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 2 

Abstract 21 

Oral epithelial dysplasia (OED) is a histopathologically-defined, potentially 22 

premalignant condition of the oral cavity. The rate of transformation to frank 23 

carcinoma is relatively low (12% within 2 years) and prediction based on 24 

histopathological grade is unreliable, leading to both over- and under-treatment. 25 

Alternative approaches include infrared (IR) spectroscopy, which is able to classify 26 

cancerous and non-cancerous tissue in a number of cancers, including oral. The aim 27 

of this study was to explore the capability of FTIR (Fourier-transform IR) 28 

microscopy and machine learning as a means of predicting malignant transformation 29 

of OED. Supervised, retrospective analysis of longitudinally-collected OED biopsy 30 

samples from 17 patients with high risk OED lesions: 10 lesions transformed and 7 31 

did not over a follow-up period of more than 3 years. FTIR spectra were collected 32 

from routine, unstained histopathological sections and machine learning used to 33 

predict malignant transformation, irrespective of OED classification. PCA-LDA 34 

(principal component analysis followed by linear discriminant analysis) provided 35 

evidence that the subsequent transforming status of these 17 lesions could be 36 

predicted from FTIR data with a sensitivity of 79 ± 5% and a specificity of 76 ± 5%. 37 

Six key wavenumbers were identified as most important in this classification. 38 

Although this pilot study used a small cohort, the strict inclusion criteria and 39 

classification based on known outcome, rather than OED grade, make this a novel 40 

study in the field of FTIR in oral cancer and support the clinical potential of this 41 

technology in the surveillance of OED. 42 

  43 
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Introduction 44 

Oral squamous cell carcinoma (OSCC) has a worldwide incidence rate of 45 

over 370 000 [1] and a 5-year survival rate that remains less than 60% [2]. It is often 46 

preceded by a spectrum of clinical changes, collectively termed potentially pre-47 

malignant oral epithelial lesions or oral potentially malignant disorders (OPMDs) 48 

[3]. OPMDs include white patches (leukoplakia), red patches (erythroplakia) and 49 

mixed color patches (erythroleukoplakia) of the oral mucosa and are usually 50 

investigated by biopsy and histopathological examination. The latter typically shows 51 

morphological changes of the surface squamous epithelium, which are conveniently 52 

described as oral epithelial dysplasia (OED), that include variable cellular atypia, 53 

proliferative activity and loss of normal patterns of differentiation. The World Health 54 

Organization (WHO) defines OED as  “altered epithelium with an increased 55 

likelihood for progression to squamous cell carcinoma” [4]. The malignant potential 56 

(progression to invasive tumor) of OPMDs range from as low as 0.13% in some 57 

leukoplakias [5] to >50 % in some erythroplakias [6]; a meta-analysis of OED data 58 

indicates a malignant transformation rate of 12% within 2 years, increasing to 22% 59 

within 5 years [7].  60 

The histopathological grading of OED as mild, moderate or severe is widely 61 

popular and time-honored, based on various architectural and cytological changes, 62 

and is endorsed and formalized by WHO [8]. Other grading systems, including a 63 

binary “high/low risk” scheme [9], have been proposed, but the standard across the 64 

field remains the three-tiered scheme. Numerous studies [10-12] have shown a 65 

significant relationship between the histopathological grade and risk of malignant 66 

transformation, however there are a similar number of conflicting reports which 67 

suggest a much less direct relationship, highlighting other risk factors [13-15]. 68 

Although biopsy and histopathological assessment of OPMDs forms the basis of 69 

clinical management, the grading of OED is influenced by inter- and intra-observer 70 

variations [9], reflecting the subjectivity of the process, and improvements are 71 

required.  72 

Given its clinical significance, OED has been investigated by a wide 73 

spectrum of predominantly biology-based methodologies, but none of the proposed 74 

biomarkers for predicting risk are in routine clinical use [16]. Less attention has been 75 

paid to the application of alternative methodologies utilizing the chemical or 76 

physical properties of the cells. Among the alternative methodologies, those based 77 

on vibrational spectroscopy have been increasingly introduced to biomedical 78 

research [17, 18]. Fourier transform infrared (FTIR) spectroscopy utilizes infrared 79 

(IR) light over a broad spectral range to assess the overall chemical profile of a 80 

sample. Molecules which vibrate at frequencies corresponding to the wavelengths 81 

applied will absorb the radiation at those wavelengths, resulting in an absorption 82 

spectrum characteristic of the chemical moieties present. FTIR micro-spectroscopy 83 

(FTIR-MS) combines IR spectroscopy with precise spatial information enabling the 84 

rapid acquisition of hyperspectral images directly related to the location and 85 

distribution of chemical components, for example in tissue samples. Hyperspectral 86 
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data acquired using FTIR-MS is highly dimensional as each raw spectrum, obtained 87 

from a region approximately 5 µm x 5 µm in size, contains at least 103 absorption 88 

variables. Subtle differences between tissue areas are concealed by dominant 89 

common features in chemical composition, necessitating the use of sophisticated 90 

numerical approaches to extract useful information [19]. Common modelling 91 

methods whose aim is to reduce the complexity of the dataset include principal 92 

component analysis (PCA) [20] and linear discriminant analysis (LDA) [21, 22]. 93 

FTIR-MS has been utilized in biomedical research, with a particular focus 94 

on its application to the investigation of cancerous tissues (reviewed in ref. [23]). 95 

Our own recent data suggests that this methodology is applicable to OSCC [24], and 96 

other studies have successfully associated vibrational spectroscopy data with the 97 

contemporaneous histopathological classification of potentially malignant oral 98 

lesions [25, 26]. The present investigation takes a different approach, using a 99 

supervised, retrospective analysis of tissue samples from high risk OED lesions from 100 

patients with prolonged, longitudinal clinical follow-up and known outcome 101 

(transformation or no transformation) to explore the capability of FTIR-MS and 102 

machine learning as a means of predicting malignant transformation of OED. 103 

 104 

Methods 105 

Seventeen patients with biopsy-proven OED were included in this study 106 

(Table 1). All patients were part of a larger cohort for whom the clinical determinants 107 

of transformation have been described [15] and had given written informed consent 108 

to a UK NHS Research Ethics Committee approved study that was run in compliance 109 

with the Helsinki Declaration (Liverpool Central REC ref: EC 47.01). Patient 110 

selection was limited by inclusion of only lesions with a histopathological diagnosis 111 

of moderate or severe grade OED, absence of previous OSCC, at least 42 months 112 

follow-up from the time of biopsy, and the availability of relevant archival formalin-113 

fixed paraffin-embedded (FFPE) tissue. Although inclusion was partly dependent on 114 

a number of non-clinical factors such as availability of samples, the group of patients 115 

used in this present study remained representative of the total cohort [15]. Thus, there 116 

was a higher female:male ratio in the transforming group, which also had a 117 

preponderance of lateral tongue lesions, and there were proportionally more smokers 118 

in the non-transforming group (Table 1). It should be noted that there was no 119 

significant difference between the distribution of severe and moderate grade OED 120 

lesions in the two groups. 121 

 122 
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Table 1. Patient and Sample cohort characteristics. 123 

aROI = region of interest: the target for FTIR spectroscopy;  124 
bpy=pack years (= packs per day multiplied by years smoked) 125 

 
            

Patient group Identifier 
Age at 
biopsy 

Gender Site 
Number of 
clinical sites 

Clinical 
Presentation 

Lesion size 
(mm2) at 

presentation 

Histology Grade 
of ROIa 

Time before 
transformation 

Time 
cancer free 

Lifestyle 

(months) (months) tobacco alcohol 

Transforming 12089 58 M Ventral Tongue single Erythroleukoplakia 101-500 severe 2  y (2-20py)b y 

n=10 12201 52 M Buccal single Leukoplakia >500 severe 4  y (>20py) y 
 12260 74 F Floor of Mouth single Leukoplakia ≤100 moderate-severe 5  y (>20py) y 
 12127 85 M Lateral Tongue single Leukoplakia 100-500 moderate  7  n n 
 12257 49 F Lateral Tongue single Leukoplakia 100-500 moderate 12  n y 
 12248 69 F Lateral Tongue multiple Erythroleukoplakia 100-500 severe 14  n n 
 12263 45 F Lateral Tongue single Leukoplakia 100-500 moderate-severe 18  y (5-20py) y 
 12104 70 F Lateral Tongue single Erythroleukoplakia 100-500 moderate 26  n n 
 12195 45 F Ventral Tongue multiple Erythroleukoplakia >500 moderate 33  y (5-20py) y 

  12219 68 F Ventral Tongue single Leukoplakia ≤100 moderate-severe 43   y (5-10py) n 

Non-Transforming 12181 49 F Soft Palate single Leukoplakia >500 severe  158 n y 

n=7 12330 47 F Soft Palate multiple Erythroleukoplakia >500 moderate  108 y (5-20py) y 
 12098 78 M Ventral Tongue single Leukoplakia >500 moderate  106 y (>20py) y 

 
12332 71 F 

Mandibular 
alveolus 

multiple Leukoplakia ≤100 moderate  91 n y 

 12329 59 M Floor of Mouth single Erythroleukoplakia ≤100 moderate  75 y (>20py) y 

 12162 61 F Floor of Mouth single Erythroleukoplakia ≤100 severe  67 y (>20py) y 

 12141 47 F Floor of Mouth multiple Erythroleukoplakia ≤100 severe  43 y (>20py) y 
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A single archival FFPE tissue block containing incisional biopsy material 126 

was obtained from each of 10 patients at the closest timepoint to transformation 127 

(range 2-43 months prior to transformation) (T lesions; Table 1). A single archival 128 

FFPE block containing incisional biopsy material with more than 43 months 129 

transformation-free follow-up from the date of biopsy (range 43-108 months) was 130 

obtained from each of 7 patients (NT lesions; Table 1). None of these NT lesions 131 

had been excised during the follow-up period.   132 

From each of the 17 FFPE blocks, four adjacent 5 µm tissue sections were 133 

obtained, reserving the first and last for routine deparaffinization, hematoxylin and 134 

eosin (H&E) staining and histopathological re-examination. The intervening two 135 

paraffinized, unstained sections were mounted on separate 20 mm diameter calcium 136 

fluoride (CaF2) disks for IR imaging experiments. An area of dysplasia 137 

corresponding to the histopathologically most extreme OED present was identified 138 

in each H&E-stained section and marked as the target for FTIR spectroscopy. This 139 

area was termed the region of interest (ROI). 140 

FTIR imaging data were acquired using a Varian 620 microscope coupled to 141 

an Agilent Cary 670 spectrometer (Agilent, Stockport, UK) enclosed within a 142 

purging chamber to eliminate water vapor and carbon dioxide contributions. The 143 

instrument was configured to collect mid-IR transmission data between 900 and 144 

3800 cm-1 with a spectral resolution of 4 cm-1 and pixel size of 5.5 µm, allowing the 145 

simultaneous acquisition of 128 x 128 spectra over a field of view of approximately 146 

0.5 mm2. CaF2 disks with mounted sections were loaded onto a 3D-printed slide 147 

holder capable of containing three disks. Disks were imaged two at a time, with the 148 

third position reserved for a clean, blank disk to allow for microscope calibration 149 

and spectral background correction. The semiconductor detector (Mercury-150 

Cadmium-Telluride) in the FTIR microscope was cooled with liquid nitrogen to 151 

78 K in order to reduce thermal noise in the data. Using the average of 128 scans of 152 

the blank disk for background correction, a hyperspectral IR image was obtained for 153 

each ROI by averaging 64 scans of the identified dysplastic area. A built-in mosaic 154 

function was utilized for cases where the extent of the surface oral epithelium in the 155 

tissue sections could not be visualized in one field of view of the microscope and 156 

enabled the acquisition of larger, composite images.  157 

Subsequently, the FTIR images were cross-referenced with scanned images 158 

of the corresponding H&E sections to confirm the location and extent of dysplasia 159 

within the ROI (Fig 1A). To annotate IR spectral data originating in dysplastic 160 

epithelium, each hyperspectral image was subjected to a two-tiered, k-means cluster 161 

analysis (Fig 1A). Initially, the epithelium was identified by a specialist, head and 162 

neck histopathologist (AT). The first clustering step was then used to identify this 163 

structure based on its IR hyperspectral profile. The data from this first clustering step 164 

was then processed during the second clustering in order to identify regions within 165 

the epithelium based on their IR hyperspectra. Histologically, dysplasia was often 166 

centered on the basal and parabasal layers and, in the case of more severe dysplasia, 167 

in the upper prickle-cell layer. IR data from areas with both a histological assessment 168 
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of dysplasia and where k-means clustering identified relative chemical homogeneity 169 

were selected for modelling.  170 

 171 

 172 

Fig 1. Identification of IR data to be used in classification. (A) Example of two-tiered k-173 
means cluster analysis. (i): H&E image; (ii): corresponding FTIR hyperspectral image; (iii): 174 
the first tier of k-means cluster analysis identifies the surface epithelium as 3 separate, 175 
spectrally similar regions (identified as yellow, brown and blue colored layers by 176 
histopathological comparison with (i)). Histologically, the blue colored cluster broadly 177 
corresponds to the basal layer; the brown cluster to parabasal and prickle-cell (spinous) 178 
layers; and the yellow to the keratinized layers; (iv) the second tier of k-means cluster 179 
analysis subdivides the epithelium into four clusters of spectrally similar regions (green, 180 
grey, brown & orange). This second 2-tier clustering appears to separately identify the 181 
parabasal (brown) and spinous (grey) layers. Histopathology plus PCA clustering of FTIR 182 
data selects the brown and red clusters for use in modelling. Scale bar = 200 μm. (B) 183 
Illustration of the quality control process. Spectra identified as lying outside the 95% 184 
confidence interval by the Hotelling's T-squared test (black crosses) were removed from 185 
dataset. Data in this figure were obtained from the same tissue section as in part (A).  186 
 187 

Spectra that originated from dysplastic material in each IR hyperspectral 188 

image were then subject to an initial quality check to discard anomalous spectra. 189 

This involved using PCA as a tool to decompose the spectra from each image into 190 

five principal components, and then employing Hotelling’s T2 summary statistic to 191 

determine which spectra lie furthest away from the origin, discarding any which lie 192 

outside the 95% confidence interval [27]. The remaining spectra were retained for 193 

modelling. Although the FTIR and H&E images had been cross-referenced in order 194 

to locate the imaged dysplastic epithelial layers, the spectral data were grouped into 195 

two categories based on the clinical outcome of the lesion from which they were 196 

taken regardless of OED severity: T lesions underwent malignant transformation and 197 

NT lesions did not undergo transformation.  198 

We have developed an objective optimization framework, PipeOpt (paper in 199 

preparation), that aims to maximize the efficiency of a classifier by optimizing the 200 

parameters of each pre-processing step of the IR data, determining their ideal 201 

sequence and identifying the best performing classification method(s) using 202 

Bayesian optimization (Table 2). This process probabilistically converges on the best 203 
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hyperparameters for each unique series of pre-processing and classification steps 204 

(defined as a pipeline) by iteratively updating the associated Matthew’s correlation 205 

coefficient [28, 29]: a statistic scaled between -1 and 1 which includes consideration 206 

of both the sensitivity and specificity of the resulting classification. This allows for 207 

faster convergence to the ideal compared to an approach that samples every possible 208 

combination of hyperparameters. To assess the performance of each pipeline, 70 209 

training sets were created by using a leave-one-pair-out cross validation (LOPOCV) 210 

method: pairs of samples (comprising 1 T and 1 NT sample in every possible 211 

combination) was set aside as the test set, while data from the remaining 6 NT and 212 

9 T samples was used for training. Equal numbers of spectra (n=500) were used from 213 

each sample to avoid sample-related bias that might influence the optimization and 214 

the optimal pipeline was defined as that with the highest mean Matthew’s correlation 215 

coefficient. 216 

Following determination of the optimal pipeline, the same sequence of pre-217 

processing and classifier steps were used to analyze all of the available data (range 218 

3891-5437 spectra) from the 17 samples using the same LOPOCV routine as before 219 

to create training and test sets.  220 

PCA-LDA is a feature extraction and classifier hybrid that uses a series of 221 

linear transformations to decompose the data from absorption variables to a single 222 

variable called a linear discriminant (LD), the value of which is called the LD score. 223 

The LD score is dependent upon the PCA and LDA loading vectors, which are a 224 

measure of the relative weight that each wavenumber in the spectrum contributes to 225 

that part of the analysis. The LD scores for each datapoint in every lesion were 226 

plotted against their frequency of occurrence in relation to their known 227 

transformative capacity and were also used to identify key wavenumbers in the 228 

discrimination of T from NT datapoints.  229 

At each iteration of train/test, the predicted outcome (transformation or no 230 

transformation) at every datapoint for the test sample was determined and the lesion 231 

as a whole classified as T or NT based on a simple majority. 232 

The FTIR data was converted from native data format using the ChiToolbox 233 

package MATLAB [30]. All data transformation and statistical analyses were 234 

performed using either in-house developed packages (PipeOpt) or third-party 235 

packages implemented in Python v3.9. 236 

 237 

  238 



 9 

Table 2. Pre-processing steps tested in the PipeOpt objective optimization 239 

framework. 240 
Step Method Hyperparameter Options 

Smoothing 

Savitzy-Golay (SG) 

smoothing 
Window size 5,7,9,11,13,15,17,19,21 

PCA Explained Variance 80-95% 

none   

Baseline 

Correction 

Rubberband N/A Y/N 

SG Differentiation 

Window size (if no 

smoothing) 
5,7,9,11,13,15,17,19,21 

Polynomial order 2,3 

Differentiation 

order 
1,2 

none   

Paraffin 

Correction 
Removal of the spectral region dominated by paraffin wax (1340 – 1490 cm-1) 

Normalisation 

Vector N/A Y/N 

Min-max N/A Y/N 

Amide I N/A Y/N 

none   

Scaling 

Standard scaling N/A Y/N 

Min-max N/A Y/N 

none   

Feature 

Extraction 

PCA Explained Variance 90-98% 

none   

Classifier 

Logistic regression 
Regularisation 

strength 
0.001-10 

Linear discriminant 

analysis 
N/A Y/N 

Random Forest 

Max-depth Y/N 

Minimum samples 

per split 
2,3,4,5 

Minimum samples 

per leaf 
1,2 

Bootstrap Y/N 

Legend: Step: typical pre-processing step utilized in analyzing IR data; 241 

Method: methods typically used to perform each pre-processing step; 242 

Hyperparameter: typical parameters associated with each method; 243 

Options: typical options for each parameter. Each step (apart from Paraffin 244 

correction and Classification) also has a bypass option and the steps may be 245 

performed in any order (except for classification).  246 

Bayesian optimization was used to identify hyperparameter options for the resulting 247 

3 x 3 x 1 x 4 x 3 x 2 x 3 = 648 pipelines.  248 
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Results 249 

Each of 648 different data pipelines were tested 70 times, each iteration 250 

having a different pair of samples (one T and one NT) removed to create the test/train 251 

datasets, and the mean Matthew’s correlation coefficient across these 70 iterations 252 

was determined (Fig 2). The pipeline with the highest mean correlation coefficient 253 

(0.37) was identified from this analysis and is as follows: denoising of the spectra 254 

using the Savitzky-Golay smoothing algorithm [31] with a window size of 15 and 255 

polynomial order of 2; first order differentiation of the spectra to remove effects such 256 

as scattering and background interferences; removal of the spectral region dominated 257 

by paraffin wax (1340 – 1490 cm-1) [23]; normalization so that the sum of the 258 

squares of each spectrum is equal to 1 (vector normalization) to account for 259 

variations in sample thickness; PCA-LDA classification. In this analysis, PCA was 260 

applied to the spectral data to decompose it into the number of principal components 261 

that described 90% of the explained variance in the original dataset and LDA was 262 

then used to discriminate between the two groups of lesions (T and NT) using the 263 

principal components as input. 264 

 265 

 266 

Fig 2. Determination of the optimal analysis pipeline for this dataset. Mean of 267 
Matthew’s correlation coefficient (MCC) for each of 648 analysis pipelines generated from 268 
the dysplasia dataset plotted in descending order. Circle identifies the MCC for the pipeline 269 
with no data pre-processing and classification using linear regression (MCC=0.15). 270 
 271 

The mean sensitivity of this discriminatory model when applied to the whole 272 

dataset at the level of an individual spectrum (i.e. each datapoint in every sample 273 

taken as an individual element) was 74 ± 2.8% and the specificity was 69 ± 3.2%, 274 

while the mean and median receiver operator characteristic (ROC) further 275 

demonstrated the performance of the model (Fig 3A). Moreover, the PCA-LDA-276 

derived linear discriminant score showed good separation of the two classes (T and 277 

NT) (Fig 3B) and the weighting assigned to different wavenumbers during this 278 

analysis, allowed the provisional identification of six wavenumbers that provided 279 

the most discriminatory power (Fig 3C).  280 
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 281 

Fig 3. Performance of the model taking each datapoint individually. Means from 70 282 
iterations of train/test sets are presented. (A) Mean (green) and median (blue) receiver 283 
operator characteristic (ROC) curves. Red dotted line would be achieved by random chance. 284 
Pale lines are individual ROC curves for each iteration; (B) Histogram of frequency of 285 
occurrence of linear discriminant (LD) scores (counts) plotted for all datapoints from 286 
transforming (T: red) and non-transforming (NT: green) lesions, showing separation of the 287 
two classes; (C) Plot showing the weighting (a measure of relative importance) assigned to 288 
each wavenumber during the PCA-LDA analysis. Features marked with a yellow star show 289 
the largest magnitude in weighting: 1678 cm-1, 1653 cm-1, 1628 cm-1, 1574 cm-1, 1242 cm-1 290 
and 1020 cm-1.  291 

 292 

However, for clinical utility, the transformative capacity of the whole lesion 293 

is more relevant than that for each individual datapoint. Therefore, in each iteration 294 

of train/test, the predicted outcome (transformation or no transformation) at every 295 

datapoint for the test sample was used to define the lesion as T or NT based on a 296 

simple majority (i.e. ≥50% of datapoints). The sensitivity per lesion was 79 ± 4.9% 297 

and the specificity was 76 ± 5.1%. However, the prognosis of some lesions was 298 

better predicted than others (Fig 4), with 2 T lesions and 1 NT lesion being 299 

incorrectly predicted in ≥50% of the test/train iterations in which they were the test 300 

sample.  301 

 302 

Fig 4. Performance of the model at the lesion level. Means from 70 iterations of train/test 303 
sets are presented. Frequency at which each whole lesion was correctly predicted when it 304 
appeared in the test set (based on LOPOCV, each NT lesion is present in 10 test pairs and 305 
each T lesion in 7 test pairs). Data is shown for each individual NT (left) and T (right) lesion 306 
and plotted as specificity (true negatives) and sensitivity (true positives). Patient numbers 307 
are research sample IDs.  308 
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To better visualize this observation, the probability of transformation for 309 

each datapoint from 4 lesions was color coded and mapped back onto a 310 

representation of the whole section (Fig 5). Lesions that were most accurately 311 

predicted showed homogeneous areas of correctly labelled datapoints with only a 312 

few incorrectly labelled points (Fig 5B and F). Conversely, lesions that were less 313 

accurately predicted demonstrated some areas that were predicted to transform and 314 

some that were predicted to not transform (Fig 5D and H). The OED grade of the 315 

lesions did not appear to correlate with the success or otherwise of the prediction of 316 

transformation. 317 

 318 

Fig 5. Representative images demonstrating identification of lesional areas that are 319 
mis-labelled. Every datapoint for each lesion was color coded to represent the probability 320 
of transformation (T: red; NT: green; see color bar) and mapped back onto a representation 321 
of the whole section for two T (top) and two NT (bottom) lesions. Lesions predicted with 322 
high (left) and lower (right) accuracy are shown. (A), (C), (E) and (G): H&E images; (B), 323 
(D), (F) and (H): corresponding maps of predicted datapoints on IR images.  324 
 325 

Discussion 326 

We have applied machine learning to infrared data collected by FTIR-MS 327 

from a number of high risk OED lesions with known transforming potential. This is 328 

in contrast to most other studies analyzing FTIR data that has been collected from 329 

oral premalignant lesions, which commonly correlate IR data with OED stage rather 330 

than outcome. The process correctly predicted the capacity to transform with a 331 

sensitivity of 79 ± 4.9% and a specificity of 76 ± 5.1%, which is better than when 332 

OED grade alone is used. A histological grade of severe OED or carcinoma-in-situ 333 

has been observed to have a significantly increased malignant transformation rate 334 

compared with mild or moderate OED (P<0.008) [7], but this grading is still only 335 

predictive for 24-40% of such lesions [7, 32]. It is of note that, in the limited cohort 336 
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used in the present study, equivalent numbers of severe and moderate OED were 337 

present in the T and NT groups, and OED grade did not correlate with the ability of 338 

the classifier to accurately predict transformation potential.  339 

Two lesions known to transform were predicted to be non-transforming in 340 

the current analysis. Based on our knowledge of oral cancer development, it may be 341 

hypothesized that the lesions are most probably heterogeneous with areas possessing 342 

transforming potential and areas without this potential. Thus, the biopsy may not 343 

have been representative of the region that underwent subsequent transformation. 344 

Similarly, given the relatively large size of the region used for IR imaging compared 345 

to the size of individual cells, the IR imaged area will contain areas displaying an 346 

‘IR transformation fingerprint’ and areas that do not. In the analysis presented here, 347 

it is the predominant fingerprint (i.e. ≥50% of datapoints) that was used to classify 348 

the lesion as a whole, but, clinically, the worst area rather than the predominant 349 

signal may be more important when predicting transformation and selecting 350 

appropriate clinical treatment. Future development of this method would investigate 351 

how altering the 50% threshold affects the capability of the model, as the sensitivity 352 

would be expected to increase as the threshold is reduced but at the expense of 353 

specificity and vice versa. This is an important area for clarification in a larger study 354 

and is related to clinical needs. Increased sensitivity (i.e. better prediction of 355 

transforming status) could lead to decreased surveillance intervals, treatment such 356 

as excision or enrolment onto chemoprevention trials. Conversely increased 357 

specificity (i.e. better prediction of non-transforming status) might lead to changes 358 

in clinical practice to allow for safe discharge or increased follow-up intervals. The 359 

identification of areas predicted to have transforming capacity in one NT lesion is 360 

more difficult to explain, as none of the NT lesions were excised during the follow-361 

up period. However, it might be hypothesized that very small islands of putatively 362 

transforming OED could have been completely excised during the biopsy procedure, 363 

unintentionally performing a therapeutic excisional biopsy despite the intention for 364 

diagnostic incisional biopsy. 365 

Pre-processing of FTIR data is acknowledged to improve the performance of 366 

subsequent classification models [33], but the choice of both the protocol and the 367 

subsequent modelling method is often highly subjective and its efficacy is dependent 368 

on the characteristics of the dataset. Instead of applying pre-processing steps in an 369 

arbitrary manner, a novel objective optimization method was used in the current 370 

study to maximize the efficiency of the OED transformation classifier by optimizing 371 

the parameters of each pre-processing step of the IR data, determining their ideal 372 

sequence and identifying the best performing classification method(s), or pipeline, 373 

using Bayesian optimization. Considering that the trialed pipelines all contain 374 

theoretically sensible pre-processing and classifier combinations, the significant 375 

variation in Matthew’s correlation coefficient score (-0.53 to 0.37) was surprising. 376 

It was noted, however, that many of the negative correlations were obtained when 377 

data was not normalized. Infrared data are very sensitive to the amount of substance 378 

being probed, so mitigating for inevitable variability in sample thickness and 379 

preparation is crucial in order to build models derived from multiple specimens. 380 
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The decision to use a LOPOCV strategy was taken because the small sample 381 

size precluded the division of specimens into larger test/train sets. LOPOCV 382 

produces the most robust estimation of the model’s true performance, since every 383 

combination of patients is used in the training and testing of the model. However, 384 

the small sample size (n=17) led to a high standard deviation in the mean sensitivity, 385 

specificity and ROC variance at the individual datapoint level because biological 386 

variation both between patients and within individual lesions is to be expected and 387 

will impinge on the analysis under a LOPOCV strategy. Thus, a larger, multi-center 388 

study is required to test the model further. 389 

Four of the six wavenumbers attributed the most weight during this 390 

classification can be assigned to components of the amide I and II bands [34, 35], 391 

which are situated at 1700-1600 cm-1 and 1600-1500 cm-1 respectively. Absorbance 392 

at these wavenumbers can be directly attributed to the vibrating modes of repeating 393 

peptide bonds, but the convoluted nature of the amide bands renders the task of 394 

attributing specific moieties to particular wavenumbers difficult. The remaining 395 

features with the highest weight, and hence discriminating power, are at 1242 cm-1 396 

and 1020 cm-1: regions known to be dominated by contributions from DNA, RNA 397 

and glycogen [34]. Thus, a relatively high weighting of the IR data obtained at 398 

1242 cm-1 might be indicative of an increase in DNA aneuploidy in T lesions 399 

compared with NT lesions, a known early event in oral carcinogenesis [36, 37]. 400 

Similarly, the characteristic absorption peak of glycogen is centered at 401 

approximately 1030 cm-1 and its importance in the experiments presented in this 402 

report may correlate with the observation that abundance of the molecule is depleted 403 

in pre-malignant tissue as a result of increased proliferation requiring additional 404 

energy [38]. This association with glycogen depletion has been applied in the use of 405 

Lugol’s Iodine staining in an attempt to identify and clear OED at the margins of 406 

oral cancer resections [39]. Despite these reassuring correlations between 407 

wavenumbers with high weighting in the discriminatory model and previously 408 

recognized biological observations, it should be remembered that the absorbance of 409 

IR light at any particular wavenumber by a biological tissue is the sum of the 410 

absorbance by a number of different biochemical molecules, and it should not be 411 

expected that a multivariate analysis combining DNA aneuploidy and glycogen 412 

levels will be as effective a discriminator as the model presented here. Future 413 

research with larger sample numbers and intention-to-treat biopsy specimens should 414 

use multivariate analysis to assess how many key wavenumbers are necessary, in 415 

conjunction with clinicopathological variables, to build a clinically useful 416 

discriminatory model. This reduction in the number of wavenumbers required for 417 

discrimination will, in turn, lead to the development of less expensive IR-based 418 

technology, perhaps utilizing quantum cascade lasers (QCLs) [40, 41], that might be 419 

employed in routine pathology laboratories. 420 

 421 

  422 
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Conclusions 423 

This study of a pathologically defined set of OED specimens with known 424 

outcome suggests that the analysis of IR data can distinguish lesions with the 425 

capacity to transform to oral cancer from those that do not, regardless of OED grade. 426 

This represents a novel analysis of FTIR data collected from oral premalignant 427 

lesions, as data is commonly correlated with OED stage rather than outcome. The 428 

results are encouraging, bearing in mind the small sample size and the inherent 429 

clinical and biological limitations of using a small biopsy to reflect a much greater 430 

field of potential malignant change, and may come to represent a step forward in the 431 

clinical assessment of such lesions that allows improved treatment planning. Further 432 

research should concentrate on increasing sample size and complexity to reflect the 433 

clinical conundrum and the development of technology to apply the methodology in 434 

a timely and cost-effective manner. 435 
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