
Putting Ridesharing to the Test: Efficient and Scalable
Solutions and the Power of Dynamic Vehicle Relocation

PANAYIOTIS DANASSIS, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
MARIJA SAKOTA, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
ARIS FILOS-RATSIKAS, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland and University of
Liverpool, United Kingdom
BOI FALTINGS, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

We perform a systematic evaluation of a diverse set of algorithms for the ridesharing problem which is, to
the best of our knowledge, one of the largest and most comprehensive to date. In particular, we evaluate 12
different algorithms over 12 metrics related to global efficiency, complexity, passenger, driver, and platform
incentives. Our evaluation setting is specifically designed to resemble reality as closely as possible. We achieve
this by (a) using actual data from the NYC’s yellow taxi trip records, both for modeling customer requests,
and taxis (b) following closely the pricing model employed by ridesharing platforms and (c) running our
simulations to the scale of the actual problem faced by the ridesharing platforms.

Our results provide a clear-cut recommendation to ridesharing platforms on which solutions can be
employed in practice, and demonstrate the large potential for efficiency gains. Moreover, we show that simple,
lightweight relocation schemes – which can be used as independent components to any ridesharing algorithm
– can significantly improve Quality of Service metrics by up to 50%. As a highlight of our findings, we identify
a scalable, on-device heuristic that offers an efficient, end-to-end solution for the Dynamic Ridesharing and
Fleet Relocation problem.

1 INTRODUCTION
The emergence and widespread use of ridesharing in recent years has had a profound impact on
urban transportation in a variety of ways. Amongst others, it has mitigated congestion costs (such
as commute times, fuel usage, accident propensity, etc.), it has enabled marketplace optimization
for both passengers and drivers, and it has provided great environmental benefits. Ridesharing
however results in some passenger disruption as well, due to compromise in flexibility, increased
travel time, and loss of privacy and convenience. Thus, in the core of any ridesharing platform lies
the need for an efficient balance between the incentives of the passengers, the drivers, and those of
the platform.

Optimizing the usage of transportation resources is not an easy task, especially for cities like New
York, with more than 13000 taxis and 270 ride requests per minute. For example, [20] estimates that
45000 customer requests remain unmet each day in New York, despite the fact that approximately
5000 taxis are vacant at any time. In fact, on aggregate, drivers spend about 47% of their time not
serving any passengers. Moreover, up to 80% of the taxi rides in Manhattan could be shared by
two riders, with only a few minutes increase in travel time [3]. A more sophisticated matching
policy could mitigate these costs by better allocating available supply to demand. As a second
example, coordinated vehicle relocation could also be employed to bridge the gap on the spatial
supply/demand imbalance and improve passenger satisfaction and Quality of Service (QoS) metrics.
Drivers often relocate to find passengers: 61.3% of trips begin in a different neighborhood than the
drop-off location of the last passenger [20], yet currently drivers move without any coordinated
search behavior, resulting in spatial search frictions.

Given the importance of the ridesharing problem for transportation and the economy, it is not
surprising that the related literature is populated with a plethora of papers, proposing different
solutions along different axes, such as efficiency [2–4, 15, 30, 44, 60], platform revenue [6, 21], driver
incentives [51, 71] or fairness [49, 66]. Most of the related work can be broadly categorized as either

ar
X

iv
:1

91
2.

08
06

6v
2

 [
cs

.M
A

]
 1

2
Fe

b
20

20

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 2

(a) empirical papers, that propose heuristics tailored for the ridesharing problem and evaluate their
performance on experimental scenarios or (b) theoretical papers, that design algorithms for more
abstract versions of the problem (e.g., matching under uncertainty, in the presence of deadlines,
etc.) and provide worst-case guarantees for their performance.

Despite the seeming heterogeneity of the solutions that have been proposed in this vast literature,
the algorithmic primitives of the ridesharing problem can be pinpointed to the following two. First,
we need to use efficient algorithms to match passengers with other passengers, or passengers with
vehicles, and secondly, we need to account for the future when choosing which requests to service,
in order to achieve a better placement of vehicles for potential future requests. The former challenge
is more broadly studied by the extensive literature of matching algorithms, whereas the latter is
analogous to the central objective of the classical k-taxi or k-server problem, for which several
solutions have been proposed. Additionally, if one has access to some distributional knowledge
of the domain, ‘accounting for the future’ could also be alternatively interpreted as a matching
setting, where idle vehicles are ‘provisionally matched’ with requests that are expected to appear in
the near future.

In this context, we are interested in the following fundamental questions:

How can we adapt and combine the classical algorithms for these fundamental settings, to
apply them to the ridesharing problem? Which of these algorithms work well in practice,
in a realistic ridesharing scenario, for a host of different objectives? Can we leverage
historical data for dynamic vehicle relocation to close the gap on the spatial supply/demand
imbalance?

In order to properly answer these questions, we strongly believe that there is a need for a thorough
empirical evaluation of different approaches in a quite realistic setting, and this is what we do in
the present paper.

1.1 Our Contributions
(1) We perform a comprehensive, and systematic evaluation of a diverse set of algorithms
for the ridesharing problem. We have evaluated 12 different algorithms over 12 metrics. We put
extra emphasis on designing an evaluation setting which resembles reality as closely as possible, in
every aspect of the problem. Our list of metrics includes amongst others the total distance saved
as a result of ridesharing, the pick-up times and delay incurred by the passengers, the profit and
search frictions of drivers, and the platform revenue. To the best of our knowledge, this is the first
end-to-end experimental evaluation of this magnitude.

(2) We examine the extent to which relocation of idle taxis can improve QoS objectives, by
closing the gap on spatial supply/demand imbalance. We propose relocation schemes which
are based on matching algorithms and make use of the historical data to predict future requests.
Our results here are irrefutable: Relocation schemes based on lightweight matching algorithms
improve several QoS metrics radically (exceeding 50% in certain cases), suggesting that relocation
should be a vital part of any efficient ridesharing algorithm.

(3) As a highlight of our results, we identify a scalable, on-device heuristic (the ALMA
algorithm of [28]) that offers an efficient, end-to-end solution for the Dynamic Ridesharing and
Fleet Relocation problem.

We firmly believe that our findings provide a clear-cut recommendation to ridesharing platforms
on which solutions they should employ in practice.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 3

1.2 Discussion and Related Work
The dynamic ridesharing – and the closely related dynamic dial-a-ride (see [1]) – problem has
drawn the attention of diverse disciplines over the past few years, from operations research
to transportation engineering, and computer science. Solution approaches include constrained
optimization [2, 3, 56, 64], weighted matching [4, 11, 28, 30, 72], other heuristics [10, 50, 56, 61, 62],
reinforcement learning [40], or model predictive control [22], among others. We refer the interested
reader to the following surveys [1, 27, 38, 42, 55, 63] for a review on the optimization challenges,
various algorithmic designs adopted over the years, a classification of existing ridesharing systems,
models and algorithms for shared mobility, and finally models and solution methodologies for the
dial-a-ride problem, respectively.

As we mentioned in the introduction, the key algorithmic components of ridesharing are the
following. First, it is an online problem, as the decisions made at some point in time clearly affect the
possible decisions in the future, and therefore the general approach of the field of online algorithms
and competitive analysis is applicable [17, 52]. Secondly, it is clearly a matching setting, both
for bipartite graphs (for matching passengers with taxis) and for general graphs (for matching
passengers to shared rides). In fact, several of the algorithms that have been proposed in the
literature for the problem are for different variants of online matching. Finally, ridesharing displays
an inherent connection to the k-taxi problem [26, 37, 45], which, in turn, is a generalization of the
well-known k-server problem [46, 47]1. In the k-taxi problem, once a request appears (with a source
and a destination), one of the k taxis at the platform’s disposal must serve the request. Viewing
shared rides (multiple passengers that have already been matched in a previous step) as requests,
one can clearly apply the k-taxi (and k-server algorithms) to the ridesharing setting. Granted, the
k-server algorithms have been designed to operate in a more challenging setting in which (a) the
requests have to be served immediately, whereas normally there is some leeway in that regard, often
at the expense of customer satisfaction, and (b) the positions of requests are typically adversarially
chosen, rather than following some distribution, as is the case in reality. Despite those facts, the
fundamental idea behind these algorithms is a pivotal part of ridesharing, as it aims to serve existing
requests efficiently, but at the same time place the vehicles as well as possible to serve future requests.
This is also the main principle of the relocation strategies for idle taxis.

The algorithms that we consider in this paper are appropriate modifications of the most significant
ones that have been proposed for the aforementioned key algorithmic primitives of the ridesharing
problem, as well as heuristic approaches which are based on the same principles, but were specifically
designed with the ridesharing application in mind. We emphasize that such modifications are needed,
primarily because many of these algorithms were tailored for sub-problems of the ridesharing
setting, and end-to-end solutions in the literature are rather scarce.

Much of the related work in the literature focuses on approaches that are inherently centralized
and require knowledge of the full ridesharing network, which makes them rather computationally
intensive. As an additional goal of our investigation, we would like to identify solutions that are
lightweight, decentralized, and which ideally run on-device. Of course there have been proposed
some hybrid, and decentralized approaches for the ridesharing problem (e.g., [40, 64]), and several of
the algorithms that we include in our experimental evaluation can be implemented in a decentralized
manner. As it turns out though, the ALMA algorithm of [28], which has been designed with precisely
these objectives in mind (low computational complexity, scalability, and low communication cost),
performs very well across the board with respect to our objectives.

1In fact the latter two problems are quite closely connected, and algorithms for the k-server problem can be used to solve
the k-taxi problem. See [26] for more details.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 4

An important component of a successful ridesharing application is relocation. Many studies in
shared mobility systems have shown that the adoption of a relocation strategy can help improve
the system performance for their specific context [3, 12, 20, 40, 54, 58, 68]. Strategies include using
a short window of known active requests [3], historical demand [40], or prediction techniques
to predict future demand [65]. Yet, relocation by nature increases vehicle travel distance, leading
to undesirable consequences (economical, environmental, maintenance, management of human
resources, etc.), thus a balance needs to be struck. Most of the employed relocation approaches
are course-grained; the network is generally divided into several zones, blocks, etc. [40, 54, 68]
and the entities (e.g., the vehicles) move between the zones. However, compared to other shared
mobility systems, dynamic ridesharing posses unique challenges, meaning that such coarse-grained
approaches are not appropriate: most of them are centralized – thus computationally intensive
and not scalable –, they might not take into account the behavior of other drivers, potentially
leading to over-saturation of high demand areas, and, most importantly, they are slow to adapt to
the highly dynamic nature of the problem (e.g., responding to high demand generated by a concert,
or the fact that vehicles remain free for only a few minutes at a time). The problem clearly calls for
fine-grained solutions, yet such approaches in the literature are still rather scarce. In this paper, we
employ such a fine-grained relocation scheme (similarly to [3]), based on matching between the
idle taxis and the potential requests, which is better suited for the problem at hand.

Finally, we emphasize that, while several papers in the literature provide detailed evaluations on
realistic datasets, (e.g., see [2, 3, 28, 60, 61]), they either (a) only consider parts of the ridesharing
problem and therefore do not propose end-to-end solutions, (b) only evaluate a few newly-proposed
algorithms against some basic baselines, (c) only consider a limited number of performance metrics,
predominantly with regard to the overall efficiency and often without regard to QoS metrics or (d)
perform evaluations on a much smaller scale, thus not capturing the real-life complexity of the
problem. On the contrary, our work provides a comprehensive evaluation of a large number of
proposed algorithms, over multiple different metrics, and for real-world scale, end-to-end problems.

2 PROBLEM STATEMENT & MODELING
In this section we formally present the Dynamic Ridesharing, and Fleet Relocation (DRSFR) problem.
To avoid introducing unnecessary notation, we only present the description of the model here;
precise notation and details are provided in the respective sections where they are used.

In the DRSFR problem there is a (potentially infinite) metric space X representing the topology of
the environment, equipped with a distance function δ : X ×X → R≥0. Both are known in advance.
At any moment, there is a (dynamic) set of available taxi vehicles Vt , ready to service customer
requests (i.e., drive to the pick-up, and subsequently to the destination location). Between servicing
requests, vehicles can relocate to locations of potentially higher demand, to mitigate spatial search
frictions between drivers. Customer requests appear in an online manner at their respective pick-up
locations, wait to potentially be matched to a shared ride, and finally are serviced by a taxi to their
respective destination. In order for two requests to be able to share a ride, they must satisfy spatial,
and temporal constraints. The former dictates that requests should be matched only if there is good
spatial overlap among their routes. Yet, due to the latter constraint, requests cannot be matched
even if they have perfect spatial overlap, if they are not both ‘active’ at the same time. Finally,
the DRSFR is an inherently online problem, as we are unaware of the requests that will appear in
the future, and need to make decisions before the requests expire, while taking into account the
dynamics of the fleet of taxis. The goal is to minimize the cumulative distance driven by the fleet of
taxis, while maintaining high QoS, given that we serve all requests. Serving all requests improves
passenger satisfaction, and, most importantly, allows us to ground our evaluation to a common
scenario, ensuring a fair comparison.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 5

2.1 Performance Metrics
2.1.1 Global Metrics. .
Distance Driven: Minimize the cumulative distance driven by all vehicles for serving all the
requests. We chose this objective as it directly correlates to passenger, driver, company, and
environmental objectives (minimize cost, delay, CO2 emissions, maximize the number of shared
rides, improve QoS, etc.). All of the evaluated algorithms have to serve all the requests, either as
shared, or single rides.
Complexity: Real-world time constraints dictate that the employed solution produces results in a
reasonable time-frame2.

2.1.2 Passenger Specific Metrics –Quality of Service (QoS). .
Time to Pair: Expected time to be paired in a shared ride, i.e., E[tpaired − topen], where topen, tpaired
denote the time the request appeared, and was paired as a shared ride respectively. If the request is
served as a single ride, then tpaired refers to the time the algorithm chose to serve it as such.
Time to Pair with Taxi: Expected time to be paired with a taxi, i.e., E[ttaxi − tpaired], where ttaxi
denotes the time the (shared) ride was paired with a taxi.
Time to Pick-up: Expected time to passenger pickup, i.e., E[tpickup − ttaxi], where tpickup denotes
the time the request was picked-up.
Delay: Additional travel time over the expected direct travel time (when served as a single ride,
instead of a shared ride), i.e., E[(tdest − tpickup) − (t ′dest − tpickup)]. tdest, and t ′dest denote the time the
request reaches, and would have reached as a single ride, its destination.

Research conducted by ridesharing companies shows that passengers’ satisfaction level remains
sufficiently high as long as the pick-up time is less than a certain threshold. The latter is corroborated
by data on booking cancellation rate against pick-up time [67]. In other words, passengers would
rather have a short pick-up time and long detour, than vice-versa [19]. This also suggests that
an effective relocation scheme can considerably improve passenger satisfaction by reducing the
average pick-up time (see Section 5.1).

2.1.3 Driver Specific Metrics. .
Driver Profit: Total revenue earned minus total travel costs.
Number of Shared Rides: Directly related to the profit. By carrying more than one passenger at
a time, drivers can serve more requests in a day, which consequently, increases their income [69].
Frictions: Waiting time experienced by drivers between serving requests (i.e., time between
dropping-off a ride, and getting matched with another). Search frictions occur when drivers are
unable to locate rides due to spatial supply and demand imbalance. Even though in our scenario
matchings are performed automatically, without any searching involved by the drivers, lower
frictions indicate lower regret by the drivers, thus lower temptation to potentially switch to an
alternative ridesharing platform.

2.1.4 Platform Specific Metrics. .
Platform Profit: Usually a commission on the driver’s fee3, and passenger fees (which, given that
we serve all the requests, the latter would be constant across all the employed algorithms).

2For example UberPool has a waiting period of at most 2 minutes until you get a match (https://www.uber.com/au/en/ride/
uberpool/), thus any algorithm has to run in under that time to be applicable in real life.
3E.g., Uber charges partners 25% fee on all fares (https://www.uber.com/en-GH/drive/resources/payments/).

https://www.uber.com/au/en/ride/uberpool/
https://www.uber.com/au/en/ride/uberpool/
https://www.uber.com/en-GH/drive/resources/payments/

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 6

23
:00

02
:00

05
:00

08
:00

11
:00

14
:00

17
:00

20
:00

23
:00

100

200

300

400
N
u
m
b
er

o
f
R
eq

u
es
ts

Fig. 1. Request per minute on January 15, 2016 (blue line). Mean value = 272 requests (yellow line).

Quality of Service (QoS): Refer to the aforementioned, passenger specific metrics. Improving the
QoS to their costumers correlates to the growth of the company.
Number of Shared Rides: The matching rate is important especially in the nascent stage of a
ridesharing platform [31].

We do not report separate values on the aforementioned metrics, as they directly correlate to
their respective passenger, and driver specific ones.

2.2 Modeling
2.2.1 Dataset. We have used the yellow taxi trip records of 2016, provided by the NYC Taxi and
Limousine Commission4. For every request, the dataset provides amongst others the pick-up and
drop-off times, and geo-location coordinates. Time is discrete, with granularity of 1 minute (same
as the dataset). On average, there are 272 new requests per minute, totaling to 391479 requests on
the broader NYC area (352455 in Manhattan) on the evaluated day (Jan, 15). Figure 1 depicts the
request arrival per minute on the aforementioned day.

2.2.2 Taxi Vehicles. A unique feature of the NYC Yellow taxis is that they may only be hailed
from the street and are not authorized to conduct pre-arranged pick-ups. This provides an ideal
setting for a counter-factual analysis since (1) we can assume a realistic position of each taxi at the
beginning of the simulation (last drop-off location), and (2) all observed rides are obtained through
search, thus – assuming reasonable prices, and delays – customers do not have nor are willing to
take an alternative means of transportation. Thus, validating our choice that all of the algorithms
considered will have to eventually serve all the requests. By law, there are 13, 587 taxis in NYC5.
The majority of the results presented in this paper use a much lower number of vehicles (what we
call base number) for three reasons: (1) to reduce the complexity of the problem, given that most
of the employed algorithms can not handle such a large number of vehicles, (2) to evaluate under
resource scarcity – making the problem harder – to better differentiate between the results, and (3)
to investigate the possibility of a more efficient utilization of resources, with minimal cost to the
consumers. However, we still present simulations for a wide range of vehicles, up to close to the
total number. The number, initial location, and speed of the taxi vehicles were calculated as follows:
• We calculated the base number of taxis, as the minimum number of taxis required to serve

all requests as single rides (no ridesharing). If a request appears, and all taxis are occupied
serving other requests, we increase the required number of taxis by one. This resulted to around
4000 − 5000 vehicles (depending on the size of the simulation, see Section 5). Simulations were
conducted for {×0.5,×0.75,×1.0,×2.0,×3.0} the base number.

4https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
5https://www1.nyc.gov/site/tlc/businesses/yellow-cab.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/businesses/yellow-cab.page

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 7

• Given a number of taxis, V , the initial position of each taxi is the drop-off location of the last V
requests, prior to the starting time of the simulation. To avoid cold start, we compute the drop-off
time of each request, and assume the vehicle occupied until then.

• The vehicles’ average speed is estimated to 6.2 m/s (22.3 km/h), based on the trip distance and
time per trip as reported in the dataset, and corroborated by the related literature (in [60] the
authors estimated the speed to be between 5.5 − 8.5 m/s depending on the time of day).

2.2.3 Customer Requests. A request, r , is a tuple ⟨tr , sr ,dr ,kr ⟩. Request r appears (becomes
open) at its respective pick-up time (tr), and geo-location (sr). Let dr denote the destination. Each
request admits a willingness to wait (kr) to find a match (rideshare), i.e., we assume dynamic waiting
periods per request. The rationale behind kr is that requests with longer trips are more willing to
wait to find a match than requests with destinations near-by. After kr time-steps we call request r ,
critical. If a critical request is not matched, it has to be served as a single ride. Recall that in our
setting all of the requests must be served. Let Ropen

t ,Rcritical
t denote the sets of open, and critical

requests respectively, and let Rt = Ropen
t ∪ Rcritical

t .
We calculate kr as in related literature [28]. Let wmin, and wmax be the minimum and maximum

possible waiting time, i.e.,wmin ≤ kr ≤ wmax,∀r . Knowing sr ,dr , we can compute the expected trip
time (E[ttrip]). Assuming people are willing to wait proportional to their trip time, letkr = q×E[ttrip],
where q ∈ [0, 1]. wmin,wmax, and q can be set by the ridesharing company, based on customer
satisfaction (following [28], let wmin = 1,wmax = 3, and q = 0.1).

2.2.4 Rides. A (shared)ride, ρ, is a pair ⟨r1, r2⟩, composed of two requests. If a request r is served
as a single ride, then r1 = r2 = r . Let Pt denote the set of rides waiting to be matched to a taxi at time
t . Contrary to some recent literature on high capacity ridesharing (e.g., [3, 50]), we purposefully
restricted ourselves to rides of at most two requests for two reasons: complexity, and passenger
satisfaction. The complexity of the problem grows rapidly as the number of potential matches
increases, while most of the proposed/evaluated approaches already struggle to tackle matchings
of size two on the scale of a real-world application. Moreover, even though a fully utilized vehicle
would ultimately be a more efficient use of resources, it diminishes passenger satisfaction (a frequent
worry being that the ride will become interminable, according to internal research by ridesharing
companies) [18, 69]. Given that a hard constraint is the servicing of all requests, we do not assume
a time limit on matching rides with taxis; instead we treat it as a QoS metric.

2.2.5 Distance Function. The optimal choice for a distance function would be the actual driving
distance. Yet, our simulations require trillions of distance calculations, which is not attainable.
Given that the locations are given in latitude and longitude coordinates, it is tempting to use the
Haversine formula6 to estimate the Euclidean distance, as in related literature [18, 61]. We have
opted to use the Manhattan distance, given that the simulation takes place mostly in Manhattan.
To evaluate our choice, we collected more than 12 million actual driving distances using the Open
Source Routing Machine (project-osrm.org), which computes the shortest path in road networks.
Manhattan distance’s error, compared to the actual driving distance, was −0.5 ± 2.9 km, while
Euclidean distance’s was −3.2 ± 3.8 km.

2.2.6 Pricing. A combination of an one-time flag drop fee (β = 2.2 $7), distance fare (πI = 0.994
$/km for a single ride, πI I = 0.8 $/km shared7), fuel price (3.2 $/gal8), and vehicle mileage (46.671

6https://en.wikipedia.org/wiki/Haversine_formula
7https://www.uber.com/us/en/price-estimate/
8https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_sny_m.htm

http://project-osrm.org/
https://en.wikipedia.org/wiki/Haversine_formula
https://www.uber.com/us/en/price-estimate/
https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_sny_m.htm

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 8

(a) Request – Request Matching (b) (Shared) Ride – Taxi Matching (c) Idle Taxi Relocation

Fig. 2. The three separate components of the DRSFR problem.

km/gal [20]). The aforementioned fuel price and mileage result in a cost per km c = 0.0686 $/km.
The revenue M(ρ) of a taxi driver from serving ride ρ is given by the following equation [20]:

M(ρ) =
{
β + πI δ (sr ,dr) − cδ (sv , sr ,dr) , if ρ single
2β + πI I δ (sr1 ,dr1 |r2) + πI I δ (sr2 ,dr2 |r1) − cδ (sv , sr1 , sr2 ,dr1 ,dr2) , if ρ shared

(1)

where, with some slight abuse of notation, δ (sv , sr ,dr) denotes the distance from the current
location of the taxi sv , to the pick-up and subsequently drop-off location of the ride, δ (sr1 ,dr1 |r2)
denotes the distance driven from the pick-up to the destination of r1, given that r1 will share the
ride with r2 (similarly δ (sr2 ,dr2 |r1) for r2), and finally, δ (sv , sr1 , sr2 ,dr1 ,dr2) denotes the total driving
distance of the taxi for serving the two requests starting from sv .

2.2.7 Embedding into HSTs. A starting point of many of the employed k-server algorithms is
embedding the input metric space X into a distribution µ over σ -hierarchically well-separated trees
(HSTs), with separation σ = Θ(log |X| log(k log |X|)), where |X| denotes the number of points.
It has been shown that solving the problem on HSTs suffices, as any finite metric space can be
embedded into a probability distribution over HSTs with low distortion [34]. The distortion is of
order O(σ logσ |X|), and the resulting HSTs have depth O(logσ ∆), where ∆ is the diameter of X
[7].

Given the popularity of the aforementioned method, it is worth examining the size of the resulting
trees. Given that the geo-coordinate system is a discrete metric space, we could directly embed it
into HSTs. Yet, the size of the space is huge, thus for better discretization we have opted to generate
the graph of the street network of NYC. To do so, we used data from openstreetmap.org. Similarly
to [60], we filtered the streets selecting only primary, secondary, tertiary, residential, unclassified,
road, and living street classes, using those as undirected edges and street intersections as nodes.
The resulting graph for NYC contains 66543 nodes, and 95675 edges (5018, and 8086 for Manhattan).
Given that graph, we generate the HSTs [60].

3 EMPLOYED ALGORITHMS & CHALLENGES
3.1 Problem Decomposition
The DRSFR problem can be decomposed into the following three parts (Figure 2):

(a) Request – request matching to create a (shared) ride,
(b) Ride to taxi matching,
(c) Relocation of the idle fleet.

Complexity issues make the simultaneous consideration of all three problems when taking a
decision impractical. Instead, a more realistic approach is to tackle each component individually,
under minimum consideration of the remaining two. Each of the aforementioned components is

https://www.openstreetmap.org

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 9

a significant problem in its own right. Step (a) refers to the problem of Online Maximum Weight
Matching with Delays – given a non-bipartite graph, nodes appear in an online manner and leave
after some time-steps. Nodes can be matched only while being present, and the goal is to maximize
the cumulative utility over a finite time horizon [5, 33]. Step (b) can be viewed either as an Online
Maximum Weight Bipartite Matching with Delays [4] – the difference here being that the graph
is bipartite, with rides on one side, and taxis on the other – or as a k-Taxi Problem [26] (and by
extension as a k-Server Problem [46, 47]). In the latter formulation, k taxis (servers) have to move
to serve all the requests while minimizing the total distance traveled, with the caveat being that
each will end up at the destination of the served request. Finally, step (c) can be either viewed
as the k-center problem or the more general k-Facility Location Problem [41], concerned with the
optimal placement of facilities (taxis) to minimize transportation costs, or as an Online Maximum
Weight Matching problem, performed on the history of requests. Given the high complexity of the
former problems (they are both NP-hard, in fact, APX-hard [36, 43]), we have opted for the latter
interpretation.

3.2 Algorithms
We have evaluated a variety of approaches ranging from offline maximum weight matching (MWM),
and greedy solutions, to online MWM, k-Taxi/Server algorithms, and linear programming. Offline
algorithms (e.g., MWM, ALMA, Greedy) can be run either in a just-in-time (JiT) manner – i.e.,
when a request becomes critical – or in batches, i.e., every x minutes (given that our dataset has
granularity of 1 minute, we run in batches of 1, and 2 minutes). We solve each of the three steps of
the DRSFR problem (Figure 2) individually. When possible, we use the same algorithm for both
steps (a) and (b). k-Taxi/Server algorithms, though, can not solve step (a), thus we opted to use
the best performing algorithm for step (a) (namely the offline MWM run in batches). Step (c) was
treated separately; due to the computational complexity of most of the evaluated approaches, we
opted to evaluate only the most promising solutions. In what follows, we will start by describing
the employed approaches for the ridesharing part, i.e., steps (a) and (b). In the Section 4 we describe
the employed techniques for dynamic relocation.

Matching Graphs: At time t , let Ga = (Rt , Ea
t), where Ea

t denotes the weighted edges between
requests. With a slight abuse of notation, let δ (sr1 , sr2 ,dr1 ,dr2) denote the minimum distance required
to serve both r1, and r2 (as a shared ride, i.e., excluding the case of first serving one of them and
then the other) with a single taxi located either in s1, or s2. The weightwr1,r2 of an edge (r1, r2) ∈ Ea

t
is defined as wr1,r2 = δ (s1,d1) + δ (s2,d2) − δ (sr1 , sr2 ,dr1 ,dr2) (similarly to [3, 28]). If r1 = r2, let
wr1,r2 = 0 (single passenger ride). Intuitively, this number represents an approximation (given that
it is impossible to know in advance the location of the taxi that will serve the ride) on the travel
distance saved by matching requests r1, and r2

9.
Similarly, at time t , let Gb = (Pt ∪ Vt , Eb

t), where Eb
t denotes the weighted edges between

rides and taxis. With a slight abuse of notation, let δ (sv , sr1 , sr2 ,dr1 ,dr2) denote the minimum
distance required (out of all the possible pick-up and drop-off combinations) to serve both r1, and
r2 with a single taxi located at sv . The weight wr1,r2 of an edge (r1, r2) ∈ Eb

t is defined as wr1,r2 =

1/δ (sv , sr1 , sr2 ,dr1 ,dr2). If r1 = r2 (single passenger ride), let δ (sv , sr1 , sr2 ,dr1 ,dr2) = δ (sv , sr1 ,dr1). For
the step (b) of the DRSFR problem, we run the offline algorithms every time the set of rides (Pt) is
not empty.

3.2.1 Maximum Weight Matching (MWM). To match requests into shared rides (step (a) of
the DRSFR problem), we find the maximum weight matching on Ga . To match rides with taxis (step

9It also ensures that the shared ride will cost less than the single ride option.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 10

(b)), we find the maximum weight matching on Gb . On both cases we use the blossom algorithm
[32]. Not surprisingly, MWM results in high quality allocations, but that comes with an overhead
in running time, compared to simpler, ‘local’ solutions (see Section 5). This is because blossom’s
running time – on a graph (V ,E) – is O(|E | |V |2), and we have to run it three times, one for each step
of the DRSFR problem. Additionally, the MWM algorithm inherently requires a global view of the
whole request set in a time window, and is therefore not a good candidate for the fast, decentralized
solutions that are more appealing for real-life applications.

3.2.2 ALtruistic MAtching Heuristic (ALMA) [28]. ALMA is a recently proposed lightweight
heuristic for weighted matching. A distinctive characteristic of ALMA is that agents (in our context:
requests / rides) make decisions locally, based solely on their own utilities. While contesting for
a resource (in our context: request / taxi), each agent will back-off with probability that depends
on their own utility loss of switching to their respective remaining resources. Agents that do not
have good alternatives will be less likely to back-off and vice versa. It is inherently decentralized,
requires only a 1-bit partial feedback, and has constant in the total problem size running time, under
reasonable assumptions on the preference domain of the agents. Thus, it is an ideal candidate for
an on-device solution. Moreover, in [28] it was shown to achieve high quality results on a simpler
version of step (a) of the DRSFR problem.

3.2.3 Greedy. Greedy is a very simple algorithm, which selects a node i randomly, and matches
it with j = arg max(wi, j). Greedy approaches are appealing10, not only due to their low complexity,
but also because real-time constraints dictate a short planning windows which diminish the benefit
of batch optimization solutions compared to myopic approaches [69].

3.2.4 Approximation (Appr) [11]. Similar to MWM, this is a recently-proposed offline algorithm
for solving steps (a), and (b) of the DRSFR problem. It takes a two-phase approach: first, it matches
requests to shared rides using minimum weight matching based on the shortest distance to serve
any request pair but on the worst pickup choice. Then it matches rides to taxis using again minimum
weight matching, and assuming the weight to be the distance of the closest pick-up location of the
two. The authors of [11] prove a worst-case approximation guarantee of 2.5 for the algorithm.

3.2.5 Postponed Greedy (PG) [5]. This is another very recently proposed, 1/4-competitive
algorithm for maximum weight online matching with deadlines (step (a) of the DRSFR problem).
Contrary to our setting, it was designed for fixed deadlines, i.e., kr = c,∀r ∈ R. When a request
r appears, the algorithm creates a virtual seller and a virtual buyer for that request. The buyer
matches greedily with the best seller so far, and the choice remains fixed. When r becomes critical,
it’s role will be randomly finalized either as a seller, or buyer. If r is a seller, and a subsequent buyer
was matched with r , the match is finalized. The major difference is that in our setting requests
become critical out-of-order, and a critical request can not be matched later. Thus, when a request
becomes critical, if determined to be a seller, the match is finalized (if one has been found), otherwise
the request is treated as a single ride.

3.2.6 Greedy Dual (GD) [15]. An online algorithm for solving the Min-cost (Bipartite) Perfect
Matching with Delays, i.e., both steps (a), and (b) of the DRSFR problem, based on the popular
Primal-Dual technique [39]. The weight (cost) of an edge in this setting includes arrival times
as well, specifically wr1,r2 = (δ (s1, s2) + δ (d1,d2))/uaverage + |t1 − t2 |, where uaverage is the average
speed (see Section 2.2.2). The algorithm partitions all the requests into active sets, starting with
the singleton {r } for a newly arrived request r . Every time-step these actives sets grow, until the
10[69] reports that GrabShare’s scheduling component has used an entirely greedy approach to allocate bookings to drivers.
Lyft also started with a greedy system [18].

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 11

weight of edges of different active sets make the dual constraints of the problem tight. Then the
active sets merge, and the algorithm matches as many pairs of free requests in these sets as possible.
It’s a O(|R|)-competitive algorithm, that works with infinite metric spaces, potentially making
the algorithm better suited for applications like the DRSFR problem. Yet, it does not take into
account the willingness to wait (kr), missing matches of requests that became critical. Despite being
designed for bipartite matchings as well, we opted out from using it for step (b) since it would
require to create a new node every time a taxi vehicle drops-off a ride and becomes available.

3.2.7 Balance (Bal) [53]. Balance is simple and classical k-server algorithm from the literature
of competitive analysis. A ride is served by the taxi that has the minimum sum of the distance
traveled so far plus its distance to the source of the ride (chosen randomly between the sources of
the two requests composing the ride). It is min-max fair, i.e., it greedily minimizes the maximum
accumulated distance among the taxis. The competitive ratio of the algorithm is |X| − 1 in arbitrary
metric spaces with |X| points [53].

3.2.8 Harmonic (Har) [57]. Harmonic is another classical randomized algorithm from the k-
server literature, which is simple and memoryless. It matches a taxi with a ride with probability
inversely proportional to the distance from its source (chosen randomly between the sources of the
two requests composing the ride). The trade-off for the simplicity is the high competitive ratio,
which is O(2 |V | log |V|) [9].

3.2.9 Double Coverage (DC) [23]. Double-coverage is one of the two most famous k-server
algorithms in the literature. The algorithm is designed for HSTs and extends to general finite metric
spaces X via HST embeddings. First we perform the embedding [8, 35] and then, to determine
which taxi will serve a ride, all unobstructed taxis move towards its source (chosen randomly
between the sources of the two requests composing the ride) with equal speed. When during this
process, a taxi becomes obstructed (i.e., its path is blocked by another taxi), it stops, while the
rest keep moving. When a taxi reaches the leaf with the ride, the process stops, and each taxi
maintains it’s position on the HST. Given that only leafs correspond to locations on X, we chose to
implement the lazy version of the algorithm (which is equivalent to the original definition e.g., see
[46]), i.e. only the taxi serving the request will move on X. This is also on par with the main goal
of minimizing the distance driven. The algorithm is k-competitive on all tree metrics [24].

3.2.10 Work Function (WFA) [25, 47]. WFA is perhaps the most important k-server algorithm,
as it provides the best competitive ratio to date, due to the celebrated result of [47]. It is a dynamic
programming approach which, intuitively, computes the optimal solution until time t − 1, plus a
greedy cost for switching taxi locations. An obvious obstacle that makes the algorithm intractable
in practice is that the complexity rises from step to step, resulting in computation and/or memory
issues. We implemented an efficient implementation using network flows, as described in [59]. Yet,
as the authors of [59] state as well, the only practical way of using the WFA is switching to its
window version w-WFA, where we only optimize for the last w rides. Even though the complexity
of w-WFA does not change between time-steps, it does change with the number of taxis. The
resulting network has 2|P | + 2|V| + 2 nodes, and we have to run the Bellman–Ford algorithm [13]
at least once to compute the potential of nodes and make the costs positive (Bellman–Ford runs in
O(|P||V|). We refer the reader to [14]) for more details on network optimization. As before, the
source of the ride is chosen randomly between the sources of the two requests composing the ride.

3.2.11 k-Taxi [26]. This is a very recent algorithm for the k-taxi problem, which provides the best
possible competitive ratio for the problem. The algorithm operates on HSTs, where the rides and
taxis at any time are placed at its leaves. First, it generates a Steiner tree that spans the leaves that

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 12

have taxis or rides, and then uses this tree to schedule rides, by simulating an electrical circuit.
In particular, whenever a ride appears at a leaf, the algorithm interprets the edges of the tree
with length R as resistors with resistance R, which determine the fraction of the current flow that
will be routed from the node corresponding to the taxi towards the ride. These fractions are then
interpreted as probabilities which determine which taxi will be chosen to pick up the ride.

3.2.12 High Capacity (HC) [3]. Highly cited paper, and the only one in our evaluated approaches
that addresses vehicle relocation (step (c)). Contrary to our approach, they tackle steps (a), and (b)
simultaneously, leaving step (c) as a separate sub-problem. Their method consists of five steps: (i)
computing a pairwise request-vehicle shareability graph (RV-graph) [60], (ii) computing a graph of
feasible trips and the vehicles that can serve them (RTV-graph), (iii) computing a greedy solution
for the RTV-graph, (iv) solving an ILP to compute the best assignment of vehicles to trips, using
the previously computed greedy solution as an initial solution, and finally (v - optional) if there
remain any unassigned requests, solving an ILP to optimally assign them to idle vehicles based on
travel times. Given the ILP formulation, this is the most promising approach in terms of solution
quality, but it is not scalable, and effectively impractical to apply in the real world. Worse case, the
number of variables in the ILP is O(|V||R|2) – which results in 27 - 216 million variables, given
that every time-step we have approximately 300 - 600 requests, and as many taxis – and the number
of constraints is |V| + |R |. The latter make hard to even compute the initial greedy solution in
real-time. The authors of [3] circumvent this problem by enforcing delay constraints, but in our
modeling every algorithm has to serve all requests, resulting in a prohibited large ILP. We use
IBM-CPLEX [16] to solve the resulting ILPs.

3.2.13 Baseline: Single Ride. Uses MWM to schedule the serving of single rides to taxis (there
is no ridesharing, i.e., we omit step (a) of the DRSFR problem).

3.2.14 Baseline: Random. Makes random matches, provided that the edge weight is non-negative.

While our evaluation contains many recently proposed algorithms for matching, the observant
reader might notice that, with the exception of k-taxi, our k-server algorithms are from the classical
literature. We did consider more recent k-server algorithms (e.g., [7, 29, 48]), but their complexity
turns out to be prohibitive. This is mainly because they proceed via an ‘online rounding’ of an
LP-relaxation of the problem, which maintains a variable for every (time-step, point in the metric
space) pair. Even for one hour (3600 time-steps) and only for our discretization of Manhattan (5018
nodes), we need more than 18 million variables (230 million for NYC).

4 DYNAMIC VEHICLE RELOCATION
The aim of any relocation strategy is to improve the spatial allocation of supply. Serving requests
redistributes the taxis, resulting in an inefficient allocation. One can assume a ‘lazy’ approach,
relocating vehicles only to serve requests. While this minimizes the cost of serving a request (e.g.,
distance driven, fuel, etc.), it results in sub-optimal QoS. Improving the QoS (especially the time to
pick-up, since it highly correlates to passenger satisfaction, see Section 2.1.2) plays a crucial role in
the growth of a company. The goal then is to:

Improve the QoS metrics, while minimizing the excess distance driven.

There are two ways to enforce relocation: passive, and active. Ridesharing platforms, like Uber
and Lyft, have implemented market-driven pricing as a passive form of relocation. Counterfactual
analysis performed in [20] shows that implementing pricing rules can result in daily net surplus
gains of up to 232000 and 93000 additional daily taxi-passenger matches. While the gains are

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 13

01
:00

04
:00

07
:00

10
:00

13
:00

16
:00

19
:00

22
:00

0

10

20

30

40
%

o
f
R
ep

ea
te
d
R
eq

u
es
ts

Fig. 3. Percentage of similar trips per hour in Manhattan, January 15, 2016 (blue line). Mean value = 13.3%
(yellow line).

substantial, the market might be slow to adapt, and drivers and passengers do not always follow
equilibrium policies. Contrary to that, our approach is active, in the sense that we directly enforce
relocation. Moreover, we adopt a more anthropocentric approach: in our setting, the demand is fixed,
thus the goal is not to increase revenue as a result of serving more rides, but rather to improve the
QoS11.

There are many ways to approach dynamic relocation (part (c) of the DRSFR problem). High
Capacity [3] solves an ILP, which could reach high quality results, but it is not scalable nor practical.
Ideally, we would like a solution that can run on-device. The k-server algorithms perform an implicit
relocation, yet they are primarily developed for adversarial scenarios, and do not utilize the plethora
of historic data12. In reality, requests follow patterns that emerge due to human habituality (e.g.,
during the first half of the day in Manhattan, there are many more drop-offs in Midtown compared
to pickups [20]). Density based clustering [70] is a natural approach, yet, due to the vast number
of requests, the only discernible clusters were of large regions (Manhattan, Bronx, Staten Island,
Brooklyn, or Queens), which does not allow for fine-grained relocation. Given the high density of
the requests, and the low frictions of the taxis (i.e., taxis remain free for relocation only for a short
time window), we opted for a simple, fine-grained, matching approach. As a matter of fact, we
tried zone based relocation (generating zones based on historical data using the OPTICS clustering
algorithm [70], or using pre-defined clusters based on population density according to the NYC
census data13), but achieved significantly inferior results.

4.1 Patterns in Customer Requests
To confirm the existence of transportation patterns, we performed the following analysis: For each
request r on January 1514, we searched the past three days for requests r ′ such that |tr − tr ′ | ≤ 10,
δ (sr , sr ′) ≤ 250, and δ (dr ,dr ′) ≤ 250. The results are depicted in Figure 3. On average, 13.3% of the
trips are repeated across all three previous days, peaking at 43.7% on rush hours (e.g., 6-8 in the
morning).

4.2 Proposed Approach
We propose a fine-grained, weighted matching relocation, which is plug-and-play and can be
combined with any algorithm for steps (a) and (b). Given the existence of transportation patterns,
we use the history to predict a set of expected future requests. Specifically, let D, and T be the
11Decreased delays can also in turn improve revenue by serving more requests in a fixed time window.
12NYC TLC has been proving data on yellow taxi trips since 2009.
13https://guides.newman.baruch.cuny.edu/nyc_data/nbhoods
14January 15, 2016 was selected as a representative date for our simulations since it is not a holiday, and it is a Friday thus
sampling for past requests results in a representative pattern (contrary to sampling on a weekend for example).

https://guides.newman.baruch.cuny.edu/nyc_data/nbhoods

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 14

Table 1. Employed algorithms for each step of the DRSFR problem.

Step (a) Step (b) Step (c)

Maximum Weight Matching (MWM) MWM MWM MWM/ALMA/Greedy
ALtruistic MAtching Heuristic (ALMA) [28] ALMA ALMA ALMA
Greedy Greedy Greedy Greedy
Approximation (Appr) [11] Appr Appr -
Postponed Greedy (PG) [5] PG MWM -
Greedy Dual (GD) [15] GD MWM -
Balance (Bal) [53] MWM Bal -
Harmonic (Har) [57] MWM Har -
Double Coverage (DC) [23] MWM DC -
Work Function (WFA) [25, 47] MWM WFA -
k-Taxi [26] MWM k-Taxi -
High Capacity (HC) [3] HC HC (HC)

sampling windows, in days and minutes respectively (we used D = 3, and T = 2). Let t denote the
current time-step. The set of past requests on our sampling window is Rpast = {r : tr − t ≤ T }, as
long as r appeared at most D number of days prior to t . The set of expected future requests Rfuture
is generated by sampling from Rpast. Relocation is performed in a just-in-time manner, every time
the set of idle vehicles is not empty. We generate similar matching graphs as in Section 3.2, and
then we proceed to match requests to shared rides, and rides to idle taxis. The difference being
that now the set of nodes of Ga is Rfuture ∪ Rt . Finally, each idle taxi starts moving towards the
source of its match (given that these are expected rides, the source is picked at random between
the sources of the two requests composing the ride).

We use the MWM, ALMA, and Greedy algorithms for the weighted matching. It is worth noting
that we evaluated different approaches for the edge weights of Gb (ride – taxi matching). The best
performing one in our scenario was the inverse of the distance, which makes sense given that we
want to improve QoS, while minimizing the extra distance driven. Yet, depending on objectives, one
might use different weights (e.g., the expected profit).

Table 1 presents all of the evaluated algorithms, subdivided into the three parts of the DRSFR
problem. For example, k-Server algorithms can not solve step (a), thus we use the best performing
algorithm for step (a), i.e., MWM. Similarly for PG, and GD for step (b).

5 SIMULATION RESULTS
In this section we present the results of our evaluation. For every metric we report the average
value out of 8 runs. In this section we shortly detail only the most relevant results. Please refer
to Section A.1 of the appendix for the complete results including larger test-cases on the broader
NYC area and omitted metrics, standard deviation values, algorithms (e.g., WFA, and HC had to be
evaluated in smaller test-cases), etc.

We first present our results on one hour, and base number (see Section 2.2.2) of taxis (Figure 4).
Then we show that the results are robust at a larger time-scale (one day, Figure 5), and varying
number of vehicles (2138 - 12828, Figure 6). Finally we present results on the step (c) of the DRSFR
problem: dynamic relocation (Table 2, Figure 7).
Distance Driven: In the small test-case (Figure 4a) MWM performs the best, followed by Bal (+7%).
ALMA comes second (+19%), and then Greedy (+21%). The high performance of Bal in this metric
is because it uses MWM for step (a), which has a more significant impact on the distance driven.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 15

(a) Distance Driven (m) (b) Elapsed Time (ns) (c) Time to Pick-up (s) (d) Delay (s)

Fig. 4. January 15, 2016 – 08:00 - 09:00 – Manhattan – #Taxis = 4276 (base number).

(a) Distance Driven (m) (b) Driver Profit ($) (c) Frictions (s) (d) Delay (s)

Fig. 5. January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base number).

(a) Distance Driven (m) (b) Time to Pick-up (s) (c) Delay (s) (d) Cumulative Delay (s)

Fig. 6. January 15, 2016 – 08:00 - 09:00 – Manhattan – #Taxis = {2138, 3207, 4276, 8552, 12828}.

Similar results are observed for the whole day (Figure 5a), with Bal, ALMA, and Greedy achieving
+4%, +18%, and +22% compared to MWM, respectively. Figure 6a shows that as we decrease the
number of taxis, Bal loses its advantage, Greedy is pulling away from ALMA (9% worse than ALMA),
while ALMA closes the gap to MWM (+17%).
Complexity: To estimate the complexity, we measured the elapsed time of each algorithm. Greedy
is the fastest one (Figure 4b), closely followed by Har, Bal, and ALMA. ALMA is inherently decen-
tralized. The red overlay denotes the parallel time for ALMA, which is 2.5 orders of magnitude
faster than Greedy.
Time to Pick-up: MWM exhibits exceptionally low time to pick-up (Figure 4c), lower than the
single ride baseline. ALMA, Greedy, and Bal have +69%, +76%, and +33% compared to MWM,
respectively. As before, Figure 6b shows that as we decrease the number of taxis, Bal loses its
advantage, and Greedy is pulling further away from ALMA. Note that to improve visualization, we
removed DC’s pick-up time as it was one order of magnitude larger than Appr.
Delay: PG exhibits the lowest delay (Figure 4d), but this is because it makes 26% fewer shared rides
than the rest of the high performing algorithms. ALMA has the smallest delay (−13% compared

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 16

to MWM), with Greedy following at −1%, while Bal has +63% (both compared to MWM). As the
number of taxis decrease (Figure 6c), ALMA’s gains increase further (−22% compared to MWM).

Figure 6d depicts the cumulative delay, which is the sum of all delays described in Section 2.1.2,
namely the time to pair, time to pair with taxi, time to pick-up, and delay. An interesting observation
is that reducing the fleet size from 12828 (×3.0 of the base number) to just 3207 (×0.75 of the base
number) vehicles (75% reduction) results in only approximately 2 minutes of additional delay. This
goes to show the great potential for efficiency gains such technologies have to offer.
Profit & Frictions: Contrary to their performance in QoS metrics, GD, and Appr achieve the
highest driver profit, 12% and 8% higher than MWM, respectively (although the low QoS and
increased distance driven suggest low quality matchings, which can explain the higher revenue,
yet deems them undesirable). Bal, and Har follow with +2 − 3%. ALMA and Greedy achieve the
similar profit to MWM. PG exhibits significantly worse results (−13%), due to the lower number of
shared rides it matches.

Small differences in driver profit can have a significant impact on the platform’s profit. There
are 13587 taxis in NYC5, 67 − 85% of which are on the road at one time (i.e., 9103 - 11549 taxis). The
additional 2% profit of Bal translates to $32.3 additional revenue in a day. Multiplied by the total
number of taxis, and assuming that the platform keeps 25% as commission3, this results in $73506 -
$93258 additional revenue per day for the platform.

Figure 5b also depicts the maximum (red dot), and minimum (green dot) value of a driver’s profit.
Closer to the mean maximum value suggests a fairer algorithm for the drivers. Moreover, it is
worth noting that the minimum value for all the algorithms is zero, meaning that there are taxis
which remain unutilized (in spite of the fact that the number of taxis – in this scenario 5081 – is
considerably lower than the current fleet size of yellow taxis).

Finally, Figure 5c shows the driver frictions. Just like with the profit, k-server algorithms seem to
outperform matching algorithms by far. Compared to MWM, Bal and Har achieve a 97% decrease,
while ALMA and Greedy achieve a 31%, and 23% decrease respectively. Given that we have a fixed
supply, lower frictions indicate a more even distribution of rides amongst taxis.
Time to Pair with Taxi & Number of Shared Rides: Excluding the test-case with the smallest
taxi fleet (×0.5 the base number), the time to pair with taxi was zero, or close to zero, for all
the evaluated algorithms. The latter comes to show the potential for efficiency gains and better
utilization of resources using smart technologies. The number of shared rides is approximately
the same for all the employed algorithms, with notable exception the PG which makes 26% fewer
shared rides.

5.0.1 MWM vs. Greedy Approaches: MWM seems to perform the best in the total distance
driven, and the QoS metrics, which is reasonable since it makes optimal matches amongst passengers.
Yet, MWM is hard to scale and requires a centralized solution. Greedy approaches are appealing15,
not only due to their low complexity, but also because real-time constraints dictate short planning
windows which would potentially diminish the benefit of batch optimization solutions compared
to myopic approaches [69].

5.0.2 ALMA vs. Greedy Approaches: ALMA was inherently developed for multi-agent appli-
cations. Agents make decisions locally, using completely uncoupled learning rules, and require
only a 1-bit partial feedback [28], making it an ideal candidate for an on-device implementation.
This is fundamentally different than a decentralized implementation of the Greedy algorithm for
example. Even in decentralized algorithms, the number of communication rounds required grows
15[69] reports that GrabShare’s scheduling component has used an entirely greedy approach to allocate bookings to drivers.
Lyft also started with a greedy system [18].

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 17
Submission XXX 16

Table 2. Relocation Gains.

MWM ALMA Greedy

Time to Pick-up -48.95% -55.18% -55.03%
Time to Pick-up SD -52.97% -58.22% -58.21%

Delay -15.95% -17.79% -17.73%
Delay SD -19.25% -20.96% -20.98%

Cumulative Delay -38.37% -43.23% -43.11%
Total Distance 5.48% 6.25% 6.24%

Fig. 7. Time to Pick-up (s) – End-To-End Solution
January 15, 2016 – 00:00 - 23:59 – Manhattan – #Taxis = 5081

than 50% (e.g., ALMA decreases the pick-up time by 55%, and its standard deviation (SD) by 58%),
while increasing the driving distance by only 6%. The cumulative delay is decreased by 43%. Recall
that the proposed approach is plug-and-play and can be combined with any algorithm for steps (a)
and (b) of the DRSFR problem. Table 2 uses MWM for steps (a) - (b). This provides the evaluated
algorithms with a common ground, and allows for fair comparison focused only on the relocation
part.

As a final step, we evaluate end-to-end solutions, using MWM, ALMA, and Greedy to solve all
three of the steps of the DRSFR problem. Figure 7 depicts the time to pick-up (error bars denote one
SD of uncertainty), a metric highly correlated to passenger satisfaction level [16, 53]. We compare
against the single ride base line (see Section 3.2.13). Once more, the proposed relocation scheme
results in radical improvements, as the time to pick-up drops (compared to the single ride) from
+14.09% to −41.76% for MWM, from +74.14% to −9.33% for ALMA, and finally, from +86.10% to
−7.97% for Greedy. The latter comes to show that utilizing a simple relocation scheme can eliminate
the negative effects of ridesharing on the QoS metrics.

6 CONCLUSION
The next technological revolution will be interwoven to the proliferation of intelligent systems. As
we bridge the gap between physical and cyber worlds, we will give rise to decentralized, multi-agent
based technologies, ideally run on-device. In this paper, we show that a recently proposed heuristic
(ALMA), which exhibits such properties, offers an efficient, end-to-end solution for the Dynamic
Ridesharing, and Fleet Relocation problem.

Table 2. Relocation Gains. Fig. 7. Time to Pick-up (s) – End-To-End Solution.
+R in the x-axis labels indicates the use of relocation.
January 15, 2016 – 00:00 - 23:59 – Manhattan – #Taxis = 5081.

with the size of the problem. However, in practice the real-time constraints impose a limit on the
number of rounds, and thus on the size of the problem that can be solved within them. In fact,
ALMA is of a greedy nature as well, albeit it utilizes a more intelligent backing-off scheme, thus
there are scenarios where ALMA significantly outperforms the greedy, as proven by the simulation
results. For example, in more challenging scenarios (smaller taxi fleet, or potentially different types
of taxis) the smarter back off mechanism results in a more profound difference.

5.1 Relocation
A crucial trade-off of any relocation scheme is improving the QoS metrics, while minimizing the
excess distance driven. Table 2 shows that our proposed scheme successfully balances this trade-off.
In particular, ALMA – the best performing overall – radically improves the QoS metrics by more
than 50% (e.g., ALMA decreases the pick-up time by 55%, and its standard deviation (SD) by 58%),
while increasing the driving distance by only 6%. The cumulative delay is decreased by 43%. Recall
that the proposed approach is plug-and-play and can be combined with any algorithm for steps (a)
and (b) of the DRSFR problem. In this case, Table 2 uses MWM for steps (a) - (b). This provides the
evaluated algorithms with a common ground, and allows for fair comparison focused only on the
relocation part.

As a final step, we evaluate end-to-end solutions, using MWM, ALMA, and Greedy to solve all
three of the steps of the DRSFR problem. Figure 7 depicts the time to pick-up (error bars denote one
SD of uncertainty), a metric highly correlated to passenger satisfaction level [19, 67]. We compare
against the single ride baseline (see Section 3.2.13). Once more, the proposed relocation scheme
results in radical improvements, as the time to pick-up drops (compared to the single ride) from
+14.09% to −41.76% for MWM, from +74.14% to −9.33% for ALMA, and finally, from +86.10% to
−7.97% for Greedy. The latter comes to show that utilizing a simple relocation scheme can eliminate
the negative effects of ridesharing on the QoS metrics.

6 CONCLUSION
The next technological revolution will be interwoven to the proliferation of intelligent systems. As
we bridge the gap between physical and cyber worlds, we will give rise to decentralized, multi-agent
based technologies, ideally run on-device. To gain insight into the problem, it is highly important
to evaluate a diverse set of candidate solutions in settings designed to closely resemble reality.
In this work, we focused on the key algorithmic components of the Dynamic Ridesharing and
Fleet Relocation problem. To the best of our knowledge, our evaluation setting is one of the largest
and most comprehensive to date. Our findings provide a clear-cut recommendation to ridesharing
platforms, and validates the capacity for deployment of our proposed approach. As a highlight of
our paper, we show that a recently proposed heuristic (ALMA), which exhibits the aforementioned

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 18

desired properties, offers an efficient, end-to-end solution for the Dynamic Ridesharing and Fleet
Relocation problem.

REFERENCES
[1] Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang. 2012. Optimization for dynamic ride-sharing: A review.

European Journal of Operational Research 223, 2 (2012), 295–303.
[2] Niels Agatz, Alan L Erera, Martin WP Savelsbergh, and Xing Wang. 2011. Dynamic ride-sharing: A simulation study

in metro Atlanta. Procedia-Social and Behavioral Sciences 17 (2011), 532–550.
[3] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. 2017. On-demand high-

capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy of Sciences (2017).
[4] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul Makhijani, Yuyi Wang,

and Roger Wattenhofer. 2017. Min-cost bipartite perfect matching with delays. (2017).
[5] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and Chris Sholley. 2019. Edge Weighted

Online Windowed Matching. In Proceedings of the 2019 ACM Conference on Economics and Computation (EC ’19). ACM.
[6] Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. 2017. Pricing and Optimization in Shared Vehicle Systems:

An Approximation Framework. In Proceedings of the 2017 ACM Conference on Economics and Computation. ACM.
[7] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. 2015. A polylogarithmic-competitive algorithm

for the k-server problem. J. ACM 62, 5 (2015), 1–49.
[8] Yair Bartal. 1996. Probabilistic approximation of metric spaces and its algorithmic applications. In Proceedings of 37th

Conference on Foundations of Computer Science. IEEE, 184–193.
[9] Yair Bartal and Eddie Grove. 2000. The harmonic k-server algorithm is competitive. Journal of the ACM (JACM) (2000).

[10] Kanika Bathla, Vaskar Raychoudhury, Divya Saxena, and Ajay D Kshemkalyani. 2018. Real-time distributed taxi ride
sharing. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2044–2051.

[11] Xiaohui Bei and Shengyu Zhang. 2018. Algorithms for trip-vehicle assignment in ride-sharing. In Thirty-Second AAAI.
[12] Valérie Bélanger, Yannick Kergosien, Angel Ruiz, and Patrick Soriano. 2016. An empirical comparison of relocation

strategies in real-time ambulance fleet management. Computers & Industrial Engineering 94 (2016), 216–229.
[13] Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics 16, 1 (1958), 87–90.
[14] Dimitri P Bertsekas. 1998. Network optimization continuous and discrete models. Athena Scientific Belmont.
[15] Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Paweł Schmidt. 2018. A primal-dual online deterministic

algorithm for matching with delays. (2018), 51–68.
[16] Christian Bliek1ú, Pierre Bonami, and Andrea Lodi. 2014. Solving mixed-integer quadratic programming problems

with IBM-CPLEX: a progress report. In Proceedings of the twenty-sixth RAMP symposium. 16–17.
[17] Allan Borodin and Ran El-Yaniv. 2005. Online computation and competitive analysis. cambridge university press.
[18] Timothy Brown. [n.d.]. Matchmaking in Lyft Line — Part 1. eng.lyft.com/matchmaking-in-lyft-line-9c2635fe62c4.
[19] Timothy Brown. [n.d.]. Matchmaking in Lyft Line — Part 2. eng.lyft.com/matchmaking-in-lyft-line-691a1a32a008.
[20] Nicholas Buchholz. 2018. Spatial equilibrium, search frictions and dynamic efficiency in the taxi industry. Technical

Report. mimeo, Princeton University.
[21] Mengjing Chen, Weiran Shen, Pingzhong Tang, and Song Zuo. 2019. Dispatching through pricing: modeling ride-

sharing and designing dynamic prices. In Proceedings of the 28th International Joint Conference on Artificial Intelligence.
[22] Rui Chen and Christos G Cassandras. 2019. Optimization of ride sharing systems using event-driven receding horizon

control. arXiv preprint arXiv:1901.01919 (2019).
[23] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. 1990. New Results on Server Problems. (1990), 291–300.
[24] Marek Chrobak and Lawrence L Larmore. 1991. An optimal on-line algorithm for k servers on trees. SIAM J. Comput.
[25] Marek Chrobak and Lawrence L Larmore. 1991. The Server Problem and On-Line Games. On-line algorithms (1991).
[26] Christian Coester and Elias Koutsoupias. 2018. The Online k-Taxi Problem. arXiv preprint arXiv:1807.06645 (2018).
[27] Jean-François Cordeau and Gilbert Laporte. 2007. The dial-a-ride problem: models and algorithms. Ann. of op. research.
[28] Panayiotis Danassis, Aris Filos-Ratsikas, and Boi Faltings. 2019. Anytime Heuristic for Weighted Matching Through

Altruism-Inspired Behavior. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.
[29] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Seddighin. 2017. Stochastic

k-Server: How Should Uber Work? arXiv preprint arXiv:1705.05755 (2017).
[30] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu. 2018. Allocation problems in ride-sharing

platforms: Online matching with offline reusable resources. In Thirty-Second AAAI Conference on Artificial Intelligence.
[31] Chinmoy Dutta and Chris Sholley. 2018. Online matching in a ride-sharing platform. arXiv preprint arXiv:1806.10327.
[32] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0 1-vertices. Journal of research of the National

Bureau of Standards B (1965).
[33] Yuval Emek, Shay Kutten, and Roger Wattenhofer. 2016. Online matching: haste makes waste! (2016), 333–344.

eng.lyft.com/matchmaking-in-lyft-line-9c2635fe62c4
eng.lyft.com/matchmaking-in-lyft-line-691a1a32a008

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 19

[34] Jittat Fakcharoenphol, Satish Rao, Satish Rao, and Kunal Talwar. 2003. A Tight Bound on Approximating Arbitrary
Metrics by Tree Metrics. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing (STOC ’03).

[35] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on approximating arbitrary metrics by tree
metrics. J. Comput. System Sci. 69, 3 (2004), 485–497.

[36] Tomás Feder and Daniel Greene. 1988. Optimal algorithms for approximate clustering. In Proceedings of the twentieth
annual ACM symposium on Theory of computing. ACM, 434–444.

[37] Amos Fiat, Yuval Rabani, and Yiftach Ravid. 1994. Competitive k-server algorithms. J. Comput. System Sci. (1994).
[38] Masabumi Furuhata, Maged Dessouky, Fernando Ordóñez, Marc-Etienne Brunet, Xiaoqing Wang, and Sven Koenig.

2013. Ridesharing: The state-of-the-art and future directions. Transportation Research Part B: Methodological 57 (2013).
[39] Michel X Goemans and David P Williamson. 1997. The primal-dual method for approximation algorithms and its

application to network design problems. Approximation algorithms for NP-hard problems (1997), 144–191.
[40] Maxime Guériau and Ivana Dusparic. 2018. SAMoD: Shared autonomous mobility-on-demand using decentralized

reinforcement learning. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE.
[41] Sudipto Guha and Samir Khuller. 1999. Greedy strikes back Improved facility location algorithms. Journal of algorithms.
[42] Sin C Ho, WY Szeto, Yong-Hong Kuo, Janny MY Leung, Matthew Petering, and Terence WH Tou. 2018. A survey of

dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological.
[43] Wen-Lian Hsu and George L Nemhauser. 1979. Easy and hard bottleneck location problems. Discrete Applied

Mathematics 1, 3 (1979), 209–215.
[44] Taoan Huang, Bohui Fang, Xiaohui Bei, and Fei Fang. 2019. Dynamic Trip-Vehicle Dispatch with Scheduled and

On-Demand Requests. In The Conference on Uncertainty in Artificial Intelligence (UAI.
[45] Andrew P Kosoresow. 1997. Design and analysis of online algorithms for mobile server applications. (1997).
[46] Elias Koutsoupias. 2009. The k-server problem. Computer Science Review 3, 2 (2009), 105 – 118.
[47] Elias Koutsoupias and Christos H Papadimitriou. 1995. On the k-server conjecture. Journal of the ACM (JACM) (1995).
[48] James R Lee. 2018. Fusible HSTs and the randomized k-server conjecture. In 2018 IEEE 59th Annual Symposium on

Foundations of Computer Science (FOCS). IEEE, 438–449.
[49] Nixie Lesmana, Xuan Zhang, and Xiaohui Bei. 2019. Balancing Efficiency and Fairness in On-Demand Ridesourcing. In

Proceedings of the 33rd Conference on Neural Information Processing Systems (NEURIPS). to appear.
[50] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. 2019. ZAC: A Zone pAth Construction Approach for

Effective Real-Time Ridesharing. (2019).
[51] Hongyao Ma, Fei Fang, and David C Parkes. 2019. Spatio-Temporal Pricing for Ridesharing Platforms. In Proceedings

of the 2019 ACM Conference on Economics and Computation. ACM, 583–583.
[52] Mark Manasse, Lyle McGeoch, and Daniel Sleator. 1988. Competitive algorithms for on-line problems. In Proceedings

of the twentieth annual ACM symposium on Theory of computing. ACM, 322–333.
[53] Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. 1990. Competitive algorithms for server problems. J.

Algorithms 11, 2 (1990), 208–230.
[54] L Miguel Martínez, Gonçalo Homem de Almeida Correia, Filipe Moura, and Mafalda Mendes Lopes. 2017. Insights into

carsharing demand dynamics: Outputs of an agent-based model application to Lisbon, Portugal. International Journal
of Sustainable Transportation 11, 2 (2017), 148–159.

[55] Abood Mourad, Jakob Puchinger, and Chengbin Chu. 2019. A survey of models and algorithms for optimizing shared
mobility. Transportation Research Part B: Methodological (2019).

[56] Xinwu Qian, Wenbo Zhang, Satish V Ukkusuri, and Chao Yang. 2017. Optimal assignment and incentive design in the
taxi group ride problem. Transportation Research Part B: Methodological 103 (2017), 208–226.

[57] Prabhakar Raghavan and Marc Snir. 1989. Memory versus randomization in on-line algorithms. (1989), 687–703.
[58] Claudio Ruch, Sebastian Hörl, and Emilio Frazzoli. 2018. Amodeus, a simulation-based testbed for autonomous

mobility-on-demand systems. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE.
[59] Tomislav Rudec, Alfonzo Baumgartner, and Robert Manger. 2013. A fast work function algorithm for solving the

k-server problem. Central European Journal of Operations Research 21, 1 (01 Jan 2013), 187–205.
[60] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H Strogatz, and Carlo Ratti. 2014. Quantifying

the benefits of vehicle pooling with shareability networks. Proceedings of the National Academy of Sciences (2014).
[61] Douglas Oliveira Santos and Eduardo Candido Xavier. 2013. Dynamic taxi and ridesharing: A framework and heuristics

for the optimization problem. In Twenty-Third International Joint Conference on Artificial Intelligence.
[62] Douglas O Santos and Eduardo C Xavier. 2015. Taxi and ride sharing: A dynamic dial-a-ride problem with money as

an incentive. Expert Systems with Applications 42, 19 (2015), 6728–6737.
[63] Shrawani Silwal, Md Osman Gani, and Vaskar Raychoudhury. 2019. A Survey of Taxi Ride Sharing System Architectures.

In 2019 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, 144–149.
[64] Andrea Simonetto, Julien Monteil, and Claudio Gambella. 2019. Real-time city-scale ridesharing via linear assignment

problems. Transportation Research Part C: Emerging Technologies 101 (2019), 208–232.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 20

[65] Kevin Spieser, Samitha Samaranayake, Wolfgang Gruel, and Emilio Frazzoli. 2016. Shared-vehicle mobility-on-demand
systems: a fleet operator’s guide to rebalancing empty vehicles. In Transportation Research Board 95th Annual Meeting.

[66] Tom Sühr, Asia J Biega, Meike Zehlike, Krishna P Gummadi, and Abhijnan Chakraborty. 2019. Two-Sided Fairness for
Repeated Matchings in Two-Sided Markets: A Case Study of a Ride-Hailing Platform. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 3082–3092.

[67] M. Tang, S. Ow, W. Chen, Y. Cao, K. Lye, and Y. Pan. 2017. The Data and Science behind GrabShare Carpooling. In
2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[68] Reza Vosooghi, Jakob Puchinger, Marija Jankovic, and Anthony Vouillon. 2019. Shared Autonomous Vehicle Simulation
and Service Design. Transportation Research Part C: Emerging Technologies 107 (2019), 15–33.

[69] Dominic Widdows, Jacob Lucas, Muchen Tang, and Weilun Wu. 2017. GrabShare: The construction of a realtime
ridesharing service. In 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE).

[70] Dongkuan Xu and Yingjie Tian. 2015. A Comprehensive Survey of Clustering Algorithms. Annals of Data Science.
[71] Chak Fai Yuen, Abhishek Pratap Singh, Sagar Goyal, Sayan Ranu, and Amitabha Bagchi. 2019. Beyond Shortest Paths:

Route Recommendations for Ride-sharing. In The World Wide Web Conference. ACM, 2258–2269.
[72] Boming Zhao, Pan Xu, Yexuan Shi, Yongxin Tong, Zimu Zhou, and Yuxiang Zeng. 2019. Preference-aware task

assignment in on-demand taxi dispatching: An online stable matching approach. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 2245–2252.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 21

A APPENDIX
A.1 Simulation Results in Detail
In this section we present in detail the results of our evaluation of Section 5 including, but not
limited to, larger test-cases (broader NYC area), and the omitted algorithms, graphs, and tables. For
every metric we report the average value out of 8 runs. The dataset was cleaned to remove requests
with travel time shorter than one minute, or invalid geo-locations (e.g., outside Manhattan, Bronx,
Staten Island, Brooklyn, or Queens).
Section A.2 08:00 - 09:00 – Manhattan: We begin with our small test-case: one hour (08:00 -
09:00), base number of taxis (i.e., 4276, see Section 2.2.2), limited to Manhattan. Figure 8, and Table
2 depict all the evaluated metrics, while the latter also includes the standard deviation of each value.
Finally, Table 3 presents the relative difference (percentage of gain or loss) compared to MWM
(first line of the table). In what follows, we will adhere to the same pattern, i.e., presenting two
tables for the same evaluation, one containing the absolute values, and one presenting the relative
difference compared to the algorithm in the first line of the table. We were able to run most of the
algorithms in this test-case, except for WFA which we run only for {×0.5,×0.75} the base number
of taxis, and HC which is so computationally heavy, that we had to run a separate test-case of only
10 minutes (see Section A.6).

Offline algorithms (e.g., MWM, ALMA, Greedy) can be run either in a just-in-time (JiT) manner
– i.e., when a request becomes critical – or in batches. The following two tables (Tables 4, and 5)
evaluate the performance of each algorithm for each option. Given that our dataset has granularity
of one minute, we run in batches of one, and two minutes. Moreover, due to the large number
of requests, at least one request turns critical in every time-step. Thus, JiT and in batches of one
minute produced the exact same results. To allow for the evaluation of every algorithm (except HC),
we run the evaluation in a smaller scale, i.e., 2138 taxis ({×0.5} the base number of taxis). These
tables also include the results for the WFA algorithm. Every other result presented in this paper
assumes the best performing option for each of the algorithms (usually batch size of two minutes).

Finally, Figure 9 shows that our results are robust to a varying number of vehicles (2138 - 12828).
Section A.3 00:00 - 23:59 (full day) – Manhattan: We continue to show that the results are
robust to a larger time-scale. As before, Figure 10, and Tables 6, and 7 depict all the evaluated
metrics.
Sections A.4 08:00 - 09:00, and A.5 00:00 - 23:59 (full day) – Broader NYC Area: In the
following two sections, we show that our results are robust to larger geographic areas, specifically
in the broader NYC Area, including Manhattan, Bronx, Staten Island, Brooklyn, and Queens. Figure
11, and Tables 8, and 9, and Figure 12, and Tables 10, and 11 depict all the evaluated metrics, for
one hour, and one day respectively.
Section A.6 08:00 - 08:10 – Manhattan: This is a limited test-case aimed to evaluate the HC
algorithm, due to its high computational complexity. Figure 13, and Tables 12, and 13 depict all the
evaluated metrics.
Section A.7 Dynamic Vehicle Relocation – 00:00 - 23:59 (full day) – Manhattan: In this
section, we present results on the step (c) of the DRSFR problem: dynamic relocation. We fix an
algorithm for steps (a), and (b) – specifically MWM – to allow for a common ground and a fair
comparison, focused only on the relocation part. Figure 14, and Tables 14, and 15 depict all the
evaluated metrics.
Section A.8 End-To-End Solution – 00:00 - 23:59 (full day) – Manhattan: As a final step, we
evaluate end-to-end solutions, using MWM, ALMA, and Greedy to solve all three of the steps of
the DRSFR problem. Figure 15, and Tables 16, and 17 present all the evaluated metrics.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 22

A.2 08:00 - 09:00 – Manhattan

(a) Total Distance Driven
(m)

(b) Elapsed Time (ns)
[LOG]

(c) Time to Pair (s) (d) Time to Pair with Taxi
(s)

(e) Time to Pick-up (s) (f) Delay (s) (g) Cumulative Delay (s) (h) Driver Profit ($)

(i) Number of Shared Rides (j) Frictions (s)

Fig. 8. January 15, 2016 – 08:00 - 09:00 – Manhattan – #Taxis = 4276 (base number).

Table 2. January 15, 2016 – 08:00 - 09:00 – Manhattan – #Taxis = 4276 (base number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 4.76E+07 0.00E+00 1.54E+12 0.00E+00 32.05 30.90 0.00 0.00 122.78 146.36 28.56 76.94 183.39 92.42 59.75 9.54E+03 0.00 232.30 420.13
ALMA 5.67E+07 1.14E+05 8.09E+10 4.36E+09 31.95 30.99 0.00 0.00 206.93 246.41 24.79 77.61 263.67 91.65 53.22 9.61E+03 10.46 206.59 387.78
Greedy 5.77E+07 8.97E+04 4.37E+10 2.73E+09 32.16 31.02 0.00 0.00 215.82 249.18 28.19 79.89 276.17 92.05 52.55 9.55E+03 18.52 200.17 381.71
Appr 7.90E+07 0.00E+00 1.06E+12 0.00E+00 30.29 30.19 0.00 0.00 580.48 427.45 71.13 133.34 681.90 98.89 40.52 1.00E+04 0.00 203.84 315.85
PG 6.27E+07 1.05E+05 8.55E+11 2.18E+10 59.69 43.21 0.00 0.00 219.16 282.64 13.77 61.12 292.62 80.08 45.69 7.11E+03 28.92 190.24 384.91
GD 6.62E+07 0.00E+00 7.54E+12 9.01E+10 52.91 32.09 14.67 18.27 225.96 267.47 143.82 313.95 437.36 103.65 56.84 9.01E+03 0.00 166.78 348.97
Bal 5.11E+07 5.16E+04 4.60E+10 2.09E+09 32.05 30.89 0.00 0.00 163.20 156.45 46.67 120.62 241.91 94.98 30.95 9.54E+03 0.00 621.14 490.55
Har 7.61E+07 2.47E+05 4.28E+10 2.41E+09 32.05 30.89 0.00 0.00 540.38 479.35 50.84 129.03 623.27 95.18 41.59 9.54E+03 0.00 279.55 282.88
DC 1.23E+08 5.41E+06 1.79E+13 1.05E+12 32.05 30.89 0.00 0.00 0.00 10458.42 52.29 125.51 6051.60 96.94 196.20 9.54E+03 0.00 133.54 349.94
k-Taxi 5.97E+07 2.31E+05 5.23E+13 3.00E+12 32.05 30.89 0.00 0.00 288.89 372.65 47.09 120.88 368.02 94.90 62.00 9.54E+03 0.00 188.68 343.92
Single 8.51E+07 0.00E+00 8.12E+11 0.00E+00 0.00 0.00 0.02 1.04 133.36 201.19 0.00 0.00 133.38 24.88 7.30 0.00E+00 0.00 119.80 291.01

Table 3. January 15, 2016 – 08:00 - 09:00 – Manhattan – #Taxis = 4276 (base number). Each column presents
the relative difference compared to the first line, i.e., the MWM (algorithm - MWM) / MWM, for each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 0.00% – 0.00% – 0.00% 0.00% – – 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% – 0.00% 0.00%
ALMA 19.15% – -94.75% – -0.29% 0.30% – – 68.54% 68.36% -13.19% 0.88% 43.78% -0.84% -10.93% 0.72% – -11.07% -7.70%
Greedy 21.24% – -97.16% – 0.35% 0.40% – – 75.78% 70.25% -1.30% 3.84% 50.59% -0.41% -12.06% 0.08% – -13.83% -9.14%
Appr 65.95% – -30.85% – -5.47% -2.28% – – 372.79% 192.06% 149.01% 73.30% 271.83% 6.99% -32.18% 4.81% – -12.25% -24.82%
PG 31.69% – -44.50% – 86.27% 39.86% – – 78.51% 93.12% -51.81% -20.56% 59.57% -13.35% -23.54% -25.48% – -18.10% -8.38%
GD 39.03% – 389.79% – 65.11% 3.87% – – 84.04% 82.75% 403.50% 308.04% 138.49% 12.15% -4.87% -5.63% – -28.21% -16.94%
Bal 7.41% – -97.01% – 0.00% 0.00% – – 32.92% 6.90% 63.39% 56.77% 31.91% 2.76% -48.19% 0.00% – 167.39% 16.76%
Har 59.98% – -97.22% – 0.00% 0.00% – – 340.13% 227.52% 78.00% 67.70% 239.87% 2.98% -30.39% 0.00% – 20.34% -32.67%
DC 158.13% – 1061.10% – 0.00% 0.00% – – -100.00% 7045.82% 83.09% 63.13% 3199.91% 4.88% 228.37% 0.00% – -42.51% -16.71%
k-Taxi 25.48% – 3293.85% – 0.00% 0.00% – – 135.29% 154.62% 64.85% 57.11% 100.68% 2.68% 3.76% 0.00% – -18.78% -18.14%
Single 78.81% – -47.28% – -100.00% -100.00% – – 8.62% 37.46% -100.00% -100.00% -27.27% -73.08% -87.78% -100.00% – -48.43% -30.73%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 23
Ta

bl
e

4.
Ja

nu
ar

y
15

,2
01

6
–

08
:0

0
-

09
:0

0
–

M
an

ha
tt

an
–

#T
ax

is
=

21
38

.
O

ff
lin

e
al

go
ri

th
m

s
ar

e
ru

n
ei

th
er

in
Ju

st
-i

n-
Ti

m
e

(J
iT

)m
an

ne
r,

or
in

ba
tc

he
s

(w
it

h
ba

tc
h

si
ze

1,
or

2
m

in
).

B
ec

au
se

of
th

e
de

ns
it

y
of

th
e

da
ta

se
t,

re
qu

es
ts

be
co

m
e

cr
it

ic
al

ev
er

y
ti

m
e-

st
ep

,t
hu

s
JiT

is
th

e
sa

m
e

as
in

ba
tc

he
s

w
it

h
ba

tc
h

si
ze

1.

D
is

ta
nc

e
D

ri
ve

n
(m

)
SD

El
ap

se
d

Ti
m

e
(n

s)
SD

Ti
m

e
to

Pa
ir

(s
)

SD
Ti

m
e

to
Pa

ir
w

it
h

Ta
xi

(s
)

SD
Ti

m
e

to
Pi

ck
-u

p
(s

)
SD

D
el

ay
(s

)
SD

C
um

ul
at

iv
e

D
el

ay
(s

)
D

ri
ve

r
Pr

ofi
t(

$)
SD

N
um

be
r

of
Sh

ar
ed

R
id

es
SD

Fr
ic

ti
on

s
(s

)
SD

M
W

M
(1

)
5.4

6E
+0

7
0.0

0E
+0

0
9.9

1E
+1

0
0.0

0E
+0

0
5.1

7
18

.08
10

2.2
6

40
7.9

4
31

8.2
3

54
2.5

9
45

.92
12

3.4
5

47
1.5

7
19

0.4
4

52
.46

9.7
2E

+0
3

0.0
0

29
.68

12
.38

M
W

M
(2

)
5.2

7E
+0

7
0.0

0E
+0

0
1.4

5E
+1

1
0.0

0E
+0

0
32

.05
30

.90
88

.64
30

8.0
8

28
8.9

4
44

1.8
5

38
.34

11
2.2

0
44

7.9
7

18
7.5

0
49

.91
9.5

4E
+0

3
0.0

0
34

.32
16

.06
A

LM
A

(1
)

6.3
0E

+0
7

1.3
8E

+0
5

3.9
6E

+1
0

4.1
2E

+0
9

3.9
7

15
.71

35
6.0

7
61

4.1
6

65
4.4

1
80

6.2
5

39
.48

11
9.4

0
10

53
.93

18
8.7

9
36

.01
9.8

5E
+0

3
8.3

6
29

.43
9.9

1
A

LM
A

(2
)

6.1
8E

+0
7

1.0
2E

+0
5

6.0
2E

+1
0

7.5
7E

+0
9

31
.91

30
.92

32
3.0

9
56

6.0
4

61
1.5

9
75

8.2
6

29
.84

10
2.3

8
99

6.4
3

18
4.6

6
35

.59
9.6

2E
+0

3
6.8

8
30

.00
10

.28
G

re
ed

y
(1

)
6.7

6E
+0

7
2.2

8E
+0

5
6.7

8E
+0

9
1.6

8E
+0

9
4.4

1
16

.52
57

7.8
5

70
6.9

5
93

2.9
2

81
3.9

8
44

.64
12

1.0
6

15
59

.82
18

9.9
9

36
.36

9.8
2E

+0
3

6.1
3

29
.54

9.7
6

G
re

ed
y

(2
)

6.6
6E

+0
7

1.0
1E

+0
5

1.3
1E

+1
0

3.7
5E

+0
9

32
.14

31
.04

53
6.3

6
66

8.9
9

88
1.6

7
78

3.4
3

34
.77

10
6.5

8
14

84
.94

18
5.7

2
36

.99
9.5

5E
+0

3
17

.72
29

.97
10

.00
A

pp
r

(1
)

8.0
4E

+0
7

0.0
0E

+0
0

5.4
1E

+1
1

0.0
0E

+0
0

27
.94

30
.07

85
2.4

4
10

48
.80

14
54

.91
11

85
.15

71
.59

13
7.3

7
24

06
.88

19
8.0

0
36

.05
1.0

0E
+0

4
0.0

0
45

.28
18

.08
A

pp
r

(2
)

8.0
5E

+0
7

0.0
0E

+0
0

5.4
2E

+1
1

0.0
0E

+0
0

30
.29

30
.19

80
4.6

7
99

5.8
6

14
10

.40
11

45
.77

69
.81

12
8.8

9
23

15
.17

19
7.3

5
35

.61
1.0

0E
+0

4
0.0

0
29

.69
10

.13
PG

6.7
4E

+0
7

1.1
7E

+0
5

5.2
0E

+1
1

1.8
1E

+1
0

59
.53

43
.27

29
7.9

9
76

4.6
1

66
4.3

0
10

53
.38

19
.90

10
7.5

7
10

41
.73

16
1.9

0
39

.97
7.1

2E
+0

3
31

.39
29

.56
8.2

9
G

D
6.9

2E
+0

7
0.0

0E
+0

0
7.1

1E
+1

2
3.2

8E
+1

1
52

.91
32

.09
35

8.3
8

80
1.7

9
62

6.9
6

94
5.1

3
15

3.4
9

33
3.2

1
11

91
.73

21
0.0

0
54

.47
9.0

1E
+0

3
0.0

0
30

.21
9.7

0
Ba

l(
1)

6.2
2E

+0
7

9.7
1E

+0
4

1.3
5E

+1
0

4.5
6E

+0
9

5.1
7

18
.08

40
3.3

8
53

5.5
1

72
5.1

8
63

7.4
9

55
.53

13
4.3

6
11

89
.26

19
2.9

6
41

.38
9.7

2E
+0

3
0.0

0
30

.23
11

.05
Ba

l(
2)

5.9
9E

+0
7

1.3
8E

+0
5

3.4
2E

+1
0

7.0
9E

+0
9

32
.05

30
.89

33
6.4

5
46

6.1
7

63
5.9

0
56

9.0
4

46
.20

12
0.7

4
10

50
.59

18
9.5

3
41

.81
9.5

4E
+0

3
0.0

0
31

.76
12

.20
H

ar
(1

)
8.1

0E
+0

7
2.3

6E
+0

5
1.3

7E
+1

0
4.7

0E
+0

9
5.1

7
18

.08
94

6.5
6

10
58

.46
15

55
.42

11
90

.40
61

.98
14

6.6
5

25
69

.12
19

4.2
2

49
.97

9.7
2E

+0
3

0.0
0

29
.45

9.6
7

H
ar

(2
)

7.9
6E

+0
7

2.8
7E

+0
5

3.3
6E

+1
0

6.9
0E

+0
9

32
.05

30
.89

90
6.4

9
10

24
.29

15
01

.74
11

53
.03

51
.28

13
0.0

4
24

91
.55

19
0.3

7
51

.20
9.5

4E
+0

3
0.0

0
29

.65
9.6

5
D

C
(1

)
1.4

1E
+0

8
1.9

0E
+0

6
1.1

6E
+1

3
5.4

8E
+1

1
5.1

7
18

.08
0.0

0
0.0

0
76

60
.58

10
89

0.6
2

62
.70

14
2.7

1
77

28
.45

19
2.4

5
28

0.8
5

9.7
2E

+0
3

0.0
0

85
.76

26
9.5

9
D

C
(2

)
1.3

8E
+0

8
1.7

1E
+0

6
8.9

9E
+1

2
3.7

4E
+1

1
32

.05
30

.89
0.0

0
0.0

0
72

90
.07

10
19

6.6
6

51
.77

12
4.7

6
73

73
.89

18
8.3

7
27

2.8
9

9.5
4E

+0
3

0.0
0

93
.37

28
7.4

7
k-

Ta
xi

(1
)

7.1
0E

+0
7

3.0
0E

+0
5

3.4
1E

+1
2

2.1
2E

+1
1

5.1
7

18
.08

64
6.4

8
52

8.5
4

10
99

.19
70

2.3
5

58
.32

14
1.5

0
18

09
.15

19
3.4

8
46

.97
9.7

2E
+0

3
0.0

0
29

.33
9.7

4
k-

Ta
xi

(2
)

6.9
2E

+0
7

2.0
4E

+0
5

4.3
2E

+1
2

4.0
5E

+1
1

32
.05

30
.89

58
6.2

2
49

1.0
5

10
20

.87
67

0.7
6

48
.51

12
6.9

3
16

87
.65

18
9.9

0
48

.16
9.5

4E
+0

3
0.0

0
30

.14
10

.10
W

FA
(1

)
8.4

8E
+0

7
3.2

5E
+0

5
1.2

8E
+1

4
6.7

7E
+1

2
5.1

7
18

.08
0.0

0
0.0

0
30

96
6.5

4
40

84
7.9

8
64

.04
14

5.4
3

31
03

5.7
5

19
4.6

9
59

7.6
9

9.7
2E

+0
3

0.0
0

63
.79

25
4.4

8
W

FA
(2

)
8.0

9E
+0

7
0.0

0E
+0

0
9.6

9E
+1

3
0.0

0E
+0

0
32

.05
30

.90
0.0

0
0.0

0
28

96
4.9

4
39

06
6.9

3
51

.85
12

7.0
5

29
04

8.8
4

19
0.4

9
59

3.7
9

9.5
4E

+0
3

0.0
0

69
.68

26
4.1

0
Si

ng
le

8.6
3E

+0
7

0.0
0E

+0
0

2.0
2E

+1
2

0.0
0E

+0
0

0.0
0

0.0
0

70
0.5

0
13

17
.51

84
3.8

0
14

44
.94

0.0
0

0.0
0

15
44

.30
49

.72
6.9

0
0.0

0E
+0

0
0.0

0
29

.41
6.1

1
R

an
do

m
1.1

4E
+0

8
2.5

6E
+0

5
6.2

6E
+0

9
1.4

2E
+0

9
3.6

1
15

.05
19

63
.08

14
57

.54
29

03
.86

15
80

.37
16

1.0
7

32
8.9

2
50

31
.62

22
2.4

7
47

.27
9.8

8E
+0

3
6.5

4
29

.56
9.3

7

Ta
bl

e
5.

Ja
nu

ar
y

15
,2

01
6

–
08

:0
0

-
09

:0
0

–
M

an
ha

tt
an

–
#T

ax
is

=
21

38
.

O
ff

lin
e

al
go

ri
th

m
s

ar
e

ru
n

ei
th

er
in

Ju
st

-i
n-

Ti
m

e
(J

iT
)m

an
ne

r,
or

in
ba

tc
he

s
(w

it
h

ba
tc

h
si

ze
1,

or
2

m
in

).
B

ec
au

se
of

th
e

de
ns

it
y

of
th

e
da

ta
se

t,
re

qu
es

ts
be

co
m

e
cr

it
ic

al
ev

er
y

ti
m

e-
st

ep
,t

hu
s

JiT
is

th
e

sa
m

e
as

in
ba

tc
he

s
w

it
h

ba
tc

h
si

ze
1.

Ea
ch

co
lu

m
n

pr
es

en
ts

th
e

re
la

ti
ve

di
ff

er
en

ce
co

m
pa

re
d

to
th

e
fir

st
lin

e,
i.e

.,
M

W
M

of
ba

tc
h

si
ze

on
e

(a
lg

or
it

hm
-

M
W

M
(1

))
/M

W
M

(1
),

fo
r

ea
ch

m
et

ri
c.

D
is

ta
nc

e
D

ri
ve

n
(m

)
SD

El
ap

se
d

Ti
m

e
(n

s)
SD

Ti
m

e
to

Pa
ir

(s
)

SD
Ti

m
e

to
Pa

ir
w

it
h

Ta
xi

(s
)

SD
Ti

m
e

to
Pi

ck
-u

p
(s

)
SD

D
el

ay
(s

)
SD

C
um

ul
at

iv
e

D
el

ay
(s

)
D

ri
ve

r
Pr

ofi
t(

$)
SD

N
um

be
r

of
Sh

ar
ed

R
id

es
SD

Fr
ic

ti
on

s
(s

)
SD

M
W

M
(1

)
0.0

0%
–

0.0
0%

–
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
0.0

0%
–

0.0
0%

0.0
0%

M
W

M
(2

)
-3

.44
%

–
46

.61
%

–
52

0.2
6%

70
.89

%
-1

3.3
2%

-2
4.4

8%
-9

.20
%

-1
8.5

7%
-1

6.4
9%

-9
.12

%
-5

.00
%

-1
.54

%
-4

.86
%

-1
.82

%
–

15
.65

%
29

.68
%

A
LM

A
(1

)
15

.50
%

–
-6

0.0
3%

–
-2

3.2
0%

-1
3.0

8%
24

8.2
0%

50
.55

%
10

5.6
4%

48
.59

%
-1

4.0
1%

-3
.29

%
12

3.4
9%

-0
.87

%
-3

1.3
6%

1.3
6%

–
-0

.84
%

-2
0.0

0%
A

LM
A

(2
)

13
.27

%
–

-3
9.2

9%
–

51
7.6

5%
71

.03
%

21
5.9

5%
38

.76
%

92
.19

%
39

.75
%

-3
5.0

2%
-1

7.0
7%

11
1.3

0%
-3

.04
%

-3
2.1

6%
-1

.03
%

–
1.0

8%
-1

6.9
6%

G
re

ed
y

(1
)

23
.91

%
–

-9
3.1

6%
–

-1
4.5

8%
-8

.61
%

46
5.0

7%
73

.30
%

19
3.1

6%
50

.02
%

-2
.78

%
-1

.94
%

23
0.7

7%
-0

.24
%

-3
0.7

0%
1.0

1%
–

-0
.47

%
-2

1.1
5%

G
re

ed
y

(2
)

21
.98

%
–

-8
6.8

1%
–

52
2.1

4%
71

.70
%

42
4.5

0%
63

.99
%

17
7.0

6%
44

.39
%

-2
4.2

9%
-1

3.6
7%

21
4.8

9%
-2

.48
%

-2
9.4

8%
-1

.72
%

–
0.9

9%
-1

9.2
2%

A
pp

r
(1

)
47

.32
%

–
44

5.4
9%

–
44

0.8
0%

66
.34

%
73

3.5
9%

15
7.1

0%
35

7.1
9%

11
8.4

2%
55

.92
%

11
.28

%
41

0.3
9%

3.9
7%

-3
1.2

8%
2.9

2%
–

52
.57

%
46

.03
%

A
pp

r
(2

)
47

.52
%

–
44

7.1
6%

–
48

6.3
0%

66
.99

%
68

6.8
8%

14
4.1

2%
34

3.2
0%

11
1.1

7%
52

.04
%

4.4
0%

39
0.9

5%
3.6

3%
-3

2.1
3%

2.9
0%

–
0.0

2%
-1

8.1
6%

PG
23

.56
%

–
42

4.8
6%

–
10

52
.23

%
13

9.3
1%

19
1.4

0%
87

.43
%

10
8.7

5%
94

.14
%

-5
6.6

5%
-1

2.8
7%

12
0.9

0%
-1

4.9
9%

-2
3.8

1%
-2

6.7
0%

–
-0

.41
%

-3
3.0

8%
G

D
26

.84
%

–
70

71
.20

%
–

92
4.1

2%
77

.50
%

25
0.4

5%
96

.55
%

97
.01

%
74

.19
%

23
4.2

7%
16

9.9
1%

15
2.7

1%
10

.27
%

3.8
3%

-7
.35

%
–

1.7
9%

-2
1.6

3%
Ba

l(
1)

14
.02

%
–

-8
6.4

2%
–

0.0
0%

0.0
0%

29
4.4

7%
31

.27
%

12
7.8

8%
17

.49
%

20
.94

%
8.8

3%
15

2.1
9%

1.3
3%

-2
1.1

3%
0.0

0%
–

1.8
7%

-1
0.7

5%
Ba

l(
2)

9.8
8%

–
-6

5.4
9%

–
52

0.2
6%

70
.88

%
22

9.0
1%

14
.28

%
99

.83
%

4.8
7%

0.6
1%

-2
.20

%
12

2.7
8%

-0
.48

%
-2

0.3
1%

-1
.82

%
–

7.0
0%

-1
.50

%
H

ar
(1

)
48

.42
%

–
-8

6.1
6%

–
0.0

0%
0.0

0%
82

5.6
4%

15
9.4

7%
38

8.7
7%

11
9.3

9%
34

.98
%

18
.79

%
44

4.8
0%

1.9
8%

-4
.75

%
0.0

0%
–

-0
.76

%
-2

1.9
0%

H
ar

(2
)

45
.93

%
–

-6
6.1

4%
–

52
0.2

6%
70

.88
%

78
6.4

5%
15

1.0
9%

37
1.9

0%
11

2.5
0%

11
.68

%
5.3

4%
42

8.3
5%

-0
.04

%
-2

.41
%

-1
.82

%
–

-0
.08

%
-2

2.1
0%

D
C

(1
)

15
9.3

4%
–

11
63

6.4
1%

–
0.0

0%
0.0

0%
-1

00
.00

%
-1

00
.00

%
23

07
.25

%
19

07
.15

%
36

.55
%

15
.59

%
15

38
.87

%
1.0

5%
43

5.3
5%

0.0
0%

–
18

8.9
5%

20
76

.91
%

D
C

(2
)

15
2.4

9%
–

89
69

.76
%

–
52

0.2
6%

70
.88

%
-1

00
.00

%
-1

00
.00

%
21

90
.83

%
17

79
.25

%
12

.75
%

1.0
6%

14
63

.68
%

-1
.09

%
42

0.1
7%

-1
.82

%
–

21
4.6

0%
22

21
.34

%
k-

Ta
xi

(1
)

30
.13

%
–

33
39

.41
%

–
0.0

0%
0.0

0%
53

2.1
9%

29
.56

%
24

5.4
1%

29
.44

%
27

.00
%

14
.61

%
28

3.6
4%

1.6
0%

-1
0.4

7%
0.0

0%
–

-1
.18

%
-2

1.3
8%

k-
Ta

xi
(2

)
26

.82
%

–
42

58
.51

%
–

52
0.2

6%
70

.88
%

47
3.2

6%
20

.37
%

22
0.8

0%
23

.62
%

5.6
5%

2.8
1%

25
7.8

8%
-0

.28
%

-8
.20

%
-1

.82
%

–
1.5

4%
-1

8.4
1%

W
FA

(1
)

55
.42

%
–

12
90

83
.20

%
–

0.0
0%

0.0
0%

-1
00

.00
%

-1
00

.00
%

96
30

.90
%

74
28

.32
%

39
.48

%
17

.80
%

64
81

.32
%

2.2
3%

10
39

.29
%

0.0
0%

–
11

4.9
2%

19
54

.90
%

W
FA

(2
)

48
.26

%
–

97
65

4.7
6%

–
52

0.2
6%

70
.89

%
-1

00
.00

%
-1

00
.00

%
90

01
.91

%
71

00
.07

%
12

.93
%

2.9
1%

60
59

.99
%

0.0
3%

10
31

.86
%

-1
.82

%
–

13
4.7

7%
20

32
.61

%
Si

ng
le

58
.20

%
–

19
35

.09
%

–
-1

00
.00

%
-1

00
.00

%
58

5.0
1%

22
2.9

7%
16

5.1
6%

16
6.3

0%
-1

00
.00

%
-1

00
.00

%
22

7.4
8%

-7
3.8

9%
-8

6.8
5%

-1
00

.00
%

–
-0

.91
%

-5
0.6

4%
R

an
do

m
10

8.4
4%

–
-9

3.6
9%

–
-3

0.1
0%

-1
6.7

6%
18

19
.69

%
25

7.3
0%

81
2.5

1%
19

1.2
6%

25
0.7

8%
16

6.4
3%

96
6.9

9%
16

.82
%

-9
.89

%
1.6

0%
–

-0
.40

%
-2

4.3
8%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 24

(a) Total Distance Driven
(m)

(b) Elapsed Time (ns)
[LOG]

(c) Time to Pair (s) (d) Time to Pair with Taxi
(s)

(e) Time to Pick-up (s) (f) Delay (s) (g) Cumulative Delay (s) (h) Driver Profit ($)

(i) Number of Shared Rides (j) Frictions (s)

Fig. 9. January 15, 2016 – 08:00 - 09:00 – Manhattan – Varying #Taxis = {2138, 3207, 4276, 8552, 12828}.

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 25

A.3 00:00 - 23:59 (full day) – Manhattan

(a) Total Distance Driven
(m)

(b) Elapsed Time (ns)
[LOG]

(c) Time to Pair (s) (d) Time to Pair with Taxi
(s)

(e) Time to Pick-up (s) (f) Delay (s) (g) Cumulative Delay (s) (h) Driver Profit ($)

(i) Number of Shared Rides (j) Frictions (s)

Fig. 10. January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base number).

Table 6. January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 9.45E+08 0.00E+00 3.48E+13 0.00E+00 32.10 30.84 0.00 0.00 184.55 274.34 32.14 87.69 248.79 1420.37 895.19 1.67E+05 0.00 4127.47 10597.84
ALMA 1.12E+09 2.73E+05 5.42E+12 3.31E+11 31.98 31.01 0.00 0.00 281.70 405.36 27.32 86.78 341.00 1406.70 736.46 1.68E+05 29.39 3047.45 7264.56
Greedy 1.15E+09 5.93E+05 3.30E+12 3.86E+11 32.18 31.05 0.00 0.00 301.04 407.70 31.93 90.56 365.15 1414.66 719.44 1.67E+05 26.29 3242.70 8167.00
Appr 1.48E+09 0.00E+00 2.37E+13 0.00E+00 30.14 30.18 0.00 0.00 624.13 473.31 82.75 156.13 737.02 1536.97 478.35 1.76E+05 0.00 2421.75 4505.68
PG 1.22E+09 4.64E+05 2.39E+13 1.50E+12 58.58 42.99 0.00 0.00 290.18 431.80 17.16 84.29 365.91 1234.17 603.66 1.26E+05 95.74 3044.98 8561.98
Bal 9.85E+08 2.42E+05 2.56E+12 1.39E+11 32.10 30.84 0.00 0.00 201.85 225.85 47.51 126.16 281.47 1452.66 107.31 1.67E+05 0.00 1516.33 221.62
Har 1.43E+09 1.46E+06 2.34E+12 3.85E+11 32.10 30.84 0.00 0.00 584.05 533.66 53.08 132.72 669.23 1458.51 187.05 1.67E+05 0.00 1106.16 246.76
Single 1.60E+09 0.00E+00 2.54E+13 0.00E+00 0.00 0.00 5.59 99.05 161.77 355.37 0.00 0.00 167.36 376.90 116.72 0.00E+00 0.00 756.43 1216.88

Table 7. January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base number). Each column
presents the relative difference compared to the first line, i.e., the MWM (algorithm - MWM) / MWM, for
each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 0.00% – 0.00% – 0.00% 0.00% – – 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% – 0.00% 0.00%
ALMA 18.29% – -84.43% – -0.39% 0.56% – – 52.64% 47.76% -15.00% -1.04% 37.06% -0.96% -17.73% 1.08% – -26.17% -31.45%
Greedy 21.92% – -90.52% – 0.23% 0.68% – – 63.12% 48.61% -0.65% 3.27% 46.77% -0.40% -19.63% 0.41% – -21.44% -22.94%
Appr 57.08% – -32.07% – -6.12% -2.16% – – 238.19% 72.53% 157.50% 78.05% 196.24% 8.21% -46.56% 5.69% – -41.33% -57.48%
PG 29.57% – -31.48% – 82.46% 39.38% – – 57.23% 57.40% -46.61% -3.87% 47.08% -13.11% -32.57% -24.49% – -26.23% -19.21%
Bal 4.24% – -92.64% – 0.00% 0.00% – – 9.37% -17.67% 47.85% 43.87% 13.13% 2.27% -88.01% 0.00% – -63.26% -97.91%
Har 51.67% – -93.28% – 0.00% 0.00% – – 216.47% 94.53% 65.19% 51.36% 168.99% 2.68% -79.10% 0.00% – -73.20% -97.67%
Single 69.00% – -27.23% – -100.00% -100.00% – – -12.35% 29.54% -100.00% -100.00% -32.73% -73.46% -86.96% -100.00% – -81.67% -88.52%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 26

A.4 08:00 - 09:00 – Broader NYC Area (Manhattan, Bronx, Staten Island, Brooklyn,
Queens)

(a) Total Distance Driven
(m)

(b) Elapsed Time (ns)
[LOG]

(c) Time to Pair (s) (d) Time to Pair with Taxi
(s)

(e) Time to Pick-up (s) (f) Delay (s) (g) Cumulative Delay (s) (h) Driver Profit ($)

(i) Number of Shared Rides (j) Frictions (s)

Fig. 11. January 15, 2016 – 08:00 - 09:00 – Broader NYC Area – #Taxis = 4972 (base number).

Table 8. January 15, 2016 – 08:00 - 09:00 – Broader NYC Area – #Taxis = 4972 (base number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 6.48E+07 0.00E+00 1.81E+12 0.00E+00 32.34 31.34 0.00 0.00 164.59 401.29 33.01 104.44 229.94 104.67 81.54 1.02E+04 0.00 219.19 415.07
ALMA 7.86E+07 2.48E+05 9.61E+10 1.02E+10 32.09 31.32 0.00 0.00 287.93 646.99 29.55 167.88 349.58 104.13 72.74 1.03E+04 5.88 191.41 379.85
Greedy 8.18E+07 2.96E+05 4.88E+10 7.00E+09 32.32 31.40 0.00 0.00 317.48 720.24 34.73 170.53 384.53 104.68 69.88 1.02E+04 12.28 185.35 374.04
Bal 7.22E+07 1.15E+05 3.09E+10 6.01E+09 5.49 18.97 0.00 0.00 234.85 428.34 67.79 219.01 308.14 109.57 65.24 1.03E+04 0.00 571.11 516.22
Single 1.20E+08 0.00E+00 1.03E+12 0.00E+00 0.00 0.00 10.44 83.19 212.61 577.74 0.00 0.00 223.06 26.37 9.21 0.00E+00 0.00 85.07 211.52

Table 9. January 15, 2016 – 08:00 - 09:00 – Broader NYC Area – #Taxis = 4972 (base number). Each column
presents the relative difference compared to the first line, i.e., the MWM (algorithm - MWM) / MWM, for
each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 0.00% – 0.00% – 0.00% 0.00% – – 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% – 0.00% 0.00%
ALMA 21.37% – -94.68% – -0.75% -0.08% – – 74.94% 61.23% -10.48% 60.74% 52.03% -0.52% -10.79% 1.02% – -12.67% -8.49%
Greedy 26.34% – -97.30% – -0.04% 0.20% – – 92.90% 79.48% 5.20% 63.27% 67.24% 0.01% -14.31% 0.42% – -15.44% -9.88%
Bal 11.44% – -98.29% – -83.01% -39.48% – – 42.69% 6.74% 105.35% 109.70% 34.01% 4.68% -20.00% 1.77% – 160.56% 24.37%
Single 84.67% – -42.94% – -100.00% -100.00% – – 29.18% 43.97% -100.00% -100.00% -2.99% -74.80% -88.71% -100.00% – -61.19% -49.04%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 27

A.5 00:00 - 23:59 (full day) – Broader NYC Area (Manhattan, Bronx, Staten Island,
Brooklyn, Queens)

(a) Total Distance Driven
(m)

(b) Elapsed Time (ns)
[LOG]

(c) Time to Pair (s) (d) Time to Pair with Taxi
(s)

(e) Time to Pick-up (s) (f) Delay (s) (g) Cumulative Delay (s) (h) Driver Profit ($)

(i) Number of Shared Rides (j) Frictions (s)

Fig. 12. January 15, 2016 – 00:00 - 23:59 (full day) – Broader NYC Area – #Taxis = 6533 (base number).

Table 10. January 15, 2016 – 00:00 - 23:59 (full day) – Broader NYC Area – #Taxis = 6533 (base number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 1.45E+09 0.00E+00 4.71E+13 0.00E+00 32.26 31.24 0.00 0.00 244.90 433.03 40.01 131.68 317.17 1675.21 949.14 1.85E+05 0.00 4238.58 10671.94
ALMA 1.74E+09 5.28E+05 7.20E+12 1.37E+11 32.09 31.44 0.00 0.00 394.30 701.06 32.17 133.83 458.57 1659.01 741.69 1.88E+05 22.08 3286.78 8808.76
Greedy 1.81E+09 2.36E+06 3.92E+12 3.31E+11 32.28 31.49 0.00 0.00 427.74 750.89 37.92 137.07 497.93 1667.74 672.62 1.87E+05 16.76 3357.00 9464.19
Bal 1.57E+09 2.60E+05 2.42E+12 1.60E+11 4.97 18.17 0.00 0.00 293.91 457.48 70.17 216.02 369.04 1736.02 153.93 1.89E+05 0.00 1666.22 570.20
Single 2.55E+09 0.00E+00 3.70E+13 0.00E+00 0.00 0.00 62.85 753.27 298.52 1147.60 0.00 0.00 361.37 405.82 80.73 0.00E+00 0.00 512.34 437.98

Table 11. January 15, 2016 – 00:00 - 23:59 (full day) – Broader NYC Area – #Taxis = 6533 (base number). Each
column presents the relative difference compared to the first line, i.e., the MWM (algorithm - MWM) / MWM,
for each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 0.00% – 0.00% – 0.00% 0.00% – – 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% – 0.00% 0.00%
ALMA 20.13% – -84.69% – -0.53% 0.64% – – 61.01% 61.90% -19.59% 1.63% 44.58% -0.97% -21.86% 1.34% – -22.46% -17.46%
Greedy 25.04% – -91.66% – 0.05% 0.80% – – 74.66% 73.41% -5.22% 4.09% 56.99% -0.45% -29.13% 0.68% – -20.80% -11.32%
Bal 8.15% – -94.85% – -84.61% -41.85% – – 20.01% 5.65% 75.38% 64.05% 16.35% 3.63% -83.78% 1.83% – -60.69% -94.66%
Single 75.86% – -21.44% – -100.00% -100.00% – – 21.90% 165.02% -100.00% -100.00% 13.94% -75.78% -91.49% -100.00% – -87.91% -95.90%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 28

A.6 08:00 - 08:10 – Manhattan

(a) Total Distance Driven
(m)

(b) Elapsed Time (ns)
[LOG]

(c) Time to Pair (s) (d) Time to Pair with Taxi
(s)

(e) Time to Pick-up (s) (f) Delay (s) (g) Cumulative Delay (s) (h) Driver Profit ($)

(i) Number of Shared Rides (j) Frictions (s)

Fig. 13. January 15, 2016 – 08:00 - 08:10 – Manhattan – #Taxis = 2779 (base number).

Table 12. January 15, 2016 – 08:00 - 09:00 – Manhattan – #Taxis = 2779 (base number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 8.38E+06 0.00E+00 9.92E+10 0.00E+00 34.32 30.93 0.00 0.00 109.83 125.56 28.08 80.29 172.23 25.30 29.59 1.69E+03 0.00 9.51 31.75
ALMA 9.76E+06 6.10E+04 8.28E+09 1.93E+09 33.88 30.71 0.00 0.00 177.21 216.99 24.49 75.40 235.58 25.09 26.38 1.70E+03 9.76 5.29 22.26
Greedy 9.91E+06 1.06E+04 3.66E+09 7.61E+08 34.16 30.88 0.00 0.00 181.43 216.19 27.05 74.92 242.64 25.19 26.14 1.70E+03 7.55 5.37 21.50
HC 8.72E+06 0.00E+00 7.52E+12 0.00E+00 0.13 4.02 0.06 2.78 125.69 155.09 41.77 106.45 167.65 25.56 29.61 1.70E+03 0.00 6.45 27.19

Table 13. January 15, 2016 – 08:00 - 08:10 – Manhattan – #Taxis = 2779 (base number). Each column presents
the relative difference compared to the first line, i.e., the MWM (algorithm - MWM) / MWM, for each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

MWM 0.00% – 0.00% – 0.00% 0.00% – – 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% – 0.00% 0.00%
ALMA 16.40% – -91.65% – -1.28% -0.70% – – 61.34% 72.81% -12.80% -6.09% 36.78% -0.83% -10.87% 0.95% – -44.37% -29.90%
Greedy 18.17% – -96.31% – -0.45% -0.15% – – 65.18% 72.18% -3.67% -6.68% 40.88% -0.43% -11.65% 0.44% – -43.57% -32.29%
HC 3.98% – 7474.61% – -99.61% -87.01% – – 14.44% 23.52% 48.74% 32.59% -2.66% 1.02% 0.05% 0.47% – -32.16% -14.37%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 29

A.7 Dynamic Vehicle Relocation – 00:00 - 23:59 (full day) – Manhattan

(a) Total Distance Driven
(m)

(b) Time to Pair (s) (c) Time to Pick-up (s) (d) Delay (s)

(e) Cumulative Delay (s) (f) Driver Profit ($) (g) Number of Shared Rides (h) Frictions (s)

Fig. 14. Dynamic Vehicle Relocation – January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081
(base number).

Table 14. Dynamic Vehicle Relocation – January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis =
5081 (base number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

NoRel 9.45E+08 – – – 32.10 30.84 0.00 0.00 184.55 274.34 32.14 87.69 248.79 1420.37 895.19 1.67E+05 0.00 4127.47 10597.84
MWM 9.97E+08 – – – 32.10 30.84 0.00 0.00 94.21 129.01 27.01 70.81 153.33 1408.73 674.38 1.67E+05 0.00 2372.57 5366.92
ALMA 1.00E+09 – – – 32.10 30.84 0.00 0.00 82.72 114.61 26.42 69.31 141.24 1407.37 447.49 1.67E+05 0.00 1898.47 2739.70
Greedy 1.00E+09 – – – 32.10 30.84 0.00 0.00 82.99 114.65 26.44 69.29 141.53 1407.41 440.30 1.67E+05 0.00 1880.72 2962.94

Table 15. Dynamic Vehicle Relocation – January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis =
5081 (base number). Each column presents the relative difference compared to not using relocation (algorithm
- NoRel) / NoRel, for each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

NoRel 0.00% – – – 0.00% 0.00% – – 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% – 0.00% 0.00%
MWM 5.48% – – – 0.00% 0.00% – – -48.95% -52.97% -15.95% -19.25% -38.37% -0.82% -24.67% 0.00% – -42.52% -49.36%
ALMA 6.25% – – – 0.00% 0.00% – – -55.18% -58.22% -17.79% -20.96% -43.23% -0.92% -50.01% 0.00% – -54.00% -74.15%
Greedy 6.24% – – – 0.00% 0.00% – – -55.03% -58.21% -17.73% -20.98% -43.11% -0.91% -50.81% 0.00% – -54.43% -72.04%

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings 30

A.8 End-To-End Solution – 00:00 - 23:59 (full day) – Manhattan

(a) Total Distance Driven
(m)

(b) Time to Pair (s) (c) Time to Pick-up (s) (d) Delay (s)

(e) Cumulative Delay (s) (f) Driver Profit ($) (g) Number of Shared Rides (h) Frictions (s)

Fig. 15. End-To-End Solution – January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base
number)

Table 16. End-To-End Solution – January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base
number).

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

Single 1.60E+09 – – – 0.00 0.00 5.59 99.05 161.77 355.37 0.00 0.00 167.36 376.90 116.72 0.00E+00 – 756.43 1216.88
MWM 9.45E+08 – – – 32.10 30.84 0.00 0.00 184.55 274.34 32.14 87.69 248.79 1420.37 895.19 1.67E+05 – 4127.47 10597.84
MWM+R 9.97E+08 – – – 32.10 30.84 0.00 0.00 94.21 129.01 27.01 70.81 153.33 1408.73 674.38 1.67E+05 – 2372.57 5366.92
ALMA 1.12E+09 – – – 31.98 31.01 0.00 0.00 281.70 405.36 28.02 88.30 341.70 1406.70 736.46 1.68E+05 – 3047.45 7264.56
ALMA+R 1.15E+09 – – – 32.02 31.04 0.00 0.00 146.68 210.60 23.22 70.06 201.92 1397.14 440.45 1.68E+05 – 1815.54 3295.10
Greedy 1.15E+09 – – – 32.18 31.05 0.00 0.00 301.04 407.70 32.85 92.71 366.07 1414.66 719.44 1.67E+05 – 3242.70 8167.00
Greedy+R 1.16E+09 – – – 32.17 31.02 0.00 0.00 148.88 207.00 27.46 75.18 208.52 1404.95 422.37 1.67E+05 – 1726.67 2487.20

Table 17. End-To-End Solution – January 15, 2016 – 00:00 - 23:59 (full day) – Manhattan – #Taxis = 5081 (base
number). Each column presents the relative difference compared to the Singe Ride baseline (algorithm - Singe)
/ Singe, for each metric.

Distance
Driven (m) SD Elapsed

Time (ns) SD Time to
Pair (s) SD Time to Pair

with Taxi (s) SD Time to
Pick-up (s) SD Delay (s) SD Cumulative

Delay (s)
Driver

Profit ($) SD Number of
Shared Rides SD Frictions (s) SD

Single 0.00% – – – – – 0.00% 0.00% 0.00% 0.00% – – 0.00% 0.00% 0.00% – – 0.00% 0.00%
MWM -40.83% – – – – – -100.00% -100.00% 14.09% -22.80% – – 48.66% 276.85% 666.95% – – 445.65% 770.90%
MWM+R -37.59% – – – – – -100.00% -100.00% -41.76% -63.70% – – -8.39% 273.76% 477.77% – – 213.66% 341.04%
ALMA -30.01% – – – – – -100.00% -100.00% 74.14% 14.07% – – 104.17% 273.23% 530.96% – – 302.88% 496.98%
ALMA+R -28.17% – – – – – -100.00% -100.00% -9.33% -40.74% – – 20.65% 270.69% 277.36% – – 140.02% 170.78%
Greedy -27.86% – – – – – -100.00% -100.00% 86.10% 14.73% – – 118.73% 275.34% 516.38% – – 328.69% 571.14%
Greedy+R -27.17% – – – – – -100.00% -100.00% -7.97% -41.75% – – 24.59% 272.76% 261.87% – – 128.27% 104.39%

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion and Related Work

	2 Problem Statement & Modeling
	2.1 Performance Metrics
	2.2 Modeling

	3 Employed Algorithms & Challenges
	3.1 Problem Decomposition
	3.2 Algorithms

	4 Dynamic Vehicle Relocation
	4.1 Patterns in Customer Requests
	4.2 Proposed Approach

	5 Simulation Results
	5.1 Relocation

	6 Conclusion
	References
	A Appendix
	A.1 Simulation Results in Detail
	A.2 08:00 - 09:00 – Manhattan
	A.3 00:00 - 23:59 (full day) – Manhattan
	A.4 08:00 - 09:00 – Broader NYC Area (Manhattan, Bronx, Staten Island, Brooklyn, Queens)
	A.5 00:00 - 23:59 (full day) – Broader NYC Area (Manhattan, Bronx, Staten Island, Brooklyn, Queens)
	A.6 08:00 - 08:10 – Manhattan
	A.7 Dynamic Vehicle Relocation – 00:00 - 23:59 (full day) – Manhattan
	A.8 End-To-End Solution – 00:00 - 23:59 (full day) – Manhattan

