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Abstract

For single-point measurements of quasi-perpendicular shocks, analytical measurements of the foot width are often
used to evaluate the velocity of the shock relative to the satellite. This velocity is of crucial importance for in situ
observations because it enables the identification of the spatial scale of other regions of the shock front such as a
magnetic ramp for which the comprehensive understanding of their formation is not yet achieved. Knowledge of
the spatial scale is one of the key parameters for the validation of theoretical models that are developed to explain
the formation of these regions. Previously available estimates of the foot width for a quasi-perpendicular shock are
based on several simplifications such as zero upstream ion temperature and specular ion reflection by the cross-
shock electrostatic potential. The occurrence of specular reflection implies high values of the cross-shock
electrostatic potential that significantly exceed the values obtained from in situ measurements. In this paper the
effects of nonzero ion temperature and nonspecular ion reflection on the foot width are investigated. It is shown
that in the case of nonspecular reflection the foot width can be as small as half of the size of the standard widely
used estimate. Results presented here enable more reliable identification of the shock velocity from single-point
observations.

Unified Astronomy Thesaurus concepts: Shocks (2086)

1. Introduction

The main process that takes place at the front of a collisionless
shock is the redistribution of the kinetic energy of the bulk plasma
motion to plasma thermalization and the acceleration of a small
fraction of plasma particles. Drastic changes in plasma parameters
such as density, magnetic field, temperature, and others occur at
the shock front. The spatial scales of these changes are important
for the understanding of the nature of the shock, i.e., the
dynamical processes that counterbalance the nonlinear steepening
of the shock front and therefore lead to the formation of the front
structure. In the case of supercritical quasi-perpendicular shocks,
the spatial scales of the regions of the front such as the foot, the
ramp, and overshoot are unambiguously related to the physics of
their formation. It is generally understood that the formation of the
foot (Woods 1971) and overshoot/undershoot (Livesey et al.
1982) regions is related to the ion motion within the shock front.
Currently, there is no comprehensive understanding of what
determines the width of the ramp (Krasnoselskikh et al. 2013).
Observations from the four-point Cluster mission enable a
complete separation between the observed spatial and temporal
variations and therefore an unequivocal determination of the
spatial scales of the observed phenomena. These multipoint data
sets enable statistical studies of the spatial scale of the ramp for the
quasi-perpendicular region of the terrestrial bow shock (Hobara
et al. 2010). Currently, however, such in situ measurements
obtained by four closely separated spacecraft (e.g., Cluster,
THEMIS, MMS) are available only in the vicinity of Earth and
are thus limited to studies of the terrestrial bow shock and
interplanetary shocks at 1 au. Collisionless shocks are abundant in
the universe and exist around ordinary stars, in binary systems, in
supernova remnants, and in active galactic nuclei. However, only

shocks within the heliosphere can be studied using in situ
measurements. It is important to study all varieties of shocks
available for in situ observations. The identification of “kinematic
shocks” near Venus, which refuted the longstanding conjecture
that the overshoot is an unambiguous sign of supercritical shock
(Balikhin et al. 2008; Russell et al. 2009; Gedalin 2019; Pope
et al. 2019; Pope 2020), is an example of why it is important to
study heliospheric shocks in all their diversity. Currently no close
separation multipoint measurements are available for planetary or
solar missions. While a number of techniques have been used to
identify the spatial scale of the shock front in the pre-ISEE era, the
most often employed is the technique based on the spatial scale of
the foot region. The first accurate estimate of the width of the foot
region for a supercritical perpendicular shock was obtained by
Woods (1971). It was further simplified by Phillips & Robson
(1972) who assumed specular reflection and cold upstream ions.
Livesey et al. (1984) extended the theory of Phillips & Robson
(1972) to include quasi-perpendicular geometry. Their expression
was used to identify the relative velocity of the Jovian shock with
respect to the Voyager spacecraft (Moses et al. 1985). The
expression for the foot width of a quasi-perpendicular shock was
corrected by Gosling & Thomsen (1985) who took into account
the reflected ion motion along the magnetic field in addition to the
drift and gyration. Since then, the formula of Gosling & Thomsen
(1985) has often been used for the determination of the shock
speed in the spacecraft frame. However, this expression implies
that the ions moving with the flow velocity are specularly
reflected by the cross-shock potential. Such reflection requires
high cross-shock potentials (Wilkinson & Schwartz 1990), which
are not observed (Schwartz et al. 1988; Dimmock et al. 2012). In
such cases, the fraction of reflected ions would be too large and a
stationary shock could hardly exist. Neither observations
(Sckopke et al. 1983, 1990) nor numerical simulations (Burgess
et al. 1989) show such a strong reflection. In addition, the formula
does not depend on parameters such as the shock Mach number
(or the ratio of the Mach number M to the critical Mach Mcr) or

The Astrophysical Journal, 925:90 (7pp), 2022 January 20 https://doi.org/10.3847/1538-4357/ac3bb3

© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

1



plasma β, and only assumes that ion reflection occurs. Ion
reflection is also observed in low-Mach number shocks without an
extended foot (Gedalin et al. 2018) and in high-Mach number
reforming shocks, which means that the foot width should depend
on the shock parameters.

In the current study we generalize the expression of Gosling
& Thomsen (1985) and derive the positions of the turning
points for specularly reflected ions with different initial
velocities. We further numerically analyze the ion motion in
a model shock profile with a realistic cross-shock potential and
show that the expected foot widths can be as small as about a
half of the Gosling & Thomsen (1985) estimate that is based on
a specular reflection model.

2. Turning Point of a Specularly Reflected ion

The widely accepted estimate of the foot width (Schwartz
et al. 1983; Gosling & Thomsen 1985) is based on several
assumptions. First, the upstream fields are assumed uniform.
The fields are

( )q q= = =B B B B Bcos , 0, sin 1x u Bn y z u Bn

( )= = =E E
V

c
B E0, , 0 2x y

u
z z

Here x is along the shock normal, y is the noncoplanarity

direction, and θBn is the angle between the shock normal and

the upstream magnetic field direction. Second, it is assumed

that an ion, which enters the shock with the fluid velocity, is

specularly reflected by the cross-shock potential so during the

reflection process the component of the ion velocity in the

direction of the shock normal changes its sign while the

tangential components remain unchanged. The analysis by

Gosling & Thomsen (1985) is done in the de Hoffman–Teller

(HT) frame, in which the upstream and downstream plasma

velocities are aligned with the upstream and downstream

magnetic fields, respectively. It is assumed that the ion moving

with the flow velocity is specularly reflected. Below we

perform a more general analysis in the normal incidence frame

(NIF), in which the upstream plasma velocity is along the

shock normal. In general, in these uniform fields, a particle
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where all velocities are normalized to Vu, f is the initial gyro-

phase and X=Ωx/Vu. The initial conditions at ψ= 0 are
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We have also ( )y f- <sin 0, since at the turning point
Ωvy= dvx/dt> 0. The turning distance is then given by (11)
where
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In this section we consider specular reflection in which a

reflected ion changes the normal component of its velocity at its

reflection point while the tangential components do not change.

In addition, we neglect the ramp width and assume that any

incident ion with ( )<mv s mV2 2x u
2 2 is immediately reflected

without any magnetic deflection. Here f=s e mV2 u
2 is the NIF

cross-shock potential normalized to the kinetic energy of the

bulk motion. Note that the calculation of the foot width as the

turning distance of the ion moving at the fluid velocity implies
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Figure 1. Histogram of the turning points of specularly reflected ions, given by (11) and (25), for an incident Maxwellian distribution. The parameters are: θBn = 85°,
M = 4, β = 0.5, s = 0.6. The red line marks the position of the upstream edge of the foot according to Gosling & Thomsen (1985).

Figure 2. Magnetic field magnitude |B|/Bu (black), noncoplanar magnetic field By/Bu (blue), and electric field Ex/Ey (red) for the model shock in the case θBn = 85°.

Figure 3. Histogram of the turning distances of reflected ions in the foot for θBn = 85°.
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s� 1 which results in a reflection of at least 50% of ions, which

is too high in comparison with observations and numerical

simulations. According to the observations of the terrestrial

bow shock in the supercritical regime, the fraction of reflected

ions is about 20% (Sckopke et al. 1983, 1990). This value

is in agreement with the results of numerical simulations that

also indicate that the fraction of reflected ions is significantly

below 50% (e.g., ≈25%; Burgess et al. 1989), typically about

20% (Leroy et al. 1982)). For low upstream temperatures,

reflection by the potential alone is valid only if the cross-shock

potential is extremely large, j »e m V 2p uNIF
2 (Wilkinson &

Schwartz 1990). The observed cross-shock potentials are

substantially lower (Schwartz et al. 1988; Dimmock et al.

2012). Figure 1 shows a histogram of the turning points for

ions which are specularly reflected at a shock with the angle

θBn= 85° and Alfvénic Mach number M= Vu/vA= 4. The

incident distribution is Maxwellian with b = =v v2 0.5T A
2 2 .

The normalized cross-shock potential between the upstream

and the downstream region is s= 0.6. The red line marks the

position of the upstream edge of the foot according to Gosling

& Thomsen (1985).

3. Nonspecular Reflection

Specular reflection is just a convenient approximation that
ignores the fact that ions may be reflected within the ramp or
behind it, thus spending some of their time in the region with an
increasing magnetic field (Gedalin 1996, 2016). The reflection
itself occurs at the point where vx= 0. The inward and outward
motion of the ion in the magnetic field of the ramp results in the
changes of the two other components of the velocity before the
reflected ion reappears again in the supposedly uniform upstream
fields. In order to study ion reflection and foot width in real
shocks, we perform numerical ion tracing in a model shock front.
The model profile includes an overshoot. Since we are only
interested in the dependence of the turning point on the shock
parameters, there is no need to worry about the self-consistency of
the model. For this analysisM= 5, Bd/Bu= 3.5, »B B 4.2umax ,

j= =s e m V2 0.4p uNIF
2 , and β= 0.5. Note that the reflecting

potential is the potential jump from the upstream region to the

point at which the maximum magnetic field occurs,

( )=s s B Bm dmax . Figure 2 shows the magnetic field magnitude

|B|/Bu (black), noncoplanar magnetic field By/Bu (blue), and

electric field Ex/Ey (red) for the model shock with θBn= 85°. Here

x is along the shock normal and the motional electric field

q=E V B csiny u u Bn . In what follows we trace a particle

population consisting of 40,000 ions (protons) with a Maxwellian

distribution, and determine the location of the first and second

turning points at which vx= 0. The first turning point is the

reflection point. For the reflected ions, the second turning point is

in the upstream region, ahead of the ramp. Figure 3 shows a

histogram of the turning distances of the reflected ions in the foot

for θBn= 85°. While the specular reflection approach predicts the

Figure 4. The shock magnetic profile (black), the positions and vy of the reflected ions in the reflection point (blue), and the positions and vy of the reflected ions in the
turning point (red). The two red lines mark the beginning of the ramp up to the overshoot maximum.

Figure 5. Relation of the turning distance to the position of the reflection point.
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foot of 0.65(Vu/Ωu), the ion tracing shows that most of the turning
distances are less than half of this value. The reflection is
significantly nonspecular (Gedalin 2016), as is seen in Figure 4,
which shows the positions and vy of the reflected ions at the
reflection point (blue), and the positions and vy of the reflected
ions in the second turning point (red), together with the magnetic
field profile of the shock (black). The two red lines in Figure 4
mark the region approximately from the beginning of the ramp up
to the overshoot maximum. A substantial fraction of the reflected
ions are not reflected by the potential but continue to cross the
ramp, gyrate in the post ramp magnetic field reversing their vx,
and then recross the ramp.

Figure 5 shows the relation of the turning distance to the
position of the reflection point. The turning distance is the
distance from the center of the ramp x= 0 to the second turning
point of the reflected ion. All ions to the right of the red line are
not reflected by the potential.

Figure 6 shows histograms of the turning distances of
reflected ions for three shock angles. Only a few percent of the
reflected ions have turning distances, which is approximately
half of the value suggested by Gosling & Thomsen (1985),
while most of them have smaller turning distances. The
maximum turning distance increases with decreasing values of
θBn.

Figure 7 shows histograms of the turning distances of
reflected ions in the foot for θBn= 70°, β= 0.3, and for three
values of the cross-shock potential s= 0.4, 0.5, 0.6. The
efficiency of reflection and the turning distance decrease
rapidly with the decrease of the potential. Figure 8 shows the
histograms of the turning points of reflected ions in the foot for
θBn= 70°, s= 0.5, and three values of β= 0.2, 0.4, 0.6. The
efficiency of reflection and the turning distance decrease
rapidly with the decrease of β. To be more precise, the control

parameter is = b
v VT u M

2
(Gedalin 1996, 2016).

4. Discussion

Among a large number of heliospheric collisionless shocks
observations by various spacecraft, one of the most compre-
hensive studies (maybe the most comprehensive) has been
conducted by Scudder et al. (1986a, 1986c, 1986b). This study
examined in detail the crossing of a quasi-perpendicular part of

the terrestrial bow shock on 07.11.1977 by the ISEE-1,2
spacecraft. The parameters of the shock were (Scudder et al.
1986c): the fast magnetosonic Mach number Mms= 3.8± 0.4
and θBn= 76° ± 4°. The shock velocity along the shock normal
in the spacecraft frame was inferred from two spacecraft
measurements as 7.1 km s−1, while the duration of the foot
traversal was 24 s. This leads to the estimated foot width being
about 170 km. The upstream ion convective gyroradius was
estimated to be 560 km. Thus, the foot width for this
supercritical quasi-perpendicular shock is about 0.3(Vu/Ωu).
According to the Gosling & Thomsen (1985) model, the foot
width for θBn= 76° should be about 0.7(Vu/Ωu). The observed
foot width is less than half of this prediction but is consistent
with the findings of the current study.
Currently only in the heliosphere, collisionless shocks can be

subjected to in situ observations that enable the validation of
physical models of shock-related processes. Range of para-
meters of collisionless shocks in the heliosphere results in a
diversity of physical processes occurring at the front. There-
fore, in addition to the terrestrial bow shock that can be
subjected to in situ measurements by fleets of multispacecraft
missions, all other collisionless shocks that are observed in
other regions of the heliosphere should also be subjected to
thorough investigations. Planetary and interplanetary missions
do not have the luxury of multipoint observations by closely
spaced satellites and face the problem of how to distinguish
between spatial and temporal variations and identify spatial
scales of observed phenomena. Spatial scales of shock front
regions are central to the dynamical processes at the front as
they are directly related to processes involved in the formation
of a shock. In addition, spatial scales of electric and magnetic
fields within the shock affect the process of particles
thermalization at the shock front (e.g., Balikhin et al. 1993;
Balikhin & Gedalin 1994). For single spacecraft missions, the
methodology based on the width of the foot enables
identification of the relative spacecraft shock velocity and
spatial scales of more complex shock regions of the shock front
such as the magnetic ramp.
The results presented in this study manifest the physics of

ion reflection at the shock front (Gedalin 1996, 2016). The
basic difference between the processes of specular reflections
of previous models and nonspecular reflection is the role of the

Figure 6. Histograms of the turning distances of reflected ions in the foot for three shock angles. The red line marks the position of the upstream edge of the foot
according to Gosling & Thomsen (1985).
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magnetic field in this process. Specular reflection models
overlook the significant role of the magnetic field in
ion reflection. In the case of a cold plasma flow, reflection
that is solely based on the electrostatic potential requires

f= »s e mV2 1u
2 . In such a case, the speed of the reflected

ions prior to reflection is close to the upstream bulk velocity
and the Gosling & Thomsen (1985) model can be used to

estimate their turning point and the width of the foot region. In
reality s is lower and, as a result of both the magnetic field and
electrostatic potential, nonspecular reflection occurs. The
velocities of reflected particles prior to reflection are lower
than the upstream bulk velocity. Their effective gyro-radii are
smaller than those calculated using the upstream bulk velocity,
resulting in the more narrow foot region.

Figure 7. Histograms of the turning distances of the reflected ions in the foot for θBn = 70°, β = 0.3, and three values of the cross-shock potential s = 0.4, 0.5, 0.6.
The red line marks the position of the upstream edge of the foot according to Gosling & Thomsen (1985).

Figure 8. Histograms of the turning points of reflected ions in the foot for θBn = 70°, s = 0.5, and three values of β = 0.2, 0.4, 0.6. The red line marks the position of
the upstream edge of the foot according to Gosling & Thomsen (1985).
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5. Conclusions

The width of the foot increases with decreasing the shock
angle, with increasing the cross-shock potential, and with
increasing upstream β. The foot width is substantially smaller
than the width predicted by the simplified specular reflection
model (Gosling & Thomsen 1985). The real width may be as
small as half of the width in case of a specular reflection.
Inferring shock speed on the basis of the widely used
expression may lead to 100% errors.
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