CHELSA data set were only used for comparative purposes. 
We used TerraClimate to model offsets in monthly minimum and 
maximum temperature.

We calculated moving annual averages of the gridded air tem-
perature data in the same way as for soil temperature. These were 
used to create annual temperature offset values following the same 
approach as above.

The offset between the in situ measured soil temperature in the 
SoilTemp database and the 2 m free- air temperature obtained from 
the air- temperature grids (ERA5L, TerraClimate and CHELSA, hereaf-
ter called ‘gridded air temperature’) was calculated by subtracting the 
monthly or annual mean air temperature from the monthly or annual 
mean soil temperature. Positive offset values indicate a measured soil 
temperature higher than gridded air temperature, whereas negative off-
set values represent cooler soils. Similarly, monthly minimum and max-
imum air temperature were subtracted from minimum and maximum 
soil temperature, respectively. Monthly minima and maxima of the soil 
temperature were calculated as, respectively, the 5% lowest and highest 
instantaneous measurement in that month, to correct for outliers, which 
can be especially pronounced at the soil surface (Speak et al., 2020). As a 
result, patterns in minima and maxima are more conservative estimates 
than if we had used the absolute lowest and highest values.

Importantly, the temperature offset calculated here is a result of 
three key groups of drivers: (1) height effects (2 m versus 0– 15 cm 
below the soil surface); (2) environmental or habitat effects (e.g. spatial 
variability in vegetation, snow or topography); and (3) spatial scale ef-
fects (resolution of gridded air temperature) (Lembrechts et al., 2020). 
We investigated the potential role of scale effects by comparing grid-
ded air temperature data sources with different resolutions (ERA5L, 
TerraClimate and CHELSA, see below; Figures S2-S3). Height effects 
and environmental effects are, however, not disentangled here, as the 
offset we propose incorporates both the difference between air and 
soil temperature (vertically), as well as the difference between free- air 
macroclimate and in situ microclimate (horizontally) in one measure 
(Lembrechts et al., 2020). While it can be argued that it would be bet-
ter to treat both vertical and horizontal effects separately, this would 
require a similar database of coupled in situ air and soil temperature 
measurements, which is not yet available. Using in situ measured air 
temperature could also solve spatial mismatches (i.e. spatially averaged 
air temperature represents the whole 1 to 81 km2 pixel, depending on 
pixel size, not only the exact location of the sensor). However, coupled 
air and soil temperature measurements are not only rare, but the air 
temperature measurements also have large measurement errors, es-
pecially in open habitats (Maclean et al., 2021). These errors can be up 
to several degrees in open habitats when using non- standardized sen-
sors, loggers and shielding (Holden et al., 2013; Maclean et al., 2021; 
Terando et al., 2017). Hence, using in situ measured air temperature 
without correcting for these measurement errors would be misleading.



    |  15LEMBRECHTS ET aL.

2.3  |  Global and biome- level analyses

For the purpose of visualization, annual offsets were first averaged in 
hexagons with a resolution of approximately 70,000 km2, using the 
dggridR- package (version 2.0.4) in R (Barnes et al., 2017) (Figure 1). Next, 
we plotted mean, minimum and maximum annual soil temperature as 
a function of corresponding gridded air temperature from ERA5L, 
TerraClimate and CHELSA and used generalized additive models 
(GAMs, package mgcv 1.8- 31; Wood, 2012) to visualize deviations from 
the 1:1- line (i.e. temperature offsets deviating from zero, Figures S4– S5).

All annual and monthly values within each soil depth category 
and falling within the same 1- km2 pixel were aggregated as a mean, 
resulting in a total of c. 1200 unique pixels at 0– 5 cm, and c. 1000 
unique pixels at 5– 15 cm each month, across the globe (Tables S3– 
S5). This averaging includes summarizing the data over space, that is, 
multiple sensors within the same 1- km² pixel, and time, that is, data 
from multi- year time series from a certain sensor, to reduce spatial and 
temporal autocorrelation and sampling bias. We assigned these  1- km2 

averages to the corresponding Whittaker biome of their georefer-
enced location, using the package plotbiomes (version 0.0.0.9901) in R 
(Figure 1c,d, Tables S4– S5 (Stefan & Levin, 2018)). We ranked biomes 
based on their offset and compared this with the mean annual precip-
itation in each biome (Figure 1b). This was done separately for each 
air temperature data source (ERA5L, TerraClimate and CHELSA), soil 
depth (0– 5 cm, 5– 15 cm) and time frame (ERA5L 1979– 2020, 2000– 
2020), as well as for the offset between monthly minimum and max-
imum soil temperature and the minimum and maximum gridded air 
temperature from TerraClimate. Our analyses showed that patterns 
were robust to variation in spatial resolution, sensor depth, climate 
interpolation method and temporal scale (Figures S2– S5).

2.4  |  Acquisition of global predictor variables

To create spatial predictive models of the offset between in situ soil 
temperature and gridded air temperature, we first sampled a stack of 
global map layers at each of the logger locations within the data set. 
These layers included long- term macroclimatic conditions, soil tex-
ture and physiochemical information, vegetation, radiation and topo-
graphic indices as well as anthropogenic variables. Details of all layers, 
including descriptions, units and source information, are described in 
Supplementary Data S1. In short, information about soil texture, struc-
ture and physiochemical properties was obtained from SoilGrids (ver-
sion 1 [Hengl et al., 2017]), limited to the upper soil layer (top 5 cm). 
Long- term averages of macroclimatic conditions (i.e. monthly mean, 
maximum and minimum temperature, monthly precipitation) was ob-
tained from CHELSA (version 2017 [Karger et al., 2017a]), which in-
cludes climate data averaged across 1979– 2013, and from WorldClim 
(version 2 [Fick & Hijmans, 2017]). Monthly snow probability is based 
on a pixel- wise frequency of snow occurrence (snow cover >10%) in 
MODIS daily snow cover products (MOD10A1 & MYD10A1 [Hall 
et al., 2002]) in 2001– 2019. Spectral vegetation indices (i.e. averaged 
MODIS NDVI product MYD13Q1) and surface reflectance data (i.e. 

MODIS MCD43A4) were obtained from the Google Earth Engine 
Data Catalog (developers.google.com/earth- engine/datasets) and av-
eraged from 2015 to 2019. Landcover and topographic information 
were obtained from EarthEnv (Amatulli et al., 2018). Aridity index (AI) 
and potential evapotranspiration layers were obtained from CGIAR 
(Zomer et al., 2008). Anthropogenic information (population density) 
was obtained from the EU JRC (ghsl.jrc.ec.europa.eu/ghs_pop2019.
php). Aboveground biomass data were obtained from GlobBiomass 
(Santoro, 2018). RESOLVE ecoregion classifications were used to cat-
egorize sampling locations into biomes (Dinerstein et al., 2017). With 
this set of predictor variables, we included information on all differ-
ent categories of drivers of soil temperature. An important variable 
that had to be excluded was snow depth, due to the lack of a relevant 
1- km2 resolution global product. The final set of predictor variables 
included 24 ‘static’ variables and eight monthly layers (i.e. maximum, 
mean, and minimum temperature, precipitation, cloud cover, solar ra-
diation, water vapour pressure and snow cover). As cloud cover es-
timates were not available for high- latitude regions in the Northern 
Hemisphere in January and December due to a lack of daylight, we 
excluded cloud cover as an explanatory variable for these months (i.e. 
‘EarthEnvCloudCover_MODCF_monthlymean_XX’, with XX repre-
senting the months in two- digit form Supplementary Data S1).

All variable map layers were reprojected and resampled to a 
unified pixel grid in EPSG:4326 (WGS84) at 30 arc- sec resolution 
(≈1 × 1 km at the equator). Areas covered by permanent snow or 
ice (e.g. the Greenland ice cap or glaciated mountain ranges, iden-
tified using SoilGrids) were excluded from the analyses. Antarctic 
sampling points were excluded from the modelling data set owing to 
the limited coverage of several covariate layers in the region.

2.5  |  Modelling

To generate global maps of monthly temperature offsets (Figure 2), we 
trained Random Forest (RF) models for each month, using the temper-
ature offsets as the response variables and the global variable layers as 
predictors (Breiman, 2001; Hengl et al., 2018). We used a geospatial RF 
modelling pipeline as developed by van den Hoogen et al. (2021). RF 
models are machine learning models that combine many classification 
trees using randomized subsets of the data, with each tree iteratively 
dividing data into groups of most closely related data points (Hengl 
et al., 2018). They are particularly valuable here due to their capacity 
to uncover nonlinear relationships (e.g. due to increased decoupling of 
soil from air temperature in colder and thus snow- covered areas) and 
their ability to capture complex interactions among covariates (e.g. be-
tween snow and vegetation cover) (Olden et al., 2008). Furthermore, 
they may currently have advantages over mechanistic microclimate 

models for global modelling (Maclean & Klinges, 2021), as the latter 
require highly detailed physical input parameters for calibration, and 
current computational barriers preclude global assessments at a 1 km2 

resolution and over multiple decades. Nevertheless, we urge future 
endeavours to compare and potentially improve our results with esti-
mates based on such mechanistic models.
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We performed a grid search procedure to tune the RF models across 
a range of 52 hyperparameter settings (variables per split: 2– 14, mini-
mum leaf population: 2– 5, in all combinations adding up to 52 models, 

each time with 250 trees). During this procedure, we assessed each of 
the 52 model's performance using k- fold cross- validation (k = 10; folds 
assigned randomly, stratified per biome). The models’ mean and standard 

F I G U R E  2  Global modelled temperature offsets between soil and air temperature show strong spatiotemporal variation across months. 
Modelled annual (a) and monthly (b– m) temperature offset (in °C) between in situ measured soil temperature (topsoil, 0– 5 cm) and gridded 
air temperature. Positive (red) values indicate soils that are warmer than the air. Dark grey represents regions outside the modelling area
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deviation values were the basis for choosing the best of all evaluated 
models. This procedure was repeated for each month separately for the 
two soil depth layers (0– 5 cm, 5– 15 cm), for offsets in mean, minimum 
and maximum temperature. The importance of predictor variables was 
assessed using the variable importance and ordered by mean variable 
importance across all models. This variable importance adds up the 
decreases in the impurity criterion (i.e. the measure on which the local 
optimal condition is chosen) at each split of a node for each individual 
variable over all trees in the forest (van den Hoogen et al., 2021).

2.6  |  Soil bioclimatic variables

The resulting global maps of the annual and monthly offsets be-
tween mean, minimum and maximum soil and air temperature 
were used to calculate relevant bioclimatic variables following the 
definition used in CHELSA, BIOCLIM, ANUCLIM and WorldClim 
(Booth et al., 2014; Fick & Hijmans, 2017; Karger et al., 2017a; Xu 
& Hutchinson, 2011) (Table 1, Figures 3– 4). First, we calculated 
monthly soil mean, maximum and minimum temperature by adding 
monthly temperature offsets to the respective CHELSA monthly 
mean, maximum and minimum temperature (Karger et al., 2017a). 
Next, we used these soil temperature layers to compute 11 soil 
bioclimatic layers (SBIO, Table 1) (O’Donnell & Ignizio, 2012). 
Wettest and driest quarters were identified for each pixel based 
on CHELSA’s monthly values.

2.7  |  Model uncertainty

To assess the uncertainty in the monthly models, we performed 
a stratified bootstrapping procedure, with total size of the boot-
strap samples equal to the original training data (van den Hoogen 
et al., 2021). Using biomes as a stratification category, we ensured 
the samples included in each of the bootstrap training collections 
were proportionally representative of each biome's total area. Next, 
we trained RF models (with the same hyperparameters as selected 
during the grid- search procedure) using each of 100 bootstrap 

iterations. Each of these trained RF models was then used to clas-
sify the predictor layer stack, to generate per- pixel 95% confidence 
intervals and standard deviation for the modelled monthly offsets 
(Figure 5a, Figure S6a). The mean R² value of the RF models for the 
monthly mean temperature offset was 0.70 (from 0.64 to 0.78) at 
0– 5 cm and 0.76 (0.63– 0.85) at 5 to 15 cm across all 12 monthly 
models. Mean RMSE of the models was 2.20°C (1.94– 2.51°C) at 
0– 5 cm, and 2.06°C (1.67– 2.35°C) at 5– 15 cm.

Importantly, model uncertainty as reported in Figure 5a and 
Figure S6a comes on top of existing uncertainties in (1) in situ soil 
temperature measurements and (2) the ERA5L macroclimate models 
as used in our models. However, both of those are usually under 1°C 
(Copernicus Climate Change Service (C3S), 2019; Wild et al., 2019).

To assess the spatial extent of extrapolation, which is necessary 
due to the incomplete global coverage of the training data, we first per-
formed a principal component analysis (PCA) on the full environmental 
space covered by the monthly training data, including all explanatory 
variables as used in the models, and then transformed the composite 
image into the same principal comonents' (PC) spaces as of the sampled 
data (van den Hoogen et al., 2019). Next, we created convex hulls for 
each of the bivariate combinations from the first 10 to 12 PCs, covering 
at least 90% of the sample space variation, with the number of PCs de-
pending on the month. Using the coordinates of these convex hulls, we 
assessed whether each pixel fell within or outside each of these convex 
hulls and calculated the percentage of bivariate combinations for which 
this was the case (Figure 5b, Figure S6b). This process was repeated for 
each month and for each of the two soil depths separately.

These uncertainty maps are important because one should 
be careful with extrapolation beyond the range of conditions 
covered by the environmental variables included in the original 

calibration data set, especially in the case of non- linear patterns 
such as modelled here. The maps are provided as spatial masks to 
remove or reduce the weighting of the pixels for which predic-
tions are beyond the range of values covered by the models during 
calibration. To assess this further, we used a spatial leave- one- out 
cross- validation analysis to test for spatial autocorrelation in the 
data set (Figure S7) (van den Hoogen et al., 2021). This approach 
trains a model for each sample in the data set on all remaining 

Bioclimatic variable Meaning

SBIO1 annual mean temperature

SBIO2 mean diurnal range (mean of monthly (max temp -  min temp))

SBIO3 isothermality (SBIO2/SBIO7) (×100)

SBIO4 temperature seasonality (standard deviation ×100)

SBIO5 max temperature of warmest month

SBIO6 min temperature of coldest month

SBIO7 temperature annual range (SBIO5- SBIO6)

SBIO8 mean temperature of wettest quarter

SBIO9 mean temperature of driest quarter

SBIO10 mean temperature of warmest quarter

SBIO11 mean temperature of coldest quarter

TA B L E  1  Overview of soil bioclimatic 
variables as calculated in this study
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samples, excluding data points that fall within an increasingly 
large buffer around that focal sample. Results show lowest confi-
dence for May to September at 5– 15 cm, likely driven by uneven 
global coverage of data points.

Finally, we compared the modelled mean annual temperature 
(SBIO1, topsoil layer) with a similar product based on monthly ERA5L 
topsoil (0– 7 cm) temperature with a spatial resolution of 0.08 × 0.08 de-
grees (≈9 × 9 km at the equator, Copernicus Climate Change Service 
(C3S), 2019). The corresponding SBIO1 based on ERA5L was calculated 

using the means of the monthly averages for each month over the pe-
riod 1981 to 2016, and averaging these 12 monthly values into one 
annual product. We then visualized spatial differences between SBIO1 
and ERA5, as well as differences across the macroclimatic gradient, to 
identify mismatches between both data sets.

All geospatial modelling was performed using the Python API in 
Google Earth Engine (Gorelick et al., 2017). The R statistical soft-
ware, version 4.0.2 (R Core Team, 2020), was used for data visu-
alizations. All maps were plotted using the Mollweide projection, 

F I G U R E  3  Soil bioclimatic variables. Global maps of bioclimatic variables for topsoil (0– 5 cm depth) climate, calculated using the maps of 
the monthly offsets between soil and air temperature (see Figure 2), and the bioclimatic variables for air temperature from CHELSA
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which preserves relative areas, to avoid large distortions at high 
latitudes.

2.8  |  Sources of uncertainty

The temporal mismatch between the period covered by CHELSA (1979– 
2013) and our in situ measurements (2000– 2020) prevented us from 

directly using CHELSA climate to calculate the temperature offsets used 
in our models. This temporal mismatch might affect the offsets calculated 
here because the relationship between temperature offset and macrocli-
mate will change through time as the climate warms. Similarly, inter- annual 
differences in offsets due to specific weather conditions cannot be im-
plemented in the used approach. However, we are confident that, at the 
relatively coarse spatial (1 km2) and temporal (monthly averages) resolution 
we are working at, our results are sufficiently robust to withstand these 

F I G U R E  4  Mean annual soil temperature shows significantly lower spatial variability than air temperature. (a) Global map of mean 
annual topsoil temperature (SBIO1, 0– 5 cm depth, in °C), created by adding the monthly offset between soil and air temperature for the 
period 2000– 2020 (Figure 2) to the monthly air temperature from CHELSA. A black mask is used to exclude regions where our models are 
extrapolating (i.e. interpolation values in Figure 5 are <0.9, 18% of pixels). Dark grey represents regions outside the modelling area. (b– c) 
Density plots of mean annual soil temperature across the globe (b) and for each Whittaker biome separately (c) for SBIO1 (dark grey, soil 
temperature), compared with BIO1 from CHELSA (light grey, air temperature), created by extracting 1,000,000 random points from the 
1- km² gridded bioclimatic products. The numbers in (c) represent the standard deviations of air temperature (light grey) and soil temperature 
(dark grey). Biomes are ordered according to the median annual soil temperature values (vertical black line) from the highest temperature 
(subtropical desert) to the lowest (tundra)
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temporal issues, given that we found high consistency in offset patterns 
between the different time frames and air temperature data sets examined 
(Figures S2– S5). Nevertheless, we strongly urge future research to disen-
tangle these potential temporal dynamics, especially given the increasing 
rate at which the climate is warming (GISTEMP Team, 2021; Xu et al., 2018).

Similarly, a potential bias could result from the mismatch in method 
and resolution between ERA5L— used to calculate the temperature 
offsets— and CHELSA, which was used to create the bioclimatic vari-
ables. However, even though temperature offsets have slightly larger 
variation when based on the coarser- grained ERA5L- data than on the 
finer- grained CHELSA- data, Figures S2– S5 show that relationships be-
tween soil and air temperature are largely consistent in all biomes and 
across the whole global temperature gradient. Therefore, the larger 
offsets created additional random scatter, yet no consistent bias.

Finally, we acknowledge that the 1- km² resolution gridded prod-
ucts might not be representative of conditions at the in situ mea-
surement locations within each pixel. This issue could be particularly 
significant for different vegetation types (here proxied at the pixel 
level using total aboveground biomass (unit: tons/ha i.e., Mg/ha, 
for the year 2010; Santoro, 2018) and NDVI (MODIS NDVI product 
MYD13Q1, averaged over 2015– 2019). To verify this, we compared 
a pixel's estimated aboveground biomass with the dominant in situ 
habitat (forest versus open) surrounding the sensors in that pixel 

(Table S6). Importantly, all sensors installed in forests fell indeed in 
pixels with more than 1 ton/ha aboveground biomass. Similarly, 75% 
or more of sensors in open terrain fell in pixels with biomass estimates 
of less than 1 ton/ha. Only in the temperate woodland biome was the 
match between in situ habitat estimates and pixel- level aboveground 
biomass lower, with less than 95% of sensors in forested locations cor-
rectly placed in pixels with more than 1 ton/ha biomass, and less than 
50% of open terrain sensors in pixels with less than 1 ton/ha biomass. 
While our predictions will thus not be accurate for locations within a 
pixel that largely deviate from average conditions (e.g. open terrain 
in pixels identified as largely forested, or vice versa), they should be 
largely representative for those pixel- level averages.

3  |  RESULTS

3.1  |  Biome- wide patterns in the temperature 
offset

We found positive and negative temperature offsets of up to 10°C 
between in situ measured mean annual topsoil temperature and grid-
ded air temperature (mean = 3.0 ± 2.1°C standard deviation, Figure 1, 
0– 5 cm, depth; 5– 15 cm is available in Figures S2, S5). The magnitude 

F I G U R E  5  Models of the temperature offset between soil and air temperature have low standard deviations and good global coverage. 
Analyses for the temperature offset between in situ measured topsoil (0– 5 cm depth) temperature and gridded air temperature. (a) Standard 
deviation (in °C) over the predictions from a cross- validation analysis that iteratively varied the set of covariates (explanatory data layers) and 
model hyperparameters across 100 models and evaluated model strength using 10- fold cross- validation, for January (left) and July (right), as 
examples of the two most contrasting months. (b) The fraction of axes in the multidimensional environmental space for which the pixel lies 
inside the range of data covered by the sensors in the database. Low values indicate increased extrapolation
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and direction of these temperature offsets varied considerably within 
and across biomes. Mean annual topsoil temperature was on aver-
age 3.6 ± 2.3°C higher than gridded air temperature in cold and/or 
dry biomes, namely tundra, boreal forests, temperate grasslands 
and subtropical deserts. In contrast, offsets were slightly negative in 
warm and wet biomes (tropical savannas, temperate forests and tropi-
cal rainforests) where soils were, on average, 0.7 ± 2.7°C cooler than 
gridded air temperature (Figure 1b, Figures S2 and S5; note, however, 
the lower spatial coverage in these biomes in Figure 1a,c,d, Table S4). 
Temperature offsets in annual minimum and maximum temperature 
amounted to c. 10°C maximum. While annual soil temperature minima 
were on average higher than corresponding gridded air temperature 
minima in all biomes, temperature offsets of annual maxima followed 
largely the same biome- related trends as seen for the annual means, 
albeit with the higher variability expected for temperature extremes 
(Figures S2g, S2h, S4g, S4h). Using different air temperature data 
sources did not alter the annual temperature offset and biome- related 
patterns (see Methods and Figures S2– S5).

Soils in the temperate seasonal forest biome were on average 
0.8°C (±2.2°C) cooler than air temperature within 1- km2 grid cells 

of forested habitats, and 1.0°C (±4.0°C) warmer than the air within 
1- km2 grid cells of non- forested habitats, resulting in a biome- wide 
average of 0.5°C (Table S7). Similar patterns were observed in other 
biomes.

3.2  |  Temporal and spatial variation in 
temperature offsets

Our RF outputs highlighted a strong seasonality in monthly temper-
ature offsets, especially towards higher latitudes (Figure 2). High- 
latitude soils were found to be several degrees warmer than the 
air (monthly offsets of up to 25°C) during their respective winter 
months, and cooler (up to 10°C) in summer months, both at 0– 5 cm 
(Figure 2) and 5– 15 cm (Figure S8) soil depths. In the tropics and 
subtropics, soils in dry biomes (e.g. in the Sahara Desert or southern 
Africa) were predicted to be warmer than air throughout most of 
the year, while soils in mesic biomes (e.g. tropical biomes in South 
America, central Africa and Southeast Asia) were modelled to be 
consistently cooler, at both soil depths. These global gridded prod-
ucts were then used to create temperature- based global bioclimatic 
variables for soils (SBIO, Figure 3, Figure S9).

3.3  |  Global variation in soil temperature

We observed 17% less spatial variation in mean annual soil tem-
perature globally (expressed by the standard deviation) than in air 
temperature, largely driven by the positive offset between soil 
and air temperature in cold environments (Figure 4). Importantly, 
our machine learning models slightly (up to 1°C, or around 10% of 
variation) underestimated temperature offsets at both extremes 
of the temperature gradient at the 1- km² resolution (Figure S10) 

and likely even more in comparison with finer- resolution prod-
ucts. Estimates of the reduction in variation across space are thus 
conservative, especially in the coldest biomes. The reduction in 
spatial temperature variation was observed in all cold and cool 
biomes, with tundra and boreal forests having both a significant 
positive mean temperature offset and a reduction of 20% and 22% 
in variation, respectively (Figure 4c). In the warmest biomes (e.g. 
tropical savanna and subtropical desert), however, we found an 
increase in variation of, on average, 10%.

Our bootstrap approach to validate modelled monthly offsets in-
dicated high consistency among the outcomes of 100 bootstrapped 
models (Figure 5, Figure S6a), with standard deviations in most months 
and across most parts of the globe around or below ±1°C. One excep-
tion to this was the temperature offset at high latitudes of the Northern 
Hemisphere during winter months (standard deviation up to ±5°C in the 
0– 5 cm layer). Predictive performance was comparable across biomes, 
although with large variation in data availability (Figure S11).

The importance of predictor variables in the RF models was 
largely consistent across months. Macroclimatic variables such as in-
coming solar radiation as well as long- term averages in air tempera-
ture and precipitation were by far the most influential explanatory 
variables in the spatial models of the monthly temperature offset 
(Figures S12 and S13).

We highlight that the current availability of in situ soil tempera-
ture measurements is significantly lower in the tropics (Table S5), 
where our model had to extrapolate temperatures beyond the range 
used to calibrate the model (Figure 5b, Figure S6b).

Finally, our comparison with a mean annual soil temperature product 
derived from the coarse- resolution ERA5L topsoil temperature showed 
that spatial variability, for example, driven by topographic heterogeneity, 
is much better captured here than in the coarser resolution of the ERA5L- 
based product (Figure 6c- e). Nevertheless, our predictions at the coarse 
scale showed to be condensed within a 5°C range of values from the 
ERA5L- predictions, for more than 95% of pixels globally. Noteworthy, 
our predictions resulted in consistently cooler soil temperature predic-
tions than topsoil conditions provided by ERA5L across large areas, such 
as the boreal and tropical forest biomes (Figure 6a,b). Additionally, our 
models predicted lower values for SBIO1 than ERA5L in all regions with 
mean annual soil temperature below 0°C, except for a few locations 
around Greenland and Svalbard (Figure 6a,b).

4  |  DISCUSSION

4.1  |  Global patterns in soil temperature

We observed large spatiotemporal heterogeneity in the global offset 
between soil and air temperature, often in the order of several degrees 
annually and up to more than 20°C during winter months at high lati-
tudes. These values are in line with empirical data from regional studies 
(Lembrechts et al., 2019; Obu et al., 2019; Zhang et al., 2018). Both 
annual and monthly offsets showed clear discrepancies between cold 
and dry versus warm and wet biomes. The modelled monthly offsets 
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covaried strongly negatively with both long- term averages in free- air 
temperature and solar radiation, linking to the well- known decoupling 
of soil from air temperature due to snow (for cold extremes in cold and 
cool biomes) (Grundstein et al., 2005). However, the secondary impor-
tance of variables related to precipitation and soil structure hints to the 
additional distinction between wet and dry biomes at the warm end of 
the temperature gradient. There, buffering due to shading, evapotran-
spiration and the specific heat of water (mostly against warm extremes 
in warm and wet biomes) results in cooler soil temperature (De Frenne 
et al., 2013; Geiger, 1950; Grünberg et al., 2020; Grundstein et al., 
2005; Hennon et al., 2010; Wang & Dickinson, 2012), while such buff-
ering is not as strong in warm and dry biomes due to the lower water 

availability (Greiser et al., 2018; Wang & Dickinson, 2012; Zhou et al., 
2021). As such, these results highlight strong macroclimatic impacts 

on the soil microclimate across the globe (see also De Frenne et al., 
2019), yet with soil temperature importantly non- linearly related to air 
temperature at the global scale. This confirms that the latter is not suf-
ficient as a proxy for temperature conditions near or in the soil. With 
our soil- specific global bioclimatic products, we have provided the 
means to correct for these important region- specific, non- linear dif-
ferences between soil and air temperature at an unprecedented spatial 
resolution.

4.2  |  Drivers of the temperature offset

Our empirical modelling approach enabled us to accurately map 
global patterns in soil temperature. In doing so we did not aim to 

F I G U R E  6  The mean annual soil temperature (SBIO1, 1 x 1 km resolution) modelled here is consistently cooler than ERA5L (9 x 9 km) 
soil temperature in forested areas. (a) Spatial representation of the difference between SBIO1 based on our model and based on ERA5L 
soil temperature data. Negative values (blue colours) indicate areas where our model predicts cooler soil temperature. Dark grey areas 
(Greenland and Antarctica) are excluded from our models. Asterisk in Scandinavia indicates the highlighted area in panels d to f (see below). 
(b) Distribution of the difference between SBIO1 and ERA5L along the macroclimatic gradient (represented by SBIO1 itself) based on a 
random subsample of 50,000 points from the map in a). Red line from a Generalized Additive Model (GAM) with k = 4. (c- e) High- resolution 
zoomed panels of an area of high elevational contrast in Norway (from 66.0– 66.4°N, 15.0– 16.0°E) visualizing SBIO1 (c), ERA5L (d) and their 
difference (e), to highlight the higher spatial resolution as obtained with SBIO1
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disentangle the mechanisms governing the temperature offset: 
such an endeavour would require modelling the biophysics of en-
ergy exchange at the soil surface across biomes (Kearney et al., 
2019; Maclean & Klinges, 2021; Maclean et al., 2019). Importantly, 
many of the predictor variables used in our study (e.g. long- term 
averages in macroclimatic conditions or solar radiation) are un-
likely to represent direct causal relationships underlying the 
temperature offset, but may rather indirectly relate to many en-
suing factors that affect the functioning of ecosystems at fine 
spatial scales which, in turn, feedback on local temperature off-
sets, such as energy and water balances, snow cover, wind inten-
sity and vegetation cover (De Frenne et al., 2021). For example, 
while increased solar radiation itself would theoretically result in 
soils warming more than the air, high solar radiation at the global 
scale often coincides with high vegetation cover blocking radia-
tion input to the soil, thus correlating with relatively cooler soils 
(De Frenne et al., 2021). Our results highlight, however, that the 
complex relationship between microclimatic soil temperature and 
macroclimatic air temperature is predictable across large spatial 
extents thanks to broad scale patterns, even if this is governed 
by a multitude of local- scale factors involving fine spatiotempo-
ral resolutions. Nevertheless, the predictive quality of our models 
was lower in high latitude regions, where high variation in the in 
situ measured offsets— likely driven by the interactions between 
snow, local topography and vegetation— reduced predictive 
power of the models at the 1- km2 resolution (Greiser et al., 2018; 
Grünberg et al., 2020; Myers- Smith et al., 2020; Niittynen et al., 
2020; Way & Lewkowicz, 2018).

4.3  |  Implications for microclimate warming

Our results highlight clear biome- specific differences in mean annual 
temperature between air and soil temperatures, as well as a signifi-
cant reduction in the spatial variation in temperature in the soil or 
near the soil surface, especially in cold and cool biomes (Figure 4). 
These patterns remain even despite the presence of often strongly 
opposing monthly offset trends (Figure 2). The observed correlation 
between long- term averages in macroclimatic conditions and the an-
nual temperature offset illustrates that soil temperature is unlikely 
to warm at the same rate as air temperature when macroclimate 
warms. Indeed, one degree of air temperature warming could result 
in either a bigger or smaller soil temperature change, depending on 
where along the macroclimatic gradient this is happening. These ef-
fects might be seen in cold biome soils most strongly, as they not only 
experience the largest (positive) temperature offsets and reductions 
in climate range compared to air temperature (Figure 4b,c), but they 
are also expected to experience the strongest magnitude of macro-
climate warming (Chen et al., 2021; Cooper, 2014; GISTEMP Team, 
2021; Overland et al., 2014). As a result, mean annual temperatures 
in cold climate soils can be expected to warm slower than the cor-
responding macroclimate as offsets shrink with increasing macrocli-
mate warming.

Contrastingly, predicted climate warming in hot and dry bi-
omes could be amplified in the topsoil, where we show soils to 
become increasingly warmer than the air at higher tempera-
tures. Similarly, changes in precipitation regimes— and thus soil 
moisture— can significantly alter the relationship between air 
and soil temperature, with critical implications for soil moisture- 
atmosphere feedbacks, especially in hot biomes (Zhou et al., 
2021). Indeed, as precipitation decreases, offsets could turn 
more positive and soil temperatures might warm even faster than 
the observed macroclimate warming. Therefore, future research 
should not only use soil temperature data as provided here to 
study belowground ecological processes (De Frenne et al., 2013; 
Lembrechts et al., 2020), it should also urgently investigate fu-
ture scenarios of soil climate warming in light of changing air tem-
perature and precipitation, at ecologically relevant spatial and 
temporal resolutions to incorporate the non- linear relationships 
exposed so far (Lembrechts & Nijs, 2020).

4.4  |  Within- pixel heterogeneity

We chose to use a 1- km² resolution spatial grid to model mismatches 
between soil and air temperature, aggregating all values from dif-
ferent microhabitats within the same 1- km2 grid cell (e.g. sensors in 
forested versus open patches) as well as all daily and diurnal varia-
tion within a month. Additionally, we used coarse- grained free- air 
temperature rather than in situ measured air temperatures. We are 
aware that higher spatiotemporal resolutions would likely reveal 
the importance of locally heterogeneous variables. Finer- scale fac-
tors that affect the local radiation balance and wind (e.g. topogra-
phy, snow and vegetation cover, urbanization) at the landscape to 
local scales and those that directly affect neighbouring locations 
(e.g. topographic shading and cold- air drainage, Ashcroft & Gollan, 
2012; Lembrechts et al., 2020; Whiteman, 1982) would probably 
have emerged as more important drivers at regional scales and with 
higher spatiotemporal resolutions than those used here (Figure S12). 
The latter is illustrated by the multi- degree Celsius difference in 
mean annual temperature between forested and non- forested loca-
tions within the same biome (Table S7), as well as the lower accuracy 
obtained during winter months at high latitudes, where and when 
fine- scale spatial heterogeneity in snow cover and depth probably 
lowers models’ predictability at the 1- km2 resolution. In situ meas-
urements were largely from areas with a representative vegetation 
type, supporting the reliability of our predictions for the dominant 
habitat type within a pixel. However, improved accuracy at high 
latitudes will depend on the future development of high- resolution 
snow depth and/or snow water equivalent estimates (Luojus et al., 
2010).

The SoilTemp database (Lembrechts et al., 2020) will facili-
tate the necessary steps towards mapping soil temperature at 
higher spatiotemporal resolutions in the future, with its geo-
referenced time series of in situ measured soil and near- surface 
temperature and associated metadata. Nevertheless, compared 
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with existing soil temperature products such as those from 
ERA5L (Copernicus Climate Change Service (C3S), 2019), we 
emphasize that the increased resolution of our data products 
already provides a major technical advance, even though sub-
stantial finer within- pixel variation is still lost through spatio-
temporal aggregation.

5  |  CONCLUSIONS

The spatial (biome- specific) and temporal (seasonally variable) off-
sets between air and soil temperature quantified here likely bias 
predictions of current and future climate impacts on species and 
ecosystems (Bergstrom et al., 2021; Cooper, 2014; Graae et al., 
2018; Kearney et al., 2009; Körner & Paulsen, 2004; Opedal et al., 
2015; Zellweger et al., 2020). Temperature in the topsoil rather than 
in the air ultimately defines the distribution and performance of 
most terrestrial species, as well as many ecosystem functions at or 
below the soil surface (Gottschall et al., 2019; Hursh et al., 2017; 
Pleim & Gilliam, 2009; Portillo- Estrada et al., 2016). As many eco-
system functions are highly correlated with temperature (yet often 
non- lineary, Johnston et al., 2021), soil temperature rather than air 
temperature should in those instances be the preferred predictor for 
estimating their rates and temperature thresholds (Coûteaux et al., 
1995; Rosenberg et al., 1990; Schimel et al., 1996). Correcting for 
the non- linear relationship between air and soil temperature identi-
fied here is, thus, vital for all fields investigating abiotic and biotic 
processes relating to terrestrial environments (White et al., 2020). 
Indeed, soil temperature, macroclimate and land- use change will in-
teract to define the future climate as experienced by organisms, and 
high- resolution soil temperature data are needed to tackle current 
and future challenges.

By making our global soil temperature maps and the underlying 
monthly offset data openly available, we offer gridded soil tempera-
ture data for climate research, ecology, agronomy and other life and 
environmental sciences. Future research has the important task of 
further improving the spatial and temporal resolution of global micro-
climate products as microclimate operates at much higher temporal 
resolutions, with temporal variation over hours, days, seasons and 
years (Bütikofer et al., 2020; Potter et al., 2013), as well as to confirm 
accuracy of predictions in undersampled regions in the underlying 
maps (Lembrechts et al., 2021). However, we are convinced that the 
maps presented here bring us one step closer to having accessible 
climate data exactly where it matters most for many terrestrial or-
ganisms (Ashcroft et al., 2014; Kearney & Porter, 2009; Lembrechts 
& Lenoir, 2019; Niittynen & Luoto, 2018; Pincebourde et al., 2016). 
We, nevertheless, highlight that there is still a long way to go towards 
global soil microclimate data with an optimal spatiotemporal resolu-
tion. We, therefore, urge all scientists to submit their microclimate 
time series to the SoilTemp database to fill data gaps and help to in-
crease the spatial resolution until it matches with the scale at which 
ecological processes take place (Bütikofer et al., 2020; Lembrechts 
et al., 2020).
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