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Abstract

Purpose – In this paper, the authors aim to examine and comparatively evaluate a recently-developed
metaheuristic called crystal structure algorithm (CryStAl) –which is inspired by the symmetries in the internal
structure of crystalline solids – in solving engineering mechanics and design problems.
Design/methodology/approach –Atotal number of 20 benchmarkmathematical functions are employed as test
functions to evaluate the overall performance of the proposed method in handling various functions. Moreover,
different classical andmodernmetaheuristic algorithms are selected from the optimization literature for a comparative
evaluation of the performance of the proposed approach. Furthermore, five well-known mechanical design examples
are utilized to examine the capability of the proposed method in dealing with challenging optimization problems.
Findings – The results of this study indicated that, in most cases, CryStAl produced more accurate outputs
when compared to the other metaheuristics examined as competitors.
Research limitations/implications – This paper can provide motivation and justification for the
application of CryStAl to solvemore complex problems in engineering design andmechanics, aswell as in other
branches of engineering.
Originality/value – CryStAl is one of the newest metaheuristic algorithms, the mathematical details of which
were recently introduced and published. This is the first time that this algorithm is applied to solving
engineering mechanics and design problems.

Keywords Metaheuristic, Optimization, Algorithm, Statistical analysis, Crystal structure, Lattice

Paper type Research paper

1. Introduction
Optimization is described as the art of searching for thebest solution among the existing ones. It is
widely used to reduce the cost of design, production and maintenance of engineering, economic
and social systems. Due to their vast applications in various fields of science, engineering and
finance, optimization procedures have been extensively developed in recent years. Also, different
titles such as “Mathematical Programming” or “Operations Research” may be used to refer to
optimization. Among different kinds of optimization methods, meta-heuristic methods are more
popular in engineering as a result of their practicality and efficiency for engineering purposes.

Nature is a frequently utilized source of inspiration for metaheuristic specialists. It has turned
out that many successful metaheuristic algorithms which have demonstrated convincing
performance in dealing with difficult optimization problems are nature-inspired. Some well-
known examples of such algorithms are as follows. Fogel et al. (1966) proposed the evolutionary
algorithm which mimics artificial intelligence through simulated evolution. Holland (1992)
proposed the genetic algorithm (GA) which is inspired by Darwin’s theory of evolution. Glover
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and Laguna (1998) presented taboo search which is based on the mechanism of the direct
inhibition of some inaccessible areas of the search space. Also, simulated annealingwas proposed
byKirkpatrick et al. (1983)whichmimics the detailed analogy of annealing in solids. Eberhart and
Kennedy (1995) formulated Particle Swarm Optimization (PSO) which is inspired by the
simulation of mass flight of birds. Dorigo et al. (1996) proposed ant colony optimization (ACO)
whichmimics the real behavior of ants in nature. Geem et al. (2001) presented the harmony search
(HS) algorithmwhich is obtained by imitating the process of finding the best combination of notes
and composing music. Yang (2012) presented flower pollination algorithm which mimics the
pollination process in the flowers. Some other well-known approaches can also be mentioned
including the chaos game optimization (Talatahari and Azizi, 2020a, 2021), atomic orbital search
(Azizi, 2021) and crystal structure algorithm (CryStAl) (Talatahari et al., 2021a, Khodadadi et al.,
2021). In addition, many other challenges have also been introduced and investigated in recent
years (see, e.g. Arora et al., 1994, Arora andWang, 2005, Talatahari and Azizi, 2020b,; Talatahari
et al., 2021b, Yazdchi et al., 2021, Azizi et al., 2019, Chen et al., 2020a,b and Sareh and Chen, 2020).
Notably, the uncertainty effects in various optimization procedures have been thoroughly studied
(see, e.g.Wang et al., 2019,Wang et al., 2021, Xiong et al., 2019, Beck andDe SantanaGomes, 2012,
Daskilewicz et al., 2011, Mukherjee et al., 2019 and Diwekar and Kalagnanam, 1997).

In this paper, a recently proposed metaheuristic algorithm called CryStAl is utilized as an
optimization technique for the optimum design of engineering problems (see Talatahari et al.
(2021a) for a more extensive description of the theoretical details of this method). A total
number of 20 numerical examples are utilized as test functions to evaluate the overall
performance of the proposed method. To validate the results of CryStAl, different
metaheuristic algorithms are selected from the literature for comparative purposes.
Besides, five of the well-known engineering design examples are also selected to test the
overall behavior of CryStAl in dealing with difficult optimization problems.

2.. Crystal structure optimization
2.1 Background
Historically, crystal science and engineering started with the study of minerals (Dhanaraj
et al., 2010, Brown, 1982 and Eberl et al., 1998). By definition, crystals are solid minerals, the
molecules, atoms or ions of which have a crystallographic order, i.e. they are symmetrically
arranged in the three-dimensional space. Inspired by the vivid symmetries in the structure of
natural crystalline solids, designers and engineers have created artworks (see, e.g. Bodner,
2013, Gr€unbaum, 2006, Necefoglu, 2003 and De Las Pe~nas et al., 2018), engineering structures
(Zingoni, 2015a-e, Sareh and Guest, 2015a-d, Chen et al., 2019 and Sareh, 2019) and nano-
objects (see, e.g. Ma et al., 2014, Takiguchi et al., 2020, Yu et al., 2007, Kee et al., 2007, Sun et al.,
2007, Yokoo et al., 2017, Ra and Lee, 2021, Sergent et al., 2019, Gorshkov et al., 2020a, b and
Gorshkov et al., 2021a, b) with highly symmetric geometries. Natural samples of some well-
known crystalline minerals are depicted in Figure 1.

A fundamental component of a typical crystal is the “lattice”, which represents the parodic
array of points in the space known as “lattice points”. Besides, the location of atoms in the
structure of a crystal is determined by another characteristic called the “basis”. By adding the
basis to the lattice points, we obtain the complete crystal structure, i.e.

Crystal ¼ Latticeþ Basis (1)

Figure 2 illustrates the lattice configurations corresponding to various crystal systems; on the
right-hand side of this figure, the relationships between lattice parameters.

Conventionally, the arrangement of atoms in solid structures is represented by different
spatial distributions of spherical elements within a unit cell of the solid. The unit cell is the
smallest volume that contains the fundamental structural information which is necessary to
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identify the crystal structure. In the middle of the 19th century, the French physicist Auguste
Bravais proved that all three-dimensional lattices can be classified into 14 distinct types,
known nowadays as “Bravais lattices”. The unit cells corresponding to these 14 types are
illustrated in Figure 3 (Li et al., 2008).

The Bravais model is used for the mathematical representation of crystals in which lattice
points are described by vectors as follows:

r ¼
X

niai; (2)

Where ni is an integer, ai is the shortest vector along the principal crystallographic directions,
and i is the number of crystal corners.

 Source(s): Dhanaraj et al., 2010

 Source(s): Adapted from Shriver et al., 2014

Figure 1.
Samples of crystalline
minerals: (a) Galena, (b)
Calcite, (c) Pyrite and

(d) Quartz

Figure 2.
Lattice configurations

corresponding to
various crystal

systems
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2.2 Model description
This section describes the mathematical model of the CryStAl In this model, each candidate
solution of the optimization problem is considered as a single crystal in the space and the
basic concepts of crystallography are employed with required modifications. Moreover, in
order to initialize the iterative process of computation, a number of crystals are randomly
determined as follows

Cr ¼

2
66666664

Cr1
Cr2

..

.

Cri

..

.

Crn

3
77777775
¼

x11 x21 � � � xj1 � � � xd1

x12 x22 � � � xj2 � � � xd2

..

. ..
. ..

.
1 ..

.

x1i x2i � � � xji � � � xdi

..

. ..
. ..

.
1 ..

.

x1n x2n � � � xjn � � � xdn

2
666666666664

3
777777777775
;

�
i ¼ 1; 2; . . . ; n
j ¼ 1; 2; . . . ; d

(3)

Where, n is the number of crystals (i.e. candidate solutions) and d is the dimension of the
problem. The initial positions of these crystals are determined randomly in the search space
as follows:

 Source(s): Adapted from Li et al., 2008

Figure 3.
Lattice points
describing the
translational
symmetry of (a)
primitive, (b) body-
centered and (c) face-
centered cubic
unit cells
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xjið0Þ ¼ xji;min þ r and:
�
xji;max � xji;min

�
;

�
i ¼ 1; 2; . . . ; n
j ¼ 1; 2; . . . ; d

(4)

Where, xjið0Þdetermines the initial position of the crystals; xji;min and x
j
i;max are respectively the

minimum and maximum allowable values for the jth decision variable of the ith solution
candidate; and rand is a random number in the interval [0,1].

Based on the concept of “basis” explained in the previous section, all the crystals at the
corners are considered as the main crystals, CrMain, determined randomly by considering
the initially-created crystals (candidate solutions). The crystal with the best configuration
is determined as Crb while the mean values of randomly selected crystals are denoted
by FC.

To update the positions of the candidate solutions in the search space, basic lattice
principles are considered in which four kinds of updating process as detailed in Table 1.

In order to deal with the solution variables ðxjiÞ violating the boundary conditions of the

variables, a mathematical flag is defined in which for the xji outside the variables range, the
flag orders a boundary change for the violating variables. The terminating criterion is
considered based on the maximum number of iterations in which the optimization process is
terminated after a fixed number of iterations. The pseudo-code of the algorithm is presented
in Figure 4.

3. Representative design examples
In order to verify the capabilities of the proposed method, i.e. CryStAl, in solving various
optimization problems, 20 benchmark mathematical test functions solved by six widely-used
metaheuristic algorithms are considered for comparison purposes. To this end, some well-
established constrained and engineering optimization problems from the optimization
literature are employed to demonstrate the performance of this new method in dealing with
such problems in comparison with some previously reported results of other studies in the
literature.

3.1 Mathematical test functions
The mathematical formulation and general characteristics of the considered mathematical
functions are demonstrated in this section (Table 2) while the complete description of these
problems is accessible in Karaboga and Akay (2009), Cheng and Lien (2012) and Cheng and
Prayogo (2014). The first nine functions are two-dimensional (2D) whereas functions 10 to 20

System Updating process Notes

Simple cubicle Crnew ¼ CrOld þ r:CrMain Crnew is the new position, CrOld is the old
position and r is a random number

Cubicle with best
crystals

Crnew ¼ CrOld þ r1:CrMain þ r2:Crb Crnew is the new position, CrOld is the old
position and r1 and r2 are random
numbers

Cubicle with mean
crystals

Crnew ¼ CrOld þ r1:CrMain þ r2:Fc Crnew is the new position, CrOld is the old
position and r1 and r2 are random
numbers

Cubicle with best
and mean crystals

Crnew ¼ CrOld þ r1:CrMain þ r2:Crb þ r3:Fc Crnew is the new position, CrOld is the old
position and r1 to r3 are random
numbers

Table 1.
Descriptions of the

mathematical
benchmark functions
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are 50-dimensional (50D). These mathematical test functions are some kinds of unimodal (U),
multimodal (M), separable (S) and non-separable (N) functions.

For the mentioned alternative metaheuristic algorithms utilized for comparative study,
the specific parameters of the algorithms are presented in Table 3.

3.2 Classical constrained optimization problems
In this section, three constrained optimization problems are considered to evaluate the
effectiveness and capability of the proposed method. These examples have been previously
studied by utilizing different metaheuristic algorithms. A simple penalty approach for
handling the problem constraints is selected.

The tension/compression spring design problem (Figure 5a) is the first constrained
problem in this paper in which the wire diameter d (5 x2), the mean coil diameterD (5 x1) and
the number of active coils N (5 x3) are considered as design variables while the boundaries
are 0.05≤ x1≤2, 0.25≤ x2≤1.3 and 2≤ x3≤15. The complete mathematical formulation of this
problem is as follows:

fcostðXÞ ¼ ðx3 þ 2Þx2x21; (5)

g1ðXÞ ¼ 1� x32x3

71785x41
≤ 0; (6)

g2ðXÞ ¼ 4x22 � x1x2

12566ðx2x31 � x41Þ
þ 1

5108x21
� 1≤ 0; (7)

g3ðXÞ ¼ 1� 140:45x1
x2x

3
1

≤ 0; (8)

Figure 4.
The pseudo-code of
CryStAl
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g4ðXÞ ¼ x1 þ x2

1:5
� 1≤ 0: (9)

The second constrained problem of this paper is the welded beam design problem (Figure 5b)
in which the shear stress (τ), bending stress (σ), buckling load (Pc), end deflection (δ) and some
side constraints are the design constraint f this problem while the design variables, namely h
(5 x1), l (5 x2), t (5 x3) and b (5 x4) are utilized accordingly regarding the 0.1≤ x1 ≤2, 0.1≤ x2
≤10, 0.1≤ x3 ≤10 and 0.1≤ x4 ≤2 as boundaries. The complete mathematical formulation of
this problem is as follows:

fcostðXÞ ¼ 1:10471x21x2 þ 0:04811x3x4ð14:0þ x2Þ: (10)

The optimization variables and their respective boundaries are 0.1≤ x1 ≤2, 0.1≤ x2 ≤10, 0.1≤
x3 ≤10 and 0.1≤ x4 ≤2. The constraints are defined as follows.

g1ðXÞ ¼ τðfxgÞ � τmax ≤ 0; (11)

g2ðXÞ ¼ σðfxgÞ � σmax ≤ 0; (12)

g3ðXÞ ¼ x1 � x4 ≤ 0; (13)

g4ðXÞ ¼ 0:10471x21 þ 0:04811x3x4ð14:0þ x2Þ � 5:0≤ 0; (14)

Metaheuristic Parameter Description Value

ACO Npop Archive size 50
Ns Sample size 50
q Intensification factor 0.5
ζ Deviation-distance ratio 1

DE Npop Number of scout bees 50
pc Crossover probability 0.2
βmin Lower bound of scaling factor 0.2
βmax Upper bound of scaling factor 0.8

GA Npop Population size 50
pc Crossover percentage 0.8
pm Mutation percentage 0.3
μ Mutation rate 0.02
β Roulette wheel selection pressure 1

HS HMS Harmony memory size 50
Nnew Number of new harmonies 20
HMCR Harmony memory consideration rate 0.9
PAR Pitch adjustment rate 0.1
FW Fret width (bandwidth) ±0.02
FWdamp Fret width damp ratio 0.995

PSO Npop Swarm size 50
w Inertia weight 1
wd Inertia weight damping ratio 0.99
c1 Personal learning coefficient 2
c2 Global learning coefficient 2

ICA Npop Population size 50
Nemp Number of empires/imperialists 10
α Selection pressure 1
β Assimilation coefficient 1.5
pr Revolution probability 0.05
μ Revolution rate 0.1
ζ Colonies mean cost coefficient 0.2

Table 3.
Parameter summary of
the alternative
metaheuristic
algorithms
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g5ðXÞ ¼ 0:125� x1 ≤ 0; (15)

g6ðXÞ ¼ δðfxgÞ � δmax ≤ 0; (16)

g7ðXÞ ¼ P � PcðfxgÞ≤ 0; (17)

τðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ0Þ2 þ 2τ0τ00

x2

2R
þ ðτ00 Þ2

r
; (18)

Where

τ0 ¼ Pffiffiffi
2

p
x1x2

; τ
00 ¼ MR

J
;M ¼ P

�
Lþ x2

2

�
;R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ
�x1 þ x3

2

�2r
; (19)

J ¼ 2

� ffiffiffi
2

p
x1x2

�
x22
12

þ
�x1 þ x3

2

�2	

; (20)

Figure 5.
Schematics of the

design problems: (a) a
conventional tension/

compression spring; (b)
a welded beam; (c) a

pressure vessel
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σðXÞ ¼ 6PL

x4x
2
3

; δðXÞ ¼ 4PL3

Ex33x4
; (21)

PcðXÞ ¼
4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q
L2

 
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !
; (22)

P ¼ 6000 lb; L ¼ 14 in; E ¼ 303 106 psi; G ¼ 123 106 psi: (23)

The pressure vessel design problem (Figure 5c) is the third constraint problem in
this paper in which x1 as the thickness of the shell (Ts), x2 is the thickness of the head
(Th), x3 is the inner radius (R) and x4 is the length of the cylindrical section of
the vessel (L), not including the head. The boundaries are 0≤ x1 ≤99, 0≤ x2 ≤99, 10≤ x3
≤200 and 10≤ x4 ≤200. The complete mathematical formulation of this problem is as
follows:

fcostðXÞ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21x4 þ 19:84x21x3 (24)

g1ðXÞ ¼ −x1 þ 0:0193x3 ≤ 0; (25)

g2ðXÞ ¼ −x2 þ 0:00954x3 ≤ 0; (26)

g3ðXÞ ¼ −πx23x4 �
4

3
πx33 þ 1296000≤ 0; (27)

g4ðXÞ ¼ x4 � 240≤ 0: (28)

3.3 Practical engineering design problems
This section examines and evaluates the performance of CryStAl in providing solutions for
some typical engineering optimization problems, in comparison with other metaheuristics.
To this end, here we consider two engineering design problems that were previously solved
using other metaheuristic algorithms, now to be solved using CryStAl, employing a simple
penalty approach to handle the constraints.

The car side-impact problem is the first practical problem in this paper which has a
mathematical presentation as follows while the schematic view of this problem is
demonstrated in Figure 6a.

Figure 6.
Schematic views of (a)
a car under side impact
and (b) a speed reducer
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fcostðXÞ ¼ 1:98þ 4:90x1 þ 6:67x2 þ 6:98x3 þ 4:01x4 þ 1:78x5 þ 2:73x7 (29)

g1ðXÞ ¼ 1:16� 0:3717x2x4 � 0:00931x2x10 � 0:484x3x9 þ 0:01343x6x10 ≤ 1; (30)

g2ðXÞ ¼ 0:261� 0:0159x1x2 � 0:188x1x8 � 0:019x2x7 þ 0:0144x3x5 þ 0:0008757x5x10

þ 0:080405x6x9 þ 0:00139x8x11 þ 0:00001575x10x11 ≤ 0:32; (31)

g3ðXÞ ¼ 0:214þ 0:00817x5 � 0:131x1x8 � 0:0704x1x9 þ 0:03099x2x6 � 0:018x2x7

þ 0:0208x3x8 þ 0:121x3x9 � 0:00364x5x6 þ 0:0007715x5x10 � 0:000535x6x10

þ 0:00121x8x11 ≤ 0:32; (32)

g4ðXÞ ¼ 0:074� 0:061x2 � 0:163x3x8 þ 0:001232x3x10 � 0:166x7x9 þ 0:227x22 ≤ 0:32; (33)

g5ðXÞ ¼ 28:98þ 3:818x3 � 4:2x1x2 þ 0:0207x5x10 þ 6:63x6x9 � 7:7x7x8 þ 0:32x9x10 ≤ 32;

(34)

g6ðXÞ ¼ 33:86þ 2:95x3 þ 0:1792x10 � 5:057x1x2 � 11:0x2x8 � 0:0215x5x10

� 9:98x7x8 þ 22:0x8x9 ≤ 32;
(35)

g7ðXÞ ¼ 46:36� 9:9x2 � 12:9x1x8 þ 0:1107x3x10 ≤ 32; (36)

g8ðXÞ ¼ 4:72� 0:5x4 � 0:19x2x3 � 0:0122x4x10 þ 0:009325x6x10 þ 0:000191x211 ≤ 4; (37)

g9ðXÞ ¼ 10:58� 0:674x1x2 � 1:95x2x8 þ 0:02054x3x10 � 0:0198x4x10 þ 0:028x6x10 ≤ 9:9;

(38)

g10ðXÞ ¼ 16:45� 0:489x3x7 � 0:843x5x6 þ 0:0432x9x10 � 0:0556x9x11

� 0:000786x211 ≤ 15:7; (39)

Where 0:5≤ x1 − x7 ≤ 1:5; x8 and x9 ∈ ð0:192; 0:345Þ; and. −30≤ x10 − x11 ≤ 30:
The speed reducer problem is the second practical problem in this paper which has a

mathematical presentation as followswhile the schematic view of this problem is displayed in
Figure 6b.

fcostðXÞ ¼ 0:7854bm2
�
3:3333z2 þ 14:9334z� 43:0934

�� 1:508b
�
d2
1 þ d22

�
þ 7:4777

�
d31 þ d32

�þ 0:7854
�
l1d

2
1 þ l2d

2
2

�
(40)

g1ðXÞ ¼ 27

bm2z
� 1≤ 0; (41)

g2ðXÞ ¼ 397:5

bm2z2
� 1≤ 0; (42)
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g3ðXÞ ¼ 1:93l31
mzd41

� 1≤ 0; (43)

g4ðXÞ ¼ 1:93l32
mzd42

� 1≤ 0; (44)

g5ðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
745l1
mz

�2 þ 16:93 106
q

�
110d3

1

� � 1≤ 0; (45)

g6ðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
745l2
mz

�2 þ 157:53 106
q

�
85d3

2

� � 1≤ 0; (46)

g7ðXÞ ¼ mz

40
� 1≤ 0; (47)

g8ðXÞ ¼ 5m

b
� 1≤ 0; (48)

g9ðXÞ ¼ b

12m
� 1≤ 0; (49)

g10ðXÞ ¼ 1:5d1 þ 1:9

l1
� 1≤ 0; (50)

g11ðXÞ ¼ 1:1d2 þ 1:9

l2
� 1≤ 0; (51)

Where
2:6≤ b≤ 3:6; 0:7≤m≤ 0:8; 17≤ z≤ 28; 7:3≤ l1 ≤ 8:3; 7:3≤ l2 ≤ 8:3; 2:9≤ d1 ≤ 3:9;
and 5≤ d2 ≤ 5:5:

4. Computational results and statistical analyses
In Table 4, the best and statistical results of 100 optimization runs by means of multiple
metaheuristic algorithms alongside the CryStAl are presented in dealing with
the mathematical test functions. Based on the results, CryStAl calculated the global
optimum value for 20 of the 20 functions, outperforming all the other metaheuristic
approaches.

By conducting the Kruskal–Wallis (K-W) test as one of the well-known statistical
analyses, the capability of CryStAl in competing with other algorithms is demonstrated. By
referring to Table 5, it can be shown that the CryStAl has the lowest mean of ranks which
makes this algorithm have the first ranking.

Considering the tension/compression spring design problem, Tables 6 and 7 present the
results obtained from CryStAl, as well as those produced by different metaheuristic
algorithms, some of which are extracted from the literature. As can be seen from the tables,
CryStAl provides better results in this case which demonstrates its capability in dealing with
such a constrained optimization problem.
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Rankings

Min Mean Std

Algorithms
Mean of
ranks Algorithms

Mean of
ranks Algorithms

Mean of
ranks

1 CryStAl 66.6 CryStAl 64.925 CryStAl 53.6
2 DE 70.8 DE 65.575 DE 59.55
3 PSO 71.75 ICA 67.625 ICA 64.75
4 ICA 72.35 PSO 79.725 PSO 82.2
5 GA 81.45 CSS 82.85 CSS 89.1
6 CSS 84.9 HS 93.275 HS 94.2
7 HS 95.375 GA 94.6 ACO 94.6
8 ACO 100.775 ACO 95.425 GA 106
Chi-sq 11.3046 11.8179 24.9141
Prob > Chi-sq 0.1258 0.1067 7.8587e-04

Method
Optimal Design Variables

x1(d) x2(D) x3(N) fcost

Belegundu (1982) 0.050000 0.315900 14.250000 0.0128334
Arora (1989) 0.053396 0.399180 9.185400 0.0127303
Coello (2000) 0.051480 0.351661 11.632201 0.0127048
Coello and Montes (2002) 0.051989 0.363965 10.890522 0.0126810
He and Wang (2007) 0.051728 0.357644 11.244543 0.0126747
Mezura-Montes and Coello (2008) 0.051643 0.355360 11.397926 0.012698
CryStAl (present work) 0.0517100 0.3571427 11.2670241 0.0126696

Method Best Mean Worst Standard deviation

Belegundu (1982) 0.0128334 N/A N/A N/A
Arora (1989) 0.0127303 N/A N/A N/A
Coello (2000) 0.0127048 0.012769 0.012822 3.9390e-5
Coello and Montes (2002) 0.0126810 0.0127420 0.012973 5.9000e-5
He and Wang (2007) 0.0126747 0.012730 0.012924 5.1985e-5
Mezura-Montes and Coello (2008) 0.012698 0.013461 0.16485 9.6600e-4
CryStAl (present work) 0.0126696 0.0127136 0.0127759 1.0365e-5

Method
Optimal Design Variables

x1(h) x2(l) x3(t) x4(b) fcost

APPROX (Ragsdell and Phillips, 1976) 0.2444 6.2189 8.2915 0.2444 2.3815
David (Ragsdell and Phillips, 1976) 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX (Ragsdell and Phillips, 1976) 0.2792 5.6256 7.7512 0.2796 2.5307
RANDOM (Ragsdell and Phillips, 1976) 0.4575 4.7313 5.0853 0.6600 4.1185
Deb (1991) 0.248900 6.173000 8.178900 0.253300 2.433116
Coello (2000) 0.208800 3.420500 8.997500 0.210000 1.748309
Coello and Montes (2002) 0.205986 3.471328 9.020224 0.206480 1.728226
He and Wang (2007) 0.202369 3.544214 9.048210 0.205723 1.728024
Mezura-Montes and Coello (2008) 0.199742 3.612060 9.037500 0.206082 1.737300
CryStAl (present work) 0.185658 3.635274 9.190371 0.199565 1.694518

Table 5.
The K-W test results

(mean of the ranks) for
the mathematical

functions

Table 6.
Optimum results for

the tension/
compression spring

design

Table 7.
Statistical results of

different methods for
the tension/

compression spring
design

Table 8.
Optimum results of the

welded beam design
problem
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Similarly, the results of CryStAl alongside several other metaheuristic algorithms in
solving the welded beam (Tables 8 and 9) and pressure vessel (Tables 10 and 11) design
problems are tabulated below, where some of the results are extracted from previous studies.
Again, CryStAl turns out to produce better results in comparisonwith those of its competitors
for both constrained optimization problems.

Tables 12 and 13 present the results of CryStAl and other algorithms in
dealing with the car side impact problem in which the CryStAl provides outstanding
results.

The results of CryStAl alongside other algorithms regarding the speed reducer problem
are shown in Tables 14 and 15. It can be concluded that CryStAl provides better results in

this case which represents its ability in dealing with these kinds of difficult constrained
problems.

Method Best Mean Worst Standard deviation

Ragsdell and Phillips (1976) 2.3815 N/A N/A N/A
Deb (1991) 2.433116 N/A N/A N/A
Coello (2000) 1.748309 1.771973 1.785835 0.011220
Coello and Montes (2002) 1.728226 1.792654 1.993408 0.074713
He and Wang (2007) 1.728024 1.748831 1.782143 0.012926
Mezura-Montes and Coello (2008) 1.737300 1.813290 1.994651 0.070500
CryStAl (present work) 1.694518 1.753322 1.810659 0.008365

Method
Optimal Design Variables

x1(Ts) x2(Th) x3(R) x4(L) fcost

Sandgren (1988) 1.125000 0.625000 47.700000 117.701000 8,129.1036
Kannan and Kramer (1994) 1.125000 0.625000 58.291000 43.690000 7,198.0428
Deb (1997) 0.937500 0.500000 48.329000 112.679000 6,410.3811
Coello (2000) 0.812500 0.437500 40.323900 200.000000 6,288.7445
Coello and Montes (2002) 0.812500 0.437500 42.097398 176.654050 6,059.9463
He and Wang (2007) 0.812500 0.437500 42.091266 176.746500 6,061.0777
Mezura-Montes and Coello (2008) 0.812500 0.437500 42.098087 176.640518 6,059.7456
CryStAl (present work) 12.924693 7.0834174 42.098445 176.636595 6,059.7143

Method Best Mean Worst Standard deviation

Sandgren (1988) 8,129.1036 N/A N/A N/A
Kannan and Kramer (1994) 7,198.0428 N/A N/A N/A
Deb (1997) 6,410.3811 N/A N/A N/A
Coello (2000) 6,288.7445 6,293.8432 6,308.1497 7.4133
Coello and Montes (2002) 6,059.9463 6,177.2533 6,469.3220 130.9297
He and Wang (2007) 6,061.0777 6,147.1332 6,363.8041 86.4545
Mezura-Montes and Coello (2008) 6,059.7456 6,850.0049 7,332.8798 426.0000
CryStAl (present work) 6,059.7143 6,582.5273 6,370.7797 5.8426

Table 9.
Statistical results of
different methods for
the welded beam
design problem

Table 10.
Optimum results for
the pressure vessel
design problem

Table 11.
Statistical results of
different methods for
the pressure vessel
design problem
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Algorithm Best Mean Worst
Standard
deviation

ABC 23.175889625990923 23.860680484086661 25.010762794496625 3.7642E-01
PSO 22.842984930697273 23.613571153685552 26.190640350882905 7.5252E-01
MFO 22.842970873572792 22.972834963056012 23.687547312526856 2.0794E-01
ALO 22.842980706120642 23.108402571838820 23.824366429288702 2.9093E-01
ER-WCA 22.843264619959352 23.069925342953958 24.455312800924212 3.5021E-01
GWO 22.852792762688743 22.992226614913008 23.347095471895521 1.6277E-01
WCA 22.843036481964047 22.975164427881293 23.370933765943949 1.9772E-01
MBA 22.843596400842499 22.936421047192962 23.488942174549098 1.5258E-01
SSA 22.846514099392973 23.253716124255313 23.829530847339793 3.0557E-01
WOA 23.042162202328310 24.814486173621617 27.360813682283315 9.6570E-01
CryStAl (present
work)

23.561584764484730 23.561952853347831 23.562036172317104 1.3629E-01

Source(s): Competing algorithms are adapted from Yildiz et al. (2020)

Algorithm b m z l1 l2 d1 d2

ABC 3.5 0.7 17 7.3 7.71532 3.350214 5.286654
PSO 3.5 0.7 17 7.3 7.71532 3.350214 5.286654
MFO 3.5 0.7 17 7.3 7.71532 3.350214 5.286654
ALO 3.5 0.7 17 7.472705 7.735382 3.350541 5.286661
ER-WCA 3.5 0.7 17 7.3 7.715319 3.350214 5.286654
GWO 3.500881 0.700096 17.00101 7.302118 7.719974 3.350684 5.286708
WCA 3.5 0.7 17 7.3 7.715319 3.350214 5.286654
MBA 3.5 0.7 17 7.3 7.71532 3.350214 5.286654
SSA 3.5 0.7 17 7.36496 7.75803 3.35033 5.28666
WOA 3.500411 0.7 17 7.3 7.777372 3.352552 5.286675
CryStAl (present work) 3.5 0.7 17 7.3 7.7153 3.3505 5.2867

Source(s): Competing algorithms are adapted from Yildiz et al. (2020)

Algorithm Best Mean Worst
Standard
deviation

ABC *2994.471067504619 2994.471075844169 2994.471115543837 9.2123E-06
PSO *2994.471069674640 3070.655058796543 3209.297397650784 5.8657Eþ01
MFO *2994.471066146822 2.994471066147108 2.994471066151665 7.3921E-10
ALO 2996.521745443848 3005.644279605541 3014.379001168207 4.7422Eþ00
ER-WCA *2994.471066146826 2996.744541331202 3007.436552164085 4.3876Eþ00
GWO *2995.704434912354 3001.556162056451 3009.944296784721 4.1218Eþ00
WCA *2994.471066147307 2996.203773574547 3016.578575484153 4.8705Eþ00
MBA *2994.471371019410 2944.744437623391 2994.484788566012 2.4195E-03
SSA 2996.021720467607 3005.574377149090 3015.662612037751 4.63871Eþ00
WOA 2996.604340024459 3.042915023571878 3233.598124214217 4.0888Eþ01
CryStAl
(present work)

2994.424465756737 2996.852815956722 2994.844306772722 1.927E-03

Note(s): * These results do not satisfy the provided constraints of the speed reducer problem
Source(s): Competing algorithms are adapted from Yildiz et al. (2020)

Table 13.
The comparative
results of CryStAl for
the car side impact
problem

Table 14.
Optimum results for
the speed reducer
problem

Table 15.
The comparative
results of CryStAl for
the speed reducer
problem
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5. Conclusions
This paper investigated the overall performance of a recently developed metaheuristic
algorithm called CryStAl, which is inspired by the spatial symmetry in the structural
configurations of crystalline solids, in dealing with mechanical engineering design
problems. A total number of 20 mathematical functions were utilized as test functions to
evaluate the overall performance of the proposed method. Furthermore, to validate the
results of this algorithm, various classical and modern metaheuristic algorithms were
selected from the literature for comparative purposes, followed by a statistical analysis of
the outputs. Besides, three well-known engineering design examples were chosen to
examine the capabilities of this algorithm in solving challenging optimization problems.
The results obtained from the analyses demonstrated that CryStAl is superior to the other
metaheuristics in most of the examined cases. It should be mentioned that this study was
concerned with the applicability of this new algorithm to solving a well-known range of
mechanical design optimization problems. As future work, further research is necessary to
examine the utility of this method in dealing with challenging problems in other fields of
science and engineering.
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