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Abstract

Purpose — In this paper, the authors aim to examine and comparatively evaluate a recently-developed
metaheuristic called crystal structure algorithm (CryStAl) — which is inspired by the symmetries in the internal
structure of crystalline solids — in solving engineering mechanics and design problems.
Design/methodology/approach — A total number of 20 benchmark mathematical functions are employed as test
functions to evaluate the overall performance of the proposed method in handling various functions. Moreover,
different classical and modern metaheuristic algorithms are selected from the optimization literature for a comparative
evaluation of the performance of the proposed approach. Furthermore, five well-known mechanical design examples
are utilized to examine the capability of the proposed method in dealing with challenging optimization problems.
Findings — The results of this study indicated that, in most cases, CryStAl produced more accurate outputs
when compared to the other metaheuristics examined as competitors.

Research limitations/implications — This paper can provide motivation and justification for the
application of CryStAl to solve more complex problems in engineering design and mechanics, as well as in other
branches of engineering.

Originality/value — CryStAl is one of the newest metaheuristic algorithms, the mathematical details of which
were recently introduced and published. This is the first time that this algorithm is applied to solving
engineering mechanics and design problems.
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1. Introduction
Optimization is described as the art of searching for the best solution among the existing ones. It is
widely used to reduce the cost of design, production and maintenance of engineering, economic
and social systems. Due to their vast applications in various fields of science, engineering and
finance, optimization procedures have been extensively developed in recent years. Also, different
titles such as “Mathematical Programming” or “Operations Research” may be used to refer to
optimization. Among different kinds of optimization methods, meta-heuristic methods are more
popular in engineering as a result of their practicality and efficiency for engineering purposes.
Nature is a frequently utilized source of inspiration for metaheuristic specialists. It has turned
out that many successful metaheuristic algorithms which have demonstrated convincing
performance in dealing with difficult optimization problems are nature-inspired. Some well-
known examples of such algorithms are as follows. Fogel et al (1966) proposed the evolutionary
algorithm which mimics artificial intelligence through simulated evolution. Holland (1992)
proposed the genetic algorithm (GA) which is inspired by Darwin’s theory of evolution. Glover
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and Laguna (1998) presented taboo search which is based on the mechanism of the direct
inhibition of some inaccessible areas of the search space. Also, simulated annealing was proposed
by Kirkpatrick et al (1983) which mimics the detailed analogy of annealing in solids. Eberhart and
Kennedy (1995) formulated Particle Swarm Optimization (PSO) which is inspired by the
simulation of mass flight of birds. Dorigo et al. (1996) proposed ant colony optimization (ACO)
which mimics the real behavior of ants in nature. Geem et al. (2001) presented the harmony search
(HS) algorithm which is obtained by imitating the process of finding the best combination of notes
and composing music. Yang (2012) presented flower pollination algorithm which mimics the
pollination process in the flowers. Some other well-known approaches can also be mentioned
including the chaos game optimization (Talatahari and Azizi, 2020a, 2021), atomic orbital search
(Azizi, 2021) and crystal structure algorithm (CryStAl) (Talatahari et al, 2021a, Khodadadi et al,
2021). In addition, many other challenges have also been introduced and investigated in recent
years (see, e.g. Arora et al, 1994, Arora and Wang, 2005, Talatahari and Azizi, 2020b,; Talatahari
et al., 2021b, Yazdchi et al, 2021, Azizi et al, 2019, Chen et al., 2020a,b and Sareh and Chen, 2020).
Notably, the uncertainty effects in various optimization procedures have been thoroughly studied
(see, e.g. Wang et al, 2019, Wang et al.,, 2021, Xiong et al, 2019, Beck and De Santana Gomes, 2012,
Daskilewicz et al, 2011, Mukherjee et al, 2019 and Diwekar and Kalagnanam, 1997).

In this paper, a recently proposed metaheuristic algorithm called CryStAl is utilized as an
optimization technique for the optimum design of engineering problems (see Talatahari et al.
(2021a) for a more extensive description of the theoretical details of this method). A total
number of 20 numerical examples are utilized as test functions to evaluate the overall
performance of the proposed method. To validate the results of CryStAl, different
metaheuristic algorithms are selected from the literature for comparative purposes.
Besides, five of the well-known engineering design examples are also selected to test the
overall behavior of CryStAl in dealing with difficult optimization problems.

2.. Crystal structure optimization

2.1 Background

Historically, crystal science and engineering started with the study of minerals (Dhanaraj
et al., 2010, Brown, 1982 and Eberl et al, 1998). By definition, crystals are solid minerals, the
molecules, atoms or ions of which have a crystallographic order, i.e. they are symmetrically
arranged in the three-dimensional space. Inspired by the vivid symmetries in the structure of
natural crystalline solids, designers and engineers have created artworks (see, e.g. Bodner,
2013, Griinbaum, 2006, Necefoglu, 2003 and De Las Penas ef al., 2018), engineering structures
(Zingoni, 2015a-e, Sareh and Guest, 2015a-d, Chen et al, 2019 and Sareh, 2019) and nano-
objects (see, e.g. Ma et al., 2014, Takiguchi et al., 2020, Yu et al., 2007, Kee et al., 2007, Sun et al.,
2007, Yokoo et al, 2017, Ra and Lee, 2021, Sergent et al., 2019, Gorshkov et al., 2020a, b and
Gorshkov et al, 2021a, b) with highly symmetric geometries. Natural samples of some well-
known crystalline minerals are depicted in Figure 1.

A fundamental component of a typical crystal is the “lattice”, which represents the parodic
array of points in the space known as “lattice points”. Besides, the location of atoms in the
structure of a crystal is determined by another characteristic called the “basis”. By adding the
basis to the lattice points, we obtain the complete crystal structure, 1.e.

Crystal = Lattice + Basis 8]

Figure 2 illustrates the lattice configurations corresponding to various crystal systems; on the
right-hand side of this figure, the relationships between lattice parameters.

Conventionally, the arrangement of atoms in solid structures is represented by different
spatial distributions of spherical elements within a unit cell of the solid. The unit cell is the
smallest volume that contains the fundamental structural information which is necessary to
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identify the crystal structure. In the middle of the 19th century, the French physicist Auguste
Bravais proved that all three-dimensional lattices can be classified into 14 distinct types,
known nowadays as “Bravais lattices”. The unit cells corresponding to these 14 types are
illustrated in Figure 3 (Li ef al, 2008).

The Bravais model is used for the mathematical representation of crystals in which lattice
points are described by vectors as follows:

= Zn,-al-, (2)

Where #; is an integer, a; is the shortest vector along the principal crystallographic directions,
and 7 is the number of crystal corners.

Figure 1.

Samples of crystalline
minerals: (a) Galena, (b)
Calcite, (c) Pyrite and
(d) Quartz

Figure 2.

Lattice configurations
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systems
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2.2 Model description

This section describes the mathematical model of the CryStAl In this model, each candidate
solution of the optimization problem is considered as a single crystal in the space and the
basic concepts of crystallography are employed with required modifications. Moreover, in
order to initialize the iterative process of computation, a number of crystals are randomly
determined as follows

[ e )
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Where, 7 is the number of crystals (i.e. candidate solutions) and d is the dimension of the
problem. The initial positions of these crystals are determined randomly in the search space
as follows:



JC;(O) = xi'min i,max i,min
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Where, x.(0) determines the initial position of the crystals; «, . and x’, _arerespectively the
minimum and maximum allowable values for the jth decision variable of the ith solution
candidate; and 7and is a random number in the interval [0,1].

Based on the concept of “basis” explained in the previous section, all the crystals at the
corners are considered as the main crystals, Cry,;,, determined randomly by considering
the initially-created crystals (candidate solutions). The crystal with the best configuration
is determined as Cr; while the mean values of randomly selected crystals are denoted
by F C-

To update the positions of the candidate solutions in the search space, basic lattice
principles are considered in which four kinds of updating process as detailed in Table 1.

In order to deal with the solution variables (x}) violating the boundary conditions of the
variables, a mathematical flag is defined in which for the x/ outside the variables range, the
flag orders a boundary change for the violating variables. The terminating criterion is
considered based on the maximum number of iterations in which the optimization process is
terminated after a fixed number of iterations. The pseudo-code of the algorithm is presented
in Figure 4.

3. Representative design examples

In order to verify the capabilities of the proposed method, i.e. CryStAl, in solving various
optimization problems, 20 benchmark mathematical test functions solved by six widely-used
metaheuristic algorithms are considered for comparison purposes. To this end, some well-
established constrained and engineering optimization problems from the optimization
literature are employed to demonstrate the performance of this new method in dealing with
such problems in comparison with some previously reported results of other studies in the
literature.

3.1 Mathematical test functions

The mathematical formulation and general characteristics of the considered mathematical
functions are demonstrated in this section (Table 2) while the complete description of these
problems is accessible in Karaboga and Akay (2009), Cheng and Lien (2012) and Cheng and
Prayogo (2014). The first nine functions are two-dimensional (2D) whereas functions 10 to 20

System Updating process Notes

Simple cubicle Cryew = Cro + 7.Cryjain Cryew 18 the new position, Croy is the old
position and 7 is a random number

Cubicle with best Cryew = Cro + 71.Crpgain + 72.Cry Cryew 18 the new position, Crgy is the old

crystals position and 71 and »2 are random
numbers

Cubicle with mean  Cryey = Crou + 11.Crpgein + 72.F, Cryew 18 the new position, Croy is the old

crystals position and 71 and r2 are random
numbers

Cubicle with best Cryew = Cro + r1.Crygain + 172.Cry + 13.F,  Crpey is the new position, Croy is the old

and mean crystals position and 71 to 73 are random
numbers

Table 1.
Descriptions of the
mathematical
benchmark functions




Figure 4.
The pseudo-code of
CryStAl

procedure Crystal Structure Algorithm (CryStAl)
Create random values for initial positions (xl.j ) of initial crystals (Cr;)
Evaluate fitness values for each crystal
while (+ < maximum number of iterations)
for i = 1: number of initial crystals
Create Cryqin
Create new crystals by Eq. 4
Create Cry
Create new crystals by Eq. 5
Create F,
Create new crystals by Eq. 6
Create new crystals by Eq. 7
if new crystals violate boundary conditions
Control the position constraints for new crystals and amend it
end if
Evaluate the fitness values for new crystals
Update Global Best (GB) if a better solution is found
end for
t=r+1
end while
return GB
end procedure

are 50-dimensional (50D). These mathematical test functions are some kinds of unimodal (U),
multimodal (), separable (S) and non-separable (V) functions.

For the mentioned alternative metaheuristic algorithms utilized for comparative study,
the specific parameters of the algorithms are presented in Table 3.

3.2 Classical constrained optimization problems

In this section, three constrained optimization problems are considered to evaluate the
effectiveness and capability of the proposed method. These examples have been previously
studied by utilizing different metaheuristic algorithms. A simple penalty approach for
handling the problem constraints is selected.

The tension/compression spring design problem (Figure 5a) is the first constrained
problem in this paper in which the wire diameter d (= x), the mean coil diameter D (= x;) and
the number of active coils N (= x53) are considered as design variables while the boundaries
are 0.05< 17 <2, 0.25< x5 <1.3 and 2< x3 <15. The complete mathematical formulation of this
problem is as follows:

Foost(X) = (23 + 2) 2247, ©)
X205
X)=1-_22°
aX) =17 <0, ©
Ax2 — x1%, 1
X) = 2 —-1<
&) = 135680 — 1) 51082 1= @
140.45x
g(X)=1-—3"<0, ®
XXy
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mathematical
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Metaheuristic Parameter Description Value

ACO Nyop Archive size 50
A Sample size 50
q Intensification factor 0.5
¢ Deviation-distance ratio 1
DE Nyop Number of scout bees 50
. Crossover probability 0.2
Boin Lower bound of scaling factor 0.2
Bonax Upper bound of scaling factor 0.8
GA Nyop Population size 50
e Crossover percentage 0.8
Dm Mutation percentage 0.3
u Mutation rate 0.02
B Roulette wheel selection pressure 1
HS HMS Harmony memory size 50
Nyew Number of new harmonies 20
HMCR Harmony memory consideration rate 09
PAR Pitch adjustment rate 0.1
Fw Fret width (bandwidth) +0.02
FW gamp Fret width damp ratio 0.995
PSO Nyop Swarm size 50
w Inertia weight 1
wq Inertia weight damping ratio 0.99
a Personal learning coefficient 2
2 Global learning coefficient 2
ICA Nyop Population size 50
Nowp Number of empires/imperialists 10
Table 3. a Selection pressure 1
Parameter summary of p Assimilation coefficient 15
the alternative br Revolution probability 0.05
metaheuristic u Revolution rate 0.1
algorithms ¢ Colonies mean cost coefficient 0.2
a0 =222 1<0 ©)

The second constrained problem of this paper is the welded beam design problem (Figure 5b)
in which the shear stress (z), bending stress (¢), buckling load (P,), end deflection (5) and some
side constraints are the design constraint £ this problem while the design variables, namely /2
(= x1), (= x9), t (= x3) and b (= x,) are utilized accordingly regarding the 0.1< x; <2,0.1< x»
<10, 0.1< x3 <10 and 0.1< x4 <2 as boundaries. The complete mathematical formulation of
this problem is as follows:

st (X) = 1.104710%x5 + 0.0481 1234 (14.0 + x5). (10)

The optimization variables and their respective boundaries are 0.1< x; <2, 0.1< x5 <10,0.1<
x3 <10 and 0.1< x4 <2. The constraints are defined as follows.

&1(X) = 1({x}) — T <0, an

&(X) = o({x}) — 6yax <0, 12)

g3(X) = %1 — 2, <0, 13)

24(X) = 0.10471:2 + 0.0481 113, (14.0 + x5) — 5.0 <0, (14)



R R Figure 5.
Schematics of the
design problems: (a) a
conventional tension/
compression spring; (b)
a welded beam; (c) a
pressure vessel

(c)
gG(X) = 5({9(7}) — Omax S07 (16)
g1(X) = P — P.({x}) <0, 17)
o(X) = \/ (o) + 2"7";_13 T (Y (18)
Where
P » MR Xy s
R _T,M_P(LJr?),R— 2+ (557 (19)
2 2
]:2{\/§x1x2 {%+ (x”;’@) ” 20)



Figure 6.

Schematic views of (a)
a car under side impact
and (b) a speed reducer
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The pressure vessel design problem (Figure 5c) is the third constraint problem in
this paper in which x7 ,¢ the thickness of the shell (T%), x5 is the thickness of the head
(Ty), x5 is the inner radius (R) and x, is the length of the cylindrical section of
the vessel (L), not including the head. The boundaries are 0< x; <99, 0< x5 <99, 10< x3
<200 and 10< x4 <200. The complete mathematical formulation of this problem is as
follows:

ot (X) = 0.62242, 537, + 1.7781252 + 3.166 15, + 198423 (24)
g1(X) = —x1 +0.0193x, <0, (25)
©(X) = —xy + 0.00954x; <0, (26)
4
&(X) = —mxday — gﬂx‘g + 1296000 <0, 27)
g4(X) = x, —240<0. (28)

3.3 Practical engineering design problems
This section examines and evaluates the performance of CryStAl in providing solutions for
some typical engineering optimization problems, in comparison with other metaheuristics.
To this end, here we consider two engineering design problems that were previously solved
using other metaheuristic algorithms, now to be solved using CryStAl, employing a simple
penalty approach to handle the constraints.

The car side-impact problem is the first practical problem in this paper which has a
mathematical presentation as follows while the schematic view of this problem is
demonstrated in Figure 6a.
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Jeost(X) = 1.98 + 4.90x1 + 6.67x + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 (29)

g1(X) = 1.16 — 0.3717x2x4 — 0.0093Lx2210 — 0.484x3x9 + 0.01343x6x10 <1, (30)

g2(X) =0.261 — 00159%’1.%2 — 0188.961963 — 00199(?2967 + 00144363365 + 00008757965.7610
+ 0.080405x5%0 + 0.00139x521; + 0.00001575x10%1; <0.32, 31)

g3(X) =0.214 + 0.00817x5 — 0.131x1x5 — 0.0704x1x9 + 0.03099x5x6 — 0.018x247
+ 00208.763%'8 + 0121%'3.969 — 000364.?65%'6 + 00007715]659610 — 0000535x6x10
+0.00121gx; <0.32, (32)

21(X) = 0.074 — 0.061x, — 0.163x3x65 + 0.001232x3x19 — 0.166x7x9 + 0.227x5 <0.32, (33)

g5(X) = 28.98 + 3.818x3 — 4.2x1x2 + 0.0207x5210 + 6.63x6%9 — 7. 74745 + 0.32x9%70 < 32,

(34)

gG(X) = 33.86 + 2959(?3 + 01792)6]0 — 5057)6'1962 — 11.0%2368 — 0.0215)65.%10 (35)
— 9.98x7x45 + 22.0xg9 < 32,

2:(X) = 46.36 — 9.9x5 — 12.92,x5 + 0.1107x370 < 32, (36)

gs(X) = 4.72 — 055, — 0.19x,x5 — 0.0122xx19 + 0.009325x5x10 + 0.000191x2, <4, (37)

2o(X) = 10.58 — 0.674x1x5 — 1.955x5 + 0.02054x3219 — 0.0198x4419 + 0.028x5710 <9.9,
(38)

g10(X) = 16.45 — 0.489x337 — 0.843x55 + 0.0432x9x19 — 0.0556x01;
—0.000786x%, <15.7, (39)

Where 0.5<x; —x7 <15, x5 and x9 € (0.192,0.345), and. —30 < x50 — 211 < 30.

The speed reducer problem is the second practical problem in this paper which has a
mathematical presentation as follows while the schematic view of this problem is displayed in
Figure 6b.

St (X) = 0.7854bm* (3.33332” + 14.9334z — 43.0934) — 1.508b(d” + d2)

+ TATT7(d5 + d3) + 0.7854(hd? + bd3) (40)
27
aX) =5 5 —1<0, (41)
397.5
gZ(X) = meZZ -1 SO, (42)
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1.938
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5 V) 169 % 106
85 =

~1<0, 5)
(1104%)
- V(@) 1575 x 106 0 @
o= (8545) =
&(X) =75~ 1<0, un)
&) =" 120, 4
b
g(X) = 75— 1<0, 9)
0(X) =1'5d117+1‘9—1so, (50)
1
) =12 g 61)
2

Where
26<b<36, 07<m<0.8, 17<2<28, 7.3<<83, 73<5<83, 29<d <39,
and 5<d,<5.5.

4. Computational results and statistical analyses

In Table 4, the best and statistical results of 100 optimization runs by means of multiple
metaheuristic algorithms alongside the CryStAl are presented in dealing with
the mathematical test functions. Based on the results, CryStAl calculated the global
optimum value for 20 of the 20 functions, outperforming all the other metaheuristic
approaches.

By conducting the Kruskal-Wallis (K-W) test as one of the well-known statistical
analyses, the capability of CryStAl in competing with other algorithms is demonstrated. By
referring to Table 5, it can be shown that the CryStAl has the lowest mean of ranks which
makes this algorithm have the first ranking.

Considering the tension/compression spring design problem, Tables 6 and 7 present the
results obtained from CryStAl as well as those produced by different metaheuristic
algorithms, some of which are extracted from the literature. As can be seen from the tables,
CryStAl provides better results in this case which demonstrates its capability in dealing with
such a constrained optimization problem.
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Min Mean Std

Mean of Mean of Mean of
Rankings Algorithms ranks Algorithms ranks Algorithms ranks
1 CryStAl 66.6 CryStAl 64.925 CryStAl 53.6
2 DE 70.8 DE 65.575 DE 59.55
3 PSO 71.75 ICA 67.625 ICA 64.75
4 ICA 72.35 PSO 79.725 PSO 822
5 GA 81.45 CSS 82.85 CSS 89.1
6 CSS 849 HS 93.275 HS 9.2 Table 5.
7 HS 95.375 GA 94.6 ACO 94.6 The K-W test results
8 ACO 100.775 ACO 95.425 GA 106 (mean of the ranks) for
Chi-sq 11.3046 11.8179 249141 the mathematical
Prob> Chi-sq  0.1258 0.1067 7.8587e-04 functions

Optimal Design Variables
Method x1(d) x2(D) x3(V) Jeost
Belegundu (1982) 0.050000 0.315900 14.250000 0.0128334
Arora (1989) 0.053396 0.399180 9.185400 0.0127303
Coello (2000) 0.051480 0.351661 11.632201 0.0127048 Table 6.
Coello and Montes (2002) 0.051989 0.363965 10.890522 00126810 Optimum results for
He and Wang (2007) 0.051728 0.357644 11.244543 0.0126747 the tension/
Mezura-Montes and Coello (2008) 0.051643 0.355360 11.397926 0.012698 compression spring
CryStAl (present work) 0.0517100 0.3571427 11.2670241 0.0126696 design
Method Best Mean Worst Standard deviation
Belegundu (1982) 0.0128334 N/A N/A N/A
Arora (1989) 0.0127303 N/A N/A N/A Table 7.
Coello (2000) 0.0127048 0.012769 0.012822 3.9390e-5 Statistical results of
Coello and Montes (2002) 0.0126810 0.0127420 0.012973 5.9000e-5 different methods for
He and Wang (2007) 0.0126747 0.012730 0.012924 5.1985e-5 the tension/
Mezura-Montes and COQHO (2008) 0.012698 0.013461 0.16485 9.66008-4 compression Spring
CryStAl (present work) 0.0126696 0.0127136 0.0127759 1.0365e-5 design
Optimal Design Variables

Method x1(7) x2(0) x3(0) x4(b) Jeost
APPROX (Ragsdell and Phillips, 1976) 0.2444 6.2189 8.2915 0.2444 2.3815
David (Ragsdell and Phillips, 1976) 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX (Ragsdell and Phillips, 1976) 0.2792 5.6256 7.7512 0.2796 2.5307
RANDOM (Ragsdell and Phillips, 1976) 0.4575 4.7313 5.0853 0.6600 41185
Deb (1991) 0.248900 6.173000 8.178900 0.253300 2433116
Coello (2000) 0.208800 3.420500 8.997500 0.210000 1.748309
Coello and Montes (2002) 0.205986 3471328 9.020224 0.206480 1.728226 Table 8.
He and Wang (2007) 0.202369 3544214 9.048210 0.205723 1.728024  Optimum results of the
Mezura-Montes and Coello (2008) 0.199742 3.612060 9.037500 0.206082 1.737300  welded beam design
CryStAl (present work) 0.185658 3.635274 9.190371 0.199565 1.694518 problem
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Similarly, the results of CryStAl alongside several other metaheuristic algorithms in
solving the welded beam (Tables 8 and 9) and pressure vessel (Tables 10 and 11) design
problems are tabulated below, where some of the results are extracted from previous studies.
Again, CryStAl turns out to produce better results in comparison with those of its competitors
for both constrained optimization problems.

Tables 12 and 13 present the results of CryStAl and other algorithms in
dealing with the car side impact problem in which the CryStAl provides outstanding
results.

The results of CryStAl alongside other algorithms regarding the speed reducer problem
are shown in Tables 14 and 15. It can be concluded that CryStAl provides better results in

Method Best Mean Worst Standard deviation
Ragsdell and Phillips (1976) 2.3815 N/A N/A N/A
Deb (1991) 2433116 N/A N/A N/A
Table 9. Coello (2000) 1.748309 1771973 1.785835 0.011220
Statistical results of Coello and Montes (2002) 1.728226 1.792654 1.993408 0.074713
different methods for ~ He and Wang (2007) 1.728024 1.748831 1.782143 0.012926
the welded beam Mezura-Montes and Coello (2008) 1.737300 1.813290 1.994651 0.070500
design problem CryStAl (present work) 1.694518 1.753322 1.810659 0.008365
Optimal Design Variables
Method 0(TY) 22(T7) 23(R) x4(L) Jeost
Sandgren (1988) 1.125000 0.625000 47.700000 117.701000 8,129.1036
Kannan and Kramer (1994) 1.125000 0.625000 58.291000 43.690000 7,198.0428
Deb (1997) 0.937500 0.500000 48.329000 112.679000 6,410.3811
Coello (2000) 0.812500 0.437500 40.323900 200.000000 6,288.7445
Table 10. Coello and Montes (2002) 0.812500 0.437500 42.097398 176.654050 6,059.9463
Optimum results for ~ He and Wang (2007) 0.812500 0.437500 42.091266 176.746500 6,061.0777
the pressure vessel Mezura-Montes and Coello (2008) 0.812500 0.437500 42.098087 176.640518 6,059.7456
design problem CryStAl (present work) 12.924693 7.0834174 42.098445 176.636595 6,059.7143
Method Best Mean Worst Standard deviation
Sandgren (1988) 8,129.1036 N/A N/A N/A
Kannan and Kramer (1994) 7,198.0428 N/A N/A N/A
Deb (1997) 6,410.3811 N/A N/A N/A
Table 11. Coello (2000) 6,288.7445 6,293.8432 6,308.1497 74133
Statistical results of Coello and Montes (2002) 6,059.9463 6,177.2533 6,469.3220 130.9297
different methods for ~ He and Wang (2007) 6,061.0777 6,147.1332 6,363.8041 86.4545
the pressure vessel Mezura-Montes and Coello (2008) 6,059.7456 6,850.0049 7,332.8798 426.0000
design problem CryStAl (present work) 6,059.7143 6,582.5273 6,370.7797 5.8426

this case which represents its ability in dealing with these kinds of difficult constrained
problems.
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Optimum results for
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Standard

Algorithm Best Mean Worst deviation
ABC 23.175889625990923  23.860680484086661  25.010762794496625 3.7642E-01
PSO 22.842984930697273  23.613571153685552  26.190640350882905 7.5252E-01
MFO 22.842970873572792  22.972834963056012  23.687547312526856 2.0794E-01
ALO 22.842980706120642  23.108402571838820  23.824366429288702 2.9093E-01
ER-WCA 22.843264619959352  23.069925342953958  24.455312800924212 35021E-01
GWO 22.852792762688743  22.992226614913008  23.347095471895521 1.6277E-01
WCA 22.843036481964047  22.975164427881293  23.370933765943949 1.9772E-01
MBA 22.843596400842499  22.936421047192962  23.488942174549098 1.5258E-01
Table 13. SSA 22.846514099392973  23.253716124255313  23.829530847339793 3.0557E-01
The comparative WOA 23.042162202328310  24.814486173621617  27.360813682283315 9.6570E-01
results of CryStAl for CryStAl (present 23.561584764484730  23.561952853347831  23.562036172317104 1.3629E-01
the car side impact work)
problem Source(s): Competing algorithms are adapted from Yildiz ef al. (2020)
Algorithm b m z L Iy do
ABC 35 0.7 17 7.3 771532 3350214  5.286654
PSO 35 0.7 17 7.3 771532 3350214  5.286654
MFO 35 0.7 17 7.3 771532  3.350214  5.286654
ALO 35 0.7 17 7472705 7735382 3350541  5.286661
ER-WCA 35 0.7 17 7.3 7715319 3350214  5.286654
GWO 3500881  0.700096 17.00101 7.302118 7.719974  3.350684  5.286708
WCA 35 0.7 17 7.3 7715319 3350214  5.286654
MBA 35 0.7 17 7.3 771532 3350214  5.286654
Table 14. SSA 35 0.7 17 736496  7.75803 335033  5.28666
Optimum results for WOA 3500411 0.7 17 7.3 7777372 3352552  5.286675
the speed reducer CryStAl (present work) 3.5 0.7 17 7.3 7.7153 3.3505 5.2867
problem Source(s): Competing algorithms are adapted from Yildiz et al (2020)
Standard
Algorithm Best Mean Worst deviation
ABC *2094.471067504619  2994.471075844169 2994.471115543837 9.2123E-06
PSO *2094.471069674640  3070.655058796543 3209.297397650784 5.8657E+01
MFO *2994.471066146822 2.994471066147108 2.994471066151665 7.3921E-10
ALO 2996.521745443848  3005.644279605541 3014.379001168207 4.7422E+-00
ER-WCA *2094.471066146826  2996.744541331202 3007.436552164085 4.3876E+00
GWO *2095.704434912354  3001.556162056451 3009.944296784721 4.1218E+00
WCA *2094.471066147307  2996.203773574547 3016.578575484153 4.8705E+00
MBA *2094.471371019410  2944.744437623391 2994.484788566012 2.4195E-03
SSA 2996.021720467607  3005.574377149090 3015.662612037751 4.63871E+00
Table 15. WOA 2996.604340024459 3.042915023571878  3233.598124214217 4.0888E+01
The comparative CryStAl 2994.424465756737  2996.852815956722 2994.844306772722 1.927E-03
results of CryStAl for (present work)

the speed reducer
problem

Note(s): * These results do not satisfy the provided constraints of the speed reducer problem
Source(s): Competing algorithms are adapted from Yildiz et al. (2020)
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5. Conclusions

This paper investigated the overall performance of a recently developed metaheuristic
algorithm called CryStAl, which is inspired by the spatial symmetry in the structural
configurations of crystalline solids, in dealing with mechanical engineering design
problems. A total number of 20 mathematical functions were utilized as test functions to
evaluate the overall performance of the proposed method. Furthermore, to validate the
results of this algorithm, various classical and modern metaheuristic algorithms were
selected from the literature for comparative purposes, followed by a statistical analysis of
the outputs. Besides, three well-known engineering design examples were chosen to
examine the capabilities of this algorithm in solving challenging optimization problems.
The results obtained from the analyses demonstrated that CryStAl is superior to the other
metaheuristics in most of the examined cases. It should be mentioned that this study was
concerned with the applicability of this new algorithm to solving a well-known range of
mechanical design optimization problems. As future work, further research is necessary to
examine the utility of this method in dealing with challenging problems in other fields of
science and engineering.
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